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Abstract

Many of the classes of objects studied in geometry are defined by first choosing a

class of nice spaces and then allowing oneself to glue these local models together

to construct more general spaces. The most well-known examples are manifolds

and schemes. The main purpose of this thesis is to give a unified account of this

procedure of constructing a category of spaces built from local models and to

study the general properties of such categories of spaces. The theory developed

here will be illustrated with reference to examples, including the aforementioned

manifolds and schemes.

For concreteness, consider the passage from commutative rings to schemes.

There are three main steps: first, one identifies a distinguished class of ring homo-

morphisms corresponding to open immersions of schemes; second, one defines

the notion of an open covering in terms of these distinguished homomorphisms;

and finally, one embeds the opposite of the category of commutative rings in

an ambient category in which one can glue (the formal duals of) commutative

rings along (the formal duals of) distinguished homomorphisms. Traditionally,

the ambient category is taken to be the category of locally ringed spaces, but fol-

lowing Grothendieck, one could equally well work in the category of sheaves for

the large Zariski site—this is the so-called ‘functor of points approach’. A third

option, related to the exact completion of a category, is described in this thesis.

The main result can be summarised thus: categories of spaces built from local

models are extensive categories with a class of distinguished morphisms, sub-

ject to various stability axioms, such that certain equivalence relations (defined

relative to the class of distinguished morphisms) have pullback-stable quotients;

moreover, this construction is functorial and has a universal property.





If names be not correct, language is not in accordance with
the truth of things. If language be not in accordance with
the truth of things, affairs cannot be carried on to success.
When affairs cannot be carried on to success, proprieties and
music will not flourish. When proprieties and music do not
flourish, punishments will not be properly awarded. When
punishments are not properly awarded, the people do not
know how to move hand or foot. Therefore a superior man
considers it necessary that the names he uses may be spoken
appropriately, and also that what he speaks may be carried
out appropriately. What the superior man requires is just that
in his words there may be nothing incorrect.

Analects, Book XIII, translated by James Legge
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Introduction

Context

Many of the classes of objects studied in geometry are defined by first choosing a

class of nice spaces and then allowing oneself to glue these local models together

to construct more general spaces. The most well-known examples are manifolds

and schemes. In fact, manifolds comprise a whole family of examples: after all,

there are smooth manifolds, topological manifolds, complex analytic manifolds,

manifolds with boundaries, manifolds with corners, etc. All of these notions of

manifold are defined in roughly the same way, namely, as topological spaces

equipped with a covering family of open embeddings of local models such that

certain regularity conditions are satisfied. On the other hand, the traditional defin-

ition of scheme is much more involved: because the local models are not given

directly as geometric objects, one has to first find a suitable geometric incarnation

of the local models, which is highly non-trivial.

Another manifold-like notion is the notion of sheaf. Indeed, a sheaf on a topo-

logical space is a topological space obtained by gluing together open subspaces

of the base space. This heuristic can be made precise and remains valid for Gro-

thendieck’s notion of sheaf on a site: a site is a category equipped with a notion

of covering, and a sheaf on a site can be regarded as a formal colimit of a diagram

in the base. Thus, it should come as no surprise that manifold-like objects can be

represented by sheaves on the category of local models, in the sense that there is

a fully faithful functor from the category of manifold-like objects to the category

of sheaves.

There is an alternative definition of scheme based on the aforementioned sheaf

representation: this is called ‘the functor-of-points approach to algebraic geo-
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Introduction

metry’ and can be found in e.g. [Demazure and Gabriel, 1970]. The great advant-

age of the definition in terms of functors over the traditional one in terms of locally

ringed spaces is that one no longer needs to explicitly model affine schemes—

the local models—as geometric objects; instead, one can just glue together affine

schemes formally. In exchange, one has to give up a certain sense of concreteness,

but it is precisely the high level of abstraction that makes the functor-of-points

approach so amenable to generalisation: one can mimic the functorial definition

of ‘scheme’ in any reasonable geometric situation to get a manifold-like notion.

Of course, one should say what one means by ‘reasonable geometric situation’

here. For the purposes of defining manifold-like notions, not much is needed: it

would suffice to have a class of well-behaved morphisms—akin to local homeo-

morphisms of topological spaces or étale morphisms of schemes—and a com-

patible notion of covering. Joyal andMoerdijk [JM] have previously investigated

this idea, albeit without discussing the problem of defining manifold-like notions.

In a sense, this thesis is a fulfilment of a suggestion of Shulman [2012]:

It should be possible to axiomatize further “open map structure”,

along the lines of [JM] and [DAG 5], enabling the identification of a

general class of “schemes” in [the exact completion] as the congru-

ences where gluing happens only along “open subspaces.”

Summary

The primary goal of this thesis is to give a uniform account of manifold-like

notions. Although the concept is straightforward enough, as ever, the devil is

in the details. In essence, the difficulty is the tradeoff between having a bad cat-

egory of nice objects and having a nice category of bad objects.[1] It is not very

hard to develop an elegant theory of manifold-like notions if one assumes that all

the categories and functors involved behave nicely with respect to limits of finite

diagrams. Unfortunately, the category of manifolds is the classical example of a

bad category of nice objects—not all pullbacks exist—so such a theory would

not account for manifolds. Similarly, one cannot easily account for the functor

[1] Of course, this is only an empirical observation, sometimes attributed to Grothendieck.
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Summary

that sends a scheme to its underlying topological space because this functor does

not preserve pullbacks.

For better or worse, the theory that is developed in this work can accommodate

the two examples mentioned above. While the theory may not be as elegant as

one may have hoped for at first, it is at least general enough to include well-

known examples. What follows is a summary of this theory; some details have

been changed or omitted in order to simplify the exposition.

First, let us fix what it means to have a category of local models. An admiss-

ible ecumene consists of the following data:

• An extensive category,[2] u�.

• A class of morphisms in u�, 𝖤, with the following properties:

– Every isomorphism in u� is a member of 𝖤.

– 𝖤 is closed under composition.

– 𝖤 is closed under coproduct.

– 𝖤 is a quadrable class of morphisms in u�, i.e. u� has pullbacks of members

of 𝖤 along arbitrary morphisms and, for every pullback square in u� of the

form below,
𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of 𝖤, then 𝑓 ′ : 𝑋′ → 𝑌 ′ is also a member of 𝖤.

– Every member of 𝖤 is an effective epimorphism in u�.

– Every finite diagram in u� has an 𝖤-weak limit.[3]

• A class of morphisms in u�, u�, with the following properties:

– Every isomorphism in u� is a member of u�.

– u� is closed under composition.

– u� is a quadrable class of morphisms in u�.

[2] See definition 1.5.5.
[3] See definition 1.4.9.
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Introduction

– For every object 𝑋 in u� and every small set 𝐼 , the codiagonal morphism

∇ : ∐𝑖∈𝐼 𝑋 → 𝑋 is a member of u�.

– u� is closed under coproduct.

– Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, if both 𝑔 : 𝑌 → 𝑍 and

𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are members of u�, then 𝑓 : 𝑋 → 𝑌 is also a member of u�.

– Given a member 𝑓 : 𝑋 ↠ 𝑌 of 𝖤 and a morphism 𝑔 : 𝑌 → 𝑍 in u�, if both
𝑓 : 𝑋 ↠ 𝑌 and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are members of u�, then 𝑔 : 𝑌 → 𝑍 is also

a member of u�.

– If 𝑓 : 𝑋 → 𝑌 is a member of u�, then there is a small set Φ of objects in

u�∕𝑋 with the following properties:

* The induced morphism ∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 in u� is a member of 𝖤.

* For every (𝑈, 𝑥) ∈ Φ, both 𝑥 : 𝑈 → 𝑋 and 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 are

monomorphisms in u� that are members of u�.

– Every member of 𝖤 is also a member of u�.

For example, the following data define admissible ecumenae:

(a) u� is the category of Hausdorff spaces, u� is the class of local homeomorph-

isms, and 𝖤 is the class of the class of surjective local homeomorphisms.

(b) u� is the category of disjoint unions of small families of affine schemes,

u� is the class of local isomorphisms, and 𝖤 is the class of surjective local

isomorphisms.

(c) u� is the category of disjoint unions of small families of open subspaces of

euclidean spaces, u� is the class of local diffeomorphisms, and 𝖤 is the class

of surjective local diffeomorphisms.

Next, we make precise what it means to have a category of spaces built from

local models. We say that an admissible ecumene as above is effective if the

following additional condition is satisfied:

• For every object 𝑋 in u� and every tractable equivalence relation[4] (𝑅, 𝑑0, 𝑑1)
on 𝑋 in u�, there is a morphism 𝑓 : 𝑋 ↠ 𝑌 in u� such that 𝑓 : 𝑋 ↠ 𝑌 is a

member of 𝖤 and (𝑅, 𝑑0, 𝑑1) is a kernel pair of 𝑓 : 𝑋 ↠ 𝑌 .

[4] See definition 2.2.14.
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Summary

The main result of this thesis says that every admissible ecumene can be embed-

ded in an effective admissible ecumene that is universal with respect to admissible

functors.[5] The category of charted objects is (the underlying category of) this

universal effective admissible ecumene. For example:

(a) For (u�, u�, 𝖤) as in example (a), the category of charted objects is (equival-

ent to) the category of locally Hausdorff spaces.

(b) For (u�, u�, 𝖤) as in example (b), the category of charted objects is (equival-

ent to) the category of schemes.

(c) For (u�, u�, 𝖤) as in example (c), the category of charted objects is (equi-

valent to) the category of manifolds, possibly neither second-countable nor

Hausdorff.

As one might expect, every charted object can be obtained as a quotient (in the

category of charted objects) of an object in u� by a tractable equivalence relation

(not necessarily in u�). This fact is easily deduced from the explicit construction

of the category of charted objects as a full subcategory of the exact completion

of u� relative to 𝖤, which is an exact category that u� embeds into and is universal

with respect to functors that preserve limits of finite diagrams and send members

of 𝖤 to effective epimorphisms. Since u� is an extensive category and 𝖤 is closed

under coproduct, the exact completion is a pretopos.[6] This is very convenient

for technical purposes: recalling the tradeoff discussed in the first paragraph,

what we are doing is embedding a bad category of nice objects in a nice category

of bad objects, which means that many proofs boil down to showing that certain

constructions on nice objects—which are guaranteed to exist in the nice category

—yield nice objects.

To make a tighter connection with the previously mentioned work of Joyal and

Moerdijk [JM], we propose the following definition. A gros pretopos consists

of the following data:

• A pretopos, u� .

[5] See definition 2.5.5 and theorem 2.5.7.
[6] See proposition 1.5.13.

xvii



Introduction

• A class of morphisms in u� , u�, with the following properties:

– Every isomorphism in u� is a member of u�.

– u� is closed under composition.

– u� is a quadrable class of morphisms in u� .

– For every object 𝑋 in u� and every small set 𝐼 , the codiagonal morphism

∇ : ∐𝑖∈𝐼 𝑋 → 𝑋 is a member of u�.

– u� is closed under coproduct.

– Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u� , if both 𝑔 : 𝑌 → 𝑍 and

𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are members of u�, then 𝑓 : 𝑋 → 𝑌 is also a member of u�.

– Given an effective epimorphism 𝑓 : 𝑋 ↠ 𝑌 in u� , a morphism 𝑔 : 𝑌 → 𝑍
in u� and a kernel pair (𝑅, 𝑑0, 𝑑1) of 𝑓 : 𝑋 → 𝑌 in u� , if 𝑑0, 𝑑1 : 𝑅 → 𝑋
and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are all members of u�, then both 𝑓 : 𝑋 ↠ 𝑌 and

𝑔 : 𝑌 → 𝑍 are also members of u�.

The axioms onu� are almost the same as Joyal’s axioms for a class of étale morph-

isms—the difference being that we omit the descent axiom and strengthen the

quotient axiom. Here, ‘gros’ is used in opposition to ‘petit’: given an object 𝑋
in u� , the petit pretopos u�∕𝑋 is the full subcategory of the slice category u�∕𝑋

spanned by the objects (𝐹 , 𝑝) such that 𝑝 : 𝐹 → 𝑋 is a member of u�.

Of course, a pretopos equipped with a class of étale morphisms as defined in

[JM, §1] is a gros pretopos, but we require a bit more generality. For instance,

the pretopos associated with an admissible ecumene admits the structure of a

gros pretopos such that the intersection of the class of distinguished morphisms

in the pretopos with the original category is the original class of distinguished

morphisms—in fact, we will see two different constructions: one that yields a

class of étale morphisms and one that does not.[7] It turns out that the latter is

what we need to construct the category of charted objects.

Given a full subcategory u� ⊆ u� , a (u�, u�)-atlas of an object 𝑌 in u� is an

effective epimorphism 𝑓 : 𝑋 ↠ 𝑌 in u� where 𝑋 is an object in u� and 𝑓 : 𝑋 ↠ 𝑌
is a member of u�, and a (u�, u�)-extent in u� is an object that admits a (u�, u�)-atlas.

[7] See proposition 2.3.2 and paragraph 2.5.3.
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Outline

Under certain hypotheses on u� and u�, the category of (u�, u�)-extents in u� admits

the structure of an effective admissible ecumene. For instance, if u� is the exact

completion of an admissible ecumene, u� is the image of the original category, and

u� is the induced class of local homeomorphisms, then this is part of the statement

of the main result.

Although we define the category of charted objects for an admissible ecumene

to be the category of extents in the exact completion with respect to a certain gros

pretopos structure, we should distinguish between ‘charted object’ and ‘extent’

because there exist gros pretoposes that do not arise in this way. Indeed, whereas

the petit pretopos over a charted object is guaranteed to be localic,[8] the petit

pretopos over an extent can fail to be localic. The extra generality afforded by

defining extents in the setting of a general gros pretopos makes it possible to fit

algebraic spaces—generalised schemes—into our framework, but exploring that

possibility will be left for future work.

Outline

Abstract topology

In the first chapter, we study various aspects of what it means to be a category of

spaces.

• In §1.1, we discuss the relative point of view of Grothendieck, i.e. the idea

that a morphism is a family of objects (the domain) parametrised by the base

(the codomain), and we define some related terminology that will be used

throughout this work.

• In §1.2, we consider what it means for a morphism to have a property locally

on the domain, locally on the base, or locally, with respect to a coverage. This

is partially a generalisation of earlier work by Joyal and Moerdijk [JM, §§1

and 5].

• In §1.3, we study categories with a class of morphisms that have good prop-

erties with regards to pullbacks and images, such as regular categories.

[8] See definition 2.1.4 and lemma 2.3.12(a).
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• In §1.4, we consider the problem of adding exact quotients—i.e. coequalisers

of equivalence relations that behave well under pullback—to a category with

a class of covering morphisms. Specifically, we will see a sheaf-theoretic con-

struction of the exact completion of a category equipped with a unary topology

in the sense of [Shulman, 2012].

• In §1.5, we study extensive categories and we examine properties of their

exact completions. In particular, we will see that the exact completion of an

extensive category equipped with a superextensive coverage is a pretopos.

Charted objects

In the second chapter, we use the concepts introduced in the first chapter to con-

struct categories of charted objects, i.e. spaces built from local models.

• In §2.1, we consider full subcategories of pretoposes for which the associated

Yoneda representation is fully faithful and we identify the essential image of

such Yoneda representations.

• In §2.2, we define various notions of categories equipped with structure mak-

ing it possible to interpret basic notions of topology such as open embeddings

and local homeomorphisms.

• In §2.3, we examine the properties of the category of extents—i.e. objects in

a gros pretopos equipped with an étale atlas.

• In §2.4, we investigate sufficient conditions for a functor between gros pre-

toposes to preserve atlases and extents. Specifically, we will see that a func-

tor between gros pretoposes will preserve local homeomorphisms between

extents if it preserves coproducts, some coequalisers, and pullbacks of local

homeomorphisms between distinguished objects.

• In §2.5, we characterise the category of extents by a universal property in a

special case, namely, when étale morphisms coincide with local homeomorph-

isms and the coverage is generated by local homeomorphisms.
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Guide for readers

Specificities

In the final chapter, we see specific examples of the notions introduced in the

preceding chapters.

• In §3.1, we examine three classes of continuous maps of topological spaces

that arise by relativising the notion of compactness.

• In §3.2, we construct a combinatorial example of a gros pretopos based on

discrete fibrations of simplicial sets, which are closely related to discrete fibra-

tions of categories.

• In §3.3, we construct an admissible ecumene for which the charted objects are

the smooth manifolds of fixed dimension and cardinality.

• In §3.4, we construct admissible ecumenae from categories of topological

spaces and investigate when a topological space is representable by a charted

object.

• In §3.5, we see two prima facie different ways of defining schemes as extents

in a gros pretopos and show that they are the same.

Guide for readers

Prerequisites

I assume the reader is familiar with category theory—at least Chapters I–V and X

of [CWM]. The appendix contains some material on topics not covered in op. cit.

Conventions

Following [CWM], ‘category’ always means a category with a set of objects and

a set of morphisms, whereas ‘metacategory’ refers to a category with a class of

objects and a class of morphisms. Nonetheless, from time to time, it is convenient

to use terminology previously only defined for categories for metacategories as

well. This can be justified by adopting a suitable universe axiom, but we will not

do so.

xxi



Introduction

Internal structure

The following is one possible reading order: §§1.1, a.1, a.2, 1.2, 3.1, 1.3, a.3,

1.4, 1.5, 2.1, 2.2, 2.3, 3.2, 3.3, 2.4, 2.5, 3.4, 3.5. That said, because concrete

examples are deferred to chapter III, readers may find it helpful to peek ahead

from time to time. An index for finding definitions appears at the end of the

document, after the bibliography.

The material within each chapter and each section is laid out linearly; readers

should avoid skipping to the middle of a section as there may be local conventions

in force. Each section is divided into “paragraphs”, which are identified by a label

printed in the margin.

xxii



Chapter I

Abstract topology

1.1 The relative point of view

Synopsis. We discuss the relative point of view of Grothendieck and

define related terminology.

1.1.1 ※ Throughout this section, u� is an arbitrary category.

1.1.2 ¶ The central tenet of the relative point of view of Grothendieck is to

regard morphisms 𝑓 : 𝑋 → 𝑌 in u� as objects (𝑋, 𝑓) in the slice category

u�∕𝑌 . In turn, objects in u�∕𝑌 are to be regarded as “families” of objects in

u� indexed (or parametrised) by 𝑌 . This can be made precise in special

cases: for instance, there is a canonical equivalence between Set∕𝐼 and

Set𝐼 .[1] Of course, from the relative point of view, pullback of morphisms

is reindexing (or reparametrisation), so we should focus our attention on

those properties and constructions which are compatible with pullback.

1.1.2(a) Definition. A morphism 𝑓 : 𝑋 → 𝑌 in u� is quadrable if it has the

following property:

• For every morphism 𝑦 : 𝑌 ′ → 𝑌 in u�, there is a pullback square in u�
of the form below:

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓

𝑦

We write qdblu� for the set of all quadrable morphisms in u�.

[1] Depending on the definition of Set𝐼 , this may depend on the axiom of replacement.
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Abstract topology

1.1.2(b) Definition. A subset ℱ ⊆ moru� is closed under pullback in u� if it has

the following property:

• For every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of ℱ , then 𝑓 ′ : 𝑋′ → 𝑌 ′ is also a member

of ℱ .

1.1.2(c) Definition. A quadrable class of morphisms in u� is a subset ℱ ⊆
moru� with the following properties:

• Every member of ℱ is a quadrable morphism in u�.

• ℱ is closed under pullback in u�.

1.1.3 Lemma. Letℱ be a quadrable class of morphisms inu�. Given amorphism
𝑓 : 𝑋 → 𝑌 in u� and a monomorphism 𝑔 : 𝑌 → 𝑍 in u�, if the composite
𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is a member of ℱ , then the morphism 𝑓 : 𝑋 → 𝑌 is also

a member of ℱ .

Proof. The following is a pullback square in u�:

𝑋 𝑋

𝑌 𝑍

𝑓 𝑔∘𝑓

𝑔

Thus the left vertical arrow is a member of ℱ if the right vertical arrow is

a member of ℱ . ■

1.1.4(a) Definition. A class of fibrations in u� is a subsetℱ ⊆ moru� that satisfies

the following axioms:

• ℱ is a quadrable class of morphisms in u�.

• For every object 𝑋 in u�, id : 𝑋 → 𝑋 is a member of ℱ .

• ℱ is closed under composition.
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1.1. The relative point of view

1.1.4(b) Definition. Let ℱ be a class of fibrations in u� and let 𝑆 be an object in

u�. An object (𝑋, 𝑓) in u�∕𝑆 is ℱ -fibrant if the morphism 𝑓 : 𝑋 → 𝑆 is a

member of ℱ .

Wewriteℱ (𝑆) for the full subcategory of u�∕𝑆 spanned by theℱ -fibrant

objects.

1.1.4(c) Example. isou�, the class of isomorphisms in u�, is the smallest class of

fibrations in u�.

1.1.4(d) Example. The class of quadrable morphisms in u� is the largest class of

fibrations in u�. (Note that the pullback pasting lemma implies that the

class of quadrable morphisms in u� is closed under composition.)

1.1.4(e) Example. The class of quadrable split epimorphisms in u� is a class of

fibrations in u�.

1.1.5 ¶ Let ℱ be a class of fibrations in u�. Consider a commutative diagram

in u� of the form below,

𝑋 𝑍 𝑌

𝐴 𝐶 𝐵

𝑎

𝑓

𝑐 𝑏

𝑔

ℎ 𝑘

where the vertical arrows are members of ℱ . Suppose u� has pullbacks. It

is not true that the induced morphism 𝑎 ×𝑐 𝑏 : 𝑋 ×𝑍 𝑌 → 𝐴 ×𝐶 𝐵 is a

member of ℱ in general. Rather:

Pullbacks

and fibrations

Lemma. If ⟨𝑎, 𝑓⟩ : 𝑋 → 𝐴×𝐶 𝑍 is a member ofℱ , then 𝑎×𝑐 𝑏 : 𝑋×𝑍 𝑌 →
𝐴 ×𝐶 𝐵 is also a member of ℱ .

Proof. By considering the following commutative diagram in u� ,

𝑋 ×𝑍 𝑌 𝐴 ×𝐶 𝑌 𝑌

𝑋 𝐴 ×𝐶 𝑍 𝑍

𝐴 𝐶

𝑎×𝑐id𝑌

id𝐴×id𝐶 𝑔 𝑔

⟨𝑎,𝑓⟩
𝑐

ℎ
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we see that 𝑎 ×𝑐 id𝑌 : 𝑋 ×𝑍 𝑌 → 𝐴 ×𝐶 𝑌 is a member of ℱ . On the

other hand, by the pullback pasting lemma, we also have the following

pullback square in u� ,

𝐴 ×𝐶 𝑌 𝑌

𝐴 ×𝐶 𝐵 𝐵

id𝐴×id𝐶 𝑏 𝑏

so id𝐴 ×id𝐶
𝑏 : 𝐴 ×𝐶 𝑌 → 𝐴 ×𝐶 𝐵 is also a member of ℱ . Hence,

𝑎 ×𝑐 𝑏 : 𝑋 ×𝑍 𝑌 → 𝐴 ×𝐶 𝐵 is indeed a member of ℱ . ■

1.1.6 ¶ Let ℱ be a quadrable class of morphisms in u�. The following can be

regarded as a generalisation of the Hausdorff separation axiom, particu-

larly when ℱ is regarded as a class of closed embeddings.

Definition. An object 𝑋 in u� is ℱ -separated if, for every object 𝑇 in u�
and every parallel pair 𝑥0, 𝑥1 : 𝑇 → 𝑋 in u�, there is an equaliser diagram
in u� of the form below,

𝑇 ′ 𝑇 𝑋𝑡
𝑥0

𝑥1

where 𝑡 : 𝑇 ′ → 𝑇 is a member of ℱ .

Example. An object inu� is subterminal if and only if it is (isou�)-separated.

Diagonal

criterion for

separatedness

Lemma. Let 𝑋 be an object in u�. Assuming 𝑋 × 𝑋 exists in u�, the fol-

lowing are equivalent:

(i) 𝑋 is an ℱ -separated object in u�.

(ii) The diagonal Δ𝑋 : 𝑋 → 𝑋 × 𝑋 is a member of ℱ .

Proof. (i) ⇒ (ii). The following is an equaliser diagram in u�,

𝑋 𝑋 × 𝑋 𝑋
Δ𝑋

where the parallel pair of arrows are the two projections. Thus the diag-

onal Δ𝑋 : 𝑋 → 𝑋 × 𝑋 is a member of ℱ .
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1.1. The relative point of view

(ii) ⇒ (i). Given any parallel pair 𝑥0, 𝑥1 : 𝑇 → 𝑋 in u�, we have the

following pullback square in u�,

𝑇 ′ 𝑋

𝑇 𝑋 × 𝑋

𝑡 Δ𝑋

⟨𝑥0,𝑥1⟩

and given any such pullback square,

𝑇 ′ 𝑇 𝑋𝑡
𝑥0

𝑥1

is an equaliser diagram in u�. Note that 𝑡 : 𝑇 ′ → 𝑇 is a member of ℱ , as

required. ■

1.1.7 ¶ Let ℱ be a quadrable class of morphisms in u�. Given an object 𝑌 in

u�, let ℱ𝑌 be the class of morphisms in u�∕𝑌 whose underlying morphism

in u� is a member of ℱ . It is not hard to see that ℱ𝑌 is a quadrable class of

morphisms in u�∕𝑌 . This allows us to extend the definition of ‘separated’

from objects in u� to morphisms in u�.

Definition. A morphism 𝑓 : 𝑋 → 𝑌 in u� is ℱ -separated if the object

(𝑋, 𝑓) in u�∕𝑌 is ℱ𝑌 -separated.

Remark. Assuming 1 is a terminal object in u�, an object 𝑋 in u� is ℱ -

separated if and only if the unique morphism 𝑋 → 1 in u� is ℱ -separated.

Properties

of separated

morphisms

Proposition.

(i) Assuming every isomorphism in u� is a member of ℱ , every mono-

morphism in u� is ℱ -separated.

(ii) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, if the composite
𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is ℱ -separated, then the morphism 𝑓 : 𝑋 → 𝑌 is also

ℱ -separated.

(iii) The class of ℱ -separated morphisms in u� is closed under pullback

in u�.

(iv) Assuming ℱ is closed under composition, the class of ℱ -separated

morphisms in u� is closed under composition.
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Proof. (i)–(ii). Straightforward.

(iii). Consider a pullback square in u�:

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′

𝑥

𝑓

ℎ

Suppose 𝑓 : 𝑋 → 𝑌 is an ℱ -separated morphism in u�. We must verify

that 𝑓 ′ : 𝑋′ → 𝑌 ′ is also an ℱ -separated morphism in u�.
Let 𝑥′

0, 𝑥′
1 : 𝑇 → 𝑋′ be morphisms in u� such that 𝑓 ′ ∘ 𝑥′

0 = 𝑓 ′ ∘ 𝑥′
1.

Then 𝑓 ∘ 𝑥 ∘ 𝑥′
0 = 𝑓 ∘ 𝑥 ∘ 𝑥′

1, and since 𝑓 : 𝑋 → 𝑌 is ℱ -separated, there

is an equaliser diagram in u� of the form below,

𝑇 ′ 𝑇 𝑋𝑡
𝑥∘𝑥′

0

𝑥∘𝑥′
1

where 𝑡 : 𝑇 ′ → 𝑇 is a member of ℱ . Note that the universal property of

pullbacks implies that 𝑥′
0 ∘ 𝑡 = 𝑥′

1 ∘ 𝑡. Thus,

𝑇 ′ 𝑇 𝑋′𝑡
𝑥′

0

𝑥′
1

is also an equaliser diagram in u�, and this completes the proof.

(iv). Let 𝑥0, 𝑥1 : 𝑇 → 𝑋 be morphisms in u� such that 𝑔∘𝑓 ∘𝑥0 = 𝑔∘𝑓 ∘𝑥1.

Since 𝑔 : 𝑌 → 𝑍 is ℱ -separated, there is an equaliser diagram in u� of the

form below,

𝑇 ′ 𝑇 𝑌𝑡
𝑓 ∘𝑥0

𝑓∘𝑥1

where 𝑡 : 𝑇 ′ → 𝑇 is a member of ℱ . Since 𝑓 : 𝑋 → 𝑌 is ℱ -separated,

there is an equaliser diagram in u� of the form below,

𝑇 ″ 𝑇 ′ 𝑋𝑡′
𝑥0∘𝑡

𝑥1∘𝑡

where 𝑡′ : 𝑇 ″ → 𝑇 ′ is a member of ℱ . It is straightforward to verify that

the following is an equaliser diagram in u�,

𝑇 ″ 𝑇 𝑋𝑡∘𝑡′
𝑥0

𝑥1

6



1.1. The relative point of view

and since ℱ is closed under composition, this completes the proof that

𝑓 : 𝑋 → 𝑌 is ℱ -separated. ■

1.1.8 ¶ Let ℱ be a quadrable class of morphisms.

Properties of

separated objects

Proposition.

(i) Assuming every isomorphism in u� is a member of ℱ , every subter-

minal object in u� is ℱ -separated.

(ii) Given a morphism 𝑓 : 𝑋 → 𝑌 in u�, if 𝑋 is a ℱ -separated object

in u�, then 𝑓 : 𝑋 → 𝑌 is a ℱ -separated morphism in u�.

(iii) Given objects 𝑋 and 𝑌 in u�, if 𝑋 × 𝑌 exists in u� and 𝑌 is ℱ -

separated, then the projection 𝑋 × 𝑌 → 𝑋 is ℱ -separated.

(iv) Assuming ℱ is closed under composition, if 𝑓 : 𝑋 → 𝑌 is an ℱ -

separated morphism in u� and 𝑌 is an ℱ -separated object in u�, then 𝑋
is also an ℱ -separated object in u�.

Proof. Omitted. (The arguments are similar to those in the proof of pro-

position 1.1.7.) ◊

1.1.9 ¶ Let ℱ be a class of fibrations in u�.

Lemma. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 bemorphisms inu�. If 𝑔 : 𝑌 → 𝑍
is ℱ -separated and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is a member of ℱ , then 𝑓 : 𝑋 → 𝑌 is

also a member of ℱ .

Proof. Consider a pullback square in u� of the form below:

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

𝑝

𝑞

𝑔

𝑔∘𝑓

By proposition 1.1.7, the projection 𝑝 : 𝑋 ×𝑍 𝑌 → 𝑋 is ℱ -separated.

The following is an equaliser diagram in u�∕𝑋 ,

(𝑋, id𝑋) (𝑋 ×𝑍 𝑌 , 𝑝) (𝑋 ×𝑍 𝑌 , 𝑝)
⟨id𝑋 ,𝑓⟩ id

⟨𝑝,𝑓∘𝑝⟩

thus ⟨id𝑋 , 𝑓⟩ : 𝑋 → 𝑋 ×𝑍 𝑌 is a member of ℱ . Since 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is

a member of ℱ , the projection 𝑞 : 𝑋 ×𝑍 𝑌 → 𝑌 is also a member of ℱ .

Thus, 𝑓 = 𝑞 ∘ ⟨id𝑋 , 𝑓⟩ : 𝑋 → 𝑌 is indeed a member of ℱ . ■
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1.1.10 Definition. A class of separated fibrations in u� is a subset ℱ ⊆ moru�
that satisfies the following axioms:

• ℱ is a class of fibrations in u�.

• Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, assuming 𝑔 : 𝑌 →
𝑍 is a member of ℱ , the composite 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is a member of ℱ
if and only if the morphism 𝑓 : 𝑋 → 𝑌 is a member of ℱ .

Recognition

principles for

classes of separ-

ated fibrations

Lemma. Let ℱ be a class of fibrations in u�. The following are equivalent:

(i) ℱ is a class of separated fibrations in u�.

(ii) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, if 𝑓 : 𝑋 → 𝑌
is a monomorphism in u� and both 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 are

members of ℱ , then 𝑓 : 𝑋 → 𝑌 is also a member of ℱ .

(iii) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 in u�, if 𝑔 ∘ 𝑓 = id𝑋

and 𝑔 : 𝑌 → 𝑋 is a member of ℱ , then 𝑓 : 𝑋 → 𝑌 is also a member

of ℱ .

(iv) If 𝑔 : 𝑌 → 𝑍 is a member of ℱ , then the relative diagonal Δ𝑔 :
𝑌 → 𝑌 ×𝑍 𝑌 is a member of ℱ .

(v) Every member of ℱ is an ℱ -separated morphism in u�.

Proof. (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv). Immediate.

(iv) ⇔ (v). Apply the diagonal criterion for separatedness (lemma 1.1.6).

(iv) ⇒ (i). Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be morphisms in u�. Suppose
both 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 are members of ℱ . We must show

that 𝑓 : 𝑋 → 𝑌 is also a member of ℱ . Since ℱ is a quadrable class of

morphisms in u�, we have the following commutative diagram in u�,

𝑋 𝑌

𝑋 ×𝑍 𝑌 𝑌 ×𝑍 𝑌 𝑌

𝑋 𝑌 𝑍

⟨id𝑋 ,𝑓⟩

𝑓

Δ𝑔
id

𝑔

𝑓 𝑔
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1.1. The relative point of view

where every square and every rectangle is a pullback diagram in u�. By

hypothesis, Δ𝑔 : 𝑌 → 𝑌 ×𝑍 𝑌 is a member of ℱ , so ⟨id𝑋 , 𝑓⟩ : 𝑋 →
𝑋 ×𝑍 𝑌 is also a member of ℱ . Similarly, 𝑔 ∘ 𝑓 : 𝑌 → 𝑍 is a member of

ℱ , so the projection 𝑋 ×𝑍 𝑌 → 𝑌 is also a member of ℱ . But ℱ is closed

under composition, so 𝑓 : 𝑋 → 𝑌 is indeed a member of ℱ . ■

Remark. Let ℱ be a class of fibrations and let ℱmono be the class of

monomorphisms in u� that are members of ℱ . Then ℱmono is a class of

separated fibrations in u�.

1.1.11 ¶ Let ℱ be a class of fibrations in u�.

Definition. A morphism in u� is ℱ -perfect if it is ℱ -separated and also

a member of ℱ .

Properties

of perfect

morphisms

Proposition.

(i) Every monomorphism in u� that is a member of ℱ is ℱ -perfect.

(ii) The class of ℱ -perfect morphisms in u� is a class of separated fibra-

tions.

Proof. Straightforward. (Use proposition 1.1.7 and lemma 1.1.10.) ⧫

1.1.12 ¶ Let 𝑆 be an object in u� and let ℱ be a class of separated fibrations.

Limits of finite

diagrams of

separated

fibrations

Proposition. The inclusion ℱ (𝑆) ↪ u�∕𝑆 creates limits of all finite dia-

grams.

Proof. It is clear that (𝑆, id𝑆) is a terminal object in both ℱ (𝑆) and u�∕𝑆 .

Similarly, since ℱ is a class of fibrations, ℱ (𝑆) has binary products and

the inclusion ℱ (𝑆) ↪ u�∕𝑆 preserves binary products. Thus, it suffices to

show that ℱ (𝑆) has equalisers and the inclusion ℱ (𝑆) ↪ u�∕𝑆 preserves

equalisers, but this is a corollary of lemma 1.1.10. ■

1.1.13 ¶ We briefly recall the notion of orthogonality.
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Definition. An object 𝑆 in u� is right orthogonal to a morphism 𝑓 :
𝑋 → 𝑌 in u� if the induced map

u�(𝑓 , 𝑆) : u�(𝑌 , 𝑆) → u�(𝑋, 𝑆)

is a bijection.

More generally, 𝑆 is right orthogonal to a subset ℒ ⊆ moru� if 𝑆 is

right orthogonal to every member of ℒ.

Limits of objects

right ortho-

gonal to a class

of morphisms

Proposition. Let ℒ be a subset of moru�. The full subcategory of u�
spanned by the objects that are right orthogonal to ℒ is closed under

limits of all diagrams.

Proof. Straightforward. ⧫

Remark. In particular, every terminal object in u� is right orthogonal to

every morphism in u�. (However, u� may not have any terminal objects at

all.)

1.1.14 ¶ In consideration of the relative point of view, it behoves us to extend

the notion of orthogonality from objects to morphisms.

Definition. A morphism 𝑝 : 𝑍 → 𝑆 in u� is right orthogonal to a

morphism 𝑓 : 𝑋 → 𝑌 in u� if the following is a pullback square in Set:

u�(𝑌 , 𝑍) u�(𝑌 , 𝑆)

u�(𝑋, 𝑍) u�(𝑋, 𝑆)

u�(𝑓 ,𝑍)

u�(𝑌 ,𝑝)

u�(𝑓 ,𝑆)

u�(𝑋,𝑝)

More generally, 𝑝 : 𝑍 → 𝑆 is right orthogonal to a subset ℒ ⊆ moru�
if 𝑝 : 𝑍 → 𝑆 is right orthogonal to every member of ℒ.

We write ℒ⊥ for the set of all morphisms in u� that are right orthogonal

to ℒ.

Remark. Assuming 1 is a terminal object in u�, an object 𝑋 in u� is right

orthogonal to ℒ if and only if the unique morphism 𝑋 → 1 is a member

of ℒ⊥.
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Alternative

criteria for right

orthogonality

Lemma. Let 𝑝 : 𝑍 → 𝑆 and 𝑓 : 𝑋 → 𝑌 be morphisms in u�. The

following are equivalent:

(i) The morphism 𝑝 : 𝑍 → 𝑆 in u� is right orthogonal to the morphism

𝑓 : 𝑋 → 𝑌 in u�.

(ii) The object (𝑍, 𝑆, 𝑝) in (u� ↓ u�) is right orthogonal to the morphism

(𝑓 , id𝑌 ) : (𝑋, 𝑌 , 𝑓 ) → (𝑌 , 𝑌 , id𝑌 ) in (u� ↓ u�).

(iii) For every morphism 𝑞 : 𝑌 → 𝑆 in u�, the object (𝑍, 𝑝) in u�∕𝑆 is

right orthogonal to the morphism 𝑓 : (𝑋, 𝑞 ∘ 𝑓) → (𝑌 , 𝑞) in u�∕𝑆 .

Proof. Straightforward. ⧫

Properties of

morphisms

right ortho-

gonal to a class

of morphisms

Proposition. Let ℒ be a subset of moru�.

(i) Every isomorphism in u� is a member of ℒ⊥.

(ii) The full subcategory of (u� ↓ u�) corresponding toℒ⊥ is closed under

limits of all diagrams.

(iii) ℒ⊥ is closed under pullback in u�.

(iv) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, assuming
𝑔 : 𝑌 → 𝑍 is a member of ℒ⊥, 𝑓 : 𝑋 → 𝑌 is a member of ℒ⊥ if and

only if 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is a member of ℒ⊥.

(v) Given amorphism 𝑓 : 𝑋 → 𝑌 in u�, assuming 𝑌 is right orthogonal

to ℒ, 𝑋 is right orthogonal to ℒ if and only if 𝑓 : 𝑋 → 𝑌 is a member

of ℒ⊥.

Proof. (i) and (ii). Apply proposition 1.1.13 to lemma 1.1.14.

(iii) and (iv). Use the pullback pasting lemma.

(v). This is a consequence of the fact that the pullback of a bijection is

again a bijection. ■

1.1.15 Remark. In particular, for any subset ℒ ⊆ moru�, if ℒ⊥ ⊆ qdblu�, then
ℒ⊥ is a class of separated fibrations in u�.

1.1.16 ¶ It is sometimes useful to weaken the notion of right orthogonality by

replacing ‘bijection’ with ‘injection’.
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Right orthogon-

ality of diagonals

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let 𝑆 be an object in u�.
Assuming the product 𝑆 × 𝑆 exists in u�, the following are equivalent:

(i) The induced map

u�(𝑓 , 𝑆) : u�(𝑌 , 𝑆) → u�(𝑋, 𝑆)

is injective.

(ii) The diagonal Δ𝑆 : 𝑆 → 𝑆 × 𝑆 is right orthogonal to 𝑓 : 𝑋 → 𝑌 .

Proof. Consider the diagram below:

u�(𝑌 , 𝑆) u�(𝑌 , 𝑆) × u�(𝑌 , 𝑆)

u�(𝑋, 𝑆) u�(𝑋, 𝑆) × u�(𝑋, 𝑆)

u�(𝑓 ,𝑆)

Δu�(𝑌 ,𝑆)

u�(𝑓 ,𝑆)×u�(𝑓 ,𝑆)

Δu�(𝑋,𝑆)

Clearly, this is a pullback square if and only if Δ𝑆 : 𝑆 → 𝑆 × 𝑆 is right

orthogonal to 𝑓 : 𝑋 → 𝑌 . On the other hand, this is a pullback square if

and only if u�(𝑓 , 𝑆) : u�(𝑌 , 𝑆) → u�(𝑋, 𝑆) is injective, so we are done. ■

12



1.2. Local properties of morphisms

1.2 Local properties of morphisms

Synopsis. We consider variations on what it means for a morphism to

have a property locally with respect to a coverage.

Prerequisites. §§1.1, a.1, a.2.

1.2.1 ¶ In general, given a topological space𝑋 and a property 𝑃 of topological

spaces, we say that 𝑋 has property 𝑃 locally if, for every open subspace

𝑈 ⊆ 𝑋, there is a cover Φ of 𝑈 such that every element of Φ has property

𝑃 .

On the other hand, in the relative setting, there are at least two pos-

sible ways to interpret ‘locally’. For instance, given a continuous map

𝑓 : 𝑋 → 𝑌 and a property 𝑃 of continuous maps, we may say that

𝑓 : 𝑋 → 𝑌 has property 𝑃 locally on the domain if, for every open sub-

space 𝑈 ⊆ 𝑋, there is a cover Φ of 𝑈 such that, for every 𝑈 ′ ∈ Φ, the

restriction 𝑓 : 𝑈 ′ → 𝑌 has property 𝑃 . Or, we may say that 𝑓 : 𝑋 → 𝑌
has property 𝑃 locally on the base if, for every open subspace 𝑉 ⊆ 𝑌 ,

there is a cover Ψ of 𝑉 such that, for every 𝑉 ′ ∈ Ψ, the restriction

𝑓 : 𝑓 −1𝑉 ′ → 𝑉 ′ has property 𝑃 . We could go even further by com-

bining the two interpretations.

In this section, we study generalisations of these ideas in the abstract

setting of a category with a coverage. It should be noted that the notion of

having a property locally on the base is straightforwardly generalised to

objects in a fibred category, as is the notion of having a property locally

on the domain, but combining the two is difficult. As such, we will only

discuss the case of morphisms. This is partially a generalisation of earlier

work by Joyal and Moerdijk [JM, §§1 and 5].

1.2.2 ※ Throughout this section:

• u� is a category.

• 𝖩 is a coverage on u�.

• ℬ is a set of morphisms in u� containing all identity morphisms and

closed under composition.
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• u� is a set of morphisms in u�.

1.2.3(a) Definition. The class u� is ℬ-sifted if it has the following property:

• If 𝑓 : 𝑋 → 𝑌 is a member of ℬ and 𝑔 : 𝑌 → 𝑍 is a member of u�,
then the composite 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is also a member of u�.

1.2.3(b) Definition. The class u� is ℬ-cosifted if it has the following property:

• If 𝑓 : 𝑋 → 𝑌 is a member of u� and 𝑔 : 𝑌 → 𝑍 is a member of ℬ,

then the composite 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is also a member of u�.

1.2.3(c) Definition. The class u� isℬ-bisifted if it is bothℬ-sifted andℬ-cosifted.

Example. ℬ itself is ℬ-bisifted.

1.2.4 Definition. Amorphism 𝑓 : 𝑋 → 𝑌 in u� is of u�-type (ℬ, 𝖩)-semilocally

on the domain if it has the following property:

• There is a 𝖩-covering ℬ-sink Φ on 𝑋 such that, for every (𝑈, 𝑥) ∈ Φ,

𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a member of u�.

A morphism in u� is of u�-type 𝖩-semilocally on the domain if it is of

u�-type (moru�, 𝖩)-semilocally on the domain.

Properties of

morphisms of

a given type

semilocally

on the domain

Proposition. Let ̂u� be the class of morphisms in u� of u�-type (ℬ, 𝖩)-semi-
locally on the domain.

(i) We have u� ⊆ ̂u�.

(ii) If u� is ℬ-cosifted, then ̂u� is also ℬ-cosifted.

(iii) Assuming ℬ is a quadrable class of morphisms in u�, if u� is ℬ-sifted,

then ̂u� is also ℬ-sifted.

(iv) Assuming both ℬ and u� are quadrable classes of morphisms in u�,
for every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of ̂u�, then 𝑓 ′ : 𝑋′ → 𝑌 ′ is also a member

of ̂u�.

14



1.2. Local properties of morphisms

(v) Every morphism in u� of ̂u�-type (ℬ, 𝖩)-semilocally on the domain is

a member of ̂u�.

Proof. Straightforward. (For (iii)–(v), use proposition a.2.14.) ⧫

1.2.5 Definition. A morphism 𝑓 : 𝑋 → 𝑌 in u� is of u�-type (ℬ, 𝖩)-locally on

the domain if it has the following property:

• For every object (𝑈, 𝑥) in u�∕𝑋 , if 𝑥 : 𝑈 → 𝑋 is a member of ℬ, then

𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is of u�-type (ℬ, 𝖩)-semilocally on the domain.

A morphism in u� is of u�-type 𝖩-locally on the domain if it is of u�-type
(moru�, 𝖩)-locally on the domain.

Properties of

morphisms of a

given type locally

on the domain

Proposition. Let ̂u� be the class of morphisms in u� of u�-type (ℬ, 𝖩)-locally
on the domain.

(i) Every member of ̂u� is a morphism in u� of u�-type (ℬ, 𝖩)-semilocally
on the domain.

(ii) ̂u� is ℬ-sifted.

(iii) If u� is ℬ-sifted, then u� ⊆ ̂u�.

(iv) If u� is ℬ-cosifted, then ̂u� is also ℬ-cosifted.

(v) Assuming u� is ℬ-sifted and both ℬ and u� are quadrable classes of

morphisms in u�, for every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of ̂u�, then 𝑓 ′ : 𝑋′ → 𝑌 ′ is also a member

of ̂u�.

(vi) Assuming both ℬ and u� are quadrable classes of morphisms in u�,
if u� is closed under composition, then the class of morphisms in u� of

u�-type (ℬ, 𝖩)-locally on the domain is also closed under composition.

(vii) Every morphism in u� of ̂u�-type (ℬ, 𝖩)-locally on the domain is a

member of ̂u�.
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Proof. (i)–(iv). Straightforward.

(v). Use the pullback pasting lemma to reduce to proposition 1.2.4.

(vi). Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be morphisms in u� of u�-type
(ℬ, 𝖩)-locally on the domain. Then there is a 𝖩-covering ℬ-sink Φ on 𝑋
such that, for every (𝑈, 𝑥) ∈ Φ, 𝑓 ∘𝑥 : 𝑈 → 𝑌 is a member of u�, and there
is a 𝖩-covering ℬ-sink Ψ on 𝑌 with the same property mutatis mutandis.

For each (𝑈, 𝑥) ∈ Φ and each (𝑉 , 𝑦) ∈ Ψ, we may choose a pullback

square in u� of the form below,

𝑇 𝑈

𝑉 𝑌

𝑣

𝑢

𝑓∘𝑥

𝑦

where 𝑢 : 𝑇 → 𝑈 is a member of ℬ and 𝑣 : 𝑇 → 𝑉 is a member of u�;
thus, by hypothesis, 𝑥 ∘ 𝑢 : 𝑇 → 𝑋 is a member of ℬ and 𝑔 ∘ 𝑓 ∘ 𝑥 ∘ 𝑢 =
𝑔 ∘ 𝑦 ∘ 𝑢 : 𝑇 → 𝑍 is a member of u�. Hence, by proposition a.2.14,

𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is of u�-type (ℬ, 𝖩)-locally on the domain.

(vii). Let u�2 be the class of morphisms in u� that are of u�-type (ℬ, 𝖩)-semi-

locally on the domain. By (i), ̂u� ⊆ u�2, and we know that every morphism

in u� of u�2-type (ℬ, 𝖩)-semilocally on the domain is a member of u�2, so

every morphism in u� of ̂u�-type (ℬ, 𝖩)-semilocally on the domain is also a

member of u�2. Thus, every morphism in u� of ̂u�-type (ℬ, 𝖩)-locally on the
domain is a member of ̂u�. ■

1.2.6
When semi-

locally on

the domain

implies locally

on the domain

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. If ℬ is a quadrable class

of morphisms in u� and u� is a ℬ-sifted class of morphisms in u�, then the

following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is of u�-type (ℬ, 𝖩)-locally on the domain.

(ii) 𝑓 : 𝑋 → 𝑌 is of u�-type (ℬ, 𝖩)-semilocally on the domain.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). Let 𝑓 : 𝑋 → 𝑌 be a member of ℬ and let 𝑔 : 𝑌 → 𝑍 be

a morphism in u� of u�-type (ℬ, 𝖩)-semilocally on the domain. We must

show that 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is of u�-type (ℬ, 𝖩)-semilocally on the domain.
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There is a 𝖩-covering ℬ-sink Ψ on 𝑌 such that, for every (𝑉 , 𝑦) ∈ Ψ,

𝑔 ∘ 𝑦 : 𝑉 → 𝑍 is a member of u�. For each (𝑉 , 𝑦) ∈ Ψ, choose a pullback

square in u� of the form below:

𝑓 ∗𝑉 𝑉

𝑋 𝑌

𝑓 ∗𝑦 𝑦

𝑓

Since u� is ℬ-sifted, 𝑔 ∘ 𝑓 ∘ 𝑓 ∗𝑦 : 𝑓 ∗𝑉 → 𝑍 is a member of u�. Moreover,

by proposition a.2.14, {(𝑓 ∗𝑉 , 𝑓 ∗𝑦) | (𝑉 , 𝑦) ∈ Ψ} is a 𝖩-covering ℬ-sink

on 𝑋. The claim follows. ■

1.2.7 Definition. A morphism 𝑓 : 𝑋 → 𝑌 in Fam(u�) is of u�-type if it has the
following property:

• For every (𝑗, 𝑖) ∈ idx 𝑓 , the morphism 𝑓(𝑗, 𝑖) : 𝑋(𝑖) → 𝑌 (𝑗) is a

member of u�.

Properties of

matrices of

morphisms of

a given type

Proposition.

(i) If every isomorphism in u� is a member of u�, then every coproduct

injection in Fam(u�) is of u�-type.

(ii) If u� is closed under composition, then the class of morphisms in

Fam(u�) of u�-type is also closed under composition.

(iii) If u� is a quadrable class of morphisms in u�, then the class of morph-
isms inFam(u�) ofu�-type is a quadrable class of morphisms inFam(u�).

Proof. Straightforward. ⧫

1.2.8 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is familially of u�-type
if there is a pair (Φ, Ψ) with the following properties:

• Φ is a familial representation of 𝐴.

• Ψ is a familial representation of 𝐵.

• For each (𝑋, 𝑎) ∈ Φ, there exist a unique (𝑌 , 𝑏) ∈ Ψ and a unique

morphism 𝑓 : 𝑋 → 𝑌 in u� such that ℎ(𝑎) = 𝑏 ⋅ 𝑓 and 𝑓 : 𝑋 → 𝑌 is a

member of u�.
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Recognition prin-

ciple for morph-

isms familially

of a given type

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). The following are

equivalent:

(i) The morphism ℎ : 𝐴 → 𝐵 is familially of u�-type.

(ii) There is a morphism 𝑓 : 𝑋 → 𝑌 in Fam(u�) of u�-type such that

(⨿𝑋, ⨿𝑌 , ⨿𝑓) ≅ (𝐴, 𝐵, ℎ) (in (Psh(u�) ↓ Psh(u�))).

Proof. Straightforward. ⧫

1.2.9 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is of u�-type 𝖩-semi-

locally on the base if there is a 𝖩-local generating set Ψ of elements of 𝐵
that satisfies the following condition:

• For each (𝑌 , 𝑏) ∈ Ψ, there is a representation (𝑋, (𝑓 , 𝑎)) of Pb(𝑏 ⋅ −, ℎ)

such that the morphism 𝑓 : 𝑋 → 𝑌 in u� is a member of u�.

Example. If 𝑓 : 𝑋 → 𝑌 is a member of u�, then h𝑓 : h𝑋 → h𝑌 is of

u�-type semilocally on the base.

Recognition

principle for

morphisms of

presheaves of

a given type

semilocally

on the base

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). The following are

equivalent:

(i) The morphism ℎ : 𝐴 → 𝐵 is of u�-type semilocally on the base.

(ii) There exist a family (𝑓𝑖 | 𝑖 ∈ 𝐼) where each 𝑓𝑖 is a morphism 𝑋𝑖 →
𝑌𝑖 in u� that is a member of u� and a pullback square in Psh(u�) of the
form below,

∐𝑖∈𝐼 h𝑋𝑖
𝐴

∐𝑖∈𝐼 h𝑌𝑖
𝐵

∐𝑖∈𝐼 h𝑓 ℎ

where ∐𝑖∈𝐼 h𝑌𝑖
↠ 𝐵 is 𝖩-locally surjective.

Proof. Straightforward. ⧫
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Properties of

morphisms of

presheaves of

a given type

semilocally

on the base

Proposition.

(i) The class of morphisms in Psh(u�) of u�-type 𝖩-semilocally on the

base is closed under (possibly infinitary) coproduct in Psh(u�).

(ii) Given a pullback square in Psh(u�) of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃ ℎ

where ̃𝐵 ↠ 𝐵 is 𝖩-locally surjective, if ℎ̃ : ̃𝐴 → ̃𝐵 is of u�-type 𝖩-
semilocally on the base, then ℎ : 𝐴 → 𝐵 is also of u�-type 𝖩-semilocally
on the base.

Proof. Straightforward. ⧫

1.2.10 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is of u�-type 𝖩-locally on
the base if it has the following property:

• For every element (𝑌 , 𝑏) of 𝐵, the projection Pb(𝑏 ⋅ −, ℎ) → h𝑌 is of

u�-type 𝖩-semilocally on the base.

Example. Assuming u� is a quadrable class of morphisms in u�, if 𝑓 :
𝑋 → 𝑌 is a member of u�, then h𝑓 : h𝑋 → h𝑌 is of u�-type 𝖩-locally on

the base.

Properties of

morphisms of

presheaves of a

given type locally

on the base

Proposition.

(i) Every morphism in Psh(u�) that is of u�-type 𝖩-locally on the base is
also of u�-type 𝖩-semilocally on the base.

(ii) The class of morphisms in Psh(u�) of u�-type 𝖩-locally on the base

is a quadrable class of morphisms in Psh(u�).

(iii) The class of morphisms in Psh(u�) of u�-type 𝖩-locally on the base

is closed under (possibly infinitary) coproduct in Psh(u�).

(iv) If every identity morphism in u� is a member of u�, then every iso-

morphism in Psh(u�) is of u�-type 𝖩-locally on the base.
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(v) Given a pullback square in Psh(u�) of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃ ℎ

where ̃𝐵 ↠ 𝐵 is 𝖩-locally surjective, if ℎ̃ : ̃𝐴 → ̃𝐵 is of u�-type 𝖩-
locally on the base, then ℎ : 𝐴 → 𝐵 is also of u�-type 𝖩-locally on the

base.

Proof. (i). Apply lemma 1.2.13, proposition a.2.14, and the pullback

pasting lemma.

(ii)–(iv). Straightforward.

(v). Let (𝑌 , 𝑏) be an element of 𝐵 and u� be the sieve on 𝑌 consisting

of the objects (𝑉 , 𝑦) in u�∕𝑌 such that 𝑏 ⋅ 𝑦 is in the image of ̃𝐵 → 𝐵.

By construction, u� is a 𝖩-covering sieve on 𝑌 . Since ℎ̃ : ̃𝐴 → ̃𝐵 is

of u�-type 𝖩-locally on the base, we may then apply the pullback pasting

lemma and proposition 1.2.9 to deduce that Pb(𝑏 ⋅ −, ℎ) → h𝑌 is of u�-type
𝖩-semilocally on the base. ■

1.2.11
When semiloc-

ally on the base

implies locally

on the base

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). If u� is a quadrable

class of morphisms in u�, then the following are equivalent:

(i) The morphism ℎ : 𝐴 → 𝐵 is of u�-type 𝖩-locally on the base.

(ii) The morphism ℎ : 𝐴 → 𝐵 is of u�-type 𝖩-semilocally on the base.

(iii) The subpresheaf 𝐵′ ⊆ 𝐵 is 𝖩-dense, where 𝐵′ consists of the ele-

ments (𝑇 , 𝑏) of 𝐵 such that there exist a morphism 𝑡 : 𝑈 → 𝑇 in u� that

is a member of u� and a pullback square in Psh(u�) of the form below:

h𝑈 𝐴

h𝑇 𝐵

𝑡∘− ℎ

𝑏⋅−

Proof. Apply proposition a.2.14 and the pullback pasting lemma. ■
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1.2.12 Definition. A morphism 𝑓 : 𝑋 → 𝑌 in u� is of u�-type 𝖩-locally on

the base (resp. of u�-type 𝖩-semilocally on the base) if h𝑓 : h𝑋 → h𝑌

is a morphism in Psh(u�) that is of u�-type 𝖩-locally on the base (resp. of

u�-type 𝖩-semilocally on the base).

Properties of

morphisms of a

given type locally

on the base

Proposition. Let ̂u� be the class of morphisms in u� of u�-type 𝖩-locally on
the base.

(i) If every isomorphism in u� is a member of u�, then every isomorphism
in u� is also a member of ̂u�.

(ii) If u� is a quadrable class of morphisms in u�, then u� ⊆ ̂u�.

(iii) For every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of ̂u�, then 𝑓 ′ : 𝑋′ → 𝑌 ′ is also a member

of ̂u�.

(iv) Every morphism in Psh(u�) that is of ̂u�-type 𝖩-locally on the base is
also of u�-type 𝖩-locally on the base.

Proof. Apply proposition 1.2.10. ■

1.2.13 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is 𝖩-semilocally of u�-
type if there is a 𝖩-local generating set Ψ of elements of 𝐵 that satisfies

the following condition:

• For each (𝑌 , 𝑏) ∈ Ψ, there is a 𝖩-local generating set Φ(𝑌 ,𝑏) of elements

of Pb(𝑏 ⋅ −, ℎ) such that, for every (𝑋, (𝑓 , 𝑎)) ∈ Φ(𝑌 ,𝑏), the morphism

𝑓 : 𝑋 → 𝑌 in u� is a member of u�.

Example. If 𝑓 : 𝑋 → 𝑌 is a member of u�, then h𝑓 : h𝑋 → h𝑌 is

𝖩-semilocally of u�-type.
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Recognition

principle for

morphisms

of presheaves

semilocally of

a given type

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). The following are

equivalent:

(i) The morphism ℎ : 𝐴 → 𝐵 is 𝖩-semilocally of u�-type.

(ii) There is a 𝖩-weak pullback square in Psh(u�) of the form below,

⨿𝑋 𝐴

⨿𝑌 𝐵

⨿𝑓 ℎ

where 𝑓 : 𝑋 → 𝑌 is a morphism in Fam(u�) of u�-type and ⨿𝑌 ↠ 𝐵
is 𝖩-locally surjective.

Proof. Straightforward. ⧫

Properties of

morphisms

of presheaves

semilocally of

a given type

Proposition.

(i) Every morphism in Psh(u�) that is familially of u�-type is also 𝖩-
semilocally of u�-type.

(ii) The class of morphisms in Psh(u�) 𝖩-semilocally of u�-type is closed
under (possibly infinitary) coproduct in Psh(u�).

(iii) Given a 𝖩-weak pullback square in Psh(u�) of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃ ℎ

where ̃𝐵 ↠ 𝐵 is 𝖩-locally surjective, if ℎ̃ : ̃𝐴 → ̃𝐵 is 𝖩-semilocally of
u�-type, then ℎ : 𝐴 → 𝐵 is also 𝖩-semilocally of u�-type.

Proof. Straightforward. (Use lemma 1.2.13 and proposition a.2.14; for

(iii), also use the weak pullback pasting lemma (lemma a.2.19).) ⧫

1.2.14 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is 𝖩-locally of u�-type if
it has the following property:

• For every element (𝑌 , 𝑏) of 𝐵, the projection Pb(𝑏 ⋅ −, ℎ) → h𝑌 is 𝖩-
semilocally of u�-type.
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Example. Assuming u� is a quadrable class of morphisms in u�, if 𝑓 :
𝑋 → 𝑌 is a member of u�, then h𝑓 : h𝑋 → h𝑌 is 𝖩-locally of u�-type.

Properties of

morphisms

of presheaves

locally of a

given type

Proposition.

(i) Every morphism in Psh(u�) that is 𝖩-locally of u�-type is also 𝖩-
semilocally of u�-type.

(ii) The class of morphisms in Psh(u�) 𝖩-locally of u�-type is a quadrable
class of morphisms in Psh(u�).

(iii) The class of morphisms in Psh(u�) 𝖩-locally of u�-type is closed

under (possibly infinitary) coproduct in Psh(u�).

(iv) Assuming every identity morphism in u� is a member of u�, for every
presheaf 𝐴 on u� and every set 𝐼 , the codiagonal ∐𝑖∈𝐼 𝐴 → 𝐴 is 𝖩-
locally of u�-type.

(v) If every identity morphism in u� is a member of u�, then every iso-

morphism in Psh(u�) is 𝖩-locally of u�-type.

(vi) Given a 𝖩-weak pullback square in Psh(u�) of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃ ℎ

where ̃𝐵 ↠ 𝐵 is 𝖩-locally surjective, if ℎ̃ : ̃𝐴 → ̃𝐵 is 𝖩-locally of

u�-type, then ℎ : 𝐴 → 𝐵 is also 𝖩-locally of u�-type.

(vii) If every identity morphism in u� is a member of u�, then every 𝖩-
locally bijective morphism in Psh(u�) is 𝖩-locally of u�-type.

Proof. (i). Apply lemma 1.2.13, proposition a.2.14, and the weak pull-

back pasting lemma (lemma a.2.19).

(ii)–(v). Straightforward.

(vi). Let (𝑌 , 𝑏) be an element of 𝐵 and u� be the sieve on 𝑌 consisting

of the objects (𝑉 , 𝑦) in u�∕𝑌 such that 𝑏 ⋅ 𝑦 is in the image of ̃𝐵 → 𝐵.

By construction, u� is a 𝖩-covering sieve on 𝑌 . Since ℎ̃ : ̃𝐴 → ̃𝐵 is 𝖩-
locally of u�-type, we may then apply the weak pullback pasting lemma
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and proposition 1.2.13 to deduce that Pb(𝑏 ⋅ −, ℎ) → h𝑌 is 𝖩-semilocally

of u�-type.

(vii). Let ℎ : 𝐴 → 𝐵 be a 𝖩-locally bijective morphism of presheaves on

u�. Then the following is a 𝖩-weak pullback square in Psh(u�):

𝐴 𝐴

𝐴 𝐵

id

id

ℎ

ℎ

Thus, by (vi), the claim reduces to (v). ■

1.2.15
When semi-

locally implies

locally

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). If u� is a quadrable

class of morphisms in u�, then the following are equivalent:

(i) The morphism ℎ : 𝐴 → 𝐵 is 𝖩-locally of u�-type.

(ii) The morphism ℎ : 𝐴 → 𝐵 is 𝖩-semilocally of u�-type.

Proof. Apply proposition a.2.14 and the weak pullback pasting lemma

(lemma a.2.19). ■

1.2.16 ¶ The following definition is a variation on the collection axiom intro-

duced in [JM, §1].

Definition. The 𝖩-local collection axiom for u� is the following:

• Given a morphism 𝑓 : 𝑋 → 𝑌 in u� and a 𝖩-covering sieve u� on 𝑋, if

𝑓 : 𝑋 → 𝑌 is a member of u�, then there is a 𝖩-covering sink Ψ on 𝑌
such that, for each (𝑇 , 𝑦) ∈ Ψ, there is a 𝖩-local generating set Φ(𝑇 ,𝑦)

of elements of Pb(𝑦 ∘ −, 𝑓 ∘ −) such that, for each (𝑈, (𝑡, 𝑥)) ∈ Φ(𝑇 ,𝑦),

𝑡 : 𝑈 → 𝑇 is a member of u� and (𝑈, 𝑥) is in u� .

Remark. Assuming u� is closed under composition, if every 𝖩-covering
sink contains a 𝖩-covering u�-sink, then u� satisfies the 𝖩-local collection
axiom.
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Alternative

criteria for the

local collec-

tion axiom

Lemma. The following are equivalent:

(i) u� satisfies the 𝖩-local collection axiom.

(ii) For every morphism 𝑓 : 𝑋 → 𝑌 in u�, if 𝑓 : 𝑋 → 𝑌 is a member of

u�, then for every 𝖩-covering sieve u� on 𝑋, there is a 𝖩-weak pullback
square in Psh(u�) of the form below,

⨿𝑋′ h𝑋

⨿𝑌 ′ h𝑌

⨿𝑓 ′

𝑝

𝑓∘−

𝑞

where 𝑞 : ⨿𝑌 ′ → h𝑌 is 𝖩-locally surjective, 𝑓 ′ : 𝑋′ → 𝑌 ′ is a

morphism in Fam(u�) of u�-type, and for every element (𝑇 , 𝑥′) of ⨿𝑋′,

(𝑇 , 𝑝(𝑥′)) is in u� .

Proof. Straightforward. ⧫

1.2.17
Composition

of morphisms

of presheaves

locally of a

given type

Proposition. If u� is a quadrable class of morphisms in u� that satisfies

the 𝖩-collection axiom and is closed under composition, then the class of

morphisms inPsh(u�) 𝖩-locally ofu�-type is also closed under composition.

Proof. In view of proposition 1.2.14, it suffices to prove the following

statement:

• Given morphisms ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶 in Psh(u�), if ℎ : 𝐴 → 𝐵
is 𝖩-locally of u�-type and 𝑘 : 𝐵 → 𝐶 is 𝖩-semilocally of u�-type, then
the composite 𝑘 ∘ ℎ : 𝐴 → 𝐶 is also 𝖩-semilocally of u�-type.

So suppose ℎ : 𝐴 → 𝐵 is 𝖩-locally of u�-type and 𝑘 : 𝐵 → 𝐶 is 𝖩-
semilocally ofu�-type. By lemma 1.2.13, there is a 𝖩-weak pullback square
in Psh(u�) of the form below,

⨿𝑌 𝐵

⨿𝑍 𝐶

⨿𝑔 𝑘

where ⨿𝑍 ↠ 𝐶 is 𝖩-locally surjective and 𝑔 : 𝑌 → 𝑍 is a morphism in

Fam(u�) of u�-type. The projection (⨿𝑌 )×𝐵 𝐴 → ⨿𝑌 is also 𝖩-semilocally
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of u�-type, so there is a 𝖩-weak pullback square in Psh(u�) of the form

below,
⨿𝑋′ (⨿𝑌 ) ×𝐵 𝐴

⨿𝑌 ′ ⨿𝑌

⨿𝑓 ′

satisfying the conditions mutatis mutandis. Then, using lemma 1.2.16

and the hypothesis that u� satisfies the 𝖩-local collection axiom, we may

find a 𝖩-weak pullback square in Psh(u�) of the form below,

⨿𝑌 ″ ⨿𝑌

⨿𝑍″ ⨿𝑍

⨿𝑔″ ⨿𝑔

where ⨿𝑍″ ↠ ⨿𝑍 is 𝖩-locally surjective, 𝑌 ″ → 𝑌 factors as a morphism

𝑌 ″ → 𝑌 ′ in Fam(u�) followed by the 𝖩-covering morphism 𝑌 ′ ↠ 𝑌 in

Fam(u�), and 𝑔″ : 𝑌 ″ → 𝑍″ is a morphism in Fam(u�) of u�-type. Since
u� is a quadrable class of morphisms in u�, by proposition 1.2.7, there is a

pullback square in Psh(u�) of the form below,

⨿𝑋″ ⨿𝑋′

⨿𝑌 ″ ⨿𝑌 ′

⨿𝑓 ″ ⨿𝑓 ′

where 𝑓 ″ : 𝑋″ → 𝑌 ″ is a morphism in Fam(u�) of u�-type. Hence, we

obtain a commutative diagram in Psh(u�) of the form below,

⨿𝑋″ 𝐴

⨿𝑌 ″ 𝐵

⨿𝑍″ 𝐶

⨿𝑔″ ℎ

⨿𝑓 ″ 𝑘

where, by the weak pullback pasting lemma (lemma a.2.19), both squares

and the outer rectangle are all 𝖩-weak pullback diagrams in Psh(u�). Since
the horizontal arrows are 𝖩-locally surjective, it follows from the hypo-

thesis that u� is closed under composition that 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-
semilocally of u�-type, as claimed. ■
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1.2.18 Definition. A morphism 𝑓 : 𝑋 → 𝑌 in u� is 𝖩-locally of u�-type (resp.
𝖩-semilocally of u�-type) if h𝑓 : h𝑋 → h𝑌 is a morphism in Psh(u�) that
is 𝖩-locally of u�-type (resp. 𝖩-semilocally of u�-type).

Lemma. Let 𝑟 : 𝐹 → 𝐴 be a 𝖩-locally surjective morphism in Psh(u�) and
let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�) 𝖩-locally of u�-type. Assuming
u� satisfies the 𝖩-local collection axiom, there is a 𝖩-weak pullback square
in Psh(u�) of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃

𝑝

ℎ

𝑞

where 𝑞 : ̃𝐵 ↠ 𝐵 is 𝖩-locally surjective, 𝑝 : ̃𝐴 → 𝐴 factors through

𝑟 : 𝐹 → 𝐴, and ℎ̃ : ̃𝐴 → ̃𝐵 is familially of u�-type.

Proof. By lemma 1.2.13 and proposition 1.2.14, there is a 𝖩-weak pull-

back square in Psh(u�) of the form below,

⨿𝑋 𝐴

⨿𝑌 𝐵

⨿𝑓 ℎ

where ⨿𝑌 ↠ 𝐵 is 𝖩-locally surjective and 𝑓 : 𝑋 → 𝑌 is a morphism in

Fam(u�) of u�-type. By proposition a.2.14, the projection ⨿𝑋×𝐴𝐹 → ⨿𝑋
is 𝖩-locally surjective, so we may apply lemma 1.2.16 to obtain a 𝖩-weak
pullback square in Psh(u�) of the form below,

⨿𝑋′ ⨿𝑋

⨿𝑌 ′ ⨿𝑌

⨿𝑓 ′ ⨿𝑓

where ⨿𝑌 ′ ↠ ⨿𝑌 is 𝖩-locally surjective, 𝑓 ′ : 𝑋′ → 𝑌 ′ is a morphism

in Fam(u�) of u�-type, and ⨿𝑋′ ↠ ⨿𝑋 factors through the projection

⨿𝑋 ×𝐴 𝐹 → ⨿𝑋. We can then take ̃𝐴 = ⨿𝑋′, ̃𝐵 = ⨿𝑌 ′, and ℎ̃ = ⨿𝑓 ′

and use the weak pullback pasting lemma (lemma a.2.19) to complete the

proof. ■
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Properties of

morphisms

locally of a

given type

Proposition. Let ̂u� be the class of morphisms in u� 𝖩-locally of u�-type.

(i) If every isomorphism in u� is a member of u�, then every isomorphism
in u� is also a member of ̂u�.

(ii) If u� is a quadrable class of morphisms in u�, then u� ⊆ ̂u�.

(iii) ̂u� is closed under pullback in u�.

(iv) If u� satisfies the 𝖩-local collection axiom, then ̂u� also satisfies the

𝖩-local collection axiom.

(v) If u� is a quadrable class of morphisms in u� that satisfies the 𝖩-local
collection axiom and is closed under composition, then ̂u� is also closed

under composition.

(vi) Every morphism in Psh(u�) that is 𝖩-locally of ̂u�-type is also 𝖩-
locally of u�-type.

Proof. Apply propositions 1.2.14 and 1.2.17, lemma 1.2.18, and the weak

pullback pasting lemma (lemma a.2.19). ■

1.2.19 ¶ The following is a generalisation of Proposition 1.9 in [JM].

1.2.19(a)
Recognition

principle for

monomorph-

isms of a given

type semilocally

on the domain

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a monomorphism in u�. Assuming ℬ is a

quadrable class of morphisms in u�, the following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is of ℬ-type (ℬ, 𝖩)-semilocally on the domain.

(ii) 𝑓 : 𝑋 → 𝑌 is of ℬ-type 𝖩-semilocally on the domain.

Proof. (i) ⇒ (ii). Immediate.

(ii)⇒ (i). LetΦ be a 𝖩-covering sink on𝑋 such that, for every (𝑈, 𝑥) ∈ Φ,

𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a member of ℬ. Then, by lemma 1.1.3, 𝑥 : 𝑈 →
𝑋 itself is a member of ℬ. Hence, 𝑓 : 𝑋 → 𝑌 is indeed of ℬ-type

(ℬ, 𝖩)-semilocally on the domain. ■

1.2.19(b)
Recognition

principle for

quadrable mono-

morphisms

semilocally of

a given type

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a quadrable monomorphism in u� and let ̂ℬ be

the class of morphisms in u� of ℬ-type (ℬ, 𝖩)-semilocally on the domain.

The following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is 𝖩-semilocally of ℬ-type.
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(ii) 𝑓 : 𝑋 → 𝑌 is of ̂ℬ-type 𝖩-semilocally on the base.

Proof. (i) ⇒ (ii). Apply lemma 1.2.19(a).

(ii) ⇒ (i). Immediate. ■

1.2.20 ¶ The following is a generalisation of Proposition 1.10 in [JM].

Recognition

principle for

separated morph-

isms of a given

type semilocally

on the domain

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a ℬ-separated morphism in u�. Assuming ℬ
is a class of fibrations in u�, the following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is of ℬ-type (ℬ, 𝖩)-semilocally on the domain.

(ii) 𝑓 : 𝑋 → 𝑌 is of ℬ-type 𝖩-semilocally on the domain.

Proof. (i) ⇒ (ii). Immediate.

(ii)⇒ (i). LetΦ be a 𝖩-covering sink on𝑋 such that, for every (𝑈, 𝑥) ∈ Φ,

𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a member of ℬ. Then, by lemma 1.1.9, 𝑥 : 𝑈 →
𝑋 itself is a member of ℬ. Hence, 𝑓 : 𝑋 → 𝑌 is indeed of ℬ-type

(ℬ, 𝖩)-semilocally on the domain. ■

Remark. Since monomorphisms are always ℬ-separated, lemma 1.2.20

can be regarded as a generalisation of lemma 1.2.19(a), at least in the case

where ℬ is a class of fibrations.

Perfect morph-

isms and locality

Proposition. Suppose u� is the class of morphisms in u� 𝖩-semilocally of
ℬ-type. Assume the following hypotheses:

• ℬ is a class of fibrations in u�.

• Every morphism in u� of ℬ-type (ℬ, 𝖩)-semilocally on the domain is a

member of ℬ.

• Every quadrable morphism in u� of ℬ-type 𝖩-semilocally on the base is
a member of ℬ.

Let 𝑓 : 𝑋 → 𝑌 be a quadrable morphism in u� such that the relative

diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is also a quadrable morphism in u�. The

following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a ℬ-perfect morphism in u�.

(ii) 𝑓 : 𝑋 → 𝑌 is a u�-perfect morphism in u�.
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(iii) 𝑓 : 𝑋 → 𝑌 is a member of u� and is ℬ-separated.

Proof. (i) ⇒ (ii). By proposition 1.2.18, we have ℬ ⊆ u�; thus, every
ℬ-perfect morphism in u� is also u�-perfect.

(ii) ⇒ (iii). The relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is a quadrable

monomorphism, so we may apply lemma 1.2.19(b) to deduce that it is a

member of ℬ. Thus, by lemma 1.1.6, 𝑓 : 𝑋 → 𝑌 is indeed ℬ-separated.

(iii) ⇒ (i). Suppose 𝑓 : 𝑋 → 𝑌 is a member of u�. Then there is a 𝖩-
covering sink Ψ on 𝑌 such that, for every (𝑉 , 𝑦) ∈ Ψ, we have a pullback

square in u� of the form below,

𝑈 𝑋

𝑉 𝑌

𝑣

𝑥

𝑓

𝑦

where 𝑣 : 𝑈 → 𝑉 is of ℬ-type 𝖩-semilocally on the domain. In addition,

suppose 𝑓 : 𝑋 → 𝑌 is ℬ-separated. By proposition 1.1.7, 𝑣 : 𝑈 → 𝑉
is also ℬ-separated. Thus, by lemma 1.2.20, 𝑣 : 𝑈 → 𝑉 is of ℬ-type

(ℬ, 𝖩)-semilocally on the domain, so 𝑣 : 𝑈 → 𝑉 is a member of ℬ.

Hence, 𝑓 : 𝑋 → 𝑌 is of ℬ-type 𝖩-semilocally on the base, so 𝑓 : 𝑋 → 𝑌
is a member of ℬ. ■
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1.3 Regulated categories

Synopsis. We study categories with a class of morphisms that have good

properties with regards to pullbacks and images, such as regular categor-

ies.

Prerequisites. §1.1.

1.3.1 ※ Throughout this section, u� is a category and ℱ is a class of separated

fibrations in u�.

1.3.2(a) Definition. An ℱ -embedding in u� is a monomorphism in u� that is a

member of ℱ .

1.3.2(b) Definition. An ℱ -subobject of an object 𝑌 in u� is an object (𝑋, 𝑓) in
u�∕𝑌 where 𝑓 : 𝑋 → 𝑌 is an ℱ -embedding in u�.

Properties

of fibrant

embeddings

Proposition. The class of ℱ -embeddings in u� is a class of separated

fibrations in u�.

Proof. Straightforward. ⧫

1.3.3 Definition. An ℱ -calypsis[1] in u� is a morphism 𝑓 : 𝑋 → 𝑌 in u� with

the following property:

• If 𝑓 = 𝑚∘𝑒 for some ℱ -embedding 𝑚 : 𝑌 ′ → 𝑌 in u�, then 𝑚 : 𝑌 ′ → 𝑌
is an isomorphism in u�.

Remark. If every object in u� is ℱ -separated, then every ℱ -calypsis in u�
is an epimorphism.

Properties

of calypses

Proposition.

(i) Every extremal epimorphism in u� is an ℱ -calypsis in u�.

(ii) Every ℱ -embedding in u� is right orthogonal to every ℱ -calypsis in

u�.

(iii) The class of ℱ -calypses in u� is closed under composition.

Proof. Straightforward. ⧫

[1] — from Greek «κάλυψις», covering.
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1.3.4(a) Definition. An ℱ -calypsis 𝑓 : 𝑋 → 𝑌 in u� is quadrable if it has the

following properties:

• 𝑓 : 𝑋 → 𝑌 is a quadrable morphism in u�.

• For every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

the morphism 𝑓 ′ : 𝑋′ → 𝑌 ′ is an ℱ -calypsis in u�.

1.3.4(b) Definition. An exact ℱ -image of a quadrable morphism 𝑓 : 𝑋 → 𝑌
in u� is an ℱ -embedding im(𝑓 ) : Im(𝑓 ) → 𝑌 in u� with the following

property:

• There is a (necessarily unique) quadrable ℱ -calypsis 𝜂𝑓 : 𝑋 → Im(𝑓 )

in u� such that im(𝑓 ) ∘ 𝜂𝑓 = 𝑓 .

Remark. Exact images are unique up to unique isomorphism, if they

exist.

Example. If 𝑓 : 𝑋 → 𝑌 is an ℱ -embedding in u�, then 𝑓 : 𝑋 → 𝑌 is its

own exact ℱ -image.

1.3.5(a) Definition. A quadrable morphism 𝑓 : 𝑋 → 𝑌 in u� is ℱ -eucalyptic[2]

if it has the following property:

• For every ℱ -embedding 𝑚 : 𝑋′ → 𝑋 in u�, 𝑓 ∘ 𝑚 : 𝑋′ → 𝑌 admits an

exact ℱ -image.

1.3.5(b) Definition. A quadrable morphism 𝑓 : 𝑋 → 𝑌 in u� is quadrably

ℱ -eucalyptic if it has the following property:

• For every pullback square in u� of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

the morphism 𝑓 ′ : 𝑋′ → 𝑌 ′ is ℱ -eucalyptic.

[2] — from Greek «εὖ», well, and «καλύπτω», I cover.
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Properties of

eucalyptic

morphisms

Proposition.

(i) Every ℱ -embedding in u� is quadrably ℱ -eucalyptic.

(ii) The class of ℱ -eucalyptic morphisms in u� is closed under compos-

ition.

(iii) The class of quadrably ℱ -eucalyptic morphisms in u� is a class of

fibrations in u�.

Proof. Straightforward. (For (ii), use proposition 1.3.3.) ⧫

1.3.6 Definition. A quadrable morphism in u� is ℱ -agathic[3] if it is both ℱ -

separated and quadrably ℱ -eucalyptic.

Properties

of agathic

morphisms

Proposition.

(i) Every ℱ -embedding in u� is ℱ -agathic.

(ii) Assuming every quadrable ℱ -calypsis is an extremal epimorphism

in u�, every ℱ -agathic monomorphism in u� is an ℱ -embedding.

(iii) The class of ℱ -agathic morphisms in u� is a class of separated fibra-

tions.

Proof. (i). By proposition 1.1.7, monomorphisms in u� are ℱ -separated;

and by proposition 1.3.5, ℱ -embeddings in u� are quadrably ℱ -eucalyptic.

(ii). Let 𝑓 : 𝑋 → 𝑌 be an ℱ -agathic monomorphism in u�. Then it factors
as a quadrable ℱ -calypsis 𝑒 : 𝑋 → Im(𝑓 ) followed by an ℱ -embedding

im(𝑓 ) : Im(𝑓 ) → 𝑌 . But 𝑒 : 𝑋 → Im(𝑓 ) is both a monomorphism and an

extremal epimorphism, so it must be an isomorphism. Hence 𝑓 : 𝑋 → 𝑌
is also an ℱ -embedding.

(iii). We know that the class of ℱ -agathic morphisms in u� is a class of

fibrations in u�, so we may apply lemma 1.1.10 to (i) to deduce the claim.

■

1.3.7 ¶ Let 𝑌 be an object in u�.

[3] — from Greek «ἀγαθικός», good.
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Definition. An exact ℱ -union of a set Φ of ℱ -subobjects of 𝑌 is an

ℱ -subobject (�̄�, ̄𝑓) of 𝑌 with the following property:

• For every object (𝑇 , 𝑦) in u�∕𝑌 , 𝑦−1(�̄�, ̄𝑓) is a coproduct of

{𝑦−1(𝑋, 𝑓) | (𝑋, 𝑓) ∈ Φ}

in the category of ℱ -subobjects of 𝑇 , where 𝑦−1 denotes pullback

along 𝑦 : 𝑇 → 𝑌 in u�.

Remark. Exact unions are unique up to unique isomorphism, if they exist.

1.3.8 ¶ There are numerous variations on the definition of ‘regular category’;

we shall use the following.

Definition. A regular category is a cartesian monoidal category u� with

pullbacks of monomorphisms and exact ℳ-images of every morphism,

where ℳ is the class of monomorphisms in u� .

Recognition

principle for

calypses in

regular categories

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� . Assuming u� is a regular

category, the following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is an effective epimorphism in u� .

(ii) 𝑓 : 𝑋 → 𝑌 is a regular epimorphism in u� .

(iii) 𝑓 : 𝑋 → 𝑌 is a strong epimorphism in u� .

(iv) 𝑓 : 𝑋 → 𝑌 is an extremal epimorphism in u� .

(v) 𝑓 : 𝑋 → 𝑌 is an ℳ-calypsis in u� , where ℳ is the class of mono-

morphisms in u� .

Proof. (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv), (iv) ⇒ (v). Straightforward.

(v) ⇒ (i). See Proposition 1.3.4 in [Johnstone, 2002, Part A]. □

Remark. Thus, every kernel pair in a regular category is also a kernel

pair of some effective epimorphism.
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1.3.9
Descent of mono-

morphisms

Lemma. Consider a pullback square in u�:

�̃� 𝑋

̃𝑌 𝑌

̃𝑓

𝑝

𝑓

𝑞

If 𝑞 : ̃𝑌 → 𝑌 is a quadrable morphism in u� such that every pullback of

𝑞 : ̃𝑌 → 𝑌 is an epimorphism in u�, then the following are equivalent:

(i) ̃𝑓 : �̃� → ̃𝑌 is a monomorphism in u�.

(ii) 𝑓 : 𝑋 → 𝑌 is a monomorphism in u�.

Proof. (i) ⇒ (ii). Let 𝑥0, 𝑥1 : 𝑇 → 𝑋 be a parallel pair of morphisms in

u�. Suppose 𝑓 ∘ 𝑥0 = 𝑓 ∘ 𝑥1. Since ̃𝑓 : �̃� → ̃𝑌 is a monomorphism, the

pullback pasting lemma implies that there exist morphisms �̃� : ̃𝑇 → �̃�
and 𝑡 : ̃𝑇 → 𝑇 in u� such that both of the following are pullback squares

in u�:

̃𝑇 𝑇

�̃� 𝑋

�̃�

𝑡

𝑥0

𝑝

̃𝑇 𝑇

�̃� 𝑋

�̃�

𝑡

𝑥1

𝑝

But 𝑡 : ̃𝑇 → 𝑇 is an epimorphism in u�, so we have 𝑥0 = 𝑥1.

(ii) ⇒ (i). Straightforward. ■

1.3.10 Definition. A functor 𝐹 : u� → u� is regular if u� is a regular category

and 𝐹 : u� → u� preserves limits of finite diagrams and extremal epi-

morphisms.

Criteria for a

regular functor to

be conservative

Lemma. Let 𝐹 : u� → u� be a regular functor. The following are equival-

ent:

(i) 𝐹 : u� → u� reflects extremal epimorphisms.

(ii) 𝐹 : u� → u� reflects extremal epimorphisms and monomorphisms.

(iii) 𝐹 : u� → u� is conservative.
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Proof. (i) ⇒ (ii). Since u� has kernel pairs and 𝐹 : u� → u� preserves

kernel pairs, if 𝐹 : u� → u� reflects extremal epimorphisms, then 𝐹 : u� →
u� also reflects monomorphisms.

(ii) ⇒ (iii). A morphism (in any category) is an isomorphism if and only

if it is both a monomorphism and an extremal epimorphism.

(iii) ⇒ (i). Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. Since 𝐹 : u� → u� is

a regular functor, 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is an extremal epimorphism in u� if

and only if 𝐹 im(𝑓 ) : 𝐹 Im(𝑓 ) → 𝐹 𝑌 is an isomorphism in u�; and since

𝐹 : u� → u� is conservative, 𝐹 im(𝑓 ) : 𝐹 Im(𝑓 ) → 𝐹 𝑌 is an isomorphism

in u� if and only if 𝑓 : 𝑋 → 𝑌 is an extremal epimorphism in u�. ■

1.3.11 ¶ Let 𝜅 be a regular cardinal.

Definition. A 𝜅-ary coherent category is a regular category u� with

exact ℳ-unions of every 𝜅-small set of ℳ-subobjects of every object,

where ℳ is the class of monomorphisms in u� .

Initial objects

in coherent

categories

Lemma. Let u� be a 𝜅-ary coherent category.

(i) u� has an initial object 0.

(ii) For every object 𝑌 in u� , the unique morphism ⊥𝑌 : 0 → 𝑌 in u� is

a monomorphism.

(iii) For every object 𝑋 in u� , every morphism 𝑋 → 0 in u� is an iso-

morphism.

Proof. See Lemma 1.4.1 in [Johnstone, 2002, Part A]. □

1.3.12 Definition. A regulated category is a pair (u�, u�) where u� is a category

and u� is a (not necessarily full) subcategory[4] of u� with the following

properties:

• u� is a class of separated fibrations in u�.

• Every morphism in u� is an u�-agathic morphism in u�.

[4] However, abusing notation, we will also regard u� as a subset of moru�.

36



1.3. Regulated categories

Given such, a regulated morphism in u� is a morphism in u�.

We will often abuse notation by referring to u� itself as a regulated

category, omitting u�.

1.3.12(a) Example. Every category is a regulated category in which the regulated

morphisms are the isomorphisms.

1.3.12(b) Example. Every regular category is a regulated category in which every

morphism is regulated.

1.3.12(c) Example. If every ℱ -agathic monomorphism in u� is an ℱ -embedding in

u�, then (u�, u�) is a regulated category, where u� is the subcategory of u�
consisting of the ℱ -agathic morphisms in u�.

Recognition prin-

ciple for regu-

lated categories

Lemma. Let u� be a subcategory of u�. Assuming u� is a class of separated

fibrations in u�, the following are equivalent:

(i) (u�, u�) is a regulated category.

(ii) Every morphism in u� factors as a quadrable u�-calypsis in u� fol-

lowed by a u�-embedding in u�.

Proof. Straightforward. ⧫

Remark. In particular, if (u�, u�) is a regulated category, then (u�, u�) is
also a regulated category.

1.3.13 ※ For the remainder of this section, (u�, u�) is a regulated category.

1.3.14
The category

of regulated

objects in a regu-

lated category

Proposition.

(i) For every object 𝑋 in u�, the slice category u�∕𝑋 is a regular cat-

egory in which the extremal epimorphisms are the morphisms that are

quadrable u�-calypses in u�.

(ii) For every morphism 𝑓 : 𝑋 → 𝑌 in u�, the pullback functor 𝑓 ∗ :
u�∕𝑌 → u�∕𝑋 is a regular functor.

37



Abstract topology

Proof. (i). By hypothesis, every morphism in u�∕𝑋 is u�-agathic as a

morphism in u�, so it factors as a quadrable u�-calypsis followed by a

u�-embedding in u�. Furthermore, by proposition 1.1.12, the inclusion

u�∕𝑋 ↪ u�∕𝑋 creates limits. But every monomorphism in u�∕𝑋 is a u�-

embedding in u�, so it follows that every morphism in u�∕𝑋 has an exact

ℳ𝑋-image, where ℳ𝑋 is the class of monomorphisms in u�∕𝑋 . Thus,

the extremal epimorphisms in u�∕𝑋 are indeed the morphisms that are

quadrable u�-calypses in u�.

(ii). It is clear that 𝑓 ∗ : u�∕𝑌 → u�∕𝑋 preserves limits of finite diagrams,

and the argument above implies that extremal epimorphisms are also pre-

served. ■

1.3.15
Recognition prin-

ciple for quad-

rable calypses

Proposition. Let 𝑓 : 𝑋 → 𝑌 be a quadrable morphism in u�. The

following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a quadrable u�-calypsis in u�.

(ii) 𝑓 : 𝑋 → 𝑌 admits an exact u�-image and the pullback functor

𝑓 ∗ : u�∕𝑌 → u�∕𝑋 is conservative.

Proof. (i)⇒ (ii). Consider a commutative diagram in u� of the form below,

𝑋″ 𝑌 ″

𝑋′ 𝑌 ′

𝑋 𝑌

𝑥′

𝑓 ″

𝑦′

𝑥

𝑓 ′

𝑦

𝑓

where the vertical arrows are morphisms in u� and both squares are pull-

back squares in u�. Suppose 𝑥′ : (𝑋″, 𝑥 ∘ 𝑥′) → (𝑋′, 𝑥) is an extremal

epimorphism in u�∕𝑋 . Then, by proposition 1.3.14, 𝑥 : 𝑋″ → 𝑋′ is

a u�-calypsis in u�. Since 𝑓 : 𝑋 → 𝑌 is a quadrable u�-calypsis in u�,
𝑓 ′ : 𝑋′ → 𝑌 ′ is a u�-calypsis in u�, hence 𝑦′ : 𝑌 ″ → 𝑌 ′ is also an

u�-calypsis in u�. But 𝑦′ : 𝑌 ″ → 𝑌 ′ is u�-eucalyptic, so it follows that

𝑦′ : (𝑌 ″, 𝑦 ∘ 𝑦′) → (𝑌 ′, 𝑦) is an extremal epimorphism in u�∕𝑌 . Thus,
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we see that 𝑓 ∗ : u�∕𝑌 → u�∕𝑋 reflects extremal epimorphisms. We may

then apply lemma 1.3.10.

(ii) ⇒ (i). Observe that 𝑓 ∗ : u�∕𝑌 → u�∕𝑋 sends the object (Im(𝑓 ), im(𝑓 ))

in u�∕𝑌 to a terminal object in u�∕𝑋 . Since 𝑓 ∗ : u�∕𝑌 → u�∕𝑋 is conser-

vative, it follows that im(𝑓 ) : Im(𝑓 ) → 𝑌 is an isomorphism in u�, so
𝑓 : 𝑋 → 𝑌 is indeed a quadrable u�-calypsis in u�. ■

1.3.16 ¶ Let (u�0, u�0) and (u�1, u�1) be regulated categories.

Definition. A regulated functor (u�0, u�0) → (u�1, u�1) is a functor

𝐹 : u�0 → u�1 with the following properties:

• 𝐹 preserves regulated morphisms, i.e. 𝐹 sends morphisms in u�0 to

morphisms in u�1.

• 𝐹 preserves pullbacks along regulated morphisms, i.e. given a pull-

back square in u�0, say

𝑇 ′ 𝑇

𝑋′ 𝑋

𝑥

if 𝑥 : 𝑇 → 𝑋 is in u�0, then 𝐹 preserves this pullback square.

• 𝐹 preserves exact images of regulated morphisms, i.e. given a morph-

ism 𝑓 : 𝑋 → 𝑌 in u�0, 𝐹 im(𝑓 ) : 𝐹 Im(𝑓 ) → 𝐹 𝑌 is an exact u�1-

image of 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 .

Recognition prin-

ciple for regu-

lated functors

Lemma. Let 𝐹 : u�0 → u�1 be a functor. Assuming 𝐹 preserves regulated

morphisms and pullbacks along regulated morphisms, the following are

equivalent:

(i) 𝐹 : (u�0, u�0) → (u�1, u�1) is a regulated functor.

(ii) For every object 𝑋 in u�0, the evident functor

𝐹𝑋 : (u�0)∕𝑋 → (u�1)∕𝐹 𝑋

given on objects by (𝑇 , 𝑥) ↦ (𝐹 𝑇 , 𝐹 𝑥) is a regular functor.

Proof. This is a consequence of proposition 1.3.14. ■
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1.4 Exact quotients

Synopsis. We consider the problem of freely adding exact quotients to a

category with a class of covering morphisms.

Prerequisites. §§1.1, 1.3, a.1, a.2, a.3.

1.4.1 ¶ Let u� be a category.

Definition. A strict epimorphism (resp. universally strict epimorph-

ism) in u� is a morphism 𝑓 : 𝑋 → 𝑌 in u� such that the principal sieve

↓⟨𝑓⟩ is strict-epimorphic (resp. universally strict-epimorphic).

Recognition prin-

ciple for strict

epimorphisms

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. The following are equival-

ent:

(i) The morphism 𝑓 : 𝑋 → 𝑌 is a strict epimorphism in u�.

(ii) For every morphism ℎ : 𝑋 → 𝑍 in u�, if ℎ ∘ 𝑥0 = ℎ ∘ 𝑥1 for all

elements (𝑇 , (𝑥0, 𝑥1)) of Kr(𝑓 ∘ −), then there is a unique morphism

𝑔 : 𝑌 → 𝑍 in u� such that 𝑔 ∘ 𝑓 = ℎ.

Proof. This is a special case of lemma a.2.6. ■

Properties

of strict

epimorphisms

Proposition.

(i) Every strict epimorphism in u� is an epimorphism in u�.

(ii) Every regular epimorphism in u� is a strict epimorphism in u�.

(iii) A strict epimorphism in u� is an effective epimorphism in u� if (and

only if) it admits a kernel pair in u�.

Proof. Straightforward. (Use lemma 1.4.1.) ⧫

1.4.2 ¶ Let 𝑋 be an object in a category u�.

1.4.2(a) Definition. An equivalence relation on 𝑋 in u� is a tuple (𝑅, 𝑑0, 𝑑1)
where:

• ⟨h𝑑1
, h𝑑0⟩ : h𝑅 → h𝑋 × h𝑋 is a monomorphism in Psh(u�).

• The image of ⟨h𝑑1
, h𝑑0⟩ : h𝑅 → h𝑋 × h𝑋 is an equivalence relation on

h𝑋 .
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Remark. In other words, an equivalence relation on 𝑋 is a representation

of some equivalence relation on h𝑋 .

1.4.2(b) Definition. An exact quotient of an equivalence relation (𝑅, 𝑑0, 𝑑1) on

𝑋 in u� is a quadrable morphism 𝑞 : 𝑋 → �̄� in u� with the following

properties:

• The following is a pullback square in u�:

𝑅 𝑋

𝑋 �̄�

𝑑1

𝑑0

𝑞

𝑞

• Every pullback of 𝑞 : 𝑋 → �̄� is an effective epimorphism in u�.

1.4.3 ¶ Let u� be a category. The following is a special case of the notion of

coverage (paragraph a.2.8) and generalises the notion of weakly unary

topology in the sense of [Shulman, 2012, §3].

1.4.3(a) Definition. A unary coverage on u� is a subset 𝖤 ⊆ moru� with the

following properties:

• For every object 𝑋 in u�, id : 𝑋 → 𝑋 is a member of 𝖤.

• For every morphism 𝑓 : 𝑋 → 𝑌 in u� and every morphism 𝑦 : 𝑇 → 𝑌
in u�, if 𝑦 : 𝑇 → 𝑌 is a member of 𝖤, then there is a commutative

diagram in u� of the form below,

𝑈 𝑇

𝑋 𝑌

𝑥 𝑦

𝑓

where 𝑥 : 𝑈 → 𝑋 is also a member of 𝖤.

1.4.3(b) Definition. A unary coverage 𝖤 on u� is upward-closed if it has the

following property:

• Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, if 𝑔 ∘ 𝑓 : 𝑋 → 𝑍
is a member of 𝖤, then 𝑔 : 𝑌 → 𝑍 is also a member of 𝖤.
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Remark. If 𝖤 is an upward-closed unary coverage, then:

(i) Every split epimorphism in u� is a member of 𝖤.

(ii) The full subcategory of (u� ↓ u�) spanned by the members of 𝖤 is

replete.

1.4.3(c) Definition. A unary coverage 𝖤 on u� is saturated if it has the following

property:

• For every commutative square in u� of the form below,

𝑈 𝑇

𝑋 𝑌

𝑥 𝑦

𝑓

if both 𝑥 : 𝑈 → 𝑋 and 𝑓 : 𝑋 → 𝑌 are members of 𝖤, then 𝑦 : 𝑇 → 𝑌
is also a member of 𝖤.

Example. If u� is a category with pullbacks and 𝖤 is the class of univer-

sally strict epimorphisms in u�, then 𝖤 is a saturated unary coverage on u�
(by lemma a.2.3(c) and corollary a.2.3(d)).

1.4.4 ※ For the remainder of this section, u� is a category and 𝖤 is a unary

coverage on u�. Abusing notation, we will conflate 𝖤 with the associated

coverage on u�.

1.4.5 Remark. Recalling paragraph a.2.13, 𝑓 : 𝑋 → 𝑌 is a 𝖤-covering morph-

ism in u� if and only if there is a morphism 𝑥 : 𝑇 → 𝑋 in u� such that

𝑓 ∘ 𝑥 : 𝑇 → 𝑌 is a composite of some finite (composable) sequence of

members of 𝖤.

Recognition

principles

for saturated

unary coverages

Lemma. Let 𝖤 be a unary coverage on u�. The following are equivalent:

(i) 𝖤 is saturated.

(ii) 𝖤 is upward-closed and closed under composition.

(iii) Every 𝖤-covering morphism in u� is a member of 𝖤.

Proof. Straightforward. ⧫
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Properties

of covering

morphisms

Proposition. The class of 𝖤-covering morphisms in u� is the smallest

saturated unary coverage on u� that contains 𝖤.

Proof. Straightforward. ⧫

1.4.6 ¶ Let 𝐴 be a presheaf on u�.

1.4.6(a) Definition. An 𝖤-local generator of 𝐴 is an element (𝑋, 𝑎) of 𝐴 such

that {(𝑋, 𝑎)} is an 𝖤-local generating set of elements of 𝐴.

The presheaf 𝐴 is 𝖤-locally 1-generable if it has an 𝖤-local generator.

1.4.6(b) Definition. An 𝖤-local presentation of 𝐴 is tuple (𝑋, 𝑃 , 𝑎, 𝑑0, 𝑑1) with

the following properties:

• (𝑋, 𝑎) is an 𝖤-local generator of 𝐴.

• (𝑃 , (𝑑1, 𝑑0)) is an 𝖤-local generator of the kernel relation Kr(𝑎 ⋅ (−)),
where 𝑎 ⋅ (−) : h𝑋 → 𝐴 is the unique morphism that sends id𝑋 to 𝑎.

The presheaf 𝐴 is 𝖤-locally 1-presentable if it admits an 𝖤-local present-
ation.

Example. For every object 𝑋 in u�, (𝑋, 𝑋, id𝑋 , id𝑋 , id𝑋) is an 𝖤-local
presentation of h𝑋 .

1.4.7 ¶ Let 𝐵 be a presheaf on u� and let (𝑌 , 𝑏) be an 𝖤-local generator of 𝐵.

Elements of

locally 1-

generable

presheaves

Lemma. Let (𝑋, 𝑎) be an element of 𝐵. There exist an 𝖤-covering morph-
ism 𝑝 : �̃� → 𝑋 in u� and a morphism 𝑓 : �̃� → 𝑌 in u� such that

𝑏 ⋅ 𝑓 = 𝑎 ⋅ 𝑝.

Proof. Straightforward. (Recall remark 1.4.5 and paragraph a.2.13.) ⧫

Locally 1-

generable subpre-

sheaves of locally

1-generable

presheaves

Corollary. Let 𝐴 be an 𝖤-locally 1-generable subpresheaf of 𝐵. There

is a morphism 𝑓 : �̃� → 𝑌 in u� such that (�̃�, 𝑏 ⋅ 𝑓) is an 𝖤-local gener-
ator of 𝐴.

Proof. Let (𝑋, 𝑎) be an 𝖤-local generator of 𝐴. By lemma 1.4.7, we have

an 𝖤-covering morphism 𝑝 : �̃� → 𝑋 in u� and a morphism 𝑓 : �̃� → 𝑌 in

u� such that 𝑏 ⋅ 𝑓 = 𝑎 ⋅ 𝑝. On the other hand, (�̃�, 𝑎 ⋅ 𝑝) is also an 𝖤-local
generator of 𝐴: for every 𝖤-closed subpresheaf 𝐴′ ⊆ 𝐴, if 𝑎 ⋅ 𝑝 ∈ 𝐴′(�̃�),
then 𝑎 ∈ 𝐴′(𝑋), so 𝐴′ = 𝐴. ■
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1.4.8
Local generating

sets of locally

1-generable

presheaves

Lemma. Let 𝐴 be an 𝖤-locally 1-generable presheaf on u�. For every 𝖤-
local generating set Φ of elements of 𝐴, there is (𝑋′, 𝑎′) ∈ Φ such that

(𝑋′, 𝑎′) is an 𝖤-local generator of 𝐴.

Proof. Let (𝑋, 𝑎) be an 𝖤-local generator of 𝐴. Recalling remark 1.4.5

and paragraph a.2.13, since Φ is an 𝖤-local generating set of elements of

𝐴, there exist an element (𝑋′, 𝑎′) ∈ Φ, an 𝖤-coveringmorphism 𝑝 : �̃� →
𝑋 in u�, and a morphism 𝑓 : �̃� → 𝑋′ in u� such that 𝑎 ⋅ 𝑝 = 𝑎′ ⋅ 𝑓 . Thus,

every 𝖤-closed subpresheaf of 𝐴 containing (𝑋′, 𝑎′) must also contain

(𝑋, 𝑎), so (𝑋′, 𝑎′) itself is an 𝖤-local generator of 𝐴. ■

1.4.9 ¶ Let 𝑋 : u� → u� be a diagram.

Definition. An 𝖤-weakly limiting cone on 𝑋 is a cone 𝜆 : Δ�̃� ⇒ 𝑋 in

u� with the following property:

• For every object 𝑇 in u� and every cone 𝜉 : Δ𝑇 ⇒ 𝑋 in u�, there exist
morphisms �̃� : 𝑈 → �̃� and 𝑡 : 𝑈 → 𝑇 in u� such that 𝑡 : 𝑈 → 𝑇 is an

𝖤-covering morphism in u� and, for every object 𝑗 in u� , 𝜆𝑗 ∘ �̃� = 𝜉𝑗 ∘ 𝑡.

We will often abuse notation by referring to the object �̃� as an 𝖤-weak
limit of 𝑋, omitting 𝜆.

Example. Every limiting cone on 𝑋 is also an 𝖤-weakly limiting cone.

Recognition

principle for

weak limits

Lemma. Let �̃� be an object in u� and let 𝜆 : Δ�̃� ⇒ 𝑋 be a cone in u�.
The following are equivalent:

(i) 𝜆 : Δ�̃� ⇒ 𝑋 is an 𝖤-weakly limiting cone.

(ii) (�̃�, 𝜆) is an 𝖤-local generator of the presheaf [u� , u�](Δ−, 𝑋).

Proof. Straightforward. ⧫

1.4.10 ¶ The following is due to Shulman [2012].

Definition. The Shulman condition on (u�, 𝖤) is the following:

• Every finite diagram in u� has a 𝖤-weak limit.
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Remark. A (strongly) unary topology in the sense of [Shulman, 2012,

§3] is precisely a saturated unary coverage that satisfies the Shulman con-

dition.

Proposition. Let 𝑋 : u� → u� be a diagram in u�. Assuming the Shulman

condition on (u�, 𝖤), the presheaf lim←−−u�
h𝑋 is 𝖤-locally 1-presentable.

Proof. By lemma 1.4.9, there is an 𝖤-local generator (�̃�, 𝜆) of lim←−−u�
h𝑋 .

Let 𝑅 = Kr(𝜆 ⋅ (−)) ⊆ h�̃� × h�̃� . It is not hard to see that 𝑅 is isomorphic

to the presheaf of cones over the diagram in u� obtained by attaching two

copies of the cone 𝜆 over the given diagram 𝑋. Thus, by hypothesis, 𝑅 is

𝖤-locally 1-generable. Hence, lim←−−u�
h𝑋 is 𝖤-locally 1-presentable. ■

1.4.11
Morphisms

of locally 1-

generable

presheaves

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). Given 𝖤-local gen-
erators (𝑋, 𝑎) and (𝑌 , 𝑏) of 𝐴 and 𝐵, respectively, there is an element

(𝑇 , (𝑥, 𝑦)) of h𝑋 × h𝑌 such that 𝑥 : 𝑇 → 𝑋 is an 𝖤-covering morphism

in u� and 𝑏 ⋅ 𝑦 = ℎ(𝑎) ⋅ 𝑥. In particular, there is a commutative square in

Psh(u�) of the form below,

h𝑇 h𝑌

𝐴 𝐵

𝑎⋅(𝑥∘−)

𝑦∘−

𝑏⋅(−)

ℎ

where the vertical arrows are 𝖤-locally surjective.

Proof. Straightforward. (Recall paragraph a.2.13.) ⧫

1.4.12
Pullbacks of

morphisms

of presheaves

with locally

1-presentable

codomain

Proposition. Let ℎ0 : 𝐴0 → 𝐵 and ℎ1 : 𝐴1 → 𝐵 be morphisms in

Psh(u�). Assuming the Shulman condition on (u�, 𝖤), if both 𝐴0 and 𝐴1 are

𝖤-locally 1-generable and 𝐵 is 𝖤-locally 1-presentable, then Pb(ℎ0, ℎ1)
is also 𝖤-locally 1-generable.

Proof. Choose any 𝖤-local presentation of 𝐵, say (𝑌 , 𝑄, 𝑏, 𝑑0, 𝑑1). By

lemma 1.4.11, there is a commutative diagram in Psh(u�) of the form

below,

h𝑋0
h𝑌 h𝑋1

𝐴0 𝐵 𝐴1

𝑎0⋅(−)

𝑓0∘−

𝑏⋅(−) 𝑎1⋅(−)

𝑓1∘−

ℎ0 ℎ1
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where the vertical arrows are 𝖤-locally surjective. We have the following

commutative diagrams in Psh(u�),

𝑅 Pb(ℎ0, ℎ1) 𝐵

h𝑋0
× h𝑋1

𝐴0 × 𝐴1 𝐵 × 𝐵

Δ𝐵

(𝑎0⋅−)×(𝑎1⋅−) ℎ0×ℎ1

𝑅 Kr(𝑏 ⋅ −) 𝐵

h𝑋0
× h𝑋1

h𝑌 × h𝑌 𝐵 × 𝐵

Δ𝐵

(𝑓0∘−)×(𝑓1∘−) (𝑏⋅−)×(𝑏⋅−)

where every square is a pullback square in Psh(u�); in particular,

𝑅 = Pb(ℎ0 ∘ (𝑎0 ⋅ −), ℎ1 ∘ (𝑎1 ⋅ −)) = Pb(𝑏 ⋅ (𝑓0 ∘ −), 𝑏 ⋅ (𝑓1 ∘ −))

as subpresheaves of h𝑋0
× h𝑋1

. Note that 𝑅 ↠ Pb(ℎ0, ℎ1) is 𝖤-locally
surjective, by proposition a.2.14. By definition, we have an 𝖤-locally
surjective morphism h𝑄 → Kr(𝑏 ⋅ −) in Psh(u�), so there is a pullback

square in Psh(u�) of the form below,

�̃� h𝑄

𝑅 Kr(𝑏 ⋅ −)

where �̃� ↠ 𝑅 is 𝖤-locally surjective. On the other hand, the pullback

pasting lemma implies that �̃� is (isomorphic to) the limit of the following

diagram in Psh(u�),

h𝑋1

h𝑄 h𝑌

h𝑋0
h𝑌

𝑓1∘−

𝑑1∘−

𝑑0∘−

𝑓0∘−

so by lemma 1.4.9, the Shulman condition on (u�, 𝖤) implies that �̃� is 𝖤-
locally 1-generable. But the composite �̃� ↠ 𝑅 ↠ Pb(ℎ0, ℎ1) is 𝖤-locally
surjective, so Pb(ℎ0, ℎ1) is also 𝖤-locally 1-generable. ■
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Generators

of locally 1-

presentable

presheaves

Corollary. Let 𝐴 be a presheaf on u� and let (𝑋, 𝑎) be an element of 𝐴.

Assuming the Shulman condition on (u�, 𝖤), the following are equivalent:

(i) 𝐴 is an 𝖤-locally 1-presentable presheaf on u� and (𝑋, 𝑎) is an 𝖤-
local generator of 𝐴.

(ii) There is an element (𝑃 , 𝑑0, 𝑑1) of h𝑋×h𝑋 such that (𝑋, 𝑃 , 𝑎, 𝑑0, 𝑑1)
is an 𝖤-local presentation of 𝐴.

Proof. This is a special case of proposition 1.4.12. ■

1.4.13
Recognition prin-

ciple for locally

1-presentable

subpresheaves

Lemma. Let 𝐵 be an 𝖤-locally 1-presentable presheaf on u� and let 𝐴
be a subpresheaf of 𝐵. Assuming the Shulman condition on (u�, 𝖤), the
following are equivalent:

(i) 𝐴 is an 𝖤-locally 1-presentable presheaf on u�.

(ii) 𝐴 is an 𝖤-locally 1-generable presheaf on u�.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). Choose any 𝖤-local generator of 𝐴, say (𝑋, 𝑎). We must show

that Kr(𝑎 ⋅ −) is 𝖤-locally 1-generable. But we have the following pull-

back square in Psh(u�),

Kr(𝑎 ⋅ −) h𝑋

h𝑋 𝐵

𝑎⋅−

𝑎⋅−

so we may apply proposition 1.4.12. ■

1.4.14
Quotients

of locally 1-

presentable

presheaves

Lemma. Let ℎ : 𝐴 → 𝐵 be an 𝖤-locally surjective morphism in Psh(u�).
Assuming the Shulman condition on (u�, 𝖤), if𝐴 is 𝖤-locally 1-presentable,
then the following are equivalent:

(i) 𝐵 is an 𝖤-locally 1-presentable presheaf on u�.

(ii) Kr(ℎ) is an 𝖤-locally 1-generable presheaf on u�.

Proof. (i) ⇒ (ii). This is a special case of proposition 1.4.12.
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(ii) ⇒ (i). Choose any 𝖤-local generator of 𝐴, say (𝑋, 𝑎). We have the

following commutative diagram in Psh(u�),

Kr(ℎ(𝑎) ⋅ −) 𝑅1 h𝑋

𝑅0 Kr(ℎ) 𝐴

h𝑋 𝐴 𝐵

𝑎⋅−

ℎ

𝑎⋅− ℎ

where every square is a pullback square in Psh(u�). Since h𝑋 and Kr(ℎ)

are both 𝖤-locally 1-generable and 𝐴 is 𝖤-locally 1-presentable, 𝑅0 must

also be 𝖤-locally 1-generable. But we also have a pullback square in

Psh(u�) of the form below,

Kr(ℎ(𝑎) ⋅ −) h𝑋

𝑅0 𝐴

𝑎⋅−

soKr(ℎ(𝑎) ⋅ −) has an 𝖤-local generator, say (𝑄, (𝑥0, 𝑥1)). It follows that

(𝑋, 𝑄, ℎ(𝑎), 𝑥1, 𝑥0) is an 𝖤-local presentation of 𝐵. ■

1.4.15 ¶ Let 𝐴 and 𝐵 be presheaves on u�.

1.4.15(a)
Products of

locally 1-

generable

presheaves

Proposition. Assuming the Shulman condition on (u�, 𝖤), if both 𝐴 and

𝐵 are 𝖤-locally 1-generable, then 𝐴 × 𝐵 is also 𝖤-locally 1-generable.

Proof. Let (𝑋, 𝑎) and (𝑌 , 𝑏) be 𝖤-local generators of 𝐴 and 𝐵, respect-

ively. Then, by proposition a.2.14, (𝑎 ⋅ −) × (𝑏 ⋅ −) : h𝑋 × h𝑌 → 𝐴 × 𝐵
is 𝖤-locally surjective. But lemma 1.4.9 implies that h𝑋 × h𝑌 is 𝖤-locally
1-generable, so it follows that 𝐴 × 𝐵 is also 𝖤-locally 1-generable. ■

1.4.15(b)
Products of

locally 1-

presentable

presheaves

Proposition. Assuming the Shulman condition on (u�, 𝖤), if both 𝐴 and

𝐵 are 𝖤-locally 1-presentable, then 𝐴×𝐵 is also 𝖤-locally 1-presentable.

Proof. Let (𝑋, 𝑎) and (𝑌 , 𝑏) be 𝖤-local generators of 𝐴 and 𝐵, respect-

ively. By corollary 1.4.12, both Kr(𝑎 ⋅ −) and Kr(𝑏 ⋅ −) are 𝖤-locally 1-

generable. Let ℎ = (𝑎 ⋅ −) × (𝑏 ⋅ −) : h𝑋 × h𝑌 → 𝐴 × 𝐵. Clearly, Kr(ℎ) ≅
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Kr(𝑎 ⋅ −) × Kr(𝑏 ⋅ −), so by proposition 1.4.15(a), Kr(ℎ) is 𝖤-locally 1-

generable. But proposition a.2.14 implies that ℎ : h𝑋 × h𝑌 → 𝐴 × 𝐵 is

𝖤-locally surjective, and by proposition 1.4.10, h𝑋 × h𝑌 is 𝖤-locally 1-

presentable, so we may apply lemma 1.4.14 to deduce that 𝐴 × 𝐵 is also

𝖤-locally 1-presentable. ■

1.4.16
Limits of

diagrams of

locally 1-

presentable

presheaves

Theorem. The following are equivalent:

(i) (u�, 𝖤) satisfies the Shulman condition.

(ii) The full submetacategory of Psh(u�) spanned by the 𝖤-locally 1-

presentable presheaves on u� is closed under limit of finite diagrams.

Proof. (i) ⇒ (ii). The terminal presheaf on u� is 𝖤-locally 1-presentable

(proposition 1.4.10), and the the product of two 𝖤-locally 1-presentable

presheaves on u� is 𝖤-locally 1-presentable (proposition 1.4.15(b)), so it

suffices to verify that the equaliser of a parallel pair of morphisms between

𝖤-locally 1-presentable presheaves on u� is 𝖤-locally 1-presentable. But

this is a consequence of proposition 1.4.12 and lemma 1.4.13, so we are

done.

(ii) ⇒ (i). Apply lemma 1.4.9. ■

Morphisms

of locally 1-

presentable

presheaves

Corollary. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�) and let (𝑌 , 𝑏) be
an 𝖤-local generator of 𝐵. Assuming the Shulman condition on (u�, 𝖤),
if both 𝐴 and 𝐵 are 𝖤-locally 1-presentable, then there exist an 𝖤-local
generator (𝑋, 𝑎) of 𝐴 and a morphism 𝑓 : 𝑋 → 𝑌 in u� such that the

diagram in Psh(u�) shown below commutes,

h𝑋 h𝑌

𝐴 𝐵

𝑎⋅−

𝑓∘−

𝑏⋅−

ℎ

and the induced morphism h𝑋 → Pb(ℎ, 𝑏 ⋅ −) is 𝖤-locally surjective.

Proof. Apply theorem 1.4.16 and proposition a.2.14. ■
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1.4.17(a) Definition. A fork in u� is a diagram in u� of the form below,

𝑃 𝑋 𝑌
𝑑1

𝑑0

𝑓
(∗)

where 𝑓 ∘ 𝑑1 = 𝑓 ∘ 𝑑0.

1.4.17(b) Definition. The fork (∗) is mid-𝖤-exact if the following is an 𝖤-weak
pullback square in u�:

𝑃 𝑋

𝑋 𝑌

𝑑1

𝑑0

𝑓

𝑓

(†)

1.4.17(c) Definition. The fork (∗) is left-exact if (†) is a pullback square in u�.

1.4.17(d) Definition. The fork (∗) is right-𝖤-exact if (𝑋, 𝑃 , 𝑓 , 𝑑0, 𝑑1) is an 𝖤-
local presentation of h𝑌 .

1.4.17(e) Definition. The fork (∗) is 𝖤-exact if it is both left-exact and right-𝖤-
exact.

Remark. Clearly, every left-exact fork is also mid-𝖤-exact.

Recognition

principle for

right-exact forks

Lemma. The following are equivalent:

(i) The fork (∗) is right-𝖤-exact.

(ii) The fork (∗) is mid-𝖤-exact and 𝑓 : 𝑋 → 𝑌 is an 𝖤-covering
morphism in u�.

Proof. Straightforward. (Recall lemma 1.4.9.) ⧫

1.4.18 ¶ The sheaf condition with respect to 𝖤 can be considered to be a kind

of limit preservation condition. More precisely:
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Lemma. Let 𝐴 be a presheaf on u�. Assuming (u�, 𝖤) satisfies the Shulman
condition, the following are equivalent:

(i) 𝐴 is an 𝖤-sheaf on u�.

(ii) 𝐴 : u� op → Set sends right-𝖤-exact forks in u� to equaliser dia-

grams in Set.

(iii) For every right-𝖤-exact fork in u� of the form below,

𝑅 𝑋 𝑌
𝑑0

𝑑1

𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of 𝖤, then the following is an equaliser

diagram in Set:

𝐴(𝑌 ) 𝐴(𝑋) 𝐴(𝑅)−⋅𝑓 −⋅𝑑0

−⋅𝑑1

Proof. (i) ⇒ (ii). Consider a right-𝖤-exact fork in u�:

𝑅 𝑋 𝑌
𝑑0

𝑑1

𝑓

Let 𝑎 ∈ 𝐴(𝑋) and suppose 𝑎 ⋅ 𝑑0 = 𝑎 ⋅ 𝑑1. We wish to find 𝑎′ ∈ 𝐴(𝑌 )

such that 𝑎′ ⋅ 𝑓 = 𝑎. Since 𝐴 satisfies the sheaf condition with respect to

the principal sieve ↓⟨𝑓⟩, such an element 𝑎′ is necessarily unique because

− ⋅ 𝑓 : 𝐴(𝑌 ) → 𝐴(𝑋) is injective. On the other hand, by lemma a.2.6,

such 𝑎′ exists if 𝑎 has the following property:

• For every element (𝑇 , (𝑥0, 𝑥1)) of h𝑋 × h𝑋 , if 𝑓 ∘ 𝑥0 = 𝑓 ∘ 𝑥1, then

𝑎 ⋅ 𝑥0 = 𝑎 ⋅ 𝑥1.

However, given an element (𝑇 , (𝑥0, 𝑥1)) of h𝑋 × h𝑋 , if 𝑓 ∘ 𝑥0 = 𝑓 ∘ 𝑥1,

there exist an 𝖤-covering morphism 𝑡 : 𝑈 ↠ 𝑇 in u� and a morphism

𝑟 : 𝑈 → 𝑅 in u� such that the following diagrams in u� commute,

𝑈 𝑅

𝑇 𝑋

𝑡

𝑟

𝑑1

𝑥0

𝑈 𝑅

𝑇 𝑋

𝑡

𝑟

𝑑0

𝑥1

so (𝑎 ⋅ 𝑥0) ⋅ 𝑡 = (𝑎 ⋅ 𝑥1) ⋅ 𝑡. Since − ⋅ 𝑡 : 𝐴(𝑇 ) → 𝐴(𝑈) is also injective,

the claim follows.
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(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let 𝑓 : 𝑋 ↠ 𝑌 be a member of 𝖤. We must show that

𝐴 satisfies the sheaf condition with respect to the principal sieve ↓⟨𝑓⟩.
Since (u�, 𝖤) satisfies the Shulman condition, there is a right 𝖤-exact fork
in u� of the form below:

𝑅 𝑋 𝑌
𝑑0

𝑑1

𝑓

In particular, − ⋅ 𝑓 : 𝐴(𝑌 ) → 𝐴(𝑋) is injective. Consider a commutative

square of the form below,

↓⟨𝑓⟩ El(𝐴)

u�∕𝑌 u�

𝑠

where u�∕𝑌 → u� and El(𝐴) → u� are the respective projections. Let

(𝑋, 𝑎) = 𝑠(𝑋, 𝑓). Then 𝑎 ⋅ 𝑑0 = 𝑎 ⋅ 𝑑1, so there is a unique 𝑎′ ∈ 𝐴(𝑌 )

such that 𝑎′ ⋅ 𝑓 = 𝑎. This defines a functor u�∕𝑌 → El(𝐴) making the

evident triangles commute, and by the Yoneda lemma, it is the unique

such functor. Thus 𝐴 indeed satisfies the sheaf condition with respect to

↓⟨𝑓⟩. ■

1.4.19 ¶ The following technical results will be needed later.

1.4.19(a)
Covering morph-

isms and weak

pullback squares

Lemma. Consider a commutative diagram in u� of the form below:

𝑃 𝑋1

𝑄 𝑌1

𝑋0 𝑌0 𝑍

𝑥0

𝑞

𝑥1

𝑓1

𝑦0

𝑦1

𝑔1

𝑓0 𝑔0

If the outer square is an 𝖤-weak pullback square in u� and both 𝑓0 : 𝑋0 ↠
𝑌0 and 𝑓1 : 𝑋1 ↠ 𝑌1 are 𝖤-covering morphisms in u�, then the inner

square is also an 𝖤-weak pullback square in u�.
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Proof. Consider a commutative square in u� of the form below:

𝑇 𝑌1

𝑌0 𝑍

𝑦′
0

𝑦′
1

𝑔1

𝑔0

By remark 1.4.5 and proposition 1.4.5, there is a commutative diagram in

u� of the form below,

𝑆 𝑋1

𝑇 𝑌1

𝑋0 𝑌0 𝑍

𝑥′
0

𝑡

𝑥′
1

𝑓1

𝑦′
0

𝑦′
1

𝑔1

𝑓0 𝑔0

where 𝑡 : 𝑆 ↠ 𝑇 is an 𝖤-covering morphism in u�. Thus, there exist an

𝖤-covering morphism 𝑠 : 𝑈 ↠ 𝑆 in u� and a morphism 𝑝 : 𝑈 → 𝑃 in u�
such that 𝑥0 ∘𝑝 = 𝑥′

0 ∘𝑠 and 𝑥1 ∘𝑝 = 𝑥′
1 ∘𝑠. We then have 𝑦0 ∘𝑞 ∘𝑝 = 𝑦′

0 ∘𝑡∘𝑠
and 𝑦1 ∘ 𝑞 ∘ 𝑝 = 𝑦′

1 ∘ 𝑡 ∘ 𝑠, and 𝑡 ∘ 𝑠 : 𝑈 ↠ 𝑇 is an 𝖤-covering morphism in

u�, as required. ■

1.4.19(b)
Exact forks

and pullbacks

Lemma. Consider a diagram in u� of the form below,

𝑋1 𝑋0 �̄�

𝑌1 𝑌0 𝑌

𝑓1

𝑑0

𝑑1
𝑓0

𝑝

̄𝑓
𝑑0

𝑑1
𝑞

where:

• The top row is an 𝖤-exact fork in u�.

• The bottom row is a left-exact fork in u�.

• The two parallel squares on the left are pullback squares in u�.

• The square on the right commutes.

Then (𝑓0, 𝑝) ⋅ (−) : h𝑋0
→ Pb(𝑞 ∘ −, ̄𝑓 ∘ −) is an 𝖤-locally bijective

morphism in Psh(u�). In particular, if 𝖤 is a subcanonical unary coverage

on u�, then the right square is a pullback square in u�.
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Proof. We have the following commutative diagram in u�,

𝑋1 𝑌1 𝑌0

𝑋0 𝑌0 ̄𝑌

𝑑1

𝑓1

𝑑1

𝑑0

𝑞

𝑓0 𝑞

where both squares are pullback squares in u�. Thus, by the pullback past-
ing lemma, in the commutative diagram in u� shown below,

𝑋1 𝑋0 𝑌0

𝑋0 �̄� ̄𝑌

𝑑1

𝑑0

𝑝

𝑓0

𝑞

𝑝 ̄𝑓

the outer rectangle is a pullback diagram inu�. Hence, by lemma 1.4.19(a),

the right square is an 𝖤-weak pullback square in u�, so (𝑓0, 𝑝)⋅(−) : h𝑋0
→

Pb(𝑞 ∘ −, ̄𝑓 ∘ −) is 𝖤-locally surjective, by lemma 1.4.9.

We will now show that (𝑓0, 𝑝) ⋅ (−) : h𝑋0
→ Pb(𝑞 ∘ −, ̄𝑓 ∘ −) is a

monomorphism in Psh(u�). Let 𝑇 be an object in u� and let 𝑥0,0, 𝑥0,1 :
𝑇 → 𝑋0 be a parallel pair of morphisms in u� such that:

𝑝 ∘ 𝑥0,0 = 𝑝 ∘ 𝑥0,1 𝑓0 ∘ 𝑥0,0 = 𝑓0 ∘ 𝑥0,1

We then have a unique morphism 𝑥1 : 𝑇 → 𝑋1 such that:

𝑑1 ∘ 𝑥1 = 𝑥0,0 𝑑0 ∘ 𝑥1 = 𝑥0,1

On the other hand,

𝑑1 ∘ 𝑓1 ∘ 𝑥1 = 𝑓0 ∘ 𝑥0,0 𝑑0 ∘ 𝑓1 ∘ 𝑥1 = 𝑓0 ∘ 𝑥0,1

and (by the pullback pasting lemma) we have the following pullback

square in u�,

𝑋0 𝑋1

𝑌0 𝑌1

𝑓0

Δ𝑝

𝑓1

Δ𝑞

where the horizontal arrows are the respective relative diagonals, so 𝑥0,0 =
𝑥0,1, as claimed.
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Thus, (𝑓0, 𝑝) ⋅ (−) : h𝑋0
→ Pb(𝑞 ∘ −, ̄𝑓 ∘ −) is indeed 𝖤-locally biject-

ive. To complete the proof, observe that if 𝖤 is a subcanonical unary cov-

erage on u�, then both h𝑋0
and Pb(𝑞 ∘ −, ̄𝑓 ∘ −) are 𝖤-sheaves on u�, so, in

that case, by proposition a.3.7, (𝑓0, 𝑝) ⋅ (−) : h𝑋0
→ Pb(𝑞 ∘ −, ̄𝑓 ∘ −) is

an isomorphism. ■

1.4.19(c)
Covering morph-

isms and pull-

back squares

Lemma. Consider a commutative diagram in u� of the form below,

�̃� 𝑊 𝑌

�̃� 𝑋 𝑍

̃𝑝

𝑤

𝑝

𝑞

𝑔

𝑥 𝑓

where:

• Both 𝑤 : �̃� ↠ 𝑊 and 𝑥 : �̃� ↠ 𝑋 are 𝖤-covering morphisms in u�.

• Both the left square and outer rectangle are pullback diagrams in u�.

Then (𝑝, 𝑞)⋅(−) : h𝑊 → Pb(𝑓 ∘ −, 𝑔 ∘ −) is a 𝖤-locally bijective morphism
in Psh(u�). In particular, if 𝖤 is a subcanonical unary coverage on u�, then
the right square is a pullback square in u�.

Proof. By lemma 1.4.19(a), the right square is an 𝖤-weak pullback square
in u�, so (𝑝, 𝑞) ⋅ (−) : h𝑊 → Pb(𝑓 ∘ −, 𝑔 ∘ −) is 𝖤-locally surjective, by

lemma 1.4.9.

We will now show that (𝑝, 𝑞) ⋅ (−) : h𝑊 → Pb(𝑓 ∘ −, 𝑔 ∘ −) is 𝖤-locally
injective. Let 𝑇 be an object in u� and let 𝑤0, 𝑤1 : 𝑇 → 𝑊 be a parallel

pair of morphisms in u� such that:

𝑝 ∘ 𝑤0 = 𝑝 ∘ 𝑤1 𝑞 ∘ 𝑤0 = 𝑞 ∘ 𝑤1

Since 𝑥 : �̃� ↠ 𝑋 is an 𝖤-covering morphism in u�, there is a commutative

square in u� of the form below,

̃𝑇 𝑇

�̃� 𝑋

�̃�

𝑡

𝑝∘𝑤0

𝑥
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where 𝑡 : ̃𝑇 ↠ 𝑇 is also an 𝖤-covering morphism in u�. Thus, there exist
unique morphisms �̃�0, �̃�1 : ̃𝑇 → �̃� such that:

̃𝑝 ∘ �̃�0 = �̃� 𝑤 ∘ �̃�0 = 𝑤0 ∘ 𝑡

̃𝑝 ∘ �̃�1 = �̃� 𝑤 ∘ �̃�1 = 𝑤1 ∘ 𝑡

But ⟨ ̃𝑝 ∘ −, 𝑞 ∘ 𝑤 ∘ −⟩ : h�̃� → h�̃� × h𝑌 is a monomorphism, so �̃�0 = �̃�1,

and therefore 𝑤0 ∘ 𝑡 = 𝑤1 ∘ 𝑡.

Thus, (𝑝, 𝑞)⋅(−) : h𝑊 → Pb(𝑓 ∘ −, 𝑔 ∘ −) is indeed 𝖤-locally bijective.
To complete the proof, observe that if 𝖤 is a subcanonical unary coverage

on u�, then both h𝑊 and Pb(𝑓 ∘ −, 𝑔 ∘ −) are 𝖤-sheaves on u�, so by pro-

position a.3.7, (𝑝, 𝑞) ⋅ (−) : h𝑊 → Pb(𝑓 ∘ −, 𝑔 ∘ −) is an isomorphism in

that case. ■

1.4.20 Definition. An exact category is a regular category u� with the follow-

ing additional data:

• For each object 𝑋 in u� and each equivalence relation (𝑅, 𝑑0, 𝑑1) on

𝑋, an exact quotient 𝑞 : 𝑋 → �̄� of (𝑅, 𝑑0, 𝑑1) in u� .

Remark. In other words, an exact category is a regular category in which

every equivalence relation is a kernel pair. (Recall remark 1.3.8.)

1.4.21 Definition. An 𝖤-local complex in u� is a tuple (𝑋, 𝑃 , 𝑑0, 𝑑1) where:

• 𝑋 and 𝑃 are objects in u�.

• 𝑑0 and 𝑑1 are morphisms 𝑃 → 𝑋 in u�.

• The 𝖤-closed support of ⟨h𝑑1
, h𝑑0⟩ : h𝑃 → h𝑋 × h𝑋 defines an equi-

valence relation on h𝑋 .

Example. Let 𝑋 be an object in u�. Then (𝑋, 𝑋, id𝑋 , id𝑋) is an 𝖤-local
complex in u�, by lemma a.3.4.
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Recognition

principle for

local complexes

Lemma. Let 𝑑0, 𝑑1 : 𝑃 → 𝑋 be a parallel pair of morphisms in u�.
Assuming u� has 𝖤-weak pullback squares, the following are equivalent:

(i) (𝑋, 𝑃 , 𝑑0, 𝑑1) is an 𝖤-local complex.

(ii) All of the following conditions are satisfied:

• There exist an 𝖤-covering morphism 𝑥 : �̃� ↠ 𝑋 in u� and a morph-

ism 𝑝 : �̃� → 𝑃 in u� such that 𝑑0 ∘ 𝑝 = 𝑥 and 𝑑1 ∘ 𝑝 = 𝑥.

• There exist 𝖤-covering morphisms 𝑝0 : ̃𝑃 ↠ 𝑃 and 𝑝1 : ̃𝑃 → 𝑃 in

u� such that 𝑑0 ∘ 𝑝0 = 𝑑1 ∘ 𝑝1 and 𝑑1 ∘ 𝑝0 = 𝑑0 ∘ 𝑝1.

• There is an 𝖤-weak pullback square in u� of the form below,

𝑄 𝑃

𝑃 𝑋

𝑑2

𝑑0

𝑑0

𝑑1

and there exist an 𝖤-covering morphism 𝑞 : �̃� ↠ 𝑄 in u� and a

morphism 𝑝 : �̃� → 𝑃 in u� such that 𝑑0 ∘ 𝑝 = 𝑑0 ∘ 𝑑0 ∘ 𝑞 and

𝑑1 ∘ 𝑝 = 𝑑1 ∘ 𝑑2 ∘ 𝑞.

Proof. Straightforward. ⧫

1.4.22 ¶ Let (𝑋, 𝑃 , 𝑑0, 𝑑1) be an 𝖤-local complex.

Definition. The 𝖤-sheaf presented by (𝑋, 𝑃 , 𝑑0, 𝑑1) is the 𝖤-sheaf com-

pletion[1] of the quotient presheaf h𝑋/𝑅 where 𝑅 is the 𝖤-closed support
of ⟨𝑑1, 𝑑0⟩ : h𝑃 → h𝑋 × h𝑋 .

The sheaf

presented by a

local complex

Lemma. Let 𝑄(𝑋, 𝑃 , 𝑑0, 𝑑1) be the 𝖤-sheaf presented by (𝑋, 𝑃 , 𝑑0, 𝑑1)
and let 𝑎 be the image of the universal element (𝑋, id𝑋) in𝑄(𝑋, 𝑃 , 𝑑0, 𝑑1).
Then (𝑋, 𝑃 , 𝑎, 𝑑0, 𝑑1) is an 𝖤-local presentation of 𝑄(𝑋, 𝑃 , 𝑑0, 𝑑1).

Proof. By lemmas a.3.3 and a.3.6, 𝑅 = Kr(𝑎 ⋅ −), so (𝑋, 𝑃 , 𝑎, 𝑑0, 𝑑1) is

indeed an 𝖤-local presentation of 𝑄(𝑋, 𝑃 , 𝑑0, 𝑑1). ■

[1] Recall proposition a.3.8(d).
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1.4.23 Definition. The exact completion of (u�, 𝖤) is the category Ex(u�, 𝖤)

defined as follows:

• The objects are the 𝖤-local complexes in u�.

• The morphisms (𝑋, 𝑃 , 𝑑0, 𝑑1) → (𝑌 , 𝑄, 𝑒0, 𝑒1) are the morphisms

𝑄(𝑋, 𝑃 , 𝑑0, 𝑑1) → 𝑄(𝑌 , 𝑄, 𝑒0, 𝑒1) in Sh(u�, 𝖤).

• Composition and identities are inherited from Sh(u�, 𝖤).

The insertion functor 𝜄 : u� → Ex(u�, 𝖤) is the evident functor that sends
each object 𝑋 in u� to the 𝖤-local complex (𝑋, 𝑋, id𝑋 , id𝑋).

Remark. In view of lemmas 1.4.14 and 1.4.22, the evident functor 𝑄 :
Ex(u�, 𝖤) → Sh(u�, 𝖤) is fully faithful and essentially surjective onto the

full subcategory of 𝖤-locally 1-presentable 𝖤-sheaves on u�.

The exact

completion is

an exact category

Proposition. If (u�, 𝖤) satisfies the Shulman condition, then:

(i) Ex(u�, 𝖤) is an exact category.

(ii) The insertion functor 𝜄 : u� → Ex(u�, 𝖤) preserves limits of finite dia-
grams and sends 𝖤-covering morphisms in u� to effective epimorphisms

in Ex(u�, 𝖤).

Proof. (i). By theorem 1.4.16, Ex(u�, 𝖤) has limits of finite diagrams.

Moreover, lemma 1.4.14 and theorem a.3.9 imply that every equivalence

relation in Ex(u�, 𝖤) is a kernel pair and that the class of regular epimorph-

isms in Ex(u�, 𝖤) is quadrable. Thus, Ex(u�, 𝖤) is indeed an exact category.

(ii). The preservation of limits of finite diagrams is a consequence of

theorem a.3.9. For the remainder of the claim, apply lemmas a.2.18

and a.3.10 to the fact that the Yoneda embedding u� → Psh(u�) sends

𝖤-covering morphisms in u� to 𝖤-locally surjective morphisms in Psh(u�).
■

1.4.24 ¶ Let u� be a category, let 𝖩 be a unary coverage on u�, and assume both

(u�, 𝖤) and (u�, 𝖩) satisfy the Shulman condition.
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Definition. An admissible functor 𝐹 : (u�, 𝖤) → (u�, 𝖩) is a functor

𝐹 : u� → u� with the following properties:

• 𝐹 : (u�, 𝖤) → (u�, 𝖩) is a pre-admissible functor.

• For every 𝖤-locally 1-presentable 𝖤-sheaf 𝐴 on u�, there exist a 𝖩-
locally 1-presentable 𝖩-sheaf 𝐹!𝐴 on u� and a morphism 𝜎𝐴 : 𝐴 →
𝐹 ∗𝐹!𝐴 in Sh(u�, 𝖤) such that, for every 𝖩-locally 1-presentable 𝖩-sheaf
𝐵 on u�, the following is a bijection:

HomSh(u�,𝖩)(𝐹!𝐴, 𝐵) → HomSh(u�,𝖤)(𝐴, 𝐹 ∗𝐵)

ℎ ↦ 𝐹 ∗ℎ ∘ 𝜎𝐴

The functor

between exact

completions

induced by

an admiss-

ible functor

Lemma. Let 𝐹 : (u�, 𝖤) → (u�, 𝖩) be an admissible functor. Assuming 𝖤 is

a subcanonical unary coverage on u�:

(i) There exist a functor ̄𝐹 : Ex(u�, 𝖤) → Ex(u�, 𝖩) and an isomorphism
𝜂 : 𝜄𝐹 ⇒ ̄𝐹 𝜄 of functors u� → Ex(u�, 𝖩) such that ̄𝐹 sends right-exact

forks in Ex(u�, 𝖤) to coequaliser diagrams in Ex(u�, 𝖩).

(ii) Moreover, any such ( ̄𝐹 , 𝜂) is a pointwise left Kan extension of 𝜄𝐹 :
u� → Ex(u�, 𝖩) along 𝜄 : u� → Ex(u�, 𝖤).

Proof. By proposition a.3.13, the restriction functor 𝐹 ∗ : Sh(u�, 𝖩) →
Sh(u�, 𝖤) has a left adjoint, say 𝐹! : Sh(u�, 𝖤) → Sh(u�, 𝖩). Moreover,

for every object 𝐴 in Ex(u�, 𝖤), there exist an object ̄𝐹 𝐴 in Ex(u�, 𝖩) and
an isomorphism 𝜄∗h ̄𝐹 𝐴 ≅ 𝐹!h𝐴 in Sh(u�, 𝖩). This defines a functor ̄𝐹 :
Ex(u�, 𝖤) → Ex(u�, 𝖩).

By definition, we have the a natural bijection of the form below:

HomEx(u�,𝖩)( ̄𝐹 𝐴, 𝐵) ≅ HomSh(u�,𝖤)(𝜄∗h𝐴, 𝐹 ∗𝜄∗h𝐵)

In particular, taking 𝐴 = 𝜄𝑋 and applying the Yoneda lemma, the functor

𝜄 : u� → Ex(u�, 𝖤) induces a natural map

HomEx(u�,𝖩)( ̄𝐹 𝜄𝑋, 𝐵) → HomEx(u�,𝖩)(𝜄𝐹 𝑋, 𝐵)

and hence a natural transformation 𝜂 : 𝜄𝐹 ⇒ ̄𝐹 𝜄. The pair ( ̄𝐹 , 𝜂) is then

a pointwise left Kan extension of 𝜄𝐹 : u� → Ex(u�, 𝖩) along 𝜄 : u� →
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Ex(u�, 𝖤). Furthermore, because 𝜄 : u� → Ex(u�, 𝖤) is fully faithful, 𝜂 :
𝜄𝐹 ⇒ ̄𝐹 𝜄 is an isomorphism.

Since the Yoneda representation Ex(u�, 𝖤) → Sh(u�, 𝖩) preserves right-
exact forks, ̄𝐹 : Ex(u�, 𝖤) → Ex(u�, 𝖩) sends right-exact forks in Ex(u�, 𝖤)

to coequaliser diagrams in Ex(u�, 𝖩). It is clear that any pair ( ̄𝐹 , 𝜂) as in

(i) is determined (up to isomorphism) by ̄𝐹 𝜄 : u� → Ex(u�, 𝖩), so any such

( ̄𝐹 , 𝜂) must be a pointwise left Kan extension as constructed above. ■

Remark. We will later see a converse to the above result, i.e. that the

restriction of an appropriate functor between the exact completions is

admissible.

1.4.25 ¶ Assume (u�, 𝖤) satisfies the Shulman condition. Let u� be an exact cat-

egory, let𝖪 be the class of effective epimorphisms inu� , and let𝐹 : u� → u�
be a functor with the following properties.

• 𝐹 : u� → u� sends 𝖤-local complexes in u� to 𝖪-local complexes in u� .

• 𝐹 : u� → u� sends right-𝖤-exact forks in u� to right-𝖪-exact forks in u� .

Example. If u� has limits of finite diagrams and 𝐹 : u� → u� is a functor

that preserves limits of finite diagrams and sendsmembers of𝖤 to effective

epimorphisms in u� , then 𝐹 : u� → u� has the above properties.

Lemma. Under the above hypotheses, 𝐹 : (u�, 𝖤) → (u� , 𝖪) is an admiss-

ible functor.

Proof. Recalling lemma 1.4.18, it is not hard to see that 𝐹 : (u�, 𝖤) →
(u� , 𝖪) is a pre-admissible functor. Thus, by proposition a.3.13, 𝐹 ∗ :
Sh(u� , 𝖪) → Sh(u�, 𝖤) has a left adjoint, say 𝐹! : Sh(u�, 𝖤) → Sh(u� , 𝖪).
The Yoneda embedding u� → Sh(u� , 𝖪) preserves right-exact forks, and
𝐹! : Sh(u�, 𝖤) → Sh(u� , 𝖪) preserves coequalisers, so for every 𝖤-local
complex (𝑋, 𝑃 , 𝑑0, 𝑑1) in u�, 𝐹! : Sh(u�, 𝖤) → Sh(u� , 𝖪) sends the 𝖤-
sheaf presented by (𝑋, 𝑃 , 𝑑0, 𝑑1) to a representable 𝖪-sheaf on u� , as

required. ■
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1.5 Strict coproducts

Synopsis. We study extensive categories, i.e. categories in which coprod-

ucts behave like disjoint unions, and we examine the properties of exact

completions of extensive categories.

Prerequisites. §§1.1, 1.3, 1.4, a.1, a.2, a.3.

1.5.1 ¶ Let u� be a category and let 𝜅 be a regular cardinal.

Definition. The 𝜅-ary canonical coverage on u� is the coverage 𝖩 where
𝖩(𝑋) is the set of 𝜅-small sinks Φ on 𝑋 with the following property:

• For every object (𝑇 , 𝑥) in u�∕𝑋 , there is a 𝜅-small strict-epimorphic sink

Θ on 𝑇 such that ↓(Θ) ⊆ 𝑥∗ ↓(Φ).

Remark. In general, the 𝜅-ary canonical coverage may fail to be upward-

closed, but it is always composition-closed (by lemma a.2.3(c) and corol-

lary a.2.3(d)).

1.5.2 ¶ Let u� be a category, let 𝑌 be an object in u� and let Φ be a set of objects

in u�∕𝑌 .

1.5.2(a) Definition. The object 𝑌 is the disjoint union of Φ if the following

conditions are satisfied:

• The cocone (𝑓 | (𝑋, 𝑓) ∈ Φ) is a coproduct cocone in u�.

• For every (𝑋, 𝑓) ∈ Φ, the morphism 𝑓 : 𝑋 → 𝑌 is a monomorphism

in u�.

• For every commutative square in u� of the form below,

𝑇 𝑋0

𝑋1 𝑌

𝑥0

𝑥1

𝑓0

𝑓1

if (𝑋0, 𝑓0) and (𝑋1, 𝑓1) are in Φ, then either (𝑋0, 𝑓0) = (𝑋1, 𝑓1) or

𝑇 is an initial object in u� (or both).
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1.5.2(b) Definition. The cocone (𝑓 | (𝑋, 𝑓) ∈ Φ) is a strict coproduct cocone

in u� if it has the following properties:

• For every (𝑋, 𝑓) ∈ Φ, 𝑓 : 𝑋 → 𝑌 is a quadrable morphism in u�.

• For every object (𝑇 , 𝑦) in u�∕𝑌 , given pullback squares in u� of the form

below
𝑆(𝑋,𝑓) 𝑋

𝑇 𝑌

𝑡(𝑋,𝑓) 𝑓

𝑦

for every (𝑋, 𝑓) ∈ Φ, the object 𝑇 is a disjoint union of the following

set:

{(𝑆(𝑋,𝑓), 𝑡(𝑋,𝑓)) | (𝑋, 𝑓) ∈ Φ}

Remark. In particular, when Φ = ∅, this reduces to the notion of strict

initial object. More explicitly, 𝑌 is a strict initial object if and only if, for

every morphism 𝑦 : 𝑇 → 𝑌 in u�, 𝑇 is an initial object in u�.

Pullbacks along

strict coprod-

uct cocones

Proposition. Assuming (𝑓 | (𝑋, 𝑓) ∈ Φ) is a strict coproduct cocone,

the functor

u�∕𝑌 → ∏
(𝑋,𝑓)∈Φ

u�∕𝑋

defined by pullback is fully faithful.

Proof. Straightforward. ⧫

1.5.3 ※ For the remainder of this section, 𝜅 is a regular cardinal.

1.5.4 ¶ Let u� be a 𝜅-ary coherent category.

Recognition

principle for

disjoint unions

in coherent

categories

Lemma. Let 𝑌 be an object in u� and let Φ be a 𝜅-small set of subobjects
of 𝑌 . The following are equivalent:

(i) 𝑌 is a disjoint union of Φ.

(ii) (𝑌 , id𝑌 ) is a coproduct of Φ in the category of subobjects of 𝑌 and,

for every commutative square in u� of the form below,

𝑇 𝑋1

𝑋0 𝑌

𝑓1

𝑓0
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if (𝑋0, 𝑓0) and (𝑋1, 𝑓1) are both inΦ, then either (𝑋0, 𝑓0) = (𝑋1, 𝑓1)
or 𝑇 is an initial object in u� (or both).

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). For the case where Φ has two elements, see the proof of Propos-

ition 1.4.3 in [Johnstone, 2002, Part A]. The general case is similar. □

1.5.5 Definition. A 𝜅-ary extensive category is a category u� with the fol-

lowing data:

• For every family (𝑋𝑖 | 𝑖 ∈ 𝐼) of objects in u� where 𝐼 is a 𝜅-small set,[1]

an object ∐𝑖∈𝐼 𝑋𝑖 in u� and a strict coproduct cocone (𝑓𝑖 | 𝑖 ∈ 𝐼) in u�
where dom 𝑓𝑖 = 𝑋𝑖 and codom 𝑓𝑖 = ∐𝑖∈𝐼 𝑋𝑖.

Remark. In particular, a 𝜅-ary extensive category has a (chosen) strict

initial object, say 0.

1.5.6 Definition. A 𝜅-ary pretopos is an exact category that is also a 𝜅-ary
extensive category.

1.5.6(a) Lemma. Every 𝜅-ary pretopos is a 𝜅-ary coherent category.

Proof. Straightforward. (Define the union of a set of subobjects to be the

exact image of their coproduct.) ⧫

1.5.6(b)
Criterion for

existence of

coproducts

in coherent

categories

Lemma. Let u� be a 𝜅-ary coherent category and let ℬ be a set of objects

in u�. Assume the following hypotheses:

• u� is an exact category.

• For every object 𝑋 in u�, there is an effective epimorphism 𝑝 : �̃� ↠ 𝑋
in u� where �̃� is in ℬ.

• Strict coproducts of 𝜅-small families of objects in ℬ exist in u�.

Then u� is a 𝜅-ary pretopos.

[1] Since there is a proper class of 𝜅-small sets, strictly speaking, one should restrict to e.g.
hereditarily 𝜅-small sets here.
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Proof. Let (𝑋𝑖 | 𝑖 ∈ 𝐼) be a family of objects in u�. For each 𝑖 ∈ 𝐼 , choose
an effective epimorphism 𝑝𝑖 : �̃�𝑖 ↠ 𝑋𝑖 in u� with �̃�𝑖 in ℬ, and then choose

a pullback square in u� of the form below:

𝑅𝑖 �̃�𝑖

�̃�𝑖 𝑋𝑖

𝑑1

𝑑0

𝑝𝑖

𝑝𝑖

Let �̃� = ∐𝑖∈𝐼 �̃�𝑖. It is not hard to verify that the canonical morphism

∐
(𝑗,𝑘)∈𝐼×𝐼

�̃�𝑗 × �̃�𝑘 → �̃� × �̃�

in u� is an isomorphism. Thus, for each 𝑖 ∈ 𝐼 , the composite 𝑅𝑖 →
�̃�𝑖 × �̃�𝑖 ↣ �̃� × �̃� is a monomorphism in u�. Let ⟨𝑑1, 𝑑0⟩ : 𝑅 → �̃� × �̃�
be the union. Then (𝑅, 𝑑0, 𝑑1) is an equivalence relation on �̃�, so there

is an exact fork in u� of the form below:

𝑅 �̃� 𝑋
𝑑1

𝑑0

𝑝

Moreover, for each 𝑖 ∈ 𝐼 , there is a unique morphism 𝑚𝑖 : 𝑋𝑖 → 𝑋 in u�
such that the following diagram in u� commutes,

�̃�𝑖 𝑋𝑖

�̃� 𝑋

𝑝𝑖

𝑚𝑖

𝑝

(∗)

where �̃�𝑖 ↣ �̃� is the coproduct injection. Consider a commutative dia-

gram in u� of the form below,

𝑅𝑗,𝑘 • �̃�𝑘

• 𝑅 �̃�

�̃�𝑗 �̃� 𝑋

𝑑1

𝑑0

𝑝

𝑝

where each square is a pullback square in u�. Then, either 𝑗 = 𝑘 or 𝑅𝑗,𝑘 is

an initial object in u� (or both). In view of lemma 1.3.11, it follows that,

64



1.5. Strict coproducts

for every pullback square in u� of form below,

𝑇 𝑋𝑘

𝑋𝑗 𝑋

𝑚𝑘

𝑚𝑗

either 𝑗 = 𝑘 or 𝑇 is an initial object in u� (or both). Hence, (∗) is a

pullback square in u�, and by lemmas 1.3.8 and 1.3.9, 𝑚𝑖 : 𝑋𝑖 → 𝑋 is a

monomorphism. We then apply lemma 1.5.4 to deduce that 𝑋 is a disjoint

union of {(𝑋𝑖, 𝑚𝑖) | 𝑖 ∈ 𝐼}, as required. ■

1.5.7 ¶ Let u� be a category and let Fam𝜅(u�) be full subcategory of Fam(u�)

spanned by those families 𝑋 such that idx𝑋 is a hereditarily 𝜅-small set.

Proposition. Fam𝜅(u�) is a 𝜅-ary extensive category.

Proof. Straightforward. ⧫

The free coprod-

uct completion

Theorem. Let u� be a category with 𝜅-ary coproducts, let 𝐹 : u� → u� be

a functor, and let 𝛾 : u� → Fam𝜅(u�) be defined as in proposition a.1.8.

(i) There exist a functor ̄𝐹 : Fam𝜅(u�) → u� that preserves 𝜅-ary co-
products and an isomorphism 𝜂 : 𝐹 ⇒ ̄𝐹 𝛾 of functors u� → u�.

(ii) Moreover, any such ( ̄𝐹 , 𝜂) is a left Kan extension of 𝐹 : u� → u�
along 𝛾 : u� → Fam𝜅(u�).

Proof. (i). Straightforward.

(ii). Let 𝐺 : Fam𝜅(u�) → u� be a functor and let 𝜑 : 𝐹 ⇒ 𝐺𝛾 be a

natural transformation. For every object 𝑋 in Fam𝜅(u�), there is a unique
morphism 𝜃𝑋 : ̄𝐹 (𝑋) → 𝐺(𝑋) making the diagram in u� shown below

commute for every 𝑖 ∈ idx𝑋,

𝐹 (𝑋(𝑖)) ̄𝐹 (𝑋)

𝐺(𝛾(𝑋)) 𝐺(𝑋)

𝜑𝑋(𝑖)

𝑣𝑖

𝜃𝑋

𝐺(𝑢𝑖)

where 𝑢𝑖 : 𝛾(𝑋(𝑖)) → 𝑋 and 𝑣𝑖 : 𝐹 (𝑋(𝑖)) → ̄𝐹 (𝑋) are the respective

coproduct insertions. It is clear that we obtain a natural transformation

𝜃 : ̄𝐹 ⇒ 𝐺, and it is unique one such that 𝜃𝛾 ∙ 𝜂 = 𝜑. ■
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1.5.8 ¶ Let u� be a category with a strict initial object 0 and let 𝖤 be a unary

coverage on u�.

Strict initial

objects and

locally 1-

generable

presheaves

Lemma. Let 𝐴 be a 𝖤-locally 1-generable presheaf on u�. Then 𝐴(0) has
a unique element.

Proof. Let (𝑋, 𝑎) be an 𝖤-local generator of 𝐴 and let ⊥𝑋 be the unique

morphism 0 → 𝐴 in u�. Of course, 𝑎 ⋅ ⊥𝑋 ∈ 𝐴(0); it remains to be shown

that it is the unique element of 𝐴(0). Suppose 𝑎′ ∈ 𝐴(0). Since every

morphism in u� with codomain 0 is an isomorphism, by lemma 1.4.7, there

is a morphism 𝑓 ′ : 0 → 𝑋 in u� such that 𝑎′ = 𝑎 ⋅ 𝑓 ′. But 𝑓 ′ = ⊥𝑋 , so

we indeed have 𝑎′ = 𝑎 ⋅ ⊥𝑋 . ■

The initial locally

1-generable

presheaf

Proposition. The representable presheaf h0 is an initial object in the

metacategory of 𝖤-locally 1-generable presheaves on u�.

Proof. It is clear that h0 is 𝖤-locally 1-generable, and the Yoneda lemma

reduces the claim to lemma 1.5.8. ■

1.5.9 ※ For the remainder of this section, u� is a 𝜅-ary extensive category.

1.5.10 Definition. A complemented monomorphism in u� is a monomorph-

ism 𝑓 : 𝑋 → 𝑌 in u� for which there is an object (𝑋′, 𝑓 ′) in u�∕𝑌 such

that 𝑌 is a disjoint union of {(𝑋, 𝑓), (𝑋′, 𝑓 ′)}.

Properties of

complemented

monomorphisms

Proposition.

(i) Every isomorphism in u� is a complemented monomorphism in u�.

(ii) The class of complemented monomorphisms in u� is closed under

composition.

(iii) The class of complemented monomorphisms in u� is a quadrable

class of morphisms in u�.

(iv) The class of complemented monomorphisms in u� is closed under

𝜅-ary coproduct in u�.

Proof. Straightforward. ⧫
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1.5.11 Definition. A unary coverage 𝖤 on u� is 𝜅-summable if it has the fol-

lowing property:

• For every family (𝑓𝑖 | 𝑖 ∈ 𝐼) of 𝖤-covering morphisms in u�, if 𝐼 is a

𝜅-small set, then the coproduct

∐
𝑖∈𝐼

𝑓𝑖 : ∐
𝑖∈𝐼

dom 𝑓𝑖 → ∐
𝑖∈𝐼

codom 𝑓𝑖

is also an 𝖤-covering morphism in u�.

Remark. The above is a condition on the whole class of 𝖤-covering
morphisms in u�, not just the members of 𝖤.

1.5.12 ¶ Let 𝖤 be a 𝜅-summable unary coverage on u�.

1.5.12(a)
Joins of locally 1-

generable closed

subpresheaves

Lemma. Let 𝐵 be a 𝖤-locally 1-generable presheaf on u�. The set of 𝖤-
locally 1-generable 𝖤-closed subpresheaves of 𝐵 (partially ordered by

inclusion) has 𝜅-ary joins.

Proof. Let (𝑌 , 𝑏) be an 𝖤-local generator of 𝐵 and let Φ be a 𝜅-small set

of elements of 𝐵. We must show that the set of 𝖤-closed subpresheaves

of 𝐵 generated by the members of Φ admit a join in the set of 𝖤-locally
1-generable 𝖤-closed subpresheaves of 𝐵. By corollary 1.4.7, we may

assume that, for each (𝑋, 𝑎) ∈ Φ, there is some morphism 𝑓 : 𝑋 → 𝑌
in u� such that 𝑏 ⋅ 𝑓 = 𝑎. Let �̄� = ∐(𝑋,𝑎)∈Φ 𝑋, let ̄𝑓 : �̄� → 𝑌 be the

inducedmorphism in u�, let ̄𝑎 = 𝑏⋅ ̄𝑓 , and let ̄𝐴 be the𝖤-closed subpresheaf
of 𝐵 𝖤-locally generated by (�̄�, ̄𝑎). Clearly, for every (𝑋, 𝑎) ∈ Φ, we

have 𝑎 ∈ ̄𝐴(𝑋). It remains to be shown that ̄𝐴 is the smallest 𝖤-locally
1-generable 𝖤-closed subpresheaf with this property.

Let𝐴′ be an𝖤-closed subpresheaf of𝐵 𝖤-locally generated by (𝑋′, 𝑎′)
and suppose, for every (𝑋, 𝑎) ∈ Φ, we have 𝑎 ∈ 𝐴′(𝑋). As before, we
may assume that 𝑎′ = 𝑏 ⋅ 𝑓 ′ for some morphism 𝑓 ′ : 𝑋′ → 𝑌 in u�.
By lemma 1.4.7, for each (𝑋, 𝑎) ∈ Φ, we have an 𝖤-covering morphism

𝑝′
(𝑋,𝑎) in u� and a morphism 𝑓 ′

(𝑋,𝑎) in u� such that 𝑎′ ⋅𝑓 ′
(𝑋,𝑎) = 𝑎⋅𝑝′

(𝑋,𝑎). Let

�̃� = ∐(𝑋,𝑎)∈Φ dom 𝑓 ′
(𝑋,𝑎) and let 𝑓 ′ : �̃� → 𝑌 be the induced morphism

in u�. Then 𝑎′ ⋅ 𝑓 ′ = ̄𝑎 ⋅ ∐(𝑋,𝑎) 𝑓(𝑋,𝑎), so ̄𝑎 ∈ 𝐴′(𝑋). Thus, ̄𝐴 ⊆ 𝐴′, so ̄𝐴
is the desired join. ■
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1.5.12(b)
Pullbacks of

joins of locally 1-

generable closed

subpresheaves

Lemma. Assuming (u�, 𝖤) satisfies the Shulman condition, 𝜅-ary joins of
𝖤-locally 1-generable 𝖤-closed subpresheaves of 𝖤-locally 1-presentable
presheaves on u� are preserved by pullback.

Proof. Let ℎ : 𝐴 → 𝐵 be a morphism of 𝖤-locally 1-presentable pre-

sheaves on u�. By corollary 1.4.16, we may choose 𝖤-local generators
(𝑋, 𝑎) and (𝑌 , 𝑏) of 𝐴 and 𝐵 (respectively) and a morphism 𝑓 : 𝑋 → 𝑌
in u� such that 𝑏⋅𝑓 = ℎ(𝑎) and the induced morphism h𝑋 → 𝐴×𝐵 h𝑌 is 𝖤-
locally surjective. Note that, for every 𝖤-locally 1-generable subpresheaf

𝐵′ ⊆ 𝐵, lemma 1.4.13 and theorem 1.4.16 imply that ℎ−1𝐵′ is a 𝖤-locally
1-generable subpresheaf of𝐴. On the other hand, by corollary 1.4.7, there

is a morphism 𝑦 : 𝑌 ′ → 𝑌 in u� such that 𝐵′ is 𝖤-locally generated by

(𝑌 ′, 𝑏 ⋅ 𝑦). We may then choose an 𝖤-weak pullback square in u� of the

form below,

𝑋′ 𝑌 ′

𝑋 𝑌

𝑥

𝑓 ′

𝑦

𝑓

and by the weak pullback pasting lemma (lemma a.2.19), (𝑋′, 𝑎 ⋅ 𝑥) is

an 𝖤-local generator of 𝐴′ = ℎ−1𝐵′.

Now, let 𝐼 be a 𝜅-small set, and for each 𝑖 ∈ 𝐼 , let 𝑥𝑖 : 𝑋′
𝑖 → 𝑋,

𝑦𝑖 : 𝑌 ′
𝑖 → 𝑌 , and 𝑓 ′

𝑖 : 𝑋′
𝑖 → 𝑌 ′

𝑖 be morphisms in u� such that:

• 𝑓 ∘ 𝑥𝑖 = 𝑦𝑖 ∘ 𝑓 ′
𝑖 .

• (𝑋′
𝑖 , 𝑎 ⋅ 𝑥𝑖) is an 𝖤-local generator of 𝐴′

𝑖 = ℎ−1𝐵′
𝑖 , where 𝐵′

𝑖 is the

𝖤-closed subpresheaf of 𝐵 𝖤-locally generated by (𝑌 ′
𝑖 , 𝑏 ⋅ 𝑦𝑖).

We will show that the join of {𝐴′
𝑖 | 𝑖 ∈ 𝐼} is the pullback of the join of

{𝐵′
𝑖 | 𝑖 ∈ 𝐼}. Let 𝑋′ = ∐𝑖∈𝐼 𝑋′

𝑖 , let 𝑌 ′ = ∐𝑖∈𝐼 𝑌 ′
𝑖 , let 𝑥 : 𝑋′ → 𝑋,

𝑦 : 𝑌 ′ → 𝑌 , 𝑓 ′ : 𝑋′ → 𝑌 ′ be the induced morphisms in u�, let 𝐴′ be

the 𝖤-closed subpresheaf of 𝐴 𝖤-locally generated by (𝑋′, 𝑎 ⋅ 𝑥), and let

𝐵′ be the 𝖤-closed subpresheaf of 𝐵 𝖤-locally generated by (𝑌 ′, 𝑏 ⋅ 𝑦).
By lemma 1.5.12(a), 𝐴′ is the join of {𝐴′

𝑖 | 𝑖 ∈ 𝐼} and 𝐵′ is the join of

{𝐵′
𝑖 | 𝑖 ∈ 𝐼}, so 𝐴′ ⊆ ℎ−1𝐵′. It remains to be shown that ℎ−1𝐵′ ⊆ 𝐴′.
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As in the first paragraph, choose an 𝖤-weak pullback square in u� of

the form below.

�̃�′ 𝑌 ′

𝑋 𝑌

�̃�

̃𝑓 ′

𝑦

𝑓

Note that (�̃�′, 𝑎 ⋅ �̃�) is an 𝖤-local generator of ℎ−1𝐵′. To complete the

proof, we must verify that 𝑎 ⋅ �̃� ∈ 𝐴″(�̃�′). Since u� is a 𝜅-ary extensive

category, we may assume that �̃�′ = ∐𝑖∈𝐼 �̃�′
𝑖 and ̃𝑓 ′ = ∐𝑖∈𝐼

̃𝑓 ′
𝑖 where

each ̃𝑓 ′
𝑖 is a morphism �̃�′

𝑖 → 𝑌 ′
𝑖 in u�. Let �̃�𝑖 : �̃�′

𝑖 → 𝑋 be the composite

of the coproduct injection �̃�′
𝑖 → �̃� and �̃� : �̃� → 𝑋. Then,

ℎ(𝑎 ⋅ �̃�𝑖) = 𝑏 ⋅ (𝑓 ∘ �̃�𝑖) = 𝑏 ⋅ (𝑦𝑖 ∘ ̃𝑓 ′
𝑖 )

so we have 𝑎 ⋅ �̃�𝑖 ∈ 𝐴′
𝑖 (�̃�′

𝑖 ) = ℎ−1𝐵′
𝑖 (�̃�′

𝑖 ).
Now, (by the pullback pasting lemma) there exist 𝖤-covering morph-

isms �̃�′
𝑖 : �̃�″

𝑖 → �̃�′
𝑖 and 𝑥′

𝑖 : �̃�″
𝑖 → 𝑋′

𝑖 in u� such that 𝑓 ′
𝑖 ∘ 𝑥′

𝑖 = ̃𝑓 ′
𝑖 ∘ �̃�′

𝑖 .

Let �̃�″ = ∐𝑖∈𝐼 �̃�″
𝑖 , let �̃�′ = ∐𝑖∈𝐼 �̃�′

𝑖 , and let 𝑥′ = ∐𝑖∈𝐼 𝑥′
𝑖 . Since 𝖤 is

𝜅-summable, 𝑥′ : �̃�″ → 𝑋′ is an 𝖤-covering morphism. Moreover, by

construction, 𝑥∘𝑥′ = �̃�∘�̃�′, so 𝑎⋅(�̃� ∘ �̃�′) ∈ 𝐴′(�̃�″). But 𝐴′ is 𝖤-closed,
so 𝑎 ⋅ �̃� ∈ 𝐴′(�̃�′), as required. ■

1.5.13 ¶ The following is a partial generalisation of Proposition 2.1 in [Gran

and Vitale, 1998]. (Note that an extensive category satisfying the Shul-

man condition with respect to the trivial coverage is weakly lextensive,

by Proposition 1.2 in op. cit.)

The exact

completion

is a pretopos

Proposition. If 𝖤 is a 𝜅-summable unary coverage on u� and (u�, 𝖤) sat-
isfies the Shulman condition, then:

(i) Ex(u�, 𝖤) is a 𝜅-ary pretopos.

(ii) The insertion functor 𝜄 : u� → Ex(u�, 𝖤) preserves limits of finite
diagrams and coproducts of 𝜅-small families of objects, and sends 𝖤-
covering morphisms in u� to effective epimorphisms in Ex(u�, 𝖤).

Proof. By proposition 1.4.23, Ex(u�, 𝖤) is a regular category, and by lem-

mas 1.5.12(a) and 1.5.12(b), every 𝜅-small set of subobjects of every

object has an exact union. Thus, Ex(u�, 𝖤) is a 𝜅-ary coherent category.
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We already know that 𝜄 : u� → Ex(u�, 𝖤) preserves limits of finite dia-

grams and sends 𝖤-covering morphisms in u� to effective epimorphisms in

Ex(u�, 𝖤). On the other hand, by lemma 1.5.4, it also preserves coproducts

of 𝜅-small families of objects. We then apply lemma 1.5.6(b) to deduce

that Ex(u�, 𝖤) has strict coproducts of all 𝜅-small families of objects. ■

1.5.14 ¶ For each object 𝑌 in u�, let 𝖪(𝑌 ) be the set of 𝜅-small subsets Φ ⊆
obu�∕𝑌 such that (𝑓 | (𝑋, 𝑓) ∈ Φ) is a (strict) coproduct cocone in u�.

Definition. The 𝜅-ary extensive coverage onu� is the coverage𝖪 defined

above.

Proposition. 𝖪 as defined above is a composition-closed coverage on u�.

Proof. Straightforward. ⧫

1.5.15
Recognition prin-

ciple for sheaves

on extensive sites

Lemma. Let 𝐴 be a presheaf on u�. The following are equivalent:

(i) 𝐴 is a 𝖪-sheaf on u�.

(ii) 𝐴 : u� op → Set sends 𝜅-ary coproducts in u� to 𝜅-ary products in
Set.

Proof. (i) ⇒ (ii). Let 𝑌 be an object in u�, let Φ be a 𝜅-small set of objects

in u�∕𝑌 , and suppose 𝑌 is a disjoint union of Φ. For each (𝑋, 𝑓) ∈ Φ, let

𝑎(𝑋,𝑓) be an element of 𝐴(𝑋). Since 𝐴 is 𝖪-separated, there is at most

one element 𝑎 of 𝐴(𝑌 ) such that 𝑎 ⋅ 𝑓 = 𝑎(𝑋,𝑓) for all (𝑋, 𝑓) ∈ Φ. Let

u� be the sieve on 𝑌 generated by Φ. Since 𝐴 : u� op → Set preserves

terminal objects, for every commutative square in u� of the form below,

𝑇 𝑋0

𝑋1 𝑌

𝑥0

𝑥1

𝑓0

𝑓1

if (𝑋0, 𝑓0) and (𝑋1, 𝑓1) are in Φ, then 𝑎(𝑋0,𝑓0) ⋅ 𝑥0 = 𝑎(𝑋1,𝑓1) ⋅ 𝑥1. But

𝐴 satisfies the sheaf condition with respect to u� , so there is indeed an

element 𝑎 of 𝐴(𝑌 ) such that 𝑎 ⋅ 𝑓 = 𝑎(𝑋,𝑓) for all (𝑋, 𝑓) ∈ Φ. Hence, the

canonical map 𝐴(𝑌 ) → ∏(𝑋,𝑓)∈Φ 𝐴(𝑋) is a bijection.

(ii) ⇒ (i). Straightforward. ■
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The Yoneda

embedding into

sheaves on an

extensive site

Theorem.

(i) 𝖪 is a subcanonical coverage onu�, i.e. every representable presheaf
on u� is a 𝖪-sheaf on u�.

(ii) The Yoneda embedding h• : u� → Sh(u�, 𝖪) preserves 𝜅-ary (strict)
coproducts.

Proof. Apply lemma 1.5.15. ■

1.5.16 Definition. A coverage 𝖩 on u� is 𝜅-ary superextensive if it has the

following properties:

• For every object 𝑋 in u�, every element of 𝖩(𝑋) is a 𝜅-small sink on 𝑋.

• For every object 𝑋 in u�, 𝖪(𝑋) ⊆ 𝖩(𝑋), where 𝖪 is the 𝜅-ary extensive

coverage on u�.

Example. The 𝜅-ary extensive coverage on u� is 𝜅-ary superextensive,

and by lemma 1.5.15 and theorem 1.5.15, the 𝜅-ary canonical coverage

on u� is also 𝜅-ary superextensive.

Recognition prin-

ciple for covering

sinks in superex-

tensive coverages

Lemma. Let 𝑋 be an object in u�, let Φ be a 𝜅-small set of objects in u�∕𝑋 ,

let �̄� = ∐(𝑈,𝑥)∈Φ 𝑈 , and let �̄� : �̄� → 𝑋 be the induced morphism in

u�. Assuming 𝖩 is a 𝜅-ary superextensive coverage on u�, the following are
equivalent:

(i) Φ is a 𝖩-covering sink on 𝑋.

(ii) �̄� : �̄� → 𝑋 is a 𝖩-covering morphism in u�.

Proof. Straightforward. ⧫

The unary

coverage asso-

ciated with

a superex-

tensive coverage

Corollary. Let 𝖩 be a coverage on u� and 𝖤 be the class of 𝖩-covering
morphisms in u�. If 𝖩 is a 𝜅-ary superextensive coverage on u�, then 𝖤 is a

𝜅-summable saturated unary coverage on u�.

Proof. First, we must verify that 𝖤 is a unary coverage. Let 𝑓 : 𝑋 → 𝑌
be a morphism in u� and let 𝑞 : ̃𝑌 ↠ 𝑌 be a 𝖩-covering morphism in

u�. Recalling paragraph a.2.13, we see that there is a 𝜅-small 𝖩-covering
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sink Φ on 𝑋 such that ↓(Φ) ⊆ 𝑓 ∗↓⟨𝑞⟩. Thus, by lemma 1.5.16, there is a

commutative square in u� of the form below,

�̃� ̃𝑌

𝑋 𝑌

𝑝 𝑞

𝑓

where 𝑝 : �̃� ↠ 𝑋 is a 𝖩-covering morphism in u�. It is straightforward to

check that 𝖤 is 𝜅-summable. Finally, by proposition a.2.14, 𝖤 is indeed

upward-closed and composition-closed. ■

1.5.17 ¶ Let 𝖤 be a 𝜅-summable coverage on u� and, for each object 𝑋 in u�, let
𝖩(𝑋) be the set of 𝜅-small sinks Φ on 𝑋 such that the induced morphism

∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 in u� is a 𝖤-covering morphism in u�.

Properties of

the superex-

tensive coverage

generated by

a summable

unary coverage

Proposition.

(i) 𝖩 is a 𝜅-ary superextensive composition-closed coverage on u�.

(ii) A morphism in u� is 𝖤-covering if and only if it is 𝖩-covering.

(iii) If 𝖤 is a subcanonical unary coverage on u�, then 𝖩 is a subcanonical
coverage on u�.

(iv) Assuming 𝖪 is a 𝜅-ary superextensive coverage on u�, if every 𝖤-
covering morphism in u� is also 𝖪-covering, then every 𝖩-covering sink
in u� is also 𝖪-covering.

(v) Assuming 𝐴 : u� op → Set sends 𝜅-ary coproducts in u� to 𝜅-ary
products in Set, 𝐴 is an 𝖤-sheaf on u� if and only if 𝐴 is a 𝖩-sheaf on
u�.

Proof. (i). It is clear that 𝖩 is a 𝜅-ary superextensive coverage on u�, and
𝖩 is composition-closed because 𝖤 is 𝜅-summable.

(ii). By construction, every 𝖤-covering morphism in u� is also 𝖩-covering.
For the converse, suppose 𝑓 : 𝑋 → 𝑌 is a 𝖩-covering morphism in u�.
Recalling paragraph a.2.13, since 𝖩 is composition-closed, there is a 𝜅-
small sink Φ on 𝑋 such that the induced morphism ∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 →
𝑌 in u� is a 𝖤-covering morphism in u�. But that implies 𝑓 : 𝑋 → 𝑌 itself

is a 𝖤-covering morphism in u�, so we are done.
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(iii) and (iv). Apply lemma 1.5.16.

(v). Combine lemma 1.5.15 and (iii). ■

Remark. Let 𝖪 be the 𝜅-ary extensive coverage on u� and let 𝖩′(𝑋) be
defined as follows:

𝖩′(𝑋) = 𝖪(𝑋) ∪ {(𝑈, 𝑥) ∈ obu�∕𝑋 | 𝑥 ∈ 𝖤}

Then 𝖩′ is the smallest 𝜅-ary superextensive coverage on u� containing 𝖤.
In general, 𝖩′ is strictly smaller than 𝖩, but the above proposition shows

that they have the same covering sinks.

1.5.18 ¶ Let 𝖩 be a subcanonical 𝜅-ary superextensive coverage on u� and let 𝖪
be the 𝜅-ary extensive coverage on u�.

Lemma. Let ℎ : 𝐴 → 𝐵 be a complemented monomorphism in Sh(u�, 𝖩).
If 𝐵 is a representable 𝖩-sheaf, then 𝐴 is also a representable 𝖩-sheaf.

Proof. By hypothesis, there is a (complemented) monomorphism ℎ′ :
𝐴′ → 𝐵 in Sh(u�, 𝖩) such that 𝐵 is the disjoint union of {(𝐴, ℎ), (𝐴′, ℎ′)}
in Sh(u�, 𝖩). Thus, we have a unique morphism 𝑝 : 𝐵 → 𝐵 ⨿ 𝐵 such that

the following diagram in Sh(u�, 𝖩) commutes,

𝐴 𝐵 𝐴′

𝐵 𝐵 ⨿ 𝐵 𝐵

ℎ

ℎ

𝑝 ℎ′

ℎ′

where the bottom row is a coproduct diagram. By theorem 1.5.15, the

Yoneda embedding u� → Sh(u�, 𝖩) preserves 𝜅-ary coproducts, so 𝐵 ⨿ 𝐵
is a representable 𝖩-sheaf on u�. But coproduct injections are quadrable

in u� and the Yoneda embedding u� → Sh(u�, 𝖩) preserves pullbacks, so it

follows that both 𝐴 and 𝐴′ are indeed representable 𝖩-sheaves on u�. ■
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Proposition. The inclusion Sh(u�, 𝖩) ↪ Sh(u�, 𝖪) preserves 𝜅-ary co-

products.

Proof. Let (𝐴𝑖 | 𝑖 ∈ 𝐼) be a family of 𝖩-sheaves u� where 𝐼 is a 𝜅-small

set and let 𝐴 be their coproduct in Sh(u�, 𝖩). It suffices to show that the co-

product cocone is jointly 𝖪-locally surjective. Moreover, since coproduct

cocones are preserved by pullback, we may assume that 𝐴 is a represent-

able sheaf on u�. But then lemma 1.5.18 says that each 𝐴𝑖 is also repre-

sentable, so the coproduct cocone in question is indeed jointly 𝖪-locally
surjective. ■

Remark. The above result is optimal in the following sense: if 𝜆 is a

regular cardinal > 𝜅 such that u� is a non-trivial 𝜆-ary extensive category

and 𝖫 is the 𝜆-ary extensive coverage on u�, then the inclusion Sh(u�, 𝖫) ↪
Sh(u�, 𝖪) preserves 𝜅-ary coproducts but not 𝜆-ary coproducts.

1.5.19 ¶ In general, an exact category may not have coequalisers of all parallel

pairs. However:

Coequalisers

in pretoposes

Proposition. Let u� be a 𝜅-ary pretopos and let 𝖪 be the 𝜅-ary canonical
coverage on u� . Assuming 𝜅 > ℵ0:

(i) u� has coequalisers of all parallel pairs.

(ii) If u� is a 𝜅-ary pretopos and 𝐹 : u� → u� is a functor that preserves

limits of finite diagrams, 𝜅-ary coproducts, and exact quotients, then

𝐹 : u� → u� preserves colimits of 𝜅-small diagrams.

(iii) In particular, the Yoneda embedding u� → Sh(u� , 𝖪) preserves co-
limits of 𝜅-small diagrams.

Proof. (i) and (ii). See the proof of Lemma 1.4.19 in [Johnstone, 2002,

Part A].

(iii). Since 𝖪 is a 𝜅-ary superextensive coverage on u� , the Yoneda embed-

ding u� → Sh(u� , 𝖪) preserves 𝜅-ary coproducts, by theorem 1.5.15. The

Yoneda embedding also preserves exact quotients, by lemma a.3.10. □
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1.5.20 ¶ Let 𝜆 be a regular cardinal ≥ 𝜅. We define a category Fam𝜅
𝜆(u�) as

follows:

• The objects are as in Fam𝜆(u�).

• The morphisms 𝑋 → 𝑌 are the morphisms

∐
𝑖∈idx 𝑋

𝑋(𝑖) → ∐
𝑗∈idx 𝑌

𝑌 (𝑗)

in Sh(u�, 𝖪) where 𝖪 is the 𝜅-ary extensive coverage on u�.

• Composition and identities are inherited from Sh(u�, 𝖪).

We also define a functor 𝛾 : u� → Fam𝜅
𝜆(u�) as follows:

• For each object 𝑋 in u�, we have idx 𝛾(𝑋) = {∗} and 𝛾(𝑋)(∗) = 𝑋.

• For each morphism 𝑓 : 𝑋 → 𝑌 in u�, we have 𝛾(𝑓) = h𝑓 .

Proposition. Fam𝜅
𝜆(u�) is a 𝜆-ary extensive category. Furthermore, 𝛾 :

u� → Fam𝜅
𝜆(u�) is fully faithful and preserves 𝜅-ary (strict) coproducts.

Proof. It is clear that Fam𝜅
𝜆(u�) has 𝜆-ary coproducts. On the other hand,

coproducts in Psh(u�) are always strict, so proposition a.2.18 and the-

orem a.3.9 imply that coproducts in Sh(u�, 𝖪) are also strict. Moreover,

proposition 1.5.14 and lemma a.3.11 imply that any morphism 𝑋 → 𝑌 in

Fam𝜅
𝜆(u�) must factor through the inclusion 𝑌 ′ → 𝑌 for some 𝑌 ′ where

|idx 𝑌 ′| ≤ max {|idx𝑋|, 𝜅}, so coproduct injections (of 𝜅-ary coprod-

ucts) in Fam𝜅
𝜆(u�) are indeed quadrable. The remainder of the claim is a

consequence of theorem 1.5.15. ■

The relative

coproduct

completion

Theorem. Let u� be a 𝜆-ary extensive category and let 𝐹 : u� → u� be a

functor that preserves 𝜅-ary coproducts.

(i) There exist a functor ̄𝐹 : Fam𝜅
𝜆(u�) → u� that preserves 𝜆-ary co-

products and an isomorphism 𝜂 : 𝐹 ⇒ ̄𝐹 𝛾 of functors u� → u�.

(ii) Moreover, any such ( ̄𝐹 , 𝜂) is a left Kan extension of 𝐹 : u� → u�
along 𝛾 : u� → Fam𝜅

𝜆(u�).

Proof. Let 𝖫 be the 𝜆-ary extensive topology on u�. Note that the functor

𝐹 ∗ : Psh(u�) → Psh(u�) sends 𝖫-sheaves on u� to 𝖪-sheaves on u�: this is
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a consequence of lemma 1.5.15. Let 𝐹! : Sh(u�, 𝖪) → Sh(u�, 𝖫) be (the

functor part of) a left Kan extension of h𝐹 : u� → Sh(u�, 𝖫) along the

Yoneda embedding h• : u� → Sh(u�, 𝖪). The unit of this Kan extension

is automatically an isomorphism, because the Yoneda embedding is fully

faithful. Moreover, by the earlier observation, 𝐹! : Sh(u�, 𝖪) → Sh(u�, 𝖫)

is a left adjoint of the functor 𝐹 ∗ : Sh(u�, 𝖫) → Sh(u�, 𝖪), so it preserves

all coproducts. Since every object in Fam𝜅
𝜆(u�) is a 𝜆-ary coproduct of

objects in the image of 𝛾 : u� → Fam𝜅
𝜆(u�), this yields the desired left Kan

extension of 𝐹 : u� → u�. ■

1.5.21
Limits of finite

diagrams in the

relative coprod-

uct completion

Proposition. With notation as in paragraph 1.5.20:

(i) If u� has finitary products, then Fam𝜅
𝜆(u�) also has finitary products.

(ii) If u� has equalisers, then Fam𝜅
𝜆(u�) also has equalisers.

(iii) If u� has pullbacks, then Fam𝜅
𝜆(u�) also has pullbacks.

Proof. (i). This is a consequence of the fact that binary products distribute

over (possibly infinitary) coproducts in Sh(u�, 𝖪).

(ii). Consider an equaliser diagram in Sh(u�, 𝖪):

𝐴′ 𝐴 𝐵
ℎ0

ℎ1

Suppose both 𝐴 and 𝐵 are coproducts (in Sh(u�, 𝖪)) of 𝜆-small families of

representable 𝖪-sheaves on u�. We must show that 𝐴′ has the same prop-

erty. It suffices to show that 𝐴′ is representable when 𝐴 is representable:

the general case follows by taking coproducts. But if 𝐴 is representable,

then proposition 1.5.20 and lemma a.3.11 imply that there is a represent-

able 𝖪-subsheaf 𝐵′ ⊆ 𝐵 such that both ℎ0, ℎ1 : 𝐴 → 𝐵 factor through

the inclusion 𝐵′ ↪ 𝐵, so 𝐴′ is indeed representable.

(iii). A similar argument works. ■
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Chapter II

Charted objects

2.1 Sites

Synopsis. We consider full subcategories of pretoposes for which the

associatedYoneda representation is fully faithful andwe identify the essen-

tial image of such Yoneda representations.

Prerequisites. §§1.1, 1.3, 1.4, 1.5, a.1, a.2, a.3.

2.1.1 ※ Throughout this section, u� is a regular category.

2.1.2 ¶ Given a full subcategory u� ⊆ u� , we have the Yoneda representation

h• : u� → Psh(u�), which is not fully faithful in general. We will see that

the following condition is sufficient.

Definition. A unary site for u� is a full subcategory u� ⊆ u� with the

following property:

• For every object 𝐴 in u� , there is an effective epimorphism 𝑋 ↠ 𝐴 in

u� where 𝑋 is an object in u�.

Example. Of course, u� is a unary site for u� .

2.1.3 ¶ Let 𝜅 be a regular cardinal and assume u� is a 𝜅-ary pretopos.

Definition. A 𝜅-ary site for u� is a full subcategory u�0 ⊆ u� with the

following property:

• For every object 𝐴 in u� , there is an effective epimorphism 𝑋 ↠ 𝐴 in

u� where 𝑋 is a coproduct (in u�) of a 𝜅-small family of objects in u�0.

Example. Every unary site for u� is also a 𝜅-ary site for u� a fortiori.
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Recognition

principle for sites

for pretoposes

Lemma. Let u�0 be a full subcategory of u� and let u� be the full subcategory

of u� spanned by the objects that are coproducts (in u�) of 𝜅-small families
of objects in u�0. The following are equivalent:

(i) u�0 is a 𝜅-ary site for u� .

(ii) u� is a unary site for u� .

Proof. Straightforward. ⧫

2.1.4 ¶ Let 𝜅 be a regular cardinal.

The following is a generalisation of the notion of localic topos.

Definition. A 𝜅-ary pretopos u� is localic if the full subcategory of sub-

terminal objects in u� is a 𝜅-ary site for u� .

Remark. The full subcategory of subterminal objects in a 𝜅-ary pretopos
has finitary meets and 𝜅-ary joins, and moreover meets distribute over

𝜅-ary joins.

2.1.5
Properties

of effective

epimorphisms in

regular categories

Proposition.

(i) Every isomorphism in u� is an effective epimorphism in u� .

(ii) The class of effective epimorphisms in u� is a quadrable class of

morphisms in u� .

(iii) The class of effective epimorphisms in u� is closed under composi-

tion.

(iv) Given morphisms ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶 in u� , if 𝑘 ∘ ℎ : 𝐴 → 𝐶
is an effective epimorphism in u� , then 𝑘 : 𝐵 → 𝐶 is also an effective

epimorphism in u� .

(v) The class of effective epimorphisms in u� is a saturated subcanon-

ical unary coverage on u� .

Proof. (i). Immediate.

(ii). By lemma 1.3.8, the effective epimorphisms in u� are the same as

the extremal epimorphisms in u� , which constitute a quadrable class of

morphisms in u� because u� has exact images.
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(iii). The composite of a pair of extremal epimorphisms is an extremal

epimorphism (in a category with pullbacks of monomorphisms).

(iv). Straightforward.

(v). By (i)–(iv), the class of effective epimorphisms in u� is a saturated

unary coverage on u� . On the other hand, by proposition 1.4.1, the effect-

ive epimorphisms in u� are also the same as the strict epimorphisms in u� .

Thus, we may apply lemma a.2.11 to deduce that the class of effective

epimorphisms is a subcanonical (unary) coverage. ■

2.1.6 ※ For the remainder of this section, u� is a unary site for u� and 𝖤 is the

class of morphisms in u� that are effective epimorphisms in u� .

2.1.7
Properties of the

induced unary

coverage on

a unary site

Proposition. Let 𝖪 be the class of effective epimorphisms in u� .

(i) Every member of 𝖤 is a regular epimorphism in u�.

(ii) 𝖤 is a saturated unary coverage on u�.

(iii) (u�, 𝖤) satisfies the Shulman condition.

(iv) If 𝐹 : u� op → Set is a 𝖪-sheaf, then the restriction 𝐹 : u� op → Set

is an 𝖤-sheaf.

(v) In particular, 𝖤 is a subcanonical unary coverage on u�.

(vi) The restriction functor Psh(u�) → Psh(u�) sends 𝖪-locally surject-
ive morphisms to 𝖤-locally surjective morphisms.

(vii) The restriction functor Sh(u� , 𝖪) → Sh(u�, 𝖤) is (half of) an equi-

valence of categories.

Proof. (i). Let 𝑓 : 𝑋 ↠ 𝑌 be an effective epimorphism in u� . Since u� is a

unary site for u� , there is an effective epimorphism ⟨𝑑1, 𝑑0⟩ : 𝑅 ↠ 𝑋×𝑌 𝑋
in u� with 𝑅 in u�. It is straightforward to verify that 𝑓 : 𝑋 ↠ 𝑌 is a

coequaliser in u� of the parallel pair 𝑑0, 𝑑1 : 𝑅 → 𝑋, so 𝑓 : 𝑋 ↠ 𝑌 is

indeed a regular epimorphism in u�.

(ii). First, we must show that 𝖤 is a unary coverage on u�.
Let 𝑓 : 𝑋 ↠ 𝑌 be an effective epimorphism in u� , let 𝑇 be an object

in u�, and let 𝑦 : 𝑇 → 𝑌 be a morphism in u� . By proposition 2.1.5, the
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projection 𝑇 ×𝑌 𝑋 → 𝑇 is also an effective epimorphism in u� . Since u� is

a unary site for u� , there is an effective epimorphism ⟨𝑡, 𝑥⟩ : 𝑆 ↠ 𝑇 ×𝑌 𝑋
in u� with 𝑆 in u�. In particular, we have a commutative square in u� of the

form below,
𝑆 𝑋

𝑇 𝑌

𝑡

𝑥

𝑓

𝑦

where 𝑡 : 𝑆 ↠ 𝑇 is an effective epimorphism in u� , as required.

Thus, 𝖤 is indeed a unary coverage on u� . Since the class of effective

epimorphisms in u� is a saturated coverage on u� , 𝖤 is also saturated.

(iii). Let 𝑋 : u� → u� be a finite diagram. Then lim←−−u�
𝑋 exists in u� , so we

there is an effective epimorphism 𝑝 : 𝑈 ↠ lim←−−u�
𝑋 in u� where 𝑈 is an

object in u�. We will show that the evident cone Δ𝑈 ⇒ 𝑋 is an 𝖤-weak
limit of 𝑋 in u�.

Let 𝜑 : Δ𝑇 ⇒ 𝑋 be a cone in u�. By definition, it corresponds to a

morphism 𝑥 : 𝑇 → lim←−−u�
𝑋 in u� . As in (ii), we may find a commutative

square in u� of the form below,

𝑆 𝑈

𝑇 lim←−−u�
𝑋

𝑡

𝑢

𝑝

𝑥

where 𝑆 is an object in u� and 𝑡 : 𝑆 ↠ 𝑇 is an effective epimorphism in

u� . This proves the claim.

(iv). In view of proposition 1.4.1, the hypothesis implies that every object

𝐴 in u� admits a strict epimorphism 𝑋 ↠ 𝐴 in u� with 𝑋 in u�. The claim
follows, by lemma a.2.6.

(v). Immediate, by (iv).

(vi). Straightforward.

(vii). Let 𝑅 : Psh(u�) → Psh(u�) be the evident functor defined on objects
as follows:

𝑅(𝑃 ) = HomPsh(u�)(h•, 𝑃 )
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Recalling proposition a.1.4, it is not hard to verify that 𝑅 is (the functor

part of) a right adjoint of the restriction functor Psh(u�) → Psh(u�). Since
u� is a full subcategory of u� , the Yoneda lemma implies that, for every

presheaf 𝑃 on u�, the counit 𝑅(𝑃 ) → 𝑃 is an isomorphism. Moreover,

by adjointness, proposition a.3.7 and (vi) imply that 𝑅(𝑃 ) is a 𝖪-sheaf on
u� if 𝑃 is a 𝖤-sheaf on u�. In addition, for every object 𝐴 in u� , there is a

right-𝖪-exact fork in u� of the form below,

𝑅 𝑋 𝐴

where 𝑅 and 𝑋 are in u�, so by lemma 1.4.18, the unit 𝐹 → 𝑅(𝐹 ) is an
isomorphism. Thus, we indeed have an equivalence of categories. ■

2.1.8
Effective

epimorph-

isms in regular

categories as

locally surjective

morphisms

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in u� . The following are equival-

ent:

(i) hℎ : h𝐴 → h𝐵 is an 𝖤-locally surjective morphism in Psh(u�).

(ii) ℎ : 𝐴 → 𝐵 is an effective epimorphism in u� .

Proof. (i) ⇒ (ii). Since u� is a unary site for u� , there is an effective epi-

morphism 𝑏 : 𝑌 ↠ 𝐵 in u� with 𝑌 in u�. On the other hand, hℎ : h𝐴 → h𝐵

is 𝖤-locally surjective, so there is a commutative square in u� of the form

below,

𝑇 𝐴

𝑌 𝐵

𝑦

𝑎

ℎ

𝑏

where 𝑇 is an object in u� and 𝑦 : 𝑇 ↠ 𝑌 is an effective epimorphism in

u�. By proposition 2.1.5, 𝑏 ∘ 𝑦 : 𝑇 → 𝐵 is an effective epimorphism in u� ,

so ℎ : 𝐴 → 𝐵 is indeed an effective epimorphism in u� .

(ii) ⇒ (i). Let ℎ : 𝐴 → 𝐵 be an effective epimorphism in u� and let (𝑌 , 𝑏)

be an element of h𝐵. We wish to show that (𝑌 , 𝑏) is an element of the

𝖤-closed support of hℎ : h𝐴 → h𝐵.
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Since u� is a unary site for u� , there is a commutative square in u� of the

form below,
𝑋 𝐴

𝑌 𝐵

𝑓

𝑎

ℎ

𝑏

where 𝑋 is an object in u� and ⟨𝑎, 𝑓⟩ : 𝑋 ↠ 𝐴 ×𝐵 𝑌 is an effective

epimorphism in u� . In particular, 𝑓 : 𝑋 ↠ 𝑌 is an effective epimorphism

in u� . Thus, (𝑌 , 𝑏) is indeed an element of the 𝖤-closed support of hℎ :
h𝐴 → h𝐵. ■

The Yoneda

representation

with respect

to a unary site

Theorem. The Yoneda representation h• : u� → Sh(u�, 𝖤) is fully faithful
and preserves effective epimorphisms.

Proof. By lemmas 2.1.8 and a.3.10, h• : u� → Sh(u�, 𝖤) preserves effect-
ive epimorphisms. Thus, for every object 𝐴 in u� , there is a coequaliser

diagram in u� of the form below,

𝑅 𝑋 𝐴

where 𝑅 and 𝑋 are objects in u�, such that h• : u� → Sh(u�, 𝖤) preserves
this coequaliser diagram. In view of the Yoneda lemma, it follows that

the Yoneda representation h• : u� → Sh(u�, 𝖤) is fully faithful. ■

2.1.9 ¶ The following gives a complete characterisation of the essential image

of the Yoneda representation u� → Sh(u�, 𝖤) in the case where u� is an

exact category.

Recognition

principle for

1-presentable

sheaves

Lemma. Let 𝐹 be a 𝖤-sheaf on u�. Assuming u� is an exact category, the

following are equivalent:

(i) There is an object 𝐴 in u� such that h𝐴 ≅ 𝐹 in Sh(u�, 𝖤).

(ii) 𝐹 is a 𝖤-locally 1-presentable (as a presheaf on u�).

Proof. (i) ⇒ (ii). It suffices to verify that h𝐴 itself is 𝖤-locally 1-present-

able. It is clear that any 𝖤-sheaf on u� of the form h𝐴 is 𝖤-locally 1-gener-

able. But u� has kernel pairs, so it follows that h𝐴 is 𝖤-locally 1-present-

able as well.
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(ii) ⇒ (i). In view of theorem 2.1.8 and lemma a.3.10, the hypothesis

implies there exist an object 𝑋 in u� and an effective epimorphism 𝑝 :
h𝑋 ↠ 𝐹 in Sh(u�, 𝖤) such that Kr(𝑝) is 𝖤-locally 1-generable 𝖤-subsheaf
of h𝑋 × h𝑋 . Thus, by lemma 1.4.13, Kr(𝑝) is 𝖤-locally 1-presentable, so

we have an equivalence relation (𝑅, 𝑑0, 𝑑1) on 𝑋 in u� such that the 𝖤-
closed support of ⟨𝑑1 ∘ −, 𝑑0 ∘ −⟩ : h𝑅 → h𝑋 × h𝑋 is Kr(𝑝). But u� has

exact quotients of equivalence relations and the Yoneda representation

u� → Sh(u�, 𝖤) preserves them, so it follows that 𝐹 is representable by an

object in u� . ■

2.1.10 ¶ As promised, we have the following converse to lemma 1.4.24.

Admissible func-

tors by restriction

Lemma. Let u� be an exact category, let u� be a unary site for u� , let 𝖪 be

the class of effective epimorphisms in u� , and let 𝖩 be the class of morph-
isms in u� that are effective epimorphisms in u� . Consider a commutative

square of the form below:

u� u�

u� u�

𝐹 ̄𝐹

If u� is an exact category and ̄𝐹 : u� → u� sends right-𝖪-exact forks in u�
to coequaliser diagrams in u� , then 𝐹 : (u�, 𝖤) → (u�, 𝖩) is an admissible

functor.

Proof. By lemma a.3.10, the inclusion u� ↪ u� sends right-𝖤-exact forks
in u� to right-𝖪-exact forks in u� , so by lemma 1.4.18, 𝐹 : (u�, 𝖤) → (u�, 𝖩)

is a pre-admissible functor. Moreover, by the Yoneda lemma, for every

object 𝐴 in u� and every object 𝐵 in u� , we have the following natural

bijection:

u� ( ̄𝐹 𝐴, 𝐵) ≅ HomSh(u� ,𝖪)(h𝐴, ̄𝐹 ∗h𝐵)

On the other hand, the restriction functor Sh(u� , 𝖪) → Sh(u�, 𝖤) is fully
faithful (and essentially surjective on objects) by proposition 2.1.7, so

𝐹 : (u�, 𝖤) → (u�, 𝖩) is indeed an admissible functor. ■
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2.1.11 ※ For the remainder of this section:

• 𝜅 is a regular cardinal.

• u� is a 𝜅-ary pretopos.

• 𝖪 is the 𝜅-ary canonical coverage on u� .

• u�0 is a 𝜅-ary site for u� .

• For every object 𝑋 in u�0, 𝖩0(𝑋) is the set of 𝜅-small sinks Φ on 𝑋 (as

an object in u�0) such that the induced morphism ∐(𝑇 ,𝑥)∈Φ 𝑇 → 𝑋 is

an effective epimorphism in u� .

2.1.12 ¶ Let 𝐴 be an object in u� , let Φ be a set of objects in u�∕𝐴, and let u� be

the sieve of u�∕𝐴 generated by Φ.

2.1.12(a)
Recognition

principle for

universally strict-

epimorphic sinks

in pretoposes

Lemma. Suppose Φ is a 𝜅-small sink on 𝐴. The following are equivalent:

(i) Φ is a universally strict-epimorphic sink on 𝐴.

(ii) Φ is a strict-epimorphic sink on 𝐴.

(iii) The induced morphism ∐(𝑋,𝑎)∈Φ 𝑋 → 𝐴 is an effective epimorph-

ism in u� .

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (iii). Let 𝑈 = ∐(𝑋,𝑎)∈Φ 𝑋 and let 𝑝 : 𝑈 → 𝐴 be the induced

morphism in u� . By proposition 1.3.3, it suffices to show that 𝑝 : 𝑈 → 𝐴
is an extremal epimorphism in u� . Let 𝑚 : 𝐴′ → 𝐴 be a monomorphism

in u� and suppose u� ⊆ ↓⟨𝑚⟩. Then we have a commutative diagram of

the form below,

u� ↓⟨𝑚⟩

u�∕𝐴 u�∕𝐴id

so 𝑚 : 𝐴′ → 𝐴 is an isomorphism in u� . Thus, 𝑝 : 𝑈 → 𝐴 is indeed an

extremal epimorphism in u� .

(iii) ⇒ (i). With notation as above, if 𝑝 : 𝑈 → 𝐴 is an effective epimorph-

ism in u� , then by propositions 1.4.1 and 2.1.5, {(𝑈, 𝑝)} is a universally
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strict-epimorphic sink on 𝐴. On the other hand, by lemma 1.5.15, 𝜅-
ary coproduct cocones in 𝜅-ary extensive categories are universally strict-
epimorphic sinks, so lemma a.2.3(c) implies that Φ is also a universally

strict-epimorphic sink. ■

2.1.12(b) Lemma. Suppose that, for every (𝑋, 𝑎) ∈ Φ, 𝑋 is an object in u�. Let

u�0 be the full subcategory of u� spanned by the objects (𝑋, 𝑎) such that

𝑋 is an object in u�0. If 𝐹 is a separated presheaf on u� with respect to

the 𝜅-ary canonical coverage, then, for every commutative square of the
form below,

u�0 El(𝐹 )

u� u�

𝑠

where u� → u� and El(𝐹 ) → u� are the respective projections, there is a

unique functor u� → El(𝐹 ) making both evident triangles commute.

Proof. It suffices to verify the following:

• For every commutative square in u� of the form below,

𝑈 𝑋1

𝑋0 𝐴

𝑥0
𝑎

𝑥1

𝑎1

𝑎0

where (𝑈, 𝑎) is in u� and both (𝑋0, 𝑎0) and (𝑋1, 𝑎1) are in u�0, we

have 𝑠(𝑋0, 𝑎0) ⋅ 𝑥0 = 𝑠(𝑋1, 𝑎1) ⋅ 𝑥1.

But this is a consequence of the fact every object in u� admits a 𝜅-small

universally strict-epimorphic sink where the domains are objects in u�0

and the hypothesis that 𝐹 is separated. ■

2.1.13
Properties of

the induced

coverage on a

site for a pretopos

Proposition.

(i) 𝖩0 is a composition-closed coverage on u�0.

(ii) The restriction functor Psh(u�) → Psh(u�0) sends 𝖪-sheaves on u�
to 𝖩0-sheaves on u�0.

(iii) In particular, 𝖩0 is a subcanonical coverage on u�0.
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(iv) The restriction functor Psh(u�) → Psh(u�0) sends 𝖪-locally sur-

jective morphisms to 𝖩0-locally surjective morphisms.

(v) The restriction functor Sh(u� , 𝖪) → Sh(u�0, 𝖩0) is (half of) an equi-

valence of categories.

Proof. (i). By lemma 2.1.3 and proposition 2.1.7, 𝖩0 is a coverage on u�0,

and the fact that the class of effective epimorphisms in u� is closed under

𝜅-ary coproduct implies that 𝖩0 is composition-closed.

(ii). Let 𝐹 : u� op → Set be a sheaf with respect to the 𝜅-ary canon-

ical coverage on u� and let 𝐹 ′ : (u�0)
op → Set be the restriction. By

lemma a.2.6, with notation as in loc. cit., to show that 𝐹 ′ is a 𝖩0-sheaf, it

is enough verify the following:

• For every object 𝑋 in u�0 and every Φ ∈ 𝖩0(𝑋), we have Γ(Φ, 𝐹 ) =
Γ(Φ, 𝐹 ′) (as subsets of 𝐹 (𝑋)).

But this is a straightforward consequence of lemma 2.1.12(b).

(iii). Immediate, by (ii).

(iv). Straightforward.

(v). Let 𝑅 : Psh(u�0) → Psh(u�) be the evident functor defined on objects
as follows:

𝑅(𝑃 ) = HomPsh(u�0)(h•, 𝑃 )

Recalling proposition a.1.4, it is not hard to verify that 𝑅 is (the func-

tor part of) a right adjoint of the restriction functor Psh(u�) → Psh(u�0).
Since u�0 is a full subcategory of u� , the Yoneda lemma implies that, for

every presheaf 𝑃 on u�0, the counit 𝑅(𝑃 ) → 𝑃 is an isomorphism. More-

over, by adjointness, (iv) implies that 𝑅(𝑃 ) is a 𝖪-separated presheaf on

u� if 𝑃 is a 𝖩0-separated presheaf on u�; so, by lemma 2.1.12(b), 𝑅(𝑃 ) is
a 𝖪-sheaf on u� if 𝑃 is a 𝖩0-sheaf on u�0. In addition, by the same lemma,

for every 𝖪-sheaf 𝐹 on u� , the unit 𝐹 → 𝑅(𝐹 ) is an isomorphism. Thus,

we indeed have an equivalence of categories. ■
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2.1.14
Effective

epimorphisms

in pretoposes as

locally surjective

morphisms

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in u� . The following are equival-

ent:

(i) hℎ : h𝐴 → h𝐵 is a 𝖩0-locally surjective morphism in Psh(u�0).

(ii) ℎ : 𝐴 → 𝐵 is an effective epimorphism in u� .

Proof. Omitted. (Compare lemma 2.1.8.) ◊

The Yoneda

representation

with respect to a

site for a pretopos

Theorem. The Yoneda representation h• : u� → Sh(u�0, 𝖩0) is fully faith-

ful and preserves 𝜅-ary coproducts and effective epimorphisms.

Proof. Consider the Yoneda embedding h• : u� → Sh(u� , 𝖪). By the-

orem 1.5.15, h• : u� → Sh(u� , 𝖪) preserves 𝜅-ary coproducts. On the

other hand, by theorem 2.1.8, h• : u� → Sh(u� , 𝖪) preserves effective epi-
morphisms. Since the Yoneda embedding is known to be fully faithful,

the claim follows, by proposition 2.1.13. ■

2.1.15 ¶ Thus, we may identify u� with a certain full subcategory of Sh(u�0, 𝖩0).
We will give a characterisation of the 𝖩0-sheaves on u�0 that are represent-

able by an object in u� , but to do so, we require a preliminary result.

Definition. A 𝖩0-sheaf on u�0 is 𝜅-generable if it admits a 𝜅-small 𝖩0-

local generating set of elements.

Recognition prin-

ciple for gener-

able subsheaves

Lemma. Let 𝐵 be an object in u� and let 𝐹 be a 𝖩0-subsheaf of h𝐵. The

following are equivalent:

(i) There is a monomorphism 𝑚 : 𝐴 → 𝐵 in u� such that 𝐹 is the

𝖩0-closed support of h𝑚 : h𝐴 → h𝐵.

(ii) 𝐹 is 𝜅-generable.

Proof. (i) ⇒ (ii). It suffices to show that h𝐴 is 𝜅-generable. Since u�0 is a

𝜅-ary site for u� , there is a 𝜅-small set Φ of objects in u�∕𝐴 such that the

induced morphism ∐(𝑋,𝑎)∈Φ 𝑋 → 𝐴 is an effective epimorphism in u�
and, for every (𝑋, 𝑎) ∈ Φ, 𝑋 is an object in u�0. Thus, by lemma 2.1.14,

h𝐴 is 𝜅-generable.

(ii) ⇒ (i). In view of theorem 2.1.14 and lemma a.3.10, the hypothesis

implies there exist an object 𝑋 in u� and an effective epimorphism 𝑝 :
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h𝑋 ↠ 𝐹 in Sh(u�0, 𝖩0). Let 𝑏 : 𝑋 → 𝐵 be the morphism in u� correspond-

ing to the composite h𝑋 ↠ 𝐹 ↪ h𝐵 and consider im(𝑏) : Im(𝑏) → 𝐵
in u� . The Yoneda representation u� → Sh(u�0, 𝖩0) preserves effective

epimorphisms and monomorphisms, so the 𝖩0-closed support of im(𝑏) :
Im(𝑏) → 𝐵 is 𝐹 , as desired. ■

Remark. In particular, h𝐵 itself is a 𝜅-generable 𝖩0-sheaf on u�0.

2.1.16 Definition. A 𝖩0-sheaf 𝐹 on u�0 is 𝜅-presentable if there is a set Φ with

the following properties:

• Φ is a 𝜅-small 𝖩0-local generating set of elements of 𝐹 .

• For every ((𝑋0, 𝑎0), (𝑋1, 𝑎1)) ∈ Φ × Φ, the sheaf Pb(𝑎0 ⋅ −, 𝑎1 ⋅ −)
is 𝜅-generable.

Remark. Clearly, every 𝜅-presentable 𝖩0-sheaf on u�0 is also 𝜅-generable.

Recognition prin-

ciple for present-

able sheaves

Lemma. Let 𝐹 be a 𝖩0-sheaf on u�0. The following are equivalent:

(i) There is an object 𝐴 in u� such that h𝐴 ≅ 𝐹 in Sh(u�0, 𝖩0).

(ii) 𝐹 is a 𝜅-presentable 𝖩0 sheaf on u�0.

Proof. (i) ⇒ (ii). It suffices to verify that h𝐴 itself is 𝜅-presentable. By
lemma 2.1.15, h𝐴 is 𝜅-generable. Moreover, given any two elements of

h𝐴, say (𝑋0, 𝑎0) and (𝑋1, 𝑎1), the sheaf Pb(𝑎0 ⋅ −, 𝑎1 ⋅ −) is represent-

able by an object in u� , so it is also 𝜅-generable. Thus, h𝐴 is indeed 𝜅-
presentable.

(ii) ⇒ (i). In view of theorem 2.1.14 and lemma a.3.10, the hypothesis

implies there exist an object 𝑋 in u� and an effective epimorphism 𝑝 :
h𝑋 ↠ 𝐹 in Sh(u�0, 𝖩0). It is straightforward to check that Kr(𝑝) is a 𝜅-
generable 𝖩0-subsheaf of h𝑋 × h𝑋 , so we have an equivalence relation

(𝑅, 𝑑0, 𝑑1) on 𝑋 in u� such that the 𝖩0-closed support of ⟨𝑑1 ∘ −, 𝑑0 ∘ −⟩ :
h𝑅 → h𝑋 × h𝑋 is Kr(𝑝). But u� has exact quotients of equivalence rela-

tions and the Yoneda representation u� → Sh(u�0, 𝖩0) preserves them, so

it follows that 𝐹 is representable by an object in u� . ■
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2.2 Ecumenae

Synopsis. We define various notions of categories equipped with struc-

ture making it possible to interpret basic notions of topology such as open

embeddings and local homeomorphisms.

Prerequisites. §§1.1, 1.2, 1.3, 1.4, 1.5, a.2.

2.2.1 Definition. An ecumene[1] is a tuple (u�, u�, 𝖩) where:

• u� is a category.

• u� is a class of fibrations in u�.

• 𝖩 is a coverage on u�.

• Every morphism in u� of u�-type (u�, 𝖩)-semilocally on the domain is a

member of u�.

We will often abuse notation by referring to the category u� itself as an

ecumene, omitting mention of u� and 𝖩.

Example. Let u� be a category with pullbacks, let u� be the class of quad-

rable morphisms in u�, and let 𝖩 be any coverage on u�. Then (u�, u�, 𝖩) is an
ecumene.

2.2.2 ¶ Let u� be a category and let ℬ be a set of morphisms in u�.

Definition. A coverage 𝖩 on u� is ℬ-adapted if it has the following prop-

erty:

• For every object 𝑋 in u� and every 𝖩-covering sink Φ on 𝑋, there is

ℬ-sink Φ′ such that Φ′ ∈ 𝖩(𝑋) and ↓(Φ′) ⊆ ↓(Φ).

Example. If ℬ = moru�, then every coverage on u� is ℬ-adapted.

Remark. Let 𝖩 be a coverage on u� and let 𝖩ℬ(𝑋) be the set of ℬ-sinks on

𝑋 that are members of 𝖩(𝑋). If 𝖩 is ℬ-adapted, then 𝖩ℬ is a coverage, and

moreover the 𝖩-covering sinks coincide with the 𝖩ℬ-covering sinks.

[1] — from Greek «οἰκουμένη», the inhabited world.

89



Charted objects

Properties

of adapted

coverages

Proposition. If 𝖩 is a ℬ-adapted coverage on u�, then ℬ satisfies the 𝖩-
local collection axiom.

Proof. Immediate. ■

2.2.3 Definition. The descent axiom for an ecumene (u�, u�, 𝖩) is the following:

• Every morphism in u� of u�-type 𝖩-semilocally on the base is a member

of u�.

The ecumene

generated by a

class of fibrations

Proposition. Let u� be a category, let ℬ be a class of fibrations in u�, let
𝖩 be a coverage on u�, and let u� be the class of morphisms in u� that are of

ℬ-type (ℬ, 𝖩)-semilocally on the domain. Assuming every member of u� is

a quadrable morphism in u�:

(i) (u�, u�, 𝖩) is an ecumene.

In addition, assuming 𝖩 is a ℬ-adapted coverage on u�:

(ii) (u�, u�, 𝖩) satisfies the descent axiom.

(iii) 𝖩 is a u�-adapted coverage on u�.

Proof. (i). By proposition 1.2.5 and lemma 1.2.6, u� is a class of fibrations

in u� and ℬ ⊆ u�. It remains to be shown that every morphism in u� of u�-
type (u�, 𝖩)-semilocally on the domain is a member of u�.

Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let Φ be a 𝖩-covering sink on

𝑋 such that, for every (𝑈, 𝑥) ∈ Φ, both 𝑥 : 𝑈 → 𝑋 and 𝑓 ∘𝑥 : 𝑈 → 𝑌 are

members of u�. Since 𝑥 : 𝑈 → 𝑋 is a member of u�, there is a 𝖩-covering
sink Φ′

(𝑈,𝑥) on 𝑈 such that, for every (𝑇 , 𝑢) ∈ Φ′
(𝑈,𝑥), both 𝑢 : 𝑇 → 𝑈

and 𝑥 ∘ 𝑢 : 𝑇 → 𝑋 are members of ℬ. Thus, by proposition a.2.14,

Φ′ = ⋃
(𝑈,𝑥)∈Φ

{(𝑇 , 𝑥 ∘ 𝑢) | (𝑇 , 𝑢) ∈ Φ′
(𝑈,𝑥)}

is a 𝖩-covering sink on 𝑋 such that, for every (𝑇 , 𝑥′) ∈ Φ, both 𝑥′ : 𝑇 →
𝑋 and 𝑓 ∘𝑥′ : 𝑇 → 𝑋 are members of ℬ. Hence, 𝑓 : 𝑋 → 𝑌 is of ℬ-type

(ℬ, 𝖩)-semilocally on the domain. The claim follows.
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(ii). Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let Ψ be a 𝖩-covering sink

on 𝑌 . Suppose, for each (𝑉 , 𝑦) ∈ Ψ, there is a pullback square in u� of the

form below,

𝑓 ∗𝑉 𝑋

𝑉 𝑌

𝑦∗𝑓

𝑓 ∗𝑦

𝑓

𝑦

where 𝑦∗𝑓 : 𝑓 ∗𝑉 → 𝑉 is a member of u�. Since u� is a quadrable class

of morphisms and 𝖩 is a ℬ-adapted coverage on u�, we may assume that

each 𝑦 : 𝑉 → 𝑌 is a member of ℬ. Then 𝑦 ∘ 𝑦∗𝑓 : 𝑓 ∗𝑉 → 𝑌 is

a member of u� and 𝑓 ∗𝑦 : 𝑓 ∗𝑉 → 𝑋 is a member of ℬ. Moreover,

{(𝑓 ∗𝑉 , 𝑓 ∗𝑦) | (𝑉 , 𝑦) ∈ Ψ} is a 𝖩-covering sink on 𝑋, so 𝑓 : 𝑋 → 𝑌 is

of u�-type (ℬ, 𝖩)-locally on the domain. Hence, by (i), 𝑓 : 𝑋 → 𝑌 is a

member of u�.

(iii). Immediate. ■

Remark. In particular, if (u�, u�, 𝖩) is an ecumene and 𝖩 is a u�-adapted
coverage on u�, then the descent axiom is satisfied.

2.2.4 Definition. A regulated ecumene is an ecumene (u�, u�, 𝖩) with the fol-

lowing additional data:

• For each morphism 𝑓 : 𝑋 → 𝑌 in u� that is a member of u�, a mono-

morphism im(𝑓 ) : Im(𝑓 ) ↣ 𝑌 in u� such that 𝑓 = im(𝑓 ) ∘ 𝜂𝑓 for some

𝖩-covering morphism 𝜂𝑓 : 𝑋 ↠ Im(𝑓 ) in u� and, for every commutat-

ive diagram in u� of the form below,

𝑋′ 𝑋

𝐼′ Im(𝑓 )

𝑌 ′ 𝑌

𝑒′ 𝜂𝑓

𝑖′ im(𝑓 )

if both squares are pullback squares in u�, then 𝑒′ : 𝑋′ ↠ 𝐼′ is an

effective epimorphism in u� and 𝑖′ : 𝐼′ ↣ 𝑌 ′ is a member of u�.
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Remark. In the above, 𝑒′ : 𝑋′ ↠ 𝐼′ is automatically a member of u�, by
lemma 1.1.3.

Proposition. Let (u�, u�, 𝖩) be a regulated ecumene.

(i) Every effective epimorphism in u� that is a member of u� is a 𝖩-
covering morphism in u�.

(ii) (u�, u�) is a regulated category, where u� is the subcategory of u�-
perfect morphisms in u�.

Proof. (i). Let 𝑓 : 𝑋 → 𝑌 be an effective epimorphism in u� that is a

member of u�. Then im(𝑓 ) : Im(𝑓 ) → 𝑌 must be an isomorphism in

u�; but 𝑓 : 𝑋 → 𝑌 factors as a 𝖩-covering morphism in u� followed by

im(𝑓 ) : Im(𝑓 ) → 𝑌 , so 𝑓 : 𝑋 → 𝑌 itself is also a 𝖩-covering morphism

in u�.

(ii). By proposition 1.1.11, u� is a class of separated fibrations in u�. Every
effective epimorphism in u� is a u�-calypsis a fortiori, so every member of

u� is quadrably u�-eucalyptic. Thus, every member of u� is u�-agathic, as

required. ■

2.2.5 ¶ Let 𝜅 be a regular cardinal.

Definition. A 𝜅-ary extensive ecumene is an ecumene (u�, u�, 𝖩) where:

• u� is a 𝜅-ary extensive category.

• 𝖩 is a 𝜅-ary superextensive coverage on u�.

• Every complemented monomorphism in u� is a member of u�.

Recognition

principle for

extensive

ecumenae that

satisfy the

descent axiom

Lemma. Let (u�, u�, 𝖩) be an ecumene that satisfies the descent axiom. The

following are equivalent:

(i) (u�, u�, 𝖩) is a 𝜅-ary extensive ecumene.

(ii) u� is a 𝜅-ary extensive category and 𝖩 is a 𝜅-ary superextensive cov-
erage on u�.

Proof. (i) ⇒ (ii). Immediate.
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(ii) ⇒ (i). Let 0 be the initial object in u�. Then, for every object 𝑋 in u�,
the unique morphism 0 → 𝑋 is vacuously of u�-type (u�, 𝖩)-locally on the

domain, so it is a member of u�. Similarly, given morphisms 𝑓0 : 𝑋0 → 𝑌0

and 𝑓1 : 𝑋1 → 𝑌1 in u� that are members of u�, 𝑓0⨿𝑓1 : 𝑋0⨿𝑋1 → 𝑌0⨿𝑌1

is of u�-type 𝖩-locally on the base, so it is also a member of u�. Since every
isomorphism in u� is a member of u�, it follows that every complemented

monomorphism in u� is a member of u�. ■

Properties

of extensive

ecumenae

Proposition. Let (u�, u�, 𝖩) be a 𝜅-ary extensive ecumene.

(i) Given a family (𝑓𝑖 | 𝑖 ∈ 𝐼) where 𝐼 is a 𝜅-small set and each 𝑓𝑖 is

a morphism 𝑋𝑖 → 𝑌 in u�, if each 𝑓𝑖 : 𝑋𝑖 → 𝑌 is a member of u�, then
the induced morphism 𝑓 : ∐𝑖∈𝐼 𝑋𝑖 → 𝑌 is also a member of u�.

(ii) u� is closed under 𝜅-ary coproduct in u�.

(iii) Assuming 𝖩 is u�-adapted, a morphism 𝑔 : 𝑌 → 𝑍 in u� is 𝖩-covering
if and only if there is a morphism 𝑓 : 𝑋 → 𝑌 in u� such that 𝑔 ∘ 𝑓 :
𝑋 → 𝑍 is 𝖩-covering morphism in u� that is a member of u�.

Proof. (i). By construction, 𝑓 : ∐𝑖∈𝐼 𝑋𝑖 → 𝑌 is of u�-type (u�, 𝖩)-semi-

locally on the domain, so it is a member of u�.

(ii). Since coproduct injections are inu� andu� is closed under composition,

the claim is a special case of (i).

(iii). Apply lemma 1.5.16 and (i). ■

2.2.6 ※ For the remainder of this section, (u�, u�, 𝖩) is an ecumene.

2.2.7 ¶ It is convenient to introduce some terminology for properties ofmorph-

isms related to u�.

2.2.7(a) Definition. A morphism in u� is genial if it is a member of u�.

2.2.7(b) Definition. A morphism in u� is étale if it is u�-perfect.

2.2.7(c) Definition. A morphism in u� is eunoic[2] if it is 𝖩-semilocally of u�-type.

[2] — from Greek «εὐνοϊκός», favourable.
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Remark. By lemma 1.2.15, eunoicmorphisms are automatically 𝖩-locally
of u�-type.

2.2.8 Definition. An equivalence relation (𝑅, 𝑑0, 𝑑1) on an object 𝑋 in u� is

étale if it has the following property:

• The projections 𝑑0, 𝑑1 : 𝑅 → 𝑋 are étale morphisms.

2.2.8(a)
Recognition

principle for

kernel pairs of

étale morphisms

Lemma. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of a morphism 𝑓 : 𝑋 → 𝑌 in u�.
The following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a genial morphism in u� and (𝑅, 𝑑0, 𝑑1) is an étale

equivalence relation on 𝑋 in u�.

(ii) 𝑓 : 𝑋 → 𝑌 is an étale morphism in u�.

Proof. (i) ⇒ (ii). By lemma 1.1.10, the relative diagonal Δ𝑓 : 𝑋 → 𝑅
is étale if either 𝑑0 : 𝑅 → 𝑋 or 𝑑1 : 𝑅 → 𝑋 is étale, in which case

𝑓 : 𝑋 → 𝑌 itself is étale.

(ii)⇒ (i). The class of étale morphisms in u� is a quadrable class of morph-

isms in u�, by proposition 1.1.11, so if 𝑓 : 𝑋 → 𝑌 is étale then both

𝑑0, 𝑑1 : 𝑅 → 𝑋 are also étale. ■

2.2.8(b)
Recognition prin-

ciple for kernel

pairs of covering

étale morphisms

Lemma. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of a 𝖩-covering morphism 𝑓 :
𝑋 ↠ 𝑌 in u�. Assuming (u�, u�, 𝖩) satisfies the descent axiom, the following
are equivalent:

(i) (𝑅, 𝑑0, 𝑑1) is an étale equivalence relation on 𝑋 in u�.

(ii) 𝑓 : 𝑋 ↠ 𝑌 is an étale morphism in u�.

Proof. By definition, the following is a pullback square in u�:

𝑅 𝑋

𝑋 𝑌

𝑑1

𝑑0

𝑓

𝑓

Since 𝑓 : 𝑋 ↠ 𝑌 is a 𝖩-covering morphism in u�, the descent axiom

implies that 𝑓 : 𝑋 ↠ 𝑌 is a member of u� if and only if either 𝑑0 : 𝑅 → 𝑋
or 𝑑1 : 𝑅 → 𝑋 (or both) is a member of u�. Thus, the claims reduce to

lemma 2.2.8(a). ■
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2.2.9 ¶ The following generalises Proposition 1.6 in [JM].

Definition. The ecumene (u�, u�, 𝖩) is étale if every member of u� is an

étale morphism in u�.

The induced

étale ecumene

Proposition. Let u� be the class of étale morphisms in u�.

(i) (u�, u�, 𝖩) is an étale ecumene.

(ii) If (u�, u�, 𝖩) satisfies the descent axiom, then (u�, u�, 𝖩) also satisfies

the descent axiom.

(iii) (u�, u�, 𝖩) is 𝜅-ary extensive if and only if (u�, u�, 𝖩) is 𝜅-ary extensive.

Proof. (i). By proposition 1.1.11, u� is a class of separated fibrations in u�.
It remains to be shown that every morphism of u�-type (u�, 𝖩)-semilocally

on the domain is a member of u�.

Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let Φ be a 𝖩-covering u�-sink

on 𝑋 such that, for every (𝑈, 𝑥) ∈ Φ, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a member of

u�. Then 𝑓 : 𝑋 → 𝑌 is of u�-type (u�, 𝖩)-semilocally on the domain, so

by lemma 1.2.6, 𝑓 : 𝑋 → 𝑌 is a member of u�. Since 𝑥 : 𝑈 → 𝑋 is

a member of u�, the induced morphism 𝑈 ×𝑌 𝑈 → 𝑋 ×𝑌 𝑋 is also a

member of u�. On the other hand, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a member of u�, so

the relative diagonal Δ𝑓∘𝑥 : 𝑈 → 𝑈 ×𝑌 𝑈 is a member of u�. Thus, the
relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is of u�-type (u�, 𝖩)-semilocally on

the domain, therefore it is a member of u�. Hence, 𝑓 : 𝑋 → 𝑌 is indeed a

member of u�.

(ii). Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let Ψ be a 𝖩-covering sink

on 𝑌 such that, for every (𝑉 , 𝑦) ∈ Φ, we have a pullback square in u� of

the form below,

𝑈 𝑋

𝑉 𝑌

𝑣

𝑥

𝑓

𝑦

where 𝑣 : 𝑈 → 𝑉 is a member of u�. The hypothesis implies 𝑓 : 𝑋 → 𝑌
is a member of u�, and it remains to be shown that 𝑓 : 𝑋 → 𝑌 is u�-
separated.
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By the pullback pasting lemma, every face of the following diagram is

a pullback square in u�:

𝑈 ×𝑉 𝑈 𝑈

𝑈 𝑉

𝑋 ×𝑌 𝑋 𝑋

𝑋 𝑌

𝑥×𝑦𝑥

Hence, we have a pullback square in u� of the form below:

𝑈 𝑋

𝑈 ×𝑉 𝑈 𝑋 ×𝑌 𝑋

Δ𝑣

𝑥

Δ𝑓

Moreover, by proposition a.2.14,

{(𝑈 ×𝑉 𝑈, 𝑥 ×𝑦 𝑥) | (𝑉 , 𝑦) ∈ Ψ}

is a 𝖩-covering sink on𝑋×𝑌 𝑋, so the relative diagonalΔ𝑓 : 𝑋 → 𝑋×𝑌 𝑋
is of u�-type 𝖩-semilocally on the base. Thus, Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is a

member of u�, as required.

(iii). Immediate, because genial monomorphisms are the same as étale

monomorphisms. ■

2.2.10 ¶ Étale morphisms and eunoic morphisms are related as follows.

Recognition

principle for

étale morphisms

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a quadrable morphism in u� such that the

relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is also a quadrable morphism

in u�. Assuming (u�, u�, 𝖩) satisfies the descent axiom, the following are

equivalent:

(i) The morphism 𝑓 : 𝑋 → 𝑌 is étale.

(ii) Both 𝑓 : 𝑋 → 𝑌 and the relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 are

eunoic.

Proof. This is a special case of proposition 1.2.20. ■
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2.2.11 ¶ It is convenient to introduce the following terminology.

2.2.11(a) Definition. An open embedding in u� is a monomorphism in u� that is a

member of u�.

2.2.11(b) Definition. The descent axiom for open embeddings in (u�, u�, 𝖩) is the
following:

• Every monomorphism in u� of u�-type 𝖩-semilocally on the base is an

open embedding in u�.

Recognition

principles for

open embeddings

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a quadrable morphism in u�. Assuming

(u�, u�, 𝖩) satisfies the descent axiom for open embeddings, the following

are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is an open embedding in u�.

(ii) 𝑓 : 𝑋 → 𝑌 is an étale monomorphism in u�.

(iii) 𝑓 : 𝑋 → 𝑌 is a eunoic monomorphism in u�.

Proof. (i) ⇒ (ii). The relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is an iso-

morphism in u�.

(ii) ⇒ (iii). Étale morphisms are eunoic a fortiori.

(iii) ⇒ (i). It suffices to verify the following:

• Every monomorphism in u� of u�-type 𝖩-semilocally on the domain is

an open embedding in u�.

However, by lemma 1.2.19(a), every such monomorphism is automatic-

ally of u�-type (u�, 𝖩)-semilocally on the domain, hence is indeed a member

of u�. ■

2.2.12 ¶ Let u�mono be the class of open embeddings in u�.

We will see that the following is a specialisation of the notion of étale

morphism.

Definition. A local homeomorphism in u� is a morphism in u� of u�mono-

type (u�mono, 𝖩)-semilocally on the domain.
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Remark. By lemma 1.2.6, local homeomorphisms are automatically of

u�mono-type (u�mono, 𝖩)-locally on the domain.

Proposition.

(i) Every open embedding in u� is a local homeomorphism in u�.

(ii) The class of local homeomorphisms in u� is a quadrable class of

morphisms in u�.

(iii) The class of local homeomorphisms in u� is closed under composi-

tion.

(iv) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u�, if both
𝑔 : 𝑌 → 𝑍 and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are local homeomorphisms, then

𝑓 : 𝑋 → 𝑌 is also a local homeomorphism.

(v) Every local homeomorphism in u� is an étale morphism in u�.

Proof. (i). Immediate.

(ii). Clearly, every local homeomorphism in u� is of u�-type (u�, 𝖩)-semi-

locally on the domain, hence is a member of u�. In particular, local homeo-

morphisms in u� are quadrable. The claim follows, by proposition 1.2.4.

(iii). In view of lemma 1.2.6, we may apply proposition 1.2.5.

(iv). Let Ψ be a 𝖩-covering u�mono-sink on 𝑌 such that, for every (𝑉 , 𝑦) ∈
Ψ, 𝑔 ∘ 𝑦 : 𝑉 → 𝑍 is an open embedding in u�. By proposition a.2.14

and (ii), there is a 𝖩-covering u�mono-sink Φ on 𝑋 such that, for every

(𝑈, 𝑥) ∈ Φ, 𝑔 ∘ 𝑓 ∘ 𝑥 : 𝑈 → 𝑍 is an open embedding in u� and factors

through 𝑔 ∘ 𝑦 : 𝑉 → 𝑍 for some (𝑉 , 𝑦) ∈ Ψ. Recalling that u�mono is a

class of fibrations in u�, by lemma 1.1.3, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is also an open

embedding in u�. Hence, 𝑓 : 𝑋 → 𝑌 is a local homeomorphism in u�.

(v). If 𝑓 : 𝑋 → 𝑌 is a local homeomorphism in u�, then the relative

diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is also a local homeomorphism in u�, by
(i), (ii), and (iv). Thus, by lemma 1.1.6, 𝑓 : 𝑋 → 𝑌 is indeed an étale

morphism in u�. ■
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2.2.13
The ecumene of

local homeo-

morphisms

Proposition. Let u� be the class of local homeomorphisms in u�.

(i) (u�, u�, 𝖩) is an étale ecumene.

(ii) (u�, u�, 𝖩) satisfies the descent axiom for open embeddings if and only

if (u�, u�, 𝖩) satisfies the descent axiom for open embeddings.

(iii) (u�, u�, 𝖩) is 𝜅-ary extensive if and only if (u�, u�, 𝖩) is 𝜅-ary extensive.

Proof. (i). By proposition 2.2.12, u� is a class of separated fibrations in u�.
It remains to be shown that every morphism of u�-type (u�, 𝖩)-semilocally

on the domain is a member of u�.

Let 𝑓 : 𝑋 → 𝑌 be a morphism in u� and let Φ be a 𝖩-covering u�-

sink on 𝑋 such that, for every (𝑈, 𝑥) ∈ Φ, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is a local

homeomorphism in u�. So, for each (𝑈, 𝑥) ∈ Φ, there is a 𝖩-covering
u�mono sink Θ(𝑈,𝑥) on 𝑈 such that, for every (𝑇 , 𝑢) ∈ Θ(𝑈,𝑥), 𝑥∘𝑢 : 𝑇 → 𝑋
is an open embedding in u�. Consider the sink Φ′ defined as follows:

Φ′ = ⋃
(𝑈,𝑥)∈Φ

{(𝑇 , 𝑥 ∘ 𝑢) | (𝑇 , 𝑢) ∈ Θ(𝑈,𝑥)}

By proposition a.2.14, Φ′ is a 𝖩-covering u�mono-sink on 𝑋. Moreover,

each 𝑓 ∘𝑥∘𝑢 : 𝑇 → 𝑌 is a local homeomorphism in u�, so 𝑓 : 𝑋 → 𝑌 is of

u�-type (u�mono, 𝖩)-semilocally on the domain. Thus, by proposition 1.2.4,

𝑓 : 𝑋 → 𝑌 itself is indeed a local homeomorphism in u�.

(ii) and (iii). Immediate. ■

2.2.14 ¶ We will now characterise local homeomorphisms as genial morphisms

whose kernel pair have a certain property.

Definition. An equivalence relation (𝑅, 𝑑0, 𝑑1) on an object 𝑋 in u� is

tractable if it has the following properties:

• The projections 𝑑0, 𝑑1 : 𝑅 → 𝑋 are members of u�.

• There is a 𝖩-covering u�mono-sink Φ on 𝑋 such that, for every (𝑈, 𝑥) ∈
Φ and every object (𝑇 , 𝑟) in u�∕𝑅, if both 𝑑0 ∘ 𝑟, 𝑑1 ∘ 𝑟 : 𝑇 → 𝑋 factor

through 𝑥 : 𝑈 → 𝑋, then 𝑑0 ∘ 𝑟 = 𝑑1 ∘ 𝑟.
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Remark. By proposition 2.2.12, if (𝑅, 𝑑0, 𝑑1) is a tractable equivalence

relation on𝑋, then the relative diagonalΔ : 𝑋 → 𝑅 is an open embedding

in u�. However, the converse is not true in general, even when we assume

that the projections 𝑑0, 𝑑1 : 𝑅 → 𝑋 are local homeomorphisms in u�.

2.2.14(a)
A sufficient

criterion for

tractability

Lemma. Let (𝑅, 𝑑0, 𝑑1) be an equivalence relation on an object 𝑋 in u�.
Assuming the projections 𝑑0, 𝑑1 : 𝑅 → 𝑋 are genial morphisms in u�, if
there is a local homeomorphism 𝑓 : 𝑋 → 𝑌 in u� such that 𝑓 ∘𝑑0 = 𝑓 ∘𝑑1,

then (𝑅, 𝑑0, 𝑑1) is tractable.

Proof. LetΦ be a 𝖩-coveringu�mono-sink on𝑋 such that, for every (𝑈, 𝑥) ∈
Φ, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is an open embedding in u�. For every object (𝑇 , 𝑟) in
u�∕𝑅, we have 𝑓 ∘ 𝑑0 ∘ 𝑟 = 𝑓 ∘ 𝑑1 ∘ 𝑟, so if both 𝑑0 ∘ 𝑟, 𝑑1 ∘ 𝑟 : 𝑇 → 𝑋 factor

through 𝑥 : 𝑈 → 𝑋, then 𝑑0 ∘ 𝑟 = 𝑑1 ∘ 𝑟. Hence (𝑅, 𝑑0, 𝑑1) is indeed a

tractable equivalence relation on 𝑋 in u�. ■

2.2.14(b)
Recognition prin-

ciple for kernel

pairs of local

homeomorphisms

Lemma. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of a morphism 𝑓 : 𝑋 → 𝑌 in u�.
The following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a genial morphism in u� and (𝑅, 𝑑0, 𝑑1) is a tractable
equivalence relation on 𝑋 in u�.

(ii) 𝑓 : 𝑋 → 𝑌 is a local homeomorphism in u�.

Proof. (i) ⇒ (ii). Let Φ be a 𝖩-covering u�mono-sink on 𝑋 such that, for

every (𝑈, 𝑥) ∈ Φ and every object (𝑇 , 𝑟) in u�∕𝑅, if both 𝑑0 ∘ 𝑟, 𝑑1 ∘ 𝑟 :
𝑇 → 𝑋 factor through 𝑥 : 𝑈 → 𝑋, then 𝑑0 ∘ 𝑟 = 𝑑1 ∘ 𝑟. Then 𝑓 ∘ 𝑥 :
𝑈 → 𝑌 is a monomorphism in u�: indeed, given 𝑢0, 𝑢1 : 𝑇 → 𝑈 in u�,
if 𝑓 ∘ 𝑥 ∘ 𝑢0 = 𝑓 ∘ 𝑥 ∘ 𝑢1, then we may apply the hypothesis to deduce

that 𝑢0 = 𝑢1. Since 𝑓 : 𝑋 → 𝑌 is a member of u� and u� is closed under

composition, it follows that 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is an open embedding in u�.
Hence 𝑓 : 𝑋 → 𝑌 is indeed a local homeomorphism in u�.

(ii) ⇒ (i). This is a special case of lemma 2.2.14(a). ■
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2.2.14(c)
Recognition

principle for

kernel pairs of

covering local

homeomorphisms

Lemma. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of a 𝖩-covering morphism 𝑓 :
𝑋 ↠ 𝑌 in u�. Assuming (u�, u�, 𝖩) satisfies the descent axiom for open

embeddings, the following are equivalent:

(i) (𝑅, 𝑑0, 𝑑1) is a tractable equivalence relation on 𝑋 in u�.

(ii) 𝑓 : 𝑋 ↠ 𝑌 is a local homeomorphism in u�.

Proof. (i) ⇒ (ii). By definition, the following is a pullback square in u�:

𝑅 𝑋

𝑋 𝑌

𝑑1

𝑑0

𝑓

𝑓

Suppose 𝑥 : 𝑈 → 𝑋 is an open embedding in u� such that 𝑓 ∘ 𝑥 : 𝑈 → 𝑌
is a monomorphism in u�. Then the projection 𝑋 ×𝑌 𝑈 → 𝑋 is also an

open embedding in u�, and since 𝑓 : 𝑋 ↠ 𝑌 is a 𝖩-covering morphism

in u�, 𝑓 ∘ 𝑥 : 𝑈 → 𝑌 is an open embedding in u�. Thus, following the

argument of lemma 2.2.14(b), we see that 𝑓 : 𝑋 → 𝑌 itself is a local

homeomorphism in u�.

(ii) ⇒ (i). This is a special case of lemma 2.2.14(a). ■
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2.3 Extents

Synopsis. We examine the properties of categories of objects that are

obtained as étale quotients of distinguished objects in pretoposes equipped

with a notion of étale morphism.

Prerequisites. §§1.1, 1.2, 1.4, 1.5, 2.1, 2.2.

2.3.1 ¶ Let 𝜅 be a regular cardinal and let u� be a 𝜅-ary pretopos.

The following definition is due to Joyal [JM, §1].

Definition. A class of étale morphisms in u� is a subset u� ⊆ moru�
with the following properties:

A1. Every isomorphism in u� is a member of u� and u� is closed under

composition.

A2. u� is a quadrable class of morphisms in u� .

A3. In every pullback square in u� of the form below,

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃ ℎ

where ̃𝐵 ↠ 𝐵 is an effective epimorphism in u� , if ℎ̃ : ̃𝐴 → ̃𝐵 is a

member of u�, then ℎ : 𝐴 → 𝐵 is also a member of u�.

A4. For every 𝜅-small set 𝐼 , the unique morphism ∐𝑖∈𝐼 1 → 1 is a

member of u�, where 1 is the terminal object of u� .

A5. For every family (ℎ𝑖 | 𝑖 ∈ 𝐼) where 𝐼 is a 𝜅-small set, if each ℎ𝑖 :
𝐴𝑖 → 𝐵𝑖 is a member of u�, then ∐𝑖∈𝐼 ℎ𝑖 : ∐𝑖∈𝐼 𝐴𝑖 → ∐𝑖∈𝐼 𝐵𝑖 is

also a member of u�.

A7. If ℎ : 𝐴 → 𝐵 is a member of u�, then the relative diagonal Δℎ :
𝐴 → 𝐴 ×𝐵 𝐴 is also a member of u�.

A8. Given an effective epimorphism ℎ : 𝐴 ↠ 𝐵 in u� and a morphism

𝑘 : 𝐵 → 𝐶 in u� , if both ℎ : 𝐴 ↠ 𝐵 and 𝑘 ∘ ℎ : 𝐴 → 𝐶 are members

of u�, then 𝑘 : 𝐵 → 𝐶 is also a member of u�.
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Example. The class of all morphisms in u� is a class of étale morphisms

in u� .

Recognition

principle for

classes of étale

morphisms

Lemma. Let u� be a set of morphisms in u� . The following are equivalent:

(i) u� satisfies axioms A1, A2, A4, A5, A7, and A8.

(ii) (u� , u�, 𝖪), where 𝖪 is the 𝜅-ary canonical coverage on u� , is an étale

𝜅-ary extensive ecumene.

Moreover, u� satisfies axiomA3 if and only if (u� , u�, 𝖪) satisfies the descent
axiom.

Proof. (i) ⇒ (ii). By lemma 1.1.10, axioms A1, A2, and A7 imply that

u� is a class of separated fibrations in u� . Hence, by axioms A1 and A5,

for every 𝜅-small set 𝐼 , every morphism 1 → ∐𝑖∈𝐼 1 is a member of

u�, and therefore (by axiom A2 and extensivity) every complemented

monomorphism is a member of u�. Axioms A1, A2, A4, and A5 imply

that, for every object 𝐵 in u� and every family (ℎ𝑖 | 𝑖 ∈ 𝐼) where 𝐼 is

a 𝜅-small set and each ℎ𝑖 : 𝐴𝑖 → 𝐵 is a member of u�, the induced

morphism ∐𝑖∈𝐼 𝐴𝑖 → 𝐵 is a member of u�. Thus, in view of proposi-

tion 1.4.1, lemma 1.5.16, and axiom A8, every morphism in u� of u�-type

(u�, 𝖪)-semilocally on the domain is a member of u�. Hence, (u� , u�, 𝖪) is
an étale 𝜅-ary extensive ecumene, and it is clear that axiom A3 implies

that the descent axiom is satisfied.

(ii) ⇒ (i). Axioms A1, A2, and A7 are immediate. Axiom A8 is also

straightforward to verify, given that the 𝖪-covering morphisms in u� are

precisely the effective epimorphisms in u� . The same argument shows

that the descent axiom implies axiom A3. Finally, axioms A4 and A5 are

special cases of proposition 2.2.5. ■

2.3.2 ¶ Let (u�, u�, 𝖩) be an étale 𝜅-ary extensive ecumene that satisfies the des-

cent axiom, let 𝖤 be the class of 𝖩-covering morphisms in u�, let u� =
Ex(u�, 𝖤), and let 𝜄 : u� → u� be the insertion functor. Assume (u�, 𝖤)

satisfies the Shulman condition, so that u� is a 𝜅-ary pretopos. (Recall

proposition 1.5.13 and corollary 1.5.16.)

The following is a variation on Theorem 5.2 and Corollary 5.3 in [JM].
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The exact

completion of an

étale extensive

ecumene

Proposition. Let u� be the class of morphisms in u� corresponding to

morphisms in Psh(u�) 𝖩-semilocally of u�-type and let û� be the class of

u�-perfect morphisms in u� .

(i) A morphism in u� is a member of u� if and only if it corresponds to

a morphism in Psh(u�) 𝖤-semilocally of u�-type.

(ii) (u� , u�, 𝖪) is a 𝜅-ary extensive ecumene that satisfies the descent

axiom, where 𝖪 is the 𝜅-ary canonical topology on u� .

(iii) The insertion functor 𝜄 : u� → u� sends members of u� to members

of u�.

(iv) û� is a class of étale morphisms in u� .

(v) For every object 𝑌 in u� and every morphism ℎ : 𝐴 → 𝜄(𝑌 ) in

u� , if ℎ : 𝐴 → 𝜄(𝑌 ) is a member of û�, then there exist a morphism

𝑓 : 𝑋 → 𝑌 in u� and an effective epimorphism 𝑝 : 𝜄(𝑋) ↠ 𝐴 in u� such

that 𝑓 : 𝑋 → 𝑌 is a member of u�.

(vi) For every quadrable morphism 𝑓 : 𝑋 → 𝑌 in u�, assuming the

relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is a quadrable monomorphism

in u�, 𝑓 : 𝑋 → 𝑌 is a member of u� if and only if 𝜄(𝑓 ) : 𝜄(𝑋) → 𝜄(𝑌 ) is
a member of û�.

(vii) If 𝖩 is a u�-adapted coverage on u�, then u� and û� both satisfy the

𝖪-local collection axiom.

Proof. (i). It is clear that every morphism in Psh(u�) 𝖤-semilocally of u�-

type is also 𝖩-semilocally of u�-type; it remains to be shown that every

member of u� corresponds to a morphism in Psh(u�) 𝖤-semilocally of u�-

type.

Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�) where both 𝐴 and 𝐵 are

𝖤-locally 1-presentable 𝖤-sheaves on u�. Suppose Ψ is a 𝖩-local gener-
ating set of elements of 𝐵 such that, for every (𝑌 , 𝑏) ∈ Ψ, there is a 𝖩-
local generating set Φ(𝑌 ,𝑏) of elements of Pb(𝑏 ⋅ −, ℎ) such that, for every

(𝑋, (𝑓 , 𝑎)) ∈ Φ, 𝑓 : 𝑋 → 𝑌 is a member of u�. By theorem 1.4.16,

Pb(𝑏 ⋅ −, ℎ) is 𝖤-locally 1-generable, so it is 𝖩-locally 1-generable a for-

tiori. Thus, by lemma a.2.16, replacing Φ(𝑌 ,𝑏) with a subset if necessary,
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we may assume that Φ(𝑌 ,𝑏) is a 𝜅-small set. Similarly, we may assume

that Ψ is a 𝜅-small set. But proposition 1.5.13, lemmas 1.5.15 and 1.5.16,

and corollary 1.5.16 imply that 𝐴 and 𝐵 are also 𝖩-sheaves on u�, so by

proposition 2.2.5, wemay further assume that Ψ and Φ(𝑌 ,𝑏) are singletons.

Hence, ℎ : 𝐴 → 𝐵 is indeed 𝖤-semilocally of u�-type.

(ii) and (iii). First, note that lemma a.3.10 implies that the effective epi-

morphisms in u� are precisely the morphisms in u� corresponding to 𝖤-
locally surjective morphisms in Psh(u�), which are 𝖩-locally surjective

a fortiori. We also know that 𝖪 is a 𝜅-ary superextensive coverage on

u� (lemma 1.5.15 and theorem 1.5.15). Thus, by proposition 1.2.14 and

lemma 1.5.16, u� is a class of fibrations in u� , every morphism in u� 𝖪-
locally of u�-type is a member of u�, and 𝜄 : u� → u� sends members of u�
to members of u�. Recalling lemma 2.2.5, we conclude that (u� , u�, 𝖪) is
indeed a 𝜅-ary extensive ecumene that satisfies the descent axiom.

(iv). Recalling lemma 2.3.1, this is a special case of proposition 2.2.9.

(v). This is a consequence of lemma 1.4.8.

(vi). Apply proposition 1.2.20.

(vii). By construction, for every object 𝐴 in u� , there exist an object 𝑋 in

u� and an effective epimorphism 𝜄(𝑋) ↠ 𝐴 in u� . Since both u� and û� are

quadrable classes of morphisms in u� , it suffices to verify the following:

• If ℎ : 𝐴 → 𝐵 is an effective epimorphism in u� and 𝑘 : 𝐵 → 𝐶 is a

member of u� where 𝐵 = 𝜄(𝑌 ) and 𝐶 = 𝜄(𝑍) for some objects 𝑌 and 𝑍
in u�, then there is a morphism 𝑠 : 𝐴′ → 𝐴 in u� such that ℎ∘𝑠 : 𝐴′ → 𝐵
is an effective epimorphism in u� that is a member of û�.

It is straightforward to further reduce to the case where 𝐴 = 𝜄(𝑋), which
is an immediate consequence of proposition 2.2.2. ■

2.3.3 ¶ The following is a notion intermediate between pretoposes with a class

of étale morphisms (in the sense of Joyal) and étale extensive ecumenae.
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Definition. A 𝜅-ary gros pretopos is a pair (u� , u�) where:

• u� is a 𝜅-ary pretopos.

• u� is a set of morphisms in u� that satisfies axioms A1, A2, A4, A5,

and A7.

• Given an effective epimorphism ℎ : 𝐴 ↠ 𝐵 in u� , a morphism 𝑘 :
𝐵 → 𝐶 in u� , and a kernel pair (𝑅, 𝑑0, 𝑑1) of ℎ : 𝐴 ↠ 𝐵 in u� , if

𝑑0, 𝑑1 : 𝑅 → 𝐴 and 𝑘 ∘ ℎ : 𝐴 → 𝐶 are all members of u�, then both

ℎ : 𝐴 ↠ 𝐵 and 𝑘 : 𝐵 → 𝐶 are members of u�.

Axiom A8 and

gros pretoposes

Lemma. Let u� be a 𝜅-ary pretopos and let u� be a set of morphisms in u� .

(i) If (u� , u�) is a 𝜅-ary gros pretopos, then u� satisfies axiom A8.

(ii) If (u� , u�) is a 𝜅-ary gros pretopos, then (u� , u�, 𝖪) is an étale 𝜅-ary
extensive regulated ecumene, where 𝖪 is the 𝜅-ary canonical coverage
on u� .

(iii) If u� is a class of étale morphisms in u� , then (u� , u�) is a 𝜅-ary gros
pretopos.

Proof. (i). Let ℎ : 𝐴 → 𝐵 be an effective epimorphism in u� that is a

member of u� and let (𝑅, 𝑑0, 𝑑1) be a kernel pair of ℎ : 𝐴 → 𝐵 in u� .

By axiom A2, the projections 𝑑0, 𝑑1 : 𝑅 → 𝐴 are members of u�. Let

𝑘 : 𝐵 → 𝐶 be a morphism in u� such that 𝑘 ∘ ℎ : 𝐴 → 𝐶 is a member

of u�. We may then apply the hypothesis to deduce that 𝑘 : 𝐵 → 𝐶 is a

member of u�, as required.

(ii). By lemma 2.3.1, (u� , u�, 𝖪) is an étale 𝜅-ary extensive ecumene. It

remains to be shown that (u� , u�, 𝖪) is regulated. Since u� is a 𝜅-ary pre-

topos and 𝖪 is the 𝜅-ary canonical coverage on u� , it is enough to verify

that the image of a member of u� is also a member of u�.

Let ℎ : 𝐴 → 𝐵 be a member of u� and let (𝑅, 𝑑0, 𝑑1) be a kernel pair

of ℎ : 𝐴 → 𝐵 in u� . As before, the projections 𝑑0, 𝑑1 : 𝑅 → 𝐴 are

members of u�. On the other hand, ℎ = im(ℎ) ∘ 𝑒 where 𝑒 : 𝐴 ↠ Im(ℎ)

is the coequaliser of 𝑑0, 𝑑1 : 𝑅 → 𝐴. Thus, by the hypothesis, im(ℎ) :
Im(ℎ) → 𝐵 is indeed a member of u�.
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(iii). Let ℎ : 𝐴 → 𝐵 be an effective epimorphism in u� and let (𝑅, 𝑑0, 𝑑1)
be a kernel pair of ℎ : 𝐴 → 𝐵 in u� . Suppose 𝑑0, 𝑑1 : 𝑅 → 𝐴 are members

of u�. Then, by axiom A3, ℎ : 𝐴 → 𝐵 is also a member of u�. Thus, given

a morphism 𝑘 : 𝐵 → 𝐶 in u� such that 𝑘 ∘ ℎ : 𝐴 → 𝐶 is a member of u�,

axiom A8 implies that 𝑘 : 𝐵 → 𝐶 is also a member of u�. ■

Gros pretopos

with local

homeomorphisms

Proposition. Let u� be a 𝜅-ary pretopos, let 𝖪 be the 𝜅-ary canonical

coverage on u� , let u� be a set of morphisms in u� such that (u� , u�, 𝖪) is a
𝜅-ary extensive ecumene that satisfies the descent axiom, and let u� be the

class of local homeomorphisms in u� .

(i) (u� , u�) is a 𝜅-ary gros pretopos.

(ii) (u� , u�, 𝖪) satisfies the descent axiom for open embeddings.

Proof. (i). By proposition 2.2.13, (u� , u�, 𝖪) is an étale 𝜅-ary extensive

ecumene, so by lemmas 2.2.14(c) and 2.3.1, (u� , u�) is a 𝜅-ary gros pre-

topos.

(ii). In view of lemma 2.2.11, it is clear that (u� , u�, 𝖪) satisfies the descent
axiom for open embeddings if and only if (u� , u�, 𝖪) satisfies the descent

axiom for open embeddings. ■

2.3.4 ※ For the remainder of this section, (u� , u�) is a 𝜅-ary gros pretopos.

2.3.5 Definition. The petit 𝜅-ary pretopos over an object 𝐴 in u� is the full

subcategory u�∕𝐴 ⊆ u�∕𝐴 spanned by the objects (𝐹 , 𝑝) where 𝑝 : 𝐹 → 𝐴
is a member of u�.

Properties of the

petit pretopos

over an object

Proposition.

(i) For every object 𝐴 in u� , the inclusion u�∕𝐴 ↪ u�∕𝐴 creates limits of

finite diagrams, 𝜅-ary coproducts, and exact quotients.

(ii) In particular, u�∕𝐴 is a 𝜅-ary pretopos.

(iii) For every morphism ℎ : 𝐴 → 𝐵 in u� , the pullback functor ℎ∗ :
u�∕𝐵 → u�∕𝐴 preserves limits of finite diagrams, 𝜅-ary coproducts,

and exact forks.

Proof. Straightforward. (Use proposition 2.2.5.) ⧫
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2.3.6 Definition. A unary basis for (u� , u�) is a full subcategory u� ⊆ u� with

the following properties:

• u� is a unary site for u� .

• For every morphism ℎ : 𝐴 → 𝐵 in u� , if 𝐵 is in u� and ℎ : 𝐴 → 𝐵 is a

member of u�, then there is an effective epimorphism 𝑝 : 𝑋 ↠ 𝐴 in u�
such that 𝑋 is an object in u� and 𝑝 : 𝑋 ↠ 𝐴 is a member of u�.

Example. Of course, u� is a unary basis for (u� , u�).

2.3.7 Definition. A 𝜅-ary basis for (u� , u�) is a full subcategory u� ⊆ u� with

the following properties:

• u� is a 𝜅-ary site for u� .

• For every morphism ℎ : 𝐴 → 𝐵 in u� , if 𝐵 is in u� and ℎ : 𝐴 → 𝐵 is

a member of u�, then there is an effective epimorphism 𝑝 : 𝑋 ↠ 𝐴 in

u� such that 𝑋 is a coproduct of a 𝜅-small family of objects in u� and

𝑝 : 𝑋 ↠ 𝐴 is a member of u�.

Example. Every unary basis for (u� , u�) is also a 𝜅-ary basis for (u� , u�) a
fortiori.

Recognition prin-

ciple for bases of

gros pretoposes

Lemma. Let u�0 be a full subcategory of u� and let u� be the full subcategory

of u� spanned by the objects that are coproducts (in u�) of 𝜅-small families
of objects in u�0. The following are equivalent:

(i) u�0 is a 𝜅-ary basis for (u� , u�).

(ii) u� is a unary basis for (u� , u�).

Proof. Straightforward. (Use lemma 2.1.3 and proposition 2.2.5.) ⧫

2.3.8 ※ For the remainder of this section, u� is a unary basis for (u� , u�).
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2.3.9
Properties of

unary bases of

gros pretoposes

Proposition. Let ℬ = u� ∩ moru�.

(i) Given morphisms 𝑏 : 𝑌 → 𝐵 and ℎ : 𝐴 → 𝐵 in u� , if ℎ : 𝐴 → 𝐵
is a member of u� and 𝑌 is an object in u�, then there is a commutative

square in u� of the form below,

𝑋 𝐴

𝑌 𝐵

𝑓

𝑎

ℎ

𝑏

where 𝑋 is an object in u� and ⟨𝑎, 𝑓⟩ : 𝑋 → 𝐴 ×𝐵 𝑌 is an effective

epimorphism in u� that is a member of u�.

(ii) In particular, every member of u� is 𝖪-locally of ℬ-type.

Proof. (i). By axiom A2, the projection 𝐴 ×𝐵 𝑌 → 𝑌 is a member of

u�, so there indeed exist an object 𝑋 in u� and an effective epimorphism

⟨𝑎, 𝑓⟩ : 𝑋 ↠ 𝐴 ×𝐵 𝑌 in u� that is a member of u�.

(ii). Given a morphism ℎ : 𝐴 → 𝐵 in u� that is a member of u�, there is

an effective epimorphism 𝑏 : 𝑌 ↠ 𝐵 in u� where 𝑌 is an object in u�. The
claim then reduces to (i). ■

2.3.10 Definition. A (u�, u�)-atlas of an object 𝐴 in u� is an object (𝑋, 𝑎) in u�∕𝐴

such that 𝑋 is an object in u� and 𝑎 : 𝑋 → 𝐴 is an effective epimorphism

in u� .

2.3.10(a)
Atlases for étale

morphisms

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in u� and let (𝑌 , 𝑏) be a (u�, u�)-
atlas of 𝐵. If ℎ : 𝐴 → 𝐵 is a member of u�, then there is a commutative

diagram in u� of the form below,

𝑋 𝐴

𝑌 𝐵

𝑓

𝑎

ℎ

𝑏

where (𝑋, 𝑎) is a (u�, u�)-atlas of 𝐴 and 𝑓 : 𝑋 → 𝑌 is a member of u�.

Proof. This is a corollary of proposition 2.3.9. ■
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2.3.10(b)
Atlases for

morphisms

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in u� , let (𝑋, 𝑎) be a (u�, u�)-atlas
of 𝐴, and let (𝑌 , 𝑏) be a (u�, u�)-atlas of 𝐵.

(i) There exist a (u�, u�)-atlas (𝑈, 𝑥) of 𝑋 and a morphism 𝑦 : 𝑈 → 𝑌
in u� such that the following diagram in u� commutes:

𝑈 𝑋 𝐴

𝑌 𝐵

𝑦

𝑥 𝑎

ℎ

𝑏

(ii) Moreover, we may choose 𝑥 : 𝑈 → 𝑌 and 𝑦 : 𝑈 → 𝑌 so that the

inducedmorphism ⟨𝑎 ∘ 𝑥, 𝑦⟩ : 𝑈 → 𝐴×𝐵𝑌 is an effective epimorphism

in u� that is a member of u�.

Proof. (i). Consider a pullback square in u� of the form below:

𝑋 ×𝐵 𝑌 𝑌

𝑋 𝐵

𝑝

𝑔

𝑏

ℎ∘𝑎

Note that 𝑝 : 𝑋 ×𝐵 𝑌 ↠ 𝑋 is an effective epimorphism in u� that is

a member of u�. Since 𝑋 is an object in u�, we can find a (u�, u�)-atlas
(𝑈, ⟨𝑥, 𝑦⟩) of 𝑋 ×𝐵 𝑌 such that 𝑥 = 𝑝 ∘ ⟨𝑥, 𝑦⟩ : 𝑈 → 𝑋 is a member of

u�. Thus, (𝑈, 𝑥) is the required (u�, u�)-atlas of 𝑋.

(ii). The induced morphism 𝑎 ×𝐵 id𝑌 : 𝑋 ×𝐵 𝑌 → 𝐴 ×𝐵 𝑌 is an effective

epimorphism in u� that is a member of u�, so the same is true of ⟨𝑎 ∘ 𝑥, 𝑦⟩ :
𝑈 → 𝐴 ×𝐵 𝑌 . ■

2.3.11 Definition. A (u�, u�)-extent[1] in u� is an object 𝐴 in u� that admits a

(u�, u�)-atlas.

We writeXt(u�, u�) for the full subcategory of u� spanned by the (u�, u�)-
extents in u� .

[1] — a back-formation from ‘extensive category’.
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Remark. We should justify the omission of u� from the notationXt(u�, u�).
By theorem 2.1.8, the Yoneda representation u� → Sh(u�, 𝖤) is fully faith-
ful, with essential image given by lemma 2.1.9, so u� is determined up to

equivalence by u� and 𝖤 alone. Moreover, in some cases, u� is determined

by ℬ = u� ∩ moru�.

In the case where u� is the category of 𝜅-ary coproducts of objects in a

𝜅-ary basis u�0 for (u� , u�), theorem 2.1.14 and lemma 2.1.16 allow us to

substitute Sh(u�0, 𝖩0) for Sh(u�, 𝖤) in the above.

Properties of

the category

of extents

Proposition.

(i) The class of morphisms in Xt(u�, u�) that are members of u� is a

quadrable class of morphisms in Xt(u�, u�).

(ii) Given an effective epimorphism ℎ : 𝐴 ↠ 𝐵 in u� , if ℎ : 𝐴 → 𝐵 is a

member of u� and 𝐴 is a (u�, u�)-extent, then 𝐵 is also a (u�, u�)-extent.

(iii) If (u� , u�, 𝖪) satisfies the descent axiom for open embeddings, then

Xt(u�, u�) is closed in u� under exact quotient of tractable equivalence

relations.

(iv) If u� satisfies axiom A3, then Xt(u�, u�) is closed in u� under exact

quotient of étale equivalence relations.

(v) Xt(u�, u�) is closed in u� under 𝜅-ary coproduct if and only if the

coproduct of every 𝜅-small family of objects in u� is a (u�, u�)-charted
extent.

(vi) If Xt(u�, u�) is closed in u� under 𝜅-ary coproduct, then Xt(u�, u�) is
a 𝜅-ary extensive category.

(vii) Xt(u�, u�) is closed in u� under finitary product if and only if the

product of every finite family of objects in u� is a (u�, u�)-charted extent.

(viii) Xt(u�, u�) is closed in u� under pullback if and only if the pullback

of every cospan in u� is a (u�, u�)-charted extent.

Proof. (i). This is an immediate consequence of lemma 2.3.10(a) and the

fact that u� is a quadrable class of morphisms in u� .
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(ii). Straightforward. (Use axiomA2 and the fact that the class of effective

epimorphisms in u� is closed under composition.)

(iii). By lemma 2.2.14(b), exact quotients of tractable equivalence rela-

tions in u� are local homeomorphisms in u� , and by proposition 2.2.12,

local homeomorphisms in u� are members of u�, so the claim reduces

to (ii).

(iv). By axiom A3, exact quotients of étale equivalence relations in u� are

étale effective epimorphisms in u� , so this claim also reduces to (ii).

(v). Straightforward. (Use axioms A1 and A5.)

(vi). By lemma 2.3.1, every complemented monomorphism in u� is a

member of u�, so by (i), the claim reduces to the fact that u� is a 𝜅-ary
extensive category.

(vii). The ‘only if’ direction is clear, so suppose the product of every

finite family of objects in u� is a (u�, u�)-charted extent. Since the class

of effective epimorphisms in u� that are members of u� is closed under

finitary product in u� and composition, it follows that the product of any

finite family of objects in Xt(u�, u�) is also a (u�, u�)-charted extent.

(viii). Apply lemma 1.1.5 and lemma 2.3.10(b). ■

2.3.12 Definition. An object 𝐴 in u� is u�-localic if u�∕𝐴 is a localic 𝜅-ary pre-

topos.

2.3.12(a)
Recognition

principle for

localic objects

Lemma. Let 𝐴 be an object in u� . The following are equivalent:

(i) 𝐴 is a u�-localic object in u� .

(ii) For every object (𝐹 , 𝑝) in u�∕𝐴, 𝑝 : 𝐹 → 𝐴 is a local homeomorph-

ism in u� .

Proof. Straightforward. (Recall lemma 1.5.16.) ⧫
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2.3.12(b) Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in u� . If ℎ : 𝐴 → 𝐵 is a member

of u� and 𝐵 is u�-localic, then 𝐴 is also u�-localic.

Proof. By lemma 2.3.12(a), it is enough to show that, for every object

(𝐹 , 𝑝) in u�∕𝐴, 𝑝 : 𝐹 → 𝐴 is a local homeomorphism in u� . Since 𝐵 is

u�-localic, both ℎ : 𝐴 → 𝐵 and ℎ ∘ 𝑝 : 𝐹 → 𝐵 are local homeomorph-

isms in u� . Thus, by proposition 2.2.12, 𝑝 : 𝐹 → 𝐴 is indeed a local

homeomorphism in u� . ■

2.3.12(c) Lemma. Let ℎ : 𝐴 ↠ 𝐵 be an effective epimorphism in u� . If ℎ : 𝐴 ↠ 𝐵
is a local homeomorphism and 𝐴 is u�-localic, then 𝐵 is also u�-localic.

Proof. By lemma 2.3.12(a), it is enough to show that, for every object

(𝐹 , 𝑞) in u�∕𝐵, 𝑞 : 𝐹 → 𝐵 is a local homeomorphism in u� . Consider a

pullback square in u� of the form below:

𝐴 ×𝐵 𝐹 𝐹

𝐴 𝐵

𝑝 𝑞

ℎ

Since 𝐴 is u�-localic, the projection 𝑝 : 𝐴 ×𝐵 𝐹 → 𝐴 is a local homeo-

morphism inu� , so by proposition 2.2.12, ℎ∘𝑝 : 𝐴×𝐵𝐹 → 𝐵 is also a local

homeomorphism in u� . On the other hand, the projection 𝐴 ×𝐵 𝐹 ↠ 𝐴
is both an effective epimorphism and a local homeomorphism in u� , so

𝑞 : 𝐹 → 𝐴 is indeed a local homeomorphism in u� . ■

2.3.13 Definition. Amorphism ℎ : 𝐴 → 𝐵 in u� is laminar if there is a 𝜅-small

set Φ of objects in u�∕𝐴 with the following properties:

• 𝐴 is the disjoint union of Φ.

• For every (𝑈, 𝑎) ∈ Φ, ℎ ∘ 𝑎 : 𝑈 → 𝐵 is an open embedding in u� .

Properties

of laminar

morphisms

Proposition.

(i) Every isomorphism in u� is a laminar morphism in u� .

(ii) For every object 𝐴 in u� , the unique morphism 0 → 𝐴 is a laminar

morphism in u� .
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(iii) Every laminar morphism in u� is a local homeomorphism in u� .

(iv) For every local homeomorphism ℎ : 𝐴 → 𝐵 in u� , there is a laminar

effective epimorphism 𝑝 : ̃𝐴 → 𝐴 in u� such that ℎ ∘ 𝑝 : ̃𝐴 → 𝐵 is a

laminar morphism in u� .

(v) The class of laminar morphisms inu� is a quadrable class of morph-

isms in u� .

(vi) The class of laminar morphisms in u� is closed under composition.

(vii) The class of laminar morphisms in u� is closed under 𝜅-ary coprod-
uct in u� .

Proof. Straightforward. ⧫

2.3.14 ¶ It is clear that every object inu� is a (u�, u�)-extent. Of course, in general,
not every (u�, u�)-extent is an object in u�, but we do have the following

results.

2.3.14(a)
Extents and exact

quotients of

étale equival-

ence relations

Proposition. Assume the following hypotheses:

• u� is a class of étale morphisms in u� .

• u� is closed in u� under limit of finite diagrams.

The following are equivalent:

(i) For every étale equivalence relation (𝑅, 𝑑0, 𝑑1) on an object 𝑋 in

u�, if 𝑅 is an object in u�, then there is an exact fork in u� of the form

below,

𝑅 𝑋 𝑌
𝑑0

𝑑1

𝑓

where 𝑌 is a object in u�.

(ii) The inclusion u� ↪ Xt(u�, u�) is (fully faithful and) essentially sur-
jective on objects.

Proof. We may assume without loss of generality that u� is a replete (and

full) subcategory of u� .

(i) ⇒ (ii). Let 𝐴 be an object in u� , let (𝑋, 𝑎) be a (u�, u�)-atlas of 𝐴, and

let (𝑅, 𝑑0, 𝑑1) be a kernel pair for 𝑎 : 𝑋 ↠ 𝐴 in u� . We wish to show that

𝐴 is an object in u�.
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By proposition 2.3.11, 𝑅 is a (u�, u�)-charted extent, so there is a (u�, u�)-
atlas (�̃�, 𝑟) of 𝑅. Let (𝑄, ̃𝑑0, ̃𝑑1) be a kernel pair of 𝑟 : �̃� → 𝑅. It is not

hard to see that 𝑄 is (the object part of) a limit of the following diagram

in u� ,

�̃� 𝑋

�̃� 𝑋

𝑑0∘𝑟

𝑑1∘𝑟

𝑑1∘𝑟

𝑑0∘𝑟

and since both �̃� and 𝑋 are objects in u�, 𝑄 is also an object in u�. But

(𝑄, ̃𝑑0, ̃𝑑1) is an étale equivalence relation on �̃� and 𝑟 : �̃� → 𝑅 is an

effective epimorphism in u� , so 𝑅 is also an object in u�. The same argu-

ment (mutatis mutandis) shows that 𝐴 is an object in u�.

(ii) ⇒ (i). See proposition 2.3.11. (Note that u� satisfies axiom A3 by

hypothesis.) ■

2.3.14(b)
Extents and exact

quotients of tract-

able equival-

ence relations

Proposition. Assume the following hypotheses:

• u� is the class of local homeomorphisms in u� .

• u� is closed in u� under 𝜅-ary coproduct.

• (u� , u�, 𝖪) satisfies the descent condition for open embeddings.

The following are equivalent:

(i) u� has the following properties:

• Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑦 : 𝑌 ′ → 𝑌 in u�, if 𝑓 : 𝑋 → 𝑌
is a member of u�, then there is a pullback square in u� of the form

below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓

𝑦

where 𝑋′ is an object in u�.

• For every tractable equivalence relation (𝑅, 𝑑0, 𝑑1) on an object

𝑋 in u�, if 𝑅 is an object in u�, then there is an exact fork in u� of the
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form below,

𝑅 𝑋 𝑌
𝑑0

𝑑1

𝑓

where 𝑌 is a object in u�.

(ii) The inclusion u� ↪ Xt(u�, u�) is (fully faithful and) essentially sur-
jective on objects.

Proof. We may assume without loss of generality that u� is a replete (and

full) subcategory of u� .

(i) ⇒ (ii). First, observe that the hypotheses imply the following:

• For every open embedding ℎ : 𝐴 → 𝐵 in u� , if 𝐵 is an object in u�, then
𝐴 is also an object in u�.

Indeed, by lemma 2.3.10(a), there is a (u�, u�)-atlas (𝑋, 𝑎) of 𝐴, and since

ℎ : 𝐴 → 𝐵 is a monomorphism in u� , the kernel pair of ℎ ∘ 𝑎 : 𝑋 → 𝐵
is isomorphic to the kernel pair of 𝑎 : 𝑋 → 𝐴; but by lemma 2.2.14(b),

the kernel pair of ℎ ∘ 𝑎 : 𝑋 → 𝐵 is a tractable equivalence relation, so the

hypotheses imply that 𝐴 is indeed an object in u�.
Consequently, we obtain the following results:

• If ℎ : 𝐴 → 𝐵 is a laminar morphism in u� and 𝐵 is an object in u�, then
𝐴 is also an object in u�.

• For every (u�, u�)-extent 𝐴 in u� , there is (u�, u�)-atlas (𝑋, 𝑎) of 𝐴 where

𝑎 : 𝑋 ↠ 𝐴 is a laminar effective epimorphism in u� .

(For the second claim, use proposition 2.3.13.)

Now, consider a laminar effective epimorphism 𝑎 : 𝑋 ↠ 𝐴 in u� where

𝑋 is an object in u�. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of 𝑎 : 𝑋 ↠ 𝐴 in u� .

Then the projections 𝑑0, 𝑑1 : 𝑅 → 𝑋 are laminar morphisms in u� , so 𝑅
is an object in u�. But (𝑅, 𝑑0, 𝑑1) is a tractable equivalence relation on 𝑋,

so it follows that 𝐴 is also an object in u�.
Hence, every (u�, u�)-extent is indeed an object in u�.

(ii) ⇒ (i). See proposition 2.3.11. ■
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2.4 Functoriality

Synopsis. We investigate sufficient conditions for a functor between gros

pretoposes to preserve atlases and extents.

Prerequisites. §§1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3, a.2, a.3.

2.4.1 ※ Throughout this section:

• 𝜅 is a regular cardinal.

• u�0 is a 𝜅-ary pretopos and u�0 is a unary site for u�0.

• u�1 is a 𝜅-ary pretopos and u�1 is a unary site for u�1.

2.4.2 ¶ To begin, we need to understand when and how functors u�0 → u�1

extend to functors u�0 → u�1.

Let 𝖩0 (resp. 𝖩1) be the restriction of the 𝜅-ary canonical coverage on

u�0 (resp. u�1) to u�0 (resp. u�1) and let 𝖤0 (resp. 𝖤1) be the class of morph-

isms in u�0 (resp. u�1) that are effective epimorphisms in u�0 (resp. u�1).

Note that both (u�0, 𝖤0) and (u�1, 𝖤1) satisfy the Shulman condition, by

proposition 2.1.7.

2.4.2(a) Lemma. Assuming u�0 (resp. u�1) is closed in u�0 (resp. u�1) under 𝜅-ary co-
product, if 𝐹 : u�0 → u�1 is a functor that preserves 𝜅-ary coproducts and
𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is a pre-admissible functor, then 𝐹 : (u�0, 𝖩0) →

(u�1, 𝖩1) is a pre-admissible functor.

Proof. Let 𝐴 be a 𝖩1-sheaf on u�1. Clearly, 𝐴 is also an 𝖤1-sheaf on u�1, so

𝐹 ∗𝐴 is an 𝖤0-sheaf on u�0. Since u�1 is a 𝜅-ary extensive category and 𝖩1

is a 𝜅-ary superextensive coverage on u�1, by lemmas 1.5.15 and 1.5.16,

𝐴 : u�1
op → Set sends 𝜅-ary coproducts in u�1 to 𝜅-ary products in Set.

Hence, 𝐹 ∗𝐴 : u�0
op → Set sends 𝜅-ary coproducts in u�0 to 𝜅-ary prod-

ucts in Set. But u�0 is a 𝜅-ary extensive category and 𝖩0 is a 𝜅-ary super-

extensive coverage on u�0, so it follows that 𝐹 ∗𝐴 is a 𝖩0-sheaf on u�. ■
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2.4.2(b) Lemma. Assuming 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is an admissible functor and

𝐹 : (u�0, 𝖩0) → (u�1, 𝖩1) is a pre-admissible functor:

(i) There exist a functor ̄𝐹 : u�0 → u�1 and an isomorphism 𝜂 : 𝐹 ⇒ ̄𝐹
of functors u�0 → u�1 such that ̄𝐹 : u�0 → u�1 preserves 𝜅-ary coprod-
ucts and sends right-exact forks in u�0 to coequaliser diagrams in u�1.

(ii) Moreover, any such ( ̄𝐹 , 𝜂) is a pointwise left Kan extension of 𝐹 :
u�0 → u�1 along the inclusion u�0 ↪ u�0.

Proof. By lemma 2.1.9, the inclusions u�0 ↪ u�0 and u�1 ↪ u�1 induce

functors Ex(u�0, 𝖤0) → u�0 and Ex(u�1, 𝖤1) → u�1 that are fully faith-

ful and essentially surjective on objects, so by lemma 1.4.24, we have a

pointwise left Kan extension ( ̄𝐹 , 𝜂) of the required type. It remains to be

shown that ̄𝐹 : u�0 → u�1 preserves 𝜅-ary coproducts.

Since 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is an admissible functor, for every

object 𝐴 in u�0 and every object 𝐵 in u�1, we have the following natural

bijection:

u�1( ̄𝐹 𝐴, 𝐵) ≅ HomSh(u�0,𝖤0)(h𝐴, 𝐹 ∗h𝐵)

On the other hand, since 𝐹 : (u�0, 𝖩0) → (u�1, 𝖩1) is a pre-admissible func-

tor, 𝐹 ∗h𝐵 is also a 𝖩0-sheaf on u�0. Thus, by theorems 1.5.15 and 2.1.13,

u�1( ̄𝐹 −, 𝐵) : u�0
op → Set sends 𝜅-ary coproducts in u�0 to 𝜅-ary products

in Set. It follows that ̄𝐹 : u�0 → u�1 preserves 𝜅-ary coproducts. ■

2.4.2(c) Lemma. Let 𝐹 : u�0 → u�1 be a functor, let u�0 be a class of fibrations in

u�0, and assume the following hypotheses:

• 𝐹 : u�0 → u�1 preserves pullbacks of members of u�0.

• 𝐹 : u�0 → u�1 sends members of 𝖤0 ∩ u�0 to members of 𝖤1.

• For every morphism 𝑓 : 𝑋 → 𝑌 in u�0, if 𝑓 : 𝑋 → 𝑌 is a member of

𝖤0, then there is a morphism 𝑝 : �̃� → 𝑋 in u�0 such that 𝑓 ∘𝑝 : �̃� → 𝑌
is a member of u�0 and also a member of 𝖤0.

Then 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is a pre-admissible functor.

Proof. Let 𝖤′
0 = 𝖤0 ∩ u�0. By remark 1.4.5, 𝖤′

0-covering morphisms are

the same as 𝖤0-covering morphisms, so by proposition a.3.7, 𝖤′
0-sheaves
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are the same as 𝖤0-sheaves. On the other hand, every member of 𝖤′
0 has a

kernel pair in u�0, so lemma 1.4.18 implies that 𝐹 : (u�0, 𝖤′
0) → (u�1, 𝖤1)

is a pre-admissible functor. The claim follows. ■

2.4.2(d) Lemma. Let 𝐹 : u�0 → u�1 be a functor. Assume the following hypotheses:

• 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is a pre-admissible functor.

• u�0 has 𝖤0-weak pullback squares.

• 𝐹 : u�0 → u�1 sends 𝖤0-weak pullback squares in u�0 to 𝖤1-weak pull-

back squares in u�1.

Then 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is an admissible functor.

Proof. By corollary a.3.13, 𝐹 : u�0 → u�1 sends 𝖤0-covering morphisms

in u�0 to 𝖤1-covering morphisms in u�1, so the hypotheses imply that 𝐹 :
u�0 → u�1 sends right-𝖤0-exact forks in u�0 to right-𝖤1-exact forks in u�1.

Moreover, by lemma 1.4.21, 𝐹 : u�0 → u�1 sends 𝖤0-local complexes in u�0

to 𝖤1-local complexes in u�1, so we may apply lemma 1.4.25 to complete

the proof. ■

2.4.2(e) Lemma. Let 𝐹 : u�0 → u�1 be a functor. Assuming 𝜅 > ℵ0, the following

are equivalent:

(i) 𝐹 : (u�0, 𝖤0) → (u�, 𝖤1) is an admissible functor.

(ii) 𝐹 : (u�0, 𝖤0) → (u�, 𝖤1) is a pre-admissible functor.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). Let 𝖪1 be the 𝜅-ary canonical coverage on u�1 and let 𝖩1 be

the restriction of 𝖪1 to u�1. (Note that u�1 is a 𝜅-ary site for u�1, so 𝖩1 is a

coverage on u�1, by proposition 2.1.13.) Since 𝐹 : (u�0, 𝖤0) → (u�, 𝖤1) is

a pre-admissible functor, 𝐹 : (u�0, 𝖤0) → (u�, 𝖩1) is also a pre-admissible

functor a fortiori. Thus, by proposition a.3.13, the restriction functor

𝐹 ∗ : Sh(u�1, 𝖩1) → Sh(u�0, 𝖤0) has a left adjoint, say 𝐹! : Sh(u�0, 𝖤0) →
Sh(u�1, 𝖩1). On the other hand, by proposition 1.5.19, the Yoneda repres-

entation u�1 → Sh(u�1, 𝖩1) preserves coequalisers, so 𝐹! sends 𝖤0-locally

1-presentable 𝖤0-sheaves on u�0 to 𝖩1-locally 𝜅-presentable 𝖩1-sheaves on
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u�1. Moreover, by lemma 2.1.9, 𝖩1-locally 𝜅-presentable 𝖩1-sheaves on u�1

are the same as 𝖤1-locally 1-presentable 𝖤1-sheaves on u�1, , so it follows

that 𝐹 : (u�0, 𝖤0) → (u�, 𝖤1) is an admissible functor. ■

2.4.3 ※ For the remainder of this section:

• (u�0, u�0) is a 𝜅-ary gros pretopos and u�0 is a unary basis for (u�0, u�0).

• (u�1, u�1) is a 𝜅-ary gros pretopos and u�1 is a unary basis for (u�1, u�1).

• Given a pullback square in u�0 of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of u�0 and 𝑋, 𝑌 , and 𝑌 ′ are all objects in

u�0, then 𝑋′ is also an object in u�0.

• 𝐹 : u�0 → u�1 is a functor that preserves 𝜅-ary coproducts and sends

right-exact forks in u�0 to coequaliser diagrams in u�1.

• 𝐹 : u�0 → u�1 sends objects in u�0 to objects in u�1.

• Given a morphism 𝑓 : 𝑋 → 𝑌 in u�0, if 𝑓 : 𝑋 → 𝑌 is a member of

u�0, then 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is a member of u�1.

• Given a pullback square in u�0 of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of u�0, then 𝐹 : u�0 → u�1 preserves this

pullback square.

2.4.4 Remark. Under the above assumptions, 𝐹 : u�0 → u�1 preserves effective

epimorphisms. However, 𝐹 : u�0 → u�1 may fail to preserve kernel pairs.

120



2.4. Functoriality

2.4.5 ¶ If we assume that 𝐹 : u�0 → u�1 preserves limits of finite diagrams

(or at least limits of finite connected diagrams), things are much simpler;

for instance, it immediately follows that 𝐹 : u�0 → u�1 preserves exact

forks. However, in some examples, even 𝐹 : u�0 → u�1 fails to preserve

pullbacks, so this is not a reasonable assumption to make. We instead

establish the desired preservation properties of 𝐹 : u�0 → u�1 in several

small steps, starting from the basic assumptions above.

We begin with the following results, which will be required later.

2.4.5(a)
Preservation of

special weak

pullback squares

Lemma. Consider a weak pullback square in u�0 of the form below:

𝑃 𝐴1

𝐴0 𝐵

ℎ1

ℎ0

Assume the following hypotheses:

• 𝐵 is an object in u�0.

• There is a (u�0, u�0)-atlas (𝑋1, 𝑎1) of 𝐴1 in u�0 such that ℎ1 ∘𝑎1 : 𝑋1 →
𝐵 is a member of u�0.

Then 𝐹 : u�0 → u�1 preserves the above weak pullback square.

Proof. Since u�0 is a unary basis for (u�0, u�0), there exist an object 𝑋0

in u�0 and an effective epimorphism 𝑎0 : 𝑋0 ↠ 𝐴0 in u�0. Consider the

following commutative diagram in u�0,

𝑈 𝑃 ×𝐴1
𝑋1 𝑋1

𝑋0 ×𝐴0
𝑃 𝑃 𝐴1

𝑋0 𝐴0 𝐵

𝑎1

ℎ1

𝑎0 ℎ0

where the top left, top right, and bottom left squares are pullback squares

in u�0. By the weak pullback pasting lemma (lemma a.2.19), the outer

square is a weak pullback square in u�0. Since ℎ1 ∘ 𝑎1 : 𝑋1 → 𝐵 is

a member of u�0 and 𝑋0, 𝑋1, and 𝐵 are all objects in u�0, 𝐹 : u�0 →
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u�1 sends the outer square to a weak pullback square in u�1. Hence, by

lemma 1.4.19(a), 𝐹 : u�0 → u�1 also sends the inner square to a weak

pullback square in u�1. ■

2.4.5(b)
Preservation

of special open

embeddings

Lemma.

(i) If ℎ : 𝐴 → 𝐵 is an open embedding in u�0 and 𝐵 is an object in u�0,

then 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is an open embedding in u�1.

(ii) Given a pullback square in u�0 of the form below,

𝐴′ 𝐴

𝐵′ 𝐵

ℎ′ ℎ

if ℎ : 𝐴 → 𝐵 is an open embedding in u�0 and both 𝐵′ and 𝐵 are

objects in u�0, then 𝐹 : u�0 → u�1 preserves this pullback square.

Proof. (i). By lemma 2.4.5(a), the following is a weak pullback square

in u�1:

𝐹 𝐴 𝐹 𝐴

𝐹 𝐴 𝐹 𝐵

id

id

𝐹 ℎ

𝐹 ℎ

In other words, the relative diagonal Δ𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐴 ×𝐹 𝐵 𝐹 𝐴 is an

effective epimorphism in u�1. But Δ𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐴 ×𝐹 𝐵 𝐹 𝐴 is also a

(split) monomorphism in u�1, so this implies it is an isomorphism. Hence,

𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is a monomorphism in u�1.

It remains to be shown that 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is an étale morphism in

u�1, and by lemma 1.2.19(a), it is enough to verify that 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵
is of u�1-type semilocally on the domain. Since u�0 is a unary basis for

(u�0, u�0), there is a (u�0, u�0)-atlas of 𝐴 in u�0, say (𝑋, 𝑎). Then 𝐹 𝑎 :
𝐹 𝑋 ↠ 𝐹 𝐴 is an effective epimorphism in u�1 and 𝐹 ℎ ∘ 𝐹 𝑎 : 𝐹 𝑋 → 𝐹 𝐵
is an étale morphism in u�1, so we are done.

(ii). We know the following is a weak pullback square in u�1:

𝐹 𝐴′ 𝐹 𝐴

𝐹 𝐵′ 𝐹 𝐵

𝐹 ℎ′ 𝐹 ℎ
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Since 𝐹 ℎ′ : 𝐹 𝐴′ → 𝐹 𝐵′ is a monomorphism in u�1, the induced morph-

ism 𝐹 𝐴′ → 𝐹 𝐵′ ×𝐹 𝐵 𝐹 𝐴 is also a monomorphism in u�1. But any

monomorphism that is an effective epimorphism is an isomorphism, so

the above is indeed a pullback square in u�1. ■

2.4.5(c)
Preservation

of special

étale equival-

ence relations

Lemma. Let 𝑋 be an object in u�0 and let (𝑅, 𝑑0, 𝑑1) be an étale equival-

ence relation on 𝑋 in u�0.

(i) If ⟨𝐹 𝑑1, 𝐹 𝑑0⟩ : 𝐹 𝑅 → 𝐹 𝑋 × 𝐹 𝑋 is a monomorphism in u�1, then

(𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an equivalence relation on 𝐹 𝑋 in u�1.

Furthermore, if there is an étale morphism 𝑓 : 𝑋 → 𝑌 in u�0 such that

𝑓 ∘ 𝑑0 = 𝑓 ∘ 𝑑1, then:

(ii) (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an étale equivalence relation on 𝐹 𝑋 in u�1.

(iii) If (𝑅, 𝑑0, 𝑑1) is a kernel pair of an (étale) effective epimorphism 𝑎 :
𝑋 ↠ 𝐴 in u�0, then 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴 is an étale effective epimorphism

in u�1 and (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is a kernel pair of 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴 in u�1.

Proof. (i). (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is clearly reflexive and symmetric as a rela-

tion on 𝐹 𝑋, so it suffices to verify transitivity. Consider a pullback square

in u�0 of the form below:

𝑅2 𝑅

𝑅 𝑋

𝑑2

𝑑0

𝑑1

𝑑0

By lemma 2.4.5(a), its image is a weak pullback square in u�1. On the

other hand, since (𝑅, 𝑑0, 𝑑1) is an equivalence relation on 𝑋 in u�1, there

is a (necessarily unique) morphism 𝑑1 : 𝑅2 → 𝑅 in u�1 such that 𝑑0 ∘ 𝑑1 =
𝑑0 ∘ 𝑑0 and 𝑑1 ∘ 𝑑1 = 𝑑1 ∘ 𝑑2. It follows that (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is transitive,

so we indeed have an equivalence relation on 𝐹 𝑋 in u�1.

(ii). Since ⟨𝑑1, 𝑑0⟩ : 𝑅 → 𝑋 ×𝑌 𝑋 is an open embedding in u�0 (by

lemma 1.1.10) and 𝑋 ×𝑌 𝑋 is an object in u�0, lemma 2.4.5(b) implies

that ⟨𝐹 𝑑1, 𝐹 𝑑0⟩ : 𝐹 𝑅 → 𝐹 𝑋 ×𝐹 𝑌 𝐹 𝑋 is an open embedding in u�1. In

particular, the projections 𝐹 𝑑0, 𝐹 𝑑1 : 𝐹 𝑅 → 𝐹 𝑋 are étale morphisms in
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u�1 and ⟨𝐹 𝑑1, 𝐹 𝑑0⟩ : 𝐹 𝑅 → 𝐹 𝑋 × 𝐹 𝑋 is a monomorphism in u�1. Thus,

by (i), (𝐹 𝑅, 𝐹 𝑑1, 𝐹 𝑑0) is an étale equivalence relation on 𝐹 𝑋 in u�1.

(iii). The following is a coequaliser diagram in u�1,

𝐹 𝑅 𝐹 𝑋 𝐹 𝐴
𝐹 𝑑0

𝐹 𝑑1

𝐹 𝑎

but (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an étale equivalence relation on 𝐹 𝑋 in u�1, so it is

indeed the kernel pair of 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴. Furthermore, there is a unique

morphism 𝑦 : 𝐴 → 𝑌 in u�0 such that 𝑦 ∘ 𝑎 = 𝑓 , and 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is

an étale morphism in u�1, so both 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴 and 𝐹 𝑦 : 𝐹 𝐴 → 𝐹 𝑌
are étale morphisms in u�1. ■

2.4.6
Preservation

of special étale

morphisms

Lemma. If ℎ : 𝐴 → 𝐵 is a member of u�0 and 𝐵 is an object in u�0, then

𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is a member of u�1.

Proof. Since u�0 is a unary basis for (u�0, u�0), there is a (u�0, u�0)-atlas
of 𝐴, say (𝑋, 𝑎). Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of 𝑎 : 𝑋 ↠ in u�0. By

lemma 2.4.5(c), (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an étale equivalence relation and also

a kernel pair of 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴 in u�1. We know that 𝐹 ℎ ∘ 𝐹 𝑎 : 𝐹 𝑋 →
𝐹 𝐵 is an étale morphism in u�1, so it follows that both 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴
and 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 are also étale morphisms in u�1. ■

Properties of the

induced functor

between special

petit pretoposes

Proposition. For every object 𝑍 in u�0, the functor (u�0)∕𝑍 → (u�1)∕𝐹 𝑍

induced by 𝐹 : u�0 → u�1 preserves:

(i) 𝜅-ary coproducts,

(ii) effective epimorphisms,

(iii) finitary products,

(iv) pullbacks, and

(v) exact forks.

Proof. (i) and (ii). Since 𝐹 : u�0 → u�1 preserves 𝜅-ary coproducts

and effective epimorphisms, the same is true of the functor (u�0)∕𝑍 →

(u�1)∕𝐹 𝑍 , by proposition 2.3.5.
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(iii). It is clear that the induced functor (u�0)∕𝑍 → (u�1)∕𝐹 𝑍 preserves

terminal objects, and it is enough to verify that the functor preserves bin-

ary products.

Let ℎ0 : 𝐴0 → 𝑍 and ℎ1 : 𝐴1 → 𝑍 be étale morphisms in u�0,

let (𝑋0, 𝑎0) be a (u�0, u�0)-atlas of 𝐴0, let (𝑋1, 𝑎1) be a (u�0, u�0)-atlas
of 𝐴1, let (𝑅0, 𝑑0,0, 𝑑0,1) be a kernel pair of 𝑎0 : 𝑋0 ↠ 𝐴0, and let

(𝑅1, 𝑑1,0, 𝑑1,1) be a kernel pair of 𝑎1 : 𝑋1 ↠ 𝐴1. It is straightforward to

verify that (𝑅0 ×𝑍 𝑅1, 𝑑0,0 ×𝑍 𝑑1,0, 𝑑0,1 ×𝑍 𝑑1,1) is a kernel pair of the

effective epimorphism 𝑎0 ×𝑍 𝑎1 : 𝑋0 ×𝑍 𝑋1 ↠ 𝐴0 ×𝑍 𝐴1. On the other

hand, by lemma 2.4.5(b), we see that 𝐹 : u�0 → u�1 preserves the pullback

squares in the following commutative diagram in u�0,

𝑅0 ×𝑍 𝑅1 (𝑋0 ×𝑍 𝑋0) ×𝑍 𝑅1 𝑅1

𝑅0 ×𝑍 (𝑋1 ×𝑍 𝑋1) (𝑋0 ×𝑍 𝑋0) ×𝑍 (𝑋1 ×𝑍 𝑋1) 𝑋1 ×𝑍 𝑋1

𝑅0 𝑋0 ×𝑍 𝑋0 𝑍

so by lemma 2.4.5(c), we have the following coequaliser diagram in u�1,

𝐹 𝑅0 ×𝐹 𝑍 𝐹 𝑅1 𝐹 𝑋0 ×𝐹 𝑍 𝐹 𝑋1 𝐹 (𝐴0 ×𝑍 𝐴1)
𝐹 𝑑0,0×𝐹 𝑍𝐹 𝑑1,0

𝐹 𝑑0,1×𝐹 𝑍𝐹 𝑑1,1

𝐹 (𝑎0×𝑍𝑎1)

where (by abuse of notation) we have elided the canonical isomorphism

𝐹 𝑋0 ×𝐹 𝑍 𝐹 𝑋1 ≅ 𝐹 (𝑋0 ×𝑍 𝑋1). In particular, 𝐹 : u�0 → u�1 preserves

𝐴0 ×𝑍 𝐴1.

(iv). First, we will show that (u�0)∕𝑍 → (u�1)∕𝐹 𝑍 sends pullback squares

in (u�0)∕𝑍 to weak pullback squares in (u�1)∕𝐹 𝑍 .

Let ℎ0 : 𝐴0 → 𝐵 be a morphism in u�0, let ℎ1 : 𝐴1 → 𝐵 and 𝑧 :
𝐵 → 𝑍 be étale morphisms in u�0, let (𝑌 , 𝑏) be a (u�0, u�0)-atlas of 𝐵
in u�0, let (𝑋1, ⟨𝑎1, 𝑓1⟩) be a (u�0, u�0)-atlas of 𝐴1 ×𝐵 𝑌 in u�0, and let

⟨𝑎0, 𝑓0⟩ : 𝑋0 ↠ 𝐴0 ×𝐵 𝑌 be an effective epimorphism in u�0 where 𝑋0 is
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an object in u�0. We have the following pullback square in u�0,

𝑋0 ×𝐵 𝑋1 𝑌 ×𝐵 𝑌

𝑋0 ×𝑍 𝑋1 𝑌 ×𝑍 𝑌

id𝑋0×𝑧id𝑋1

𝑓0×𝐵𝑓1

id𝑌 ×𝑧id𝑌

𝑓0×𝑍𝑓1

and since𝑋0×𝑍𝑋1 and 𝑌 ×𝑍𝑌 are both objects in u�0 and id𝑌 ×𝑧id𝑌 : 𝑌 ×𝐵

𝑌 → 𝑌 ×𝑍 𝑌 is an open embedding, 𝐹 : u�0 → u�1 preserves this pullback

square, by lemma 2.4.5(b). On the other hand, by lemma 2.4.5(c), 𝐹 :
u�0 → u�1 preserves kernel pairs of 𝑏 : 𝑌 ↠ 𝐵 and 𝑧 ∘ 𝑏 : 𝑌 → 𝑍. Thus,

in the following commutative diagram in u�1,

𝐹 (𝑋0 ×𝐵 𝑋1) 𝐹 (𝑌 ×𝐵 𝑌 ) 𝐹 𝐵

𝐹 (𝑋0 ×𝑍 𝑋1) 𝐹 (𝑌 ×𝑍 𝑌 ) 𝐹 𝐵 ×𝐹 𝑍 𝐹 𝐵 𝐹 𝑍

𝐹 𝑋0 × 𝐹 𝑋1 𝐹 𝑌 × 𝐹 𝑌 𝐹 𝐵 × 𝐹 𝐵 𝐹 𝑍 × 𝐹 𝑍

Δ𝐹 𝑧
𝐹 𝑧

Δ𝐹 𝑍

𝐹 𝑓0×𝐹 𝑓1 𝐹 𝑏×𝐹 𝑏 𝐹 𝑧×𝐹 𝑧

each square is a pullback square in u�1. Hence, in the commutative dia-

gram in u�1 shown below,

𝐹 (𝑋0 ×𝐵 𝑋1) 𝐹 𝑋1

𝐹 (𝐴0 ×𝐵 𝐴1) 𝐹 𝐴1

𝐹 𝑋0 𝐹 𝐴0 𝐹 𝐵

𝐹 𝑎1

𝐹 ℎ1

𝐹 𝑎0 𝐹 ℎ

the outer square is a pullback square in u�1, so the inner square is indeed

a weak pullback square in u�1, by lemma 1.4.19(a).

It follows from the above that the functor (u�0)∕𝑍 → (u�1)∕𝐹 𝑍 pre-

servesmonomorphisms and pullbacks ofmonomorphisms. Thus, we have

the following commutative square in u�1,

𝐹 (𝐴0 ×𝐵 𝐴1) 𝐹 𝐴0 ×𝐹 𝐵 𝐹 𝐴1

𝐹 (𝐴0 ×𝑍 𝐴1) 𝐹 𝐴0 ×𝐹 𝑍 𝐹 𝐴1≅
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where the vertical arrows are monomorphisms and the horizontal arrows

are the canonical comparison morphisms. It follows that the comparison

𝐹 (𝐴0 ×𝐵 𝐴1) → 𝐹 𝐴0 ×𝐹 𝐵 𝐹 𝐴1 is both an effective epimorphism and a

monomorphism, so it is indeed an isomorphism.

(v). Combine (ii) and (iv). ■

Remark. The arguments used above can also be used to establish the

universal property of the exact completion of a category with limits of

finite diagrams and a subcanonical unary topology.

2.4.7
Preservation of

base changes

of special étale

morphisms

Proposition. Given a pullback square in u�0 of the form below,

𝐴 𝐵

𝑋 𝑌

𝑝

ℎ

𝑞

𝑓

if 𝑓 : 𝑋 → 𝑌 is a morphism in u�0 and 𝑞 : 𝐵 → 𝑌 is a member of u�0,

then 𝐹 : u�0 → u�1 preserves this pullback square.

Proof. There is a exact fork in u�0 of the form below,

𝑅 ̃𝐵 𝐵
𝑑0

𝑑1

𝑏

where 𝑑0, 𝑑1 : 𝑅 → ̃𝐵 and 𝑏 : ̃𝐵 → 𝐵 are all étale morphisms in u�0 and

̃𝐵 is an object in u�0. Consider the following commutative diagram in u�0,

𝑋 ×𝑌 𝑅 𝑅

𝑋 ×𝑌 ̃𝐵 ̃𝐵

𝐴 𝐵

𝑋 𝑌

𝑑0 𝑑1

𝑏

𝑝

ℎ

𝑞

𝑓

where the squares are pullback squares in u�0. Note that ⟨𝑑1, 𝑑0⟩ : 𝑅 →
̃𝐵 ×𝑌 ̃𝐵 is an open embedding (by lemma 1.1.10) and that ̃𝐵 ×𝑌 ̃𝐵 is
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an object in u�0. Since exact forks are preserved by pullback in u�0, by

lemma 2.4.5(b) and proposition 2.4.6, both squares in the following dia-

gram in u�1 are pullback squares in u�1,

𝐹 (𝑋 ×𝑌 𝑅) 𝐹 𝑅

𝐹 (𝑋 ×𝑌 ( ̃𝐵 ×𝑌 ̃𝐵)) 𝐹 ( ̃𝐵 ×𝑌 ̃𝐵)

𝐹 𝑋 𝐹 𝑌

𝐹 ⟨𝑑1,𝑑0⟩

𝐹 𝑓

and we have a commutative diagram in u�1 of the form below,

𝐹 (𝑋 ×𝑌 𝑅) 𝐹 𝑅

𝐹 (𝑋 ×𝑌 ̃𝐵) 𝐹 ̃𝐵

𝐹 𝐴 𝐹 𝐵

𝐹 𝑋 𝐹 𝑌

𝐹 𝑏

𝐹 𝑝

𝐹 ℎ

𝐹 𝑞

𝐹 𝑓

where the columns are exact forks in u�1 and every rectangle with base

𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is a pullback diagram in u�1, except possibly the bot-

tom square. But lemma 1.4.19(b) is applicable, so we have the following

pullback square in u�1:

𝐹 (𝑋 ×𝑌 ̃𝐵) 𝐹 ̃𝐵

𝐹 𝐴 𝐹 𝐵

𝐹 𝑏

𝐹 ℎ

We can then apply lemma 1.4.19(c) to complete the proof. ■

2.4.8 ¶ Under some additional assumptions, we can show that 𝐹 : u�0 → u�1

sends (u�0, u�0)-extents in u�0 to (u�1, u�1)-extents in u�1.
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2.4.8(a)
Preservation

of special

étale effective

epimorphisms

Proposition. Assuming 𝐹 : u�0 → u�1 sends étale equivalence relations

on objects in u�0 to equivalence relations in u�1 and u�1 is a class of étale

morphisms in u�1:

(i) If ℎ : 𝐴 ↠ 𝐵 is an étale effective epimorphism in u�0 and 𝐴 is an

object in u�0, then 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is a étale effective epimorphism in

u�1, and 𝐹 : u�0 → u�1 preserves kernel pairs of ℎ : 𝐴 ↠ 𝐵.

(ii) In particular,𝐹 : u�0 → u�1 sends (u�0, u�0)-extents inu�0 to (u�1, u�1)-
extents in u�1.

Proof. (i). Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of ℎ : 𝐴 → 𝐵 in u�0. Then

(𝑅, 𝑑0, 𝑑1) is an étale equivalence relation on 𝐴, so lemma 2.4.6 and the

hypothesis implies that (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an étale equivalence relation

on 𝐹 𝐴. On the other hand, the following is a coequaliser diagram in u�1,

𝐹 𝑅 𝐹 𝐴 𝐹 𝐵
𝐹 𝑑0

𝐹 𝑑1

𝐹 ℎ

so (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is indeed a kernel pair of 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 in u�1.

Hence, by lemma 2.2.8(b), 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is indeed an étale morphism

in u�1.

(ii). This is an immediate consequence of (i). ■

2.4.8(b)
Preservation of

special effective-

epimorphic local

homeomorphisms

Proposition. Assuming u�0 is the class of local homeomorphisms in u�0

and (u�1, u�1) satisfies the descent axiom for open embeddings:

(i) If ℎ : 𝐴 ↠ 𝐵 is a laminar effective epimorphism in u�0 and there

is a local homeomorphism 𝐴 → 𝑋 in u�0 where 𝑋 is an object in u�0,

then 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is also a laminar effective epimorphism in u�1,

and 𝐹 : u�0 → u�1 preserves kernel pairs of ℎ : 𝐴 ↠ 𝐵.

(ii) If ℎ : 𝐴 ↠ 𝐵 is both an effective epimorphism and a local homeo-

morphism in u�0 and 𝐴 is an object in u�0, then 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is an

effective epimorphism and a local homeomorphism in u�1.

(iii) In particular,𝐹 : u�0 → u�1 sends (u�0, u�0)-extents inu�0 to (u�1, u�1)-
extents in u�1.
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Proof. (i). First, note that the existence of an object 𝑋 in u�0 and a local

homeomorphism 𝐴 → 𝑋 in u�0 ensures that (u�0)∕𝐴 → (u�1)∕𝐹 𝐴 pre-

serves limits of finite diagrams, by proposition 2.4.6.

Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of ℎ : 𝐴 ↠ 𝐵 in u�0. We will now

show that (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is a tractable equivalence relation in u�1. By

hypothesis, 𝐴 is the disjoint union of a 𝜅-small set Φ of subobjects of 𝐴
such that, for every (𝑈, 𝑎) ∈ Φ, ℎ ∘ 𝑎 : 𝑈 → 𝐵 is an open embedding in

u�0. Thus,

𝑅 ≅ ∐
(𝑈0,𝑎0)∈Φ
(𝑈1,𝑎1)∈Φ

𝑈0 ×𝐵 𝑈1

as objects in (u�0)∕𝐴×𝐴, and since the projections 𝑈0 ×𝐵 𝑈1 → 𝑈0 and

𝑈0 ×𝐵 𝑈1 → 𝑈1 are open embeddings in u�0, the projections 𝑑0, 𝑑1 : 𝑅 →
𝐴 are laminar morphisms in u�0. Thus,

𝐹 𝑅 ≅ ∐
(𝑈0,𝑎0)∈Φ
(𝑈1,𝑎1)∈Φ

𝐹 (𝑈0 ×𝐵 𝑈1)

as objects in (u�1)∕𝐹 𝐴×𝐹 𝐴 and, by proposition 2.4.6, 𝐹 sends the projec-

tions 𝑈0 ×𝐵 𝑈1 → 𝑈0 and 𝑈0 ×𝐵 𝑈1 → 𝑈1 to open embeddings in u�1, so

the induced morphism 𝐹 (𝑈0 ×𝐵 𝑈1) → 𝐹 𝑈0 × 𝐹 𝑈1 is a monomorphism

in u�1. Since the class of monomorphisms in u�1 is closed under 𝜅-ary co-

product, it follows that ⟨𝑑1, 𝑑0⟩ : 𝐹 𝑅 → 𝐹 𝐴×𝐹 𝐴 is a monomorphism in

u�1. Moreover, 𝐹 𝑑0, 𝐹 𝑑1 : 𝐹 𝑅 → 𝐹 𝐴 are laminar morphisms in u�1, so

by (proposition 2.3.13 and) lemma 2.4.5(c), (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is an étale

equivalence relation on 𝐹 𝐴 in u�1. In addition, for every (𝑈, 𝑎) ∈ Φ, we

have the following commutative diagram in u�0,

𝑈 𝑅 ×𝐴 𝑈 𝑈

𝑈 ×𝐴 𝑅 𝑅 𝐴

𝑈 𝐴

⟨id𝑈 ,⟨𝑎,𝑎⟩⟩

⟨⟨𝑎,𝑎⟩,id𝑈 ⟩

𝑎

𝑑1

𝑑0

𝑎

where every square is a pullback square in u�0. Using the pullback pasting

lemma, it is not hard to see that these pullback squares are preserved by
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𝐹 : u�0 → u�1, and it follows that (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is a tractable equi-

valence relation on 𝐹 𝐴 in u�1. The above also implies that, for every

(𝑈, 𝑎) ∈ Φ, 𝐹 ℎ ∘ 𝐹 𝑎 : 𝐹 𝑈 → 𝐹 𝐵 is a monomorphism in u�1.

On the other hand, the following is a coequaliser diagram in u�1,

𝐹 𝑅 𝐹 𝐴 𝐹 𝐵
𝐹 𝑑0

𝐹 𝑑1

𝐹 ℎ

so (𝐹 𝑅, 𝐹 𝑑0, 𝐹 𝑑1) is indeed a kernel pair of 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 in u�1.

Hence, by lemma 2.2.14(c), 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is a local homeomorphism

in u�1. In particular, for every (𝑈, 𝑎) ∈ Φ, 𝐹 ℎ ∘ 𝐹 𝑎 : 𝐹 𝑈 → 𝐹 𝐵 is an

open embedding in u�1, so 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is indeed a laminar effective

epimorphism in u�1.

(ii). Let ℎ : 𝐴 → 𝐵 be a local homeomorphism in u�0 where 𝐴 is

an object in u�0. By proposition 2.3.13, there is a laminar effective epi-

morphism 𝑝 : ̃𝐴 ↠ 𝐴 in u�0 such that ℎ ∘ 𝑝 : ̃𝐴 → 𝐵 is a laminar

morphism in u�0. Since the induced functor (u�0)∕𝐴 → (u�1)∕𝐹 𝐴 pre-

serves limits of finite diagrams, 𝜅-ary coproducts, and effective epimorph-

isms, 𝐹 𝑝 : 𝐹 ̃𝐴 → 𝐹 𝐴 is a laminar effective epimorphism in u�1. More-

over, by (i), if ℎ : 𝐴 → 𝐵 is an effective epimorphism in u�1, then

𝐹 ℎ ∘ 𝐹 𝑝 : 𝐹 ̃𝐴 ↠ 𝐹 𝐵 is also a laminar effective epimorphism in u� .

Thus, by proposition 2.2.12, 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is indeed (an effective

epimorphism and) a local homeomorphism in u�1.

(iii). This is an immediate consequence of (ii). ■

2.4.9 ※ For the remainder of this section, we make the following additional

assumptions:

• Given an effective epimorphism ℎ : 𝐴 ↠ 𝐵 in u�0, if ℎ : 𝐴 ↠ 𝐵 is

a member of u�0 and 𝐴 is an object in u�0, then 𝐹 ℎ : 𝐹 𝐴 ↠ 𝐹 𝐵 is a

member of u�1.

• For every (u�0, u�0)-extent 𝐴 in u�0, there exist an effective epimorph-

ism 𝑝 : ̃𝐴 → 𝐴 in u�0 and a morphism 𝑥 : ̃𝐴 → 𝑋 in u�0 such that 𝑋 is

an object in u�0, both 𝑝 : ̃𝐴 → 𝐴 and 𝑥 : ̃𝐴 → 𝑋 are members of u�0,

and 𝐹 : u�0 → u�1 preserves kernel pairs of 𝑝 : ̃𝐴 → 𝐴.
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2.4.10 ¶ Though the above assumptions seemweak, we will see that it has some

important consequences, which eventually lead to a more elegant formu-

lation. For instance, the first assumption can be replaced with the follow-

ing:

Lemma. If ℎ : 𝐴 → 𝐵 is a member of u�0 and 𝐵 is a (u�0, u�0)-extent in
u�0, then 𝐹 ℎ : 𝐹 𝐴 → 𝐹 𝐵 is a member of u�1.

Proof. By lemma 2.3.10(a), there is a commutative square in u�0 of the

form below,
𝑋 𝐴

𝑌 𝐵

𝑓

𝑎

ℎ

𝑏

where 𝑓 : 𝑋 → 𝑌 is an étale morphism in u�0 and both 𝑎 : 𝑋 ↠ 𝐴 and

𝑏 : 𝑌 ↠ 𝐵 are étale effective epimorphisms in u�0. Then, by assumption,

𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is an étale morphism in u�1 and both 𝐹 𝑎 : 𝐹 𝑋 ↠ 𝐹 𝐴
and 𝐹 𝑏 : 𝐹 𝑌 ↠ 𝐹 𝐵 are étale effective epimorphisms in u�1, so 𝐹 ℎ :
𝐹 𝐴 → 𝐹 𝐵 is indeed an étale morphism in u�1. ■

2.4.11
Preservation

of pullbacks

of special

étale effective

epimorphisms

Lemma. Consider a pullback square in u�0 of the form below:

̃𝐴 𝐴

̃𝐵 𝐵

ℎ̃

𝑝

ℎ

𝑞

Assuming the following hypotheses:

• 𝑝 : ̃𝐴 ↠ 𝐴 is an étale effective epimorphism in u�0.

• 𝑞 : ̃𝐵 → 𝐵 is an étale morphism in u�0.

• 𝐹 : u�0 → u�1 preserves kernel pairs of 𝑝 : ̃𝐴 ↠ 𝐴 and 𝑞 : ̃𝐵 → 𝐵.

• 𝐹 : u�0 → u�1 preserves pullbacks of étale morphisms along ℎ̃ : ̃𝐴 →
̃𝐵.

Then 𝐹 : u�0 → u�1 also preserves the above pullback square.

Proof. Apply lemma 1.4.19(b). ■
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Properties of

the induced

functor between

petit pretoposes

over extents

Proposition. For every (u�0, u�0)-extent 𝐸 in u�0, the functor (u�0)∕𝐸 →

(u�1)∕𝐹 𝐸 induced by 𝐹 : u�0 → u�1 preserves:

(i) limits of finite diagrams,

(ii) 𝜅-ary coproducts, and

(iii) exact forks.

Proof. (i). It suffices to prove the following:

• Given a pullback square in u�0 of the form below,

𝑃 𝐴1

𝐴0 𝐵

ℎ1

ℎ0

if 𝐵 is a (u�0, u�0)-extent in u�0 and both ℎ0 : 𝐴0 → 𝐵 and ℎ1 : 𝐴1 → 𝐵
are members of u�0, then 𝐹 : u�0 → u�1 preserves this pullback square.

Let 𝑞 : ̃𝐵 → 𝐵 be an étale effective epimorphism in u�0 such that there

exist an object 𝑌 in u�0 and a étale morphism ̃𝐵 → 𝑌 in u�0 and 𝐹 : u�0 →
u�1 preserves kernel pairs of 𝑞 : ̃𝐵 → 𝐵. By the pullback pasting lemma,

we have the following pullback square in u�0,

̃𝐵 ×𝐵 𝑃 ̃𝐵 ×𝐵 𝐴1

̃𝐵 ×𝐵 𝐴0 ̃𝐵

and by proposition 2.4.6, 𝐹 : u�0 → u�1 preserves this pullback square.

On the other hand, by (lemma 2.3.10(a) and) lemma 2.4.10, 𝐹 : u�0 → u�1

sends the projections ̃𝐵 ×𝐵 𝑃 ↠ 𝑃 , ̃𝐵 ×𝐵 𝐴0 ↠ 𝐴0, and ̃𝐵 ×𝐵 𝐴1 ↠ 𝐴1

to étale effective epimorphisms in u�1. Let (𝑅, 𝑑0, 𝑑1) be a kernel pair of

𝑞 : ̃𝐵 ↠ 𝐵 in u�0. Then 𝐹 : u�0 → u�1 preserves each of the following

parallel pairs of pullback squares,

𝑅 ×𝐵 𝑃 ̃𝐵 ×𝐵 𝑃

𝑅 ̃𝐵

𝑑0×𝐵id𝑃

𝑑1×𝐵id𝑃

𝑑0

𝑑1
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𝑅 ×𝐵 𝐴0 ̃𝐵 ×𝐵 𝐴0

𝑅 ̃𝐵

𝑑0×𝐵id𝐴0

𝑑1×𝐵id𝐴0

𝑑0

𝑑1

𝑅 ×𝐵 𝐴1 ̃𝐵 ×𝐵 𝐴1

𝑅 ̃𝐵

𝑑0×𝐵id𝐴1

𝑑1×𝐵id𝐴1

𝑑0

𝑑1

and it follows that 𝐹 : u�0 → u�1 preserves the following exact forks:

𝑅 ×𝐵 𝑃 ̃𝐵 ×𝐵 𝑃 𝑃
𝑑0×𝐵id𝑃

𝑑1×𝐵id𝑃

𝑅 ×𝐵 𝐴0 ̃𝐵 ×𝐵 𝐴0 𝐴0

𝑑0×𝐵id𝐴0

𝑑1×𝐵id𝐴0

𝑅 ×𝐵 𝐴1 ̃𝐵 ×𝐵 𝐴1 𝐴1

𝑑0×𝐵id𝐴1

𝑑1×𝐵id𝐴1

Moreover, 𝐹 : u�0 → u�1 preserves pullbacks of étale morphisms along

the projections ̃𝐵 ×𝐵 𝑃 → ̃𝐵, ̃𝐵 ×𝐵 𝐴0 → ̃𝐵, and ̃𝐵 ×𝐵 𝐴1 → ̃𝐵, so by

lemma 2.4.11, 𝐹 : u�0 → u�1 also preserves these pullback squares:

̃𝐵 ×𝐵 𝑃 𝑃

̃𝐵 𝐵𝑞

̃𝐵 ×𝐵 𝐴0 𝐴0

̃𝐵 𝐵𝑞

̃𝐵 ×𝐵 𝐴1 𝐴1

̃𝐵 𝐵𝑞

Thus, in the following commutative diagrams in u�1,

𝐹 ( ̃𝐵 ×𝐵 𝑃 ) 𝐹 ( ̃𝐵 ×𝐵 𝐴1) 𝐹 𝐴1

𝐹 ( ̃𝐵 ×𝐵 𝐴0) 𝐹 ̃𝐵 𝐹 𝐵
𝐹 𝑞

𝐹 ( ̃𝐵 ×𝐵 𝑃 ) 𝐹 𝑃

𝐹 ( ̃𝐵 ×𝐵 𝐴0) 𝐹 𝐴0

𝐹 ̃𝐵 𝐹 𝐵
𝐹 𝑞
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all the squares are pullback squares in u�1, and by the pullback pasting

lemma, in the following commutative diagram in u�1,

𝐹 ( ̃𝐵 ×𝐵 𝑃 ) 𝐹 𝑃 𝐹 𝐴1

𝐹 ( ̃𝐵 ×𝐵 𝐴0) 𝐹 𝐴0 𝐹 𝐵

𝐹 ℎ1

𝐹 ℎ0

the left square and outer rectangle are pullback diagrams in u�1. Hence,

by lemma 1.4.19(c), the right square is indeed a pullback square in u�1.

(ii) and (iii). Since 𝐹 : u�0 → u�1 preserves 𝜅-ary coproducts and exact

forks, the same is true of the functor (u�0)∕𝐸 → (u�1)∕𝐹 𝐸 , by proposi-

tion 2.3.5 and (i). ■

2.4.12
Preservation of

base changes

of étale morph-

isms of extents

Proposition. Given a pullback square in u�0 of the form below,

𝐶 𝐷

𝐴 𝐵

𝑝

𝑘

𝑞

ℎ

if ℎ : 𝐴 → 𝐵 is a morphism in Xt(u�0, u�0) and 𝑞 : 𝐷 → 𝐵 is a member

of u�0, then 𝐹 : u�0 → u�1 preserves this pullback square.

Proof. Let (𝑌 , 𝑏) be a (u�0, u�0)-atlas of𝐵 and let (𝑋, ⟨𝑎, 𝑓⟩) be a (u�0, u�0)-
atlas of 𝐴 ×𝐵 𝑌 . By the pullback pasting lemma, we have the following

commutative diagram in u�0,

𝐷 ×𝐵 𝑋 𝐶 ×𝐵 𝑌 𝐷 ×𝐵 𝑌

𝑋 𝐴 ×𝐵 𝑌 𝑌

𝑝×𝐵id𝑌

𝑘×𝐵id𝑌

⟨𝑎,𝑓⟩

where the squares are pullback squares in u�0, the vertical arrows are étale

morphisms in u�0, the composite 𝐷 ×𝐵 𝑋 → 𝐶 ×𝐵 𝑌 → 𝐷 ×𝐵 𝑌 is

id𝐷 ×𝐵 𝑓 : 𝐷 ×𝐵 𝑋 → 𝐷 ×𝐵 𝑌 , and 𝐷 ×𝐵 𝑋 ↠ 𝐶 ×𝐵 𝑌 is an étale

effective epimorphism in u�0. Thus, by proposition 2.4.7, the following is
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a pullback square in u�1:

𝐹 (𝐷 ×𝐵 𝑋) 𝐹 (𝐷 ×𝐵 𝑌 )

𝐹 𝑋 𝐹 𝑌

𝐹 (id𝐷×𝐵𝑓)

𝐹 𝑓

On the other hand, by lemma 2.3.10(a) and proposition 2.4.11, we also

have the following pullback square in u�1,

𝐹 (𝐷 ×𝐵 𝑋) 𝐹 (𝐶 ×𝐵 𝑌 )

𝐹 𝑋 𝐹 (𝐴 ×𝐵 𝑌 )

𝐹 (𝑝×𝐵id𝑌 )

𝐹 ⟨𝑎,𝑓⟩

where the horizontal arrows are étale effective epimorphisms in u�1, so

we may apply lemma 1.4.19(c) to deduce that the following is a pullback

square in u�1:

𝐹 (𝐶 ×𝐵 𝑌 ) 𝐹 (𝐷 ×𝐵 𝑌 )

𝐹 (𝐴 ×𝐵 𝑌 ) 𝐹 𝑌

𝐹 (𝑝×𝐵id𝑌 )

𝐹 (𝑘×𝐵id𝑌 )

On the other hand, we have the following pullback square in u�1,

𝐹 (𝐷 ×𝐵 𝑌 ) 𝐹 𝐷

𝐹 𝑌 𝐹 𝐵

𝐹 𝑞

𝐹 𝑏

so the outer rectangle of the following commutative diagram in u�1 is a

pullback diagram in u�1:

𝐹 (𝐶 ×𝐵 𝑌 ) 𝐹 𝐶 𝐹 𝐷

𝐹 (𝐴 ×𝐵 𝑌 ) 𝐹 𝐴 𝐹 𝐵

𝐹 (𝑝×𝐵id𝑌 ) 𝐹 𝑝

𝐹 𝑘

𝐹 𝑞

𝐹 ℎ

Moreover, the left square is a pullback square in u�1 wherein the horizontal

arrows are étale effective epimorphisms inu�1, so the right square is indeed

a pullback square in u�1. ■

136



2.4. Functoriality

2.4.13 ¶ To summarise:

Properties of

the induced

functor between

categories

of extents

Theorem. Under the standing assumptions (2.4.3 and 2.4.9):

(i) 𝐹 : u�0 → u�1 sends (u�0, u�0)-extents in u�0 to (u�1, u�1)-extents in
u�1.

(ii) The induced functor𝐹 : Xt(u�0, u�0) → Xt(u�1, u�1) preserves étale
morphisms and pullbacks of étale morphisms.

(iii) Given an exact fork in u�0 of the form below,

𝑅 𝐴 𝐵
𝑑0

𝑑1

ℎ

if 𝐴 is a (u�0, u�0)-extent in u�0 and ℎ : 𝐴 → 𝐵 is an étale effective

epimorphism in u�0, then 𝐹 : u�0 → u�1 preserves this exact fork.

In particular, 𝐹 : (Xt(u�0, u�0), u�0) → (Xt(u�1, u�1), u�1) is a regulated

functor.

Proof. (i). This is an immediate consequence of lemma 2.4.10 and the

assumption that 𝐹 : u�0 → u�1 preserves effective epimorphisms.

(ii). We knowXt(u�0, u�0) → Xt(u�1, u�1) preserves étale morphisms. For

the preservation of pullbacks of étale morphisms, see proposition 2.4.12.

(iii). Apply lemma 2.3.10(a) and (ii). ■
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2.5 Universality

Synopsis. We characterise the category of extents by a universal property

in a special case.

Prerequisites. §§1.1, 1.4, 1.5, 2.1, 2.2, 2.3, 2.4, a.1, a.2, a.3.

2.5.1 ※ Throughout this section, 𝜅 is a regular cardinal.

2.5.2 ¶ For convenience, we introduce the following terminology.

Definition. A 𝜅-ary admissible ecumene is a tuple (u�, u�, 𝖩) where:

• (u�, u�, 𝖩) is a 𝜅-ary extensive ecumene.

• u� is the class of local homeomorphisms in u�.

• 𝖩 is a subcanonical u�-adapted coverage on u�.

• (u�, 𝖤) satisfies the Shulman condition, where𝖤 is the class of 𝖩-covering
morphisms in u�.

Remark. By remark 2.2.3 and proposition 2.2.12, any 𝜅-ary admissible

ecumene is an étale ecumene that satisfies the descent axiom.

2.5.3 ¶ Let (u�, u�, 𝖩) be a 𝜅-ary admissible ecumene, let 𝖤 be the class of 𝖩-
covering morphisms in u�, and let u� = Ex(u�, 𝖤). By corollary 1.5.16, 𝖤 is

a 𝜅-summable saturated unary coverage on u�, so by proposition 1.5.13,

u� is a 𝜅-ary pretopos.

Let u� be the class of morphisms in u� corresponding to morphisms in

Psh(u�) that are 𝖩-semilocally of u�-type and let 𝖪 be the 𝜅-ary canonical

coverage on u� . By proposition 2.3.2, (u� , u�, 𝖪) is a 𝜅-ary extensive ecu-

mene that satisfies the descent axiom. Let ū� be the class of local homeo-

morphisms in u� . Then (u� , ū�) is a gros 𝜅-ary pretopos that satisfies the

descent axiom for open embeddings, by proposition 2.3.3.

Definition. The gros 𝜅-ary pretopos associated with a 𝜅-ary admissible

ecumene (u�, u�, 𝖩) is (u� , ū�) as defined above.
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2.5.4 ¶ With notation as in paragraph 2.5.3, since 𝖩 is a subcanonical coverage
on u�, 𝖤 is a subcanonical unary coverage on u�, and therefore the insertion
u� → u� is fully faithful. By abuse of notation, we will pretend that the

insertion is the inclusion of a full subcategory.

By construction, u� is a unary site foru� . Moreover, by proposition 2.3.2,

u� is a unary basis for (u� , ū�). Recalling lemma a.3.10, a morphism in u�
is an effective epimorphism in u� if and only if it is a 𝖩-covering morphism

in u�. Since 𝖩 is a u�-adapted coverage on u�, for every effective epimorph-

ism ℎ : 𝐴 ↠ 𝐵 in u� , if 𝐵 is an object in u�, then there is a morphism

𝑎 : 𝑋 → 𝐴 in u� such that ℎ ∘ 𝑝 : 𝑋 → 𝐵 is both a 𝖩-covering morphism

in u� and a member of u�. A similar argument shows that ū� ∩moru� = u�;

furthermore, u� is a unary basis for (u� , ū�). Thus, in a further abuse of

notation, we may simply write u� instead of ū�.

Definition. A (u�, u�, 𝖩)-charted object is a (u�, u�)-extent in u� .

Properties of

the category of

charted objects

Proposition.

(i) (Xt(u�, u�), u�, 𝖪) is a 𝜅-ary admissible ecumene.

(ii) Xt(u�, u�) has exact quotients of tractable equivalence relations, and
every effective epimorphism in Xt(u�, u�) that is a member of u� is 𝖪-
covering.

(iii) If u� has exact quotients of tractable equivalence relations, and

every quotient of every tractable equivalence relation inu� is 𝖩-covering,
then the inclusion u� ↪ Xt(u�, u�) is (fully faithful and) essentially sur-
jective on objects.

Proof. (i). First, note that u� ⊆ Xt(u�, u�) ⊆ u� , so Xt(u�, u�) is also a unary

site for u� . Thus, by proposition 2.1.7, the Shulman condition is satisfied.

Next, by proposition 2.3.11, (Xt(u�, u�), u�, 𝖪) is a 𝜅-ary extensive ecu-
mene, and clearly, the local homeomorphisms therein are the morphisms

in Xt(u�, u�) that are local homeomorphisms in u� .

It remains to be shown that 𝖪 is a u�-adapted coverage on Xt(u�, u�).
Since 𝖪 is a 𝜅-ary superextensive coverage on Xt(u�, u�), it is enough to
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verify the following:

• For every 𝖪-covering morphism ℎ : 𝐴 ↠ 𝐵 in Xt(u�, u�), there is a

morphism 𝑝 : ̃𝐴 → 𝐴 in Xt(u�, u�) such that ℎ ∘ 𝑝 : ̃𝐴 → 𝐵 is a

𝖪-covering local homeomorphism in Xt(u�, u�).

Let (𝑌 , 𝑏) be a (u�, u�)-atlas of 𝐵. Then the projection 𝐴 ×𝐵 𝑌 ↠ 𝑌 is an

effective epimorphism in u� , so there is a morphism ⟨𝑎, 𝑓⟩ : 𝑋 → 𝐴 ×𝐵 𝑌
in u� such that 𝑓 : 𝑋 → 𝑌 is a 𝖩-covering local homeomorphism in u�.
Thus, 𝑏 ∘ 𝑓 : 𝑋 → 𝐵 is a 𝖪-covering local homeomorphism in Xt(u�, u�);
but ℎ ∘ 𝑎 = 𝑏 ∘ 𝑓 , so we are done.

(ii). Since (u� , u�, 𝖪) satisfies the descent axiom for open embeddings, by

lemma 2.2.14(c), Xt(u�, u�) is closed in u� under exact quotient of tract-

able equivalence relations. On the other hand, u� is a quadrable class of

morphisms inXt(u�, u�) and the inclusionXt(u�, u�) ↪ u� preserves (these)

pullbacks, so any effective epimorphism in Xt(u�, u�) that is a member of

u� is an exact quotient in u� of its kernel pair, i.e. is an effective epimorph-

ism in u� .

(iii). See proposition 2.3.14(b). ■

2.5.5 ¶ Let (u�0, u�0, 𝖩0) and (u�1, u�1, 𝖩1) be 𝜅-ary admissible ecumenae.

Definition. A 𝜅-ary admissible functor𝐹 : (u�0, u�0, 𝖩0) → (u�1, u�1, 𝖩1)
is a functor 𝐹 : u�0 → u�1 with the following properties:

• 𝐹 : u�0 → u�1 preserves 𝜅-ary coproducts.

• 𝐹 : (u�0, 𝖤0) → (u�1, 𝖤1) is an admissible functor, where 𝖤0 (resp. 𝖤1)

is the class of 𝖩0-covering (resp. 𝖩1-covering) morphisms in u�0 (resp.

u�1).

• For every pullback square in u�0 of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓

if 𝑓 : 𝑋 → 𝑌 is a member of u�0, then 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is a member

of u�1 and 𝐹 : u�0 → u�1 preserves this pullback square.
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Properties of

admissible func-

tors between

admissible

ecumenae

Proposition. Let (u�0, u�0) and (u�1, u�1) be the gros 𝜅-ary pretoposes

associated with (u�0, u�0, 𝖩0) and (u�1, u�1, 𝖩1), respectively.

(i) 𝐹 : (u�, 𝖩0) → (u�, 𝖩1) is a pre-admissible functor.

(ii) There exist a functor ̄𝐹 : u�0 → u�1 and an isomorphism 𝜂 : 𝐹 ⇒ ̄𝐹
of functors u�0 → u�1 such that ̄𝐹 : u�0 → u�1 preserves 𝜅-ary coprod-
ucts and sends right-exact forks in u�0 to coequaliser diagrams in u�1.

(iii) Moreover, any such ( ̄𝐹 , 𝜂) is a pointwise left Kan extension of 𝐹 :
u�0 → u�1 along the inclusion u�0 ↪ u�0.

(iv) ̄𝐹 : u�0 → u�1 sends (u�0, u�0)-extents in u�0 to (u�1, u�1)-extents in
u�1.

(v) ̄𝐹 : (Xt(u�0, u�0), u�0, 𝖪0) → (Xt(u�1, u�1), u�1, 𝖪1) is a 𝜅-ary ad-
missible functor, where 𝖪0 (resp. 𝖪1) is the restriction of the 𝜅-ary
canonical coverage on u�0 (resp. u�1).

Proof. (i). This is a special case of lemma 2.4.2(a).

(ii) and (iii). See lemma 2.4.2(b).

(iv). In view of propositions 2.3.13 and 2.4.8(b), we may apply the-

orem 2.4.13.

(v). We have seen that ̄𝐹 : (Xt(u�0, u�0), u�0, 𝖪0) → (Xt(u�1, u�1), u�1, 𝖪1)
preserves 𝜅-ary coproducts, local homeomorphisms, and pullbacks of

local homeomorphisms, and sends right-𝖤0-exact forks to coequaliser dia-

grams. Moreover, by lemma 2.1.10,

̄𝐹 : (Xt(u�0, u�0), 𝖤0) → (Xt(u�1, u�1), 𝖤1)

is a admissible functor, where 𝖤0 (resp. 𝖤1) is the class of 𝖪0-covering

(resp. 𝖪1-covering) morphisms in u�0 (resp. u�1). Thus,

̄𝐹 : (Xt(u�0, u�0), u�0, 𝖪0) → (Xt(u�1, u�1), u�1, 𝖪1)

is indeed a 𝜅-ary admissible functor. ■
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2.5.6 Definition. An effective 𝜅-ary admissible ecumene is a 𝜅-ary admiss-

ible ecumene (u�, u�, 𝖩) with the following additional data:

• For each tractable equivalence relation (𝑅, 𝑑0, 𝑑1) on each object 𝑋
in u�, an exact quotient 𝑞 : 𝑋 → �̄� in u� such that 𝑞 : 𝑋 → �̄� is a

𝖩-covering morphism.

Properties of

effective admiss-

ible ecumenae

Proposition. Let (u�, u�, 𝖩) be an effective 𝜅-ary admissible ecumene and
let (u� , u�) be the associated gros 𝜅-ary pretopos.

(i) (u�, u�, 𝖩) is a regulated ecumene.

(ii) Effective epimorphisms in u� that are members of u� are 𝖩-covering
morphisms in u�.

(iii) Every 𝖩-covering morphism in u� that is a member of u� is an effect-

ive epimorphism in both u� and u� .

Proof. (i). Let 𝑓 : 𝑋 → 𝑌 be a local homeomorphism in u� and let

(𝑅, 𝑑0, 𝑑1) be a kernel pair of 𝑓 : 𝑋 → 𝑌 in u�. By lemma 2.2.14(b),

(𝑅, 𝑑0, 𝑑1) is a tractable equivalence relation on 𝑋, so it has a 𝖩-covering
exact quotient 𝑞 : 𝑋 → �̄� in u�. Let 𝑚 : �̄� → 𝑌 be the unique morphism

in u� such that 𝑚 ∘ 𝑞 = 𝑓 . Then, by proposition 1.4.23, the following is an

exact fork in u�:

𝑅 𝑋 �̄�
𝑑0

𝑑1

𝑞

Since u� is a regular category, it follows that 𝑚 : �̄� → 𝑌 is a monomorph-

ism in u�; hence, 𝑚 : �̄� → 𝑌 is an open embedding in u�. Thus, we have
the required factorisation of 𝑓 : 𝑋 → 𝑌 .

(ii). With notation as above, suppose 𝑓 : 𝑋 → 𝑌 is also an effective

epimorphism in u�. Then 𝑚 : �̄� → 𝑌 is an isomorphism in u�, so 𝑓 : 𝑋 →
𝑌 is also a 𝖩-covering morphism in u�.

(iii). Every 𝖩-covering morphism in u� is an effective epimorphism in u� ,

and local homeomorphisms in u� have kernel pairs that are preserved by

the inclusion u� ↪ u� , so the claim follows. ■
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Remark. In view of propositions 1.5.17 and 2.5.6, the coverage associ-

ated with an effective 𝜅-ary admissible ecumene is equivalent to the 𝜅-ary
superextensive coverage generated by the class of effective epimorphisms

that are local homeomorphisms.

2.5.7
The universal

property of

the category of

charted objects

Theorem. Let 𝐹 : (u�0, u�0, 𝖩0) → (u�1, u�1, 𝖩1) be a 𝜅-ary admissible

functor. Assuming (u�1, u�1, 𝖩1) is an effective 𝜅-ary admissible ecumene:

(i) The inclusion (u�0, u�0, 𝖩0) ↪ (Xt(u�0, u�0), u�0, 𝖪0) is a 𝜅-ary ad-
missible functor.

(ii) There exist a 𝜅-ary admissible functor ̄𝐹 : (Xt(u�0, u�0), u�0, 𝖪0) →

(u�1, u�1, 𝖩1) and an isomorphism 𝜂 : 𝐹 ⇒ ̄𝐹 of functors u�0 → u�1.

(iii) Moreover, any such ( ̄𝐹 , 𝜂) is a pointwise left Kan extension of 𝐹 :
u�0 → u�1 along the inclusion u�0 ↪ Xt(u�0, u�0).

Proof. (i). Apply lemma 2.1.10.

(ii) and (iii). By proposition 2.5.4, the inclusion u�1 ↪ Xt(u�1, u�1) is

fully faithful and essentially surjective on objects, so the claims reduce to

proposition 2.5.5. ■

Remark. The above theorem does most of the hard work of showing that

the 2-submetacategory of effective 𝜅-ary admissible ecumenae is bireflect-

ive in the 2-metacategory of 𝜅-ary admissible ecumenae.
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Chapter III

Specificities

3.1 Compactness

Synopsis. We examine three classes of continuous maps of topological

spaces that arise by relativising the notion of compactness.

Prerequisites. §§1.1, 1.2, a.2.

3.1.1 Definition. A universal topological quotient is a continuous map 𝑓 :
𝑋 ↠ 𝑌 with the following property: For every pullback square in Top

of the form below,
𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

the map 𝑓 ′ : 𝑋′ → 𝑌 ′ is a topological quotient.

Remark. Since the effective epimorphisms inTop are precisely the topo-

logical quotients, by proposition 1.4.1, the universally strict epimorph-

isms in Top are precisely the universal topological quotients.

Example. Every surjective open map of topological spaces is a universal

topological quotient. Indeed, every surjective open map is a topological

quotient, and the class of surjective open maps is a quadrable class of

morphisms in Top.

3.1.2 ※ Throughout this section:

• u� is a full subcategory of Top.

• u� is closed under finitary disjoint union.

145



Specificities

• u� is closed under pullback.

• For each object 𝑋 in u�:

– 𝖩𝖿 (𝑋) is the set of all finite and jointly surjective sinks on 𝑋.

– 𝖩𝖿𝗊(𝑋) is the set of all finite sinks Φ on 𝑋 such that the induced

map ∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 is a universal topological quotient.

3.1.3 ¶ The following terminology is non-standard.

Definition. A continuous map 𝑓 : 𝑋 → 𝑌 is semiproper if it has the

following property:

• For every pullback square in Top of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

if 𝑌 ′ is compact, then 𝑋′ is also compact.

Remark. Thus, from the relative point of view, a semiproper map of

topological spaces is a continuous family of compact spaces.

Example. Every continuous map from a compact space to a Hausdorff

space is semiproper. Indeed, given a pullback square in Top as in the

definition, if 𝑋 is compact and 𝑌 is Hausdorff, then the comparison map

𝑋′ → 𝑌 ′ × 𝑋 is a closed embedding, so 𝑋′ is compact when 𝑌 ′ is.

Properties of

semiproper maps

Proposition.

(i) Every closed embedding of topological spaces is semiproper.

(ii) For every topological space 𝑋, the codiagonal ∇𝑋 : 𝑋 ⨿ 𝑋 → 𝑋
is semiproper.

(iii) The class of semiproper maps of topological spaces is a quadrable

class of morphisms in Top.

(iv) The class of semiproper maps of topological spaces is closed under

composition.

(v) The class of semiproper maps of topological spaces is closed under

(possibly infinitary) coproduct in Top.
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(vi) Given a surjective continuous map 𝑓 : 𝑋 ↠ 𝑌 and a continuous

map 𝑔 : 𝑌 → 𝑍, if 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is semiproper, then 𝑔 : 𝑌 → 𝑍 is

also semiproper.

Proof. Straightforward. ⧫

Corollary. Let ℱ𝗌𝗉 be the class of semiproper maps in u�. Then every

morphism in u� that is of ℱ𝗌𝗉-type 𝖩𝖿 -semilocally on the domain is semi-

proper.

Proof. Apply proposition 3.1.3. ■

3.1.4 ¶ We will see that the following is a specialisation of the notion of semi-

proper map.

Definition. A continuous map 𝑓 : 𝑋 → 𝑌 is proper if it has the fol-

lowing property:

• For every pullback square in Top of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

the map 𝑓 ′ : 𝑋′ → 𝑌 ′ is closed, i.e. the image of every closed sub-

space of 𝑋′ is a closed subspace of 𝑌 ′.

Example. If 𝑋 is a compact topological space, then the unique map 𝑋 →
1 is proper: this is the precisely the statement of the tube lemma.

Properties of

proper maps

Proposition.

(i) An injective continuous map is proper if and only if it is a closed

embedding.

(ii) For every topological space 𝑋, the codiagonal ∇𝑋 : 𝑋 ⨿ 𝑋 → 𝑋
is proper.

(iii) The class of proper maps of topological spaces is a quadrable class

of morphisms in Top.
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(iv) The class of propermaps of topological spaces is closed under com-

position.

(v) The class of propermaps of topological spaces is closed under (pos-

sibly infinitary) coproduct in Top.

(vi) Given a surjective continuous map 𝑓 : 𝑋 ↠ 𝑌 and a continuous

map 𝑔 : 𝑌 → 𝑍, if 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is proper, then 𝑔 : 𝑌 → 𝑍 is also

proper.

(vii) Given a pullback square in Top of the form below,

�̃� 𝑋

̃𝑌 𝑌

̃𝑓 𝑓

where ̃𝑌 ↠ 𝑌 is a universal topological quotient, if ̃𝑓 : �̃� → ̃𝑌 is

proper, then 𝑓 : 𝑋 → 𝑌 is also proper.

Proof. Straightforward. ⧫

Corollary. Let ℱ𝗉 be the class of proper maps in u�. Then every morph-
ism in u� that is 𝖩𝖿𝗊-semilocally of ℱ𝗉-type is proper.

Proof. Apply proposition 3.1.3. ■

Remark. In the language of §2.2, what we have shown is that (u�, ℱ𝗉, 𝖩𝖿𝗊)
is a finitary (i.e. ℵ0-ary) extensive regulated ecumene that satisfies the

descent axiom and in which every eunoic morphism is genial.

3.1.5 ¶ Properness is closely related to compactness. For instance, suppose

𝑋 is a topological space such that the unique map 𝑋 → 1 is proper. Let

𝑆 = {1 − 1
𝑛+1 | 𝑛 ∈ ℕ} ∪ {1} ⊆ ℝ and let (𝑥𝑛 | 𝑛 ∈ ℕ) be a sequence

of points of 𝑋. Consider 𝑇 = {(1 − 1
𝑛+1 , 𝑥𝑛) | 𝑛 ∈ ℕ} ⊆ 𝑆 × 𝑋. The

closure of 𝑇 is ̄𝑇 = 𝑇 ∪{1}×𝐴, where 𝐴 is the set of accumulation points

of (𝑥𝑛 | 𝑛 ∈ ℕ). Since ̄𝑇 is a closed subspace of 𝑆 × 𝑋, its image is a

closed subspace of 𝑆. In particular, 1 is in the image of ̄𝑇 , i.e. 𝐴 contains

a point. Thus, every sequence in 𝑋 contains a convergent subsequence,
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i.e. 𝑋 is sequentially compact. A similar argument using nets instead of

sequences can be used to show that 𝑋 is compact.

Much more generally, we have the following result.

Recognition

principle for

proper maps

Theorem. Let 𝑓 : 𝑋 → 𝑌 be a continuous map. The following are

equivalent:

(i) The map 𝑓 : 𝑋 → 𝑌 is proper.

(ii) For every topological space 𝑇 , the map id𝑇 × 𝑓 : 𝑇 × 𝑋 → 𝑇 × 𝑌
is closed.

(iii) The map 𝑓 : 𝑋 → 𝑌 is closed and, for every 𝑦 ∈ 𝑌 , 𝑓 −1{𝑦} is

compact.

(iv) The map 𝑓 : 𝑋 → 𝑌 is closed and, for every subspace 𝑌 ′ ⊆ 𝑌 , if

𝑌 ′ is compact, then 𝑓 −1𝑌 ′ is also compact.

(v) The map 𝑓 : 𝑋 → 𝑌 is closed and semiproper.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (iii), (iii) ⇒ (i). See tag 005R in [Stacks].

(i) ⇒ (v). Consider a pullback square in Top of the form below:

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑓 ′ 𝑓

Suppose 𝑓 : 𝑋 → 𝑌 is proper and 𝑌 ′ is compact. We must show that

𝑋′ is compact. Then, by proposition 3.1.4, 𝑓 ′ : 𝑋′ → 𝑌 ′ is also proper.

Since the unique map 𝑌 ′ → 1 is proper (by the tube lemma), it follows

that 𝑋′ → 1 is also proper. But we know (i) ⇒ (iii), so 𝑋′ is indeed

compact.

(v) ⇒ (iv), (iv) ⇒ (iii). Immediate. □

Example. If𝑋 is a compact topological space and 𝑌 is a Hausdorff space,

then every continuous map 𝑋 → 𝑌 is proper: in view of proposition 3.1.4

and theorem 3.1.5, this is a special case of lemma 1.1.9.
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3.1.6
When semiproper

implies proper

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a continuous map. Assuming 𝑌 is a compactly

generated Hausdorff space, the following are equivalent:

(i) The map 𝑓 : 𝑋 → 𝑌 is proper.

(ii) The map 𝑓 : 𝑋 → 𝑌 is semiproper.

(iii) For every subspace 𝑌 ′ ⊆ 𝑌 , if 𝑌 ′ is compact, then 𝑓 −1𝑌 ′ is also

compact.

Proof. (i) ⇒ (ii). See theorem 3.1.5.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). In view of the theorem, it is enough to check that 𝑓 : 𝑋 → 𝑌
is a closed map.

Let 𝑋′ be a closed subspace of 𝑋 and let 𝑌 ′ be its image in 𝑌 . We

wish to show that 𝑌 ′ is a closed subspace of 𝑌 . Since 𝑌 is compactly

generated, it is enough to show that 𝑌 ′ ∩ 𝑉 is a closed subspace of 𝑉 for

all compact subspaces 𝑉 ⊆ 𝑌 .

Let 𝑉 be a compact subspace of 𝑌 . Then 𝑓 −1𝑉 is a compact subspace

of 𝑋. Since 𝑋′ ∩ 𝑓 −1𝑉 is a closed subspace of 𝑓 −1𝑉 , it is compact. The

image of 𝑋′ ∩ 𝑓 −1𝑉 in 𝑉 is 𝑌 ′ ∩ 𝑉 , and since 𝑉 is Hausdorff, it follows

that 𝑌 ′ ∩ 𝑉 is indeed a closed subspace of 𝑉 . ■

3.1.7 Definition. A continuous map 𝑓 : 𝑋 → 𝑌 is perfect if it has the

following properties:

• 𝑓 : 𝑋 → 𝑌 is proper.

• 𝑓 : 𝑋 → 𝑌 is separated, i.e. the relative diagonal Δ𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋
is a closed embedding.

Example. For a topological space 𝑋, the unique map 𝑋 → 1 is perfect

if and only if 𝑋 is a compact Hausdorff space.

Properties of

perfect maps

Proposition.

(i) An injective continuous map is perfect if and only if it is a closed

embedding.
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(ii) For every topological space 𝑋, the codiagonal ∇𝑋 : 𝑋 ⨿ 𝑋 → 𝑋
is perfect.

(iii) The class of perfect maps of topological spaces is a quadrable class

of morphisms in Top.

(iv) The class of perfect maps of topological spaces is closed under

composition.

(v) The class of perfect maps of topological spaces is closed under

(possibly infinitary) coproduct in Top.

(vi) Given continuous maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍, if both

𝑔 : 𝑌 → 𝑍 and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are perfect, then 𝑓 : 𝑋 → 𝑌 is also

perfect.

(vii) Given a surjective continuous map 𝑓 : 𝑋 ↠ 𝑌 and a continuous

map 𝑔 : 𝑌 → 𝑍, if 𝑓 : 𝑋 ↠ 𝑌 is proper and 𝑔 ∘𝑓 : 𝑋 → 𝑍 is perfect,

then 𝑔 : 𝑌 → 𝑍 is also perfect.

(viii) Given a pullback square in Top of the form below,

�̃� 𝑋

̃𝑌 𝑌

̃𝑓 𝑓

where ̃𝑌 ↠ 𝑌 is a universal topological quotient, if ̃𝑓 : �̃� → ̃𝑌 is

perfect, then 𝑓 : 𝑋 → 𝑌 is also perfect.

Proof. (i)–(vi). Straightforward. (Recall propositions 1.1.11 and 3.1.4.)

(vii). Under the hypotheses, 𝑔 : 𝑌 → 𝑍 is proper. It remains to be shown

that 𝑔 : 𝑌 → 𝑍 is separated.

Consider the following commutative square in Top:

𝑋 𝑌

𝑋 ×𝑍 𝑋 𝑌 ×𝑍 𝑌

Δ𝑔∘𝑓

𝑓

Δ𝑔

𝑓×𝑍𝑓

Since 𝑓 : 𝑋 ↠ 𝑌 is proper, so too is 𝑓 ×𝑍 𝑓 : 𝑋 ×𝑍 𝑋 → 𝑌 ×𝑍 𝑌 . On

the other hand, since 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 is separated, the relative diagonal
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Δ𝑔∘𝑓 : 𝑋 → 𝑋 ×𝑍 𝑋 is a closed embedding. Hence, Δ𝑔 : 𝑌 → 𝑌 ×𝑍 𝑌
is indeed a closed embedding.

(viii). Under the hypotheses, the following is a pullback square in Top,

�̃� 𝑋

�̃� × ̃𝑌 �̃� 𝑋 ×𝑌 𝑋

Δ ̃𝑓 Δ𝑓

and the claim follows. ■

Corollary. Let u�𝗉 be the class of perfect maps in u�. Then every morph-
ism in u� that is (u�𝗉, 𝖩𝖿𝗊)-semilocally of u�𝗉-type is perfect.

Remark. In the language of §2.2, what we have shown is that (u�, u�𝗉, 𝖩𝖿𝗊)
is an étale finitary (i.e. ℵ0-ary) extensive regulated ecumene that satisfies

the descent axiom.
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3.2 Discrete fibrations

Synopsis. We construct a combinatorial example of a gros pretopos based

on discrete fibrations of simplicial sets.

Prerequisites. §§1.1, 2.2, 2.3, a.1.

3.2.1 ¶ Roughly speaking, a discrete fibration of simplicial sets is a morphism

with a unique path lifting property, similar to covering maps in algebraic

topology. However, because the edges of a simplicial set are oriented, it

is perhaps better to think of discrete fibrations of simplicial sets (in the

sense below) as generalisations of discrete fibrations of categories. We

will see a more precise statement later.

Definition. A discrete fibration of simplicial sets is a morphism 𝑓 :
𝑋 → 𝑌 in sSet with the following property:

• For every natural number 𝑛, the following is a pullback square in Set:

𝑋𝑛+1 𝑌𝑛+1

𝑋𝑛 𝑌𝑛

𝑑0

𝑓𝑛+1

𝑑0

𝑓𝑛

Recognition

principle for

discrete fibrations

of simplicial sets

Lemma. Let 𝑓 : 𝑋 → 𝑌 be a morphism of simplicial sets. The following

are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a discrete fibration of simplicial sets.

(ii) 𝑓 : 𝑋 → 𝑌 is right orthogonal to 𝛿0 : Δ𝑛 → Δ𝑛+1 for every natural

number 𝑛.

Proof. Straightforward. ⧫

Properties of

discrete fibrations

of simplicial sets

Proposition.

(i) Every isomorphism of simplicial sets is a discrete fibration of sim-

plicial sets.

(ii) The class of discrete fibrations of simplicial sets is a quadrable

class of morphisms in sSet.
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(iii) The class of discrete fibrations of simplicial sets is closed under

composition.

(iv) Given morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in sSet, if both

𝑔 : 𝑌 → 𝑍 and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍 are discrete fibrations of simplicial

sets, then 𝑓 : 𝑋 → 𝑌 is also a discrete fibration of simplicial sets.

(v) For every simplicial set 𝑋 and every set 𝐼 , the codiagonal ∇ :

∐𝑖∈𝐼 𝑋 → 𝑋 is a discrete fibration of simplicial sets.

(vi) The class of discrete fibrations of simplicial sets is closed under

(possibly infinitary) coproduct in sSet.

(vii) Given a pullback square in sSet of the form below,

�̃� 𝑋

̃𝑌 𝑌

̃𝑓

𝑝

𝑓

𝑞

where 𝑞 : ̃𝑌 ↠ 𝑌 is degreewise surjective, if ̃𝑓 : �̃� → ̃𝑌 is a discrete

fibration of simplicial sets, then 𝑓 : 𝑋 → 𝑌 is also a discrete fibration

of simplicial sets.

(viii) Given a degreewise surjective morphism 𝑓 : 𝑋 ↠ 𝑌 in sSet and a

morphism 𝑔 : 𝑌 → 𝑍 in sSet, if both 𝑓 : 𝑋 ↠ 𝑌 and 𝑔 ∘ 𝑓 : 𝑋 → 𝑍
are discrete fibrations of simplicial sets, then 𝑔 : 𝑌 → 𝑍 is also a

discrete fibration of simplicial sets.

Proof. (i)–(iv). In view of lemma 3.2.1, this is a special case of proposi-

tion 1.1.14.

(v) and (vi). Straightforward.

(vii). In the given situation, we have the following commutative diagram

in sSet,

�̃�𝑛+1 �̃�𝑛 𝑋𝑛

̃𝑌𝑛+1 ̃𝑌𝑛 𝑌𝑛

̃𝑓𝑛+1

𝑑0

̃𝑓𝑛

𝑝𝑛

𝑓𝑛

𝑑0 𝑞𝑛

in which both squares are pullback squares in sSet. Thus, by the pullback

pasting lemma, the outer rectangle in the commutative diagram in sSet
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shown below is a pullback diagram in sSet:

�̃�𝑛+1 𝑋𝑛+1 𝑋𝑛

̃𝑌𝑛+1 𝑌𝑛+1 𝑌𝑛

̃𝑓𝑛+1

𝑝𝑛+1

𝑓𝑛+1

𝑑0

𝑓𝑛

𝑞𝑛+1 𝑑0

But the left square is also a pullback square in sSet, so we may apply

lemma 1.4.19(c) to deduce that the right square is indeed a pullback square

in sSet.

(viii). In the given situation, we have the following commutative diagram

in sSet,

𝑋𝑛+1 𝑌𝑛+1 𝑍𝑛+1

𝑋𝑛 𝑌𝑛 𝑍𝑛

𝑑0

𝑓𝑛+1

𝑑0

𝑔𝑛+1

𝑑0

𝑓𝑛 𝑔𝑛

where the outer rectangle and the left square are both pullback diagrams

in sSet. Since 𝑓𝑛 : 𝑋𝑛 ↠ 𝑌𝑛 is surjective, it follows that the right square

is a pullback square in sSet. ■

3.2.2 ¶ Let 𝑋 be a simplicial set. Suppose we have the following data:

• For each 𝑥 ∈ 𝑋0, a set 𝐴(𝑥).

• For each 𝑒 ∈ 𝑋1, a map 𝑒∗ : 𝐴(𝑑0(𝑒)) → 𝐴(𝑑1(𝑒)).

• For every 𝑥 ∈ 𝑋0, 𝑠0(𝑥)∗ = id𝐴(𝑥).

• For every positive integer 𝑛 and every 𝜎 ∈ 𝑋𝑛+1:

𝑑0(⋯ (𝑑𝑛−2(𝑑𝑛+1(𝜎))) ⋯)∗ ∘ 𝑑0(⋯ (𝑑𝑛−2(𝑑𝑛−1(𝜎))) ⋯)∗

= 𝑑0(⋯ (𝑑𝑛−2(𝑑𝑛(𝜎))) ⋯)∗

(So, for instance, for every 𝜎 ∈ 𝑋2, 𝑑1(𝜎)∗ = 𝑑2(𝜎)∗ ∘ 𝑑0(𝜎)∗.)

We may then construct a simplicial set 𝐴 as follows:

• The elements of 𝐴0 are pairs (𝑥, 𝑎) where 𝑥 ∈ 𝑋0 and 𝑎 ∈ 𝐴(𝑥).

• For each positive integer 𝑛, the elements of 𝐴𝑛 are pairs (𝜎, 𝑎) where
𝜎 ∈ 𝑋𝑛 and 𝑎 ∈ 𝐴(𝑑0(⋯ (𝑑𝑛−1(𝜎)))).
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• The face operators 𝑑0, 𝑑1 : 𝐴1 → 𝐴0 and the degeneracy operator

𝑠0 : 𝐴0 → 𝐴1 are defined as follows:

𝑑0(𝑒, 𝑎) = (𝑑0(𝑒), 𝑎)

𝑑1(𝑒, 𝑎) = (𝑑1(𝑒), 𝑒∗(𝑎))

𝑠0(𝑥, 𝑎) = (𝑠0(𝑥), 𝑎)

• For every positive integer 𝑛, the face operators 𝑑0, … , 𝑑𝑛+1 : 𝐴𝑛+1 →
𝐴𝑛 and the degeneracy operators 𝑠0, … , 𝑠𝑛 : 𝐴𝑛 → 𝐴𝑛+1 are defined

as follows:

𝑑𝑖(𝜎, 𝑎) = (𝑑𝑖(𝜎), 𝑎) for 0 ≤ 𝑖 ≤ 𝑛

𝑑𝑛+1(𝜎, 𝑎) = (𝑑𝑛+1(𝜎), 𝑑0(⋯ (𝑑𝑛−1(𝜎)))∗(𝑎))

𝑠𝑖(𝜎, 𝑎) = (𝑠𝑖(𝜎), 𝑎) for 0 ≤ 𝑖 ≤ 𝑛

(It is straightforward to verify the simplicial identities.) There is an evi-

dent projection 𝑝 : 𝐴 → 𝑋, and by construction, it is a discrete fibration

of simplicial sets. In fact, every discrete fibration with codomain 𝑋 arises

in this fashion up to isomorphism.

On the other hand, consider the category u� defined inductively as fol-

lows:

• For each 𝑥 ∈ 𝑋0, 𝑥 is an object in u�.

• For each 𝑒 ∈ 𝑋1, 𝑒 : 𝑑1(𝑥) → 𝑑0(𝑥) is a morphism in u�.

• For each 𝑥 ∈ 𝑋0, 𝑠0(𝑥) = id𝑥 as morphisms in u�.

• For each 𝜎 ∈ 𝑋2, we have 𝑑0(𝜎) ∘ 𝑑2(𝜎) = 𝑑1(𝜎) as morphisms in u�.

It is clear from the description above that𝐴 defines a presheaf onu�. Thus:

Theorem. There is a functor Psh(u�) → sSet∕𝑋 that is fully faithful and

essentially surjective onto the full subcategory spanned by the discrete

fibrations of simplicial sets with codomain 𝑋.

Proof. Straightforward, given the discussion above. ⧫
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3.2.3 ※ For the remainder of this section:

• 𝜅 is an uncountable regular cardinal.

• u� is the category of simplicial sets 𝑋 such that each 𝑋𝑛 is hereditarily

𝜅-small.

• u� is the class of discrete fibrations of simplicial sets in u�.

3.2.4 ¶ Wewill now use the above results to construct a combinatorial example

of a gros pretopos.

Proposition.

(i) u� is a 𝜅-ary pretopos.

(ii) u� is a class of étale morphisms in u� .

In particular, (u� , u�) is a gros 𝜅-ary pretopos.[1]

Proof. (i). Straightforward. (The inclusion u� ↪ sSet creates limits of

finite diagrams and colimits of 𝜅-small diagrams.)

(ii). See proposition 3.2.1. ■

3.2.5 Remark. (u� , u�) is an example of a gros 𝜅-ary pretopos in which the class
of étale morphisms strictly contains the class of local homeomorphisms.

Indeed, given lemma 2.3.12(a) and theorem 3.2.2, this is essentially just

the observation that Psh(u�) is not always a localic topos.

3.2.6 ¶ Unlike the gros pretoposes wewill see later, there is no obvious candid-

ate for a unary basis for (u� , u�). Nonetheless, for the sake of illustration,
we may consider the following.

Definition. The strict Segal condition on a simplicial set 𝑋 is the fol-

lowing:

• For every positive integer 𝑛, the following is a pullback square in Set:

𝑋𝑛+1 𝑋𝑛

𝑋1 𝑋0

𝑑0∘⋯∘𝑑𝑛−1

𝑑𝑛+1

𝑑0∘⋯∘𝑑𝑛−1

𝑑1

[1] Recall lemma 2.3.3.
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Example. Let u� be a category. The nerve of u� is the simplicial setN(u�)

defined as follows:

• N(u�)0 is the set of objects in u�.

• N(u�)1 is the set of morphisms in u�.

• For 𝑛 ≥ 2, N(u�)𝑛 is the set of 𝑛-tuples (𝑓𝑛, … , 𝑓1) of morphisms in

u� such that 𝑓𝑛 ∘ ⋯ ∘ 𝑓1 is defined in u�.

• The face operators 𝑑0, 𝑑1 : N(u�)1 → N(u�)0 and the degeneracy oper-

ator 𝑠0 : N(u�)0 → N(u�)1 are defined as follows:

𝑑0(𝑓 ) = codom 𝑓

𝑑1(𝑓 ) = dom 𝑓

𝑠0(𝑥) = id𝑥

• The face operators 𝑑0, 𝑑1, 𝑑2 : N(u�)2 → N(u�)1 and the degeneracy

operators 𝑠0, 𝑠1 : N(u�)1 → N(u�)2 are defined as follows:

𝑑0(𝑓1, 𝑓0) = 𝑓1

𝑑1(𝑓1, 𝑓0) = 𝑓1 ∘ 𝑓0

𝑑2(𝑓1, 𝑓0) = 𝑓0

𝑠0(𝑓 ) = (𝑓 , iddom 𝑓 )

𝑠1(𝑓 ) = (idcodom 𝑓 , 𝑓)

• For 𝑛 > 2, the face operators 𝑑0, … , 𝑑𝑛 : N(u�)𝑛 → N(u�)𝑛−1 and

degeneracy operators 𝑠0, … , 𝑠𝑛−1 : N(u�)𝑛−1 → N(u�)𝑛 are defined

analogously.

Then N(u�) satisfies the strict Segal condition. In fact, a simplicial set

satisfies the strict Segal condition if and only if it is isomorphic to N(u�)

for some category u�.

Lemma. Let 𝑝 : 𝑋 → 𝑌 be a discrete fibration of simplicial sets.

(i) If 𝑌 satisfies the strict Segal condition, then 𝑋 also satisfies the

strict Segal condition.

(ii) If 𝑝 : 𝑋 → 𝑌 is degreewise surjective and 𝑋 satisfies the strict

Segal condition, then 𝑌 also satisfies the strict Segal condition.
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Proof. The pullback pasting lemma implies that the following are pull-

back squares in Set:

𝑋𝑛 𝑌𝑛

𝑋0 𝑌0

𝑑0∘⋯∘𝑑𝑛−1

𝑓𝑛

𝑑0∘…∘𝑑𝑛−1

𝑓0

𝑋𝑛+1 𝑌𝑛+1

𝑋1 𝑌1

𝑑0∘⋯∘𝑑𝑛−1

𝑓𝑛+1

𝑑0∘…∘𝑑𝑛−1

𝑓1

Then (i) is another application of the pullback pasting lemma, and (ii) is

consequence of lemma 1.4.19(c). ■

3.2.7 ¶ Let u� be the full subcategory of u� spanned by the simplicial sets 𝑋
with the following properties:

• 𝑋 satisfies the strict Segal condition.

• The map ⟨𝑑1, 𝑑0⟩ : 𝑋1 → 𝑋0 × 𝑋0 is injective.

Proposition.

(i) u� is equivalent to the metacategory of 𝜅-small preordered sets.

(ii) u� is a unary basis for (u� , u�).

(iii) Xt(u�, u�) is equivalent to the metacategory of 𝜅-small categories in
which every morphism is a monomorphism.

(iv) A (u�, u�)-extent in u� is u�-localic if and only if it is an object in u�.

Proof. (i). A simplicial set 𝑋 is isomorphic to an object in u� if and only

if 𝑋 is isomorphic to the nerve of some preordered set (considered as a

category). Since N : Cat → sSet is fully faithful, the claim follows.

(ii). Since 𝜅 > ℵ0, every object in u� is a simplicial set with < 𝜅 elements.

Thus, the Yoneda lemma implies that u� is a unary site for u� . In addition,

given a discrete fibration 𝑝 : 𝑋 → 𝑌 in u� , if ⟨𝑑1, 𝑑0⟩ : 𝑌1 → 𝑌0 ×
𝑌0 is injective, then ⟨𝑑1, 𝑑0⟩ : 𝑋1 → 𝑋0 × 𝑋0 is also injective; so, by

lemma 3.2.6, if 𝑌 is an object in u�, then 𝑋 is also an object in u�. Hence,
u� is indeed a unary basis for (u� , u�).

(iii). It suffices to identify necessary and sufficient conditions for a cat-

egory u� to admit a surjective discrete fibration ̃u� → u� where ̃u� is a

preorder category.
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Clearly, if every morphism in u� is a monomorphism, then every slice

category u�∕𝑥 is a preorder category, so we may take ̃u� = ∐𝑥∈ob u� u�∕𝑥.

Conversely, suppose we have a surjective discrete fibration 𝑝 : ̃u� → u�
where ̃u� is a preorder category. Let 𝑔 : 𝑦 → 𝑧 be a morphism in u� and let

𝑓0, 𝑓1 : 𝑥 → 𝑦 be a parallel pair ofmorphisms inu� such that 𝑔∘𝑓0 = 𝑔∘𝑓1.

By hypothesis, there is an object ̃𝑧 in ̃u� such that 𝑝( ̃𝑧) = 𝑧, and there

exist a unique object ̃𝑦 and a unique morphism ̃𝑔 : ̃𝑦 → ̃𝑧 in ̃u� such

that 𝑝( ̃𝑦) = 𝑦 and 𝑝( ̃𝑔) = 𝑔. Similarly, there exist a unique object �̃� and a

uniquemorphism ̃𝑓 : �̃� → ̃𝑦 in ̃u� such that 𝑝(�̃�) = 𝑥 and 𝑝( ̃𝑓) = 𝑓0 = 𝑓1.

This shows 𝑔 : 𝑦 → 𝑧 is indeed a monomorphism in u�.

(iv). The claim reduces to the fact that Psh(u�) is localic if and only if u�
is a preorder category. ■
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3.3 Manifolds

Synopsis. We construct an admissible ecumene for which the charted

objects are the smooth manifolds of fixed dimension and cardinality.

Prerequisites. §§1.1, 1.4, 2.2, 2.3.

3.3.1 ¶ Manifolds are probably the best-known notion of space built from local

models. Unfortunately, from a category-theoretic point of view, mani-

folds are somewhat awkward: for instance, the category ofmanifolds does

not have all pullbacks. On the other hand, this can still be accommodated

within the theory of charted objects with respect to an admissible ecumene

—after all, an ecumene is not required to have pullbacks. In fact, even

finitary products are unnecessary—we will see how to define manifolds

of a fixed dimension as charted objects.

3.3.2 ※ Throughout this section:

• 𝑛 is a natural number.

• u�0 is the category of connected open subspaces of ℝ𝑛 and smooth

maps.

• 𝜅 is a regular cardinal such that u�0 is essentially 𝜅-small.

• u� = Fam𝜅(u�0).

• u�0 is the class of local diffeomorphisms in u�0.

• u� is the class of morphisms in u� that are familially of u�0-type.

• 𝖤 is the class of morphisms 𝑓 : 𝑋 → 𝑌 in u� such that the correspond-

ing continuous map is a surjective local homeomorphism.[1]

• For each object 𝑋 in u�0, 𝖩0(𝑋) is the set of open covers of 𝑋.

• For each object 𝑋 in u�, 𝖩(𝑋) is the set of 𝜅-small sinks Φ on 𝑋 such

that the induced morphism ∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 in u� is a member of 𝖤.

[1] Here, we are using the functor u� → Top induced by the forgetful functor u�0 → Top.
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3.3.3 Proposition. (u�, u�, 𝖩) is a 𝜅-ary admissible ecumene, i.e.:

(i) u� is a 𝜅-ary extensive category.

(ii) u� is a class of separated fibrations in u�.

(iii) 𝖩 is a subcanonical u�-adapted 𝜅-ary superextensive coverage on

u�.

(iv) Every morphism in u� of u�-type (u�, 𝖩)-semilocally on the domain is
a member of u�.

(v) Every complemented monomorphism in u� is a member of u�.

(vi) (u�, 𝖤) satisfies the Shulman condition.[2]

Proof. (i). This is a special case of proposition 1.5.7.

(ii)–(v). Straightforward.

(vi). By extensivity, it suffices to verify the following:

• Given objects 𝑋0, … , 𝑋𝑘−1 in u�0, El(h𝑋0
× ⋯ × h𝑋𝑘−1) is an essen-

tially 𝜅-small category.

But this is an immediate consequence of the assumption that u�0 itself is

an essentially 𝜅-small category. ■

3.3.4 ¶ Let (u� , u�) be the gros 𝜅-ary pretopos associated with (u�, u�, 𝖩). By

abuse of notation, we will consider u�0 to be a full subcategory of u� and u�
to be a full subcategory of u� . It should come as no surprise that (u�, u�)-
extents are 𝑛-dimensional manifolds, but we should be more precise about

what that means.

3.3.4(a) Definition. A smooth 𝑛-dimensional atlas of a topological space 𝑋 is

a set Φ with the following properties:

• Every element of Φ is a pair (𝑈, 𝑥) where 𝑈 is a connected open sub-

space of 𝑋 and 𝑥 : 𝑈 → ℝ𝑛 is an open embedding of topological

spaces.

• 𝑋 = ⋃(𝑈,𝑥)∈Φ 𝑈 .

[2] Note that a morphism in u� is 𝖩-covering if and only if it is 𝖤-covering.
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• For every ((𝑈0, 𝑥0), (𝑈1, 𝑥1)) ∈ Φ × Φ, 𝑥1 ∘ (𝑥0)
−1 : 𝑈 ′

0 → 𝑈 ′
1 is a

diffeomorphism, where 𝑈 ′
0 is the image of 𝑥0 : 𝑈0 ∩ 𝑈1 → ℝ𝑛 and 𝑈 ′

1

is the image of 𝑥1 : 𝑈0 ∩ 𝑈1 → ℝ𝑛.

3.3.4(b) Definition. A 𝑛-dimensional manifold is a pair (𝑋, Φ) where 𝑋 is a

topological space and Φ is a smooth 𝑛-dimensional atlas of 𝑋.

Remark. In particular, we do not require manifolds to be Hausdorff

spaces, nor do we require manifolds to be second-countable.

3.3.5 ¶ Though it is more usual to first define ‘smooth map’, we will instead

define the presheaf represented by amanifold directly and take for granted

that the Yoneda representation is fully faithful.

Definition. The presheaf represented by an 𝑛-dimensional manifold

(𝑋, Φ) is the presheaf h(𝑋,Φ) on u�0 defined as follows:

• For each connected open subspace 𝑇 ⊆ ℝ𝑛, h(𝑋,Φ)(𝑇 ) is the set of all
continuous maps 𝑓 : 𝑇 → 𝑋 with the following property:

– For every (𝑈, 𝑥) ∈ Φ, the map 𝑥 ∘ 𝑓 : 𝑇 ∩ 𝑓 −1𝑈 → ℝ𝑛 is smooth.

• The action of u�0 is composition (of continuous maps).

Lemma. Let (𝑋, Φ) be an 𝑛-dimensional manifold. Then h(𝑋,Φ) is a 𝖩0-

sheaf on u�0.

Proof. Straightforward. (This is essentially the fact that smoothness of

maps is a local property.) ⧫

3.3.6 Theorem. The essential image of the Yoneda representation Xt(u�, u�) →
Sh(u�0, 𝖩0) is the full and replete subcategory spanned by the 𝖩0-sheaves

represented by 𝑛-dimensional manifolds (𝑋, Φ) where Φ is 𝜅-small.

Proof. For ease of notation, we will identify u� with its essential image in

Sh(u�0, 𝖩0).
First, let (𝑋, Φ) be an 𝑛-dimensional manifold where Φ is 𝜅-small.

We will show that h(𝑋,Φ) is in Xt(u�, u�). It is not hard to see that Φ is

𝖩0-local generating set of elements of h(𝑋,Φ). In other words, we have a

𝖩0-locally surjective morphism 𝑝 : 𝐴 ↠ h(𝑋,Φ) where 𝐴 = ∐(𝑈,𝑥)∈Φ h𝑥𝑈
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in Sh(u�0, 𝖩0), where 𝑥𝑈 is the image of 𝑥 : 𝑈 → ℝ𝑛. Since u� is closed

under 𝜅-ary coproduct, 𝐴 is an object in u� . Let (𝑅, 𝑑0, 𝑑1) be a kernel

pair of 𝑝 : 𝐴 ↠ h(𝑋,Φ) in Sh(u�0, 𝖩0). Then 𝑅 is a 𝜅-ary disjoint union of

representable 𝖩0-sheaves on u�0, so (𝑅, 𝑑0, 𝑑1) is an equivalence relation

on 𝐴 in u� . Moreover, by lemma a.3.10, (h(𝑋,Φ) is an object in u� and) 𝑝 :
𝐴 ↠ h(𝑋,Φ) is an exact quotient of (𝑅, 𝑑0, 𝑑1) in u� . It is straightforward

to verify that (𝑅, 𝑑0, 𝑑1) is a tractable equivalence relation in u� . Hence,

by lemma 2.2.14(c), 𝑝 : 𝐴 ↠ h(𝑋,Φ) is a local homeomorphism in u� , and

therefore h(𝑋,Φ) is indeed a (u�, u�)-extent in u� .

Now, let 𝐵 be a (u�, u�)-extent in u� . By definition, there is a (u�, u�)-
atlas of 𝐵 in u� , say (𝐴, 𝑝), and by proposition 2.3.13, we may assume

that 𝑝 : 𝐴 ↠ 𝐵 is a laminar morphism. (Note that, for every lam-

inar morphism ℎ : 𝐶′ → 𝐶 in u� , if 𝐶 is isomorphic to an object in

u�, then 𝐶′ is also isomorphic to an object in u�.) Suppose 𝐴 = ∐𝑖∈𝐼 𝑇𝑖

for some family (𝑇𝑖 | 𝑖 ∈ 𝐼) of objects in u�0 where 𝐼 is a 𝜅-small set,

such that each composite 𝑇𝑖 → 𝐴 ↠ 𝐵 is an open embedding in u� .

Let 𝑅 = ∐𝑖0∈𝐼 ∐𝑖1∈𝐼 𝑇0 ×𝐵 𝑇1. Then (𝑅, 𝑑0, 𝑑1) is a kernel pair of

𝑝 : 𝐴 ↠ 𝐵, where 𝑑0, 𝑑1 : 𝑅 → 𝐴 are the two evident projections. Let 𝑋
be the quotient of the corresponding equivalence relation in Top. Since

the projections 𝑑0, 𝑑1 : 𝑅 → 𝐴 and the relative diagonal Δ𝑝 : 𝐴 → 𝑅 cor-

respond to open maps of topological spaces, the quotient map is a local

homeomorphism of topological spaces. In particular, we obtain open

embeddings 𝑇𝑖 → 𝑋, and it is straightforward to verify that their inverses

comprise a smooth 𝑛-dimensional atlas Φ of 𝑋. Moreover, by the argu-

ment of the previous paragraph, we obtain h(𝑋,Φ) ≅ 𝐵, as desired. ■

3.3.7 ¶ Finally, we should remark that the material covered in this section does

not depend very strongly on the meaning of ‘smooth’. Indeed, everything

still works if we replace ‘smooth’ with ‘𝑚-times continuously differenti-

able’—then we get the category of 𝑛-dimensional manifolds and 𝑚-times

continuously differentiable maps. We could even replace ℝ with ℂ and

‘smooth’ with ‘analytic’ to obtain the category of 𝑛-dimensional complex

analytic manifolds and analytic maps. The dimension restriction can also
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be lifted; then, by proposition 2.3.11, Xt(u�, u�) will have finitary products
(as is well known).
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3.4 Topological spaces

Synopsis. We construct admissible ecumenae from categories of topolo-

gical spaces and investigate when a topological space is representable by

a charted object.

Prerequisites. §§1.1, 2.2, 2.3, 2.5, a.1, a.2, a.3.

3.4.1 ※ Throughout this section:

• 𝜅 is a regular cardinal.

• u� is a (small) full subcategory of themetacategory of topological spaces

(and continuous maps) that is closed under finitary products, equal-

isers, and 𝜅-ary disjoint unions.

• u� is the class of local homeomorphisms between objects in u�.

• For every object 𝑋 in u� and every open subspace 𝑈 ⊆ 𝑋, there is

𝜅-small set Φ of open subspaces of 𝑈 with the following properties:

– For every 𝑉 ∈ Φ, 𝑉 is homeomorphic to an object in u�.

– 𝑈 = ⋃𝑉 ∈Φ 𝑉 .

• For each object 𝑋 in u�, 𝖩(𝑋) is the set of 𝜅-small sinks Φ on 𝑋 in u�
such that Φ is a jointly surjective family of open embeddings.

• 𝖤 is the class of surjective local homeomorphisms between objects in

u�.

3.4.2 Proposition. (u�, u�, 𝖩) is a 𝜅-ary admissible ecumene, i.e.:

(i) u� is a 𝜅-ary extensive category.

(ii) u� is a class of separated fibrations in u�.

(iii) 𝖩 is a subcanonical u�-adapted 𝜅-ary superextensive coverage on

u�.

(iv) Every morphism in u� of u�-type (u�, 𝖩)-semilocally on the domain is
a member of u�.

(v) Every complemented monomorphism in u� is a member of u�.
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(vi) (u�, 𝖤) satisfies the Shulman condition.[1]

Proof. Straightforward. ⧫

Remark. In particular, every local homeomorphism in u� in the sense of

definition 2.2.12 is a member of u�, so there is no danger of confusion in

using the phrase ‘local homeomorphism in u�’.

3.4.3 ※ For the remainder of this section:

• u� = Ex(u�, 𝖤).

• u� is the class ofmorphisms inu� corresponding tomorphisms inPsh(u�)

that are 𝖩-locally of u�-type.

• 𝖪 is the 𝜅-ary canonical coverage on u� .

• û� is the class of u�-perfect morphisms in u� .

Furthermore, by abuse of notation, we will identify u� with the image of

the insertion u� → u� .

3.4.4 Proposition.

(i) (u� , û�) is a 𝜅-ary gros pretopos.

(ii) Moreover, (u� , û�, 𝖪) satisfies the descent axiom.

(iii) A morphism in u� is a member of u� if and only if it is a member of

û�.

Proof. This is a special case of proposition 2.3.2. ■

3.4.5 ¶ Consider the Yoneda representation h• : Top → Psh(u�). Since u�
has pullbacks and the inclusion u� ↪ Top preserves them, lemma a.2.6

implies that, for every topological space 𝑋, h𝑋 is a 𝖩-sheaf on u�. Thus, by
proposition a.1.4, for every 𝖩-sheaf 𝐴 on u�, there is a topological space

|𝐴| and a morphism 𝜂𝐴 : 𝐴 → h|𝐴| in Sh(u�, 𝖩) such that the following

map is a bijection for every topological space 𝑌 :

Top(|𝐴|, 𝑌 ) → HomSh(u�,𝖩)(𝐴, h𝑌 )
[1] Note that a morphism in u� is 𝖩-covering if and only if it is 𝖤-covering.
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𝑓 ↦ h𝑓 ∘ 𝜂𝐴

Indeed, we may take |𝐴| = lim−−→(𝑋,𝑎):El(𝐴)
𝑋. This yields an adjunction:

Top Sh(u�, 𝖩)
h•

⊥
|−|

It is clear (by construction) that the counit 𝜀𝑋 : |h𝑋| → 𝑋 is a homeo-

morphism for every object 𝑋 in u�. We would like to know if this happens

for topological spaces that are not necessarily in u�.

3.4.5(a) Lemma. Let 𝑋 be a topological space. The following are equivalent:

(i) The counit 𝜀𝑋 : |h𝑋| → 𝑋 is a homeomorphism.

(ii) For every topological space 𝑌 , the following is a bijection:

h• : Top(𝑋, 𝑌 ) → HomSh(u�,𝖩)(h𝑋 , h𝑌 )

Proof. Straightforward. ⧫

3.4.5(b) Lemma. The functor |−| : Sh(u�, 𝖩) → Top preserves monomorphisms.

Proof. Let Γ : Sh(u�, 𝖩) → Set be the evident functor defined on objects

by 𝐴 ↦ 𝐴(1). It is clear that 1 is a 𝖩-local object in u�, so by lemma a.3.12,

Γ : Sh(u�, 𝖩) → Set preserves colimits. On the other hand, proposi-

tion a.1.4 implies that Γ : Sh(u�, 𝖩) → Set is isomorphic to the composite

of |−| : Sh(u�, 𝖩) → Top and the forgetful functor Top → Set. Since the

forgetful functor Top → Set is faithful, it follows that |−| : Sh(u�, 𝖩) →
Top preserves monomorphisms. ■

3.4.5(c) Lemma. Let 𝑓 : 𝑋 ↠ 𝑌 be a surjective local homeomorphism of topo-

logical spaces and let (𝑅, 𝑑0, 𝑑1) be the kernel pair of 𝑓 : 𝑋 ↠ 𝑌 in

Top.

(i) The following is an exact fork in Sh(u�, 𝖩):

h𝑅 h𝑋 h𝑌

𝑑0∘−

𝑑1∘−

𝑓∘−
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(ii) If both 𝜀𝑅 : |h𝑅| → 𝑅 and 𝜀𝑋 : |h𝑋| → 𝑋 are homeomorphisms,

then 𝜀𝑌 : |h𝑌 | → 𝑌 is also a homeomorphism.

Proof. (i). It is not hard to verify that h𝑓 : h𝑋 → h𝑌 is a 𝖩-locally sur-

jective morphism in Psh(u�). Thus, by lemma a.3.10, we have the desired

exact fork.

(ii). |−| : Sh(u�, 𝖩) → Top preserves coequalisers, and 𝑓 : 𝑋 ↠ 𝑌 is

an effective epimorphism in Top, so it follows that 𝜀𝑌 : |h𝑌 | → 𝑌 is

a homeomorphism if both 𝜀𝑅 : |h𝑅| → 𝑅 and 𝜀𝑋 : |h𝑋| → |h𝑌 | are
homeomorphisms. ■

3.4.5(d) Lemma. Let (𝑋𝑖 | 𝑖 ∈ 𝐼) be a family of topological spaces where 𝐼 is a

𝜅-small set and let 𝑋 = ∐𝑖∈𝐼 𝑋𝑖.

(i) h𝑋 is a coproduct of (h𝑋𝑖 | 𝑖 ∈ 𝐼) in Sh(u�, 𝖩) (with the evident co-

product injections).

(ii) If each 𝜀𝑋𝑖
: |h𝑋𝑖| → 𝑋𝑖 is a homeomorphism, then 𝜀𝑋 : |h𝑋| → 𝑋

is also a homeomorphism.

Proof. (i). Using lemma 1.5.4, it is not hard to see that the Yoneda rep-

resentation h• : Top → Sh(u�, 𝖩) preserves 𝜅-ary coproducts.

(ii). On the other hand, |−| : Sh(u�, 𝖩) also preserves (𝜅-ary) coproducts.
The claim follows. ■

3.4.5(e) Lemma. Let 𝑋 be an object in u� and let 𝑈 be an open subspace of 𝑋.

(i) h𝑈 → h𝑋 is a monomorphism in Psh(u�) that is 𝖩-semilocally of

u�-type.

(ii) 𝜀𝑈 : |h𝑈 | → 𝑈 is a homeomorphism in u�.

Proof. (i). By hypothesis, there is a 𝜅-small set Φ of open subspaces of

𝑉 such that:

• For each 𝑉 ∈ Φ, 𝑉 is homeomorphic to an object in u�.

• 𝑈 = ⋃𝑉 ∈Φ 𝑉 .
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It is clear that h𝑈 → h𝑋 is a monomorphism in Psh(u�), and it follows

that h𝑈 → h𝑋 is 𝖩-semilocally of u�-type. Let ̄𝑉 = ∐𝑉 ∈Φ 𝑉 and let

𝑝 : ̄𝑉 ↠ 𝑈 be the evident projection. Clearly, 𝑝 : ̄𝑉 ↠ 𝑈 is a surjective

local homeomorphism. Let (𝑅, 𝑑0, 𝑑1) be the kernel pair of 𝑝 : ̄𝑉 ↠ 𝑉 .

Then 𝑅 ≅ ∐𝑉0∈Φ ∐𝑉1∈Φ 𝑉0∩𝑉1, and each 𝑉0∩𝑉1 is homeomorphic to an

object in u�, so by lemma 3.4.5(d), both 𝜀𝑅 : |h𝑅| → 𝑅 and 𝜀 ̄𝑉 : |h ̄𝑉 | → ̄𝑉
are homeomorphisms. Hence, by lemma 3.4.5(c), 𝜀𝑈 : |h𝑈 | → 𝑈 is also

a homeomorphism. ■

3.4.6 ¶ In view of the discussion above, we make the following definition.

Definition. A topological space 𝑋 is of u�-type if there is a 𝜅-small set

Φ of open subspaces of 𝑋 with the following properties:

• For every 𝑈 ∈ Φ, 𝑈 is homeomorphic to an object in u�.

• 𝑋 = ⋃𝑈∈Φ 𝑈 .

We write ℳ for the metacategory of topological spaces of u�-type (and

continuous maps).

Proposition.

(i) ℳ is closed in Top under 𝜅-ary disjoint union.

(ii) Given an object 𝑋 in ℳ, if 𝑈 is an open subspace of 𝑋, then 𝑈 is

also an object in ℳ.

(iii) For every object 𝑌 in ℳ, there exist an object 𝑋 in u� and a sur-

jective local homeomorphism 𝑓 : 𝑋 ↠ 𝑌 such that 𝑋 ×𝑌 𝑋 is

homeomorphic to a 𝜅-ary disjoint union of open subspaces of 𝑋 and

h𝑓 : h𝑋 → h𝑌 is a morphism in Psh(u�) that is 𝖩-semilocally of u�-type.

(iv) For every object 𝑌 in ℳ, the counit 𝜀𝑌 : |h𝑌 | → 𝑌 is a homeo-

morphism.

(v) The Yoneda representation ℳ → Sh(u�, 𝖩) is fully faithful, pre-

serves 𝜅-ary coproducts, and sends surjective local homeomorphisms

in ℳ to effective epimorphisms in Sh(u�, 𝖩).

Proof. (i) and (ii). Straightforward.
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(iii). Let 𝑌 be an object in ℳ. By definition, there is a 𝜅-small set Ψ of

open subspaces of 𝑌 with the following properties:

• For every 𝑉 ∈ Ψ, 𝑉 is homeomorphic to an object in u�.

• 𝑌 = ⋃𝑉 ∈Ψ 𝑉 .

Since u� is closed under 𝜅-ary disjoint union, ∐𝑉 ∈Ψ 𝑉 is also homeo-

morphic to an object in u�, say 𝑋. There is an evident surjective local

homeomorphism 𝑓 : 𝑋 ↠ 𝑌 , and it is clear that 𝑋 ×𝑌 𝑋 is homeo-

morphic to a 𝜅-ary disjoint union of open subspaces of 𝑋. Moreover, by

proposition 1.2.13 and lemma 3.4.5(e), h𝑓 : h𝑋 → h𝑌 is 𝖩-semilocally of

u�-type, as claimed.

(iv). Apply lemmas 3.4.5(c) and 3.4.5(d) to (ii) and (iii).

(v). By lemma 3.4.5(a) and (iv), theYoneda representationℳ → Sh(u�, 𝖩)

is fully faithful. We already know that the Yoneda representation Top →
Sh(u�, 𝖩) preserves 𝜅-ary coproducts and sends surjective local homeo-

morphisms in Top to effective epimorphisms in Sh(u�, 𝖩), so we are done.
■

3.4.7 ¶ By theorem 2.1.14, the Yoneda representation u� → Sh(u�, 𝖩) is fully
faithful and preserves limits of finite diagrams, 𝜅-ary coproducts, and

exact quotients. Moreover, by lemma 2.1.16, a 𝖩-sheaf on u� is in the

essential image of the Yoneda representation if and only if it is 𝖩-locally
𝜅-presentable.

Lemma. If 𝑥 : 𝑈 → 𝑋 is an open embedding in u� and 𝑋 is an object in

u�, then |h𝑥| : |h𝑈 | → |h𝑋| is an open embedding of topological spaces.

Proof. Since h𝑥 : h𝑈 → h𝑋 is a monomorphism in Psh(u�) that is 𝖩-
semilocally of u�-type, there is a 𝜅-small set Φ of objects in u�∕𝑈 with the

following properties:

• For every (𝑉 , 𝑢) ∈ Φ, 𝑉 is an object in u� and 𝑥 ∘ 𝑢 : 𝑉 → 𝑋 is an

open embedding of topological spaces.

• The induced morphism 𝑝 : ∐(𝑉 ,𝑢)∈Φ 𝑉 → 𝑈 in u� is an effective epi-

morphism.
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Thus, |h𝑝| : |h∐(𝑉 ,𝑢)∈Φ 𝑉 | ↠ |𝑈| is an effective epimorphism in Top and

the composite |h𝑥| ∘ |h𝑝| : |h∐(𝑉 ,𝑢)∈Φ 𝑉 | → |𝑋| is a local homeomorph-

ism of topological spaces. On the other hand, by lemma 3.4.5(b), |h𝑥| :

|h𝑈 | → |h𝑋| is an injective continuous map. Thus, |h𝑥| : |h𝑈 | → |h𝑋| is
indeed an open embedding of topological spaces. ■

Theorem. Let ū� be the class of local homeomorphisms in u� .

(i) If 𝑋 is an object in ℳ, then there is a (u�, ū�)-extent 𝐴 in u� such

that h𝑋 ≅ h𝐴 in Sh(u�, 𝖩).

(ii) If 𝐴 is a (u�, ū�)-extent in u� , then |h𝐴| is a topological space of

u�-type.

(iii) The functor |h•| : Xt(u�, ū�) → ℳ is fully faithful and essentially

surjective on objects.

Proof. (i). First, consider a subspace 𝑈 of an object 𝑋 in u�. Recalling

the proof of lemma 3.4.5(e), we see that there is an open subobject 𝐴 of

𝑋 in u� such that h𝑈 ≅ h𝐴. Thus, by proposition 3.4.6, for every object

𝑋 in ℳ, there is an object 𝐴 in u� such that h𝑋 ≅ h𝐴. Moreover, by

tracing the proof of that proposition, it is straightforward to verify that 𝐴
is a (u�, ū�)-extent in u� .

(ii). In view of lemma 3.4.7, a similar argument shows that |h𝐴| is a

topological space of u�-type if 𝐴 is a (u�, ū�)-extent in u� .

(iii). Hence, by lemma 3.4.5(a) and proposition 3.4.6, |h•| : Xt(u�, ū�) →
ℳ is fully faithful and essentially surjective on objects. ■

3.4.8 ¶ By proposition 2.2.12, we have ū� ⊆ û�, soXt(u�, ū�) ⊆ Xt(u�, û�). We

will now see an explicit example where these inclusions are strict.

Example. Let u� be the category of topological spaces 𝑋 such that the

set of points of 𝑋 is hereditarily 𝜅-small. It is straightforward to check

that the hypotheses of proposition 2.3.14(b) are satisfied, so each (u�, ū�)-
extent in u� is isomorphic to an object in u�.

On the other hand, consider the unit circle in the complex plane:

𝑆1 = {𝑧 ∈ ℂ | |𝑧| = 1}
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Let 𝑅 = ℤ × 𝑆1 and let 𝑑0, 𝑑1 : 𝑅 → 𝑆1 be defined as follows:

𝑑0(𝑛, 𝑧) = exp(𝑖𝑛)𝑧

𝑑1(𝑛, 𝑧) = 𝑧

Then 𝑑0, 𝑑1 : 𝑅 → 𝑆1 are local homeomorphisms of topological spaces.

Moreover, (𝑅, 𝑑0, 𝑑1) is an equivalence relation on 𝑆1, but there does

not exist a local homeomorphism 𝑓 : 𝑆1 → 𝑌 such that 𝑓 ∘ 𝑑0 = 𝑓 ∘
𝑑1: indeed, (𝑅, 𝑑0, 𝑑1) is not a tractable equivalence relation. (Recall

lemma 2.2.14(a).) Nonetheless, assuming 𝑅 and 𝑆1 are objects in u�, an
exact quotient of (𝑅, 𝑑0, 𝑑1) exists in u� , and lemma 2.2.8(b) says that it is

a (u�, û�)-extent; but by the preceding discussion, it is not a (u�, ū�)-extent.
In this context, it is also worth noting that a (u�, ū�)-extent is the same

thing as a û�-localic (u�, û�)-extent. In other words, a (u�, û�)-extent is a

(u�, ū�)-extent precisely when it has enough open subobjects.

3.4.9 Example. Let u� be the category of Hausdorff spaces𝑋 such that the set of

points of 𝑋 is hereditarily 𝜅-small. Then, by theorem 3.4.7, the essential

image of |−| : Xt(u�, ū�) → Top is spanned by the locally Hausdorff

spaces 𝑋 such that the set of points of 𝑋 is 𝜅-small. In particular, since

there are locally Hausdorff spaces that are not Hausdorff spaces, assuming

𝜅 > ℵ0, we have a (u�, ū�)-extent that is not isomorphic to any object in

u�.
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3.5 Schemes

Synopsis. We see two prima facie different ways of defining schemes as

extents in a gros pretopos and show that they are the same.

Prerequisites. §§1.1, 1.2, 2.2, 2.3, 2.5, a.1, a.2, a.3.

3.5.1 ※ Throughout this section, rings and algebras are associative, unital, and

commutative.

3.5.2 ¶ Modern algebraic geometry beginswith the observation that the oppos-

ite of the category of rings is like a category of spaces. Indeed, we will see

how to equip it with the structure of an étale finitary (i.e. ℵ0-ary) extens-

ive ecumene in two different ways—one that starts from the notion that

the formal dual of a principal localisation of a ring is analogous to a basic

open subspace, and another that starts from the notion that the formal

dual of a flat ring homomorphism of finite presentation is analogous to an

open map. The associated gros pretoposes are also different, but we will

see that schemes can be defined as objects obtained by gluing together the

formal duals of rings along local homeomorphisms in either pretopos.

3.5.3 ¶ To begin, we briefly recall some commutative algebra.

Proposition. CRingop is a finitary extensive category.

Proof. Omitted. (Use the Chinese remainder theorem.) ◊

3.5.4 Definition. A ring homomorphism 𝑓 : 𝐴 → 𝐵 is flat if 𝐵 is flat as an

𝐴-module, i.e. 𝐵 ⊗𝐴 (−) preserves injective homomorphisms of modules.

Properties of

flat ring homo-

morphisms

Proposition.

(i) Every ring isomorphism is flat.

(ii) Every principal localisation is flat.

(iii) For every ring 𝐴, the unique homomorphism 𝐴 → {0} is flat.

(iv) For every ring 𝐴, the diagonal Δ𝐴 : 𝐴 → 𝐴 × 𝐴 is flat.
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(v) The class of flat ring homomorphisms is a coquadrable class of

morphisms in CRing.

(vi) The class of flat ring homomorphisms is closed under composition.

(vii) The class of flat ring homomorphisms is closed under finitary prod-

uct in CRing.

Proof. Straightforward. ⧫

3.5.5 Definition. A ring homomorphism 𝑓 : 𝐴 → 𝐵 is faithfully flat if it has

the following properties:

• 𝑓 : 𝐴 → 𝐵 is flat.

• For every pushout square in CRing of the form below,

𝐴 𝐴′

𝐵 𝐵′

𝑓 𝑓 ′

𝑓 ′ : 𝐴′ → 𝐵′ is an injective homomorphism of rings.

Recognition

principles for

faithfully flat ring

homomorphisms

Lemma. Let 𝑓 : 𝐴 → 𝐵 be a ring homomorphism. The following are

equivalent:

(i) 𝑓 : 𝐴 → 𝐵 is faithfully flat.

(ii) 𝑓 : 𝐴 → 𝐵 is flat and, for every prime ideal 𝔭 of 𝐴, there is a prime

ideal 𝔮 of 𝐵 such that 𝑓 −1𝔮 = 𝔭.

(iii) 𝑓 : 𝐴 → 𝐵 is flat and 𝐵 ⊗𝐴 (−) reflects isomorphisms of modules.

Proof. (i) ⇒ (ii). Let 𝐹 be the fraction field of 𝐴/𝔭 and consider the

following pushout square in CRing:

𝐴 𝐹

𝐵 𝐹 ⊗𝐴 𝐵

𝑓 𝑓 ′

By hypothesis, 𝑓 ′ : 𝐹 → 𝐹 ⊗𝐴 𝐵 is injective, so 𝐹 ⊗𝐴 𝐵 is non-zero. In

particular, 𝐹 ⊗𝐴 𝐵 has a prime ideal. Let 𝔮 be its preimage in 𝐵. Then

𝑓 −1𝔮 = 𝔭, as desired.
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(ii) ⇒ (iii). This is well known: see e.g. tag 00HQ in [Stacks].

(iii) ⇒ (i). Consider a pushout square in CRing of the form below:

𝐴 𝐴′

𝐵 𝐵′

𝑓 𝑓 ′

Wewish to show that 𝑓 ′ : 𝐴′ → 𝐵′ is injective. Since 𝐵⊗𝐴 (−) preserves
kernels and reflects isomorphisms, it suffices to verify that id𝐵 ⊗𝐴 𝑓 ′ :
𝐵 ⊗𝐴 𝐴′ → 𝐵 ⊗𝐴 𝐵′ is injective. But the following is also a pushout

square in CRing,

𝐵 𝐵 ⊗𝐴 𝐴′

𝐵 ⊗𝐴 𝐵 𝐵 ⊗𝐴 𝐵′

id𝐵⊗𝐴𝑓 ′

and 𝐵 → 𝐵 ⊗𝐴 𝐵 is a split monomorphism in CRing, so id𝐵 ⊗𝐴 𝑓 ′ :
𝐵 ⊗𝐴 𝐴′ → 𝐵 ⊗𝐴 𝐵′ is indeed injective. ■

Remark. In the lemma above, one can also prove (i) ⇒ (iii) directly,

thereby avoiding the use of the prime ideal theorem.

Properties of

faithfully flat ring

homomorphisms

Proposition.

(i) Every flat split monomorphism in CRing is faithfully flat.

(ii) The class of faithfully flat ring homomorphisms is a coquadrable

class of morphisms in CRing.

(iii) The class of faithfully flat ring homomorphisms is closed under

composition.

(iv) The class of faithfully flat ring homomorphisms is closed under

finitary product in CRing.

Proof. Straightforward. (Recall proposition 3.5.4.) ⧫

3.5.6 Definition. A ring homomorphism 𝑓 : 𝐴 → 𝐵 is of finite presentation

if 𝐵 is finitely presentable as an 𝐴-algebra.
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Properties of ring

homomorph-

isms of finite

presentation

Proposition.

(i) Every ring isomorphism is of finite presentation.

(ii) Every principal localisation is of finite presentation.

(iii) For every ring 𝐴, the unique homomorphism 𝐴 → {0} is of finite

presentation.

(iv) For every ring 𝐴, the diagonal Δ𝐴 : 𝐴 → 𝐴 × 𝐴 is of finite present-

ation.

(v) The class of ring homomorphisms of finite presentation is a coquad-

rable class of morphisms in CRing.

(vi) The class of ring homomorphisms of finite presentation is closed

under composition.

(vii) The class of ring homomorphisms of finite presentation is closed

under finitary product in CRing.

(viii) Given ring homomorphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 , if both

𝑓 : 𝐴 → 𝐵 and 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 are of finite presentation, then

𝑔 : 𝐵 → 𝐶 is also of finite presentation.

Proof. Straightforward. ⧫

3.5.7 Definition. A ring homomorphism 𝑓 : 𝐴 → 𝐵 is étale if it has the

following properties:

• 𝑓 : 𝐴 → 𝐵 is a flat ring homomorphism of finite presentation.

• The relative codiagonal ∇𝑓 : 𝐵 ⊗𝐴 𝐵 → 𝐵 is flat.

Recognition

principle for

étale ring homo-

morphisms

Lemma. Let 𝑓 : 𝐴 → 𝐵 be a ring homomorphism. The following are

equivalent:

(i) 𝑓 : 𝐴 → 𝐵 is an étale ring homomorphism.

(ii) 𝑓 : 𝐴 → 𝐵 is a flat and unramified ring homomorphism of finite

presentation.

Proof. (i) ⇒ (ii). By tag 092M in [Stacks], étale ring homomorphisms (in

our sense) are formally unramified, and by tag 00UU in op. cit., a formally

unramified ring homomorphism of finite presentation is unramified.
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(ii) ⇒ (i). By tag 08WD in [Stacks], a flat unramified ring homomorphism

of finite presentation is étale in their sense, and tag 00U7 in op. cit. implies

that an étale ring homomorphism in their sense is étale in our sense. ■

Properties of

étale ring homo-

morphisms

Proposition.

(i) Every flat epimorphism of finite presentation in CRing is étale.

(ii) In particular, every principal localisation is étale.

(iii) For every ring 𝐴, the unique homomorphism 𝐴 → {0} is étale.

(iv) For every ring 𝐴, the diagonal Δ𝐴 : 𝐴 → 𝐴 × 𝐴 is étale.

(v) The class of étale ring homomorphisms is a coquadrable class of

morphisms in CRing.

(vi) The class of étale ring homomorphisms is closed under composi-

tion.

(vii) The class of étale ring homomorphisms is closed under finitary

product in CRing.

(viii) Given ring homomorphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 , if both

𝑓 : 𝐴 → 𝐵 and 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 are étale, then 𝑔 : 𝐵 → 𝐶 is also étale.

Proof. Apply lemma 1.1.10 and propositions 3.5.4 and 3.5.6. ■

3.5.8 ¶ We will also need some results from descent theory.

Definition. A ring homomorphism is fppf[1] if it is both faithfully flat

and of finite presentation.

3.5.8(a) Proposition. Every faithfully flat ring homomorphism is an effective

monomorphism in CRing.

Proof. Let 𝑓 : 𝐴 → 𝐵 be a faithfully flat ring homomorphism and let

𝑑0, 𝑑1 : 𝐵 → 𝐵 ⊗𝐴 𝐵 be defined as follows:

𝑑0(𝑏) = 1 ⊗ 𝑏 𝑑1(𝑏) = 𝑏 ⊗ 1

[1] — from French « fidèlement plat de présentation finie ».
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We must show that the following is an equaliser diagram in CRing:

𝐴 𝐵 𝐵 ⊗𝐴 𝐵𝑓 𝑑0

𝑑1

By lemma 3.5.5, it is enough to verify that the following is an equaliser

diagram in CRing,

𝐵 𝐵 ⊗𝐴 𝐵 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝐵𝑑1 𝑑1

𝑑2

where 𝑑1, 𝑑2 : 𝐵 ⊗𝐴 𝐵 → 𝐵 ⊗𝐴 𝐵 ⊗𝐴 𝐵 are defined as follows:

𝑑1(𝑏0 ⊗ 𝑏1) = 𝑏0 ⊗ 1 ⊗ 𝑏1 𝑑2(𝑏0 ⊗ 𝑏1) = 𝑏0 ⊗ 𝑏1 ⊗ 1

In fact, this is a split equaliser diagram, so we are done. ■

3.5.8(b) Proposition. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be ring homomorphisms.

(i) Assuming 𝑔 : 𝐵 → 𝐶 is faithfully flat, 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is flat if and

only if 𝑓 : 𝐴 → 𝐵 is flat.

(ii) Assuming 𝑔 : 𝐵 → 𝐶 is fppf, 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is of finite presentation

if and only if 𝑓 : 𝐴 → 𝐵 is of finite presentation.

(iii) Assuming 𝑔 : 𝐵 → 𝐶 is faithfully flat and étale, 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is

étale if and only if 𝑓 : 𝐴 → 𝐵 is étale.

Proof. (i). Straightforward. (Use proposition 3.5.4 and lemma 3.5.5.)

(ii). For the ‘if’ direction, see proposition 3.5.6; for the ‘only if’ direction,

see tag 02KK in [Stacks].

(iii). For the ‘if’ direction, see proposition 3.5.7; for the ‘only if’ direction,

see tag 02K6 in [Stacks]. □

3.5.8(c) Proposition. Consider a pushout square in CRing:

𝐴 𝐴′

𝐵 𝐵′

𝑓 𝑓 ′

Assuming 𝐴 → 𝐴′ is faithfully flat:

(i) 𝑓 ′ : 𝐴′ → 𝐵′ is flat if and only if 𝑓 : 𝐴 → 𝐵 is flat.
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(ii) 𝑓 ′ : 𝐴′ → 𝐵′ is of finite presentation if and only if 𝑓 : 𝐴 → 𝐵 is

of finite presentation.

(iii) 𝑓 ′ : 𝐴′ → 𝐵′ is étale if and only if 𝑓 : 𝐴 → 𝐵 is étale.

Proof. (i). By proposition 3.5.4, if 𝑓 : 𝐴 → 𝐵 is flat, then 𝑓 ′ : 𝐴′ → 𝐵′

is also flat. Conversely, by proposition 3.5.5, 𝐵 → 𝐵′ is faithfully flat,

and if 𝑓 ′ : 𝐴′ → 𝐵′ is flat, then the composite 𝐴 → 𝐵 → 𝐵′ is also flat,

so by proposition 3.5.8(b), 𝑓 : 𝐴 → 𝐵 is indeed flat.

(ii). For the ‘if’ direction, see proposition 3.5.6; for the ‘only if’ direction,

see tag 00QQ in [Stacks].

(iii). By proposition 3.5.7, if 𝑓 : 𝐴 → 𝐵 is étale, then 𝑓 ′ : 𝐴′ → 𝐵′

is étale. For the converse, suppose 𝑓 ′ : 𝐴′ → 𝐵′ is étale. By (i) and

(ii), 𝑓 : 𝐴 → 𝐵 is flat and of finite presentation. Moreover, we have the

following commutative diagram in CRing,

𝐵 𝐵′

𝐵 ⊗𝐴 𝐵 𝐵′ ⊗𝐴′ 𝐵′

𝐵 𝐵′

∇𝑓 ∇𝑓′

where every square is a pushout square in CRing and every horizontal

arrow is a faithfully flat ring homomorphism, so the relative codiagonal

∇𝑓 : 𝐵 ⊗𝐴 𝐵 → 𝐵 is flat. Thus, 𝑓 : 𝐴 → 𝐵 is indeed étale. □

3.5.9 Lemma. Let 𝐴 be a ring, let 𝐼 be a finite subset of 𝐴, and let ̃𝐴 =

∏𝑎∈𝐼 𝐴[𝑎−1]. The following are equivalent:

(i) 𝐼 generates the unit ideal of 𝐴.

(ii) The induced homomorphism 𝐴 → ̃𝐴 is faithfully flat.

(iii) There is a ring homomorphism ̃𝐴 → 𝐵 such that the composite

𝐴 → ̃𝐴 → 𝐵 is faithfully flat.

Proof. (i) ⇒ (ii). By proposition 3.5.4, 𝐴 → ̃𝐴 is flat. We will now

show that 𝐴 → ̃𝐴 is injective. Since 𝐼 generates the unit ideal of 𝐴, there
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exist elements 𝑟0, … , 𝑟𝑛−1 of 𝐴 and elements 𝑎0, … , 𝑎𝑛−1 of 𝐼 such that

𝑟0𝑎0 + ⋯ + 𝑟𝑛−1𝑎𝑛−1 = 1. Suppose 𝑠 is an element of 𝐴 such that 𝑠 = 0
in each 𝐴[𝑎𝑖

−1], i.e. for 0 ≤ 𝑖 < 𝑛, there is a natural number 𝑘𝑖 such that

𝑎𝑘𝑖
𝑖 𝑠 = 0 in 𝐴; hence, for 𝑘 = 𝑘0 + ⋯ + 𝑘𝑛−1:

𝑠 = (𝑟0𝑎0 + ⋯ + 𝑟𝑛−1𝑎𝑛−1)𝑘𝑠 = 0

Thus 𝐴 → ̃𝐴 is indeed injective. The same argument shows that 𝐵 →

∏𝑎∈𝐴 𝐵[𝑓(𝑎)−1] is injective for every ring homomorphism 𝑓 : 𝐴 → 𝐵,

so 𝐴 → ̃𝐴 is indeed faithfully flat.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let 𝔞 be the ideal of 𝐴 generated by 𝐼 and let 𝔟 be the ideal of

𝐵 generated by the image of 𝐼 . We have the following pushout square in

CRing:

𝐴 𝐴/𝔞

𝐵 𝐵/𝔟

By hypothesis, 𝐴/𝔞 → 𝐵/𝔟 is injective. On the other hand, 𝔟 is the unit

ideal of 𝐵, so 𝐴/𝔞 ≅ {0}. Hence, 𝔞 is the unit ideal of 𝐴. ■

3.5.10 ¶ The following is a deep result in algebraic geometry.

Flat morphisms

have open image

Proposition. Let 𝑓 : 𝐴 → 𝐵 be a flat ring homomorphism of finite

presentation and let 𝐼 be the subset of 𝐴 defined as follows:

• 𝑎 ∈ 𝐼 if and only if the induced homomorphism 𝐴[𝑎−1] → 𝐵[𝑓(𝑎)−1]
is fppf.

Then {𝑓(𝑎) | 𝑎 ∈ 𝐼} generates the unit ideal of 𝐵.

Proof. In the language of algebraic geometry, this is the statement that a

flat morphism (of schemes) of finite presentation has an open image. See

tag 01UA in [Stacks]. □
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3.5.11 Definition. An open quasilocalisation is an epimorphism 𝑓 : 𝐴 → 𝐵
in CRing for which there is a (finite) subset 𝐼 ⊆ 𝐴 with the following

properties:

• For every 𝑎 ∈ 𝐼 , the induced homomorphism 𝐴[𝑎−1] → 𝐵[𝑓(𝑎)−1] is
an isomorphism.

• {𝑓(𝑎) | 𝑎 ∈ 𝐼} generates the unit ideal of 𝐵.

Recognition prin-

ciples for open

quasilocalisations

Lemma. Let 𝑓 : 𝐴 → 𝐵 be a ring homomorphism. The following are

equivalent:

(i) 𝑓 : 𝐴 → 𝐵 is an open quasilocalisation.

(ii) 𝑓 : 𝐴 → 𝐵 is an epimorphism inCRing, flat, and of finite present-

ation.

(iii) 𝑓 : 𝐴 → 𝐵 is an epimorphism in CRing and étale.

Proof. (i) ⇒ (ii). By propositions 3.5.4 and 3.5.6 and lemma 3.5.9, there

is a finite subset 𝐼 ⊆ 𝐴 with the following properties:

• The induced homomorphism 𝐵 → ∏𝑎∈𝐼 𝐵[𝑎−1] is fppf.

• The composite 𝐴 → 𝐵 → ∏𝑎∈𝐼 𝐵[𝑎−1] is flat and of finite presenta-

tion.

Thus, by proposition 3.5.8(b), 𝑓 : 𝐴 → 𝐵 is flat and of finite presentation.

But open quasilocalisations are epimorphisms inCRing by definition, so

we are done.

(ii) ⇒ (iii). Apply proposition 3.5.7.

(iii) ⇒ (i). By proposition 3.5.10, there is a finite subset 𝐼 ⊆ 𝐴 with the

following properties:

• For every 𝑎 ∈ 𝐼 , the induced homomorphism 𝐴[𝑎−1] → 𝐵[𝑓(𝑎)−1] is
faithfully flat.

• {𝑓(𝑎) | 𝑎 ∈ 𝐼} generates the unit ideal of 𝐵.
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But proposition 3.5.8(a) implies that every faithfully flat epimorphism in

CRing is an isomorphism, so 𝑓 : 𝐴 → 𝐵 is indeed an open quasilocal-

isation. ■

Properties of

open quasi-

localisations

Proposition.

(i) Every ring isomorphism is an open quasilocalisation.

(ii) Every principal localisation is an open quasilocalisation.

(iii) The class of open quasilocalisations is a coquadrable class of morph-

isms in CRing.

(iv) The class of open quasilocalisations is closed under composition.

(v) The class of open quasilocalisations is closed under finitary product

in CRing.

(vi) Given ring homomorphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 , if both

𝑓 : 𝐴 → 𝐵 and 𝑔 ∘ 𝑓 : 𝐴 → 𝐶 are open quasilocalisations, then

𝑔 : 𝐵 → 𝐶 is also an open quasilocalisation.

Proof. By lemma 3.5.11, these reduce to propositions 3.5.3 and 3.5.7.

■

3.5.12 ※ For the remainder of this section:

• 𝐾 is a ring.

• u� is a (small) full subcategory of the metacategory of 𝐾-algebras that

is closed under finitary coproducts, coequalisers, and finitary products.

• For every object 𝐴 in u� and every element 𝑎 ∈ 𝐴, the principal local-

isation 𝐴[𝑎−1] is also an object in u�.

3.5.13 ¶ To avoid confusion, we write Spec𝐴 for the object in u�op correspond-

ing to an object 𝐴 in u�, and we write Spec 𝑓 : Spec𝐵 → Spec𝐴 for the

morphism in u�op corresponding to a morphism 𝑓 : 𝐴 → 𝐵 in u�.

The four classical Grothendieck topologies are defined as follows:
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3.5.13(a) Definition. The Zariski coverage on u�op consists of all sinks of the

form below up to isomorphism,

{Spec 𝑓𝑎 : Spec𝐴[𝑎−1] → Spec𝐴 | 𝑎 ∈ 𝐼}

where 𝐴 is an object in u�, 𝐼 is a finite subset of 𝐴 that generates the unit

ideal, and 𝑓𝑎 : 𝐴 → 𝐴[𝑎−1] is the principal localisation.

3.5.13(b) Definition. The étale coverage on u�op is the smallest composition-

closed coverage on u�op containing the Zariski coverage as well as the

singleton {Spec 𝑓 : Spec𝐵 → Spec𝐴} for every faithfully flat étale ring

homomorphism 𝑓 : 𝐴 → 𝐵 in u�.

3.5.13(c) Definition. The fppf coverage on u�op is the smallest composition-

closed coverage on u�op containing the Zariski coverage as well as the

singleton {Spec 𝑓 : Spec𝐵 → Spec𝐴} for every fppf ring homomorph-

ism 𝑓 : 𝐴 → 𝐵 in u�.

3.5.13(d) Definition. The fpqc[2] coverage on u�op is the smallest composition-

closed coverage on u�op containing the Zariski coverage as well as the sin-

gleton {Spec 𝑓 : Spec𝐵 → Spec𝐴} for every faithfully flat ring homo-

morphism 𝑓 : 𝐴 → 𝐵 in u�.

Properties of

the classical

Grothendieck

topologies

Proposition.

(i) The Zariski (resp. étale, fppf, fpqc) coverage on u�op is finitary

superextensive.

(ii) The Zariski (resp. étale, fppf, fpqc) coverage on u�op is subcanon-

ical.

Proof. (i). It suffices to verify that the Zariski coverage on u�op is finitary

superextensive. Let 𝐴 and 𝐵 be rings and consider the projections 𝐴 ×
𝐵 → 𝐴 and 𝐴 × 𝐵 → 𝐵. It is straightforward to verify that 𝐴 × 𝐵 → 𝐴
is isomorphic to the principal localisation 𝐴 × 𝐵 → (𝐴 × 𝐵)[(1, 0)−1].
Similarly, 𝐴×𝐵 → 𝐵 is isomorphic to the principal localisation 𝐴×𝐵 →
(𝐴 × 𝐵)[(0, 1)−1]. Hence, every finite coproduct cocone in u�op is in the

Zariski coverage.

[2] — from French « fidèlement plat et quasi-compacte »
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(ii). It suffices to verify that the fpqc coverage on u�op is subcanonical.

Since the fpqc coverage is finitary superextensive, by lemmas 1.4.18,

1.5.15 and 1.5.16, it is enough to show that every faithfully flat ring homo-

morphism in u� is an effective monomorphism in u�. Since the forget-

ful functor u� → CRing creates cokernel pairs, this reduces to proposi-

tion 3.5.8(a). ■

3.5.14 Definition. A morphism ℎ : 𝑋 → 𝑌 in Psh(u�op) is étale if both ℎ :
𝑋 → 𝑌 and the relative diagonal Δℎ : 𝑋 → 𝑋 ×𝑌 𝑋 are fppf-semilocally

of u�-type, where u� is the opposite of the class of flat ring homomorphisms

of finite presentation in u�.

Remark. Since u� is a quadrable class of morphisms in u�op (by pro-

position 3.5.6), by lemma 1.2.15, every morphism in Psh(u�op) fppf-

semilocally of u�-type is also fppf-locally of u�-type.

Properties of

étale morphisms

of presheaves

Proposition.

(i) Every fppf-locally bijective morphism in Psh(u�op) is étale.

(ii) For every presheaf𝑋 onu�op and every set 𝐼 , the codiagonalmorph-
ism ∐𝑖∈𝐼 𝑋 → 𝑋 is étale.

(iii) The class of étale morphisms in Psh(u�op) is a quadrable class of

morphisms in Psh(u�op).

(iv) The class of étale morphisms in Psh(u�op) is closed under compos-
ition.

(v) The class of étale morphisms in Psh(u�op) is closed under (possibly
infinitary) coproduct in Psh(u�op).

(vi) Given a pullback square in Psh(u�op) of the form below,

�̃� 𝑋

̃𝑌 𝑌

ℎ̃ ℎ

where ̃𝑌 ↠ 𝑌 is fppf-locally surjective, if ℎ̃ : �̃� → ̃𝑌 is étale, then

ℎ : 𝑋 → 𝑌 is also étale.
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(vii) Given morphisms ℎ : 𝑋 → 𝑌 and 𝑘 : 𝑌 → 𝑍 in Psh(u�op), if both
𝑘 : 𝑌 → 𝑍 and 𝑘 ∘ ℎ : 𝑋 → 𝑍 are étale, then ℎ : 𝑋 → 𝑌 is also

étale.

(viii) Given a fppf-locally surjective morphism ℎ : 𝑋 ↠ 𝑌 in Psh(u�op)

and a morphism 𝑘 : 𝑌 → 𝑍 in Psh(u�op), if both ℎ : 𝑋 ↠ 𝑌 and

𝑘 ∘ ℎ : 𝑋 → 𝑍 are étale, then 𝑘 : 𝑌 → 𝑍 is also étale.

(ix) For every morphism 𝑓 : 𝐴 → 𝐵 in u�, h𝑓 : h𝐴 → h𝐵 is étale if and

only if 𝑓 : 𝐴 → 𝐵 is étale.

Proof. (i)–(viii). Combine proposition 1.1.11 and remark 1.2.16 with

propositions 1.2.14 and 1.2.17.

(ix). Apply proposition 1.2.20 to propositions 3.5.8(b) and 3.5.8(c). ■

3.5.15 Definition. An open immersion of presheaves onu�op is a monomorph-

ism ℎ : 𝑋 → 𝑌 in Psh(u�op) that is Zariski-semilocally of ℬ-type, where

ℬ is the opposite of the class of morphisms in u� that are principal local-

isations up to isomorphism.

Remark. It is clear that ℬ is a quadrable class of morphisms in u�op.

Thus, by lemma 1.2.15, any morphism that is Zariski-semilocally of ℬ-

type is also Zariski-locally of ℬ-type.

Recognition

principles for

open fppf-closed

subpresheaves

Lemma. Let 𝐴 be an object in u� and let 𝑈 be an fppf-closed subpresheaf

of h𝐴. The following are equivalent:

(i) The inclusion 𝑈 ↪ h𝐴 is an open immersion.

(ii) The inclusion 𝑈 ↪ h𝐴 is an étale monomorphism.

(iii) There is a (possibly infinite) set Φ of elements of 𝑈 with the follow-

ing properties:

• Φ is a Zariski-local generating set of elements of 𝑈 .

• For every (Spec𝐵,Spec 𝑓) ∈ Φ, (𝐵, 𝑓 ) is isomorphic (in 𝐴∕u�) to

a principal localisation of 𝐴.
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Proof. (i) ⇒ (ii). Since every principal localisation is an étale ring homo-

morphism (proposition 3.5.7) and Zariski-locally surjective morphisms

are fppf-locally surjective, open immersions are étale.

(ii) ⇒ (iii). Let 𝐼 be the set of all 𝑎 ∈ 𝐴 such that (Spec𝐴[𝑎−1],Spec 𝑓𝑎)
is an element of 𝑈 , where 𝑓𝑎 : 𝐴 → 𝐴[𝑎−1] is the principal localisation,
and let Φ = {(Spec𝐴[𝑎−1],Spec 𝑓𝑎) | 𝑎 ∈ 𝐼}. Clearly, it is enough to

prove that Φ is a Zariski-local generating set of elements of 𝑈 .

By lemma 1.5.16 and propositions 3.5.4, 3.5.6, and 3.5.13, there exist

an fppf ring homomorphism 𝑗 : 𝐴 → ̃𝐴 in u� and a set Φ̃ of objects in
̃𝐴∕u� with the following properties:

• Φ̃ is an fppf-local generating set of elements of the preimage �̃� ⊆ h ̃𝐴

of 𝑈 ⊆ h𝐴.

• For every ( ̃𝐵, ̃𝑓) ∈ Φ̃, ̃𝑓 : ̃𝐴 → ̃𝐵 is flat and of finite presentation.

Note that ̃𝑓 ∘ 𝑗 : 𝐴 → ̃𝐵 is flat and of finite presentation, so by proposi-

tion 3.5.10, there is a finite subset 𝐼′ ⊆ 𝐴 with the following properties:

• For every 𝑎 ∈ 𝐼′, the induced homomorphism𝐴[𝑎−1] → ̃𝐵[ ̃𝑓 (𝑗(𝑎))−1
]

is fppf.

• { ̃𝑓 (𝑗(𝑎)) | 𝑎 ∈ 𝐼′} generates the unit ideal of ̃𝐵.

Since (Spec ̃𝐵,Spec( ̃𝑓 ∘ 𝑗)) is an element of 𝑈 and 𝑈 is an fppf-closed

subpresheaf of h𝐴, it follows that 𝐼′ ⊆ 𝐼 . On the other hand, by pro-

position a.2.14, the morphism �̃� → 𝑈 is fppf-locally surjective, so it

follows that Φ is an fppf-local generating set of elements of 𝑈 . Hence,

by lemma 3.5.9, Φ is also a Zariski-local generating set of elements of 𝑈 .

(iii) ⇒ (i). Immediate. ■

Properties of

open immersions

of presheaves

Proposition.

(i) Every isomorphism in Psh(u�op) is an open immersion.

(ii) Every open immersion in Psh(u�op) is étale.

(iii) The class of open immersions in Psh(u�op) is a quadrable class of

morphisms in Psh(u�op).
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(iv) The class of open immersions in Psh(u�op) is closed under com-

position.

(v) The class of open immersions inPsh(u�op) is closed under (possibly
infinitary) coproduct in Psh(u�op).

(vi) Given a pullback square in Psh(u�op) of the form below,

�̃� 𝑋

̃𝑌 𝑌

ℎ̃ ℎ

where ̃𝑌 ↠ 𝑌 is Zariski-locally surjective, if ℎ̃ : �̃� → ̃𝑌 is an open

immersion and ℎ : 𝑋 → 𝑌 is a monomorphism, then ℎ : 𝑋 → 𝑌 is

also an open immersion.

(vii) Given morphisms ℎ : 𝑋 → 𝑌 and 𝑘 : 𝑌 → 𝑍 in Psh(u�op), if both
𝑘 : 𝑌 → 𝑍 and 𝑘 ∘ ℎ : 𝑋 → 𝑍 are open immersions, then ℎ : 𝑋 → 𝑌
is also an open immersion.

(viii) For every morphism 𝑓 : 𝐴 → 𝐵 in u�, h𝑓 : h𝐴 → h𝐵 is an open

immersion if and only if 𝑓 : 𝐴 → 𝐵 is an open quasilocalisation.

Proof. (i)–(vi). Apply proposition 1.2.14.

(vii). This is a special case of lemma 1.1.3.

(viii). Suppose 𝑓 : 𝐴 → 𝐵 is an open quasilocalisation. Then, by defini-

tion, Spec 𝑓 : Spec𝐵 → Spec𝐴 is monomorphism in u�op that is Zariski-

locally of ℬ-type, where ℬ is the opposite of the class of principal local-

isations, so h𝑓 : h𝐵 → h𝐴 is indeed an open immersion.

For the converse, suppose h𝑓 : h𝐵 → h𝐴 is an open immersion. Since

the fppf coverage on u�op is subcanonical (proposition 3.5.13), the pre-

sheaf image is an fppf-closed subpresheaf of h𝐴. Thus, we may apply

lemma 3.5.15 to deduce that 𝑓 : 𝐴 → 𝐵 is an open quasilocalisation. ■
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3.5.16 Definition. A local isomorphism of presheaves on u�op is a morphism

ℎ : 𝑋 → 𝑌 in Psh(u�op) for which there is a set Φ of subpresheaves of

𝑋 with the following properties:

• ⋃𝑈∈Φ 𝑈 is a Zariski-dense subpresheaf of 𝑋.

• For every 𝑈 ∈ Φ, both the inclusion 𝑈 ↪ 𝑋 and the composite 𝑈 ↪
𝑋 → 𝑌 are open immersions in Psh(u�op).

Properties of

local isomorph-

isms of pre-

sheaves

Proposition.

(i) Every open immersion in Psh(u�op) is a local isomorphism.

(ii) Every local isomorphism in Psh(u�op) is étale.

(iii) A monomorphism in Psh(u�op) is an open immersion if and only if

it is a local isomorphism.

(iv) For every presheaf𝑋 onu�op and every set 𝐼 , the codiagonalmorph-
ism ∐𝑖∈𝐼 𝑋 → 𝑋 is a local isomorphism.

(v) The class of local isomorphisms in Psh(u�op) is a quadrable class

of morphisms in Psh(u�op).

(vi) The class of local isomorphisms in Psh(u�op) is closed under com-

position.

(vii) The class of local isomorphisms in Psh(u�op) is closed under (pos-
sibly infinitary) coproduct in Psh(u�op).

(viii) Given morphisms ℎ : 𝑋 → 𝑌 and 𝑘 : 𝑌 → 𝑍 in Psh(u�op), if
both 𝑘 : 𝑌 → 𝑍 and 𝑘 ∘ ℎ : 𝑋 → 𝑍 are local isomorphisms, then

ℎ : 𝑋 → 𝑌 is also a local isomorphism.

Proof. Straightforward given proposition 3.5.15. (Compare the proof of

proposition 2.2.12.) ⧫

3.5.17 ¶ Every Zariski-locally surjective morphism in Psh(u�op) is also fpqc-

locally surjective. The converse is not true in general, but we do have the

following result.
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Recognition prin-

ciple for locally

surjective local

isomorphisms

of presheaves

Lemma. Let ℎ : 𝑋 → 𝑌 be a local isomorphism in Psh(u�op). The

following are equivalent:

(i) ℎ : 𝑋 → 𝑌 is Zariski-locally surjective.

(ii) ℎ : 𝑋 → 𝑌 is fpqc-locally surjective.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). In view of propositions 3.5.16 and a.2.14, it is enough to verify

the case where 𝑌 = h𝐴 for some object 𝐴 in u�. Let Φ be a set of subpre-

sheaves of 𝑋 with the following properties:

• ⋃𝑈∈Φ 𝑈 is a Zariski-dense subpresheaf of 𝑋.

• For every 𝑈 ∈ Φ, both the inclusion 𝑈 ↪ 𝑋 and the composite 𝑈 ↪
𝑋 → 𝑌 are open immersions in Psh(u�op).

Moreover, recalling proposition 3.5.15, we may assume that each 𝑈 ∈ Φ
can be represented by some principal localisation of 𝐴. This yields an

fpqc-covering sink on Spec𝐴. Since every fpqc-covering sink in u�op

contains a finite fpqc-covering sink, 𝑋 → 𝑌 is indeed Zariski-locally

surjective, by lemma 3.5.9. ■

3.5.18 ※ For the remainder of this section:

• 𝜅 is a regular cardinal.

• u� = Fam
ℵ0
𝜅 (u�op).

• For each object 𝑋 in u�, 𝖩′(𝑋) (resp. 𝖩𝖿 (𝑋)) is the set of 𝜅-small sinks

Φ on 𝑋 in u� such that the induced morphism ∐(𝑈,𝑥)∈Φ 𝑈 → 𝑋 cor-

responds to a Zariski-locally surjective local isomorphism (resp. fppf-

locally surjective morphism) in Psh(u�op).

• 𝖤′, (resp. 𝖤𝖿 ) is the class of morphisms in u� that correspond to Zariski-

locally (resp. fppf-locally) surjective morphisms in Psh(u�op).

• u�′ = Ex(u�, 𝖤′) and u�𝖿 = Ex(u�, 𝖤𝖿 ).

• u� (resp. u�′) is the class of morphisms that correspond to étale morph-

isms (resp. local isomorphisms) in Psh(u�op).
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3.5.19 ¶ We will consider both u�′ and u�𝖿 as settings for algebraic geometry.

First, we need to establish some basic properties.

3.5.19(a) Proposition.

(i) u� is a 𝜅-ary extensive category with limits of finite diagrams.

(ii) In particular, both (u�, 𝖤′) and (u�, 𝖤𝖿 ) satisfy the Shulman condi-

tion.

(iii) Both u�′ and u�𝖿 are 𝜅-ary pretoposes.

Proof. (i). This is a special case of proposition 1.5.21.

(ii). Immediate.

(iii). Apply proposition 1.5.13. ■

3.5.19(b) Proposition. (u�, u�′, 𝖩′) is a 𝜅-ary admissible ecumene, i.e.:

(i) u�′ is a class of separated fibrations in u�.

(ii) 𝖩′ is a subcanonical u�′-adapted 𝜅-ary superextensive coverage on
u�.

(iii) Everymorphism inu� ofu�′-type (u�′, 𝖩′)-semilocally on the domain
is a member of u�′.

(iv) Every complemented monomorphism in u� is a member of u�′.

Moreover:

(v) (u�′, u�′) is the associated gros 𝜅-ary pretopos.

Proof. (i) and (iv). See proposition 3.5.16.

(ii). The Zariski coverage on u�op is subcanonical (proposition 3.5.13),

so 𝖩′ is a subcanonical coverage on u�, which is 𝜅-ary superextensive by

proposition 1.5.17 and u�′-adapted by construction.

(iii). It suffices to verify the following:

• Given an Zariski-locally surjective morphism ℎ : 𝑋 → 𝑌 in Psh(u�op)

and a morphism 𝑘 : 𝑌 → 𝑍 in Psh(u�op), if both ℎ : 𝑋 → 𝑌 and

𝑘 ∘ ℎ : 𝑋 → 𝑍 are local isomorphisms, then 𝑘 : 𝑌 → 𝑍 is also a local

isomorphism.
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This is straightforward. (Compare the proof of proposition 2.2.13.)

(v). It is not hard to see that morphisms in u�′ that correspond to morph-

isms in Psh(u�) that are 𝖩′-locally of u�′-type are the same as morphisms

in u�′ that correspond to morphisms in Psh(u�op) that are Zariski-locally
of u�′-type. Moreover, by lemma 2.1.16, u� is equivalent to the category

of 𝖩′-locally 𝜅-presentable 𝖩′-sheaves on u�op. Thus, (u� , u�′) is indeed

the 𝜅-ary gros pretopos associated with (u�, u�′, 𝖩′). ⧫

3.5.19(c) Proposition.

(i) u� is a class of étale morphisms in u�𝖿 .

(ii) u�′ is the class of local homeomorphisms in u�𝖿 .

(iii) u� is a unary basis for (u�𝖿 , u�).

(iv) u� is a unary basis for (u�𝖿 , u�′).

Proof. (i). See proposition 3.5.14.

(ii). By lemma 3.5.15, étale monomorphisms in u�𝖿 correspond to open

immersions in Psh(u�op), because the presheaf image of a monomorph-

ism of fppf-sheaves is always fppf-closed. Since fppf-locally surjective

morphisms are also fpqc-locally surjective, and Zariski-locally surject-

ive morphisms are also fppf-locally surjective, we may apply proposi-

tion 3.5.16 and lemma 3.5.17 to deduce that local homeomorphisms in

u�𝖿 correspond to local isomorphisms in Psh(u�op).

(iii). Use proposition 2.3.2.

(iv). In view of lemma 2.1.16, it suffices to verify the following:

• For every object 𝑌 in u� and every fppf-subsheaf 𝑉 ⊆ h𝑌 , if 𝑉 is fppf-

locally 𝜅-presentable and the inclusion 𝑈 ↪ h𝑌 is an open immersion,

then there exist an object 𝑋 in u� and a fppf-locally surjective morph-

ism 𝑝 : h𝑋 ↠ 𝑈 such that the composite h𝑋 ↠ 𝑈 ↪ h𝑌 is a local

isomorphism.

This is a straightforward consequence of lemma 3.5.15. ■
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3.5.20 ¶ With the usual abuses of notation, we may speak of (u�, u�′)-extents in
both u�′ and u�𝖿 . Although these are different notions prima facie, fortu-

nately, they coincide. To prove this, we will require a preliminary result.

Lemma. Let 𝐹 be a presheaf on u�op. The following are equivalent:

(i) There exist an object 𝑌 in u� and a laminar morphism 𝑋 → 𝑌 in

u�′ such that h𝑋 ≅ 𝐹 .

(ii) There exist an object 𝑌 in u� and a laminar morphism 𝑋 → 𝑌 in

u�𝖿 such that h𝑋 ≅ 𝐹 .

Proof. Let 𝖪 be the finitary extensive coverage on u�op. We have the

Yoneda representations u�′ → Sh(u�op, 𝖪) and u�𝖿 → Sh(u�op, 𝖪), and by

proposition 1.5.18 and theorem 2.1.14, both preserve 𝜅-ary coproducts.

Thus, it suffices to prove the claimwith ‘laminar morphism’ replaced with

‘open embedding’.

(i) ⇒ (ii). Let 𝑓 : 𝑋 → 𝑌 be an open embedding in u�′ where 𝑌 is an

object in u�. Then there is a (u�, u�′)-atlas of 𝑋 in u�′, say (�̃�, 𝑝). Let

(𝑅, 𝑑0, 𝑑1) be a kernel pair of 𝑓 ∘ 𝑝 : �̃� → 𝑌 in u�. Since 𝑓 : 𝑋 → 𝑌 is

a monomorphism in u�′, (𝑅, 𝑑0, 𝑑1) is also a kernel pair of 𝑝 : �̃� ↠ 𝑋 in

u�′. Moreover, by proposition 3.5.16, 𝑓 ∘𝑝 : �̃� → 𝑌 is a member of u�′, so

both projections 𝑑0, 𝑑1 : 𝑅 → �̃� are alsomembers ofu�′. Let 𝑞 : �̃� ↠ 𝑌 ′

be an exact quotient of (𝑅, 𝑑0, 𝑑1) in u�𝖿 and let 𝑚 : 𝑌 ′ → 𝑌 be the

unique morphism in u�𝖿 such that 𝑚 ∘ 𝑞 = 𝑓 ∘ 𝑝. By proposition 3.5.19(c),

𝑞 : �̃� ↠ 𝑌 ′ is an étale morphism in u�𝖿 , so 𝑚 : 𝑌 ′ → 𝑌 is also an étale

morphism in u�𝖿 . On the other hand, since (𝑅, 𝑑0, 𝑑1) is also a kernel pair

of 𝑚∘𝑞, 𝑚 : 𝑌 ′ → 𝑌 is a monomorphism in u�𝖿 , so it is an open embedding

in u�𝖿 . Hence, 𝑞 : �̃� ↠ 𝑌 ′ is a local homeomorphism in u�𝖿 . But then

lemma 3.5.17 says that h𝑞 : h�̃� → h𝑌 ′ is Zariski-locally surjective, so we

indeed have h𝑋 ≅ h𝑌 ′.

(ii) ⇒ (i). Let 𝑓 : 𝑋 → 𝑌 be an open embedding in u�𝖿 where 𝑌 is an

object in u�. Then there is a (u�, u�′)-atlas of 𝑋 in u�𝖿 , say (�̃�, 𝑝). Let

(𝑅, 𝑑0, 𝑑1) be a kernel pair of 𝑓 ∘ 𝑝 : �̃� → 𝑌 in u�, let 𝑞 : �̃� → 𝑌 ′ be

an exact quotient of (𝑅, 𝑑0, 𝑑1) in u�′, and let 𝑚 : 𝑌 ′ → 𝑌 be the unique
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morphism in u�′ such that 𝑚 ∘ 𝑞 = 𝑓 ∘ 𝑝. By the same argument as before,

𝑚 : 𝑌 ′ → 𝑌 is an open embedding in u�′. Since 𝑝 : �̃� ↠ 𝑋 is a member

of u�′, h𝑝 : h�̃� → h𝑋 is Zariski-locally surjective, so we have h𝑋 ≅ h𝑌 ′,

as desired. ■

Proposition. Let 𝐹 be a presheaf on u�op. The following are equivalent:

(i) There is a (u�, u�′)-extent 𝑋 in u�′ such that h𝑋 ≅ 𝐹 .

(ii) There is a (u�, u�′)-extent 𝑋 in u�𝖿 such that h𝑋 ≅ 𝐹 .

Proof. For ease of notation, we will identify u�′ and u�𝖿 with their respect-

ive essential images in Psh(u�op).

(i) ⇒ (ii). Let 𝑋 be a (u�, u�′)-extent in u�′. By definition, there is a

(u�, u�′)-atlas of 𝑋 in u�′, say (�̃�, 𝑝), and by proposition 2.3.13, there is a
laminar effective epimorphism ̃𝑝 : 𝑈 → �̃� in u�′ such that 𝑝 ∘ ̃𝑝 : 𝑈 → 𝑋
is also a laminar effective epimorphism in u�′. Let (𝑅, 𝑑0, 𝑑1) be a kernel

pair of 𝑝 ∘ ̃𝑝 : 𝑈 → 𝑋 in u�′. Then the projections 𝑑0, 𝑑1 : 𝑅 → 𝑈
are laminar morphisms in u�′, so by lemma 3.5.20, both 𝑅 and 𝑈 are

also objects in u�𝖿 . Consider exact quotients of (𝑅, 𝑑0, 𝑑1) in u�𝖿 . By

lemma 2.2.14(c), (𝑅, 𝑑0, 𝑑1) is a tractable equivalence relation in u�′, and

it follows that (𝑅, 𝑑0, 𝑑1) is also a tractable equivalence relation in u�𝖿 .

Thus, by lemma 3.5.17, any exact quotient of (𝑅, 𝑑0, 𝑑1) in u�𝖿 is also an

exact quotient of (𝑅, 𝑑0, 𝑑1) in u�′, and therefore 𝑋 is in u�𝖿 , as desired.

(ii) ⇒ (i). The same argument (mutatis mutandis) works. ■

Remark. In other words, the essential images of Xt(u�, u�′) ⊆ u�′ and

Xt(u�, u�′) ⊆ u�𝖿 in Psh(u�op) coincide. Thus, up to equivalence, there is

no ambiguity in the notation Xt(u�, u�′).

3.5.21 ¶ It ismore or less clear how to connect our definition of ‘(u�, u�′)-extent’
with the functor-of-points definition of ‘scheme’ found in e.g. Demazure

and Gabriel [1970], which is known to be equivalent to the definition of

‘scheme’ in terms of locally ringed spaces. We will take this for granted

and instead focus on making a more precise statement about the kind of

schemes that can be obtained as (u�, u�′)-extents.
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3.5.21(a) Definition. An u�-atlas of a 𝐾-scheme 𝑋 is a set Φ with the following

properties:

• Every element of Φ is an open subscheme of 𝑋.

• For every 𝑈 ∈ Φ, 𝑈 is isomorphic to the affine 𝐾-scheme correspond-

ing to some object in u�.

• 𝑋 = ⋃𝑈∈Φ 𝑈 .

3.5.21(b) Definition. A 𝐾-scheme 𝑋 is of (u�, 𝜅)-type if there is a set Φ with the

following properties:

• Φ is a 𝜅-small u�-atlas.

• For every (𝑈0, 𝑈1) ∈ Φ × Φ, 𝑈0 ∩ 𝑈1 admits a 𝜅-small u�-atlas.

Theorem. Let ℳ be the essential image in Psh(u�op) of the metacat-

egory of 𝐾-schemes of (u�, 𝜅)-type. Then ℳ is also the essential image

of Xt(u�, u�′).

Proof. Omitted. (Compare the proof of theorem 2.4.13.) ◊

3.5.22 Example. Let u� be the category of finitely presented 𝐾-algebras.[3] It is

straightforward to verify the following:

(i) A 𝐾-scheme admits an u�-atlas if and only if it is locally of finite

presentation.

(ii) A 𝐾-scheme admits a finite u�-atlas if and only if it is locally of

finite presentation and quasicompact.

(iii) A 𝐾-scheme is of (u�, ℵ0)-type if and only if it is of finite present-

ation, i.e. locally of finite presentation, quasicompact, and quasisepar-

ated.

In particular, if 𝜅 = ℵ0, then Xt(u�, u�′) is equivalent to the metacategory

of 𝐾-schemes of finite presentation, by theorem 3.5.21.

[3] More precisely, let u� be the category of finitely presentable 𝐾-algebras whose under-
lying set is hereditarily 𝜆-small for some cardinal 𝜆 such that the underlying set of 𝐾 is
𝜆-small.
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3.5.23 Example. Let 𝐾 be a field and let u� be the category defined as follows:

• The objects are pairs (𝑚, 𝐼) where 𝑚 is a natural number and 𝐼 is a

finite subset of the polynomial ring 𝐾[𝑥1, … , 𝑥𝑚].

• The morphisms (𝑚, 𝐼) → (𝑛, 𝐽 ) are the 𝐾-algebra homomorphisms

𝐾[𝑥1, … , 𝑥𝑚]/(𝐼) → 𝐾[𝑥1, … , 𝑥𝑛]/(𝐽) , where (𝐼) and (𝐽 ) are the
ideals generated by 𝐼 and 𝐽 , respectively.

• Composition and identities are inherited.

Although u� is not literally a subcategory of the metacategory of 𝐾-alge-

bras, there is an evident fully faithful functor which will suffice for our

purposes.

Let u�1 be the category of T1-spaces
[4] 𝑋 such that the set of points of

𝑋 is hereditarily 𝜆-small, where 𝜆 is an uncountable regular cardinal ≥ 𝜅
such that the underlying set of 𝐾 is hereditarily 𝜆-small. Given an object

(𝑚, 𝐼) in u�, let 𝐹 (𝑚, 𝐼) be the subspace of 𝐾𝑚 defined as follows,

𝐹 (𝑚, 𝐼) = {(𝑥1, … , 𝑥𝑚) ∈ 𝐾𝑚 | ∀𝜑 ∈ 𝐼 .𝜑(𝑥1, … , 𝑥𝑚) = 0}

where 𝐾𝑚 is equipped with the classical Zariski topology.[5] This defines

a functor 𝐹 : u�op → u�1.

Let u�1 be the class of local homeomorphisms of topological spaces

in u�1, and let 𝖩1 be the usual coverage on u�1. It can be shown that 𝐹 :
u�op → u�1 preserves finitary coproducts, so by theorem 1.5.20, we have

an induced functor 𝐹 : u� → u�1 that preserves 𝜅-ary coproducts. It can

also be shown that 𝐹 : u� → u�1 sends members of u�′ to local homeo-

morphisms of topological spaces and sends pullbacks ofmembers ofu�′ to

pullbacks of local homeomorphisms of topological spaces. Furthermore,

𝐹 : u� → u�1 sends 𝖩′-covering morphisms in u� to surjective continuous

maps. Hence, by lemmas 2.4.2(c) and 2.4.2(e), we have a 𝜅-ary admiss-

ible functor 𝐹 : (u�, u�′, 𝖩′) → (u�1, u�1, 𝖩1). Since (u�1, u�1, 𝖩1) is effect-

ive, by theorem 2.5.7, we have an induced functor 𝐹 : Xt(u�, u�′) → u�1

extending 𝐹 : u� → u�1.

[4] — i.e. topological spaces in which every point is closed.
[5] — i.e. the topology in which every 𝐹 (𝑚, 𝐼) is a closed subset of 𝐾𝑚.
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We may think of the above as a functorial way of assigning a T1-space

of 𝐾-rational points to every 𝐾-scheme locally of finite type that respects

the geometry of schemes. In the case where 𝐾 is an algebraically closed

field, this can be identified with the subspace of closed points of the usual

underlying topological space of a scheme.
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Generalities

a.1 Presheaves

Synopsis. We set up notation and terminology for working with pre-

sheaves.

a.1.1 ※ Throughout this section, u� is an arbitrary category.

a.1.2 Definition. A presheaf on u� is a contravariant functor from u� to Set.

More concretely, a presheaf 𝐴 on u� consists of the following data:

• For each object 𝑋 in u�, a set 𝐴(𝑋).

• For each morphism 𝑓 : 𝑋 → 𝑌 in u�, a map 𝐴(𝑌 ) → 𝐴(𝑋) sending
each 𝑎 ∈ 𝐴(𝑌 ) to 𝑎 ⋅ 𝑓 ∈ 𝐴(𝑋).

Moreover, these data are required to satisfy the following condition:

• For every object 𝑋 in u� and every 𝑎 ∈ 𝐴(𝑋), we have 𝑎 ⋅ id𝑋 = 𝑎.

• For every composable pair 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in u� and every

𝑎 ∈ 𝐴(𝑍), we have (𝑎 ⋅ 𝑔) ⋅ 𝑓 = 𝑎 ⋅ (𝑔 ∘ 𝑓).

a.1.2(a) Example. For each set 𝐾 , we have the constant presheaf Δ𝐾 defined

as follows:

• For each object 𝑋 in u�, Δ𝐾(𝑋) = 𝐾 .

• For each morphism 𝑓 : 𝑋 → 𝑌 in u� and each 𝑘 ∈ Δ𝐾(𝑌 ), 𝑘 ⋅ 𝑓 = 𝑘.

For simplicity, we write ∅ instead of Δ∅ and 1 instead of Δ1.
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a.1.2(b) Example. For each object 𝑆 in u�, we have a presheaf h𝑆 defined as

follows:

• For each object 𝑋 in u�, h𝑆(𝑋) = u�(𝑋, 𝑆).

• For each morphism 𝑓 : 𝑋 → 𝑌 in u� and each 𝑔 ∈ h𝑆(𝑌 ), 𝑔 ⋅𝑓 = 𝑔 ∘𝑓 .

a.1.3 Definition. A morphism of presheaves is a natural transformation of

contravariant functors. More concretely, given presheaves 𝐴 and 𝐵 on u�,
a morphism ℎ : 𝐴 → 𝐵 consists of the following data:

• For each object 𝑋 in u�, a map ℎ : 𝐴(𝑋) → 𝐵(𝑋).

Moreover, these data are required to satisfy the following condition:

• For all morphisms 𝑓 : 𝑋 → 𝑌 in u� and all 𝑎 ∈ 𝐴(𝑌 ), we have

ℎ(𝑎 ⋅ 𝑓 ) = ℎ(𝑎) ⋅ 𝑓 .

We write Psh(u�) for the metacategory of presheaves on u�.

Example. Let 𝑋 be an object in u� and let 𝑎 ∈ 𝐴(𝑋). There is a unique
morphism 𝜀𝑎 : h𝑋 → 𝐴 such that 𝜀𝑎(id𝑋) = 𝑎, namely the one defined

by 𝜀𝑎(𝑥) = 𝑎 ⋅ 𝑥 for each morphism 𝑥 : 𝑇 → 𝑋 in u�. In fact, every

morphism h𝑋 → 𝐴 is of this form for some 𝑎 ∈ 𝐴(𝑋): this is the Yoneda
lemma.

a.1.4 ¶ Let 𝐴 be a presheaf on u�.

a.1.4(a) Definition. An element of 𝐴 is a pair (𝑋, 𝑎) where 𝑋 is an object in u�
and 𝑎 ∈ 𝐴(𝑋).

a.1.4(b) Definition. The category of elements of𝐴 is the categoryEl(𝐴) defined
as follows:

• The objects are the elements of 𝐴.

• The morphisms (𝑋, 𝑎′) → (𝑌 , 𝑎) are morphisms 𝑓 : 𝑋 → 𝑌 in u�
such that 𝑎 ⋅ 𝑓 = 𝑎′.[1]

• Composition and identities are inherited from u�.

[1] Strictly speaking, this is an abuse of notation, as hom-sets are supposed to be disjoint.
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The canonical projection 𝑃 : El(𝐴) → u� is the functor sending each

object (𝑋, 𝑎) in El(𝐴) to 𝑋 in u� and each morphism 𝑓 : (𝑋, 𝑎′) → (𝑌 , 𝑎)

in El(𝐴) to 𝑓 : 𝑋 → 𝑌 in u�.
The tautological cocone 𝜆 : h𝑃 ⇒ Δ𝐴 is defined at the object (𝑋, 𝑎)

in El(𝐴) to be the unique morphism h𝑋 → 𝐴 sending id𝑋 to 𝑎.

Example. Let 𝑆 be an object in u�. The slice category u�∕𝑆 is El(h𝑆).

Proposition. Let 𝐴 be a presheaf on u�, let 𝑃 : El(𝐴) → u� be the canon-

ical projection, and let 𝜆 : h𝑃 ⇒ Δ𝐴 be the tautological cocone. Then 𝜆
is a colimiting cocone in Psh(u�).

Proof. See e.g. Theorem 1 in [CWM, Ch. III, §7] or Proposition 1 in

[ML–M, Ch. I, §5]. □

a.1.5 Definition. Let 𝐴 be a presheaf on u�. A subpresheaf of 𝐴 is a presheaf

𝐴′ on u� that satisfies the following conditions:

• For each object 𝑋 in u�, 𝐴′(𝑋) ⊆ 𝐴(𝑋).

• For each morphism 𝑓 : 𝑋 → 𝑌 in u�, the following diagram com-

mutes:
𝐴′(𝑌 ) 𝐴(𝑌 )

𝐴′(𝑋) 𝐴(𝑋)

(−)⋅𝑓 (−)⋅𝑓

i.e. for each 𝑎 ∈ 𝐴(𝑌 ), if 𝑎 ∈ 𝐴′(𝑌 ), then 𝑎 ⋅ 𝑓 ∈ 𝐴′(𝑋).

We write 𝐴′ ⊆ 𝐴 for ‘𝐴′ is a subpresheaf of 𝐴’.

Remark. The set of subpresheaves of any given presheaf, partially ordered

by componentwise inclusion, is a complete lattice with meet (resp. join)

given by componentwise intersection (resp. union).

a.1.5(a) Example. Let ℎ0 : 𝐴0 → 𝐵 and ℎ1 : 𝐴1 → 𝐵 be morphisms in Psh(u�).
The pullback of ℎ0 and ℎ1 is the subpresheaf Pb(ℎ0, ℎ1) ⊆ 𝐴0 × 𝐴1

defined as follows:

Pb(ℎ0, ℎ1)(𝑇 ) = {(𝑎0, 𝑎1) ∈ 𝐴0(𝑇 ) × 𝐴1(𝑇 ) | ℎ0(𝑎0) = ℎ1(𝑎1)}
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a.1.5(b) Example. Let ℎ0, ℎ1 : 𝐴 → 𝐵 be a parallel pair of morphisms in Psh(u�).
The equaliser of ℎ0 and ℎ1 is the subpresheaf Eq(ℎ0, ℎ1) ⊆ 𝐴 defined as

follows:

Eq(ℎ0, ℎ1)(𝑇 ) = {𝑎 ∈ 𝐴(𝑇 ) | ℎ0(𝑎) = ℎ1(𝑎)}

a.1.5(c) Example. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). The kernel relation
of ℎ is the presheaf Kr(ℎ) defined as follows:

Kr(ℎ) = Pb(ℎ, ℎ)

a.1.6 Definition. Let 𝐴 be a presheaf on u�. A representation of 𝐴 is an

object (𝑋, 𝑎) in El(𝐴) that satisfies the following conditions:

• For every object (𝑋′, 𝑎′) in El(𝐴), there is a morphism 𝑥 : 𝑋′ → 𝑋
in u� such that 𝑎 ⋅ 𝑥 = 𝑎′.

• Given a parallel pair 𝑥0, 𝑥1 : 𝑋′ → 𝑋 of morphisms in u�, if 𝑎 ⋅ 𝑥0 =
𝑎 ⋅ 𝑥1, then 𝑥0 = 𝑥1.

A representable presheaf is a presheaf that admits a representation.

Example. For each object 𝑆 in u�, the presheaf h𝑆 is tautologically repre-

sentable.

Recognition

principles for

representations

of presheaves

Lemma. Let 𝐴 be a presheaf on u�, let 𝑋 be an object in u�, and let 𝑎 be

an element of 𝐴(𝑋). The following are equivalent:

(i) (𝑋, 𝑎) is a representation for 𝐴.

(ii) (𝑋, 𝑎) is a terminal object in El(𝐴).

(iii) We have an isomorphism h𝑋 → 𝐴 in Psh(u�) given by 𝑥 ↦ 𝑎 ⋅ 𝑥.

Proof. Straightforward. ⧫

a.1.7 Definition. Let 𝐴 be a presheaf on u�. A familial representation of 𝐴
is a subset Φ ⊆ obEl(𝐴) that satisfies the following conditions:

• For every object (𝑋′, 𝑎′) in El(𝐴), there is a unique element (𝑋, 𝑎) of
Φ such that there is a morphism (𝑋′, 𝑎′) → (𝑋, 𝑎) in El(𝐴).
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• For each (𝑋, 𝑎) ∈ Φ, given a parallel pair 𝑥0, 𝑥1 : 𝑋′ → 𝑋 of morph-

isms in u�, if 𝑎 ⋅ 𝑥0 = 𝑎 ⋅ 𝑥1, then 𝑥0 = 𝑥1.

A familially representable presheaf is a presheaf that admits a familial

representation.

Lemma. Let 𝐴 be a presheaf on u�. The following are equivalent:

(i) 𝐴 is a familially representable presheaf on u�.

(ii) 𝐴 is a disjoint union of a family of representable presheaves on u�.

Proof. Straightforward. ⧫

a.1.8 ¶ Let u� be a category.

a.1.8(a) Definition. A family 𝑋 of objects in u� is a map 𝑋 : idx𝑋 → obu�.

a.1.8(b) Definition. Let 𝑋 and 𝑌 be families of objects in u�. A matrix of

morphisms 𝑋 → 𝑌 in u� is a family 𝑓 (of morphisms in u�) that satis-
fies the following axioms:

• idx 𝑓 ⊆ (idx 𝑌 ) × (idx𝑋).

• For each 𝑖 ∈ idx𝑋, there is a unique 𝑗 ∈ idx 𝑌 such that (𝑗, 𝑖) ∈ idx 𝑓 .

• For each (𝑗, 𝑖) ∈ idx 𝑓 , 𝑓(𝑗, 𝑖) is a morphism 𝑋(𝑖) → 𝑌 (𝑗) in u�.

a.1.8(c) Definition. The metacategory of families of objects in u� is the meta-

category Fam(u�) defined as follows:

• The objects are the families of objects in u�.

• The morphisms 𝑋 → 𝑌 are matrices of morphisms 𝑋 → 𝑌 in u�.[2]

• Composition is defined like matrix multiplication, and identities are

given by the evident matrices.

Remark. The evident projection idx : Fam(u�) → Set is a split Grothen-

dieck fibration.

[2] Strictly speaking, this is an abuse of notation: hom-sets are supposed to be disjoint.
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Properties of

the metacat-

egory of families

Proposition.

(i) There is a unique functor 𝛾 : u� → Fam(u�) with the following

properties:

• For each object 𝑋 in u�, we have idx 𝛾(𝑋) = {∗} and 𝛾(𝑋)(∗) = 𝑋.

• For each morphism 𝑓 : 𝑋 → 𝑌 in u�, we have 𝛾(𝑓)(∗, ∗) = 𝑓 .

(ii) Moreover, 𝛾 : u� → Fam(u�) is fully faithful.

(iii) There is a unique functor ⨿ : Fam(u�) → Psh(u�) with the following
properties:

• For each object 𝑋 in Fam(u�), we have ⨿𝑋 = ∐𝑖∈idx 𝑋 h𝑋(𝑖).

• For each morphism 𝑓 : 𝑋 → 𝑌 in Fam(u�), if (𝑗, 𝑖) ∈ idx 𝑓 , then

the diagram in Psh(u�) shown below commutes,

h𝑋(𝑖) ⨿𝑋

h𝑌 (𝑗) ⨿𝑌

h𝑓(𝑗,𝑖) ⨿𝑓

where the horizontal arrows are the evident coproduct injections.

(iv) Moreover, ⨿ : Fam(u�) → Psh(u�) is fully faithful and essentially

surjective onto the full submetacategory spanned by the familially repre-

sentable presheaves on u�.

(v) Furthermore, ⨿ : Fam(u�) → Psh(u�) is isomorphic to the Yoneda

representation induced by 𝛾 : u� → Fam(u�).

Proof. Straightforward. (For (iv), use lemma a.1.7.) ⧫

a.1.9 Definition. A discrete fibration or discrete cartesian fibration is a

functor 𝑃 : ℰ → u� with the following property:

• For each object 𝐸 in ℰ and each morphism 𝑓 : 𝑋 → 𝑃 (𝐸) in u�, there
exist a unique object 𝑓 ∗𝐸 and a unique morphism ̃𝑓 : 𝑓 ∗𝐸 → 𝐸 such

that 𝑃 (𝑓 ∗𝐸) = 𝑋 and 𝑃 ( ̃𝑓) = 𝑓 .

Dually, a discrete opfibration or discrete cocartesian fibration is a

functor 𝑃 : ℰ → u� such that 𝑃 op : ℰ op → u� op is a discrete fibration.
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Recognition

principle for

discrete fibrations

Lemma. Let 𝑃 : ℰ → u� be a functor. The following are equivalent:

(i) 𝑃 : ℰ → u� is a discrete fibration.

(ii) The diagram below is a pullback square in Set:

mor ℰ ob ℰ

moru� obu�

mor 𝑃

codom

ob 𝑃

codom

Proof. Immediate. ⧫

a.1.10
Functoriality

of the category

of elements

¶ Every morphism ℎ : 𝐴 → 𝐵 in Psh(u�) induces an evident functor

El(ℎ) : El(𝐴) → El(𝐵) making the diagram below commute,

El(𝐴) El(𝐵)

u� u�

𝑃𝐴

El(ℎ)

𝑃𝐵

where the vertical arrows are the respective canonical projections. Thus,

we have a functor El : Psh(u�) → Cat∕u� . Moreover:

The equivalence

of presheaves and

discrete fibrations

Proposition.

(i) El : Psh(u�) → Cat∕u� is fully faithful, and the essential image is

the full subcategory spanned by the discrete fibrations with codomain

u�.

(ii) El : Psh(u�) → Cat∕u� admits a left adjoint, namely the evident

functor |−| : Cat∕u� → Psh(u�) sending each object (ℰ , 𝑃 ) in Cat∕u�

to the presheaf defined as follows:

• For each object 𝑋 in u�, |(ℰ , 𝑃 )|(𝑋) is the set of connected com-

ponents of the comma category (𝑋 ↓ 𝑃 ).

• For each morphism 𝑓 : 𝑋 → 𝑌 in u� and each object (𝐸, 𝑔) in

(𝑌 ↓ 𝑃 ), [(𝐸, 𝑔)] ⋅ 𝑓 = [(𝐸, 𝑔 ∘ 𝑓)], where [−] denotes the connec-
ted component.

(iii) El : Psh(u�) → Cat∕u� admits a right adjoint, namely the evident

functor Γ : Cat∕u� → Psh(u�) sending each object (ℰ , 𝑃 ) in Cat∕u� to

the presheaf defined as follows:

• For each object 𝑋 in u�, Γ(ℰ , 𝑃 )(𝑋) is the set of functors u�∕𝑋 → ℰ
making the evident triangle commute.
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• For each morphism 𝑓 : 𝑋 → 𝑌 in u�, the action of 𝑓 is precompos-

ition (in Cat) by the functor u�∕𝑋 → u�∕𝑌 given by postcomposition

(in u�).

Proof. Straightforward. ⧫

a.1.11(a) Definition. A sieve of u� is a full subcategory u�′ such that the inclusion

u�′ ↪ u� is a discrete fibration.

a.1.11(b) Definition. A sieve on an object 𝑆 in u� is a sieve of the slice category

u�∕𝑆 .

Remark. Explicitly, a sieve of a category u� is a full subcategory u�′ such

that, for every morphism 𝑓 : 𝑋 → 𝑌 in u�, if 𝑌 is in u�′, then 𝑋 is also

in u�′. Thus, a sieve of u� is essentially the same thing as a subpresheaf of

the terminal presheaf 1.

Similarly, a sieve on an object 𝑆 is essentially the same thing as a

subpresheaf of the representable presheaf h𝑆 .

a.1.12(a)
The sieve gener-

ated by a set

of objects

Definition. The sieve ↓(Φ) ⊆ u� generated by a subset Φ ⊆ obu� is

defined as follows:

• For every object 𝑇 in u�, 𝑇 is in ↓(Φ) if and only if there is somemorph-

ism 𝑥 : 𝑇 → 𝑋 in u� with 𝑋 ∈ Φ.

a.1.12(b) Definition. A generating set of elements of a presheaf 𝐴 on u� is a

subset Φ ⊆ obEl(𝐴) such that ↓(Φ) = El(𝐴).

a.1.12(c) Definition. Let 𝜅 be a regular cardinal. A presheaf𝐴 onu� is 𝜅-generable
if it admits a 𝜅-small generating set of elements.

Example. The principal sieve generated by a morphism 𝑓 : 𝑋 → 𝑌 in

u� is the sieve ↓⟨𝑓⟩ on 𝑌 where (𝑇 , 𝑦) is in ↓⟨𝑓⟩ if and only if 𝑦 : 𝑇 → 𝑌
factors through 𝑓 : 𝑋 → 𝑌 . By construction, {(𝑋, 𝑓)} is a generating

set of elements of the presheaf on u� corresponding to ↓⟨𝑓⟩.
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a.1.13 Definition. Let 𝐹 : u� → u� be a functor and let u� be a sieve of u�. The

pullback sieve 𝐹 ∗u� is the sieve of u� defined as follows:

• For every object 𝑋 in u�, 𝑋 is in 𝐹 ∗u� if and only if 𝐹 𝑋 is in u� .

Example. Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. There is an evident

functor Σ𝑓 : u�∕𝑋 → u�∕𝑌 defined on objects by (𝑇 , 𝑥) ↦ (𝑇 , 𝑓 ∘ 𝑥). For
simplicity, we write 𝑓 ∗u� instead of (Σ𝑓 )∗u� in this case.

a.1.14 ¶ Let Φ be a set of objects in u�. Define a category 𝚫Φ as follows:

• The objects are finite lists of elements of Φ of length ≥ 1.

• The morphisms (𝑋0, … , 𝑋𝑚) → (𝑌0, … , 𝑌𝑛) are the monotone maps

𝛼 : {0, … , 𝑚} → {0, … , 𝑛} such that 𝑌𝛼(𝑖) = 𝑋𝑖 for 𝑖 ∈ {0, … , 𝑚}.[3]

• Composition and identities are inherited from Set.

Let u� be the sieve of u� generated by Φ. Assuming that the relevant

products exist in u� , let 𝑃 : (𝚫Φ)
op → u� be the functor that sends each

object (𝑋0, … , 𝑋𝑚) in 𝚫Φ to the product 𝑋0 × ⋯ × 𝑋𝑚 in u� and each

morphism 𝛼 : (𝑋0, … , 𝑋𝑚) → (𝑌0, … , 𝑌𝑛) in 𝚫Φ to the corresponding

projection 𝛼∗ : 𝑌0 × ⋯ × 𝑌𝑛 → 𝑋0 × ⋯ × 𝑋𝑚 in u� .

Lemma. The functor 𝑃 : (𝚫Φ)
op → u� is homotopy cofinal.

Proof. Let 𝑈 be an object in u� . We must verify that the comma category

(𝑈 ↓ 𝑃 ) is weakly contractible. It is clear that (𝑈 ↓ 𝑃 ) is inhabited. More-

over, (𝑈 ↓ 𝑃 ) is isomorphic to the opposite of the category of simplices

of a 0-coskeletal simplicial set; but any inhabited 0-coskeletal simplicial

set is a contractible Kan complex, so we are done. ■

a.1.15 ¶ Let 𝐴 be a presheaf on u�.

a.1.15(a) Definition. An equivalence relation on 𝐴 is a subpresheaf 𝑅 ⊆ 𝐴 × 𝐴
such that, for every object 𝑋 in u�, 𝑅(𝑋) is an equivalence relation on

𝐴(𝑋).

[3] Strictly speaking, this is an abuse of notation, as hom-sets are supposed to be disjoint.
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a.1.15(b) Definition. The quotient of 𝐴 by an equivalence relation 𝑅 is the pre-

sheaf 𝐴/𝑅 defined as follows,

(𝐴/𝑅)(𝑋) = 𝐴(𝑋)/𝑅(𝑋)

𝐴′ ⋅ 𝑓 = {𝑎 ⋅ 𝑓 | 𝑎 ∈ 𝐴′}

where𝑋 is an arbitrary object inu�, 𝑓 : 𝑋0 → 𝑋1 is an arbitrarymorphism

in u�, and 𝐴′ is an 𝑅(𝑋1)-equivalence class in 𝐴(𝑋1).

Remark. 𝐴/𝑅 is indeed a well-defined presheaf on u�, because 𝑅 is a

subpresheaf of 𝐴 × 𝐴.
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a.2 Coverages

Synopsis. We define some terminology related to coverages, a variation

on the notion of Grothendieck topology, and we record some basic results.

Prerequisites. §1.1, a.1.

a.2.1 ※ Throughout this section, u� is an arbitrary category.

a.2.2 ¶ Let 𝐴 be a presheaf on u�, let 𝑋 be an object in u�, and let u� be a sieve

on 𝑋.

Definition. The separation condition (resp. sheaf condition) on 𝐴
with respect to u� is the following:

• For every commutative square in Cat of the form below,

u� El(𝐴)

u�∕𝑋 u�

where El(𝐴) → u� and u�∕𝑋 → u� are the projections, there is at most

one (resp. exactly one) functor u�∕𝑋 → El(𝐴) making both evident

triangles commute.

Example. 𝐴 always satisfies the sheaf condition with respect to the max-

imal sieve on 𝑋.

The sheaf condi-

tion as right

orthogonality

Lemma. Let 𝑆 be the subpresheaf of h𝑋 corresponding to u� ⊆ u�∕𝑋 . The

following are equivalent:

(i) 𝐴 satisfies the separation condition (resp. sheaf condition) with

respect to u� .

(ii) The map

HomPsh(u�)(h𝑋 , 𝐴) → HomPsh(u�)(𝑆, 𝐴)

induced by the inclusion 𝑆 ↪ h𝑋 is injective (resp. bijective).

Proof. Apply proposition a.1.10. ■
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a.2.3 ¶ Let 𝐴 be a presheaf on u�, let 𝑋 be an object in u�, let u� and u� ′ be

sieves on 𝑋, and let 𝑆 and 𝑆′ be the corresponding subpresheaves of h𝑋 .

a.2.3(a)
Local character

of separation

conditions

Lemma. Assume the following hypotheses:

• 𝐴 satisfies the separation condition with respect to u� .

• For every object (𝑈, 𝑥) in u� , 𝐴 satisfies the separation condition with

respect to 𝑥∗u� ′.

Then 𝐴 satisfies the separation condition with respect to u� ′ as well.

Proof. Let ̄𝑠0, ̄𝑠1 : h𝑋 → 𝐴 be morphisms in Psh(u�) such that the dia-

gram below commutes:

𝑆′ h𝑋

h𝑋 𝐴

̄𝑠1

̄𝑠0

We must show that ̄𝑠0 = ̄𝑠1.

Let (𝑈, 𝑥) be an object in u� . By definition, we have the following

commutative diagram:

𝑥∗𝑆′ h𝑈

h𝑈 𝑆′ h𝑋

h𝑋 𝐴

h𝑥

h𝑥
̄𝑠1

̄𝑠0

Since𝐴 satisfies the separation conditionwith respect to 𝑥∗u� ′, we deduce

that ̄𝑠0 ∘ h𝑥 = ̄𝑠1 ∘ h𝑥. Hence, the diagram below commutes:

𝑆 h𝑋

h𝑋 𝐴

̄𝑠1

̄𝑠0

But 𝐴 also satisfies the separation condition with respect to u� , so ̄𝑠0 = ̄𝑠1,

as required. ■
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a.2.3(b)
Upward-

closedness

of separation

conditions

Corollary. Assume the following hypotheses:

• u� ⊆ u� ′.

• 𝐴 satisfies the separation condition with respect to u� .

Then 𝐴 also satisfies the separation condition with respect to u� ′.

Proof. If (𝑈, 𝑥) is an object in u� , then 𝑥∗u� ′ is the maximal sieve on 𝑈 .

Thus, the claim is a special case of lemma a.2.3(a). ■

a.2.3(c)
Local char-

acter of sheaf

conditions

Lemma. Assume the following hypotheses:

• 𝐴 satisfies the sheaf condition with respect to u� .

• For every object (𝑈, 𝑥) inu� ,𝐴 satisfies the sheaf conditionwith respect

to 𝑥∗u� ′.

• For every object (𝑈, 𝑥) in u� ′, 𝐴 satisfies the separation condition with

respect to 𝑥∗u� .

Then 𝐴 satisfies the sheaf condition with respect to u� ′ as well.

Proof. Let 𝑠′ : 𝑆′ → 𝐴 be a morphism in Psh(u�). By lemma a.2.3(a), 𝐴
satisfies the separation condition with respect to u� ′, so any extension of

𝑠′ along the inclusion 𝑆′ ↪ h𝑋 is unique if it exists; but it remains to be

shown that such an extension exists. First, we will construct a morphism

𝑠 : 𝑆 → 𝐴 such that the restriction to 𝑆 ∩ 𝑆′ agrees with the restriction

of 𝑠′ : 𝑆′ → 𝐴.

Let (𝑈, 𝑥) be an object in u� . Since 𝐴 satisfies the sheaf condition with

respect to 𝑥∗u� ′, there is a unique morphism 𝑠(𝑈,𝑥) : h𝑈 → 𝐴 making the

following diagram commute:

𝑥∗𝑆′ 𝑆′ 𝐴

h𝑈 h𝑋

𝑠′

h𝑥

𝑠(𝑈,𝑥)

Let 𝑢 : 𝑉 → 𝑈 be a morphism in u�. Then the diagram below commutes,

𝑢∗𝑥∗𝑆′ 𝑥∗𝑆′ 𝑆′ 𝐴

h𝑉 h𝑈

𝑠′

h𝑢

𝑠(𝑈,𝑥)
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and since 𝐴 satisfies the separation condition with respect to 𝑢∗𝑥∗u� ′, it

follows that 𝑠(𝑈,𝑥) ∘ h𝑢 = 𝑠(𝑉 ,𝑥∘𝑢). Thus, we have a well-defined morphism

𝑠 : 𝑆 → 𝐴 given by 𝑠(𝑥) = 𝑠(𝑈,𝑥)(id𝑈 ) for each object (𝑈, 𝑥) of u� .

Now, since 𝐴 satisfies the sheaf condition with respect to u� , there is

a (unique) morphism ̄𝑠 : h𝑋 → 𝐴 that extends 𝑠 : 𝑆 → 𝐴. It remains to

be shown that ̄𝑠 : h𝑋 → 𝐴 extends 𝑠′ : 𝑆′ → 𝐴. Let (𝑈, 𝑥) be an object

in u� ′. Clearly, the restriction of ̄𝑠 to 𝑆 ∩ 𝑆′ agrees with the restriction of

𝑠′, so the following diagram commutes,

𝑥∗𝑆 𝑆′ 𝐴

h𝑈 h𝑋

𝑠′

h𝑥

̄𝑠

and since 𝐴 satisfies the separation condition with respect to 𝑥∗u� , it fol-

lows that ̄𝑠(𝑥) = 𝑠′(𝑥). Thus, ̄𝑠 is indeed an extension of 𝑠′. ■

a.2.3(d)
Upward-

closedness of

sheaf conditions

Corollary. Assume the following hypotheses:

• u� ⊆ u� ′.

• 𝐴 satisfies the sheaf condition with respect to u� .

• For every object (𝑈, 𝑥) in u� ′, 𝐴 satisfies the separation condition with

respect to 𝑥∗u� .

Then 𝐴 also satisfies the sheaf condition with respect to u� ′.

Proof. If (𝑈, 𝑥) is an object in u� , then 𝑥∗u� ′ is the maximal sieve on 𝑈 .

Thus, the claim is a special case of lemma a.2.3(c). ■

a.2.4 ¶ Let ℬ be a set of morphisms in u� and let 𝑋 be an object in u�.

Definition. A ℬ-sink on 𝑋 is a subset Φ of obu�∕𝑋 with the following

property:

• For every (𝑈, 𝑥) ∈ Φ, 𝑥 : 𝑈 → 𝑋 is a member of ℬ.

A sink on 𝑋 is a (moru�)-sink on 𝑋.
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Refinement

of sinks

Lemma. Let Φ and Φ′ be sinks on an object 𝑋 in u�. The following are

equivalent:

(i) ↓(Φ′) ⊆ ↓(Φ).

(ii) For every (𝑈, 𝑥) ∈ Φ, there is a commutative square in u� of the

form below,

𝑉 𝑈 ′

𝑈 𝑋

𝑢

𝑢′

𝑥′

𝑥

where (𝑈 ′, 𝑥′) ∈ Φ′.

Proof. Straightforward. ⧫

a.2.5 ¶ Let 𝑋 be an object in u�.

a.2.5(a) Definition. A sieve u� on 𝑋 is strict-epimorphic if it has the following

property:

• For every object 𝑌 in u�, the representable presheaf h𝑌 satisfies the

sheaf condition with respect to u� .

a.2.5(b) Definition. A sieve u� on 𝑋 is universally strict-epimorphic if it has

the following property:

• For every object (𝑇 , 𝑥) in u�∕𝑋 , the pullback sieve 𝑥∗u� is a strict-

epimorphic sieve on 𝑇 .

a.2.5(c) Definition. A sink Φ on 𝑋 is strict-epimorphic (resp. universally

strict-epimorphic) if the sieve ↓(Φ) is strict-epimorphic (resp. univer-

sally strict-epimorphic).

a.2.6 ¶ Let 𝐴 be a presheaf on u�, let 𝑋 be an object in u�, let Φ be a sink on 𝑋,

and let Γ(Φ, 𝐴) be the subset of ∏(𝑇 ,𝑥)∈Φ 𝐴(𝑇 ) consisting of the elements

(𝑎(𝑇 ,𝑥) | (𝑇 , 𝑥) ∈ Φ) with the following property:

• For every commutative square in u� of the form below,

𝑈 𝑇1

𝑇0 𝑋

𝑡0

𝑡1

𝑥1

𝑥0
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if both (𝑇0, 𝑥0) and (𝑇1, 𝑥1) are in Φ, then 𝑎(𝑇0,𝑥0) ⋅ 𝑡0 = 𝑎(𝑇1,𝑥1) ⋅ 𝑡1.

Clearly, we have the following map:

Φ∗ : 𝐴(𝑋) → Γ(Φ, 𝐴)

𝑎 ↦ (𝑎 ⋅ 𝑥 | (𝑇 , 𝑥) ∈ Φ)

The sheaf

condition with

respect to a sink

Lemma. The following are equivalent:

(i) 𝐴 satisfies the separation condition (resp. sheaf condition) with

respect to the sieve ↓(Φ) on 𝑋 generated by Φ.

(ii) The map Φ∗ : 𝐴(𝑋) → Γ(Φ, 𝐴) is injective (resp. bijective).

Proof. Straightforward. (Compare lemma a.2.2.) ⧫

a.2.7(a) Definition. A tree on an object 𝑋 in u� is a set Φ with the following

properties:

• The elements of Φ are finite sequences (𝑓1, … , 𝑓𝑚) of morphisms in

u� such that 𝑚 ≥ 0 and dom 𝑓𝑖 = codom 𝑓𝑖+1 for 0 < 𝑖 < 𝑚.

• The empty sequence is in Φ.

• If (𝑓1, … , 𝑓𝑚, 𝑓𝑚+1) ∈ Φ, then (𝑓1, … , 𝑓𝑚) ∈ Φ.

• If (𝑓1, … , 𝑓𝑚) ∈ Φ (and 𝑚 > 0), then codom 𝑓1 = 𝑋.

a.2.7(b) Definition. A leaf of a tree Φ on an object 𝑋 in u� is (𝑓1, … , 𝑓𝑚) ∈ Φ
with the following property:

• For every (𝑔1, … , 𝑔𝑛) ∈ Φ, if 𝑚 ≤ 𝑛 and (𝑓1, … , 𝑓𝑚) = (𝑔1, … , 𝑔𝑚),
then 𝑚 = 𝑛.

a.2.7(c) Definition. A tree Φ on an object 𝑋 in u� is proper if it satisfies the

following condition:

• Every element of Φ is a prefix of some leaf of Φ.

a.2.7(d) Definition. The composite of a tree Φ on an object 𝑋 in u� is the sink

Φ◦ on 𝑋 defined as follows:

Φ◦ = {(dom 𝑓𝑚, 𝑓1 ∘ ⋯ ∘ 𝑓𝑚) | (𝑓1, … , 𝑓𝑚) is a leaf of Φ}
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Remark. In particular, if Φ contains only the empty sequence, then Φ◦ =

{(𝑋, id𝑋)}.

a.2.8 ¶ Following [Johnstone, 2002, §C2.1], it is convenient to introduce the

following variation on the notion of Grothendieck topology.

a.2.8(a) Definition. A coverage on u� consists of the following data:

• For each object 𝑋 in u�, a set 𝖩(𝑋) of sinks on 𝑋.

These data are required to satisfy the following conditions:

• For every object 𝑋 in u�, {(𝑋, id𝑋)} is a member of 𝖩(𝑋).

• For every morphism 𝑓 : 𝑋 → 𝑌 in u�, if Ψ ∈ 𝖩(𝑌 ), then there is

Φ ∈ 𝖩(𝑋) such that ↓(Φ) ⊆ 𝑓 ∗ ↓(Ψ).

a.2.8(b) Definition. A coverage 𝖩 on u� is upward-closed if it has the following

property:

• For every object 𝑋 in u�, given subsets Φ and Φ′ of obu�∕𝑋 such that

↓(Φ′) ⊆ ↓(Φ), if Φ′ ∈ 𝖩(𝑋), then Φ ∈ 𝖩(𝑋) as well.

a.2.8(c) Definition. A coverage 𝖩 on u� is composition-closed if it has the fol-

lowing property:

• For every object 𝑋 in u�, given Φ ∈ 𝖩(𝑋) and Ψ(𝑈,𝑥) ∈ 𝖩(𝑈) for each
(𝑈, 𝑥) ∈ Φ, we have:

{(𝑉 , 𝑥 ∘ 𝑢) | (𝑈, 𝑥) ∈ Φ, (𝑉 , 𝑢) ∈ Ψ(𝑈,𝑥)} ∈ 𝖩(𝑋)

a.2.8(d) Definition. A coverage is saturated if it is both upward-closed and

composition-closed.

a.2.8(e) Example. The trivial coverage on u� is the coverage 𝖩 where 𝖩(𝑋) =

{{(𝑋, id𝑋)}}. This coverage is composition-closed, but it is not upward-

closed in general.

a.2.8(f) Example. The chaotic coverage on u� is the coverage 𝖩 where a sink is

in 𝖩(𝑋) if and only if it contains some (𝑈, 𝑥) where 𝑥 : 𝑈 → 𝑋 is a split

epimorphism in u�. This coverage is saturated.
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a.2.9 ※ For the remainder of this section, 𝖩 is an arbitrary coverage on u�.

a.2.10 Definition. A 𝖩-tree on an object 𝑋 in u� is a tree Φ on 𝑋 with the

following properties:

• Φ is a proper tree on 𝑋.

• The set

{(𝑈, 𝑥) ∈ obu�∕𝑋 | (𝑥) ∈ Φ}

is either empty or a member of 𝖩(𝑋).

• For every (𝑓1, … , 𝑓𝑚) ∈ Φ (where 𝑚 > 0), the set

{(𝑉 , 𝑢) ∈ obu�∕dom 𝑓𝑚 | (𝑓1, … , 𝑓𝑚, 𝑢) ∈ Φ}

is either empty or a member of 𝖩(dom 𝑓𝑚).

Recognition

principle for

composition-

closed coverages

Lemma. The following are equivalent:

(i) 𝖩 is a composition-closed coverage on u�.

(ii) For every object 𝑋 in u�, the composite of every 𝖩-tree on 𝑋 is a

member of 𝖩(𝑋).

Proof. Straightforward. ⧫

The composition-

closure of

a coverage

Proposition. For each object 𝑋 in u�, let ̄𝐽 (𝑋) be the set of all sinks

on 𝑋 of the form Φ◦ for some 𝖩-tree Φ on 𝑋. Then ̄𝐽 is the smallest

composition-closed coverage on u� that contains 𝖩.

Proof. Straightforward. ⧫

a.2.11(a) Definition. The canonical coverage on u� is the coverage 𝖩 on u� where

𝖩(𝑋) is the set of universally strict-epimorphic sinks on 𝑋.

a.2.11(b) Definition. A subcanonical coverage on u� is a coverage 𝖩 on u� such

that every element of 𝖩(𝑋) is a universally strict-epimorphic sink on 𝑋.
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Remark. It is clear that the canonical coverage is indeed a coverage,

and (by definition) it is the largest subcanonical coverage. Moreover, by

lemma a.2.3(c) (and corollary a.2.3(d)), the canonical coverage is a sat-

urated coverage.

Recognition prin-

ciple for subca-

nonical upward-

closed coverages

Lemma. Let 𝖩 be an upward-closed coverage on u�. The following are

equivalent:

(i) 𝖩 is a subcanonical coverage on u�.

(ii) For every object𝑋 inu�, every element of 𝖩(𝑋) is a strict-epimorphic
sink on 𝑋.

Proof. Straightforward. ⧫

a.2.12 ¶ Let 𝐵 be a presheaf on u�.

Definition. A subpresheaf 𝐴 ⊆ 𝐵 on u� is 𝖩-closed if it has the following

property:

• For every element (𝑋, 𝑏) of 𝐵 and every Φ ∈ 𝖩(𝑋), if 𝑏 ⋅ 𝑥 ∈ 𝐴(𝑈) for
every (𝑈, 𝑥) ∈ Φ, then 𝑏 ∈ 𝐴(𝑋).

Example. Of course, 𝐵 itself is a 𝖩-closed subpresheaf of 𝐵.

Remark. The class of 𝖩-closed subpresheaves of 𝐵 is closed under arbit-

rary intersections.

a.2.13 ¶ Let ℎ : 𝐴 → 𝐵 be a morphism of presheaves on u� and let 𝐵′ be the

subpresheaf of 𝐵 defined as follows:

• For every element (𝑋, 𝑏) of 𝐵, 𝑏 ∈ 𝐵′(𝑋) if and only if there is a 𝖩-tree
Φ on 𝑋 such that, for every (𝑇 , 𝑥) ∈ Φ◦, there is 𝑎 ∈ 𝐴(𝑇 ) such that

ℎ(𝑎) = 𝑏 ⋅ 𝑥.

Definition. The 𝖩-closed support of ℎ : 𝐴 → 𝐵 is the subpresheaf

𝐵′ ⊆ 𝐵 defined above.
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Properties of the

closed support

of a morphism

of presheaves

Proposition.

(i) 𝐵′ as defined above is indeed a subpresheaf of 𝐵.

(ii) 𝐵′ is the smallest 𝖩-closed subpresheaf of 𝐵 containing the image

of ℎ : 𝐴 → 𝐵.

Proof. Straightforward. (For (i), use proposition a.2.10.) ⧫

a.2.14 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is 𝖩-locally surjective if

the 𝖩-closed support of ℎ : 𝐴 → 𝐵 is 𝐵 itself.

Properties of

local surjective

morphisms

Proposition.

(i) Every epimorphism in Psh(u�) is 𝖩-locally surjective.

(ii) The class of 𝖩-locally surjective morphisms of presheaves on u� is a

class of fibrations in Psh(u�).

(iii) The class of 𝖩-locally surjective morphisms of presheaves on u� is

closed under (possibly infinitary) coproduct in Psh(u�).

(iv) Given morphisms ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶 in Psh(u�), if the
composite 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-locally surjective, then 𝑘 : 𝐵 → 𝐶 is

also 𝖩-locally surjective.

Proof. Straightforward. ⧫

a.2.15(a) Definition. A subpresheaf of a presheaf on u� is 𝖩-dense if the inclusion
is 𝖩-locally surjective.

a.2.15(b) Definition. A sieve on an object 𝑋 in u� is 𝖩-covering if the correspond-
ing subpresheaf of h𝑋 is 𝖩-dense.

We write CSv𝖩(𝑋) for the set of 𝖩-covering sieves on 𝑋, partially

ordered by inclusion.

a.2.15(c) Definition. A sink Φ on an object 𝑋 in u� is 𝖩-covering if the sieve ↓(Φ)

is 𝖩-covering.

a.2.15(d) Definition. A morphism 𝑥 : 𝑈 → 𝑋 in u� is 𝖩-covering if the principal

sieve ↓⟨𝑥⟩ is 𝖩-covering.
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Example. Assuming 𝖩 is the trivial coverage on u�, a sink on 𝑋 is 𝖩-
covering if and only if it contains some (𝑈, 𝑥) where 𝑥 : 𝑈 → 𝑋 is a split

epimorphism in u�.

Properties of

covering sinks

Proposition. For each object 𝑋 in u�, let ̂𝖩(𝑋) be the set of 𝖩-covering
sinks on 𝑋. Then ̂𝖩 is the smallest saturated coverage on u� containing 𝖩.

Proof. Apply proposition a.2.14. ■

a.2.16 ¶ Let 𝐴 be a presheaf on u�.

Definition. A 𝖩-local generating set of elements of 𝐴 is a set Φ of

elements of 𝐴 with the following property:

• For every 𝖩-closed subpresheaf 𝐴′ ⊆ 𝐴, if Φ is contained in the set of

elements of 𝐴′, then 𝐴′ = 𝐴.

Example. Clearly, the set of elements of 𝐴 itself is a 𝖩-local generating
set of elements.

Local gener-

ating sets of

locally gener-

able presheaves

Lemma. Let 𝜅 be a regular cardinal and assume the following hypotheses:

• For every object 𝑋 in u�, every 𝖩-covering sink on 𝑋 contains a 𝜅-small
𝖩-covering sink.

• 𝐴 admits a 𝜅-small 𝖩-local generating set of elements.

Then, for every 𝖩-local generating set Φ of elements of 𝐴, there is a 𝜅-
small subset Φ′ ⊆ Φ such that Φ′ is also a 𝖩-local generating set of

elements of 𝐴.

Proof. Let Θ be a 𝜅-small 𝖩-local generating set of elements. For each

(𝑋, 𝑎) ∈ Θ, there is a 𝜅-small subset Φ′
(𝑋,𝑎) ⊆ Φ such that (𝑋, 𝑎) is con-

tained in every 𝖩-closed subpresheaf of 𝐴 containing Φ′
(𝑋,𝑎). Thus, taking

Φ′ = ⋃(𝑋,𝑎)∈Θ Φ′
(𝑋,𝑎), we obtain the desired 𝜅-small 𝖩-local generating

set of elements of 𝐴. ■

a.2.17 Definition. A morphism ℎ : 𝐴 → 𝐵 in Psh(u�) is 𝖩-locally injective if

the relative diagonal Δℎ : 𝐴 → Kr(ℎ) is 𝖩-locally surjective.
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Properties of

locally injective

morphisms

Proposition.

(i) Every monomorphism in Psh(u�) is 𝖩-locally injective.

(ii) The class of 𝖩-locally injective morphisms of presheaves on u� is a

class of separated fibrations in Psh(u�).

(iii) Given morphisms ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶 in Psh(u�), if the
composite 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-locally injective, then ℎ : 𝐴 → 𝐵 is also

𝖩-locally injective.

Proof. (i) and (ii). Apply proposition 1.1.7 to proposition a.2.14.

(iii). By hypothesis, the relative diagonal Δ𝑘∘ℎ : 𝐴 → Kr(𝑘 ∘ ℎ) is 𝖩-
locally surjective; but Kr(ℎ) ⊆ Kr(𝑘 ∘ ℎ), so by lemma 1.1.3, the relative

diagonal Δℎ : 𝐴 → Kr(ℎ) is also 𝖩-locally surjective. ■

a.2.18 Definition. A morphism in Psh(u�) is 𝖩-locally bijective if it is both

𝖩-locally injective and 𝖩-locally surjective.

Locally injective,

locally surjective,

and locally

bijective

morphisms

Lemma. Let ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶 be morphisms in Psh(u�).

(i) If ℎ : 𝐴 → 𝐵 is 𝖩-locally surjective and 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-locally
injective, then 𝑘 : 𝐵 → 𝐶 is also 𝖩-locally injective.

(ii) If 𝑘 : 𝐵 → 𝐶 is 𝖩-locally injective and 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-locally
surjective, then ℎ : 𝐴 → 𝐵 is also 𝖩-locally surjective.

Proof. (i). We have the following commutative square in Psh(u�),

𝐴 Kr(𝑘 ∘ ℎ)

𝐵 Kr(𝑘)

ℎ

Δ𝑘∘ℎ

Δ𝑘

and by proposition a.2.14, Kr(𝑘 ∘ ℎ) → Kr(𝑘) is 𝖩-locally surjective. But

Δ𝑘∘ℎ : 𝐴 → Kr(𝑘 ∘ ℎ) is also 𝖩-locally surjective, so it follows that Δ𝑘 :
𝐵 → Kr(𝑘) is 𝖩-locally surjective, as required.

(ii). We have the following pullback square in Psh(u�),

Pb(𝑘 ∘ ℎ, 𝑘) 𝐵

𝐴 𝐶

𝑝

𝑞

𝑘

𝑘∘ℎ
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and since 𝑘 ∘ ℎ : 𝐴 → 𝐶 is 𝖩-locally surjective, 𝑞 : Pb(𝑘 ∘ ℎ, 𝑘) → 𝐵
is also 𝖩-locally surjective. On the other hand, by the pullback pasting

lemma, we also have a pullback square in Psh(u�) of the form below,

𝐴 𝐵

Pb(𝑘 ∘ ℎ, 𝑘) Kr(𝑘)

⟨id𝐴,ℎ⟩

ℎ

Δ𝑘

and since 𝑘 : 𝐵 → 𝐶 is 𝖩-locally injective, ⟨id𝐴, ℎ⟩ : 𝐴 → Pb(𝑘 ∘ ℎ, 𝑘)

is 𝖩-locally surjective. But ℎ ∘ 𝑝 ∘ ⟨𝑖𝑑𝐴, ℎ⟩ = ℎ = 𝑞 ∘ ⟨𝑖𝑑𝐴, ℎ⟩, and the

latter is the composite of two 𝖩-locally surjective morphisms in Psh(u�),
so ℎ : 𝐴 → 𝐵 is also 𝖩-locally surjective. ■

Properties of

locally bijective

morphisms of

presheaves

Proposition.

(i) Every isomorphism in Psh(u�) is 𝖩-locally bijective.

(ii) The class of 𝖩-locally bijective morphisms in Psh(u�) has the 2-

out-of-6 property.

Proof. Apply propositions a.2.14 and a.2.17 and lemma a.2.18. ■

a.2.19 Definition. A 𝖩-weak pullback diagram in Psh(u�) is a commutative

diagram in Psh(u�) of the form below,

𝑃 𝐴1

𝐴0 𝐵

ℎ1

ℎ0

where the induced morphism 𝑃 → Pb(ℎ0, ℎ1) is 𝖩-locally surjective.

Weak pullback

pasting lemma

Lemma. Consider a commutative diagram in Psh(u�) of the form below:

𝐴″ 𝐴′ 𝐴

𝐵″ 𝐵′ 𝐵

(i) If both squares are 𝖩-weak pullback diagrams in Psh(u�), then the

outer rectangle is also a 𝖩-weak pullback diagram in Psh(u�).
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(ii) If the right square is a pullback diagram in Psh(u�) and the outer

rectangle is a 𝖩-weak pullback diagram in Psh(u�), then the left square
is also a 𝖩-weak pullback diagram in Psh(u�).

Proof. Straightforward. (Use proposition a.2.14 and the ordinary pull-

back pasting lemma.) ⧫
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a.3 Sheaves

Synopsis. We recall some of the basic theory of sheaves on a site.

Prerequisites. §1.1, a.1, a.2.

a.3.1 ※ Throughout this section, u� is a category and 𝖩 is a coverage on u�.

a.3.2 Definition. A presheaf 𝐴 on u� is 𝖩-separated if it has the following

property:

• For every object 𝑋 in u� and every Φ ∈ 𝖩(𝑋), 𝐴 satisfies the separation

condition with respect to the sieve ↓(Φ) on 𝑋.

Recognition prin-

ciple for separ-

ated presheaves

Lemma. Let 𝐴 be a presheaf on u�. The following are equivalent:

(i) 𝐴 is a 𝖩-separated presheaf on u�.

(ii) The image of the diagonal Δ𝐴 : 𝐴 → 𝐴 × 𝐴 is a 𝖩-closed subpre-

sheaf of 𝐴 × 𝐴.

Proof. In view of lemma a.2.2, this is a special case of lemma 1.1.16. ■

a.3.3 ¶ Let 𝐴 be a presheaf on u�, let 𝑅 be an equivalence relation on 𝐴, and

let 𝐴/𝑅 be the quotient presheaf.

Quotients by

closed equival-

ence relations

Lemma. The following are equivalent:

(i) 𝑅 is a 𝖩-closed subpresheaf of 𝐴 × 𝐴.

(ii) 𝐴/𝑅 is a 𝖩-separated presheaf on u�.

Proof. (i) ⇒ (ii). Let 𝑋 be an object in u�, let ̄𝑎0, ̄𝑎1 : h𝑋 → 𝐴/𝑅 be

morphisms in Psh(u�), and let 𝑞 : 𝐴 → 𝐴/𝑅 be the quotient morphism.

Since 𝑞 : 𝐴 → 𝐴/𝑅 is an epimorphism, we may choose 𝑎0, 𝑎1 : h𝑋 → 𝐴
such that ̄𝑎0 = 𝑞 ∘ 𝑎0 and ̄𝑎1 = 𝑞 ∘ 𝑎1. (Here, we are using the Yoneda

lemma.) Suppose u� is a member of 𝖩(𝑋) such that we have a commut-

ative square in Psh(u�) of the form below,

𝑆u� h𝑋

h𝑋 𝐴/𝑅

̄𝑎1

̄𝑎0
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where 𝑆u� is the subpresheaf of h𝑋 corresponding to u� . We then have

the following commutative diagram in Psh(u�),

𝑆u� Kr(𝑞) 𝐴/𝑅

h𝑋 𝐴 × 𝐴 (𝐴/𝑅) × (𝐴/𝑅)

Δ 𝐴/𝑅

⟨𝑎0,𝑎1⟩ 𝑞×𝑞

where the dashed arrow exists because the right half is a pullback square.

By construction, Kr(𝑞) is 𝑅, and 𝑅 is 𝖩-closed in 𝐴 × 𝐴, so we must have

𝑎0 = 𝑎1. Hence, ̄𝑎0 = ̄𝑎1, as required.

(ii) ⇒ (i). This is a consequence of lemma a.3.2 and the fact that the

preimage of a 𝖩-closed subpresheaf is also a 𝖩-closed subpresheaf. ■

Remark. In particular, every 𝖩-closed equivalence relation on 𝐴 is of the

form Kr(ℎ) for some epimorphism ℎ : 𝐴 → 𝐵 in Psh(u�) where 𝐵 is a

𝖩-separated presheaf on u�.

a.3.4
The closure of a

binary relation

on a presheaf

Lemma. Let 𝐴 be a presheaf on u�, let 𝑅 be a subpresheaf of 𝐴 × 𝐴, and

let �̄� be the smallest 𝖩-closed subpresheaf of 𝐴 × 𝐴 such that 𝑅 ⊆ �̄�.

(i) If 𝑅 is a reflexive relation on 𝐴, then �̄� is also a reflexive relation

on 𝐴.

(ii) If 𝑅 is a symmetric relation on 𝐴, then �̄� is also a symmetric rela-

tion on 𝐴.

(iii) If 𝑅 is a transitive relation on 𝐴, then �̄� is also a transitive relation

on 𝐴.

Proof. (i) and (ii). Straightforward.

(iii). Let 𝑅 ×𝐴 𝑅 and �̄� ×𝐴 �̄� be the subpresheaves of 𝐴 × 𝐴 × 𝐴 defined

as follows:

𝑅 ×𝐴 𝑅 = (𝑅 × 𝐴) ∩ (𝐴 × 𝑅)

�̄� ×𝐴 �̄� = (�̄� × 𝐴) ∩ (𝐴 × �̄�)

224



a.3. Sheaves

Clearly, 𝑅 ×𝐴 𝑅 ⊆ �̄� ×𝐴 �̄�; moreover, by proposition a.2.14, 𝑅 ×𝐴 𝑅 is

a 𝖩-dense subpresheaf of �̄� ×𝐴 �̄�. Let 𝑑1 : �̄� ×𝐴 �̄� → 𝐴 × 𝐴 be defined

as follows:

𝑑1(𝑎0, 𝑎1, 𝑎2) = (𝑎0, 𝑎2)

We then have a commutative diagram in Psh(u�) of the form below:

𝑅 ×𝐴 𝑅 �̄�

�̄� ×𝐴 �̄� 𝐴 × 𝐴
𝑑1

Since 𝑅 ×𝐴 𝑅 is 𝖩-dense in �̄� ×𝐴 �̄� and �̄� is 𝖩-closed in 𝐴 × 𝐴, 𝑑1 :
�̄� ×𝐴 �̄� → 𝐴 × 𝐴 factors through the inclusion �̄� ↪ 𝐴 × 𝐴. Thus, �̄� is

indeed a transitive relation on 𝐴. ■

a.3.5 Definition. A 𝖩-sheaf on u� is a presheaf 𝐴 on u� with the following

property:

• For every object 𝑋 in u� and every Φ ∈ 𝖩(𝑋), 𝐴 satisfies the sheaf

condition with respect to the sieve ↓(Φ) on 𝑋.

We write Sh(u�, 𝖩) for the full subcategory of Psh(u�) spanned by the

𝖩-sheaves.

Lemma. Let 𝐴 be a presheaf on u�. The following are equivalent:

(i) 𝐴 is a 𝖩-sheaf on u�.

(ii) 𝐴 satisfies the sheaf condition with respect to every 𝖩-covering sieve
on 𝑋.

Proof. (i) ⇒ (ii). Apply lemma a.2.3(c) and corollary a.2.3(b).

(ii) ⇒ (i). Immediate. ■

a.3.6
Locally injective

morphisms of

presheaves

with separ-

ated codomain

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Psh(u�). Assuming 𝐵 is 𝖩-
separated, the following are equivalent:

(i) ℎ : 𝐴 → 𝐵 is a monomorphism in Psh(u�).

(ii) ℎ : 𝐴 → 𝐵 is a 𝖩-locally injective morphism in Psh(u�).
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Proof. (i) ⇒ (ii). See proposition a.2.17.

(ii) ⇒ (i). By lemma a.3.2, the image of Δ𝐵 : 𝐵 → 𝐵 × 𝐵 is a 𝖩-closed
subpresheaf of 𝐵 × 𝐵. It is clear that the preimage of a 𝖩-closed subpre-

sheaf is also a 𝖩-closed subpresheaf, henceKr(ℎ) is a 𝖩-closed subpresheaf
of 𝐴 × 𝐴. But the relative diagonal Δℎ : 𝐴 → Kr(ℎ) is 𝖩-locally surject-

ive, so it is an isomorphism. Thus, ℎ : 𝐴 → 𝐵 is a monomorphism in

Psh(u�). ■

a.3.7 Definition. A 𝖩-sheaf completion of a presheaf 𝐴 on u� is a pair ( ̂𝐴, 𝑖)
where ̂𝐴 is a 𝖩-sheaf on u� and 𝑖 : 𝐴 → ̂𝐴 is a 𝖩-locally bijective morphism

in Psh(u�).

Sheaves are right

orthogonal to

locally bijective

morphisms

Proposition. If 𝐹 is a 𝖩-sheaf on u� and ℎ : 𝐴 → 𝐵 is a 𝖩-locally bijective
morphism in Psh(u�), then

HomPsh(u�)(ℎ, 𝐹 ) : HomPsh(u�)(𝐵, 𝐹 ) → HomPsh(u�)(𝐴, 𝐹 )

is a bijection.

Proof. Let 𝑠 : 𝐴 → 𝐹 be a morphism in Psh(u�). We must show that

there is a unique morphism ̄𝑠 : 𝐵 → 𝐹 in Psh(u�) such that ̄𝑠 ∘ ℎ = 𝑠.
Since 𝐹 is a 𝖩-separated presheaf on u�, by lemma a.3.2, Kr(𝑠) is a 𝖩-
closed subpresheaf of 𝐴 × 𝐴. On the other hand, the relative diagonal

Δℎ : 𝐴 → Kr(ℎ) is 𝖩-locally surjective, so we have Kr(ℎ) ⊆ Kr(𝑠). Thus,
recalling lemma a.2.18, we may assume without loss of generality that

ℎ : 𝐴 → 𝐵 is a 𝖩-locally surjective monomorphism in Psh(u�).
Let (𝑋, 𝑏) be an element of 𝐵 and let u� be the sieve on 𝑋 where (𝑈, 𝑥)

is in u� if and only if 𝑏 ⋅ 𝑥 is in the image of ℎ : 𝐴 → 𝐵. Then, we have

the following pullback square in Psh(u�),

𝑆 𝐴

h𝑋 𝐵

ℎ

𝑏⋅−

where 𝑆 ⊆ h𝑋 is the subpresheaf corresponding to u� , so by proposi-

tion a.2.14, u� is a 𝖩-covering sieve on 𝑋. Hence, by lemma a.3.5, there
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is a unique 𝑐 ∈ 𝐹 (𝑋) such that, for every (𝑈, 𝑥) in u� , we have 𝑐 ⋅𝑥 = 𝑠(𝑎)

where 𝑎 is the unique 𝑎 ∈ 𝐴(𝑈) such that ℎ(𝑎) = 𝑏 ⋅ 𝑥. This defines a

morphism ̄𝑠 : 𝐵 → 𝐹 extending 𝑠 : 𝐴 → 𝐹 along ℎ : 𝐴 → 𝐵, and it is

straightforward to check that it is the unique such extension. ■

Sheaf comple-

tions are

reflections

Corollary. Let 𝐴 be a presheaf on u�. If ( ̂𝐴, 𝑖) is a 𝖩-sheaf completion
of 𝐴, then ( ̂𝐴, 𝑖) is an initial object in the comma category (𝐴 ↓ Sh(u�, 𝖩)).

Proof. This is an immediate consequence of proposition a.3.7. ■

Remark. In particular, 𝖩-sheaf completions are unique up to unique iso-

morphism.

a.3.8 ¶ Let 𝐴 be a presheaf on u�. For general reasons, there is a 𝖩-sheaf com-

pletion of 𝐴, but it is convenient to have a more explicit construction.

Definition. The presheaf of 𝖩-local sections of 𝐴, or Grothendieck

plus construction for 𝐴 with respect to to 𝖩, is the presheaf 𝐴+ on u�
defined as follows,

𝐴+(𝑋) = Ȟ0
𝖩 (𝑋, 𝐴) = lim−−→u� :CSv𝖩(𝑋)op

HomPsh(u�)(𝑆u� , 𝐴)

where 𝑆u� is the subpresheaf of h𝑋 corresponding to the sieve u� . The

unit 𝜄𝐴 : 𝐴 → 𝐴+ is given at each object 𝑋 in u� by the component of the

colimiting cocone corresponding to the maximal sieve on 𝑋.

Remark. Note that the above indeed defines a presheaf on u�. Moreover,

proposition a.2.14 implies that CSv𝖩(𝑋)op is a directed poset, so the co-

limit appearing in the definition is very well behaved. In addition, 𝐴+ is

clearly functorial in 𝐴.

a.3.8(a) Lemma. The evident endofunctor on Psh(u�) defined by 𝐴 ↦ 𝐴+ pre-

serves limits of finite diagrams.

Proof. Straightforward. (Use the fact that lim−−→ℐ
: [ℐ,Set] → Set pre-

serves limits of finite diagrams when ℐ is a directed poset.) ⧫
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a.3.8(b) Lemma. The unit 𝜄𝐴 : 𝐴 → 𝐴+ is a 𝖩-locally bijective morphism in

Psh(u�).

Proof. Let 𝑋 be an object in u� and let 𝑎0, 𝑎1 : h𝑋 → 𝐴 be morphisms in

Psh(u�). Using the Yoneda lemma and the explicit construction of filtered

colimits in Set, we see that 𝜄𝐴 ∘ 𝑎0 = 𝜄𝐴 ∘ 𝑎1 if and only if there is some

𝖩-covering sieve u� on 𝑋 such that the diagram below commutes,

𝑆u� h𝑋

h𝑋 𝐴

𝑎1

𝑎0

where𝑆u� is the subpresheaf of h𝑋 corresponding tou� . Thus, the relative

diagonal Δ𝜄𝐴 : 𝐴 → Kr(𝜄𝐴) is 𝖩-locally surjective, i.e. 𝜄𝐴 : 𝐴 → 𝐴+ is a

𝖩-locally injective.

On the other hand, for any morphism 𝑏 : h𝑋 → 𝐴+ in Psh(u�), there
is a 𝖩-covering sieve u� on 𝑋 and a morphism 𝑎 : 𝑆u� → 𝐴 such that the

diagram below commutes:

𝑆u� 𝐴

h𝑋 𝐴+

𝑎

𝜄𝐴

𝑏

Thus, 𝜄𝐴 : 𝐴 → 𝐴+ is also 𝖩-locally surjective. ■

a.3.8(c) Lemma.

(i) 𝐴+ is a 𝖩-separated presheaf on u�.

(ii) If 𝐴 is a 𝖩-separated presheaf on u�, then 𝐴+ is a 𝖩-sheaf on u�.

Proof. See e.g. [ML–M, Ch. III, §5] or Proposition 2.2.6 in [Johnstone,

2002, Part C]. □

a.3.8(d) Proposition. Let 𝐴++ be the twice-iterated Grothendieck plus construc-

tion and let 𝜂𝐴 : 𝐴 → 𝐴++ be 𝜄𝐴+ ∘ 𝜄𝐴. Then (𝐴++, 𝜂𝐴) is a 𝖩-sheaf
completion of 𝐴.

Proof. Apply proposition a.2.18 to lemmas a.3.8(b) and a.3.8(c). ■
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a.3.9 ¶ To summarise:

Theorem.

(i) Every presheaf on u� has a 𝖩-sheaf completion.

(ii) In particular, the inclusion Sh(u�, 𝖩) ↪ Psh(u�) has a left adjoint.

(iii) Moreover, any such left adjoint preserves finite limits.

Proof. (i). See proposition a.3.8(d).

(ii). Apply corollary a.3.7.

(iii). Apply lemma a.3.8(a) (twice). ■

a.3.10
Recognition prin-

ciple for locally

surjective morph-

isms of sheaves

Lemma. Let ℎ : 𝐴 → 𝐵 be a morphism in Sh(u�, 𝖩). The following are

equivalent:

(i) ℎ : 𝐴 → 𝐵 is 𝖩-locally surjective.

(ii) ℎ : 𝐴 → 𝐵 is an effective epimorphism in Sh(u�, 𝖩).

(iii) ℎ : 𝐴 → 𝐵 is an epimorphism in Sh(u�, 𝖩).

Proof. (i) ⇒ (ii). Let 𝐵′ be the presheaf image of ℎ : 𝐴 → 𝐵 and let

ℎ′ : 𝐴 → 𝐵′ be the induced morphism. Then 𝐵′ is a 𝖩-dense subpresheaf
of 𝐵, so the induced morphism (𝐵′)++ → 𝐵++ is an isomorphism, by

propositions a.3.7 and a.3.8(d). On the other hand, ℎ′ : 𝐴 → 𝐵′ is

an effective epimorphism in Psh(u�), so (ℎ′)++ : 𝐴++ → (𝐵′)++ is an

effective epimorphism in Sh(u�, 𝖩), by theorem a.3.9. Thus, ℎ : 𝐴 → 𝐵 is

also an effective epimorphism in Sh(u�, 𝖩).

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). See Corollary 5 in [ML–M, Ch. III, §7]. ■

a.3.11
Elements of

coproducts

of sheaves

Lemma. Let (𝐴𝑖 | 𝑖 ∈ 𝐼) be a family of 𝖩-sheaves on u�, let 𝐴 = ∐𝑖∈𝐼 𝐴𝑖

in Sh(u�, 𝖩), and let ℎ𝑖 : 𝐴𝑖 → 𝐴 be the respective coproduct injection.

For every element (𝑋, 𝑎) of 𝐴, there is a 𝖩-covering sink Φ on 𝑋 with the

following property:

• For every (𝑈, 𝑥) ∈ Φ, there exist 𝑖 ∈ 𝐼 and 𝑎𝑖 ∈ 𝐴𝑖(𝑈) such that

ℎ𝑖(𝑎𝑖) = 𝑎 ⋅ 𝑥.
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Moreover, if 𝖩 is composition-closed, then we may also assume that Φ ∈
𝖩(𝑋).

Proof. By theorem a.3.9, the unit of the reflector of Sh(u�, 𝖩) ⊆ Psh(u�)

is componentwise locally bijective. Unwinding definitions, the claim fol-

lows. (Recall paragraph a.2.13.) ■

a.3.12 ¶ Let 𝑋 be an object in u� and let @𝑋 : Sh(u�, 𝖩) → Set be the evaluation

functor at 𝑋, i.e. the evident functor given on objects by 𝐴 ↦ 𝐴(𝑋).
Assume 𝖩 is a subcanonical coverage on u�. By the Yoneda lemma, @𝑋 :
Sh(u�, 𝖩) → Set is a representable functor, so it preserves limits. When

does it preserve colimits?

Definition. An object 𝑋 in u� is 𝖩-local if every 𝖩-covering sink on 𝑋
contains a split epimorphism.

Lemma. The following are equivalent:

(i) 𝑋 is a 𝖩-local object in u�.

(ii) @𝑋 : Sh(u�, 𝖩) → Set has a right adjoint, namely the evident

functor ∇𝑋 : Set → Sh(u�, 𝖩) defined on objects as follows,

∇𝑋𝑇 = 𝑇 u�(𝑋,−)

with counit @𝑋∇𝑋𝑇 → 𝑇 given by evaluation at id𝑋 .

(iii) @𝑋 : Sh(u�, 𝖩) → Set preserves colimits.

Proof. (i) ⇒ (ii). It is straightforward to verify that we have the following

adjunction,

Set Psh(u�)
∇𝑋

⊥
@𝑋

where the functors and the counit are defined as above. To complete the

proof, it is enough to verify that ∇𝑋𝑇 is a 𝖩-sheaf on u� for every set 𝑇 .

It is not hard to see that @𝑋 : Psh(u�) → Set sends 𝖩-locally surjective

morphisms in Psh(u�) to surjections. But @𝑋 : Psh(u�) → Set preserves

monomorphisms, so by lemma a.2.2 and adjointness, ∇𝑋𝑇 is indeed a

𝖩-sheaf on u�.
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(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let Φ be a covering sink on 𝑋. By lemma a.3.10, the induced

morphism ∐(𝑈,𝑥)∈Φ h𝑈 → h𝑋 in Sh(u�, 𝖩) is an (effective) epimorphism;

but @𝑋 : Sh(u�, 𝖩) → Set preserves coproducts and epimorphisms, so

the induced map

∐
(𝑈,𝑥)∈Φ

u�(𝑈, 𝑋) → u�(𝑋, 𝑋)

is surjective. Hence, there is (𝑈, 𝑥) ∈ Φ such that 𝑥 : 𝑈 → 𝑋 is a split

epimorphism in u�. ■

a.3.13 ¶ Let u� be a category and let 𝖪 be a coverage on u�.

Definition. A pre-admissible functor 𝐹 : (u�, 𝖩) → (u�, 𝖪) is a functor
𝐹 : u� → u� with the following property:

• For every 𝖪-sheaf 𝐵 on u�, 𝐹 ∗𝐵 is an 𝖩-sheaf on u�.

Pushforward of

sheaves along

pre-admissible

functors

Proposition. If 𝐹 : (u�, 𝖩) → (u�, 𝖪) is a pre-admissible functor, then the

restriction functor 𝐹 ∗ : Sh(u�, 𝖪) → Sh(u�, 𝖩) has a left adjoint.

Proof. Let 𝐴 be a 𝖩-sheaf on u�. By theorem a.3.9, Sh(u�, 𝖪) has colimits

of all (small) diagrams, so by proposition a.1.4 (and the Yoneda lemma),

there exist a 𝖪-sheaf 𝐹!𝐴 on u� and a morphism 𝜂𝐴 : 𝐴 → 𝐹 ∗𝐹!𝐴 in

Sh(u�, 𝖩) such that, for every 𝖪-sheaf 𝐵 on u�, the following is a bijection:

HomSh(u�,𝖪)(𝐹!𝐴, 𝐵) → HomSh(u�,𝖩)(𝐴, 𝐹 ∗𝐵)

ℎ ↦ 𝐹 ∗ℎ ∘ 𝜂𝐴

Indeed, we may take 𝐹!𝐴 = lim−−→(𝑋,𝑎):El(𝐴)
𝑘∗h𝐹 𝑋 , where 𝑘∗h𝐹 𝑋 is the 𝖪-

sheaf completion of the representable presheaf h𝐹 𝑋 on u�. ■

Pre-admissible

functors preserve

covering

morphisms

Corollary. If 𝐹 : (u�, 𝖩) → (u�, 𝖪) is a pre-admissible functor, then 𝐹
sends 𝖩-covering morphisms in u� to 𝖪-covering morphisms in u�.

Proof. Combine lemmas a.2.18 and a.3.10 with proposition a.3.13. ■
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charted object, 139
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discrete —, 204
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local —, 24

complex
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composite
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coproduct
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adapted —, 89
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summable —, 67

upward-closed —, 41
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— of a presheaf, 200

embedding, 31

open —, 97

epimorphism

strict —, 40

universally —, 40

equaliser

— of morphisms of presheaves,

202

equivalence relation, 40

— on a presheaf, 207

étale —, 94

tractable —, 99

exact completion, 58

extent, 110

family, 203

fibrant object, 3

fibration, see also class of fibrations

— of simplicial sets

discrete —, 153

discrete —, see cartesian fibration,

discrete —

fork, 50

exact —, 50

left-exact —, 50

mid-exact —, 50

right-exact —, 50

functor

admissible —, 59, 140

pre-admissible —, 231

regular —, 35

regulated —, 39

generating set

— of elements of a presheaf, 206

local —, 219

generator

— of a presheaf

local —, 43

homomorphism of rings

— of finite presentation, 176

étale —, 177

faithfully flat —, 175

flat —, 174

fppf —, 178

image

exact —, 32

initial object

strict —, 62

kernel relation
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— of morphisms of presheaves,

202

leaf, 214

limit

weak —, 44

local homeomorphism, 97

local isomorphism

— of presheaves, 189

manifold, 163

map

perfect —, 150

proper —, 147

semiproper —, 146

matrix of morphisms, 203

— of a given type, 17

monomorphism

complemented —, 66

morphism

— locally of a given type, 27

— of a given type locally on the

base, 21

— of a given type locally on the

domain, 15

— of a given type semilocally on

the base, 21

— of a given type semilocally on

the domain, 14

— right orthogonal to a morphism,

10

— semilocally of a given type, 27

agathic —, 33

covering —, 218

étale —, 93, see also class of étale

morphisms

eucalyptic —, 32

quadrably —, 32

eunoic —, 93

genial —, 93

laminar —, 113

perfect —, 9

quadrable —, 1

regulated —, 36

separated —, 5

morphism of presheaves, 200

— familially of a given type, 17

— locally of a given type, 22

— of a given type locally on the

base, 19

— of a given type semilocally on

the base, 18

— semilocally of a given type, 21

locally bijective —, 220

locally injective —, 219

locally surjective —, 218

étale —, 185

nerve

— of a category, 158

object

— right orthogonal to a morphism,

10

charted —, see charted object

local —, 230

localic —, 112

separated —, 4

open immersion

— of presheaves, 186

open quasilocalisation, 182

opfibration
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discrete —, see cocartesian

fibration, discrete —

plus construction

Grothendieck —, see presheaf, —

of local sections

presentation

— of a presheaf

local —, 43

presheaf, 199

— of local sections, 227

— represented by a manifold, 163

familial representation of —, 202

familially representable —, 202

generable —, 206

locally —, 43

morphism of —, see morphism of

presheaves

presentable —

locally —, 43

representable —, 202

representation of —, 202

separated —, 223

pretopos, 63

gros —, 106

associated —, 138

localic —, 78

petit —, 107

pullback

— of morphisms of presheaves,

201

pullback diagram

weak —, 221

quadrable

— morphism, see morphism,

quadrable —

class of morphisms, see class of

morphisms, quadrable —

quotient

— of a presheaf, 208

exact —, 41

topological —

universal —, 145

relative point of view, 1

right orthogonal

morphism — to a morphism, see

morphism, — right

orthogonal to a morphism

object — to a morphism, see

object, — right orthogonal to

a morphism

scheme

— of a given type, 195

Segal condition

strict —, 157

separated fibration, see also class of

separated fibrations

separation condition, 209

sheaf, 225

— presented by a local complex,

57

generable —, 87

presentable —, 88

sheaf completion, 226

sheaf condition, 209

Shulman condition, 44

sieve
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— generated by a set of objects,

206

— of a category, 206

— on an object, 206

covering —, 218

principal —, 206

pullback —, 207

strict-epimorphic —, 213

universally —, 213

sink, 212

covering —, 218

strict-epimorphic —, 213

universally —, 213

site

— for a pretopos, 77

unary —, 77

slice category, 201

subobject, 31

subpresheaf, 201

closed —

— with respect to a coverage,

217

dense —, 218

support

closed — of a morphism of

presheaves, 217

tautological cocone, 200

topological space

— of given type, 170

tree, 214, 216

proper —, 214

union

disjoint —, 61

exact —, 34
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