Lazy Imperative Programming

John Launchbury
Computing Science Department
Glasgow University
jl@dcs.glasgow.ac.uk

Abstract

In this paper we argue for the importance of lazy state, that
is, sequences of imperative (destructive) actions in which
the actions are delayed until their results are required. This
enables state-based computations to take advantage of the
control power of lazy evaluation. We provide some examples
of its use, and describe an implementation within Glasgow

Haskell.

1 Introduction

There has long been a tension between functional program-
ming languages and their more traditional imperative coun-
terparts. On the one hand, functional languages are com-
monly more expressive and easier to reason about than
imperative languages, but on the other hand, certain al-
gorithms and interactions seem to rely fundamentally on
state-based computation. It is clearly worth attempting to
combine the strengths of each.

Some languages like Scheme and ML have incorporated im-
perative actions as side effects. This approach only makes
sense in a call-by-value language where the order of eval-
uation is statically defined. In lazy functional languages
like Haskell or Miranda, evaluation order is dynamically de-
termined, so can be immensely difficult to predict. If such
languages obtained imperative actions as side-effects of eval-
uation then serious reasoning difficulties would result. De-
termining which side effects are to be performed, and worse,
in which order, would rely on determining the exact order
of evaluation—the very thing that laziness tends to hide!
Consequently lazy evaluation and side effects do not mix.

There 1s a way forward however. The recent work of Moggi
[Mog89] showed how monads could be used to structure
denotational semantics, including the handling of state in
imperative languages. Wadler recognised that the same
principles apply for functional programs and, in particu-
lar, showed how the state monad could be used to incorpo-
rate imperative operations in a purely functional language

[Wad92]. From this work it became clear that lazy eval-
uation and imperative actions could coexist quite happily,
with each being able to pass values to the other.

The Glasgow Haskell compiler incorporates extensions to
the lazy functional language Haskell. These extensions im-
plement imperative actions [PW93]. However, the imple-
mentation has an important shortcoming: all imperative
actions are performed before any results are returned. This
parallels strict evaluation where all the arguments to a func-
tion are evaluated before a result is given, even if the values
of the arguments are not required. In non-strict languages
(as implemented by lazy evaluation, for example) functions
may return results without requiring the successful evalua-
tion of arguments whose values are not required.

In this paper we see how to retain the philosophy of non-
strict computation, even in the presence of imperative ac-
tions. To see the relevance of this, 1t is worth distinguish-
ing between two distinct classes of state-based computation.
Sometimes it is necessary to manipulate the global world
state, such as when accessing files or communicating with
the outside world, whether as an interactive program or by
communicating with other programs. These are externally
state-based computations. Other times however, computa-
tions require purely local state. This may be either for ease
of programming, passing a name-supply around for exam-
ple, or because a given algorithm relies on constant-time
update to achieve a given asymptotic complexity. In both
cases the state is purely internal to the computation, and is
utterly invisible to the outside world.

As the state from an internally state-based computation
may be discarded at the end of the computation, it makes
sense to ask whether all the imperative actions should al-
ways be performed: any that do not affect the final value
could be discarded freely. This may be generalised by mak-
ing the state thread entirely lazy. Hughes argues that the
true power of laziness is to decouple control from calculation
[Hug89], and we show the same arguments apply to inter-
nally state-based computations. We provide some examples
of this, and give an implementation of lazy-state in Glasgow

Haskell.

The contribution of this paper, therefore, is to show that,

1. lazy state provides a much better fit with lazy eval-
uation than does strict state; in particular, the usual
expressiveness associated with lazy evaluation also ap-
plies to internally state-based computations;

2. lazy state may be implemented to provide constant-
time access and update: the only penalty compared
with strict state is in the creation of extra unevalu-
ated closures—exactly the usual penalty paid by mov-
ing from strict to lazy function application.

As this paper builds directly on the work by Peyton Jones
and Wadler [PW93], it makes sense to review that first.

2 Imperative Haskell

Imperative features were introduced to Glasgow Haskell for
expressing input and output, so the type constructor for
state-based computations is called I0. A state-based com-
putation that produces a purely functional value of type a
therefore has type I0 a. A value of type I0 a is not a side-
effecting computation. Rather it is a recipe for performing
certain actions and returning an appropriate result. In fact,
elements of the IO type are all functions, awaiting an ar-
gument representing the world state. When applied to a
world state, evaluation of the function produces a result
paired with another world state.

By making I0 a an abstract data type with limited built in
operations, it is possible to guarantee that all references to
the state are single threaded. Then no state argument ever
needs to be passed explicitly: the real external world may
be used instead and all updates may be performed in-place.

The main two operations provided on the I0 type are the
familiar monadic combining forms.

returnlI0 :: a -> I0 a
thenIO :: I0 a -> (a->I0 b) -> I0 b

The former packages up its value into a computation which
does nothing except return the value. The latter is a form
of function application. It performs the first computation,
yielding a value of type a. This result 1s passed to the
function argument which, on receiving a value of type a,
returns a computation designed to produce a value of type
b. No value is returned until both arquments to thenIO have
been performed.

Other I0 primitives may be built using the ccall construct
which allows calls to any C function. For example,

ccall putchar ¢

is a call to the C function which outputs a character on the
standard output. No particular value is returned, so its type
18 I0 (). On the other hand,

ccall getchar

has type I0 Char: it is a computation which returns a char-
acter value.

Finally, the meaning of a Haskell program is given by a
definition of mainIO0, an identifier of type I0 (). To execute
a program, mainI0 is applied to the external world state,
returning an updated world state as a result.

3 Delayed Side Effects

An important aspect of the IO monad is that all the im-
perative actions are forced. Consequently, 1O expressions
have a very poor match with lazy evaluation. Consider the
following expression’:

foolI0 ‘thenI0‘ \a->
bazI0 ‘thenI0‘ \b->
returnIO (all|b)

Whenever this expression is performed (applied to the world
state) both fooIO and bazIO are performed, returning
(boolean) values bound to a and b respectively. Only then
are these values or-ed together to produce the final result.
Contrast this with the behaviour of the purely functional
expression fool |baz. In a non-strict language, foo would
be evaluated and only if it returns False would baz be eval-
uated.

However, as the 10 type is provided for external state com-
putations, this behaviour is quite reasonable. On the main
line of IO actions, every imperative action has to be per-
formed before the program terminates: the meaning of a
program is defined to be the total effect 1t has on the world.
This means that whenever an 1O operation is specified, it
might as well be performed immediately. There is no ben-
efit in delaying it, since it has to be performed before the
program terminates.

On the other hand, the example does provide an argument
that expressions which use state purely internally should do
so in a lazy way. That 1s, if we had a way of encapsulating
the state in the example above, then bazI0 should only
be performed if a is False. The result of an encapsulated

IThe lambda bindings \a-> and \b-> are in scope to the end of the
expression.

expression should be defined by the purely functional values
it returns, and not by any imperative actions it performs.
If a function uses state to produce a result, and hides that
state from everything else (including other invocations of
the same function), then there is no reason to perform all of
the state operations. Rather, only those which are required
by data dependency should be performed.

There is one important caveat. The order in which imper-
ative actions are performed is important. We must ensure,
therefore, that the order in which they are performed re-
mains unchanged; that is, if the value from any action is
required, all earlier actions must first be performed.

3.1 Passing State Around

Given that the I0 type is strict in its state actions, we will
use a different name for lazy state operations. The only
restriction on when such operations are performed is that
they must be performed in sequence, so we name the type
constructor for such actions Seq.

Seq is built upon the standard monad of state transformers.

A state transformer is a function which, when given a state

s, produces a pair of results: a value and a new state.
type ST s a = s -> (a,s)

We provide the standard unit return and the sequence com-
binator called bind.

return :: a -> ST s a

bind STsa—->(a>Tsb) >STsb
return a s = (a,s)

bind mk s =k at where (a,t) =m s

By single-threading the state, the state monad ensures that
state operations are sequenced. It does not demand that
all state operations are performed. Consider the following
example.

ST s Bool
someStateOps ‘bind‘ \v ->
return True

exampled ::
exampled s =

Because the final value True does not depend on the state,
the computations in someStateOps are not performed. In-
deed, not even the initial state is demanded.

If, however, exampleA is sequenced together with other
code, exampleB say, which does require the state in order
to define the final value, then all the state operations in

someStateOps will be performed, and in the order origi-
nally specified, before any state operations in exampleB are
performed.

3.2 Discarding State

We define lazy sequences to be state transformers where the
state is an abstract data type representing the encapsulated
state.

type Seq a = ST World a

We achieve this encapsulation with the function newSeq.

newSeq :: Seq a —> a

newSeq takes a sequence expression, opens up a new, empty
imperative context, sequences the imperative computation,
and extracts the final value discarding the final state.

The evaluation of such a computation mirrors usual lazy
evaluation: only those computations and state actions that
occur up to the point where the result is sufficiently defined
(according to the external demand) are performed; the re-
mainder are suspended. If more of the result is demanded
then more computations or imperative actions may be per-
formed until the value is sufficiently defined to satisfy its
consumers. As usual, only computations required by data-
dependency are performed (recall that imperative actions
have the extra data-dependency of a single-threaded state).
When, eventually, all references to the final value are dis-
carded, all the remaining actions become garbage, and are
never performed.

For the present, we will continue to take it on faith that lazy
imperative actions can be performed in a truly imperatively
manner (by destructive update), and will turn to examine
some examples, showing the sort of behaviour we want to
achieve.

3.3 Monad Syntax

For the rest of the paper we use syntactic sugar to refer to
monad operations. We extend Haskell expressions with an
expression of the form {Q} which is expanded as follows?:

Q ::=E | E;Q | x<-E;Q

{E} = E

{E;Q} = E ‘bind‘ _->{Q}
{x<-E;Q} = E ‘bind‘ \x->{Q}

2Haskell actually uses these symbols as layout markers. We will
not do so here—every use of {, }, and ; will be for monad syntax.

scanLeft ::

scanLeft f (init,xs) =

(a=>b->b) -> (b, [a]) -> ([bl,b)

newSeq {v <- newVar init;
ys <- scan xs
where

final <- readVar v;
return (ys,final)}

return []

{val <- readVar v;
writeVar v (f x val);
rest <- scan xs;
return (val:rest)};

scan]
scan (x:xs)

Figure 1: Imperative Scan Left

To see this in action, consider the following example:

{x <- opi;

(y,z) <- op2 x;
op3 z Xx;
return y}

This is translated into the following expression:

opl ‘bind¢ \x—>

op2 x ‘bind¢ \(y,z)->
op3 z x ‘bind‘ _—>
return y

That 1s, the semicolon is translated into the monad sequence
operation ‘bind‘, and if an explicit pattern is given, it is
converted into the pattern on the trailing lambda expres-
sion, so causing those names to be in scope across the re-
mainder of the expression. If no pattern is written, then any
trailing lambda is given the wildcard pattern which matches
everything but binds nothing.

3.4 Scan Left

The first example exhibits the use of an updatable variable.
This is an example that 1s commonly written in a purely
functional style, so the value of this example is not about
whether to use a state-based computation, but rather to
demonstrate that the use of state does not restrict which
results may be returned.

For now, we will assume we have the following operations
on variables, and treat Var a simply as an abstract data
type of variables of type a.

newVar :: a -> Seq (Var a)
readVar :: Var a -> Seq a
writeVar :: Var a -> a -> Seq ()

Given an initial value x say, newVar x is a sequence op-
eration which when performed, allocates a variable in the
state having initial value x, and returns a reference to the
variable. Similarly, if v is a variable (a state reference),
then when readVar v is performed (applied to the state)
it returns the value of v in the state. As may be expected,
writeVar updates the value of the variable.

Using these we will implement a function scanLeft. Given
a function, a starting value, and a list, scanLeft applies
the function repeatedly across the list, working from left to
right, and returns a list of partial results, paired with the
final answer. For example,
scanLeft (+) (0, [1,2,3,4]) = ([0,1,3,6], 10)

It 1s important that the result of scanLeft is generated
by demand. If only an initial portion of the result list is
required, then that is all that should be computed. In par-
ticular, even if only some front portion of the input list is

defined (and the rest undefined), an equivalent front portion
of the result list should still be defined. For example,

scanLeft (+) (0, 1:(2:(3:1)))
= (0:(1:(3:1)), L)

There are two parts to the code given in Figure 1. The
first interfaces the main loop with the outside (functional)
world. It creates a new imperative context, and within this
generates a variable v to hold the running total. The main
loop of the function is called. This returns the list of partial
results and, after reading the final value of v, the function
returns a pair consisting of the list ys and the final result
final.

The main loop updates the value of the variable v for each
element of the list, returning a list made up of the value of
v at the start of the loop followed by the list returned by
the rest of the loop.

In a strict imperative framework such as the 10 monad (and
most imperative languages), no value could be returned un-
til the whole of the list was traversed. Using lazy sequences,
however, this is not the case. If only the head of the list is
required then very little of the computation is performed:
the variable 1s allocated and initialised, it 1s read, and the
list returned with that value in the head. If even less is re-
quired, merely whether the final list is empty for example,
then the variable is not even allocated as only xs needs to
be examined in order to give the structure of ys.

As we said above, this example is usually written in a purely
functional style. It is important, however, that the same
behaviour may be obtained even when state is used: re-
expressing the algorithm within the state monad need not
change its semantics.

The next example is quite different in that its use of state
is erucial to obtaining linear efficiency.

3.5 Depth First Search

How can we implement depth first search of a graph effi-
ciently (that is, 0(V + E) where V is the number of ver-
tices, and E the number of edges), while still retaining the
usual expressiveness and flexibility afforded by lazy func-
tional languages? This problem was the motivating appli-
cation for this work on lazy imperative actions, and we de-
scribe i1t in some detail here.

3.5.1 Decomposing Graph Algorithms

One major shortcoming of graph algorithms which rely on
depth-first search (DFS) is that they are presented dynam-
ically, within the process of performing the search. This
means that reasoning about the results of the search depend
on tracing the computation dynamically. Furthermore, as
the code for a particular algorithm is mixed in with the
traversal code DFS code is largely unreusable.

The same may be said for many implementations of tree
algorithms, but in lazy functional languages it is common
to express many tree traversal problems first by a flattening
of the tree into a list, and then by traversing the list. The
flattening is performed using one of a variety of standard
functions (preorder, postorder etc.), and the list processing
likewise is often defined in terms of standard components.
Complex algorithms can often be expressed as the composi-
tion of well-understood simpler components. The intermedi-
ate list provides a channel of communication between these
standard components. This technique is particularly viable
if the list may be consumed as it 1s produced, otherwise a
large intermediate structure is created. The “co-routining”
behaviour of lazy evaluation is able to do this.

The same idea is applicable to graphs. Instead of expressing
an algorithm as part of a depth-first traversal, it 1s possible
to imagine a decomposition similar to that used for many
tree algorithms. First, the graph is traversed to produce a
depth-first spanning forest (not all the nodes may be reach-
able from the start node), and secondly the forest is tra-
versed to compute the required information. Again, this is
only practicable if the forest is produced on demand, as it is
consumed.

A forest is a list of general trees, each tree consisting of a
node with a value, together with a forest of sub-trees.

[Tree al
Node a (Forest a)

type Forest a
data Tree a

3.5.2 Representing Graphs

There are a number of ways to represent (directed) graphs.
Because we want to be explicit about sharing, we repre-
sent graphs by adjacency lists. We use a standard Haskell
(monolithic) array indexed by vertices, each element being
a list of the vertices reachable in one step from that vertex.

One way to build such a graph is from an association list
of vertices representing the (directed) edges, together with
a pair of verticies indicating the range of valid vertices®.

type Graph = Array Vertex [Vertex]
type Vertex = Int
out :: Graph -> Vertex -> [Vertex]
out gv=g!v
buildG :: (Vertex,Vertex) —>
[Assoc Vertex Vertex] -> Graph
buildG is es

= accumArray (flip (:)) [1 is es

verticesG g = [low..highl]
where (low,high) = bounds g

This representation takes a linear amount of space with re-
spect to the size of the graph i.e. the sum of the number of
vertices and number of edges. Access to each list of edges
takes constant time.

Note that as the graph is represented as a purely functional
value, it will not be subject to imperative actions and, in
particular, will not be altered in any way by the depth first
search. We may pass the same graph around and freely
perform many separate searches on it if we wish.

3Vertex does not have to be Int as above, but only needs to be in
the Haskell index class Ix.

dfs :: Graph -> [Vertex] -> [Tree Vertex]
dfs g vs = newSeq {marks <- newArr (bounds g) False;
search vs
where search []

search (v:vs)

return []
{visited <- readArr marks v;
if visited then

search vs
else
{writeArr marks v True;
as <- search (out g v);
bs <- search vs;
return ((Node v as)

: bs)}}

Figure 2: Lazy Depth First Search

3.5.3 Depth First Search

Given the standard von Neumann model, it seems impos-
sible to produce a linear time depth first search without
using some element of update-in-place. However, there is
only one place in which this is required, namely in setting
a mark whenever a particular node has been visited. Of-
ten this mark variable is defined to be an extra field in the
original graph, but there are a couple of related reasons
why this 1s undesirable. First, the process of performing a
search has a side effect on the graph, and this may need to
be explicitly removed before another search can commence.
Secondly, the component of the algorithm which is necessar-
ily imperative 1s not identified as such, but rather is mixed
up with the rest of the data.

An alternative is to have an array of marks, one for each
vertex. At the start of a search we will allocate a new ar-
ray initialised everywhere to False, and make it available
for reference and update throughout the search. Once the
search 1s completed the array may be discarded.

The operations on updatable arrays correspond to those on

variables:

(Ix ix) =>
(ix,ix) -> ele -> Seq (ArrRef ix ele)

newArr ::

readArr :: (Ix ix) =>

ArrRef ix ele —> ix -> Seq ele

writeArr :: (Ix ix) =>
ArrRef ix ele -> ix -> ele -> Seq ()

The only way a value may be obtained from an array ref-
erence is by using the sequence operations. Again we stress

that sequence operations are not necessarily strict: the only
imperative actions that are performed are those required
by data dependency (including retaining the same relative
linear order).

The definition of depth first search is given in Figure 2. The
function dfs is given a list of vertices to search (this is useful
for a number of algorithms), and begins with the first. Once
the first has been searched, following all the edges from the
vertex, and all the descendents of these, etc., the rest of the
vertices are explored.

Each (recursive) call of search returns a forest. The call
search (out g v) which is given the edges leading from v
produces a forest which is built into a tree with v at the
root—all these nodes are reachable from v. The second
recursive call (search vs) produces a forest of those vertices
not reachable from v and not previously visited. The tree
rooted at v is added to the front of this forest giving the
complete depth-first forest.

3.5.4 Exploring the Forest

We will give two examples of the use of dfs. The first detects
the presence of cycles in a graph, and the second identifies
strongly-connected components.

Detecting Cycles

Traditionally, in order to find whether a graph contains a
cycle, a depth first traversal is performed looking for back
edges (edges up to a predecessor in the particular depth first
tree). Assoon as a back edge is found the search is stopped.

The same effect is obtained using the function dfs. We con-
struct a depth-first forest from the graph, and then traverse
this forest looking for back edges (we need to refer to the

original graph to obtain these edges). We can express forest
traversal by mapping a tree-traversal down the list of trees.

Thus we define a tree traversal function, treeCycle say,
which takes a graph and a sub-tree of the graph. It traverses
the tree and returns True as soon as it spots a back edge
in the original graph, otherwise it continues to traverse the
rest of the tree, and eventually returns False.

Assuming this, the cycle-detection program is simply,

cycle g = or (map (treeCycle g)
(afs g (verticesG)))

As soon as a tree is found for which the graph has a back
edge, the or function returns True, discarding the rest of
the forest which s therefore never produced. Furthermore,
assuming the data dependency of the tree traversal matches
that of the DFS generation (left branches first) then only
the portion of each DFS tree that is actually traversed will
be produced.

Thus we have taken full advantage of lazy-evaluation’s abil-
ity to provide dynamic control between separate functions:
without lazy state it would not have been possible to de-
couple the traversal of the graph with its mark bits, from
the detection of back edges, while still retaining the ability
to halt the DFS as soon as a back edge is found.

Strongly-Connected Components

To demonstrate the flexibility of dfs we provide a second
example of its use, this time the strongly connected com-
ponents algorithm due to Kosaraju in 1978 (unpublished)
[Sha81]. This example does not take particular advantage
of laziness, but does show a reuse the DFS code.

For the purposes of this algorithm, we originally specify a
graph as a pair of bounds for the vertices (low and high),
together with a list of edges. The algorithm performs a
depth first search of the graph, generating a forest of ver-
tices. This is flattened to a list (using postorder and then
reversing the list) which is used as the seed order for a sec-
ond depth first search, this time of the reversed graph. Each
tree within the resulting depth first forest corresponds to a
strongly connected component. We squash each into a list
of vertices. The complete implementation is given below?.

(Vertex,Vertex) ->
[Assoc Vertex Vertex] —> [[Vertex]]

sSCC !

scc (low,high) edges

= (map postorder . dfs g’ . reverse . concat

4The implementation of postorder is not actually linear because of
repeated appends, but it may be converted by standard compilation
techniques. We have not done so here as it is a little less clear than
the naive version, and not relevant to our main interest.

. map postorder . dfs g) [low..high]
where

g = buildG (low,high) edges

g’ = buildG (low,high) (map switch edges)

switch (v:=w) = (w:=v)

postorder (Node a ts)
= concat (map postorder ts) ++ [a]

We have seen two examples of using dfs. Many other DFS
based algorithms can be implemented with similar ease.

4 Implementing Lazy State

Can lazy state be implemented safely and efficiently? By
safely we mean guaranteeing that the relative ordering of
imperative actions remains unchanged, and by efficiently
we mean using true destructive update to obtain constant
time update and access.

It turns out that not only is the answer yes, but that the im-
plementation is surprisingly easy and can be done at source
level within Glasgow Haskell. Again we start with a review
of the current implementation of I0.

4.1 Implementation of IO

So far we have viewed the I0 type constructor abstractly.
Now we see its definition®.

World# -> IORes a
MkIORes a World#

type I0 a
data IORes a =

Elements of type I0 a are functions which take a world
token (of type World#) and return a pair of values, the first
of type a, the second a new world token.

Here World# is an unbozed data type [PLI1]. The # suffix is
a lexical convention only with no semantic content, but un-
boxed types are very different beasts from normal types. In
particular, unboxed types have no bottom element, so can-
not be undefined. Consequently, any computation involving
elements of unboxed values has to produce the value explic-
itly, before the next stage of the computation may proceed.
The benefit of using these types is that they expose to the
compiler 1ssues both of data representation and of evalua-
tion order, without leaving the purely functional framework.

The fact that the world is unboxed forces thenIO to be strict
in the world token:

5The Glasgow Haskell compileris currently still under development,
so actual names may be subject to changes.

MkIORes x w#
case (m w#) of
MkIORes a v# -> k a v#

returnl0 x w#
thenIO0O m k w# =

which in turn forces all the imperative actions specified by
m to be performed before k is evaluated.

The only truly primitive IO operation is ccall which, once
applied to the world token, is implemented by the relevant
C call.

There are, of course, some common C accesses which are
provided within the standard IO prelude. These include
operations for allocating, reading from, and writing to, ar-
rays. We use these in Section 4.4.

4.2 Boxing the World

So far we have left the nature of the world token type World#
unspecified. In fact, the only part of the compiler which
knows the definition on World# is the code generator. Ev-
erything else views it as an abstract data type (albeit un-
boxed), representing the total state of the world. Only the
code generator takes advantage of the fact that the real ex-
ternal world may be used, and so instantiates World# to the
one point type.

For sequences, we want a little more information to be con-
tained in the world token. For a start it must be boxed:
in the IO monad, the world token is passed around as an
unboxed value, and the typechecker ensures that such un-
boxed arguments are only ever used in strict computations,
thus forcing imperative actions in the IO monad to occur
immediately. Boxing the world token means that rather
than passing around a token (in effect, granting permission
to perform an imperative action), we pass pointers to sus-
pended computations which, when evaluated, yield such a
token. It is this that allows us to define the lazy sequencer
bind.

However, we want more than this. The philosophy behind
sequences 1s that they run in their own local state, inde-
pendent of any other computations, whether state-based
or purely functional. We must ensure, therefore, that the
sequence operations we provide may only be used in this
way. Cross references between supposedly independent
state threads must be banned. Otherwise the result of a
program could depend on the order of evaluation—the very
thing we are trying to avoid.

The best solution to this is almost certainly a stronger type
system, perhaps like the effects system [TJ92]. This would
determine that no supposedly pure calculation made refer-
ence to anything other than its own internal state.

However, in the absence of such an extension, the solution

we adopt here 1s for each state thread to have its own unique
wdentifier, and for all operations on state-references to check
that the reference is being used within the correct world.

data World
type WorldToken

MkWorld WorldToken World#
Int

Whenever an new imperative thread is created, a state token
(of type World) will be created, having a unique world token
number.

4.3 Independent Threads

Implementing an independent thread comes down to imple-
menting newSeq. This could be done by defining it as a
primitive within the compiler, and arguably that is the cor-
rect place. Nonetheless, we can obtain some useful insight
by defining it at the “system programmer level” Haskell.

The TO monad provides a (potentially dangerous) primitive
value world# representing the world. We will use this as
the world token for the thread. However, we also need to
generate a unique identifier. The problem is well known: it
1s just gensym.

Again, we could implement gensym using slightly dirty
tricks with the dangerous performIO. Interestingly, how-
ever, Odersky has recently shown that the lambda calculus
may be safely extended with a gensym operator [Ode93].
The term vt.e introduces a new name ¢ within e. The only
operation provided on names is equality. The resulting cal-
culus 18 Church-Rosser.

The concrete syntax Odersky proposes for vt.e 1is
new t -> e. As this provides exactly what we want, we
will adopt his syntax.

newSeq :: Seq a —-> a
newSeq m = fst (new t -> m (MkWorld t world#))
4.4 Arrays

In order to implement arrays we use the primitive operations
supplied in Glasgow Haskell. The detail of this does not
need to be understood merely to appreciate what is going
on. The implementation is given in Figure 3.

To perform any array operation, we pattern match against
the structure of the state token. As usual the forces the
computations defining that value to be performed. Here
this has the effect of forcing all previous imperative actions
to be performed, as the token is only available after the
appropriate state changes have occurred.

data ArrRef ix ele = MkArrRef WorldToken (ix,ix) (MutArr# ele)

newArr :: (Ix ix) => (ix,ix) -> ele -> Seq (ArrRef ix ele)
readArr :: (Ix ix) => ArrRef ix ele -> ix -> Seq ele
writeArr :: (Ix ix) => ArrRef ix ele -> ix -> ele -> Seq ()

newArr ixs@(ix_start, ix_end) init (MkWorld w vi#)
= case ((index ixs ix_end) + 1) of
MkInt n# -> case (newArr# n# init) v# of
MkSeqRMutArr# arr# new# -> (MkArrRef w ixs arr#, MkWorld w new#)

readArr (MkArrRef t ixs arr#) n (MkWorld w v#)
= worldCheck t w (case index ixs n of
MkInt n# -> case (rdArr# n# arr#) v# of
MkSeqR r new# -> (r, MkWorld w new#))

writeArr (MkArrRef t ixs arr#) n ele (MkWorld w v#)
= worldCheck t w (case index ixs n of
MkInt n# -> case (wrArr# n# arr# ele) v# of
MkSeqR r new# -> ((), MkWorld w new#))

worldCheck :: WorldToken -> WorldToken -> a -> a
worldCheck t w val | t==w
| True

val
error "Illegal State Access'

Figure 3: Array Operations

type Var a = ArrRef Int a

newVar :: a -> Seq (Var a)
readVar :: Var a -> Seq a
writeVar :: Var a -> a -> Seq ()

newVar init
readVar v

newArr (0,0) init
readArr v O

writeVar v val = writeArr v 0 val

Figure 4: Variable Operations

In the case of newArray, the size of the array is computed
using the standard Ix class method index which maps ar-
bitrary Ix types onto the integers. We then call the prim-
itive I0 operation newArr# providing it with the appropri-
ate world token. This returns an unboxed array together
with a new world token. The first is packaged up with
the MkArrRef constructor, and the second with the current
world identifier using MkWorld.

Notice that the current world identifier is also packaged with
the array, so that each array is tagged with an identifier
representing the world to which it belongs.

When an array is read, again the state token is forced. Then
the world token number built into the array reference is
checked to confirm that the array was created within the
same world in which it is now being accessed. It is this check
(and the corresponding check in writeArr) which ensures
that references cannot pass between apparently independent
threads. If ever any other primitive operations on Seq are
provided then a similar check should be included.

If the check 1s successful, then again primitive IO opera-
tions are used to read the array, and the result packaged
appropriately. Writing to the array is comparable.

Following ML, we implement variables as arrays with a sin-
gle element. The detail is given 1n Figure 4.

4.5 Converting IO to Seq

There 1s a fair degree of mess within the definitions of the
array primitives. Much of this can often be encapsulated in
the following generic conversion function.

cnvI0OToSeq :: I0 a -> Seq a
cnvIOToSeq m (MkWorld w vi#t)
= case (m v#) of
MkIORes r new# —> (r, MkWorld w new#)

A partial application of cnvIOToSeq to an IO operation m
yields a function expecting a value of type World. When
the results of the operation are required, the World value
is forced (the pattern matching demands to view the outer
constructor). As before, this may provoke a cascade of ear-
lier computations to be performed, many having imperative
effects. When at last the World token is visible, all previous
imperative effects will have been performed. Now the I0
action m i1s applied to the world token, its imperative effect
performed, and an I0 result is returned. The components
of this are extracted, and the new world token 1s boxed.

5 Conclusion

This paper may be viewed as providing another step in im-
proving the interface between the functional and impera-
tive worlds, as here we allow data dependency to deter-
mine which imperative actions are performed and which are
delayed®.

This has two significant advantages: the first is seman-
tic and the second practical. The semantic advantage is
a purely functional program may be re-expressed in terms
of the state monad without changing its semantics. The
practical advantage is that the power of lazy evaluation for
decoupling calculation and control may be used even across

functions which used internal state.

This paper builds directly on top of the IO work at Glas-
gow as reported by Peyton Jones and Wadler [PW93], and
summarised in Section 2. There are also strong similarities
with the A4 work of Odersky, Rabin and Hudak [ORH93],
which 1itself was influenced by Swarup, Reddy and Ireland
[SRI91]. Like Peyton Jones and Wadler, A4, provides only
for strict imperative actions: no purely functional result is
returned until the structure and content of the state is re-
solved.

One surprising aspect of this work is that it may all be
implemented at source level within Glasgow Haskell (albeit
at a level typically reserved for systems programming). In
particular, no changes to the compiler were required. This
provides considerable evidence for the power and flexibility
of the built in I0 monad and unboxed values.

A number of obvious developments present themselves. Al-
ready the Var type allows all the flexibility of pointers: a
value of type Var (Var Int) is a pointer to an integer vari-
able, so 1t makes sense to augment the variables and arrays
with unique tags to allow for pointer equality to be defined.
Thus the instance of == on Var would simply compare the
tags of the variables and no more.

Sometimes, data-dependency requires that all the impera-
tive actions within a state thread be performed before any
result i1s returned. In this case it makes sense to perform
the operations strictly rather than lazily. This corresponds
to replacing lazy function application with strict applica-
tion when the function is provably strict. In this case it is
achieved by replacing the ‘bind ¢ combinator with a version

SHowever, it is important to recall that when imperative actions
are forced, they occur in the same order in which they were specified.
There may be room for the clever work found in imperative language
implementations whereby imperative actions are reordered according
to actual dependency, but that is beyond the scope of the work here.
Currently, for example, if after specifying a computation which sets
up a mutable array, only one element is read, then all the preceeding
imperative actions will be performed, not merely those required to
determine the particular element value.

which performs a case analysis, rather than constructing a
let binding. It should be easy to obtain the necessary in-
formation from existing strictness analysers.

6 Acknowledgements

I would like to thank Andy Gill, David King, Will Partain,
Simon Peyton Jones and Phil Wadler for the discussions
we have had about this work. Simon in particular provided
many incisive observations which improved both the content
and presentation immensely. The approach to graph algo-

rithms briefly described here 1s the result of joint research
with David King.

References

[Hug89] J.Hughes, Why Functional Programming Matters,
The Computer Journal, Vol 32, No. 2, CUP, April
1989.

[Mog89] E.Moggi, Computational Lambda Calculus and
Monads, proc. IEEE. Logic in Computer Science,
Asilomar, California, 1989.

[ORH93] M.Odersky, D.Rabin and P.Hudak, Call by Name,

Assignment, and the Lambda Calculus, proc.
ACM Principles of Programming Languages 93,
Charlston, N.Carolina, 1993.

[Ode93]

[PL91]

[PW93]

[Sha81]

[SRI91]

[TJ92]

[Wad92]

M.Odersky, Making Gensym Safe for Functional
Programming, Dept. of Computer Science, Yale
Univ, unpublished.

S.Peyton Jones and J.Launchbury, Unbozed Val-
ues as First Class Citizens, proc. ACM Functional
Programming Languages and Computer Architec-

ture, Boston, LNCS 523, S-V, 1991.

S.Peyton Jones and P.Wadler, Imperative Func-
tional Programming, proc. ACM Principles
of Programming Languages 93, Charlston,

N.Carolina, 1993.

Sharir, A Strong Connectivity Algorithm & its Ap-
plication wn Data Flow Analysis, in Computers
and Mathematics with Applications 7:1, pp. 67-
72, 1981.

V.Swarup, U.Reddy and E.Ireland, Assignments
for Applicative Languages, proc. FPCA 91, LNCS
523, London, 1991.

J-P.Talpin and P.Jouvelot, Polymorphic type, re-
gion and effect inference, Jounal of Functional
Programming, Vol 2, Part 3, CUP, July 1992.

P.Wadler, Comprehending Monads, MSCS, vol 2,
pp 461-493, CUP, 1992.

https://www.researchgate.net/publication/2248360

