
Lazy Imperative ProgrammingJohn LaunchburyComputing Science DepartmentGlasgow Universityjl@dcs.glasgow.ac.ukAbstractIn this paper we argue for the importance of lazy state, thatis, sequences of imperative (destructive) actions in whichthe actions are delayed until their results are required. Thisenables state-based computations to take advantage of thecontrol power of lazy evaluation. We provide some examplesof its use, and describe an implementation within GlasgowHaskell.1 IntroductionThere has long been a tension between functional program-ming languages and their more traditional imperative coun-terparts. On the one hand, functional languages are com-monly more expressive and easier to reason about thanimperative languages, but on the other hand, certain al-gorithms and interactions seem to rely fundamentally onstate-based computation. It is clearly worth attempting tocombine the strengths of each.Some languages like Scheme and ML have incorporated im-perative actions as side e�ects. This approach only makessense in a call-by-value language where the order of eval-uation is statically de�ned. In lazy functional languageslike Haskell or Miranda, evaluation order is dynamically de-termined, so can be immensely di�cult to predict. If suchlanguages obtained imperative actions as side-e�ects of eval-uation then serious reasoning di�culties would result. De-termining which side e�ects are to be performed, and worse,in which order, would rely on determining the exact orderof evaluation|the very thing that laziness tends to hide!Consequently lazy evaluation and side e�ects do not mix.There is a way forward however. The recent work of Moggi[Mog89] showed how monads could be used to structuredenotational semantics, including the handling of state inimperative languages. Wadler recognised that the sameprinciples apply for functional programs and, in particu-lar, showed how the state monad could be used to incorpo-rate imperative operations in a purely functional language

[Wad92]. From this work it became clear that lazy eval-uation and imperative actions could coexist quite happily,with each being able to pass values to the other.The Glasgow Haskell compiler incorporates extensions tothe lazy functional language Haskell. These extensions im-plement imperative actions [PW93]. However, the imple-mentation has an important shortcoming: all imperativeactions are performed before any results are returned. Thisparallels strict evaluation where all the arguments to a func-tion are evaluated before a result is given, even if the valuesof the arguments are not required. In non-strict languages(as implemented by lazy evaluation, for example) functionsmay return results without requiring the successful evalua-tion of arguments whose values are not required.In this paper we see how to retain the philosophy of non-strict computation, even in the presence of imperative ac-tions. To see the relevance of this, it is worth distinguish-ing between two distinct classes of state-based computation.Sometimes it is necessary to manipulate the global worldstate, such as when accessing �les or communicating withthe outside world, whether as an interactive program or bycommunicating with other programs. These are externallystate-based computations. Other times however, computa-tions require purely local state. This may be either for easeof programming, passing a name-supply around for exam-ple, or because a given algorithm relies on constant-timeupdate to achieve a given asymptotic complexity. In bothcases the state is purely internal to the computation, and isutterly invisible to the outside world.As the state from an internally state-based computationmay be discarded at the end of the computation, it makessense to ask whether all the imperative actions should al-ways be performed: any that do not a�ect the �nal valuecould be discarded freely. This may be generalised by mak-ing the state thread entirely lazy. Hughes argues that thetrue power of laziness is to decouple control from calculation[Hug89], and we show the same arguments apply to inter-nally state-based computations. We provide some examplesof this, and give an implementation of lazy-state in GlasgowHaskell.

The contribution of this paper, therefore, is to show that,1. lazy state provides a much better �t with lazy eval-uation than does strict state; in particular, the usualexpressiveness associated with lazy evaluation also ap-plies to internally state-based computations;2. lazy state may be implemented to provide constant-time access and update: the only penalty comparedwith strict state is in the creation of extra unevalu-ated closures|exactly the usual penalty paid by mov-ing from strict to lazy function application.As this paper builds directly on the work by Peyton Jonesand Wadler [PW93], it makes sense to review that �rst.2 Imperative HaskellImperative features were introduced to Glasgow Haskell forexpressing input and output, so the type constructor forstate-based computations is called IO. A state-based com-putation that produces a purely functional value of type atherefore has type IO a. A value of type IO a is not a side-e�ecting computation. Rather it is a recipe for performingcertain actions and returning an appropriate result. In fact,elements of the IO type are all functions, awaiting an ar-gument representing the world state. When applied to aworld state, evaluation of the function produces a resultpaired with another world state.By making IO a an abstract data type with limited built inoperations, it is possible to guarantee that all references tothe state are single threaded. Then no state argument everneeds to be passed explicitly: the real external world maybe used instead and all updates may be performed in-place.The main two operations provided on the IO type are thefamiliar monadic combining forms.returnIO :: a -> IO athenIO :: IO a -> (a->IO b) -> IO bThe former packages up its value into a computation whichdoes nothing except return the value. The latter is a formof function application. It performs the �rst computation,yielding a value of type a. This result is passed to thefunction argument which, on receiving a value of type a,returns a computation designed to produce a value of typeb. No value is returned until both arguments to thenIO havebeen performed.Other IO primitives may be built using the ccall constructwhich allows calls to any C function. For example,

ccall putchar cis a call to the C function which outputs a character on thestandard output. No particular value is returned, so its typeis IO (). On the other hand,ccall getcharhas type IO Char: it is a computation which returns a char-acter value.Finally, the meaning of a Haskell program is given by ade�nition of mainIO, an identi�er of type IO (). To executea program, mainIO is applied to the external world state,returning an updated world state as a result.3 Delayed Side E�ectsAn important aspect of the IO monad is that all the im-perative actions are forced. Consequently, IO expressionshave a very poor match with lazy evaluation. Consider thefollowing expression1:fooIO `thenIO` \a->bazIO `thenIO` \b->returnIO (a||b)Whenever this expression is performed (applied to the worldstate) both fooIO and bazIO are performed, returning(boolean) values bound to a and b respectively. Only thenare these values or-ed together to produce the �nal result.Contrast this with the behaviour of the purely functionalexpression foo||baz. In a non-strict language, foo wouldbe evaluated and only if it returns False would baz be eval-uated.However, as the IO type is provided for external state com-putations, this behaviour is quite reasonable. On the mainline of IO actions, every imperative action has to be per-formed before the program terminates: the meaning of aprogram is de�ned to be the total e�ect it has on the world.This means that whenever an IO operation is speci�ed, itmight as well be performed immediately. There is no ben-e�t in delaying it, since it has to be performed before theprogram terminates.On the other hand, the example does provide an argumentthat expressions which use state purely internally should doso in a lazy way. That is, if we had a way of encapsulatingthe state in the example above, then bazIO should onlybe performed if a is False. The result of an encapsulated1The lambda bindings \a-> and \b-> are in scope to the end of theexpression.

expression should be de�ned by the purely functional valuesit returns, and not by any imperative actions it performs.If a function uses state to produce a result, and hides thatstate from everything else (including other invocations ofthe same function), then there is no reason to perform all ofthe state operations. Rather, only those which are requiredby data dependency should be performed.There is one important caveat. The order in which imper-ative actions are performed is important. We must ensure,therefore, that the order in which they are performed re-mains unchanged; that is, if the value from any action isrequired, all earlier actions must �rst be performed.3.1 Passing State AroundGiven that the IO type is strict in its state actions, we willuse a di�erent name for lazy state operations. The onlyrestriction on when such operations are performed is thatthey must be performed in sequence, so we name the typeconstructor for such actions Seq.Seq is built upon the standard monad of state transformers.A state transformer is a function which, when given a states, produces a pair of results: a value and a new state.type ST s a = s -> (a,s)We provide the standard unit return and the sequence com-binator called bind.return :: a -> ST s abind :: ST s a -> (a->ST s b) -> ST s breturn a s = (a,s)bind m k s = k a t where (a,t) = m sBy single-threading the state, the state monad ensures thatstate operations are sequenced. It does not demand thatall state operations are performed. Consider the followingexample.exampleA :: ST s BoolexampleA s = someStateOps `bind` \v ->return TrueBecause the �nal value True does not depend on the state,the computations in someStateOps are not performed. In-deed, not even the initial state is demanded.If, however, exampleA is sequenced together with othercode, exampleB say, which does require the state in orderto de�ne the �nal value, then all the state operations in

someStateOps will be performed, and in the order origi-nally speci�ed, before any state operations in exampleB areperformed.3.2 Discarding StateWe de�ne lazy sequences to be state transformers where thestate is an abstract data type representing the encapsulatedstate.type Seq a = ST World aWe achieve this encapsulation with the function newSeq.newSeq :: Seq a -> anewSeq takes a sequence expression, opens up a new, emptyimperative context, sequences the imperative computation,and extracts the �nal value discarding the �nal state.The evaluation of such a computation mirrors usual lazyevaluation: only those computations and state actions thatoccur up to the point where the result is su�ciently de�ned(according to the external demand) are performed; the re-mainder are suspended. If more of the result is demandedthen more computations or imperative actions may be per-formed until the value is su�ciently de�ned to satisfy itsconsumers. As usual, only computations required by data-dependency are performed (recall that imperative actionshave the extra data-dependency of a single-threaded state).When, eventually, all references to the �nal value are dis-carded, all the remaining actions become garbage, and arenever performed.For the present, we will continue to take it on faith that lazyimperative actions can be performed in a truly imperativelymanner (by destructive update), and will turn to examinesome examples, showing the sort of behaviour we want toachieve.3.3 Monad SyntaxFor the rest of the paper we use syntactic sugar to refer tomonad operations. We extend Haskell expressions with anexpression of the form {Q} which is expanded as follows2:Q ::= E | E;Q | x<-E;Q{E} = E{E;Q} = E `bind` _->{Q}{x<-E;Q} = E `bind` \x->{Q}2Haskell actually uses these symbols as layout markers. We willnot do so here|every use of {, }, and ; will be for monad syntax.

scanLeft :: (a->b->b) -> (b,[a]) -> ([b],b)scanLeft f (init,xs) = newSeq {v <- newVar init;ys <- scan xswhere scan [] = return []scan (x:xs) = {val <- readVar v;writeVar v (f x val);rest <- scan xs;return (val:rest)};final <- readVar v;return (ys,final)}Figure 1: Imperative Scan LeftTo see this in action, consider the following example:{x <- op1;(y,z) <- op2 x;op3 z x;return y}This is translated into the following expression:op1 `bind` \x->op2 x `bind` \(y,z)->op3 z x `bind` _->return yThat is, the semicolon is translated into the monad sequenceoperation `bind`, and if an explicit pattern is given, it isconverted into the pattern on the trailing lambda expres-sion, so causing those names to be in scope across the re-mainder of the expression. If no pattern is written, then anytrailing lambda is given the wildcard pattern which matcheseverything but binds nothing.3.4 Scan LeftThe �rst example exhibits the use of an updatable variable.This is an example that is commonly written in a purelyfunctional style, so the value of this example is not aboutwhether to use a state-based computation, but rather todemonstrate that the use of state does not restrict whichresults may be returned.For now, we will assume we have the following operationson variables, and treat Var a simply as an abstract datatype of variables of type a.newVar :: a -> Seq (Var a)readVar :: Var a -> Seq awriteVar :: Var a -> a -> Seq ()

Given an initial value x say, newVar x is a sequence op-eration which when performed, allocates a variable in thestate having initial value x, and returns a reference to thevariable. Similarly, if v is a variable (a state reference),then when readVar v is performed (applied to the state)it returns the value of v in the state. As may be expected,writeVar updates the value of the variable.Using these we will implement a function scanLeft. Givena function, a starting value, and a list, scanLeft appliesthe function repeatedly across the list, working from left toright, and returns a list of partial results, paired with the�nal answer. For example,scanLeft (+) (0, [1,2,3,4]) = ([0,1,3,6], 10)It is important that the result of scanLeft is generatedby demand. If only an initial portion of the result list isrequired, then that is all that should be computed. In par-ticular, even if only some front portion of the input list isde�ned (and the rest unde�ned), an equivalent front portionof the result list should still be de�ned. For example,scanLeft (+) (0, 1:(2:(3:?)))= (0:(1:(3:?)), ?)There are two parts to the code given in Figure 1. The�rst interfaces the main loop with the outside (functional)world. It creates a new imperative context, and within thisgenerates a variable v to hold the running total. The mainloop of the function is called. This returns the list of partialresults and, after reading the �nal value of v, the functionreturns a pair consisting of the list ys and the �nal resultfinal.The main loop updates the value of the variable v for eachelement of the list, returning a list made up of the value ofv at the start of the loop followed by the list returned bythe rest of the loop.

In a strict imperative framework such as the IO monad (andmost imperative languages), no value could be returned un-til the whole of the list was traversed. Using lazy sequences,however, this is not the case. If only the head of the list isrequired then very little of the computation is performed:the variable is allocated and initialised, it is read, and thelist returned with that value in the head. If even less is re-quired, merely whether the �nal list is empty for example,then the variable is not even allocated as only xs needs tobe examined in order to give the structure of ys.As we said above, this example is usually written in a purelyfunctional style. It is important, however, that the samebehaviour may be obtained even when state is used: re-expressing the algorithm within the state monad need notchange its semantics.The next example is quite di�erent in that its use of stateis crucial to obtaining linear e�ciency.3.5 Depth First SearchHow can we implement depth �rst search of a graph e�-ciently (that is, 0 (V + E) where V is the number of ver-tices, and E the number of edges), while still retaining theusual expressiveness and
exibility a�orded by lazy func-tional languages? This problem was the motivating appli-cation for this work on lazy imperative actions, and we de-scribe it in some detail here.3.5.1 Decomposing Graph AlgorithmsOne major shortcoming of graph algorithms which rely ondepth-�rst search (DFS) is that they are presented dynam-ically, within the process of performing the search. Thismeans that reasoning about the results of the search dependon tracing the computation dynamically. Furthermore, asthe code for a particular algorithm is mixed in with thetraversal code DFS code is largely unreusable.The same may be said for many implementations of treealgorithms, but in lazy functional languages it is commonto express many tree traversal problems �rst by a
atteningof the tree into a list, and then by traversing the list. The
attening is performed using one of a variety of standardfunctions (preorder, postorder etc.), and the list processinglikewise is often de�ned in terms of standard components.Complex algorithms can often be expressed as the composi-tion of well-understood simpler components. The intermedi-ate list provides a channel of communication between thesestandard components. This technique is particularly viableif the list may be consumed as it is produced, otherwise alarge intermediate structure is created. The \co-routining"behaviour of lazy evaluation is able to do this.

The same idea is applicable to graphs. Instead of expressingan algorithm as part of a depth-�rst traversal, it is possibleto imagine a decomposition similar to that used for manytree algorithms. First, the graph is traversed to produce adepth-�rst spanning forest (not all the nodes may be reach-able from the start node), and secondly the forest is tra-versed to compute the required information. Again, this isonly practicable if the forest is produced on demand, as it isconsumed.A forest is a list of general trees, each tree consisting of anode with a value, together with a forest of sub-trees.type Forest a = [Tree a]data Tree a = Node a (Forest a)3.5.2 Representing GraphsThere are a number of ways to represent (directed) graphs.Because we want to be explicit about sharing, we repre-sent graphs by adjacency lists. We use a standard Haskell(monolithic) array indexed by vertices, each element beinga list of the vertices reachable in one step from that vertex.One way to build such a graph is from an association listof vertices representing the (directed) edges, together witha pair of verticies indicating the range of valid vertices3.type Graph = Array Vertex [Vertex]type Vertex = Intout :: Graph -> Vertex -> [Vertex]out g v = g ! vbuildG :: (Vertex,Vertex) ->[Assoc Vertex Vertex] -> GraphbuildG is es= accumArray (flip (:)) [] is esverticesG g = [low..high]where (low,high) = bounds gThis representation takes a linear amount of space with re-spect to the size of the graph i.e. the sum of the number ofvertices and number of edges. Access to each list of edgestakes constant time.Note that as the graph is represented as a purely functionalvalue, it will not be subject to imperative actions and, inparticular, will not be altered in any way by the depth �rstsearch. We may pass the same graph around and freelyperform many separate searches on it if we wish.3Vertex does not have to be Int as above, but only needs to be inthe Haskell index class Ix.

dfs :: Graph -> [Vertex] -> [Tree Vertex]dfs g vs = newSeq {marks <- newArr (bounds g) False;search vswhere search [] = return []search (v:vs) = {visited <- readArr marks v;if visited thensearch vselse{writeArr marks v True;as <- search (out g v);bs <- search vs;return ((Node v as) : bs)}}} Figure 2: Lazy Depth First Search3.5.3 Depth First SearchGiven the standard von Neumann model, it seems impos-sible to produce a linear time depth �rst search withoutusing some element of update-in-place. However, there isonly one place in which this is required, namely in settinga mark whenever a particular node has been visited. Of-ten this mark variable is de�ned to be an extra �eld in theoriginal graph, but there are a couple of related reasonswhy this is undesirable. First, the process of performing asearch has a side e�ect on the graph, and this may need tobe explicitly removed before another search can commence.Secondly, the component of the algorithmwhich is necessar-ily imperative is not identi�ed as such, but rather is mixedup with the rest of the data.An alternative is to have an array of marks, one for eachvertex. At the start of a search we will allocate a new ar-ray initialised everywhere to False, and make it availablefor reference and update throughout the search. Once thesearch is completed the array may be discarded.The operations on updatable arrays correspond to those onvariables:newArr :: (Ix ix) =>(ix,ix) -> ele -> Seq (ArrRef ix ele)readArr :: (Ix ix) =>ArrRef ix ele -> ix -> Seq elewriteArr :: (Ix ix) =>ArrRef ix ele -> ix -> ele -> Seq ()The only way a value may be obtained from an array ref-erence is by using the sequence operations. Again we stress

that sequence operations are not necessarily strict: the onlyimperative actions that are performed are those requiredby data dependency (including retaining the same relativelinear order).The de�nition of depth �rst search is given in Figure 2. Thefunction dfs is given a list of vertices to search (this is usefulfor a number of algorithms), and begins with the �rst. Oncethe �rst has been searched, following all the edges from thevertex, and all the descendents of these, etc., the rest of thevertices are explored.Each (recursive) call of search returns a forest. The callsearch (out g v) which is given the edges leading from vproduces a forest which is built into a tree with v at theroot|all these nodes are reachable from v. The secondrecursive call (search vs) produces a forest of those verticesnot reachable from v and not previously visited. The treerooted at v is added to the front of this forest giving thecomplete depth-�rst forest.3.5.4 Exploring the ForestWewill give two examples of the use of dfs. The �rst detectsthe presence of cycles in a graph, and the second identi�esstrongly-connected components.Detecting CyclesTraditionally, in order to �nd whether a graph contains acycle, a depth �rst traversal is performed looking for backedges (edges up to a predecessor in the particular depth �rsttree). As soon as a back edge is found the search is stopped.The same e�ect is obtained using the function dfs. We con-struct a depth-�rst forest from the graph, and then traversethis forest looking for back edges (we need to refer to the

original graph to obtain these edges). We can express foresttraversal by mapping a tree-traversal down the list of trees.Thus we de�ne a tree traversal function, treeCycle say,which takes a graph and a sub-tree of the graph. It traversesthe tree and returns True as soon as it spots a back edgein the original graph, otherwise it continues to traverse therest of the tree, and eventually returns False.Assuming this, the cycle-detection program is simply,cycle g = or (map (treeCycle g)(dfs g (verticesG)))As soon as a tree is found for which the graph has a backedge, the or function returns True, discarding the rest ofthe forest which is therefore never produced. Furthermore,assuming the data dependency of the tree traversal matchesthat of the DFS generation (left branches �rst) then onlythe portion of each DFS tree that is actually traversed willbe produced.Thus we have taken full advantage of lazy-evaluation's abil-ity to provide dynamic control between separate functions:without lazy state it would not have been possible to de-couple the traversal of the graph with its mark bits, fromthe detection of back edges, while still retaining the abilityto halt the DFS as soon as a back edge is found.Strongly-Connected ComponentsTo demonstrate the
exibility of dfs we provide a secondexample of its use, this time the strongly connected com-ponents algorithm due to Kosaraju in 1978 (unpublished)[Sha81]. This example does not take particular advantageof laziness, but does show a reuse the DFS code.For the purposes of this algorithm, we originally specify agraph as a pair of bounds for the vertices (low and high),together with a list of edges. The algorithm performs adepth �rst search of the graph, generating a forest of ver-tices. This is
attened to a list (using postorder and thenreversing the list) which is used as the seed order for a sec-ond depth �rst search, this time of the reversed graph. Eachtree within the resulting depth �rst forest corresponds to astrongly connected component. We squash each into a listof vertices. The complete implementation is given below4.scc :: (Vertex,Vertex) ->[Assoc Vertex Vertex] -> [[Vertex]]scc (low,high) edges= (map postorder . dfs g' . reverse . concat4The implementation of postorder is not actually linear because ofrepeated appends, but it may be converted by standard compilationtechniques. We have not done so here as it is a little less clear thanthe naive version, and not relevant to our main interest.

. map postorder . dfs g) [low..high]whereg = buildG (low,high) edgesg' = buildG (low,high) (map switch edges)switch (v:=w) = (w:=v)postorder (Node a ts)= concat (map postorder ts) ++ [a]We have seen two examples of using dfs. Many other DFSbased algorithms can be implemented with similar ease.4 Implementing Lazy StateCan lazy state be implemented safely and e�ciently? Bysafely we mean guaranteeing that the relative ordering ofimperative actions remains unchanged, and by e�cientlywe mean using true destructive update to obtain constanttime update and access.It turns out that not only is the answer yes, but that the im-plementation is surprisingly easy and can be done at sourcelevel within Glasgow Haskell. Again we start with a reviewof the current implementation of IO.4.1 Implementation of IOSo far we have viewed the IO type constructor abstractly.Now we see its de�nition5.type IO a = World# -> IORes adata IORes a = MkIORes a World#Elements of type IO a are functions which take a worldtoken (of type World#) and return a pair of values, the �rstof type a, the second a new world token.Here World# is an unboxed data type [PL91]. The # su�x isa lexical convention only with no semantic content, but un-boxed types are very di�erent beasts from normal types. Inparticular, unboxed types have no bottom element, so can-not be unde�ned. Consequently, any computation involvingelements of unboxed values has to produce the value explic-itly, before the next stage of the computation may proceed.The bene�t of using these types is that they expose to thecompiler issues both of data representation and of evalua-tion order, without leaving the purely functional framework.The fact that the world is unboxed forces thenIO to be strictin the world token:5The GlasgowHaskell compiler is currently still under development,so actual names may be subject to changes.

returnIO x w# = MkIORes x w#thenIO m k w# = case (m w#) ofMkIORes a v# -> k a v#which in turn forces all the imperative actions speci�ed bym to be performed before k is evaluated.The only truly primitive IO operation is ccall which, onceapplied to the world token, is implemented by the relevantC call.There are, of course, some common C accesses which areprovided within the standard IO prelude. These includeoperations for allocating, reading from, and writing to, ar-rays. We use these in Section 4.4.4.2 Boxing the WorldSo far we have left the nature of the world token type World#unspeci�ed. In fact, the only part of the compiler whichknows the de�nition on World# is the code generator. Ev-erything else views it as an abstract data type (albeit un-boxed), representing the total state of the world. Only thecode generator takes advantage of the fact that the real ex-ternal world may be used, and so instantiates World# to theone point type.For sequences, we want a little more information to be con-tained in the world token. For a start it must be boxed:in the IO monad, the world token is passed around as anunboxed value, and the typechecker ensures that such un-boxed arguments are only ever used in strict computations,thus forcing imperative actions in the IO monad to occurimmediately. Boxing the world token means that ratherthan passing around a token (in e�ect, granting permissionto perform an imperative action), we pass pointers to sus-pended computations which, when evaluated, yield such atoken. It is this that allows us to de�ne the lazy sequencerbind.However, we want more than this. The philosophy behindsequences is that they run in their own local state, inde-pendent of any other computations, whether state-basedor purely functional. We must ensure, therefore, that thesequence operations we provide may only be used in thisway. Cross references between supposedly independentstate threads must be banned. Otherwise the result of aprogram could depend on the order of evaluation|the verything we are trying to avoid.The best solution to this is almost certainly a stronger typesystem, perhaps like the e�ects system [TJ92]. This woulddetermine that no supposedly pure calculation made refer-ence to anything other than its own internal state.However, in the absence of such an extension, the solution

we adopt here is for each state thread to have its own uniqueidenti�er, and for all operations on state-references to checkthat the reference is being used within the correct world.data World = MkWorld WorldToken World#type WorldToken = IntWhenever an new imperative thread is created, a state token(of type World) will be created, having a unique world tokennumber.4.3 Independent ThreadsImplementing an independent thread comes down to imple-menting newSeq. This could be done by de�ning it as aprimitive within the compiler, and arguably that is the cor-rect place. Nonetheless, we can obtain some useful insightby de�ning it at the \system programmer level" Haskell.The IO monad provides a (potentially dangerous) primitivevalue world# representing the world. We will use this asthe world token for the thread. However, we also need togenerate a unique identi�er. The problem is well known: itis just gensym.Again, we could implement gensym using slightly dirtytricks with the dangerous performIO. Interestingly, how-ever, Odersky has recently shown that the lambda calculusmay be safely extended with a gensym operator [Ode93].The term �t :e introduces a new name t within e. The onlyoperation provided on names is equality. The resulting cal-culus is Church-Rosser.The concrete syntax Odersky proposes for �t :e isnew t -> e. As this provides exactly what we want, wewill adopt his syntax.newSeq :: Seq a -> anewSeq m = fst (new t -> m (MkWorld t world#))4.4 ArraysIn order to implement arrays we use the primitive operationssupplied in Glasgow Haskell. The detail of this does notneed to be understood merely to appreciate what is goingon. The implementation is given in Figure 3.To perform any array operation, we pattern match againstthe structure of the state token. As usual the forces thecomputations de�ning that value to be performed. Herethis has the e�ect of forcing all previous imperative actionsto be performed, as the token is only available after theappropriate state changes have occurred.

data ArrRef ix ele = MkArrRef WorldToken (ix,ix) (MutArr# ele)newArr :: (Ix ix) => (ix,ix) -> ele -> Seq (ArrRef ix ele)readArr :: (Ix ix) => ArrRef ix ele -> ix -> Seq elewriteArr :: (Ix ix) => ArrRef ix ele -> ix -> ele -> Seq ()newArr ixs@(ix_start, ix_end) init (MkWorld w v#)= case ((index ixs ix_end) + 1) ofMkInt n# -> case (newArr# n# init) v# ofMkSeqRMutArr# arr# new# -> (MkArrRef w ixs arr#, MkWorld w new#)readArr (MkArrRef t ixs arr#) n (MkWorld w v#)= worldCheck t w (case index ixs n ofMkInt n# -> case (rdArr# n# arr#) v# ofMkSeqR r new# -> (r, MkWorld w new#))writeArr (MkArrRef t ixs arr#) n ele (MkWorld w v#)= worldCheck t w (case index ixs n ofMkInt n# -> case (wrArr# n# arr# ele) v# ofMkSeqR r new# -> ((), MkWorld w new#))worldCheck :: WorldToken -> WorldToken -> a -> aworldCheck t w val | t==w = val| True = error "Illegal State Access"Figure 3: Array Operationstype Var a = ArrRef Int anewVar :: a -> Seq (Var a)readVar :: Var a -> Seq awriteVar :: Var a -> a -> Seq ()newVar init = newArr (0,0) initreadVar v = readArr v 0writeVar v val = writeArr v 0 valFigure 4: Variable Operations

In the case of newArray, the size of the array is computedusing the standard Ix class method index which maps ar-bitrary Ix types onto the integers. We then call the prim-itive IO operation newArr# providing it with the appropri-ate world token. This returns an unboxed array togetherwith a new world token. The �rst is packaged up withthe MkArrRef constructor, and the second with the currentworld identi�er using MkWorld.Notice that the current world identi�er is also packaged withthe array, so that each array is tagged with an identi�errepresenting the world to which it belongs.When an array is read, again the state token is forced. Thenthe world token number built into the array reference ischecked to con�rm that the array was created within thesame world in which it is now being accessed. It is this check(and the corresponding check in writeArr) which ensuresthat references cannot pass between apparently independentthreads. If ever any other primitive operations on Seq areprovided then a similar check should be included.If the check is successful, then again primitive IO opera-tions are used to read the array, and the result packagedappropriately. Writing to the array is comparable.Following ML, we implement variables as arrays with a sin-gle element. The detail is given in Figure 4.4.5 Converting IO to SeqThere is a fair degree of mess within the de�nitions of thearray primitives. Much of this can often be encapsulated inthe following generic conversion function.cnvIOToSeq :: IO a -> Seq acnvIOToSeq m (MkWorld w v#)= case (m v#) ofMkIORes r new# -> (r, MkWorld w new#)A partial application of cnvIOToSeq to an IO operation myields a function expecting a value of type World. Whenthe results of the operation are required, the World valueis forced (the pattern matching demands to view the outerconstructor). As before, this may provoke a cascade of ear-lier computations to be performed, many having imperativee�ects. When at last the World token is visible, all previousimperative e�ects will have been performed. Now the IOaction m is applied to the world token, its imperative e�ectperformed, and an IO result is returned. The componentsof this are extracted, and the new world token is boxed.

5 ConclusionThis paper may be viewed as providing another step in im-proving the interface between the functional and impera-tive worlds, as here we allow data dependency to deter-mine which imperative actions are performed and which aredelayed6.This has two signi�cant advantages: the �rst is seman-tic and the second practical. The semantic advantage isa purely functional program may be re-expressed in termsof the state monad without changing its semantics. Thepractical advantage is that the power of lazy evaluation fordecoupling calculation and control may be used even acrossfunctions which used internal state.This paper builds directly on top of the IO work at Glas-gow as reported by Peyton Jones and Wadler [PW93], andsummarised in Section 2. There are also strong similaritieswith the �var work of Odersky, Rabin and Hudak [ORH93],which itself was in
uenced by Swarup, Reddy and Ireland[SRI91]. Like Peyton Jones and Wadler, �var provides onlyfor strict imperative actions: no purely functional result isreturned until the structure and content of the state is re-solved.One surprising aspect of this work is that it may all beimplemented at source level within Glasgow Haskell (albeitat a level typically reserved for systems programming). Inparticular, no changes to the compiler were required. Thisprovides considerable evidence for the power and
exibilityof the built in IO monad and unboxed values.A number of obvious developments present themselves. Al-ready the Var type allows all the
exibility of pointers: avalue of type Var (Var Int) is a pointer to an integer vari-able, so it makes sense to augment the variables and arrayswith unique tags to allow for pointer equality to be de�ned.Thus the instance of == on Var would simply compare thetags of the variables and no more.Sometimes, data-dependency requires that all the impera-tive actions within a state thread be performed before anyresult is returned. In this case it makes sense to performthe operations strictly rather than lazily. This correspondsto replacing lazy function application with strict applica-tion when the function is provably strict. In this case it isachieved by replacing the `bind` combinator with a version6However, it is important to recall that when imperative actionsare forced, they occur in the same order in which they were speci�ed.There may be room for the clever work found in imperative languageimplementations whereby imperative actions are reordered accordingto actual dependency, but that is beyond the scope of the work here.Currently, for example, if after specifying a computation which setsup a mutable array, only one element is read, then all the preceedingimperative actions will be performed, not merely those required todetermine the particular element value.

which performs a case analysis, rather than constructing alet binding. It should be easy to obtain the necessary in-formation from existing strictness analysers.6 AcknowledgementsI would like to thank Andy Gill, David King, Will Partain,Simon Peyton Jones and Phil Wadler for the discussionswe have had about this work. Simon in particular providedmany incisive observations which improved both the contentand presentation immensely. The approach to graph algo-rithms brie
y described here is the result of joint researchwith David King.References[Hug89] J.Hughes, Why Functional Programming Matters,The Computer Journal, Vol 32, No. 2, CUP, April1989.[Mog89] E.Moggi, Computational Lambda Calculus andMonads, proc. IEEE. Logic in Computer Science,Asilomar, California, 1989.[ORH93] M.Odersky, D.Rabin and P.Hudak, Call by Name,Assignment, and the Lambda Calculus, proc.ACM Principles of Programming Languages 93,Charlston, N.Carolina, 1993.

[Ode93] M.Odersky, Making Gensym Safe for FunctionalProgramming, Dept. of Computer Science, YaleUniv, unpublished.[PL91] S.Peyton Jones and J.Launchbury, Unboxed Val-ues as First Class Citizens, proc. ACM FunctionalProgrammingLanguages and Computer Architec-ture, Boston, LNCS 523, S-V, 1991.[PW93] S.Peyton Jones and P.Wadler, Imperative Func-tional Programming, proc. ACM Principlesof Programming Languages 93, Charlston,N.Carolina, 1993.[Sha81] Sharir, A Strong Connectivity Algorithm & its Ap-plication in Data Flow Analysis, in Computersand Mathematics with Applications 7:1, pp. 67-72, 1981.[SRI91] V.Swarup, U.Reddy and E.Ireland, Assignmentsfor Applicative Languages, proc. FPCA 91, LNCS523, London, 1991.[TJ92] J-P.Talpin and P.Jouvelot, Polymorphic type, re-gion and e�ect inference, Jounal of FunctionalProgramming, Vol 2, Part 3, CUP, July 1992.[Wad92] P.Wadler, Comprehending Monads, MSCS, vol 2,pp 461-493, CUP, 1992.

View publication stats

https://www.researchgate.net/publication/2248360

