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1 Introduction

The concepts in functional programming are different from imperative ones. In-
stead of updating the running state of a program one has trees of expressions
constructed by applying and composing functions. These trees are evaluated
by mapping values to other values and proceeding until the whole tree is eval-
uated. We can further differentiate between pure languages, such as Haskell,
and impure languages (like Scala or OCaml) in functional programming. Pure
languages treat functions as deterministic mathematical functions - meaning a
function will always return the same result when given the same input. This
means that a function is not allowed to interact with the outside world in any
other way than by returning a value when being called. Any other observable
effect caused by a function is called a side-effect and makes the function impure.
Examples of side-effects are modifying a global state or input and output op-
erations. Pure programming languages convince through their easy testability,
formal verification and lazy evaluation [Wad93} |con21].

Of course, it may be useful to integrate the advantages of impurity in pure
languages. Consider as a simple example the problem of counting how often a
function has been called. In imperative programming we could have a global
counter variable that can be incremented by the function itself every time it is
called. That is not possible in pure programming. What we can do is pass the
counter as an additional argument to the function and have the function return
the updated counter in addition to its original return values. We can also deal
with other desirable side-effects in a similar way, i.e., by extending functions to
more arguments and return values. However this is tedious and often results in
convoluted code. Solving these kinds of problems is one of the main reasons for
the introduction of monads into functional programming.

Monads are a theoretical concept that can be used to simulate such impure
behaviour in pure programming languages such as Haskell. With monads pu-
rity of the language is never violated but the programmer is able to deal with
side-effects in a very similar way as in imperative programming. In this way
monads can be applied to several problems while still being a very basic and
simple concept. They are the essence of many different constructions and of-
ten we do not even realize that we are using this concept. Milewski in [Mill8|



p. 290] compares monads to duct tape in real life - it can have many different
applications but in each cases it simply glues some things together. Monads in
our case can be seen as a way to glue code together. Below are a few examples
which can all be solved with monads [Mog91].

e exceptions e non-determinism
e interactive input and output e side-effects
e partiality e continuations

The remainder of this report is structured as follows: We first give a brief
historical overview of the introduction of monads into functional programming.
Then in Section 3| we demonstrate the usefulness of monads using a simple
example of functions with side-effects. In Section 4] the Monad class of Haskell
will be discussed in more detail and using an extended example we show how
custom types can be made instances of this class. Finally in Section [5| we give
an overview of the categorical interpretation of monads and how it is connected
to the programming version.

2 Some History

The term monad was first introduced by Saunders Mac Lane whereas its concept
has already been part of Roger Godement’s work. Heinrich Kleisli then formu-
lated monads by using a bind function, as described in the next section below
[Kle65]. At this point monads were not yet put into relation with functional
programming. In the 1970s and 1980s category theory and monads started to
become an inspiration for computer science. For example an effective I/O based
on monadic types was designed in the programming language Opal [Wik22|. The
first one to realize the connection between monads and functional programming
was Moggi [Mog89; Mog91|. Nowadays, monads are important parts of func-
tional programming languages such as Haskell, Scheme, Perl, Python and many
more [Wik22|. One especially noteworthy development in Haskell that is due to
monads is the evolution of its I/O. The concept of monads resolved the initially
problematic lazy stream that was used up through v1.2 to combine I/O and
lazy evaluation in Haskell [PW93].

3 Monads in Computer Science

In order to define monads in computer science we will first look at a simple
example of functions where certain side-effects are desired and show how one
can deal with such behaviour in a pure language like Haskell. The example has
been adapted from [INF].

Consider two functions £ and g with type signature Float -> Float. Now
suppose we want to add a debugging opportunity. More specifically the func-



tion calls should also return a string which describes an (un-)expected be-
haviour within a function call. So the type of these functions should actually be
Float -> (Float, String). But this leads us to the problem that two func-
tions £ and g with such a signature cannot be directly composed anymore be-
cause the input type Float does not match the output type (Float, String).
In addition it would be desirable to concatenate the two debug strings of £ and
g into a single string when composing the function calls. For a concrete example
imagine we want to call £ after g on some input x. The result should be the
tuple consisting of £ applied to the Float returned by g x on the one hand, and
the debugging string of £ concatenated with the debugging string of g x on the
other hand. In Haskell this can be computed as follows:

f >=>g=\x -> let (gx, gs) = g x
(fgx, fs) = f gx in (fgx, gs++fs)

Such a composition is typically denoted by the infix operator >=> (fish operator)
and is called Kleisli composition. We will provide more background on Kleisli
categories in Section [5

The application of £ after g can also be achieved with a bind function denoted
by the infix operator >>=. It is called bind because it binds the Float value of
the (Float, String) pair obtained by g x to the argument of £.

(>>=) :: (Float, String) -> (Float -> (Float, String))
-> (Float, String)
(gx, gs) >>= f = let (fx, fs) = f gx in (fx, gs++fs)

With that we have the following equality:
f>=>g = \x > (gx) >=f

The standard implementation of monads in Haskell is based on the >>=
operator instead of >=>. One benefit is that it allows us to write composition
of several functions as a chain g x >>= f >>= ..., where we can easily append
more function applications on the right.

Considering the connection to category theory we should ask the question
whether there exists some kind of identity function such that

f >=>id =£f = id >=> £

for all functions £ of appropriate type signature. For historical reasons the name
return has been established for such a function in Haskell. In our example
return can be defined by

return :: Float -> (Float, String)
return x = (x, "")

It takes a number and transforms it into the pair consisting of the same number
and the empty string. Composing any function £ with it will leave the output
of £ unchanged and append or prepend the empty string, so the result will be
the same as f itself.



3.1 Defintion

By considering the example above we will define a monad in programming man-
ners.

Definition (Monad). A monad is defined as the triple (m, return, >>=)
where m is a monadic constructoﬂ denoting some side-effect or impure be-
haviour, return represents the identity function and >>= is used for monadic
composition. They have type signatures

return :: a —> ma
>>=::ma -> (a->mb) >mbd

and need to satisfy the following three laws:

return ¢ >>= f = fz -- left identity
m >>= return = m -- right identity
(m >>=f) >>= g = m>= (\z -> f z >>= g) —— associativity

Left identity states that first turning a plain value x into a monadic value
using the unit function and then feeding the result to some monadic function
f, is the same as applying f to x directly. Right identity states that feeding a
monadic value m to the unit function results in m again. Finally associativity
ensures that the order in which several nested binds are computed does not
change the result. On the left of the equation the monadic value m is first
passed to the function £ and the resulting value is then passed to g. On the
right the monadic value m is directly passed to the composition of £ and g which
can be expressed as the function (\x -> f x >>= g) as we already saw in the
example above.

3.2 Alternative Definitions

In the example above we had introduced the composition operator >=> in ad-
dition to >>= and showed that they can be used interchangeably. This holds in
general. So monads can just as well be defined as a triple (m, return, >=>)
where >>= has been replaced by >=>:

>=>> :: (a->mb) > (b ->mc) > (a->mc)

Then the three monad laws can be written down even more succinctly [Mill8|
pp. 292-295].

return >=> f = f -- left identity
f >=> return = f -- right identity
(f >=>g) >=>h = f >=> (g >=> h) -- associativity

Last but not least there is still a third option for defining monads. As we
will see in Section [5| a monad in category theory is a functor at its core. So we
can assume that a map function

IThink of a type constructor as a kind of container or context.



map :: (a ->b) > (ma ->mb)

exists, which transforms a function £ :: a -> binto a function over the monadic
types. Then instead of >>= or >=> we can use map together with the so-called
join function

join :: m (ma) ->m a

to define monads, since >>= can be expressed using the following equality [Mil18|
p. 295].

ma >>= f = join (map f ma)

4 Haskell

In this section we will give more details on the actual implementation of monads
in Haskell and give a few more programming examples.

In Haskell the functionality of monads is available via the Monad type class.
Type classes in Haskell can be seen as interfaces that define certain behaviours
of the types that instantiate them. The definitions of many type classes in the
standard Haskell libraries have been inspired by category theory. Monad and also
Functor are examples of such type classes. As of GHC 8.8, Monad is defined

class Applicative m => Monad m where

return :: a -> m a
(>>=) ::ma->(a->mb) —>mb
(>>) ::ma->mb->mb

m>mn=m>= \_->n

Here the operator (>>) is a specialized version of (>>=) and will not be discussed
in this report. Since 2014 Monad is an instance of Applicative which is in
turn an instance of Functor. This means that all monads are applicatives, all
applicatives are functors, and therefore all monads are also functors . An
overview of the standard Haskell types that are instances of Monad is given in
Table [1I

Monad Imperative Description
behaviour
Maybe Exception Used for computations that may not return a
(anonymous) result, i.e., partial functions.

Either Exception with | Can be used for partial functions where the
error description | location and cause of the failure should be
recorded, e.g. as a string.




10 Input/Output Used for all computations that perform I/O ac-
tions. See Subsection FIE}

[] Non-determinism | Used for non-deterministic computations. See
(List) Subsection

Reader Environment See |Mill18, pp. 307-308].
Writer | Logger/Debugger | See [Mill8, pp. 308-309].
Cont Continuations See [Mill8, pp. 311-313].

Stat Global state For computations that maintain some kind of
state. Here functions take the state as an addi-
tional argument and produce state-value pairs
as a result.

Table 1: Monads in Haskell [Wik21]

4.1 The do-Notation

Haskell provides the do notation as syntactic sugar for dealing with monadic
values and composition of monadic functions. When using the do notation
Haskell code almost looks like imperative code, but under the hood we still
have only pure functions and monads.

do notation Translation

do action action

do x <- y y >>= (\x -> do
more code more code)

do
let x =y (\x -> do
more code more code) y

Table 2: The do-notation in Haskell [INF]

4.2 Example 1: The List Monad

A non-deterministic function that can return several different results (or none at
all) is semantically equivalent to a function returning a list of results. Laziness
even allows to have infinite lists of results. To be able to compose multi-valued
functions the list constructor [] has been turned into a monad in Haskell?]

2State as a standalone monad does no longer exist in Haskell. It is now defined in terms
of StateT, the transformer version of state. See https://hackage.haskell.org/package/
transformers-0.6.0.2/docs/Control-Monad-Trans-State-Lazy.html for details.

3The actual implementation in GHC.Base does not explicitly implement return since pure
of Applicative is provided. In addition it uses list comprehensions for the implementation
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instance Monad [] where
return x [x]
xs >>= f = concat (map f xs)

Here return creates a singleton list. The bind operator >>= has been imple-
mented in terms of the join and map version we have seen in Subsection
Here concat corresponds to the join function and flattens a list of lists into a
single list.

Below is a very simple example of how several lists, or functions that produce
lists, can be combined [Lip11].

[1,2] >>=\n -> ['a','b'] >>= \ch -> return (n, ch)
which outputs

[(1,'a"),(1,'p"),(2,'a"),(2,'0")]

When we write the above code in do-notation

do n <- [1,2]
ch <- ['a','b']
return (n, ch)

it becomes a bit more obvious that n takes on every value from [1,2] and ch
takes on every value from ['a','b'].
Here is another nice example of how Pythagorean triples can be computed.

pythagoreanTriples :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples n = do x <- [1 .. n]
y <= [x+1 .. n]
z <= [y+1 .. n]
if x72 + y"2 == z"2 then return (x,y,z)
else []

Here x takes on all values between 1 and n. Since there can be no Pythagorean
triple with x = y we let y take on values from x+1 to n. Finally we know that
the hypotenuse z must be greater than both x and y so we let z take values from
y+1 ton. The condition 22 +y? = 22 is checked via the if .. then .. else. If
the condition is fulfilled then the triple (x,y,z) is turned into a list [(x,y,2z)]
via the return and concatenated together with all other valid triples via the
implicit >>=.

4.3 Example 2: 10

Looking at the example of interactive input and output makes the challenges of
pure functional programming very apparent. How can a function depend on non-
deterministic user input and still return the same result for identical arguments?

of >>=. In this report we present a semantically equivalent version that fits better into the
framework presented so far.



Imagine there was a function getChar :: Char. If this function produced the
same character every time it was called, it would be quite useless for interactive
input. In addition, when asking for multiple input characters, the compiler
needs to know in which order they should be processed. That is where monads
start to shine. Instead of simply returning Char the function getChar has type
I0 Char where I0 is a monad. Conceptually one can think of the I0 monad as
a container that contains the superposition of all possible characters. Inside the
monad we can do computations with concrete values but from the outside we
see only the container. Since main in Haskell has the signature main :: I0 O
it is possible to write programs like the one below |[Mill8| pp. 313-315].

main = do putStr "Enter your year of birth:
inputl <- getLine
let y = (read inputl :: Int)
let age = 2022 - y
putStr "your age is
print age

Here, after the user input is read, it is parsed to an Int so that we can do the
subtraction. Of course the parsing might fail, in which case an exception will
be printed.

4.4 An Example of Instantiating Monad

So far we have seen several examples of predefined monads in Haskell. In this
section we will define a new type, make it an instance of Monad, and prove the
three monad laws for it. In this example we view a list as a way to represent non-
deterministic values where each value in the list also gets assigned a probability
of its occurrence. So each element in the list is actually a value-probability-
pair and we assume that the probabilities sum up to 1. This example has been
adapted from [Lip11].

First we define a new data type representing a list of values of some arbitrary
type a together with their probabilities.

data ProbList a = ProbList [(a, Rational)]

Here the data type Rational of Data.Ratio is used to represent probabili-
ties as rational numbers, like 1 7 4, without losing precision (as would be the
case if we used Float or Double). Now some uniformly distributed values like
'a','b','c' can be represented by the following instance of ProbList:

ProbList [('a',1 % 3), ('b',1 % 3), ('c',1 % 3)]

Implementing return is easy: we can turn any value x into a valid probability
list by creating the singleton list with value x and probability 1.

return :: a -> ProbList a
return x = ProbList [(x, 1)]



The plan is to define >>= in terms of map and join. To avoid confusion with
the predefined function map defined on normal lists we will call the mapping
function pmap90=. This function should take some function £ and a probability
list as input and apply £ to each value in the probability list, while leaving the
probabilities themselves untouched.

pmap :: (a -> b) -> ProbList a -> ProbList b
pmap f (ProbList xs) = ProbList $ map (\(x,p) -> (£ x,p)) xs

For the implementation of join first recall its type:
join :: ProbList (ProbList a) -> ProbList a

It is supposed to transform a probability list of probability lists into a single
probability list while preserving the property that the probabilities sum up to 1
(provided the initial lists also satisfied this property). The result of computing
fmap f xs is such a nested list. For example

xs = ProbList [(1, 1%3),(2, 1%3),(3, 1%3)]

f x = ProbList [(x, 1%2), (x+10,1%2)]

fmap f xs = ProbList [(ProbList [(1,1 % 2),(11,1 % 2)1,1 % 3),
(ProbList [(2,1 % 2),(12,1 % 2)1,1 % 3),
(ProbList [(3,1 % 2),(13,1 % 2)1,1 % 3)]

Transforming this into a single probability list can be achieved by multiplying
each probability value of the outer list with the probability values of all elements
in its inner list. In our example

flatten (fmap f xs) = ProbList [(1,1 % 4),(2,1 % 4),(2,1 % 8),
(3,1 % 8),(3,1 % 8),(4,1 % 8)]

So the implementation of join can be obtained as follows.

join (ProbList xs) = ProbList $ concat $ map multAll xs
where multAll (ProbList innerxs, p) =
map (\(x, r) -> (x, p*r)) innerxs

Finally Monad can be instantiatedEI

instance Monad ProbList where
xs >>= f = flatten (fmap f xs)
return x = ProbList [(x, 1)]

Lemma. ProbList satisfies the monad laws.

Proof.

4For this code to actually compile we also need to instantiate Functor and Applicative.
Functor requires only a mapping function which we already implemented as pmap.
Applicative requires implementations of pure and <*> (called apply) which can be derived
from Monad.



-- Left identity:
return x >>= f = ProbList [(x,1)] >>= f
flatten (fmap f (ProbList [(x,1)]))
flatten (ProbList [(f x,1)]))
=f x

-- Right <dentity
ProbList xs >>= return

= flatten (fmap return (ProbList xs))

-— unfold the definitions of flatten, fmap, and return:
ProbList $ concat $

map multAll (map (\(x,p) —-> (ProbList [(x,1)],p)) xs))

ProbList $ concat $ [xs]
ProbList xs
-- Associativity
(m >>= f) >>= g = (flatten (fmap f m)) >>= g
flatten (fmap g (flatten (fmap f m)))
flatten (fmap (\x -> flatten (fmap g (f x))) m)
m >>= (\x -> flatten (fmap g (f x)))
m>>= (\x > f x >>= g) O

5 Monads in category theory

In the following we will write T" instead of m for the endofunctor of the monad.
The characterization of monads in category theory differs a bit to the one used
in programming.

Definition. For some category C a monad on C is defined by the following
properties:

e a functorT :C —C
e a natural transformation n :ide¢ =T
o a natural transformation p: TT =T

such that the following diagrams commute

AN L A N L TTT =22 77T

X gu \ il“ﬂ Jor [

TT == T

where n is referred to as unit and p as composition. TT denotes the composition
of the functor T with T.

One can also interpret a monad as monoid in the monoidal category [C,C]
with identity ide and the composition of functors [Uus21].

10



A monad (T,n,u) on a category C induces a category called the Kleisli
category of T

The objects are the objects of C.

The morphism from A to B of C are the Kleisli morphisms defined as maps
k:A— TB.

The identities are given by n from the monad for each object component-
wise idg = A 2% TX.

The composition is given by the so called Kleisli composition which is
defined for two Kleisli morphism k: A — TB and h: B — TC as

ALy B I rro 2 O

An alternative to the definition of monads inspired by the concept of Kleisli
categories is those of the so called Kleisli triples.

Definition (Kleisli Triple). A Kleisli triple (T,n, -*) is given by
o T : 0bj(C) — 0bj(C)
e ny:A—TA for Ae 0bj(C)
o f*:TA—TB for f:A—TB
such that the following holds
o 0 =idra
o ffona=fforf:A—TB
e gfof*=(g*of)* forf:A—-TBandg: B — TC.

These three conditions ensure the naturality of n and _* as well as the func-
toriality of T', meaning for f : A - Bin Cif Tf : TA — TB is given by
Tf=(mof), then

TidA = (77A OidA)* = 772 = idTA
and for f: A—->BinC,g: B—CinC
TgoTf=(cog) o(mpof) =((ncog) enpof) =mcogof) =T(gof)

Therefore we have less conditions to fulfill than in the monad case. By taking
a closer look, we can obtain a one-to-one correspondence between monads and
Kleisli triples for the same T': [C| — |C| and i [Mog91} [Uus21].

We can also define the relationship between the monads in computer science
introduced in Section [3|and the monads in category theory. If we formalize the
programming language i.e. Haskell as a syntactic category by

11



e The objects are the types of the language.

e The morphisms X — Y are the functions that take a value of type X and
return a value of type Y.

If we consider this relation between programming languages and categories,
monads in computer science equal those in category theory as being endofunc-
tors T : C — C on this syntactic category [nLa].
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