Algebraic Topology

Andrew Kobin
Spring — Fall 2016



Contents Contents

Contents
0 Introduction 1
0.1 Differential Forms . . . . . . . . . . . 1
0.2 The Exterior Derivative . . . . . . . . . . ... 6
0.3 de Rham Cohomology . . . . . . . . . ... .. ... ... .. ... ... .. 8
0.4 Integration of Differential Forms . . . . . . . . ... ... ... ... ... .. 12
1 Homotopy Theory 18
1.1 Homotopy . . . . . . . . . e 18
1.2 Covering Spaces . . . . . . . o o 28
1.3 Classifying Covering Spaces . . . . . . . . . . . . . o o 36
1.4 The Fundamental Theorem of Covering Spaces . . . . . . . . . .. ... ... 43
1.5 The Seifert-van Kampen Theorem . . . . . . . . .. ... .. ... .. ... .. 45
2 Homology 51
2.1 Singular Homology . . . . . . . . . . . . . . 51
2.2 Some Homological Algebra . . . . . . . .. .. ... 61
2.3 The Eilenberg-Steenrod Axioms . . . . . . . . . .. ... ... ... 66
2.4 CW-Complexes . . . . . . . . . . e 75
2.5 Euler Characteristic. . . . . . . . . . . . e 85
2.6 More Singular Homology . . . . . . . . .. .. ... 87
2.7 The Mayer-Vietoris Sequence . . . . . . . . . . .. ... .. 94
2.8 Jordan-Brouwer Separation Theorem . . . . . ... . ... ... ....... 98
2.9 Borsuk-Ulam Theorem . . . . . . . . . . . . ..o 100
2.10 Simplicial Homology . . . . . . . . . . .. 103
2.11 Lefschetz’s Fixed Point Theorem . . . . . . . . . . . . .. .. ... ..... 104
3 Cohomology 107
3.1 Singular Cohomology . . . . . . . . . . . . . . 107
3.2 Exact Sequences and Functors . . . . . . . ... ... ... L. 109
3.3 Torand Ext . . . . . . . 116
3.4 Universal Coefficient Theorems . . . . . . . . . . ... .. ... ... .... 123
3.5 Properties of Cohomology . . . . . . . . .. ... oL 126
3.6 de Rham’s Theorem . . . . . . . . . . . . .. . . ... 128
4 Products in Homology and Cohomology 135
4.1 Acyclic Models . . . . . .. 135
4.2 The Kunneth Theorem . . . . . . . . . . . . .. ... ... ... ... .... 136
4.3 The Cup Product . . . . . . . . .. .. 139
4.4 The Cap Product . . . . . . . . . .. 144
5 Duality 148
5.1 Direct Limits . . . . . . . . . e 148
5.2 The Orientation Bundle . . . . . . . . . . . 149
5.3 Cech Cohomology . . . . . . . . . . ... 158



Contents Contents

5.4 Poincaré Duality . . . . . . . . ... 161
5.5 Duality of Manifolds with Boundary . . . . .. .. ... .. ... ... ... 169
6 Intersection Theory 174
6.1 The Thom Isomorphism Theorem . . . . . . . . . ... .. ... ....... 174
6.2 Euler Class . . . . . . . . 178
6.3 The Gysin Sequence . . . . . . . . . L 182
6.4 Stiefel Manifolds . . . . . . . . . ... 183
6.5 Steenrod Squares . . . . . .. .. 185
7 Higher Homotopy Theory 190
7.1 Fibration . . . . . . ... 191
7.2 Fibration Sequences. . . . . . . . ... 196
7.3 Hurewicz Homomorphisms . . . . . . . .. ... ... ... L. 199
7.4 Obstruction Theory . . . . . . . . . .. . 200
7.5 Hopf’'s Theorem . . . . . . . . . . ... 203
7.6 Eilenberg-Maclane Spaces . . . . . . . .. ... 205

1



0 Introduction

0 Introduction

These notes are taken from a year-long course in algebraic topology taught by Dr. Thomas
Mark at the University of Virginia in the spring and fall of 2016. The main topics covered
are homotopy theory, homology and cohomology, including:

e Homotopy and the fundamental group

e Covering spaces and covering transformations
e Universal covering spaces and the ‘Galois group’ of a space
e Graphs and subgroups of free groups

e The fundamental group of surfaces

e Chain complexes

e Simplicial and singular homology

e Exact sequences and excision

e Cellular homology

e Cohomology theory

e Cup and cap products

e Poincaré duality.

The companion text for the course is Bredon’s Topology and Geometry.

0.1 Differential Forms

As a motivation for the study of homology in algebraic topology, we begin by discussing
differential forms with the goal of constructing de Rham cohomology. This material provides
a great case study which one can return to in later sections to apply results in the general
homology theory.

Definition. If V is a finite dimensional real vector space, the space N\’ V* is called the pth
exterior algebra of V. The elements of N\’ V* are called exterior p-forms.

Example 0.1.1. For p = 0, \’V* = R, the underlying field. For p = 1, A' V* = V*, the
vector space dual to V', which one may recall is defined as V* = Homg(V,R). For p > 2,
AP V* may be viewed as the space of functions

w:Vx--.xV-—~R
N————

p

that satisfy the following properties:
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(a) (Multilinearity) w(..., v+ cw,...) =w(...,v,...) +cw(...,w,...).
(b) (Alternating) w(...,w,v,...) = —w(...,v,w,...).

The alternating property may be written in a more general form:

W(Ve(1)s - -+ 5 Vo(p)) = (—1)|”|w(v1, ey Up)y

where ¢ is a permutation on p symbols and |o| denotes its sign (—1 if odd and +1 if even).
The alternating property further implies that w(v,v,...) = 0, i.e. repeated terms produce 0
when an exterior form is applied to a vector.

Example 0.1.2. If dimV = n and a basis of V is given, we can view an n-form w € A" V*
in terms of a determinant:

WV, ..., v,) =det(vy |-+ | vp).

Definition. If w € A’ V* and n € N\ V*, their exterior product (or wedge product) is
an exterior form w An € N*TIV* defined by

(WAL, Upig) = > (=) (v, - Vo)1 Votpr1)s - - Vopia))s

g

where the sum is over all (p,q)-shuffles o, i.e. permutations satisfying o(1) < ... < o(p)
ando(p+1)<...<o(p+q).

Remark. One can alternatively write the wedge product formula as

1

]Tq! Z (_1)‘0‘0‘)(1}0(1)7 RN 7UU(P))77<UU(p+1); . 7Ua(p+q))'

€S Sptq

(WA (V1,. . Vpiq) =

The wedge product defines an associative multiplication on the vector space
NV =NV
p>0

called the exterior algebra of V.

Example 0.1.3. Take some 1-forms wy,...,w, on R" and vectors vy, ..., v,. We claim that
(Wi A Awp)(vr, ..., vp) = det(wi(vy)).

Recall by the Leibniz rule for determinants that if B = (b;;) is a p X p matrix then the
formula for its determinant is

det B = Z sgn(o) - bo(1)1*** bo(p)p

oSy

where S, is the symmetric group on p symbols. Accordingly, the right hand side of the
equation in the problem reads

det|w;(v;)] = Z sgn(0) - W 1) (V1) * * - Wo(n) (Un)-

0ES)
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By definition of the wedge product,

(Wi A Awp)(v1,...,0p) = Z sgn(0) - wi(Vo(1)) - - Wp(Vo(p))-
o€Sp

Now this looks like we have the indices irreparably reversed, but in fact this formula is equal
to det|w;(v;)], the determinant of the transpose of [w;(v;)], which we know from linear algebra
is equal to the determinant of [w;(v;)] anyways. So the formula holds.

Example 0.1.4. If {e;,...,e,} is a basis of V, there are corresponding linear functionals
dzy,...,dz, : V — R uniquely defined by dxz;(e;) = 0,;, where d;; is the Kronecker delta
symbol. The dx; are in fact the dual basis to the e;, that is dz; € V* = /\1 V* meaning the
dx; are examples of exterior 1-forms. The wedge of two 1-forms looks like

(dx; A dxj)(v,w) = dz;(v)dzj(w) — do;(w)dxj(v) = viw; — vyw;,

where v = (vy,...,v,) and w = (w1, ..., w,). For example, in R? the standard basis gives 3
linear functionals dz, dy and dz, which act on 3-vectors in the following way:

U1 U1 U1
dx (%) = dy (%) = V2 dz (%) = V3.
U3 U3 U3
Lemma 0.1.5. If wy,...w, are I-forms on 'V and vy, ...,v, €V then

(Wi A Awp) (v, ..., v) = det(w;(v;))4-
Proof. For exercise. []
Lemma 0.1.6. If wy,...,w, is a basis for V* then a basis for N\ V* is given by
{wiy Ao Awyy, [0 <L <)

Proof. Let {v1,...,v,} be the dual basis to {wy,...,wy,}, i.e. w;(v;) = d;; for all 4, j. Given
w € A" V*, define the real number

Wit ,eoyip — w(Um cee ,Uz’p)

for all increasing sequences i; < ... < 14,. We claim that
LU(Ujl,...,Ujp): E (wil 77777 Z»p-wil/\---/\wip)(vjl,...,vjp).
11<...<ip

Indeed, (wi, A~ Aw;,)(vj,,...,v;,) = 0 unless {i1,...,i5} = {j1,...,jp}, in which case the
result is 1. This proves the claimed formula, and in particular the formula holds for all size
p subsets of {vy,...,v,} so

w = Z Wiy ,oosip * Wiy N s AWy
11<...<ip
Hence the given set spans A’ V*. Now suppose Zaih,,% cwiy Ao Awy, = 0. Evaluating
this on (vy,...,v,) shows that all a;,..i, = 0. This proves linear independence. O

3
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Corollary 0.1.7. If diimV = n then dim A" V* = (;) In particular, NP V* = 0 whenever
p>dimV.

Lemma 0.1.8. Ifw e A’V* andn e N"V* then w Anp = (—1)Pin A w.
Example 0.1.9. On R3, exterior p-forms have the following forms:
e p=0w=acR.

e p=1: w=adr+bdy+ cdz where a,b,c € R.

p=2 w=adyANdz+bdx ANdz+ cdx N\ dy for a,b,c € R. Applying this to a vector
may be evaluated using a determinant:

a b ¢
wv,w)=det [ v1 vy v3
w1 W2 Wj

p=3 w=adr ANdy Ndz for a € R.

p > 4: all further exterior forms are 0.

The main use of exterior forms is in defining the following generalization of multivariable
calculus. Let M be a smooth manifold and view V' = T, M as the tangent space at some
point x € M.

Definition. A differential p-form on M is a smooth assignment of an exterior p-form
wy € NP TFM to each x € M.

When M = R"”, there is a natural identification T,R™ = R". A differential p-form on R"
can be written

W = Z wilml-p . dil?il VANRICIVAN d.Tip

where each w;, .. ;, is a smooth function R” — R. An example of a differential 1-form on R3
is 23y dx + sin z dy + (tan (%))2 dz.

For a general n-manifold M, choose local coordinates {z1,...,x,} which determine a
basis {6%1’ cee %} for each tangent space T,M. This also determines a dual basis for
T*M which we will write as {dx1,...,dz,}. Any differential p-form may be expressed in
these local coordinates as

w = Z Wig,eoip d(L’il VANKIEIVAN dl‘l‘p

11<...<ip

for locally defined, smooth functions wy, . ;,.

Definition. The vector space of all differential p-forms on M is denoted QP (M).
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Note that Q°(M) = C*(M), the space of smooth functions on M, which is infinite
dimensional. In general, QP(M) will be infinite dimensional unless M is a finite set.
For each x € M, the wedge product determines a map

NTiM x NT;M — NHTIM.
This further determines a map on the space of differential forms, which we also denote with
the wedge symbol A:
QOP(M) x QU (M) — QPTI(M)
(w,n) — wAN.
This wedge product satisfies w A = (—1)PIn A w.
Example 0.1.10. On R3, consider two 1-forms w = xdr — 3ydy and n = zdx + 4e¥ dz.
Their wedge product is computed to be
wAn = (rdr—3ydy) A (zdx + 4e? dz)
=xzdr Ndr + 4ze? de N dz — 3yzdy N\ de — 12ye’ dy A\ dz
= 3yzdr ANdy + 4xe? dx N dz — 12ye’ dy A dz.

Remark. If w € QP(M) and X;,...,X, are vector fields on M, we can evaluate w on the
X, to get a smooth function on M:

w(X1,. .., X,) € QYM) = C™(M).
Suppose f : M — R is smooth. The differential of f is a linear map D, f : T,M —

Ty R =R, so the differential gives us a 1-form on M. Locally, i.e. in coordinates z1,...,z,
in a coordmate chart of M, Df is a 1 X n matrix of partial derivatives:
of of
D .
= {8:61 81:”]

Traditionally, we write df when thinking of the differential as a 1-form. Using these local
coordinates, we can write
i=1

for coeflicients a; € R. To evaluate these coefficients, notice that for each 1 < j < mn,

g—i (a%) (Zaldxl> <—> Zald:cl <8$]) Zal = aj.

=1 =1
Therefore we can write the differential 1-form df in local coordinates as

Example 0.1.11. For M = R3, consider the function f(z,y,2) = z?sin(y + z). Then
df = 2xsin(y + 2) dx + 2% cos(y + 2) dy + z* cos(y + 2) dz.

This differential 1-form df generalizes the gradient from multivariable calculus, as one can
see in the above formula. We will see that other familiar objects from multivariable calculus
show up as differential forms.
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0.2 The Exterior Derivative

Definition. For a smooth manifold M, the exterior derivative on p-forms is the linear
map d : (M) — QP (M) defined as follows: given w € QP(M) and a point in M, choose
local coordinates x1,...,x, € M and write w = Y _;wy - dx;, A --- Adx;, where the sum is
over all sequences I : 4, < ... <1,. Then we define

dw = Zdwl/\dxil A~ Ndg,.
I
Lemma 0.2.1. The definition of the exterior derivative is independent of the local coordi-
nates on M.

Proof. We will prove that on an open set U C R", the exterior derivative d is the only

operator QP(U) — QPT(U) satisfying:

(a) d(w+n) = dw + dn;

(b) If we QP(U) and n € QI(U) then d(w An) = dw An+ (—1)Pw A dn;

(c) If £ € Q°(U) then df (X) = X(f) (directional derivative);
(d) If f € QYU) then d(df) = 0.

Take a p-form w on U, which can be written

W= Zw; -dx; N --- Ndx;, for some smooth functions w; € QU) = C=(U).

Suppose d : (U) — QPTH(U) is an operator satisfying (a) — (d). We will show that it must
coincide with our definition of the exterior derivative; that is, we will show:

dw:Zdwj/\dxil/\~--/\dxip.
I

For vector fields X = (X, ..., X,+1) defined on U, consider
X)=d <Zw1 cdxg N /\dx,-p) (X)
I
= (Z d(wy - dxg, A+ A dxl-p)> (X) by (a)

Z [(dwi)(X) - dagy, A~ Adwy, + (=1)°wr(X) - d(dzi, A--- Aday,)] by (b)
= Z dwr)(X) -dx; A--- Ndx;, by applying (b) and (d) several times
Z ) -dxy, Ao ANdx, by (c).
I
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Since the directional derivative property is satisfied for all smooth functions w;, we see that
d agrees with our definition of the exterior derivative.

Finally, suppose diy and dy are defined on overlapping charts U NV in an atlas for R”
such that dyy and dy each satisfy (a) — (d). Then on the open set U NV, we have

(dUw)|UmV = dynvw = (de)|Umv

by uniqueness on each neighborhood. Therefore d : QP(R") — QPTL(R™) is well-defined for
each p > 0. One can extend this to manifolds by composing with coordinate charts. O

Example 0.2.2. In Example 0.1.11, we saw that the gradient arose as a special case of a
differential 1-form on R3. In this example, we will generalize two more quantities associated
to vector fields: curl and divergence. If f € Q°(R3) is a smooth function, its exterior
derivative is just the differential:

9f 4 of af

day + = day + 2 das.

df 8:61 ox i) ox XT3

Again, this looks like the gradient V f.
For a 1-form w = fdx; + gdxs + hdxs € Q' (R3), the exterior derivative yields a 2-form:

dw = df Ndxy + dg N\ dxe + dh N\ dzs
(af dx1+ af dx 2+aa—fdx3>/\d.’lfl

e O3
(e i)
+ (g—zdwﬁ ghz dxg+§—2dx3> A ds
(g—;? - g—i) diy A das + (5—4 - g—i) ds A diy + (5_51 _ %) der A dirs,

Viewing w as a vector field, we can clearly see this as the formula for curl V x w.
Going further, a 2-form n = f dxy A dxs + gdxs A dxy + hdxy A dxy yields a 3-form:

dn = df Ndxo A dxs +dg A\ dxs A dxy + dh A dxey A dxsy

of dg oh
= d d dxs.
<83:1 + 0xs + 83:3) TL A a2 N\ 4T

In the same manner as above, this generalizes the divergence V -1 of a vector field.

Theorem 0.2.3. For any w € QP(M), d(dw) = 0. In other words, the sequence
co OP(M) — QPFH (M) — QPF2(M) — -

18 a chain complex.
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Proof. Let w € QP(M). In local coordinates, w = f dwx;, A---Adx;, for some smooth function

I. Then
i1 ip - 91_1 % i1 ip*

Applying the exterior derivative again yields

- of "L 92
2 - p—
dw—;d(éxi) dx; Ndxg, A - Nd;, —Zz—axjaxidxj/\dxil Ao Ay,

j=1 i=1

By equality of mixed partials, all symmetric terms will cancel, and all other terms contain
at least two repeated dx;, terms, so we are left with 0. O]

The next result states that the exterior derivative obeys a type of ‘signed Leibniz rule’
with respect to the wedge product of differential forms.

Proposition 0.2.4. If w € QP(M) and n € QI(M) then

dwAn) =dwAn+ (—1)Pw Adn.

0.3 de Rham Cohomology

In this section we define de Rham cohomology for a smooth manifold M. Going forward,
this will be our case study of the connections between algebraic and topological information;
such connections are conveyed by homology.

Definition. A p-form w € QP(M) is closed if dw = 0. Also, w is exact if w = dn for some
(p—1)-form n € Q1 (M). In particular, every exact form is closed.

Consider the sequence of vector spaces induced by the exterior derivative on differential

forms of M:

da

QM) % QM) B 02 B I ey B

Here we are letting d, denote the exterior derivative on p-forms; we will often just write d
to represent the exterior derivative in any degree. Notice that for each p > 0, the closed
p-forms are exactly ker d,, and the exact p-forms are imd,_;. These are, in particular, vector
spaces of differential forms. Moreover, imd,_; C ker d,, which allows us to define:

Definition. For a smooth manifold M, the pth de Rham cohomology of M is defined to

be the quotient space
ker d,

im dp_ 1

HgR(M) =

Since ker d, and im d,,_; are subspaces of infinite dimensional vector spaces of differential
forms, it is likely that they too are infinite dimensional. However, in some cases the quotient
may be finite. This is the case when M is compact, for example:

Theorem 0.3.1. If M is compact, then HY,(M) is finite dimensional for all p > 0.

8
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Remark. Let n = dim M. Since QP(M) = 0 for all p > n, H(M) = 0 for all p > n as
well. This means the chain complex for differential forms on M has finite length:

QM) S Q' (M) S (M) S - L r).

It is possible to calculate de Rham cohomology in low degrees. One sees that significant
topological information is conveyed by these cohomologies:

Proposition 0.3.2. For any smooth manifold M, Hlp(M) = R*, where k is the number of
connected components of M.

Proof. For p =0, HI,(M) is just equal to ker dy, the closed O-forms on M. If f € Q°(M) =
C>®(M), then f is simply a smooth function, whose exterior derivative can be written in
local coordinates. Thus we have

of
8(13i

<= f is locally constant.

=0fore=1,...,n

"9
=1

It is known that the vector space of locally constant functions on M has dimension k, where
k is the number of connected components of M. Therefore HO,(M) = R* as desired. O

The takeaway here is that this algebraic object H},(M) contains topological information
about the manifold M —in the p = 0 case, the number of connected components. It turns out
that de Rham cohomology is a topological invariant, that is, if M and N are homeomorphic
then they have isomorphic de Rham cohomologies in every degree.

Example 0.3.3. Suppose w € Q'(R) = Hom(R,R). Then w has the form w = fdz for
a smooth function f : R — R. It is a fact from real analysis that every continuous (and
therefore every smooth) function is integrable, so let F' be defined by

F(z) = /Oxf(t) dt € Q°(R).

Then by the definition of exterior derivative of F' and the fundamental theorem of calculus,
we have

dF = (% /wa(t) dt) do = f(z)de = w.

Therefore w is exact, so it follows that H},(R) = 0. Thus the complete de Rham cohomology
of R is

R ifp=0

HCII)R(R) = .

0 ifp>0.
Remark. For each p > 0, H}(—) is a functor from the category SmMf1d of smooth manifolds
to the category Vecg of real vector spaces. It is a contravariant functor, meaning if f : M —
N is a smooth map then there is a corresponding linear map f*: H),(N) — HY,(M). We
describe this map next.
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Definition. Let f : M — N be a smooth map and take w € QP(N). The pullback of w
along f is a p-form f*w € QP(M) defined by

(f*w)<X17 s 7Xp> = w(Df(X1>7 s 7Df(Xp))

Proposition 0.3.4. For two smooth maps L < M Iy N and any two differential forms w,n
on N, we have

(1) (fog) =g o[~

(2) fr(wAn) = f(w) A f(n).

(3) In local coordinates, f*(wrdws, N---Ndwx;,) = (wro fd(x;, o f) N---ANd(xi, o f).
(4) f*(dw) = d(f*w), that is, pullback is natural for the exterior derivative.

Proof. (1) Take w € QP(N) and let Xq,..., X, be vector fields on N. Then

(fog) (w)(Xy,..., X ) w(D(fog)(X1),....,D(fog)(X,)) by def. of pullback
w((Df o Dg)(Xl) ., (DfoDg)(X,)) by chain rule
(f w)(Dg(X1), - --,Dg(Xp))
= (g (f"w)(X1,.... Xp)
(g* o f )( )(Xh Tt 7Xp)'

Since they agree on all vector fields X, ..., X, for any arbitrary p-form w, we conclude that

(fog)* and g* o f* are equal.
(2) Take w € QP(N),n € Q4(N) and Xq,..., X4, vector fields on N. Then

frwnn) =(wA n)(Df(Xl% o Df(Xpi))

= Z D w(Df(Xow), - DF (Xom)))N(Df (Xo@s1): - - Df (Xawpig))
Z ‘U‘ (ffw) Xo) S M ( Xopr1), -+ Xoprg)
= (f wA fr) (X, ... ’Xp+q)7
where all sums are over permutations o satisfying (1) < ... < o(p) and o(p+1) < ... <
o(p+ q). Since w,n and Xy,..., X, were all arbitrary, f*(wAn) = f* A f*n.
(3) and (4) exercise. O

Corollary 0.3.5. For a smooth map f : M — N, there is a well-defined linear map f*
HY.(N) — HLp(M) for allp > 0.

Proof. By (4) of Proposition 0.3.4, w is closed = f*w is closed, and w is exact — f*w
is exact. This gives us a well-defined linear map on the cohomologies as described. O

Corollary 0.3.6. If f : M — N is a diffeomorphism then f* : Hjz(N) — Hip(M) is an
isomorphism for each p > 0.

10
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Proof. If f is a diffcomorphism then there is a smooth inverse f=' : N — M such that
fof ' =idy and f~lof = idy;. Taking pullbacks, we get idgr (v) = (fof=H)y*=(fHrosf
by (1) of Proposition 0.3.4. Likewise, idyr_(y) = (fto f)*=f*o(f1)*. This shows f*is
invertible, and hence an isomorphism. O

Example 0.3.7. Take a 0-form g € Q°(M) and a smooth map f : M — N. Then (f*g)(x) =
g(f(x)) for all z € M. Thus f*g = g o f so the pullback of a 0O-form coincides with
composition. Applying the exterior derivative gives a 1-form dg € Q'(M). Then

(f*dg)(X) = (dg)(Df(X)) = Df(X)(g)
= X(go f) by the chain rule
= X(f*g) by the above

= d(f*9)(X).
This verifies (4) of Proposition 0.3.4 that f*(dg) = d(f*g) when g is a 1-form.

Example 0.3.8. Let f : (0,00) x [0,27) — R? be defined by f(r,0) = (rcosf,rsinf).
That is, f is a parametrization of R? in polar coordinates. We calculate the pullbacks of the
1-forms dx and dy, and the 2-form dx A dy below:

frdr =d(xo f)=d(rcosf) =cosOdr —rsinf db
f*dy =d(yo f) =d(rsin®) = sinf dr + r cos 6 d
fr(dz N dy) = f*(dz) A f*(dy)
= (cos@dr —rsin@df) A (sinf dr + rcosfdf)
= (rcos®0 +rsin®0)dr Adf = rdr Adb.

One can think of this 2-form f*(dx A dy) as a generalization of the change-of-coordinates
coefficient for (z,y) — (r,0).

Example 0.3.9. The standard volume form on Euclidean space R™™! is the (n + 1)-form
n+l i1

-1
v=dxy A ANdx, N drps. Sethz( )

xidxl VANEIRAN dZL’Z’_l A dxi—i—l VANERIEAN dCL’,H_l.
n+1

=1
Then applying the exterior derivative yields

n+1 (_ )i*l

dw = dr; Ndxy N -+ Ndx;_g Ndxigg N - Ndxy,
; 1 1 1 +1 +1
n+1 1

:Z dl’l/\"'/\dl'ifl/\dﬂfi/\dl‘i+1/\"'/\dl‘n+1

—n+ 1

=dry N Ndxp, = 0.

Therefore dw = v so v is an exact form on R™**1.

11
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0.4 Integration of Differential Forms

In this section we investigate the following question.
Question. How does one decide if HY,(M) is nontrivial?

In order to answer this, we develop a theory of integration for differential forms on a
smooth manifold M. To start, let M = R™ and suppose an n-form w € 2"(R"™) has compact
support in an open set U C R". Then w = fdxy A --- A dx, where f is a function with
compact support in U. We define the integral of w on R" as

/w—/fdxl---da:n.
R U

Now suppose U,V C R™ are open and f : U — V is a diffeomorphism between them.
Suppose uy are local coordinates on U and py are local coordinates on V. From multivariable
calculus, we know that one can compute the integral of any smooth function g : V" — R by
a change of variables:

Aﬁduv=izk90fﬂd%bﬂfﬂduy

where J(f) is the Jacobian matrix of f. On the other hand, if zi,...,z, are the local
coordinates on U and vy, ...,¥y, are the local coordinates on V', then

f(dyy A+ Ndyy,) =det J(f) - dozy A=+ Adxy,.

Assume that f is orientation-preserving, i.e. that det J(f) > 0. Then the above allows us to

write
/w: /f*w
1% U

To generalize this to an arbitrary n-manifold M, suppose w € Q"(M). We then define

Definition. For w € Q"(M) supported compactly in an open set U C M that is the domain
of some coordinate chart p : U — @(U) C R", the integral of w over M is

LL”:LMWAW“

Lemma 0.4.1. This definition of the integral of w is independent of the choice of coordinate
chart (U, p).

Proof. Use the change-of-variables formula from above. m

Assume M is oriented, i.e. that we are given a (maximal) atlas such that all transition
functions are orientation-preserving.

Definition. A partition of unity on M is a collection of smooth functions {f; : M — R};es
such that

(a) Each f; is identically 0 outside a chart U;.

12
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(b) f; >0 for all i.
(c) The charts {U;}ier cover M.

(d) The atlas {U;}icr is locally finite: each point x € M lies in a neighborhood intersecting
a finite number of the U;.

(e) Forallze M, Y, ., fi(x) =1.
Lemma 0.4.2. Partitions of unity exist on every smooth manifold M.
Notice that if {f;} is a partition of unity on M, then we can write any differential form
we QM) as
W= Z fiw.

el

Since integration is linear, we can now define the integral for any differential n-form on M.
Definition. Let {f;}ic; be a partition of unity on M. For an n-form w € Q"(M), its

integral is defined to be
w = fiw
Le=2),

i€l

if the sum converges.
Lemma 0.4.3. The definition of wa 15 independent of the choice of partition of unity.

Example 0.4.4. Let M = S' C R? be the unit circle. Consider the 1-form

-1 (Y -y z
a0 = d (tan <E>>:x2+y2dx+mdy.

A parametrization for S' is ¢ : [0,27) — S' defined by ¥(t) = (cost,sint) (here we are
regarding 1 = ¢! for some coordinate chart ¢). Then the pullback of df along this
parametrization is computed to be

*(df) = —sintd(cost) + costd(sint) = sin®t dt + cos® t dt = dt.
P (

Thus the integral of df over the circle is

21
/d@Z/ dt = 2.
St 0

The central result that unites the theory of differential forms is known as Stokes” Theorem.

Theorem 0.4.5 (Stokes). Suppose M is an oriented n-manifold with boundary and w €
O (M) is a differential form with compact support. Then

/dw:/ w.
M aM

13
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Note that on the right, w is really standing in for the restriction w|sps. Also keep in mind
that OM is oriented with orientation induced from that of M. When OM = &, we interpret
the integral over OM to be 0.

Example 0.4.6. Let w = f dx + gdy be a 1-form on R?, where f, g are smooth functions on
R2. If w is exact, with w = dF for a smooth function F, then for any smooth curve v C R?,
Stokes” Theorem says

/ (f de + gdy) = Flar, 1) — F(o, o)

where (z,yo) and (x1,y;) are the starting and ending points, respectively, of v. For instance,
if we take 7 to be the straight line segment from (0,0) to (z,y), then the function

Fla.y) = / (f de + g dy) = / (2f (to. ty) + yg(ta, ty)) di

is a O-form. We use this information below.
Let w = fdx + gdy be a 1-form on R?, where f, g are smooth functions on R2. If w is

closed, then 0 = dw = (g—i — %) dx A dy which happens if and only if g—g = %. Define the

function ,
Flo,y) = /0 (f(tz,ty) + yg(tz, ty)) dt € QO(R?).

We claim dF' = w. By the chain rule and Leibniz’s rule, we have

oF [ HLof 0y
%_/0 f(ta:,ty)dt+/0 {tx%(ta:,ty)ﬂy%(tx,ty)] dt

1 1 a a
:/0 f(tx, ty) dt+/0 {txa—i(tx,ty)+tya—‘£(tx,ty)] dt

1 1
:/0 f(m,ty)dt+t/0 %f(mty)dt:f(x,y);

or
i = g(z,y) similarly.
Then the exterior derivative of F' is
oF oF
dF = —dz + —dy = fdx + gdy.
ox dy

So dF = w, showing w is exact. Therefore Hj,(R?) = 0.

Now suppose 1 € Q?(R?) is a 2-form, written n = f dx Ady for a smooth function f. Since
O3(R?) = 0, every 2-form is closed. Using the polar substitution formula (Example 0.3.8),
write w = fdx Ady = f(r,0)rdr Adf. Fixing 0, set

F(r,0) = /0 (L 0) dt.

14
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Then F' df is a 1-form and its exterior derivative is

d(Fdf) =dF ANdf + (=1)°F - d(df) = dF Adf since d* =0

::K%A@w@ﬁ>w+Q%A%@mﬁ>wywe

— (% / tf(t,0) dt) dr A df by the alternating property
0

=rf(r,0)dr Ndf =w.

Hence w is exact, so Hiz(R?) = 0. As in Example 0.3.3, we can write down the complete
cohomology of R?:
R ifp=0

Hﬁ@a:{o if p>0

Remark. Suppose N C M is a p-submanifold without boundary. Then for an exact p-form
w € QP(N) such that w = dn for a (p — 1)-form 7, Stokes’ Theorem (0.4.5) shows that

/w:/dn:/ n=0.
N N ON

This induces a linear map (M) — R and thus a well-defined map on de Rham cohomology:

HP (M) — R

[MH%Aﬂ

Corollary 0.4.7. Suppose N C M is a p-submanifold without boundary such that there
exists a closed p-form w € QP(M) such that wa # 0. Then N is not the boundary of some
(p + 1)-submanifold of M.

Proof. It [ yw # 0 then by the contrapositive to the remark above, w is not exact, so in
particular H},(N) # 0. Moreover, Stokes” Theorem (0.4.5) shows that N cannot be the
boundary of another submanifold W of M, since otherwise dw = 0 would integrate to 0 over
W, contradicting the hypothesis [, w = [yw # 0. O

Example 0.4.8. Let T = S x S! be a torus. Then by Corollary 0.4.7, Hi,(T) # 0 and no
longitude or meridian of 7" bounds a submanifold of 7.

Stokes” Theorem (0.4.5) is recognizable in various disguises in calculus, including the
following famous theorems.

Corollary 0.4.9 (Fundamental Theorem of Calculus). For a continuous function f : [a,b] —
R which is differentiable on (a,b),

l/f@Mx:ﬂw—ﬂ@.

15
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Proof. The interval [a,b] is a compact, oriented manifold with boundary {a,b} and the
expression f’(z)dx is the exterior derivative of f as a O-form. Therefore the fundamental
theorem of calculus follows directly from Stokes’ Theorem (0.4.5). O

Corollary 0.4.10 (Fundamental Theorem of Line Integrals). Suppose C' is a smooth curve
parametrized by v : [a,b] — C. Then for any function f which is smooth on C, we have

/C VF-dr = f(y(b) — F(+(a))

where V f is the gradient of f.

Proof. As we saw in Example 0.2.2, V f is a special case of the exterior derivative df for any

0-form f. O]

Corollary 0.4.11 (Green’s Theorem). Let D C R? be a compact region bounded by C a
piecewise smooth, positively oriented, simple closed curve, and suppose P(x,y) and Q(x,y)
are continuously differentiable on D. Then

jl((PdaH—Qdy // <@—8—§> dzx dy.

Proof. Here D is a 2-manifold with boundary C' and (%—f — %P ) dz dy is the exterior deriva-

tive of the 1-form w = Pdx + Q) dy. O]

Corollary 0.4.12 (Divergence Theorem). Suppose V is a compact subset of R® with piece-
wise smooth boundary S = OV oriented with outward-pointing normal vectors. If F is a
continuously differentiable vector field defined on a neighborhood of V' then

//VV-FdV—//SF-ndS,

where V - F is the divergence and n is the vector field of (outward-pointing) normal vectors

to S.
Proof. This is Stokes’ Theorem (0.4.5) applied to the 2-form F - ndS. O

Corollary 0.4.13 (Classical Stokes’” Theorem). Let S be an oriented smooth surface with
boundary C' = 05 which is a smooth, simple closed curve with positive orientation. If F is a

vector field defined on S then
]{F-dr:/ V x F - dS,
c S

Proof. As we showed in Example 0.2.2, the exterior derivative of the 1-form F-dr is precisely
curl: d(F -dr) =V x F - dS. m

where V X F s the curl.

16
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Definition. An n-dimensional manifold M is orientable if there exists a differential n-form
w € Q(M) with the property that w, # 0 for every x € M.

Corollary 0.4.14. If M is a compact, orientable n-manifold without boundary, H}p(M) # 0.

Proof. If M then any n-form w € "(M) has compact support over all of M so we can
integrate over all M. Since M has no boundary, Stokes” Theorem (0.4.5) implies

/dw:/ w = 0.
M oM

Thus exact forms integrate to 0. This induces a well-defined linear map

®: Hin(M) — R

[w]H/Mw.

If M is orientable, then by definition there is an n-form w € Q2"(M) such that w, # 0 for all
x € M. Then [,,w # 0 so because ® is linear, [w] # 0 in Hj,(M). O

Recall that a homotopy of a continuous map f : X — Y between general topological
spaces is a continuous map F' : X x [0,1] — Y such that F(z,0) = f(z) for all z € X. It
is more common to refer to a homotopy between maps f,g : X — Y, which satisfies the
conditions that F(z,0) = f(x) and F(x,1) = g(z) for all z € X. Alternatively, one can
think of F' as a one-parameter family of maps f; : X — Y. Furthermore, we say f and g are
smoothly homotopic if there is a homotopy F' between them such that F' is smooth.

Proposition 0.4.15. If f,g : N* — M™ are smoothly homotopic maps between compact
manifolds N and M without boundary, and w € Q*(M) then

fore= [

Proof. Exercise. O]

Corollary 0.4.16. The integral map fN : HY (M) — R depends on the submanifold N only
up to homotopy.

Our plan in the next chapter is to generalize some of this theory to arbitrary topological
spaces and homotopy classes of maps.

17
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1 Homotopy Theory
1.1 Homotopy

Let X and Y be topological spaces with subspaces A C X and B C Y. Write Map(X,Y)
for the space of continuous maps X — Y, or Map((X, A), (Y, B)) for the space of continuous
functions f : X — Y such that f(A) C B.

Example 1.1.1. If A = {2z} and B = {yo}, the points zq and y, are called base points,
the spaces (X, {zo}) and (Y,{yo}) are called pointed spaces and we write Map,(X,Y) =
Map((X,{zo}), (Y, {yo})) for the space of pointed (or based) maps between (X,{z¢}) and

(Ya {Z/O})-

Definition. A homotopy between two maps f,g € Map(X,Y) is a continuous map F :
X x [0,1] = Y such that F(z,0) = f(z) and F(z,1) = g(x) for all x € X. If such a map
exists, we say f and g are homotopic, denoted f ~ g. We can alternatively think of a
homotopy F as a one-parameter family of continuous maps f; : X =Y

F

/\ Y
1
t ,,,,,,,,,,,,,,,,,,
\\—/
’ fi

Definition. If A C X and B C Y are subspaces and f,g : X — Y are homotopic with
homotopy F = f;, we say F is a homotopy relative to A and B if f,(A) C B for all
t € [0,1]. In the case that X =Y, A = B and f;(A) = A for all t € [0,1], f; is called a
homotopy rel A.

Lemma 1.1.2. Homotopy is an equivalence relation on Map(X,Y") and Map((X, A), (Y, B)).

Proof. Letting A = B = & shows that the first statement follows from the second, so it
will suffice to prove the equivalence relation for Map((X, A), (Y, B)) in general. Let f,g,h :
(X, A) — (Y, B) be continuous maps such that f(A) C B and likewise for g, h.

Note that the map F' : X x [0,1] — Y, F(z,t) = f(x) for all x € X,t € [0,1], is
continuous, preserves A — B and F(z,0) = f(z) = F(z,1) for all z € X. Therefore f ~ f,
so ~~ is reflexive.

Next, suppose f ~g. If F: X x[0,1] — Y is a homotopy between them respecting A —
B, then define G : X x [0,1] = Y by G(z,t) = F(z,1—t). Then G(A,t) = F(A,1—t) C B,
G(z,0) = F(x,1) = g(z) and G(z,1) = F(z,0) = f(z). Moreover, GG inherits continuity
from F' (more precisely, G is the composition of F' with the homeomorphism ¢ — 1 — ¢ on
[0,1]) so G is a homotopy. Therefore g ~ f.
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Finally, suppose f ~ g and g ~ h. Then there are continuous maps F,G : X x [0,1] - Y
such that: F(A x [0,1]),G(A x [0,1]) C B, F(z,0) = f(z), F(z,1) = g(z) = G(z,0) and
G(z,1) = h(x) for all x € X. Define H : X x [0,1] = Y by

F($,2t) 0<t
H([L’,t):{ 14
2

1
2
G(z,2t — 1) 1

IA A

The properties of F,G give us H(A x [0,1]) C B as required. Moreover, H is continuous
away from the line t = %, and at this line we have

lim H(z,t) = lim F(z,t) = g(x)

t—1/2— t—1—
d lim H(zt) = lim G(z,t) = g(z).
and i (z,t) = lim G(z,t) = g(2)

So H is continuous on X x [0,1]. Also, from the way we defined the function, we have
H(z,0) = F(z,0) = f(z) and H(z,1) = G(z,1) = h(z) for all x € X. So H is a homotopy,
proving f ~ h. We conclude that ~ is an equivalence relation. O]

Definition. The set of equivalence classes of maps f : X — Y wunder homotopy is denoted
[X,Y], called the set of homotopy classes from X to Y. If X and Y are pointed spaces,
this is written [X,Y]..

In some situations, we can turn [X, Y] into a group. Given X, one can define a product
on a certain subset of [X x [0,1],Y] as follows. If f,¢g: X x [0,1] = Y are continuous and
f(z,1) = g(z,0) for all z € X, then the product f*g: X x [0,1] — Y is defined by

IA A
t—\ N |—

(F *9)(a. 1) ={ i

f(z,2t) 0<
glz,2t —1) <

However, it’s not even clear if this operation is well-defined on homotopy classes yet. To
remedy this, we specify base points xg € X and yo € Y and restrict our attention to maps
f:X x[0,1] = Y such that f(z,0) = yo is constant on X.

Definition. The (reduced) suspension of a topological space X at a base point xq is the
quotient space
X % [0,1]

(X x{0}) U (X x {1}) U ({wo} x [0,1])

Remark. Given based maps f,g : X — Y, or equivalently f,¢g : X x [0,1] — Y such
that f(z,0) = f(x,1) = f(xo,t) = yo for all z € X, ¢ € [0,1], then the product of f and g
is well-defined as a map f x g : XX — Y. Rigorously, the composition f * g gives a map
YX - YXVYX =Y, where XX VXX is the wedge of two copies of the suspension of X.

X =

Lemma 1.1.3. The composition [f] - [g] = [f * g] makes [LX,Y]. into a group.

Proof. We need to prove four things:
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(i) Concatenation is well-defined on homotopy classes, i.e. f* ¢ does not depend (up to
homotopy) on the homotopy classes of f or g.

(ii) Concatenation is associative.

(iii) The pointed map e : ¥X — {yo} C Y taking all points in the suspension of X to
the base point in Y is an identity element.

(iv) For a pointed map f: XX — Y, [h] = [f]7}, where h = f(z,1 —t).

Once we have checked all four, we will have proven that [XX, Y], is a group.

(i) Suppose fo ~ f and go ~ g. Then there are (based) homotopies F,G : X x[0,1] = Y
with F(z,t,0) = fo(z,t), F(x,t,1) = f(z,t),G(x,t,0) = go(z,t) and G(x,t,1) = g(z,t) for
all (z,t) € ¥X. Consider the map H = FxG : XX x [0,1] = Y,

F(:v2t25) 0<t<30<s<3
G(z,2t — 3<t<1,0<s<3

H(x,t,s) = (= 2s) 2 _1’1_8_2 for all z € X X.
F($2t28—1) 0§t§§,§<8§1
G(z,2t—1,2s—1) $<t<1,3<s<1

Note that H(z,t,0) = (foxgo)(x,t) and H(x,t,1) = (f*g)(x,t) for all (x,t) € XX. Moreover
H is continuous since all the maps start and end at the base point of ¥X. Hence H is a
homotopy from fy * go to f * g, i.e. [fo * go] = [f * g], so the group law is well-defined on
homotopy classes.

(ii) Let f,g,h : XX — Y be based maps. To verify associativity, we must show fx(gxh) ~
(f *g)*h. Define F : ¥X x [0,1] = Y by

f(z,2ts +4t(1 — s)) Ogtg%
F(:L‘,t,s): g(l‘74t_2) %<t§%
h(z, (4t —3)s+ (2t —1)(1 —s)) 2 <t<1

The figure below is a good guide.

X x [0,1] X x [0,1]
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(Here X denotes the base point X x {0,1}U{xo} x [0,1].) Then F has the following special
values:

( f(x,4t) 0<t<!

F(x,t,0) = < g(z,4t — 2) i<t§% = ((f*xg)*h)(z,t)
Az, 2t —1) L<t<1
( f(xz,2t) 0<t<1

F(z,t,1) = < g(x,4t — 2) %<t§§1 =(f*(gxh))(x,t)
Az, 4t —3) 2<t<1

for all (z,t) € ¥X. Clearly F preserves the base points since it does so piecewise; and F' is
continuous since all functions agree on the seams. Therefore F' is a homotopy (f * g) * h ~
f*(gxh).

(iii) Let f: XX — Y be continuous. Define F': XX x [0,1] — Y by

Fiasn - {flno 0<%

IN L,
=

Then F' preserves base points since it does piecewise, F' is continuous since all maps meet
at the base point on the boundary, and

1
2 = fxe
. f

f(z,0) 0<t<
b<ts

F(x,t,0) :{
Yo
F(z,t,1) = f(x,t).

Therefore F' is a homotopy showing f *e ~ f. The proof that ex f ~ f is similar. Therefore
e is an identity element.

(iv) Define
flz,t) 0<t<is
Fx,t,s) = f(550) F<t<
h(t) <t <

Then as before, F' is continuous everywhere, I’ preserves base points piecewise, F'(x,t,0) =
(f x h)(x,t) and F(z,t,1) = f(0) = yo for all z,t. Hence f x h ~ e, and the proof that
h* f ~ e is similar. We conclude that [XX, Y], is indeed a group under the given laws. [J

Proposition 1.1.4. Suspension defines a functor Top, — Top, from the category of pointed
spaces to itself. In particular, if f : X — Y is a pointed map then there is a suspended
map Xf : XX — XY such that X(f o g) = ¥f o Xg. Moreover, if f,g € Map,(X,Y) are
homotopic, then so are X f and Xg.

Proof. Define X : Top, — Top, on objects by X +— ¥ X. For a morphism f: X — Y which
is a based (continuous) map, define X f : XX — XY for all (z,t) € XX by

Sf(x,t) = (f(x),1).
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Then Y f is continuous since it’s continuous componentwise. Also, X f is a based map since for
all t € [0, 1], Xf(zo,t) = f(z0) = yo, and for any x € X, ¥ f(x,0) = (f(z),0) = (f(x),1) =
Yf(z,1) in XY so in particular, 3 f(X x {0, 1} U{ze} x [0,1]) = (Y x {0,1} U{yo} x [0, 1]).
This argument in addition shows X f is well-defined.

To prove X(-) is a functor, we must show 3(f o g) = Xf o Xg, where X Sy L 7 are
based. But this is immediate from the definition: for all z € Xt € [0, 1], we have

N(fog)e,t) = ((fog)(x),t) = (flg(x)),t) = Xf(9(x),t) = Bf o Bg(a, ).

Finally, if f,¢g: X — Y are based homotopic, let F': X x[0,1] — Y be a based homotopy
taking f to g. Define H : ¥X x [0,1] — XY by

H(z,t,s) = (F(x,s),t).

Then H is continuous and based by construction, H(z,t,0) = (F(z,0),t) = (f(z),t) =
Yf(x,t) and H(z,t,1) = (F(z,1),t) = (9(z),t) = Xg(x,t). Hence X f ~ Xg. O

Example 1.1.5. Let X = S™ be the n-sphere with base point x(, the north pole for example.
We claim that XS" = S"!. Indeed, if one removes the base point from S™, this yields
Euclidean space: S™ \ {x¢} = R""!. Therefore 5" is the one-point compactification of
R™*1 that is, X" = §n+l,

Example 1.1.6. If X = S° = {xg,2,} is the O-sphere then from the previous example,
¥5% = S1. The multiplication

[(51,330), (K yD)]* X [(Slvxo)’ (Yv yo)]* — [(517:50)7 (Y> yO)]*

is given by concatenation:

IA A
!—l N [—=

(f *9)(t) = {

f(2t) 0<t
g(2t—1) i<t
This says that the set Map(S!,Y), consists of all paths in ¥ starting and ending at yq.

Definition. Let (Y, yo) be a pointed space. For n > 1, nth homotopy group of (Y, o) is
7. (Y,y0) := [S™, Y., where we view the n-sphere as S™ = X.S"! forn > 1. Forn =1, the
group (Y, yo) is called the fundamental group of Y with base point yq.

Remark. For n = 0, the 0th homotopy my(Y, 7o) is just a set which is naturally identified
with the collection of path components of Y.

We will prove:
Theorem. For any pointed space (Y, o), 7 (Y, v0) is an abelian group for n > 2.

The fundamental group is not abelian in general. However, it is much better under-
stood than higher homotopy groups. For example, we have the following result for compact
manifolds:
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Proposition 1.1.7. IfY is a compact manifold, then m (Y, o) is finitely presented.

In contrast with cohomology, m,(Y,yy) may be hard to compute, and in fact can be
nontrivial for infinitely many n. What’s surprising is how little we really know about higher
homotopy groups. For example, 7;(S™) is not known for every value of n, k.

Definition. If g : (X, A) — (Y, B) is continuous, for any space/subspace pair (W,C'), the
induced map on homotopy is

g« - (W, C), (X, A)] — [(W,C), (Y, B)]
[fl—lge fl.

Lemma 1.1.8. If g : (X,z0) — (Y,v) is a based map, the induced map on homotopy
Gx : T (X, 20) = T (Y, yo) is a homomorphism for all n.

Lemma 1.1.9. For any maps g,h : (X,A) — (Y, B) which are homotopic and for any
(W, C), the induced maps

g*ah* : [(VV? C)v <X7 A)] — [(W> C): (Y7 B)]
are equal.
Proof. If g ~ h then go f ~ ho f. O

Corollary 1.1.10. If f, g : (X,z0) = (Y, yo) are based maps which are based homotopic, the
induced homomorphisms f., g« : To(X, 20) = m, (Y, y0) are equal for every n € N.

Definition. Two spaces X andY are homotopy equivalent if there exist maps f : X — Y
and g : Y — X such that fog~idy and go f ~idx. Similarly, two pointed spaces (X, xq)
and (Y, 1) are based homotopy equivalent if the homotopies above are based homotopies.

Lemma 1.1.11. The induced map commutes with composition; that is, for any spaces
(X,A),(Y,B),(Z,C) and continuous maps (X, A) ERN (Y,B) % (Z,C), we have

(9o f)e=gso fu

Corollary 1.1.12. If (X, x¢) and (Y,yo) are (based) homotopy equivalent, then m,(X, zq) =
(Y, y0) for all n € N.

Proof. Let f and g be as in the definition of homotopy equivalence. Then the homomor-
phisms f, : m, (X, z9) = (Y, 0) and g, : 7, (Y, v0) — m,(X, zo) are inverses, since

g*of*:(gof>*:(ldX>* and f*og*:<fog)*:(ZdY)*
by Lemma 1.1.11. O
Definition. A space X is contractible if it is homotopy equivalent to a point set {xo}.

Corollary 1.1.13. For any contractible space X for which the homotopy equivalence X =~
{zo} is based, every homotopy group is trivial: m,(X,xq) = {1} for alln > 0.
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1.1 Homotopy 1 Homotopy Theory

To make some computations of homotopy groups, we first need to take a detour and
discuss a notion from differential topology called smooth approximation.

Theorem 1.1.14. Let A, B C M™ be closed subsets of a smooth manifold M and suppose
f: M — R* is continuous on M and smooth on A. Then for all ¢ > 0 there is a continuous
map g : M — RF such that

(1) g is smooth on M ~ B and gla = f|a and g|g = g|a.

(2) lg(x) — f(z)] <e forallz e M.

(3) f =~ g and the homotopy F : M x [0,1] — R* is e-small, meaning |F(z,t) — f(z)] < ¢
for allz € M and t € [0,1].

Proof. (1) Choose a metric d on M (a Riemannian metric or the metric induced from the
standard metric on RY, where M C RY). For x € M, let e(z) = min{e,d(z, B)}. Then for
x € M ~ B, choose a neighborhood V, C M ~\. B of x and a function h, : V, — R such that

(a) If x € A then h, is smooth and h, = f on ANV,.
(b) If x ¢ A then ANV, = & and h, = f(z) is constant on V.

(¢) Each V, is small enough so that for all z € V,
e(x e(x e(x
£ - 1@< 22w - @< 2 and ey < 22

Then {V, }.enr is a cover of M, so take a locally finite refinement {U, },ec; such that the U,
cover M and for all o € I, there is an = z(a) such that U, C V,(,). Take a partition of
unity {\,} such that A\, is supported in U,. Define

D e AaWhay(y) ify € B
o = {f(y) ifyeB.

Since the cover {U,} is locally finite, it follows that ¢ is smooth on M \ B. If y € A~ B,
the only o with A\, (y) # 0 are those with z(«) € A\ B. For these y, hy)(y) = f(y) so

= XW)fy) = fW).

So gla = fla, and g|g = f|p is by construction.
(2) Next, we have

9W) = FO =D AaWhai(v) — ()

< ZA (hatay(¥) = f(@(@))]| + D Aalw) f(z() = f(y)

o

SN (mx(a) ()| +If(ae) - £0)])
o (2 e




1.1 Homotopy 1 Homotopy Theory

(3) Next, g is continuous on M. To see this, consider

< a(xéoc)) + d(y, B)

e(z(a)) < d(z(e), B) < d(z(a),y) +d(y, B) <
— e(z(a)) < 2d(y, B).

In particular, as y — B, |g(y) — f(y)| — 0. Finally, the straight line homotopy

F(a,t) = tg(x) + (1 — 1) f(x)
is the desired e-small homotopy between f and g. O

Corollary 1.1.15 (Smooth Approximation Theorem). Let M™ and N™ be smooth manifolds
that are metric spaces, where N is compact, and let A C M be a closed subset. Suppose
f: M — N is continuous such that f|a is smooth. Then there exists a function h : M — N
such that

(1) h is smooth on M.

(2) hla = f|a.

(3) d(h(z), f(z)) <& for allx € M.
(4) [ is e-homotopic to h.

Proof. Let N C R* for some k. Take a tubular neighborhood V of N in R, i.e. a ‘thickening’
of N by ¢ in every normal direction to N such that V retracts onto N. Since N C R¥,
Theorem 1.1.14 allows us to approximate f by a smooth map g : M — RF such that
g(M) C V. Composing g with the retraction onto N gives the desired map h: M — N. [

Remark. For sufficiently small £, any two such approximations g and A are smoothly homo-
topic and the homotopy between them is e-small. Therefore any f : M — N is homotopic
to a smooth map (hence the name smooth approximation) and if f,g : M — N are both
smooth and homotopic, then f and ¢ are smoothly homotopic.

Definition. A space X is simply connected if X is path-connected and 7 (X, xo) = 0 for
any o € X.

Proposition 1.1.16. The circle S is not simply connected.

Proof. Consider the identity map ~ : S* — S' as a loop with base point 1 (viewing S! as
a subset of C). We will show [] is not the trivial class in 7;(S?,1). In Example 0.4.4, we

proved that
/ ”y*d9:/ df = 2.
51 St

On the other hand, if ¢ : S* — S is the constant map c(z) = 1 for all z € S, then ¢*df = 0
since the differential of ¢ is 0. Thus | 51€"df = 0 # 27 so by Proposition 0.4.15, v and c are
not smoothly homotopic. Therefore by the remark, they cannot be homotopic at all. Thus
[v] # e in 7 (S, 1). O
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Theorem 1.1.17. Forn > 1, m(S™) =0 for all 0 < k <n and 7,(S™) # 0.

Proof. For the first statement, suppose f : (S*,x9) — (S™, o) is continuous. Take A = {x¢}.
Then f is based homotopic to a smooth map (S*, zo) — (S™, ). By Sard’s Theorem, such a
smooth map cannot be surjective so we really have a smooth map g : (S*, z9) — (S"~{p}, o)
for some p # xo. We claim there exists a based homotopy from id : S™ ~\ {p} — S™ ~ {p}
to the constant map ¢ : S” \ {p} — {xo} C S™ ~ {p}. This results from the fact that
S™~A{p} = R"™ and we can choose the homeomorphism such that z corresponds to 0 € R™.
Then F : R" x [0,1] — R", F(x,t) = (1 — t)z is a homotopy from id to c. Finally, compose
¢ with this homotopy to obtain a homotopy from ¢ to the constant map (S™ ~{p}, {zo}) —
{zo}. This proves m(S™) = 0 for all k£ < n.

For the second statement, let v € Q" (R"*1) be the standard volume form from Exam-
ple 0.3.9. In that example, we proved v is exact, so let w € Q*(R"*1) such that dw = v. By

Stokes” Theorem (0.4.5),
[o=]
n D

where D is the open unit (n + 1)-ball in R"*!. Integrating the volume form over D"*! is
just integrating over an open set in R™*!, which is our original formulation of the integral of

differential forms:
/ v = /dxl -+ dxp = vol(D) # 0.
D D

On the other hand, if ¢ : S — S™ is the (based) constant map c(z) = x, for all z € S™,
where z( is the north pole, then ¢*w = 0 since the differential of a constant map is 0. Thus

/id*w:/w#O:/ O:/ cw.
sn sn n n

By Proposition 0.4.15, this means id and c are not smoothly homotopic, but by the remarks
following the smooth approximation theorem, this implies they cannot be homotopic at all.
Therefore [id] is a nontrivial class in m,(S™). O

For a pointed space (X, z¢), the fundamental group (X, x¢) only contains information
about the path component of the base point xq. In fact, if xg,z; € X lie in the same path
component of X (or if X is path-connected), let v : [0,1] — X be a path from z to ;.
Then the map

7'('1()(7 ZL’l) — 7T1(X, 1’0)
1= [y * f 7]

is an isomorphism of groups.
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In the case that X is path-connected, we will write m (X) = 7 (X, z) for any base point
ro € X. In many instances we will just assume X is path-connected to begin with. To
summarize:

Theorem 1.1.18. If there exists a path v in X from xq to x1 then there is an isomorphism
of groups

hy o m(X, 21) — (X, z9)

[l [y 7]

with inverse h,—. Moreover, if v is a loop based at xo then h. is the inner automorphism
a v BafB! where = [y] € (X, xg).
Definition. Two loops fy, f1 : [0,1] — X are freely homotopic if there is a homotopy
F:[0,1]> = X from fo to fi such that F(0,s) = F(1,s) for all s € [0,1].

Note that a free homotopy need not based. Visually, the intermediate maps F'(¢, s) “float”
from fy to f; without any restrictions on their endpoints. Let p be the path in X defined
by p(s) = F(0,s) for s € [0,1]. Then we write f, ~, fi to denote that f; and f; are freely
homotopic via the path p.

Lemma 1.1.19. If fo, f1 : [0,1] = X are loops, fo ~, f1 if and only if h,[f1] = [fo]-

Theorem 1.1.20. If X andY are path-connected and o : X — Y is a homotopy equivalence,
then the induced map ¢, : (X, x9) — m (Y, y0) is an isomorphism of groups.

Proof. Set yy = p(xg). Since ¢ is a homotopy equivalence, there exists a homotopy inverse
¥ 1Y — X such that ¢ op ~ idx by a homotopy F': X xI — X. During F', ¥(p(z0)) traces
a path p from ¢ (¢(x¢)) to xo. Then for aloop f with base point xg, (Yop)of ~, f. Therefore
by Lemma 1.1.19, (¢ o ).[f] = h,[f]. This holds for all homotopy classes [f] € m1 (X, x¢) so
(o). = hy, which is an isomorphism. In particular, ¢, is an injection and 1), is a surjection.
Reversing the roles of ¢ and 1, we get that 1), is injective and hence an isomorphism Finally,
0. = ;1 (1h o ), which shows ¢, is also an isomorphism. O

Proposition 1.1.21. A (based) loop f : ST — (X, o) lies in the trivial class e € 71(X, x)
if and only if f extends continuously to a map D* — X.
Proof. ( = ) Suppose [f] = e € m1(X, zg). Then there exists a homotopy F' : S*x[0,1] — X

from f to the constant map c(t) = z for all ¢ € S'. The homotopy factors through the
quotient St x [0,1]/S! x {1} = D*
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1.2 Covering Spaces 1 Homotopy Theory

Therefore f extends to a map D? — X,

( <= ) In the other direction, if f extends to D? then composition with the quotient map
S1x I — D? from above gives a homotopy S' x I — X. This shows f is freely homotopic to
a constant map, f ~, ¢;,, v1 € X. By Lemma 1.1.19, h,[c,,| = [f] but [c,,] = € € m (X, 1)
so we must have [f] = e € m (X, o). O

The takeaway from Proposition 1.1.21 is that triviality in (X, x¢) is equivalent to
bounding a disk in X.

1.2 Covering Spaces

To motivate the study of covering spaces, consider the following extended example.
Let p : R? — R2 \ (0,0) be the map p(z) = €, i.e. p is like complex exponentiation:
p(z,y) = (e” cosy, e”siny).

A

> 21

A
Vv
[a)

—
/

W

Any strip between a pair of red lines maps (locally) homeomorphically (in fact, diffeomor-
phically) onto all of R?~\ (0,0). Set X = R*~ (0,0) and fix a base point, say zo = (1,0). We
will use p to study the fundamental group (X, z¢). Suppose 7 : [0,1] — X is a loop in X
with v(0) = (1) = xo. If v is contained in an appropriate neighborhood of (1,0) then p is a
local homeomorphism so there exists an inverse map p~* on the defined neighborhood. We
know from complex analysis that for p(z) = e*, this inverse map is a branch of the complex
logarithm, p~1(2) = log(z). Then 7 = p~! o~ is a loop in the designated strip in R?. Such a
7 is called a lift of v to R2.

Claim (Path Lifting). For any path ~y : [0,1] — R?* \ (0,0), there is a lift 5 : [0,1] — R?
such that v = p o 5. Moreover, 7 is unique once a starting point Y(0) is specified.

Idea: At each point z on the trace of 7, the preimage of a neighborhood of z under p is
a disjoint union of neighborhoods in R?. The claim follows from a more general notion of
‘path lifting” which will be proven later.

Claim (Homotopy Lifting). If F : [0,1] x [0,1] — R? ~\ (0,0) is a_homotopy rel endpoints
between fo and fi, and fo is a lift of fo, then there is a unique lift I :[0,1] x [0,1] — R? of
F such that F(t,0) = fo(t) for allt € [0,1] and F is a homotopy rel endpoints.
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1.2 Covering Spaces 1 Homotopy Theory

One method to find F' is to subdivide [0,1]? so that each sub-rectangle is mapped into
the domain of some p~. Another method is to define F using the path lifting property on
each vertical line segment in [0,1]2. This claim follows from the more general ‘homotopy
lifting” property which will also be proven later.

Corollary 1.2.1. If f :[0,1] = R*~ (0,0) is a loop with [f] = e in m (R* \ (0,0),z0) then
any lift f:[0,1] — R? along p is a loop in R2.

Proof. By hypothesis, there is a homotopy F' from f to a constant map, so we can lift rel
endpoints to a homotopy F' from f to the lift of the constant map, which is itself constant.
Since a constant map ony has one endpoint and F' respects endpoints, f must be a loop. [

Let X = R*~ (0,0) and o = (1,0) once again. If [f] € 7 (X, z0) is a loop then in
general f is a path, say starting at (0,0). The endpoint of f must be (0,27n) for some
n € Z. Call this n the degree of f. This induces a map deg : m (R* \ (0,0), z9) — Z defined

by deg[f] = n.

Claim. The induced map deg : m (R* \ (0,0),29) — Z is a well-defined isomorphism of
groups.

Proof. By the homotopy lifting property, n is invariant under homotopy, so deg is well-
defined. To show deg is a homomorphism, take two classes [f],[g] € 71 (R? ~ (0,0)) with
representatives f and ¢. Lift f to f, then lift ¢ to a path starting at the endpoint of
f. Then f g lifts to a path with degree deg f + degg. For surjectivity, map a segment
(0,0) — (0,27n) through p; by construction this is a loop in R? \ (0,0) at xo with degree
n. For injectivity, if deg f = 0 then f lifts to a loop f in R2, but R? is contractible so by

Corollary cor:contractiblehtpy, f is trivial. Therefore deg is an isomorphism. m
Corollary 1.2.2. m,(S') = Z.

Proof. Since S! is path-connected, 71(S!) does not depend on a base point (up to isomor-
phism). By Theorem 1.1.20, the homotopy equivalence R? \ (0,0) — S! induces an isomor-

phism of groups 71 (R2~ (0, 0)) = ,(5). Then by the previous calculation, 71 (S) = Z. O

Definition. A map p : X — Y between connected, Hausdorff spaces is a covering map if
each point y € Y has a neighborhood U such that p~(U) C X is a nonempty disjoint union
p Y (U) = [[ U, such that the restriction p|y,, : Uy — U is a homeomorphism for each U,.
Such a neighborhood U is called an evenly covered neighborhood of y, and the U, are called
the sheets of the cover over y. The domain space X is called a covering space of Y.

Examples.
@ The exponential map p : R? — R? . (0,0), p(z) = €7, is a covering map.
@ For any space Y, the identity map Y — Y is called the trivial covering map.

We want to generalize the path lifting and homotopy lifting properties described above.
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Lemma 1.2.3 (Lebesgue). If X is a compact metric space and {U,} is an open cover of X,
then there exists a number 6 > 0, called a Lebesgue number for the cover, such that for
all x € X, the ball B(x,9) is contained in some U,.

Lemma 1.2.4. Let W be a topological space and let {U,} be an open cover of W x [0, 1].
Then for all w € W, there is a neighborhood N of w and an integer n € N such that
N x [1 %} lies in some U, for each 0 < i < n.

Proof. We may cover {w} x [0,1] by finitely many open sets Ny x Vi,..., Ny x Vj since
{w} x [0,1] = [0,1] is compact. By Lebesgue’s lemma, there is an n € N such that each
[Z ﬂ} lies in some V. The set N = ﬂ;‘f:l N; is open and satisfies the required property. [

Theorem 1.2.5 (Path Lifting). Suppose p: X — Y is a covering map and f :[0,1] — Y is
a path in'Y with yo = f(0). Then for each xg € p~'(yo), there is a unique path g : [0,1] — X
such that g(0) =z and g lifts f, i.e. pog=f.

X
{0} —— x

s
s
s
s
.;/
2
’
s
s

071—>
[]fY

p

Proof. Each f(t) lies in an evenly covered neighborhood V; C Y so {f~(V;)} is an open
cover of [0,1]. By Lebesgue’s lemma, there exists an n € N such that [i, %] is contained
in some member of the cover for each 0 < i < n — 1. Namely, f ([Z, %T) lies in an evenly

covered neighborhood V;. Define g : [0, 1] — X inductively by:

e Forte [O, % , let Uy be the component of p~!(V}) containing zy. Write py = p|y, and
define g on [0, 1] by g =py' o f.
o If g has been defined on [0, ], let U; be the component of p~'(V;) containing g (£).
Set p; = p|y, and define g on |, %] by g =p; o f.
Then g is unique because Uy is the unique component of p~!(V},) containing zy. By construc-
tion, g makes the diagram commute, so we are done. O]

Theorem 1.2.6 (Homotopy Lifting). Suppose W is a locally connected space andp : X — Y
is a covering space. Let F': W x [0,1] = Y be a homotopy and f : W x {0} — X be a lift
of Flwxqoy, that is, po f = F. Then there is a unique homotopy G;W x [0,1] — X lifting
F such that po G = F. Moreover, if F' is a homotopy rel W' for some subset W' C W then
so 1s G.

WX{O}L;X

-,
-
-
G/
2
-
-
-
-

W] ——vy

p
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1.2 Covering Spaces 1 Homotopy Theory

Proof. Define G using path lifting on each {w} x [0, 1]. Then the diagram commutes and G
is unique as long as it is continuous. (Note that G has to be constant on {w'} x [0,1] for

all w' € Wit W C W is a fixed subset, since each constant map {w'} x [0, 1] Ly lifts
uniquely to a constant map.) To show G is continuous, take w € W. By Lemma 1.2.4, there
is a neighborhood N of w and an integer n € N such that F' (N x [ “L]) lies in an evenly
covered neighborhood in Y for all 0 < i < n — 1. Since W is locally connected, we may
assume N is connected. Now taking G to already be continuous on N X [0 :J we must have
that G (N X { }) is connected, so in particular G (N X { }) lies in a unique component
U; C p~Y(V;, where V} is an evenly covered neighborhood of F’ (N X [%, “7:1} ) By uniqueness
of path lifting (1.2.5) we have G = p;' o F on N x [%, ﬂ} where p; = p|y,. Then p; ' o F
is continuous on N X [% ﬂ} so (G is continuous. [

' n

Corollary 1.2.7. Suppose p : X — Y is a covering space and fo, f1 : [0,1] = Y are paths
in'Y that are homotopic rel endpoints. Take fo and fi to be lifts of fo and fi, respectively,
such that fo(0) = f1(0). Then fo and fi are homotopic rel endpoints, and in particular,

fo(1) = f(1).
Proof. Apply Theorem 1.2.6 to W = [0, 1] and W’ = {0, 1}. O

Corollary 1.2.8. Suppose p: X — Y is a covering space and f : [0,1] = Y is a loop which
is homotopic rel endpoints to a constant map. Then any lift f :[0,1] =Y of f is a loop and
18 homotopic rel endpoints to a constant map in X.

Corollary 1.2.9. Ifp: (X,z0) — (Y,y0) is a (based) covering map then the induced homo-
morphism
pi : (X, 29) —> (Y, 10)

is injective with image consisting of [f] such that f lifts to a loop in X.

Proof. 1f f is a loop in Y based at yy such that [f] = e € m(Y, o), then by Corollary 1.2.8,
the only lift of [f] in X is the constant class [c] = e € 71 (X, x). O

The key result of this sequence of theorems and corollaries is that every covering space
p: (X, z0) = (Y,y0) is associated to a subgroup of m1 (Y, yo).

Example 1.2.10. In Corollary 1.2.2, we showed that the fundamental group of the circle is
71 (S, 1) = Z. The subgroup/covering space correspondence in this case is easy to describe:

subgroups of Z ‘ covering spaces of S!

7 id: St — Stz 2
{0} Poo i R — S 2 €7
nf,n > 2 pn St — Stz 2

Corollary 1.2.11. IfY is Hausdorff, path-connected and locally path-connected and p : X —
Y is a nontrivial covering map, then m (Y, yo) # 1.

Proof. Such a cover X must be path-connected since it inherits connectedness and local
path-connectedness from Y. So given a fixed yo € Y, choose distinct zg, 1 € p~ Y(yo) and a
path f between them. Then p*(f) po fisaloopin Y since p(zo) = p(x1), but po f lifts
to a path that is not a loop. Therefore [p,(f)] # e in m (Y, o). O
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Example 1.2.12. (Real) projective space RP™ has several equivalent definitions. We will
focus on two: RP" is equal to the set of one-dimensional linear subspaces of R™™ (i.e.
lines through the origin in (n + 1)-space); or RP™ is the quotient space S™/ ~ where ~ is
the antipodal action z ~ —x on the n-sphere. In view of the latter description, there is a
continuous quotient map p : S™ — RP"™ which is everywhere 2-to-1. In fact, p is a covering
map. We can alternatively identify RP"™ with the closed n-disk D™ with antipodal points on
the boundary glued together.

For n = 1, RP! = S! but the covering map p : S — S' is a double cover — this
corresponds to the subgroup 2Z in Example 1.2.10.

For n = 2, to understand RP?, cut the disk D? into an annulus and a smaller disk:

D? = U

Identifying the edges of the annulus with the antipodal action produces a Mdébius band, so
we can also view RP? as the space obtained by gluing a disk to a Mobius band along the
boundary.

In the same way, RP? = RP? U D3. We claim that RP? = SOs;, the space of 3 x 3
orthogonal, orientation-preserving matrices, which is equivalently the space of rotations of
R3. Geometrically, each rotation p is uniquely defined by an axis (a line through the origin)
and an angle 0 < 7 < 27. Under this identification, a point v € D? (where D? now has
radius 7) corresponds to the matrix A, which represents rotation about the axis defined by
v by |v| = 7 radians, counterclockwise. Since m and —= define the same rotation, this gives
us a bijection D3/ ~ < SOs.

Given a diagram

we want to define conditions for when there exists a lift g : W — X of f. This situation is
completely described in the next theorem.

Theorem 1.2.13 (Lifting). Given a based covering map p : (X, x0) — (Y,y0) and a map
[ (Wowo) = (Y,y0), where W is locally path-connected, a lift g - (W, wy) — (X, o) of f
exists if and only if f.(m (W, wy)) C pu(m1(X, x0)). Moreover, if g exists, it is unique for the
given choices of base points.

Proof. (=) Given a lift g : (W, wy) — (X, xg), the diagram
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.

commutes, so fi (1 (W, wo)) = (p o g).(m (W, wo)) = pu(gs(m1 (W, wp)) € ps(m1(X, 20)).

( <= ) Define the lift g as follows. Given w € W, choose a path 4 from wy to w. Then
fovisapathinY from yy to y = f(w). Lift f o~ to a path 4 in X starting at zy, which
exists and is unique by Theorem 1.2.5. Then define g(w) = §(1), the endpoint of the lifted
path. Once we prove g is well-defined and continuous on W, uniqueness will follow from
uniqueness of path-lifting.

To show ¢ is well-defined, supose A is another path in W from wy to w. Then we must
show that for the unique lift A of fo X at xo, we have A(1) = 5(1). The product path % A~
is a loop in W, so it defines a class [y * A™'| € (W, wp). Then (f o) % (f o A7!) is a loop
in Y at yo such that

Fly= X7 =[(F o) = (f o ATH] € fulmi (W, wp)).

By assumption, (fov)* (foA™!) lifts to a loop in X at xy, but by uniqueness of lifting, this
is v * A~1. Hence ~ and ) start at 7o and end at the same point, so g is well-defined.
Finally, given w € W, take an evenly covered neighborhood U C Y of f(w). Then there
exists a path-connected neighborhood V' C W of w such that f(V') C U, which is possible
by continuity of f and local path-connectedness of W. Fix a path A from wy to w. Then
for w' € V, choose a path X from w to w'. Lift f o ) starting at g(w) to a path N at
zo € X. Then X X is the (unique) path from o to g(w'). But now N = pg'(f o X'), where
po is the restriction of p to the component of p~!(U) containing g(w). On V we then have
g = py ' o f which is continuous because it is the composition of continuous functions. Since
w was arbitrary, g is continuous everywhere. L]

p

w

Y

Example 1.2.14. Recall the covering space p : R — S'. Then the identity id : St — S?
does not lift to S — R because id,(71(S')) = id.(Z) = Z is not contained in p,.(m;(R)) =
p(1) =1.

R

E

By~ P

1 1
S - S
Example 1.2.15. Any map from the projective plane RP? to the circle is nullhomotopic.
Indeed, let f : RP? — S! be continuous and consider the universal cover p : R — S!. We will
prove (Corollary 1.3.10) that m (RP?) = Z/2Z and we already have seen (Corollary 1.2.2)
that m(S') 2 Z so the induced map on homotopy becomes f* : Z/27Z — Z. Since the only
finite subgroup of Z is {0}, f* must be the zero map. Therefore f,(m(RP?)) = 0 so by the
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1.2 Covering Spaces 1 Homotopy Theory

lifting theorem, f lifts uniquely to a map g : RP? — R such that f = po g. However, R is
contractible so ¢ is homotopic to a constant map c,, by a homotopy G : RP? x [0,1] — R.
Then F =po G : RP? x [0,1] — S is continuous, F(z,0) = po G(x,0) = po g(z) = f(x)
and F(x,1) = poG(x,1) = pocyy = Cp(ay), 50 F is a homotopy from f to a constant map in

St

Example 1.2.16. Suppose f : RP? — RP? is continuous and nontrivial on the fundamental
group. By Corollary 1.3.10, 7 (RP?) = Z/2Z so f, must be an isomorphism. Let p : 5% —
RP? be the canonical cover and consider the map g = fop : S? — RP2. Then the induced
map g, : m1(S?) — 7 (RP?) is trivial since S? is simply connected, so by the lifting theorem,
there is a unique lift g : S2 — 5% such that g = po g. Set T = g.

Fix 2 € S%. Since S? is path-connected, choose a path 7 in S? from x to —z. Then po~ is a
loop at y = p(x), so [p o] is a homotopy class in m (RP?,y). Moreover, [p o] is nontrivial
in 71 (RP?, %) since any loop in the trivial class lifts uniquely to a nullhomotopic loop in 52,
whereas p o~ lifts to the non-closed path v. Since f, is an isomorphism, f.[po~] is nontrivial
in 7 (RP?, f(y)). By definition of g and T, f.[pory] =[fopory] =[gor] =[poTon] =
p«[T o]. This shows that p,[T o~] is nontrivial in ; (RP?, f(y)). Note that we cannot have
T(—z) = T(z), else T o~ is a loop in S? based at T'(z), which is nullhomotopic, and thus
p[T 0 ~] is trivial. So T(—z) # T(z) but poT(—xz) = fop(—x) = fop(x) = poT(x)
so we must have T(—xz) = —T(z) since p is a degree 2 covering of RP?. This shows that
any f : RP?2 — RP? such that f, # 0 induces a map T : S? — S? that commutes with the
antipodal action: T(—z) = —T(x) for all z € S2.

Corollary 1.2.17. If W s simply connected, path-connected and locally path-connected, then
for any covering p : X — Y, every map f : (W,wo) — (Y,v0) lifts to a map g : (W, wy) —
(X, zo) which is unique once x1 € p~*(yo) is specified.

Corollary 1.2.18. All higher homotopy groups of the circle are trivial: m,(S') = 0 for
n > 2.

Proof. By definition, m,(S") = [S™, S"] so if f : S — S' is given, by Theorem 1.2.13 there
is a unique lift f : S™ — R making the diagram commute:
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However, every path in R is homotopic to a constant map, so in particular f ~ ¢ by some
homotopy F. Then F = po F is a homotopy from f to a constant map in S', demonstrating

[f] = e € m,(S"). Therefore 7,(S') = 0. O
Corollary 1.2.19. If Y has a contractible covering space then m,(Y,yo) = 0 for all n > 2.
Proof. Same as the proof for Corollary 1.2.18. [

Example 1.2.20. Fix m > 3. Then 7, (RP™) =0 for all 1 <n < m.

Proof. Let p: S™ — RP™ be the canonical covering space and suppose f : S" — RP™ is a
continuous map. Then 7;(S™) = 0 so fi(m1(S')) C pu(71(S™)) and therefore by the lifting
theorem (1.2.13), there exists a unique lift g : S™ — S™ such that f = pog. However,
by Theorem 1.1.17, m,(S™) = 0 since n < m, so the map ¢ : S™ — S™ is homotopic to
a constant map: g ~ ¢ by some homotopy F. Then by uniqueness of homotopy lifting,
F = po F must be a homotopy from f to a constant map in RP™. Therefore [f] is trivial
in m,(RP™), but because f was arbitrary, we conclude that m,(RP™) = 0. O

Theorem 1.2.21. If p: (X,29) = (Y, y0) is a based covering map, then the induced map
Ps (X, 20) = (Y, y0) is an isomorphism for all n > 2.

Proof. First, let f:S™ — (Y, yy) be continuous. Then since m(S,,) = 0, the lifting theorem
(1.2.13) provides a unique lift g : S™ — (X, 20) such that f = po g. By definition of the
induced map, we have p.[g] = [p o g] = [f] so in particular p, is surjective.

Now if [f] = e € m,(Y,y0), with F : S,, x [0,1] — (Y,y0) a based homotopy from f to
the constant map ¢, in Y, then by homotopy lifting (1.2.6), there is a unique homotopy
G : S" x[0,1] — (X, z0) such that F' = p o G. Notice that for any s € S, po G(s,0) =
F(s,0) = f(s) and po G(s,1) = F(s,1) = yo, so by uniqueness of the lift g, we must
have G(s,0) = g(s) and G(s,1) = o for all s. Therefore G is a homotopy from g to the
constant map ¢, in X, so [g] = e € m,(X,x9). This proves p, is injective, and hence an
isomorphism. O

Theorem 1.2.22. For any space Y, m,(Y, yo) is abelian for n > 2.

Proof. Take f,g : S™ — (Y,yo). We must show [f * g] = [¢g * f]. Let ¢ = ¢, be the
constant map at the base point yy. Then [c] is the identity class in 7, (Y, o), so we have
that [f * | = [f] and [c* g] = [g]. Since S™ can be viewed as a suspension, S™ = £.5""! we
can view f,g and c as based maps f,g,c: S"* x [0,1] — (Y, yo) which are all constant on
the base point (S"! x {0,1} U {zo} x [0,1]) of the suspension. Therefore ¢ represents the
identity homotopy class of based maps on S 1, so f*c ~ c* f and cxg ~ g*c. Passing back
to homotopy classes in 7,(Y,yo), we have the same homotopy equivalences f x ¢ ~ f and
cxg =~ ¢g. In other words, we can fill in the following homotopy squares, showing f*g ~ g f.

c g g c g c
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Theorem 1.2.13 gives a characterization of when a (based) map lifts to a cover. It will
be interesting to note then that every finite covering has loops that do not lift to paths in
the covering space. To see this, we need the following fact from group theory.

Theorem 1.2.23 (Jordan). Assume G is a group acting transitively on a set X, where
| X|=n and 2 < n < oco. Then there exists a g € G such that gx # x for all x € X.

Corollary 1.2.24. Let p : T — S be a finite covering space of degree n > 2, where T' is
path-connected. Then there exists a loop f : St — S which does not lift to a path f : St — T.

Proof. Fix s € S and set X = p~!(s) and G = m(S,s). Then G acts transitively on X
and |X| = n by hypothesis. Since |X| > 2, by Theorem 1.2.23 there is a class ¢ € G
such that gr # x for all + € X. Fixing some base point a € S, ¢ is represented by a
loop f : (SYa) — (S,s). If f:S' = T were a lift of f along p, then we would have
(po f)(a) = f(a) but then g - f(a) = f(a) by uniqueness of path lifting (Theorem 1.2.13).
Thus x = f(a) is a fixed point of g, a contradiction. O]

1.3 Classifying Covering Spaces

The goal in this section is to classify the covering spaces of a base space (Y, yo) by relating
them to the subgroups of m(Y, ). The starting point of this theory is Theorem 1.2.13,
which establishes the correspondence of subgroups of the fundamental group and covering
spaces. To classify covers, we must have a notion of ‘equivalent covers’ to work with.

Definition. Let p1 : X1 — Y and ps : Xo — Y be covering spaces. An equivalence of
coverings is a homeomorphism g : X1 — Xo making the diagram commute:
X1

g X,

1
Y

Lemma 1.3.1. Assume W is connected, p : X — Y is a covering and f : W — Y s
continuous. Suppose g1, ga : W — X are lifts of f such that g;(w) = go(w) for some w € W.
Then g1 = g2 on all of W.

Proof. Consider the set A = {w € W | ¢g1(w) = g2(w)}. Then for a fixed w € W, there
is a neighborhood Uy C W of w such that f(Up) lies in an evenly covered neighborhood
U C X of f(w). Let V be the component of p~'(U) containing ¢;(w) = go(w). Since g
and g are continuous, V = ¢; (V) N g; (V) is an open neighborhood in W, and since p|y
is a homeomorphism, we must have g;|; = (p|v)71 o f = go|y. Thus A is open. On the
other hand, let g1 X g2 : W — X x X be the map (g1 X ¢2)(w) = (g1(w), g2(w)). Then
A= (g1 x g2) ' (A) where A C X x X is the diagonal. Since X is Hausdorff, A is closed so
A is closed in W. By assumption, A is nonempty so we must have A = W. O]
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Theorem 1.3.2. Given two covering spaces py : (Wi, wy) — (Y,y0) and py : (Wa,we) —
(Y, yo) where Wy is simply connected, there is a unique covering map g : Wi — Wy making
the diagram commute:

Wi

N

N

\\g
4! W2

D2

Y

Proof. 1t Wy is simply connected, m; (Wi, w;) = 1. Then there is a unique lift g of ps such
that ¢ makes the above diagram commute. It remains to show ¢ is a covering map of
Wy, Let x € Wy and set y = po(x) € Y. Then there are neighborhoods U; and Uy of
y in Y such that p;'(U;) = [[, UL in Wi, with pi|yn : Ul — U; a homeomorphism for
each «; and py'(Us) = [, U3 in W,, with p2lyz © Ui — Uz a homeomorphism for each
B. Intersecting U; N U, if necessary, we may assume U; = U, =: U. Set V = Ug for
the component U3 of p, ' (U) containing x. For each U} in p;'(U), g(U3) lies in some U3
in p, '(U); let {V,} be the collection of these landing in V' Then since pi|y, : Vo, — U and
palv : V' — U are homeomorphisms and the diagram commutes, we must have gy, : V, = V
a homeomorphism for each V, and ¢g7'(V) = [[V.. Therefore V is an evenly-covered
neighborhood of = in W5 with respect to the map g, so g is a covering map W7 — Wy, [

Corollary 1.3.3. Simply connected covering spaces are unique up to equivalence of coverings.

Proof. Apply Theorem 1.3.2 to lift p; and ps to unique covering maps g : W7 — W5 and
h : Wy — Wi. The lifting property says that p; = p, o g and p, = py o h, so these together
give p; = p; o hog. Since idy, and h o g agree at the base point w; and both are lifts of
p1 along itself, we must have h o g = idy,. Similarly, g o h = idy, so ¢ is an equivalence of
covers with inverse h. O

Definition. If X — Y is a simply connected covering space of Y, then X is called the
universal cover of Y.

Example 1.3.4. Recall the cover p : R? — R2\ (0, 0) from Section 1.2. Fixing the base point
Yo = (1,0), we “see” the fundamental group 1 (R?\ (0,0),yo) as the preimage p~*(y) C R?,
that is, m1(R? \ (0,0),10) is in bijection with the fibre p~(yo) as sets. This identification
depends on the base point chosen, so a priori the set p~*(yy) does not have a group structure.
However, the fundamental group acts on the fibre in a certain fashion so as to define a group
structure.

Given a covering space p : X — Y and a base point yy € Y, the fundamental group
m1(Y, yo) acts on the fibre p~!(yo) as follows: for zy € p~!(yo) and [7] € 71 (Y, yo), define

zo - [v] = (1)

where 7 is the unique lift of v starting at xg.
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Proposition 1.3.5. xq - [¢] defines a group action p~'(yo) X 71 (Y, v0) — p~ (o).

Proof. First, the given action is well-defined on homotopy classes by the lifting theorem
(1.2.13). If e € m1 (Y, yo) then e lifts uniquely to the constant map at xo. Therefore xy-e = xy.
Finally, for any [v], [n] € m1(Y, vo), we have

(xo) - [7]) - [n) = 4(1) -y = (1)
where 77 is the unique lift of 7 starting at 4(1). On the other hand,
o - [y *n] =7 *7(1)

where 7 7 is the unique lift of v * i starting at xy. By definition of path products, these
must agree since 7 starts at 7(1). O

Lemma 1.3.6. For a cover p: X — Y, the action of m(Y,y0) on p~*(yo) is transitive.

Proof. X is path-connected, so given xg,z; € p~*(yo), there exists a path f in X from z, to
x1. Then v =po fis aloop in Y with base point y, that lifts to f, so xq - [y] = ;. O

Lemma 1.3.7. For any xq € p~*(vo), the stabilizer G, is equal to p.(m (X, z0)).

Proof. For any o € m1(Y, o),

a € Gy, <= a=|f] for some f:S' — (Y,y) lifting to a loop g at z
— [g] € m (X, zo)
< [f] € p«(m (X, z0)) by uniqueness of path lifting.

Therefore G, = p.(m1(X, x0)) as claimed. O

Theorem 1.3.8. Let p : X — Y be a covering space and yy € Y be a point. For each
zo € p~(yo), the map

(Y, y90) — p~ " (%0)
(V] — x0 - [7]

induces a bijection (Y, yo)/p«(m1(X, 20)) = p~ (o), where the quotient w1 (Y, yo)/p+(X, 7o)
is the collection of right cosets.

Proof. This is simply the orbit-stabilizer theorem. O]

Corollary 1.3.9. The number of sheets in a coverp : X —'Y equals [m1(Y, yo) : p«(m1(X, 20))]
for any xo € p~(yo).

In particular, if X is simply connected, the number of sheets of X — Y is equal to
[T (Y, yo)]-

Corollary 1.3.10. For alln > 2, m(RP") 2 Z/27.
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Remark. If X is the universal cover of Y and zg,7; € p~'(yp), there is a unique equiv-
alence of covers g : X — X with g(z9) = x;. This is generalized by the notion of deck
transformations.

Definition. For a covering space p: X — Y, a deck transformation of X is an equiva-
lence of covers g : X — X.

Example 1.3.11. Let p: R? — R?~.(0,0), p(z) = €* be the universal cover of the punctured
plane.

F'S
¢ > 27
< > T
p
p) S — T
< [4 0
o < ?
< > > —T
[ ]
¢ > —27
+

The equivalences g, : R? — R? (x,y) — (x,y + 27n) are deck transformations. By
Lemma 1.3.1, if g(z) = = for some z € X then g(z) = « for all z € X so these are all
the deck transformations of the cover R? — R? ~ (0, 0).

Proposition 1.3.12. The set A(p) of deck transformations of a coverp: X — Y is a group
under composition.

We saw that 7 (Y, 7o) acts on the fibre p~'(y,). The group of deck transformations also
has a natural action on p~'(y): If g : X — X is a deck transformation and xy € p~*(y)
then g - zy = g(x¢). This is well-defined since g is a homeomorphism that commutes with
the covering map p. Moreover, the action of A(p) commutes with the fundamental group
action:

Proposition 1.3.13. For any g € A(p),z € p~*(yo) and a € m (Y, yo), we have g(z - a) =
g(x) - a.

Example 1.3.14. Consider the figure-eight space, which topologically is the wedge of two
circles:

Sty st

The easiest way to view some of the covering spaces of S'V S! is by drawing them as
connected graphs:
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b
A B C

Notice that the graphs A and B are each a 2-fold cover of X = S' Vv S!, while C is a 3-fold
cover. The group of deck transformations A 4 for A consists of the trivial equivalence and the
symmetry consisting of flipping the graph along its horizontal axis and then swapping the
inner and outer strands (of course swapping a for a and b for b). So Ay = Z/27Z. Similarly,
Ap = 7/27 consists of the trivial equivalence and then the transformation that flips B along
its horizontal axis, swaps the b’s and flips over the a’s.

In the case of graph C, we know A¢ is a subgroup of S5, the group of permutations of
3 elements. But it’s not the whole symmetric group, since a deck transformation that fixes
any element must be the identity. So the only nontrivial deck transformations of this cover
are the rotations, and hence Aq = 7 /37Z.

For a cover p: X — Y and a point = € p~*(yp), we will abbreviate p,(m1 (X, z)) by J,.
Lemma 1.3.15. For any xo € p~*(y0) and o € 7 (Y, 40), Juga = @y r.
Proof. For any xg € p~'(yy) and a € m1(Y, y0),

B € Jyya < (v9-a)-f=1z9-a by Lemma 1.3.7
= z0-afBa”t =z
= afial e o -

Hence J,,.0 = a 1, a. O

Let G be a group. Recall for a subgroup H < G, the normalizer of H in G is the subgroup
Ng(H)={g € G| gHg ' = H}. This is the stabilizer of H under the conjugation action of
G on itself. If H < G is a normal subgroup, then Ng(H) = G.

Theorem 1.3.16. Let p: X — Y be a covering space, yo € Y a point and o, 1 € p~ (o).
Then the following are equivalent:

(1) There exists a deck transformation g : X — X satisfying g(x¢) = 1.

(2) There exists a loop o € m(Y,yo) lying in the normalizer N (p.(mi (X, x0))) such that
o = XT7.

(3) p+(m1(X; 20)) = pu(m (X, 1))
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Proof. (1) <= (3) By Theorem 1.2.13 there is some g : X — X lifting p with g(zo) = x;
if and only if J,, C J,,. Then there is an inverse h : X — X of g if and only if J,, C J,,.
In particular, g is a deck transformation if and only if J,, = J,,.

(2) < (3) If a € N(J,,) with zg - a = x1, then by Lemma 1.3.15,

Joy = Jaga = @ g = o

On the other hand, if J,, = J,, then by Lemma 1.3.6, there is some « € m1(Y, yo) such that
zo-a=z;. Then a ' Jya = Jpyo = Juy = Juy, S0 we see that o € N(J,,). O

Corollary 1.3.17. J,, = p.(m(X, x0)) is a normal subgroup of m (Y, yo) if and only if A(p)
acts transitively on p~*(yo).

Proof. Exercise. m

Corollary 1.3.18. Fiz xo € p~'(yo). Then as x; ranges over p~'(yo), the groups J,, vary
over all conjugates of J, in m (Y, yo).

Definition. A covering space p : X — Y is regular (or normal) if A(p) acts transitively
-1
on p~ " (yo).

Lemma 1.3.19. A covering space p : X — Y is reqular if and only if J,, = p.(m1 (X, z0))
is a normal subgroup of (Y, yo) for any xo € p~(yo).

Theorem 1.3.20. Let p: X — Y be a cover and take xog € p~'(yo). Then there is a short

exact sequence
1= pu(mi (X, m0)) = N(pu(mi(X, 20)) = Ap) — 1.

Proof. Define a function

©: N(Jz) — Alp)
a—> gq

where g, is the unique deck transformation of X such that g,(z¢) = zo - @. Then for any
a,B € N(Jy),

gaﬁ(xO) =z -af = (1700 : a) B= ga(%) B
= go(xo - 5) by Prop. 1.3.13

= ga9s(20).

Therefore by Lemma 1.3.1, gog = ¢ags everywhere since they agree at zp. So © is a
homomorphism, and it is surjective by Theorem 1.3.16. Finally, by the same theorem
ker© = {a € m (Y, y0) | ga(z0) = 20} = Juy, SO we have the desired exact sequence. O

Corollary 1.3.21. Ifp: X — Y is a regular cover, then A(p) = m (Y, yo)/p*(m1(X, x0)).
Corollary 1.3.22. If X is a universal cover of Y then A(p) = w1 (Y, o).

If p: X — Y is a universal cover of Y, a useful perspective is to think of Y as the
quotient space Y = X/A, where A is the action of the deck transformations on X.
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Example 1.3.23. The universal cover R — S gives rise to an action of Z on R:
ZxR—R, (n,z) —»n+z.

The quotient space R/Z is therefore canonically identified with S.

Question. Given an action of a group G on a space X, when is the quotient map X — X/G
a covering map?

If the question has an affirmative answer, G will end up being be the group of deck
transformations of X — X/G. The following properties are certainly required for one to
have a covering map in such a situation:

e The action is free: for any = € X, gr = x if and only if g =e.
e There is some condition guaranteeing the evenly covered property of X — X/G.

Definition. An action of G on X is properly discontinuous if every point v € X has a
neighborhood U such that for all g # e in G, gUNU = @.

Lemma 1.3.24. Fvery properly discontinuous action is also a free action.

Proposition 1.3.25. If G acts properly discontinuously on a path-connected, locally path-
connected, Hausdorff space X, then the quotient map p : X — X/G is a covering map with
A(p) =G.

Proof. The neighborhoods in the definition of a properly discontinuous action descend via p
to evenly covered neighborhoods of the points in X/G. If U is such a neighborhood in X/G,
then p~1(U) = seq 9U is a disjoint union and gU — U is a homeomorphism for each g.
Clearly G acts by deck transformations in general, but by definition of the quotient action,
G = A(p) where p is the quotient map. ]

Corollary 1.3.26. If X is simply connected and G acts properly discontinuously on X, then

Example 1.3.27. Picking up where we left off in Example 1.3.14, consider once again the
figure eight space:

Stv st
Let G = («a, ) be the free group on two generators and let I' be the Cayley graph of G.
Explicitly, the vertices of I' are the elements of G and the edges of I" are pairs of vertices of

the form (g, ga) or (g, 90).
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|
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The group G acts on I' by the following;:
e On vertices, by left multiplication: h - g = hg.
e On edges, by translation: h - (g,ga) = (hg, hga) and h - (g, 98) = (hg, hg5).

Clearly this action is free, and in fact it’s properly discontinuous. The quotient space I'/G
is homeomorphic to the figure eight space: S' Vv S! = I'/G. We claim that T' is simply
connected, and therefore a universal cover of S' Vv S'. This follows from the facts in graph
theory that (1) any tree is contractible, and (2) the Cayley graph of a free group is a tree.
Hence by Corollary 1.3.26, we conclude that (S V St) = (a, 3), the free group on two
generators.

Remark. Any finite graph I' is homotopy equivalent to an n-fold wedge of circles STV - -V
St =\/" S Then by the above argument, 71(\/" S') = (a1,...,a,) = F),, the free group
on n generators. In fact, n = 1 — x(I'), where x denotes the Euler characteristic of the finite
graph.

1.4 The Fundamental Theorem of Covering Spaces

We now prove the fundamental theorem of covering spaces.

Theorem 1.4.1. Let Y be a path-connected, locally path-connected space and suppose p :
X =Y is a simply connected covering space. Then there is a one-to-one correspondence

equivalence classes of covering conjugacy classes of subgroups
spaces p: X =Y H <7 (Y, y) .
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Moreover, restricting one’s attention to based coverings, there is a bijective correspondence

equivalence classes of based covering PN subgroups
spaces p (X, 20) = (Y, 30) H<m(Yop)f

Proof. The first correspondence on conjugacy classes of subgroups follows from the second
correspondence and Lemma 1.3.15. To prove the main correspondence on subgroups and
based covers, define a map

O:(p:(X,20) = (Ym)) — H = p(m (X, 20)).

By the lifting theorem (1.2.13), ® is injective, so it remains to show it is surjective.

Take a subgroup H < m1(Y,yo). We know A(p) = m(Y,y0) so view H as a subgroup
of the deck transformation group A(p). Since A(p) acts properly discontinuously on Y, H
also acts properly discontinuously on Y so by Proposition 1.3.25, there is a quotient space
X = X/H such that the quotient map p : X = X/H — Y is a covering map. It then
suffices to show H = p.(m(X,x¢)). Let v € m(X,x0). Under p,, this becomes a class
p«(7) € m1(Y, yo), which one can think of as a based loop in Y. The lift of p.(v) along p is
then a path 4 in X starting at o and ending at the point Zj - p.(7). Now passing to the
quotient space X = X /H, 4 becomes the loop 7, meaning the endpoints of 4 lie in the same
orbit of H in X. Hence by Theorem 1.3.16, there exists a deck transformation Ip.(v) € A(D)
such that Zo - p.(Y) = gp.(+)(To). We have shown that g, (,) is determined uniquely either by
its action on Zg or by the loop p. (7). This is possible if and only if p.(y) € H, in which case
H = p.(m(X,2p)). Thus ® is surjective. O

What’s more, Lemma 1.3.19 says that the correspondence is bijective on regular cover-
ing spaces and normal subgroups of m (Y, ). This is remarkably similar to the bijective
correspondence in the fundamental theorem of Galois theory.

Corollary 1.4.2. If F,, is the free group on n generators and H < F,, is a subgroup of finite
index, then H is free. In fact, if p=[F, : H| then the rank of H is pn — p + 1.

Proof. By Theorem 1.4.1, every subgroup H < F,, corresponds (up to an isomorphism of
covers) to a covering space of \/" S having p sheets. Let X — \/" S! be this cover. Then
X is a finite graph, which means H = (X, ) is free on 1 — x(X) generators, by the final
remark in Section 1.3. Since X — \/" S! is a p-to-1 cover, x(X) = px(\/" S') but one can
count vertices and edges to see that x(\/" S') = n — 1. Therefore the rank of H is

I1—x(X)=1—p(l—=n)=pn—p+1.
[l

Remark. From Corollary 1.4.2, one obtains the surprising fact that there is a free subgroup
of infinite rank inside the free group F», on two generators.

To wrap up the theory of covering spaces and truly have a complete characterization
via the fundamental theorem of covering spaces, we must find conditions for when a space
(Y, yo) has a universal cover. The characterizing condition, stated below, is known to hold
in almost all ‘natural’ settings, but as a technical requirement it is involved.
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1.5 The Seifert-van Kampen Theorem 1 Homotopy Theory

Definition. A space Y is semilocally simply connected if every point y € Y has a
neighborhood U such that m(U,y) — m (Y, y) is trivial.

Theorem 1.4.3. Suppose Y 1is path-connected and locally path-connected. Then Y has a
unwversal cover if and only if Y is semilocally simply connected.

Proof. (=) Suppose p : X — Y is a universal cover. Take y € Y and let U be an evenly
covered neighborhood of y. If v is a loop at y contained in U, then ~ lifts to a loop 7 C X ,
so ¥ contracts to a point in X since X is simply connected. Composing with p, we see that
7 is nullhomotopic in Y. Therefore m (U, y) — m (Y, y) is trivial.

( <=, Sketch) We construct a universal cover X as follows. Fix Yo € Y and set

X ={(y,[f]) :y € Y and f is a path from y, to y}.

Define p : X — Y by p(y,[f]) = y. Since Y is locally path-connected, such a pair (y, [f])
exists for every y € Y, and hence p is surjective. Suppose U C Y is a neighborhood of y
such that m (U,y) — m1(Y,y) is trivial. Then for any (y, [f]) € X, we have a set Ujy; C X
defined by

Upn =AW, 1f1):v €U, f = f=*a for some path o C U from y to y'}.

One can show that the collection of Uy ranging over all [f] and U C Y generate a topology on
X with respect to which p is continuous. Finally, one finishes by showing that U = ]_[[ fl Urp
and ]5|U[ g 18 a homeomorphism for each open set Uj;. We also need to verify that X is

path-connected, locally path-connected and simply connected, but these details follow from
the definitions of X and p. m

1.5 The Seifert-van Kampen Theorem

A theorem of van Kampen’s, later generalized by Seifert, makes it possible to compute a
presentation of the fundamental group 7 (Y, yo) when Y is sufficiently nice union of path-
connected spaces. Before stating the theorem, we review the notion of free products of
groups.

Definition. If G and H are groups, their free product is the group G« H whose elements
are reduced words gihigahs - -+ gohy, where g; € G, h; € H and none are the identity other
than possibly g or h,. The group law on G x H is concatenation (followed by reduction).

Examples.

@ If G = (a) and H = (b) are free groups of rank 1, their free product is G x H = (a, b).
This generalizes to free groups of any finite rank.

@ If G =(a; | rj) and H = (b | s¢) are groups with generators a; and by, and relations
r; and sy, respectively, then their free product is simply the union of the generators
together with all the relations from both groups:

G H = (a;,bg | 15, s0)-
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Definition. If G, H and K are groups and g : K — G and h : K — H are homomorphisms,
the amalgamated free product G *xx H is defined as the quotient group of G« H by the
normal subgroup consisting of all elements of the form g(k)h(k)™* for g,h,k € K.

Remark. The amalgamated free product is an example of a pushout of groups.

Example.

@ Let G = (a), H = (b) and K = (t) all be free groups. Then any maps from K to the
others are of the form

g K—G, t—ad"
and h: K — H, t—b" forn,m e N,.

In this case G xx H is easy to present:
Gxx H={a,b|a" =0b").

Define a map ¢ : G*xx H — Z by sending a — m and b — n. This map is well-defined
since p(a™) = mn = p(b™). Moreover, ¢ is surjective, and nontrivial when n,m > 1.
Thus G *x H is infinite when n,m > 1.

Theorem 1.5.1 (Seifert-van Kampen). Suppose X is a space and U, V,UNV C X are open,
path-connected subsets such that U UV = X. For anyx € UNV, set K = m(U NV, z).
Then m (X, x) 2 m(U, x) xx m(V, x), where the maps K — m (U, x), m(V,z) are the natural
inclusions.

Proof. (Sketch) The inclusions m (U, z) — 7 (X, x) and 7 (V,z) — 7 (X, x) induce a map
m(U,z) * m(V,z) — m(X,x) by the universal property of the free product. Now K is a
quotient of this free product, so there is a homomorphism

S m(U,z) g m(V,z) — m (X, z).

It remains to show ® is an isomorphism. First let v be a loop in X based at x. Then
{v=HU),y1(V)} is an open cover of [0, 1], so by Lebesgue’s lemma (1.2.3), for sufficiently
large n all intervals of length £ in [0,1] lie in one of v~ }(U),y (V). For each % such that
0 (%) € UNYV, take a path g; from (%) to x. Then v ~ (v * B;) * (8, * 72). Doing this
for all ¢+ shows that v can be written as a product of loops in U or V; hence ® is surjective.
On the other hand, suppose v = 1 * - - x v € m (U, z) xx m(V,x) is trivial in m (X, x)
via ®. Then there is a homotopy rel endpoints F : [0,1]> — X between 7 and the constant
map at z. By Lebesgue’s lemma (1.2.3), every square of edge length < in [0, 1] must map
into either U or V for large enough n. Without loss of generality we may assume k = n.
We will use this to construct a homotopy G : [0,1]> — X between v and a constant map in

’/Tl(U,.’L') XK ’/Tl(‘/, LI})
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Cx

Y2 V3 - Yk

We may arrange so that F'is constant in the horizontal direction in neighborhoods of seg-
ments of the form {%} x [0, 1]; likewise, we can arrange F' to be constant in the vertical
direction in neighborhoods of segments [0,1] x {£}. By interposing paths to z in either U
or V at each vertex of the homotopy square for F', we may assume each vertex maps to z
and each square maps in U or V:

x x x
N N
M Y2 V3
K > v > ® *—
x x x
U Y&V YBV B3
[ > L > L 7> o —
T i T Y2 T V3 x

By the amalgamation relations, we compute:

Yok e kg ke k ey, = (J1x Br)u * (Br % Fo x Ba)v * (By " * sk B3)y % - -
= (J1 % B1)v * (B * o * Y3 % By)y -+
= V1Yo kY3 Kk ek Y

Continuing this process constructs the homotopy square for G, which again is a homotopy

[a)

from v to a constant map ¢, in m (U, z) *x m(V,x). Hence ® is injective, so m (X, z) =
m (U, z) xx m (V, x). O

Corollary 1.5.2. If X = U UV for open, path-connected sets U,V C X and UNV is
contractible, then for any x € UNV, m(X,z) = m(U,z) * m(V,x), the free product of
m (U, x) and m (V, z).

Example 1.5.3. We show that the torus 7" = S! x S! has fundamental group Z? = Z x Z.
Write T as quotient space of the square [0, 1]? with opposite sides identified. Then T'= UUV/,
where U and V' are the open sets shown below:
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Then 71 (U) = 1 since U is contractible and (V') = (a, b), the free group on two generators,
since B retracts to the wedge of two circles. Further, UNV retracts to a circle, so 7 (UNV') =
(¢) = Z by Corollary 1.2.2. As a loop in U, [¢] is trivial since m(U) = 1, while in V,
[c] = aba='b~!. Hence by the Seifert-van Kampen theorem,

(T, x) =2 m (U, z) * m(V,2) = (a,b | aba™'b"") = 72

Example 1.5.4. Let K be the Klein bottle, identified as the following quotient of the unit
square:

2

\
7

Decompose K into the following two open sets:

] £y

K U V unv

Then U glues together to form a Mobius band, which retracts onto its center circle and
thus m(U) = (a) = Z for a generating loop traveling from left to right in the diagram
above. Likewise, V' is homeomorphic to a Mdbius band, so m (V) = (b) = Z, where b
travels from left to right. Finally, U NV glues together into a strip which retracts to a
circle, so m (U NV') = (¢) 2 Z for a loop traveling left to right. By the Seifert-van Kampen
theorem, m (K) = (a) *(y (b). The generators of this amalgamated product are just the
free generators a and b. Under the inclusion U NV < U, ¢ maps to a?, while under the
inclusion UNV < V, ¢ maps to b?. Hence the presentation for the fundamental group of the
Klein bottle is 71 (K) = (a,b | a®0™%). Another presentation, perhaps more useful in some
circumstances, is 71 (K) = {(a,b | aba™'b).

Example 1.5.5. Consider X9 = T#7T, the connect sum of two tori.
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1.5 The Seifert-van Kampen Theorem 1 Homotopy Theory

Decompose Y5 into open sets U and V' which overlap in the neighborhood between the two
disks in the figure above. View U and V' as quotients of squares, and U NV as a cylinder:

C
bl a2
A > PN AR
1 \ AN \
1 \ i A\
1 \ " 1
a1y \’:/\ Y a; b2 N\ \/:/\ N\ b2 |‘ ,1 ’n‘ ’I
\ ! 1\ 1
C1 Co \\\ /// K \\ ”1
< >
b1 (45
U \%4 unv

Then U and V' are each a torus with one puncture, but each of these retracts onto the wedge
of two circles. Hence 7 (U, xg) = Fy = m(V,x0), the free group on two generators. On
the other hand, a cylinder retracts onto a circle, so m (U NV, x9) = Z. Let m(U,zo) =
(a1,b1), m(U,x0) = (ag,by) and m (U NV, x0) = (c¢) as pictured above. By the Seifert-van
Kampen theorem, m (X2, 20) = (a1, b1) *() (a2,b2). Under the inclusion UNV — U, we
can see that ¢ maps to ¢; which is homotopic to a;bia;'b;'. On the other hand, along
UNV < V, c maps to ¢y =~ byash,'ay*. Putting these together, we obtain the relation
cic;t = aribia; b agboay byt = [ag, bi][ag, bs]. Hence

7T1(227x0> = <alablaa2ab2 ’ [alabl][a27b2]>-

The genus g surface is a g-holed torus, defined recursively by ¥, recursively by ¥, =
Yg—1#T. By induction, the Seifert-van Kampen shows that the fundamental group of ¥, is

g
T (X4, z0) = <a1,b1, ooy, by | H[ai,bi]> for every g > 1.
i=1

The group m1(X,) is called the gth surface group. These groups are quite large. In the case
of ¥, let F; = (z,y) be the free group on two generators and define a homomorphism
Q. 7T1<22) — F2
ay — x
ag —— Yy
bl, b2 — 1.
Then ¢ is clearly surjective, so the surface group for a 2-holed torus is at least as ‘big’
as the free group F». Moreover, m(3y)/keryp = F, by the first isomorphism theorem,
and since F5 is the deck transformations of the universal cover X of the figure eight space

(Example 1.3.27), we get a cover X — X/3¥,. Explicitly, X/¥, is obtained by ‘enlarging’
the universal covering graph X — S' Vv St
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This is generalized by the following proposition.

Proposition 1.5.6. Suppose M and N are connected n-manifolds, for n > 3. Then the
fundamental group of their connect sum, M#N, is the free product of their fundamental
groups: m(M#N) = m (M) % m(N).

Proof. To obtain the connect sum M# N, we remove two coordinate neighborhoods U and 17,
one from each manifold, and glue the boundary of each (a boundary which is homeomorphic
to S™71) to a copy of S"! just inside the neighborhood removed from the other. (This is
precisely what is depicted in the first figure in Example 1.5.5.) Define open sets Uy, V;, Us, Vs
so that M = U, UVy and N = Uy UV; as follows. Let Uy be M minus some point in Un M;
likewise set U to be N minus some point in the corresponding neighborhood V'N N. Let
Vi = UNM and Vo = V N N. Then M+#N is homotopy equivalent to U; U U, so we can use
Seifert-van Kampen to obtain a description of m(M#N) = (U U Us).

First we consider the decompositions M = U; U V] and N = U, U V5. By construction
V1 is homeomorphic to an n-ball B" so it is contractible and m1(V;) = {1}. Assuming
n > 3, the intersection U; N V] is homeomorphic to B™ \ {p}, which is contractible. Thus
m(Uy NVy) = {1} as well, and so by Seifert-van Kampen we must have m (M) = 7 (Uy). A
similar proof shows 71 (N) = 7 (Uy).

Now consider the decomposition M#N = U;UUs,. In our situation U; MU, is contractible,
so m (U1NUsy) = {1}. By Seifert-van Kampen, we get that 7 (U;UUy) is isomorphic to the free
product m (Uy) * m1(Us). By the above calculations, this shows m(M#N) = 7w (M) * 7 (V)
as desired. O
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2 Homology

2 Homology

One of the most important areas in topology is homology. Homology was originally conceived
of as a way to distinguish between two topological spaces by studying their ‘holes’. For
example, we have seen that the genus g of a surface is a topological invariant; that is, two
compact, orientable surfaces are homeomorphic if and only if they have the same number of
holes. This idea can be captured by a homology theory such as singular homology, but more
exotic homology theories abound. These capture many different types of information that
may be useful to a topologist.

2.1 Singular Homology
Our first approach to a homology theory is singular homology. Loosely, the philosophy of

singular homology is to view a space as a linear combination of formal ‘triangles’, or images
of n-dimensional triangular structures under continuous maps.

Definition. For each p > 1, the standard p-simplex is the compact subset A, C RPT!

defined by
p P
i=0 =0
Example 2.1.1. The first three standard simplices are depicted below:

Aj

€1 AQ
Ay

€o

line segment triangle tetrahedron

Definition. Let p > 1. A singular p-simplex in a topological space X is a continuous map
o: A, = X.

Example 2.1.2. If vg,vy,...,v, € R are any vectors, there is a corresponding p-simplex
given by the map
p p
(o Z /\Z-ei — Z)\lvl
i=0 i=0
This is an example of an affine p-simplez, denoted o = [vg, vy, . .., Up).
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2.1 Singular Homology 2 Homology

Example 2.1.3. For each p > 2, there are natural affine simplices A,_; — A, called face
maps, defined by

F;p: {60,...,éi,...,€p] . Ap,1 — Ap
p—1
Z /\jej — )\060 + ...+ )\i_lei_l + /\iei—l—l + ...+ /\p_lep.

J=0

For example, the face maps from A; to A, are

€o
2
F;
E? F?
1 2
o-—
€o €1 & ®
e e
A, R

Definition. For a topological space X, the pth singular chain group of X is the free
abelian group generated by all p-simplices in X, written A,(X). An element of A,(X) is a
finite Z-linear combination of simplices o : A, — X, called a p-chain.

Example 2.1.4. For any space X, A¢(X) is formally defined to be the free abelian group
generated by the points in X, and A;(X) is the abelian group consisting of Z-linear combi-
nations of paths in X.

Definition. Let 0 : A, — X be a p-simplex. Then the ith face of o is the (p — 1)-simplex

P . :
oA, 1 — X given by 0@ = oo FP 1 A, i> A, = X. The boundary of o is the
(p — 1)-chain do =Y F_(—1)ic®,

To each simplex we associate its boundary as described above. This defines a homomor-
phism of abelian groups, called the boundary operator:

9: A (X) — Ay (X)

Z NgT — Z N,00.

Example 2.1.5. In R?, the triangle A, is an affine simplex with boundary [e;, €] — [eq, €2] +
leg, €1]. Visually, the boundary operator takes an affine simplex to its frame:

€2 €2

€o €1 € €1

Ay 00,
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Lemma 2.1.6. For any space X, 0> =000 : Ay(X) = A, o(X) is trivial for all p > 2.

Proof. For the affine simplex ¢ = [vy, . .., v,], observe that for all 0 < j < p, oW =co Fjp =

[V, ..., 0j,...,v,|. Further, for all 0 <i <p—1,
(0_(]))(2) :O—OFpon_l _ [’UO,...7/&7;7...,/&]',...,/01)], Z<j (*)
j i N N . .
[V, oy 0y ey Vi1, ooy Upl, T 2>

Using these computations, we see that for any p-simplex o € A,(X),

00 =0 (f:(—wa ° FJP>

j=0
=> (1Y) (-1)icoFPoFy!
j=0 i=0
= Y (=D)MooF o+ Y (=1)YooFloFr .
0<i<y<p 0<j<i<p—1

Now by the formula (), we have

coFPo P i<

cgoFPo Pt =
7ot aonlon Lo

Therefore in the sum, we get

(920': Z ( 1)1+30,0Fp FP 1+ Z 1+JO.OFZP+1 Fpl

0<i<j<p 0<j<i<p—1

Notice that these are the same up to a single multiple of —1, so the sum vanishes. Hence
0% =0. m

We formally set A_;(X) = 0. The boundary operator forms a sequence of abelian groups
Ag(X) - = Ap(X) = Ap i (X) = -+ = A(X) = Ap(X) — 0.
Then Lemma 2.1.6 says that A.(X) is a chain complez.

Definition. Let X be a topological space. Then the p-cycles are the elements of the pth
cycle group

Z,(X) = ker(d : Ay (X) = A,_1(X))

while the p-boundaries are the elements of the pth boundary group
Bp(X) =1im(0 : Apy1(X) = A,(X)).

By Lemma 2.1.6, B,(X) C Z,(X) for every p > 0; that is, every p-boundary is a p-cycle
as well. Thus we can form a quotient of abelian groups.
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Definition. For a topological space X and p > 0, the pth singular homology group of
X is the quotient group

Hy(X) = Z(X)[B,(X) = S ff&?ﬁ Afiﬁff |

Example 2.1.7. Let X be a topological space. Since A_1(X) =0, 0 : Ag(X) = A_1(X)
must be the zero map, so Zy(X) = Ag(X) is the free abelian group on the points of X. Next,
0 : A1(X) — Ag(X) has image consisting of 0-simplices do = (1) —o(0) for o : [0,1] — X.
Thus two points in X are equivalent in Hy(X) if and only if there exists a path between them.
This shows that Hy(X) is the free abelian group on the path components of X. Compare
this to the characterizations of Hi,(X) in Proposition 0.3.2 and of my(X) in Section 1.1.

Definition. The augmentation map is the linear map € : Ao(X) — Z defined by

i (Z n) Yo

zeX zeX

Observe that if ¢ : [0, 1] — X is a 1-simplex in X, then do = o(1) — 0(0), so e(do) =1 —
1 = 0. Thus for any 1-chain ¢ € A(X), e(dc) = 0 and s0 €|, (x) = 0. Since Zy(X) = Ap(X),
augmentation induces a homomorphism

e« Hy(X) — Z.

Proposition 2.1.8. If X is nonempty and path-connected, then e, : Ho(X) — Z is an
isomorphism.

Proof. Since X is nonempty and ¢|p,(x) = 0, €. is clearly surjective. To show it is injective,
fix a point zy € X. For each # € X, choose a path ), from x4 to z. Suppose c = > _\ n,v
is a O-chain in kere. Then ) _y n, = 0. We must show ¢ € By(X), that is, we must find a
I-chain whose boundary is c. Set A =5 _\n,A; € A1(X). Then

ON =0 (Z nx)\z> = Z NyO0\y = Z ng(x — x¢)

reX rxeX rzeX
zg nxzv—g nixozc—xog n,=c—0=c.
zeX zeX zeX
Hence ¢ € By(X) so &, is an isomorphism on 0th homology. O

Lemma 2.1.9. If X =[], X, is a disjoint union of path components, then for each p > 0,
Hy(X) = €D Hy(Xa).

Proof. A simplex o : A, — X is a continuous map and A, is path-connected, so its image
lies in a unique path component of X. It follows that all chains, cycles and boundaries of
degree p lie in a single path component of X, so H,(X) splits as a direct product of the
H,(X,). O
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Corollary 2.1.10. For any space X, Ho(X) = @Z where { X, } is the set of path compo-

nents of X.

As we saw above, there is a similarity between the Oth homotopy group mo(X) and the
Oth homology group Hy(X). We next explore the relations between the fundamental group
71(X) and the first homology group H;(X) of a space. Suppose [y] € 71(X, x¢) is a class of
loops based at xy € X. Then there is a representative v : [0,1] — X which is a continuous
map, and therefore a 1-simplex: v € A;(X). Since v is a loop, 9y = y(1) —v(0) =0, so in
fact v € Z1(X). This allows us to define a map

7T1(X, .flf()) — Hl(X)
] — 1]

called the Hurewicz homomorphism. We will prove this is a well-defined group homomor-
phism. First we need the following lemmas.

Lemma 2.1.11. If f, g : [0,1] — X are paths with f(1) = g(0), then fxg— f—g € B1(X).
Proof. Define a 2-simplex o : Ay — X by

o
— X
€1
where o is constant along the diagonal lines. Then do =g — f* g+ f € By(X). ]

Lemma 2.1.12. A constant path is a boundary. Moreover, for any path f :[0,1] = X, the
I-chain f * f~! is a boundary.

Proof. Let o : Ay — X be constant, say at 29 € X. Then o = 0@ — o) 4 5@ =
Ty — xo + 9 = xo. Thus the constant map at zy is a boundary. Now let f : [0,1] — X be
any path and define a 2-simplex by

€1

where cy(g) is the constant map at f(0) and o is constant on the diagonal lines. Then
0o = [t —cpo)+ f= [ — 0oy + f, where o) is the constant 2-simplex at f(0) from
above. Thus f + f~! = d(0 — 04()) € Bi(X). It follows by Lemma 2.1.11 that f* f~! and
f~! % f are both boundaries. O
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Lemma 2.1.13. Suppose f,q :[0,1] — X are two paths that are homotopic rel endpoints.
Then f —g € Bi(X).

Proof. Let F : [0,1]> — X be a homotopy rel endpoints from g to f. We may then factor
the homotopy square [0, 1]? through a 2-simplex by F = o o p:

f
F
£(0) T
g
b €2 g
f f(1)
€o g €1

Then o is a 2-simplex and do = f + c¢1) — g, which implies d(o0 — o¢1)) = f — g. Hence
f—g¢€ Bi(X). O

Theorem 2.1.14 (Hurewicz). Let X be a path-connected space and fix xo € X. Then there is
an isomorphism o : (X, 20)® — H1(X), where m (X, 20)® = 7(X, 20) /[71 (X, 20), 71 (X, 20)]
is the abelianization of the fundamental group of X.

Proof. The Hurewicz map (X, xg) — H;(X) is well-defined by Lemma 2.1.13 and a group
homomorphism by Lemmas 2.1.11 and 2.1.12. Further, since H;(X) is an abelian group, the
Hurewicz map factors through the abelianization of m (X, x¢):

7T1<X,I0) — Wl(X,xo)ab i> Hl(X)

To define an inverse to ¢, fix a path A\, : zyp — =z for each z € X. For a l-simplex
f:10,1] — X, notice that [Agq) * f * /\]7(11)] is a well-defined class in 7 (X, 20)?°. Extending
linearly, this gives a homomorphism
w : A1<X) — 7T1(X, Q?(])ab
fr— [)\f(O) x f )\;(11)].
We next show # is trivial on Bi(X). For a 2-simplex 0 € Ay(X), write 0 = f — g+ h, where
f=1y1,921.9 = o, 2], h = [yo. 1] and y; = o(e;) for each i = 1,2,3.
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Then

Y(00) = P(f — g+ h) =v(Flv(h)e(e) ™ inm(X, )"
= [Ny * b * )\;11][/\% * f * /\y_21][)\y2 * g * /\;01]
= [Ayo x Ao A e Ay e foe AT Ay, % g AT
=My xhx frgxA,)].

Clearly this is nullhomotopic in X, so ¥(dc) = 1 in 7(X, 29)?. Therefore ¢ induces a map
’QZJ* : Hl(X) — 7Tl(X, ZL‘O)ab.
Finally, we show ¢ and 1 are inverses. If f € m (X, z¢) is a loop at xy then

(W o@)(f) = ¥(f) = P x [+ A1 = ]

since )\, is a constant path. So v, o @, is the identity on 71(X, 7). On the other hand,
for a 1-simplex o : [0,1] — X,

(pot)(o) = @(As(o) * 0 * )‘;(11))

= [Ao(0) * 0 * )\_1 )]
=[oo) + 0+ A -y by Lemma 2.1.11
= [Ao(0) + 0 — Asy] by Lemma 2.1.12
[0’ — )\@U]

where A\gs = As(1) — As(0). This means for a 1-chain ¢ = ) n,0 in A(X),

(e 0thy)(c [Zna o — Noo) } = [c— Aoc)-

Thus if dc = 0, i.e. cis a l-cycle, [¢c — Ags| = [c] € H1(X). Therefore ¢, o 1), is the identity
on H;(X) so ¢ is an isomorphism. O

Examples. Hurewicz’s theorem is a powerful tool for calculating homology. Using some
results from Chapter 1, we get the following homology groups for familiar spaces.

(1) Hy(S") = Z (Corollary 1.2.2) and for n > 2, H,(S") = 0 (Theorem 1.1.17).
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For all n > 2, H{(RP™) = Z/2Z (Corollary 1.3.10).

For the torus T' = S x S, H{(T) = Z* (Example 1.5.3). More generally, if 3, is the
(orientable) surface of genus g then H;(¥,) = Z* (Example 1.5.5).

By Example 1.3.27, m(S* Vv S') = Fy, the free group on two generators. Thus by
Hurewicz’s theorem, H;(S' Vv S') = Z2?, the free abelian group of rank 2. Similarly,
H, (\/" S') = Z". In particular, the first homology group cannot distinguish between
the torus and the figure eight space.

For the Klein bottle K, 71 (K ) = (a,b | a*b~2) by Example 1.5.4. We claim m; (X, x()* =
Z ® 7Z)2Z. To see this, consider the homomorphism

{a,b| a®b?) — Z B Z)27
a+— (1,0)
b— (1,1).

Then p(a*b™?) = 2p(a) — 2p(b) = (2,0) — (2,2) = (2,0) — (2,0) = (0,0) so ¢ is
well-defined. Clearly ¢ is surjective, e.g. by linear algebra. Also, the commutator
H = [m(K),m (K)] must be contained in ker ¢ since im ¢ = Z @ Z/2Z is abelian. On
the other hand, if x = a™ 0™ - a™b™* is an arbitrary element of the kernel, we can
commute even powers of b past any powers of a, which allows us to write x = a™b'a"b’,
where m,n € Z and 4, j € {£1,0}. Then p(x) = (m+n+i+j,i+j) soif z € ker ¢ it
must be that i+ is even and m+n = —(i+7). Write i+j = 2k. Then z = a=2*""bia"b’.
If © = 7 = 0, this is just a power of a, which lies in H. The remaining possibilities are:

i=j=-1= k=-1= z=a""""a"b"" =a"ba"b"";
i=j=1= k=1 = z=a2"ba"b=a"b"'a"b;
i=1l,j=-1 = k=0 = x=a"ba"b";

i=—-1,j=1 = k=0 = z=a"ba"b.

In all cases x € H, so we have proven that ker ¢ is the commutator. Therefore H;(X) =
Z S Z)2Z as claimed.

One can view the 3-sphere S® C R* as the union of two solid tori:
S* = 0B* =~ 9(D? x D*) = (0D* x D*) U (D? x 9D*) = (S* x D*) U (D* x §").

This can be generalized by gluing two solid tori along their boundary tori via the
function

f:S8t xSt — 8t xSt

o= (¢ o) ()

for a,b,c,d € Z. (This is viewing S' x S' = R?/Z?.) Call the resulting quotient space

X. The special case (Ccl b

d) = <(1) (1]) gives the above decomposition of S*. However,
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other choices of a,b, c,d give more exotic spaces — called lens spaces if ged(a,c) = 1
and ad — bc = 1, i.e. the gluing map is represented by multiplication by a matrix in

SLa(R).

Viewing S! x S' & R/Z x R/Z, we can write f by f(z,y) = (ax + by,cx + dy) €
(R/Z)%. Of course since a,b,c,d € Z this is well-defined. Assume ad — bc # 0, i.e.
the matrix must be invertible, so that f is a homeomorphism. To determine H;(X),
we calculate m1(X) using the Seifert-van Kampen theorem (1.5.1) and then apply
Hurewicz’s theorem (2.1.14).

Let U equal T} together with a small neighborhood of 975 and let V' equal T, together
with a small neighborhood of 077, so that X = U U V. Then U and V each retract to
their ‘core’, a circle, so m(U) = (a) and 7 (V) = (B); both are isomorphic to Z. On
the other hand, U NV retracts onto the torus S! x S! that sits inside X after gluing.
So m(UNV) = (v, | vdy~1671) = Z? where v is represented by a meridian and ¢§
by a longitude. Now the amalgamation maps are (up to homotopy equivalence) the
canonical inclusion 7 : U NV — U and the homeomorphism f : UNV — V. Then
i+(7y) is trivial in the solid torus U, while i,(d) = « since any longitude is homotopic to
the core in a solid torus. On the other hand, v is represented by the map 7 : [0,1] —
St x St ~o(t) = (,0) and 4 is represented by d : [0, 1] — S x St dp(¢) = (0,). So we
have f.y = fu[y0] = [f o) and f.6 = f.[0g] = [f 0 o). Viewing foryy: [0,1] — ST x S!
as a loop, we see that for any t € [0,1], (f o v)(t) = f(t,0) = (at,ct). Likewise,
(fodo)(t) = f(0,t) = (bt,dt). The map F(t,u) = (at, (1 — u)ct) is a homotopy from
foyo = (at,ct) to~§ = (at,0). Likewise, the map G(t,u) = ((1—u)bt, dt) is a homotopy
from f o dy = (bt,dt) to 6§ = (0,dt). Hence f,y = v* ~ % and f.0 = 6 ~ 3¢. By

Seifert-van Kampen, we get

m(X) =m(UUV)=m(U) %z, wav) m(V)
= (a, B [ iu(y) f (7)1 0c(0) ()7
= (a, B ef™"ap™?
= (, 8] 8% af™?).

Now using the relation o = 3¢, we can remove a from our list of generators to get
m(X) = (8] 8 = Z/aZ.

Since the fundamental group is already abelian, Hy(X) = Z/aZ as well. The amazing
part is that the first homology of X only depends on a. It turns out that different
choices of b give distinct homeomorphism classes of spaces, although H; cannot detect
this.

Lemma 2.1.15. For two groups G and H, the abelianization of their free product G « H is
the direct sum of their abelianizations, G @ H®.

Proposition 2.1.16. Suppose M and N are connected n-manifolds, for n > 3. Then
Hy (M#N) = H, (M) & Hy(N).

Proof. Apply Proposition 1.5.6. O]
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Proposition 2.1.17. The Hurewicz homomorphism s natural; that is, given a continuous
map f: X =Y with f(xg) = yo, the following diagram commutes:

™ (X, 20) = m (Y, y0)

SOX‘
I

*

Hl(X) - Hl(Y)

Py

where ¢x and py are the Hurewicz homomorphisms.

Proof. For any a € m(X, ), choose a loop 7 : [0,1] — (X, x) so that [y] = a. Notice that
since Ay = [0,1], v is also a 1-simplex. Then f,a = [f o ~| by definition, and py(f.a) =
ey(f o) =[for] € Hi(Y). On the other hand, px(a) = ¢x(7) = [7] € Hi(X) and
felex (7)) = fily] = [f o 7] since v is a 1-simplex. Therefore the diagram commutes. O

Theorem 2.1.18. For each p > 0, the association X — H,(X) is a functor H,(—) : Top —
Ab from the category of topological spaces to the category of abelian groups.

Proof. For a map f : X — Y, there is an induced homomorphism f, : H,(X) — Hy,(Y)
defined as follows. For a p-simplex o : A, — X, we get a p-simplex f.c : A, = Y by
composing with f: f.o = foo. Since A,(Y) is generated freely by p-simplices, the universal
property of free groups gives us a map f. : A,(X) = A,(Y). We claim f, is a chain map,
ie. f.0 = 0f.. To show this, we must prove the following diagram commutes:

A )~ A

|

*

Ap1(X) = 8pa (V)

If o is a p-simplex in X, then we have

£.(00) = . (Z(—wa@) - 1. <Z<—1>ia . F>

Y (DiflooF) =) (-1)(foooF)

0 =0

(~1)(foo)o i = (f o0) = D(f.0).

7

I
AMﬁ

Il
o

)

Extending by linearity to all of A,(X) gives the result.

Now suppose a € Z,(X) is a cycle in X. Then by the above, 0f.(a) = f.(0a) = f.(0) =0
so fi(a) € Z,(Y). Thus f, restricts to a well-defined map on p-cycles, which we also denote
by fi: Z,(X) — Z,(Y). If p € B,(X) is a boundary, let v € A,;1(X) be such that 0y = f.
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2.2 Some Homological Algebra 2 Homology

Then f.(8) = f.(0v) = 0f.(y) which implies f.(5) € B,(Y). Thus f.(B,(X)) C B,(Y), so
we get a well-defined induced map on homology, f. : H,(X) — H,(Y). This completes the
proof. n

We are finally able to prove that homology is a topological property; that is, the homology
groups H,(—) are the same up to isomorphism for homeomorphic spaces.

Corollary 2.1.19. If f : X — Y 1is a homeomorphism then the induced map on homology
fet Hy(X) — H,(Y) is an isomorphism for all p > 0.

2.2 Some Homological Algebra

To further develop a theory of homology, we need some tools from homological algebra.
Recall the following terms from abelian group theory.

Definition. A sequence of abelian groups A I B % ¢ is said to be exact at B if ker g =
im f. An ezxact sequence of the form

0ALBS S0

1s called a short exact sequence. In particular, this means that f is injective, g is surjective
and ker g = im f.

Definition. A chain complex is an abelian group C with an endomorphism 0 : C — C
such that 0% = 0.

Definition. A graded abelian group is a direct sum Co = @, ., Cn. An element (z,,)
of a graded group Co = @,, is homogeneous of degree i if x, = 0 for all n # i. A
homomorphism ¢ : Cqy — D4 between graded groups is a homogeneous map of degree d if
whenever x € C,, is homogeneous of degree n, p(x) € D,yq4 is homogeneous of degree n + d.

Definition. A graded chain complex is a graded abelian group Cy equipped with a bound-
ary operator 0 : Cy — C, such that 9> = 0 and 9(C,,) C C,,_1 for all p € Z. That is, C,
1 a chain complex and its boundary operator is a homogeneous map of degree —1.

Example 2.2.1. Let X be a topological space with singular chain groups A, (X) for p € Z,
where A,(X) = 0if p < 0. Then AJ(X) = @, An(X) is a graded chain complex
with boundary operator 6 : A,(X) — A,_1(X) as described in Section 2.1, which is a
homogeneous map of degree —1. For any map f : X — Y, the induced map f, : Ay(X) —
A.(Y) is a homogeneous map of degree 0, by Theorem 2.1.18.

Definition. The homology of a graded chain complex (C,,d) is the graded group
H,(C,) = D,,c;, Hn(C.), where

~ker(0:Cp — Cpy)

Ha(Co) = im(d: Cpy1 — Cy)

Definition. Given two chain complexes A, and B,, a chain map is a homogeneous map
f: Ae — B, satisfying fO = 0f.
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If f: Ae — B, is achain map, there is an induced map on homology, f, : He(A) — Hl(B).
One of the most important theoretical results is the long exact sequence in homology. In the
language of functors, the next results shows what happens to a short exact sequence when
the homology functors are applied.

Theorem 2.2.2 (Long Exact Sequence in Homology). Given a short exact sequence of graded
chain complezes

0—>A.i>B.i>O.—>0,

there is a long exact sequence
oo Hy oy (C) 25 Hy(AD) 2 Ho(Ba) 25 HL(C) 25 Hy 1 (A)) — -

Proof. Fix n € Z. Then since ¢ and j are chain maps, we get a commutative diagram

i J

0 A, B, Ch 0
0 0 0
i J
O EE— An—l — Bn—l Cn—l O

For a homology class [¢] € H,(C), there exists b € B,, such that j(b) = ¢ by exactness of
the top row. Since the diagram above commutes, jO(b) = 9j(b) = d(c) = 0 because ¢ is a
cycle. Hence by exactness of the bottom row, there is some a € A,,_; such that i(a) = 0(b)
in B, ;. Extending the commutative diagram further, we have

n—1 ? Bn—l

ob

L

Jdar——0

This commutes and i is injective, so da = 0. Thus [a] is a well-defined homology class in
H,_1(A). Define the connecting homomorphism 0, : H,(C) — H,_1(A) by 0[c] = [a]. To
see that 0, is well-defined, suppose ¥’ € B,, such that j(V') = ¢ as well. Let o’ € A,,_; be the
element for which i(a’) = d(0'). Then j(b' —b) = ¢ — ¢ = 0 so by exactness, there is some
a” € A, such that i(a”) = b — b. Now by commutativity,

i(a+9(a")) =i(a) +i0(a") = O(b) + 0i(a") = d(b) + (') — A(b) = (V') = i(d).
Since i is injective, @’ = a+090(a”) so [a] = [a'] in H,,_1(A). On the other hand, another choice
of representatives of [¢] would be of the form ¢ = ¢+ 9(¢”) for ¢ € C,,11. Let V' € B,41 be
such that j(b") = ¢”. Then

jb+0(") =j(b) +jo")=c+d(") =
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but d(b+0(b")) = d(b)+0*(b") = A(b). Since i is injective, different choices of representatives
of [¢] determine the same a € A,_; for which i(a) = 9(b). Therefore 0, is a well-defined
map. It is obvious that it is a homomorphism.

Now we show the sequence

oo Hoy (C) 2 Hy(A)) 2 Hy(B)) 25 Ho(Co) L5 Hyy(Ad) — -+

is exact. We first show the homology sequence is a complex. For [c] € H,(C,), let b € B,
and a € A,_1 be as in the definition of 0,. Then i.0[c] = i.[a], but by definition i(a) = 9(b)
which is a boundary and hence trivial in H,(B,). This shows i.[a] = 0, so i.0, = 0. Next,

Jsie = (j o), = 0, =0 because 0 — A, 5 B, L C, — 0 is exact for all n. Finally, for any
[b] € H,(B.) we have 9(b) = 0. Set ¢ = j(b) so that j.[b] = [¢]. Then as above, there is some
a € A, satisfying i(a) = 9(b) = 0 and 9.[c] = [a]. Since i is injective, i(a) = 0 implies
a =0 and so 0,J.[b] = 0.[c] = [0] = 0. Therefore the sequence in homology is a complex.

It remains to show exactness at H,(A.), H,(B.) and H,(C,). Suppose i,[a] = 0 for a
cyclea € A,,. Then i(a) is a boundary, so i(a) = 9(b) for some b € B,,. Setting j(b) = ¢ € C,,
naturality of 0 gives us d(c) = 9(j(b)) = j(0(b)) = j(i(a)) = 0 by exactness. This shows
¢ defines a homology class [¢] € H,(C,.), and moreover O,[c] = [a] by definition of the
connecting homomorphism. Hence keri, C im d,, so the sequence is exact H,(As,).

Now suppose j.[b] = 0 for a cycle b € B,,. Then j(b) is a boundary, so there is some
¢ € C, such that d(c) = j(b). By surjectivity of j, there is some ¥’ € B,, so that j(b') = ¢,
and we have

J(b— (b)) = j(b) — JOWF)) = D(e) — A(H)) = d(e) — () = 0

by naturality of 9. As b— (V') only differs from b by a boundary, [b] = [b—0(b')] so replacing
b with b—90(V'), we may assume j(b) = 0. By exactness, there exists an a € A,, with i(a) = b.
Notice that i(d(a)) = 9d(i(a)) = 9(b) = 0 but because i is injective, this implies d(a) = 0.
Hence [a] is defined in H, (A,), so we have i.[a] = [b]. This proves exactness at H,(Bs,).
Lastly, take a cycle ¢ € C,, and suppose 0,[c] = 0. Then as above, there are b € B,
and a € A,_; satisfying j(b) = c,i(a) = 9(b) and 0,[c] = [a]. Now [a] = 0, so a is a
boundary, meaning a = 9(a’) for some a’ € A,,. So by naturality of 9, d(i(a’)) = i(0(a)) =
i(a) = 0(b), and thus 9(b — i(a")) = 9(b) — I(b) = 0 so b — i(a’) defines a homology class
[b—i(a’)] € Hy(B,). Also, exactness of 0 — A, = B, 2 C,, — 0 implies j(i(a’)) = 0, so
jb—i(a")) = j7(b) —j(i(a")) = ¢ — 0 = ¢ which shows j.[b—i(a’)] = [¢]. Hence ker 0, C im j,,
i.e. the sequence is exact at H,(C,). O

The above proof is an example of a ‘diagram chase’: one sets up a commutative diagram
with certain conditions, and then ‘chases’ elements around the diagram to verify other prop-
erties. Another useful result in homological algebra is the Five Lemma, which is also proved
with a diagram chase:
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Lemma 2.2.3 (Five Lemma). Consider a commutative diagram with exact rows

A, g g, A
fl f2 f3 f4 f5
B B B B, B
' B ? B2 ’ Bs Ba °

If f5 and fy are isomorphisms, fi is surjective, and f5 is injective, then f3 is an isomorphism.

Proof. Suppose ag € Az such that f3(az) = 0. Set ay = az(az) € Ay. Then Bsfs(az) =
P3(0) = 0 so by commutativity of the third square, fijas(as) = fi(as) = 0 as well. Since
f4 is an isomorphism, this makes ay = 0, that is, az(asz) = 0. By exactness of the top row,
there is some ay € Ay with as(az) = az. Now fyas(az) = f3(asz) = 0 so by commutativity of
the second square, fsfs(az) = 0. By exactness of the bottom row, there is a b; € By such
that 51(b1) = fa(az). By surjectivity of fi, we may choose a; € Ay such that fi(a;) = by.
By commutativity of the first square, we have foay(ar) = f1fi(a1) = Bi(b1) = fa(ag). This
implies oy (a1) = ag since fo is an isomorphism, so in particular ag = as(az) = asas(a;) =0
because the top row is a complex. This proves f3 is injective.

On the other hand, suppose b3 € B3. We must construct an as € A3 mapping along f3 to
bs. Set by = P3(bs) and lift along the isomorphism f; to a unique a4 € Ay with fy(as) = by.
Notice that Byfi(as) = Ba(bs) = BufB3(bs) = 0 because the bottom row is a complex, so
by commutativity of the fourth square, fsay(as) = 0 as well. Now f5 is injective, so this
implies ay(ay) = 0. Since the top row is exact, there is some az € A3 with as(az) = ay. By
commutativity of the third square, by = fy(as) = fras(az) = Bsfs(as). In particular if we set
by = f3(as), we have B3(bs—b%) = PB3(bs) — P f3(as) = by—by = 0. By exactness of the bottom
row, there is a by € By with f5(be) = by — b5. Since f, is an isomorphism, take the unique
lift o € Ag satisfying fg(&g) = bg. Now we have fgag(a,g) = Bgfg(az) = 52([)2) = b3 — bé
Finally, observe that f3(as(as) + as) = fsas(ag) + f3(as) = by — by + by = bs. Therefore f;3 is
surjective, and hence an isomorphism. O]

We use the homology of a chain complex to construct three other versions of singular
homology. In the next section, we will see that all of these versions of homology satisfy
certain underlying axioms of a generalized homology theory.

Let X be a topological space and A C X a subset. We denote this by a pair (X, A).
The inclusion ¢ : A — X induces a subgroup inclusion i, : A,(A) — A,(X) for each
n € Z, and therefore a chain map i, : A(A) — A,(X). Define the relative chain group
AJX,A) = @, An(X, A), where A, (X, A) = A, (X)/A,(A) is a quotient of abelian
groups. This determines a short exact sequence of chain complexes

0= Ad(A) 5 ALX) L AL(X, A) = 0.
Definition. The nth relative homology group of a pair (X, A) is the nth homology of
this chain complex:

H, (X, A) := Hy(Au(X, A)).
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Theorem 2.2.4 (Long Exact Sequence in Relative Homology). For a pair (X, A), there is
a long exact sequence

o Hyg (X, A) 2 Hy(A) 2 Hy(X) 25 Hy (X, A) 25 Hy i (A) — - -
Proof. Apply Theorem 2.2.2 to the short exact sequence
0= Au(A) 5 AJ(X) L ALX, A) — 0.
O

Next, let G be an abelian group with singular homology complex A4(X). Tensoring with
G gives a new chain complex A,(X) ® G = @, (An(X) ® G).

Definition. For a space X and an abelian group G, we define the nth homology of X
with coefficients in G by

H,(X;G) = Hy(Ad(X) ® G).
Lemma 2.2.5. If R is a commutative ring, then any homology group H,(X; R) for a space

X is an R-module.
If (X, A) is a pair, the short exact sequence 0 — A, (A) = A, (X) = A (X, A) - 0 s
split for every n € 7Z, so tensoring with G preserves exactness:
0=>A8,(A)RG—=A(X)®G = ALX,A) G — 0.

Definition. The nth relative homology with coefficients in G for the pair (X, A) is
defined as the homology of this exact sequence:

H,(X,A;G) = H,(Ad X, A) @ G).

Theorem 2.2.6 (Long Exact Sequence for Homology with Coefficients). Let (X, A) be a
pair of topological spaces and G an abelian group. Then there is a long exact sequence

o= Hy1 (X, A G) = Hy(A;G) — Ho(XG) —» Hy (X, A;G) — Hy 1 (A;,G) — -
Proof. Apply Theorem 2.2.2 to the exact sequence
0= AdA) @G = AdX) G — Ad(X,A) @G — 0.
m

Let X be a nonempty space and let P = {xo} be a point. Then there is a unique map
e : X — P sending everything to xy, and this induces a map on homology, ¢, : Ho(X) —
H.(P). For a fixed x € X, the inclusion i : P — X, z¢ — z, is a right inverse to ¢, i.e. the

composition P X X 5 Pis the identity. Hence ¢, o i, = id so €, is surjective.
Definition. For a space X, the nth reduced homology is defined by ﬁn(X) = kere,.

Clearly H,(X) = H,(X) when n > 0. Further, ¢, : Hy(X) — Z coincides with the
map induced by the augmentation map. In particular, Proposition 2.1.8 implies that if X is
path-connected, then Hy(X) = 0.

Definition. A space X is acyclic if f[n(X) =0 for all n.
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2.3 The Eilenberg-Steenrod Axioms

In this section we introduce five axioms for a general homology theory. We will show that
singular homology satisfies these axioms, and derive important homology calculations from
the axioms themselves.

Definition (Eilenberg-Steenrod Axioms). A homology theory is a functor H that assigns
to each pair (X, A) of topological spaces a graded abelian group (He(X,A),d) such that H
is natural with respect to maps of pairs f : (X, A) — (Y, B), i.e. there exists an induced
map f, : Ho (X, A) — H,(Y, B) satisfying H f. = f.H, and the following azioms hold:

(1) (Homotopy) If f,g: (X, A) — (Y, B) are homotopic maps then f, = g..
(2) (Ezxactness) For each pair of inclusions i : A — X and j : X — (X, A), there is a
long ezxact sequence

c Dy H(A) B Ho(X) D Hy(X,A) S Hy y(A) — -

(3) (Ezxcision) For any pair (X, A) and any open set U C X such that U C A, the
inclusion (X N U, AN\ U) < (X, A) induces an isomorphism on homology.

(4) (Dimension) If P = {x} is a point space, then H,(P) # 0 only if n = 0. The group
Hy(P) is called the coefficient group of the homology theory H.

(5) (Additivity) If (Xo)aer is an arbitrary collection of topological spaces then

H, (]_[ Xa) =P H.(X).

acl acl

As one may notice in the statement of the axioms, we typically replace the notation
H,(X,2) with H,(X), thereby simplifying many expressions.

An important result is that any homology theory satisfying the Eilenberg-Steenrod ax-
ioms is a homotopy invariant.

Proposition 2.3.1. If (X, A) and (Y, B) are homotopy equivalent pairs of topological spaces,
then Hy(X, A) = H,(Y, B) as abelian groups.

Proof. Let H be a homology theory and suppose f : (X, A) — (Y, B) is a homotopy equiv-
alent, with ¢ : (Y, B) — (X, A) such that G o F ~ id(x 4y and F o G ~ idy,p). Then since
H is a functor, g, o f. = (go f)« = (id(x,a))« = L and f.og. = (fog). = (idy,p))« = 1 50
fe: Ho(X, A) — H,(Y, B) is an isomorphism. O

As with singular homology, we can define a reduced homology from a general homology
theory as follows. Let P = {z(} be a point and let X be any nonempty space, with the
unique map € : X — P sending all elements of X to x,.

Definition. Let H be a homology theory. The reduced homology of X is the graded
abelian group He(X) = kere,, where e, : Hy(X) — Hq(P) is the induced map on homology.
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Remark. For n > 0, H,(X) = H,(X) as in the singular theory. For n = 0, we have
Ho(X) ® G = Hyp(X), where G = Hy(P) is the coefficient group of the homology theory.
However, this isomorphism is not canonical.

Theorem 2.3.2. Given a pair of spaces (X, A), the following diagram commutes:

Hy(A) —— Hy(X)

- —— M (X, A) — Ho(A) —— Ho(X) — Ho(X, 4)

0

. ——— H\(P,P) —— Hy(P) —— Hy(P) — Ho(P,P) =0

Proof. Diagram chase. m

I

Corollary 2.3.3. If X is a contractible space, f[n(X) = 0 for all n and hence FI.(X)
Ho.(X).

Theorem 2.3.4. Let X be a Hausdorff space and xo € X a point having a closed neigh-
borhood N of which {zo} is a strong deformation retract. Let Y be a Hausdorff space and
Yo €Y. If X VY = X x{yo} U{xo} XY is the wedge, or one-point union, of X andY (as
a subspace of X XY ), then the inclusion maps induce isomorphisms

Hi(X)® Hy(Y) — H(X VY)
for each i, whose inverse is induced by the projections of X VY to each of X and Y .

Proof. Set Z = X V'Y and consider the pair of spaces (Z, X). The long exact sequence in
reduced homology is

oo Hyt(Z2,X) = Hy(X) = Hy(Z) = Hy(Z,X) — -

By the excision axiom, the inclusion (Z \ (X ~ N),N) C (Z,X) induces an isomorphism
on homology: H,(Z ~ (X ~ N),N) = H,(Z,X). Since N deformation retracts onto {x},
(Z~N (X~ N),N)=(NVY,N) is homotopy equivalent to (Y, {x¢}) so the homotopy axiom
gives an isomorphism on homology: H,(N V'Y, N) 2 H,(Y,{z,}). These facts allow us to
replace H,(Z, X) with H,(Y).

Now consider i, : H,(X) — H,(Z). This is the map induced from inclusion i : X <
X VY which has a natural left inverse p : X VY — X. Then poi = idx so p,oi, = (poi), =
(idx), = 1 so i, is injective. Similarly, H,(Z) — H,(Y) is induced by ¢: X VY — Y, and
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poj =idy where j:Y < X VY is the natural inclusion. So ¢, 0 j,. = (g0 j). = (idy). = 1,
showing ¢, is surjective. Thus we have a short exact sequence

0— Ho(X) 2 Hy(Z) 25 Hy(Y) — 0.
The inclusion j : Y < Z provides a section j, : f[n(Y) — f[n(Z) of ¢, so the sequence is
split. Therefore H, (X VY) = H,(Z) = H,(X) ® H,(Y) for all n. O

We now proceed to give some elementary homology calculations of spheres and disks in
a general homology theory, which will become useful for more involved computations later.
Note that once we prove singular homology satisfies the Eilenberg-Steenrod axioms, these
computations will hold for singular homology.

Theorem 2.3.5. Let H be a homology theory and G = Hy(P) its coefficient group. For any
n >0,

~ G. i=
Hi<sn>={0’ Z #Z (S,)

G, i=

G, i=
Hxsn,n.’:)—{o’ ; #Z (R.)

where D' is the closed upper hemisphere of D™.

Proof. We prove the statements (S,), (D,,) and (R,) recursively for all n > 0. First, (Ry)
follows for the dimension and excision axioms, using H;(S° DY) = H;(P). Consider the
inclusion D} < S™. Since D7 is contractible, Corollary 2.3.3 shows that the long exact

sequence in the pair (S,, D") becomes
0= Hy(D}) — Hi(S") — Hi(S", D) — H; 1(D}) = 0.

So H;(S") = H;(S™, D7) for all i by exactness. This proves (R,) <= (S5,). Next, by the
excision axiom and Proposition 2.3.1, we have

Hz(SnvD:L—) = Hz(Sn ~ U7 Di N U) = Hz(Dﬁa Snfl)

where U is a small neighborhood of the north pole in S™ and D" is the closed lower hemi-
sphere of D". Hence (D,,) <= (R,). Finally, the long exact sequence in the pair (D", S"!)
is

0= H;(D") — H;(D",S™ ') — H;_1(S™') — H,_(D") =0,

since D™ is contractible. By exactness, H;(D", S"1) 2 H; (5™ ') and so we have (D,,) <=
(Sp—1). Since the base (Ry) was established, all statements (.S,), (Dy), (R,) now follow by
induction. [
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Corollary 2.3.6. D" does not retract onto S ' for any n > 1.

Proof. If such a retraction exists, it is a map 7 : D® — S ! such that r o i ~ idgn
where i : S"~! < D" is the inclusion. Then by the homotopy axiom, 7, 0 i, = (r o), =
(idgn-1), = 1, that is, the composition H,(S" ') = H,(D") = H,(S"') is the identity.
However, by Corollary 2.3.3 H,(D") = 0 since D" is contractible, and by Theorem 2.3.5,
Ho(S™ ') =G # 0, so we obtain a contradiction. Hence no such retraction exists. O

Corollary 2.3.7 (Brouwer’s Fixed Point Theorem). Any smooth map f : D" — D" has a
fixed point.

Proof. Suppose there is a smooth map f : D™ — D" without a fixed point. Then for every
x € D", x # f(x) so define L, to be the line in R™ containing the distinct points x, f(z).
Define the map g : D" — S™~! by setting g(x) to be the intersection of L, and S"! in the
closest point to z. Then g is smooth and for any boundary point x € S"!, g(z) is precisely
x. Thus g is a retract of D" onto S™!, contradicting Corollary 2.3.6. Hence f must have a
fixed point. O

Definition. For a map f : S* — S", the degree of f is defined to be the induced map
fe: Hy(S™) — H,(S™).

Example 2.3.8. For singular homology, or any homology theory where H, (S™) = Z, the
degree of a map f : S™ — S™ is a homomorphism f, : Z — 7Z and is therefore uniquely
determined by an integer k € Z such that f(1) = k. This is often what is referred to as
degree. We will see that this notion agrees with the definition of degree from differential
topology.

Lemma 2.3.9. Reflections of the sphere S™ have degree —1.

Proof. Viewing S™ C R""1 a reflection is of the form f : R*™ — R"™ (z,... 2,) —
(—xo,...,2,). This reduces to a self-map of S™, say r = f|gn : S™ — S™. We prove that
degr = —1 by induction. For n = 0, Hy(S°) = Z? and Hy(S°) = (t, —t)Z ® Z = 7. The
induced map r, : f[o(SO) — ﬁg(SO) switches ¢ and —t¢, so r, must be multiplication by —1.
To induct, assume the statement holds for reflections of S* for k& < n. Define the hemispheres

D' = {(xo,...,x,) € D" |z, > 0}
and D" ={(zo,...,z,) € D" | x, <O0}.

These are invariant under r : (zo, ..., x,) — (—Zo, ..., T,) so we have a commutative diagram
H(§") ——— Ha(8", D) = H (D2, 8") —— H, 1 ()

Ho (8", DY) o= Ha(D, ™) —= Hya (577

]

12
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where the horizontal arrows are isomorphisms from Theorem 2.3.5. Since the diagram com-
mutes, the left map r, : H,(S") — H,(S™) is equal to the right map H, ;(S"!) —
H,_1(5™') so by induction, degr = —1. O

Corollary 2.3.10. The antipodal map a : S™ — S™,x — —x has degree (—=1)"T'. In
particular, if n is even, a is not homotopic to the identity.

Proof. By definition a = rgorjo---or,, where r; : (zg,..., %, ..., Tp) > (Toy ..oy, —Tiy oo, Tp)
is the ith rotation. Thus by functoriality of the induced map, a, = (rg)« 0 (r1)« 00 (ry)«-
The result then follows from Lemma 2.3.9. Finally, if a were homotopic to the identity on
S™ then by the homotopy axiom, a, = id, = 1. However, the identity has degree 1 so this is
impossible when n is even. O

Corollary 2.3.11. If n is even, then any map f : S™ — S™ has a point x € S™ such that
f(z) = £x.

Proof. Suppose f(z) # « for all x € S™. Then the straight line between f(z) and = does not

pass through the origin in R"*! for any x € S™, so we can construct a well-defined homotopy

Fat) = e 8" x 0,1 — S

from the identity on S™ to f. Similarly, if f(z) # —x for all x € S™, we can construct a
homotopy

t t—1
Gty = O FE=D e 19y g
[t (z) + (& — 1)]]
from the antipodal map to f. Hence the antipodal map and the identity have the same degree
by the homotopy axiom, but since n is even, Corollary 2.3.10 gives us dega = (—1)""! = —1,

a contradiction. Hence there must exist a point x € S™ such that f(x) = . ]

From this, we obtain the famous ‘hairy ball theorem’.

Corollary 2.3.12 (Hairy Ball Theorem). If n is even, S™ has no nonvanishing tangent
vector field.

Proof. 1f &, is such a tangent vector field, the map f(z) = |I§i I is a well-defined function
S™ — S™ but has no point such that f(z) = +x, contradicting Corollary 2.3.11. ]

Next, we connect the degree of a map as defined above to the differential notion of degree.

Lemma 2.3.13. Let A € GL,(R) be a matriz representing a homeomorphism R" — R™.
Then A induces a map f: S™ — S™ of the unit n-sphere such that deg f = sign(det A).

Proof. View S™ = R"/7Z". Since A represents a homeomorphism, we get an induced map
f 8™ — S™ Further, det is multiplicative so it’s enough to check the result when A is an
elementary matrix. If A is a row replacement matrix, det A = 1 and there is a homotopy from
f to the identity map idgn, so deg f = 1. Likewise, if A is a scaling matrix, det A = ¢ and
deg f =1 or —1 depending on the sign of ¢. Finally, if A is a row-swap matrix, det A = —1
but f is homotopic to a reflection, so deg f = —1 by Lemma 2.3.9. m
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Proposition 2.3.14. If f : S™ — S™ is a smooth map and p € S™ is any reqular value of f
such that f~*(p) = {q}, then deg f = sign(det D, f) where the determinant of the differential
D, f is taken with respect to bases of T, S™ and T,S™ possibly differing by a rotation.

Proof. By composing with a rotation of S™, we may assume p = ¢. Further, composing
with the linear map (D, f)~", we may assume D, f = idg,gn, so det D, f = 1. By differential
topology, f is the identity on a neighborhood of ¢, which is a disk D. On the complementary
disk D' = S™ . D, f is the identity on 9D’ and so is homotopic to the identity on all of D'.
Hence deg f = degidsn =1 = det D, f as required. O

Proposition 2.3.15. Let X = \/k S™ be the wedge of k copies of the n-sphere and consider
the map f - @F_, H,(S") — H,(X) induced by the sum of the inclusions {f; : S™ < X}¥_,.
Then f is an isomorphism with inverse given by the sum Zle(pi)*, where p; : X — S™ are
the projection maps.

Proof. Follows from Theorem 2.3.4 and induction on k. O

Theorem 2.3.16. Let f : S™ — (Y, yo) be a pointed map and suppose there are open sets
Ey, ..., Ex CS™, each homeomorphic to a disk, such that f(S™ ~ (E1U---UE})) = yo, that
is, [ is constant off of E1, ..., Ex. Then f factors through the quotient space S™/S™ ~\ (E; U
U By = \/k S™. Further, if f; : S™ = Y,1 < j <k, is the map equal to f on E; and
constant on S™ \ E;, then f, = Z?Zl(fj)* : H,(S") — H,(Y).

Proof. Factor f through the wedge product using the universal property of quotient maps:
S" /
x /
Vs

Let p; : \/k S™ — S™ be the jth projection map and i; : S™ — \/lc S™ be the jth inclusion
map. Then by Proposition 2.3.15, E?Zl(ij)* o (pj)« = 1 on H,(S™). Note that f; is the

Y

composition f; : S™ EN \/k IEENE LN \/k N Y, so by naturality of the induced maps,

k

k k
Z<f3)* - Zh* © <ZJ>* © (pj>* ©Ggx = Zh* g« = I O g« = f*

j=1 j=1

]

Corollary 2.3.17. Let f : S™ — S™ be smooth and take p € S™ to be any regular value
of f. Then deg f equals the sum of signs of Jacobian determinants over the fibre f=(p) =

{Qh cee qu}

Proof. Let D be a small disk around p such that f~1(D)

= Hf D;, where Dy, ..., Dy
are a collection of disjoint disks with ¢; € D; for each 1 < j

=1
) < k. Compose [ with
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the map which collapses S™ ~~ D to a point to obtain a map ¢ : S™ — S™. Since the
collapsing map is homotopic to the identity on S™, it has degree 1 and therefore deg g = deg f.
Finally, f maps S™ ~\. D to a point, so Theorem 2.3.16 applies. The result then follows from
Proposition 2.3.14. O

This result shows that the algebraic notion of degree agrees with the differential topolog-
ical one. Furthermore, the algebraic definition of degree does not depend on the homology
theory chosen, since we only appealed to the Eilenberg-Steenrod axioms in the sequence of
proofs.

Example 2.3.18. Let X be the manifold with boundary obtained by removing a small open
disk from the 2-torus. The inclusions i : X — X and j : (X,2) — (X,0X) induce the
following long exact sequence in homology:

= Hy(0X) = Hy(X) - Hy(X,0X) — -

— Hy(0X) = Hy(X) = Ho(X,0X) —

— H1(0X) —» Hi(X) — Hi(X,0X) —

— Hy(0X) — Ho(X) — Ho(X,0X) — 0.
We will compute the relative homology groups H,(X,0X) for all n > 0. Note that X
retracts onto the wedge of two circles and 0.X is itself a circle, so by Theorems 2.3.5 and 2.3.4,
H,(X) = H,(0X) =0 for n > 2. It follows by exactness that H,(X,0X) =0 for n > 3, so
it suffices to consider the bottom three rows in the sequence above.

Now, Hy is free abelian on path components, so Ho(X) = Hy(0X) = Z. In general, we
have Hy(X,0X) = 0, e.g. by considering reduced homology: Hy(X,0X) = Hy(X,0X) and
the last row of the long exact sequence in reduced homology is — 0 — 0 — Hy(X,0X) — 0
so we have that Hy(X,0X) = 0 as well. Since X retracts onto the wedge of two circles and
dX is a circle, we get Hy(X) = Z* and H,(0X) = Z, by Examples @ and @ in Section 2.1.
Filling in these terms, we get an exact sequence

0— Hy(X,0X) > Z 5 7% — Hy(X,0X) = Z 27— 0 — 0.

The map i, is the map induced from i : X < X, which is an isomorphism Hy(0X) —
Hy(X), so by exactness the image of the map out of Hy(X,0X) is 0. We therefore have only
two terms left to compute:

0= Ho(X,0X) = Z 2 7% — Hi(X,0X) = 0. (%)

We need to understand how the generator of Z = H;(0X) maps into H;(X). Explicitly, i
takes the circle X to the boundary of X, so on the level of fundamental groups, a loop «
generating m1(0X) = (a) = Z maps into m(X) by the following:

b

\
7

a\,a

\
7

b
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Recall that the wedge of two circles has fundamental group F3, the free group on two gen-
erators. If m(X) = (a,b |) = F? then i,a = aba™'b~! by the figure above. By Proposi-
tion 2.1.17, i, commutes with the Hurewicz homomorphism, so on the level of homology,
iva = [a,b] =0 € H1(X). Hence i, is the zero map, so we can divide the exact sequence ()
into two sequences:

0— Hy(X,0X) ->Z —0 and 0— Z>— Hy(X,0X)— 0.

These give isomorphisms Hy(X,0X) = Z and H,(X,0X) = Z*. To summarize,

0, n=0

72, n=1
H,(X.0X)={ " "

) n=

0, n

Example 2.3.19. Let M is the Mobius band. We will compute the relative homology groups
H,(M,0M) for all n. Consider the long exact sequence in relative homology:

. — Hy(OM) — H,(M) — H,(M,0M) — - --
— Hy(OM) — Ho(M) — Ho(M,0M) —
— H{(OM) — H\(M) — Hy(M,0M) —
— Ho(OM) — Ho(M) — Ho(M,0M) — 0.

Here M retracts onto a circle and 0M is itself a circle, so H,(M) = H,(0M) = 0 for n > 2,
Hi(M)=H,(0M) =7 and Hy(M) = Hy(OM) = Z. As in Example 2.3.18, H,(M,0M) =0
for n > 3 by exactness and Ho(M,0M) = 0 by considering reduced homology in the bottom
row of the sequence. Also, i, : Hy(OM) — Ho(M) is the zero map as before. Therefore we
are left with the following terms to compute:

0 — Hy(M,0M) — Z 2 Z — Hy(M,0M) — 0.

Here the inclusion ¢ : 9M — M may be composed with the deformation retract r : M — oM
to obtain the two-fold cover of S! by itself: it is obvious that every point in S! has a two-
sheeted fibre, and the fact that this is a cover follows from the definition of a deformation
retract. So that (r o), = r, o i, represents a degree 2 map, and since r, is an isomorphism
on homology (by the homotopy axiom), this means i, is multiplication by 2. In particular,
14 1s injective, so the sequence above becomes

0-0—=2Z377/2Z 0.

To summarize the calculations, we have

0, n=>0
H,(M,0M)=<7/27Z, n=1
0, n>2
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Example 2.3.20. Our goal is to compute ordinary homology H, (RP?) and homology with
coefficients H, (RP?;Z/27Z) for all n for the projective plane. We may construct RP? by
gluing a disk D? along its boundary 9D? = S! to the Mobius band M along its boundary
OM = S'. Then the pair (RP?, D?) induces a long exact sequence

- — H,(D*) — H,(RP*) — H,(RP? D?) — --.
— Hy(D?) — Hy(RP?) — Hy(RP? D?) —
— Hy(D*) — H,(RP?) — H,(RP? D?*) —
— Hy(D?) — Ho(RP?) — Ho(RP? D?) — 0.

Let U be the interior of D?. Then the excision axiom gives us an isomorphism H,,(RP?, D?) =
H,(RP?>\ U,D?* \ U) for each n. Now RP? \ U deformation retracts to the copy of the
Mobius band sitting inside RP? and D? \ U = 9D? = S* =~ M, so by Example 2.3.19 and

the homotopy axiom,

0, n=>0
H,(RP*\U,D*\U) 2 H,(M,0M) = Z/27Z, n=1
0, n > 2.

We also know that since D? is contractible, H,(D?) is 0 for n > 1 and is Z for n = 0. In
particular, we have 0 — H,(RP?) — 0 in the nth row of the long exact sequence for every
n > 2, so Hn(RPQ) = 0 for n > 2. Filling in the rest of the terms we know, we are left with

the following:
0 — H,(RP?) — Z/2Z — 7. — Ho(RP?) — 0 — 0.

Since the only finite subgroup of Z is {0}, the map Z/2Z — 7Z must be the zero map.
Therefore our exact sequence becomes two exact sequences:

0— Hi(RP?) - Z/2Z —0 and 0— Z — Hy(RP?) — 0.

These tell us H;(RP?) = Z /27 and Hy(RP?) = Z. Altogether, we have determined

Z, n=>0
H,(RP*) =<17/2Z, n=1
0 n > 2.

Now for homology with coefficients in Z/27Z, the short exact sequence 0 — Z 27 -
7,/27 — 0 induces the following long exact sequence:

.- = H,(RP%7) 5 H,(RP%Z) — H,(RP*Z/2Z) — - --
Plugging in the calculations from above, we only have a few nonzero terms:

0 — Hy(RP%Z)27) — 7./27. 2 7.)27. — H\(RP%* Z)2Z) — 7. 2 7. — Ho(RP? Z/27) — 0.
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Since multiplication by 2 is the zero map on Z/27 and is injective on Z, we get the following
exact sequences:

0 — Hy(RP?%Z/27) — 7.)27. — 0
0 — Z/27 — H\(RP* Z/27) — 0
0 Z 2 7 — Hy(RP%:Z/27) — 0.

This shows that Ho(RP?;Z/27Z), H(RP?;7Z/27Z) and Hy(RP?;Z/27) are all isomorphic to
Z/27. In all, we have
7./27. =0,1,2
H,(RP%7,/27) = { /% m =01,
0, n > 3.

2.4 CW-Complexes

One of the most useful tools for computing homology is called cellular homology. To define
this, we imitate the homology calculations for spheres and disks from Section 2.3 for a more
general class of spaces called CW-complexes.

To motivate the definition of a CW-complex, consider two different constructions of the
2-sphere. In version 1, start with a point z and call this structure K. Then glue a copy
of the unit interval D' = [0, 1] to K(®) by attaching both endpoints to z:

D! se KO ~

The result is a circle, which we denote by KV, Finally, we glue a pair of disks D? to the
existing space by identifying the circle with each of their boundaries 9D? = S!; call the
result K®:

D2

AN K(Q)

D2

The process described above is called a CW-decomposition, or CW-structure, for S?. The
various disks D" comprising the structure of S? are called C'W-cells and the total space
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Ui:o K® a CW-complez. An alternative CW-structure for the 2-sphere consists of two
0-cells, two 1-cells attached to each of the two 0-cells at their endpoints and two 2-cells
attached to the resulting circle as above. This example is made formal in the definition
below.

Definition. A CW-complex is a space K that is an increasing union of subspaces K =
U~ K™ | called skeleta, which inductively satisfy the following construction:

e KO is a discrete set of points.

o’

e For eachn > 1, K™ = K1) U, L, Dy, where {Dg}oes is an indexed collection of
n-disks, called n-cells, fs, : 0D} — K (=1 are some prescribed attaching maps and

f = HU chr-

K is made into a topological space by equipping the weak topology: a subset U C K is
open if and only if U N K™ is open in K™ for all n > 0.

Definition. A CW-complez K has dimension n if the largest dimension of any cell of K
1s n. If no such n exists, K is said to be infinite dimensional.

We will primarily concern ourselves with finite dimensional CW-complexes.

Remark. As a consequence of the definition of the weak topology, a map g : K — X on a
CW-complex K is continuous if and only if g|ps : D} — X is continuous for each cell D}.

Definition. A subcomplex of a CW-complex K is a union of cells of K that is itself a
CW-complex with the same attaching maps.

Example 2.4.1. As described at the start of the section, S? can be made into a CW-complex
with one 0-cell, one 1-cell and two 2-cells; or alternatively, with two 0-cells, two 1-cells and
two 2-cells. Notice that in both cases, the circle S! is a subcomplex of S? equal to the union
of the 0- and 1-cells. The pattern can be extended to describe a CW-structure on S™ for
any n. A simpler CW-structure for S™ is to take one 0-cell xy and attach one n-cell by the
unique map 0D"™ — xg.

CW-structures are incredibly useful for computing the homology groups of a wide array
of spaces. Let H be a homology theory with coefficients in Z and fix a CW-complex K. In
general, the quotient space K /K (»=1) is homeomorphic to a wedge sum of spheres V, S",
one for each n-cell. This suggests using H,, (K™, K("~Y) as a chain group in the construction
of a chain complex for K. By Theorem 2.3.5 and the additivity axiom,

H, (H D", ]_[aDg) =@ H.(D;,0D)) = Pz,

so the nth relative homology for the pair (K™, K("=1) is the free abelian group on the
n-cells of K. Each n-cell comes equipped with a natural inclusion map f, : (D2, 0DY) —
(K(n)7 K(n—l)).
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Lemma 2.4.2. For all n > 0, @,(f,)« : @, H,(D?,0D") — H,(K™ K®"Y) is an
isomorphism. Moreover, for all i # n, Hy( K™, K"=Y) = (.

Proof. Let f = @,(f,)s : Ho(II, D% 11,0D") — Ho (K™, K"=Y). Then we have a
diagram:

i, (11, D2 11, 002) ! Hy (K, K0
i, (I, D211, D2 ~ {0)) H, (K, K0 <, £,(0))

H. (11, Int(Dg), LT, nt(Dg ~ {0})) ——Z— Ho (K™ ~ KD, K™\ (K" U £,(0)))

The diagram commutes by naturality of the induced maps. The top (downward) vertical
arrows are isomorphisms by the homotopy axiom, while the bottom (upward) vertical arrows
are isomorphisms by the excision axiom. Finally, the bottom arrow is an isomorphism
because it is induced from a homeomorphism of the pairs of spaces. This implies f is an
isomorphism. The statement for ¢ # n then follows immediately. O

We will construct a chain complex whose nth chain group is H, (K™, K1), To do so,
we have:

Lemma 2.4.3. There is a commutative diagram

H,(K™ K(n-D) 0.

@fo @faa
®o. D, H,1(0D2 ™)

Hn—l (K(n—l))

D, H.(D7, D7)

Proof. This comes from naturality and the exact sequences in homology for the pairs (K™, K1)

and (D}, 0D2). O

Definition. Given a CW-compler K, its cellular chain complex s the chain complex
(C.(K),ﬁce”), where C,(K) = Hn<K(n)’K(n—1)) and

ol s H, (K™, K=y 25 g (K=Dy 25 [ (KD, Ke=2)),

Proposition 2.4.4. For any CW-compler K, (C,(K),3°") is a chain complex.

Proof. The long exact sequences for the pairs (K™, K1) and (K1 K"=2) give us a
commutative diagram

7
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Hn—l (K(n—l)’ K(n—2))

cell
Oy

Hn72(K(n—2))‘7L—2 n72(K(n—2)’ K(n—3)>

Then 0% 0 9°! = j,_5 0 0, 0 jp,_1 © O, but the column is exact, so &, o j,_1 = 0. Hence
acell o 80@” =0. ]

Definition. The nth cellular homology group of a CW-complex K is H,(Co(K)).
Remark. CW-complexes are universal in topology:
e Every topological manifold is homotopy equivalent to a CW-complex.

e More generally, every topological space is weakly homotopy equivalent to a CW-
complex, i.e. it has the same homology theory. This means that every possible homol-
ogy theory is realizable through a CW-complex.

As the next theorem shows, the utility of CW-complexes is that the cellular homology
coincides with the ordinary homology of any space with a CW-structure.

Theorem 2.4.5. Let K be a CW-complex. Then there is an isomorphism H,(Ce(K)) =
H,(K) for each n and any homology theory H.

Proof. By Lemma 2.4.2, H;(K™ K®"=Y) = 0 whenever i # n. Fix i > 1 and consider n = 0.
Then by the additivity and dimension axioms, H;(K®) = 0. Next assume 1 < n < i and
assume the result holds for n — 1. Then the long exact sequence for the pair (K ) K (n=1))

1S
0= Hi (K™ KO ) & H(K®Y) - H(K™) - H(K™, K"Y) =0

By the inductive hypothesis, H;(K™ ) = 0 so we get H;(K™) = 0. We now extend the
commutative diagram from Proposition 2.4.4:
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0= Hy(KtD) — H,(K™) % 5, (K™, ko-0) & 5 (K0-D) —— H, ()
a\c\en\ N Jn—1

Hn,g(K(”_m) RN 7172([((71—2)7 K(n—S))

Filling in 0’s and using exactness of the column and row, we get that j, and j,_; are
injective, and ker 9, = kerd, = imj, ;. On the other hand, im 9! = j, ;(imd,) =
Frn1 (Ho (K™ K=1Y) /5, (H,(K™)). From this, we get a commutative square

im0, —— H,_(K®Y)

T

im arclell c anl(K(n_l), K(n—Q))
Then by commutativity of the big diagram,
ker 9 /im 0 = im j,_1/jn_1(im0,) = H,_1(K (n—1) )/Hn@ ~H,_ 1(K(")).

To complete the proof, we show H,_;(K™) = H,_,(K). For technical reasons, we assume
K is a finite dimensional CW-complex (the general result follows from taking direct limits
of the homology groups). We have shown that H;(K"1) = H;(K™) whenever n # i,i+ 1.
Equivalently, H;(K™) = H;(K"V) when i # n,n + 1. This implies

Hn_l(K(n)) o Hn_l(K(”+1)) ~...H, (K)
which terminates since K is finite dimensional. Hence by induction we are done. O

To make this useful in practice, we must further understand the cellular complex:

Co(K) = Hy (K™, K1) EBH (D™, 0D™).

Recall that C,,(K) is the free abelian group on the n-cells of K. Then an element of C,,(K)
is a formal sum ¢ = ) _n,o, where o are the n-cells of K and n, € Z. For such a chain c,
its cellular boundary is 0°!(c) = 3" _n,0°(c). Moreover, for a given cell o, its boundary
is of the form 0°!(g) = Y _[r : o]r, where the sum is over all (n —1)-cells 7 and [7 : o] € Z.
We have a commutative diagram
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geell . H, (K™, K(n-D) 0. H,_1(K®=D) Jn H, (K™D [ (n=2)
(o). (foo): )
H,(D",0D") - Hn_l(apnfi)/ ’ D. Hn_l(D;if*l, oD 1)
Z = ([D",0D")) Z = ([oD"'])

where WU is the isomorphism Y n,7 +— > n.(f;).([D"',0D""']). The inverse of ¥ is the
map

©: Hy(K™, K"y — @ Z(o)
a— > 6((po)s(@))o,

where p, : (K™, K®=D) — (S" 24) collapses K™~V and all n-cells except o to a point
xo € S", and ¢ : H,(S™) 5 Zis an isomorphism. To see explicitly that ® is the inverse of
¥, it’s enough to show one composition is the identity, since ¥ is already known to be an
isomorphism. In this case, for any n-cell o, we have

O(V(0)) = ((fo)-([D", D" ') = D ((pr)((fo)([D", D"])))7
and for any (n — 1)-cell 7,

id, T =o0.

Croy TFH O
p‘rofaz{.o

This implies ®(V(0)) =10 = 0 so ® and ¥ are inverses. These computations show that
[T : 0] = ¢((pro far)«[0D"]) = deg(p- o fo,) for any n-cell ¢ and (n—1)-cell 7. This describes
the cellular boundary map completely.

Example 2.4.6. The circle S! has an obvious CW-structure consisting of a single 1-cell
attached at its endpoints to a single O-cell. Thus the cellular complex is

0—-Z—7—0.

Since the gluing map has degree 0 (it identifies the endpoints of the 1-cell), the cellular
homology for S! may be computed as

Hy(SYY =7, H(SY)=17Z, H,(S')=0forn>2.
Example 2.4.7. Using the CW-structure for S? from Example 2.4.1, we get the following

cellular complex:

2 acell 8cell
02— 7Z —7Z — 0.
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The gluing map f : D' — K© = {4} identifies the endpoints of D' to g, so its induced
map is zero: f,([D']) = 29 — 29 = 0. Further, the gluing map g : D? U D3 — K1) = g1
attaches each 2-disk to the 1-skeleton by a degree 1 map, so the induced map is surjective.
Since the groups in the exact sequence above are free abelian, there is only one option for
95¢l. We have the following homology calculations:

Hy(S?) =7, H(S*)=0, HoS*) =27, H,(5*) =0forn>3.
Compare this to Theorem 2.3.5.

Example 2.4.8. Let X be the space obtained from S! x S? by attaching a 2-cell along a
map dD? — S x {pt} of degree k. A CW-structure consists of the O-cell {z} x {y}; 1-cell
I x {y} attached to K© at the endpoints of I; 2-cell D? x {y} attached to KV = S' x {y}
by a map of degree k; and a 3-cell {x} x D? attached along its boundary S? to the point
{z} x {y}. This gives us the following cellular complex:

0737 % 7% 7%

To compute homology, we must describe the cellular boundary maps 9;. First, 0y is induced
by a constant map I x {y} — {x} x {y} so it is zero (with kernel Z), and therefore Hy(X) =
kerdy/imd; = Z/0 = Z. Next, 0, is induced by a degree k map D? x {y} — KW so
Ora = ka for all a € Cy(X). In particular, kerdy, = 0 and imdy = kZ. This gives us
H{(X) =ker /im0y = Z/kZ. Finally, 05 is induced by another constant map {x} x D —
{z} x {y} so 05 = 0, in which case kerJ; = Z and imd; = 0. This allows us to compute
the last two homology groups: Hy(X) = kerdy/imd; = 0 and H3(X) = kerd; = Z. To

summarize, we have
(

Z, i=0
Z/kZ, i=1
Hi(X) =40, i=2
Z, i=3
0, i> 4.

\
Example 2.4.9. For 0 < k < oo and n > 0, let X, be the union of k n-disks along their
boundary. A CW-structure for this space is: one 0-cell K© = {z}; one 1-cell I glued to z at
its endpoints to yield a circle K) = S'; and k n-cells D}, ..., D?, each glued to K!) along
the boundary. We get the following cellular chain complex:

0-ZF 20— . 502722%7 %0
Then ker dy = Z and 0, is induced from the constant map I — {x}, so it is the zero map,
and we get ker 9y = Z and im 9, = 0. This gives us Hy(X) = kerdy/im 0y = Z/0 = Z. Next,
0> must be the zero map, so H;(X) =kerd,/imd, = Z/0 = Z. All the homology groups are
zero for i = 2 up to n—1, but 9, = 0 implies ker 9,, = Z*. Therefore H, (X) = ker 9,,/0 = Z*.
To summarize, we have the following homology groups for Xj:

Z, i=0,1

0, 2<i<n—1
HilXe) = 7k i=n

0, >n.
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Example 2.4.10. Let n,m > 0. We will describe a CW-structure on the product S™ x S™,
and use it to compute the homology groups H;(S™ x S™) for all i > 0. Set X = S™ x S™
and suppose without loss of generality that m > n > 0. The individual spheres have cellular
structures consisting of a point and a single cell in the top dimension: S™ = {z} U D" and
S™ = {y} U D™ A CW-structure on S™ x S™ consists of a single 0-cell {z} x {y}; a single
n-cell D™ x {y}; a single m-cell {x} x D™; and a single (n+m)-cell D" x D™. There are two
cases. First, if n = m, we really have two n-cells D™ x {y}, {z} x D™ and one 2n-cell D" x D",
so the cellular homology groups look like Hy(Co(X)) = Z, H,(Co(X)) = Z?, H,(Co(X)) = Z
and H;(Ce(X)) = 0 otherwise. By the isomorphisms H;(Ce(X)) = H;(X), we get

Z, =0

7%, i=n
Hi(X) = 7 1= 2n

0, otherwise.

Now suppose m > n. Then the cellular homology is Hy(Ce(X)) = Z, H,(Ce(X)) =
Z,H,(Co(X)) = Z,Hpym(Co(X)) = Z and H;(X) = 0 otherwise. Therefore the isomor-
phisms H;(C.(X)) = H;(X) yield

Z, i=20
H(X)=<7Z, i=nmn+m
0, otherwise.

This generalizes to arbitrary products of CW-complexes. Suppose K and L are CW-
complexes. For each p-cell o of K and each g-cell 7 of L, we get a (p + q)-cell of K x L,
which we may denote by o x 7, with the attaching map f, x f,; : 9DP*? — K x L. This
describes the entire n-skeleton of K x L:

(K x L)(”) - U K®  [(n=p)

0<p<n

Definition. A map f : K — L between CW-complezes is a cellular map if f(K™) C L™
for each n > 0.

We will show that every map between CW-complexes can be approximated by a cellular
map.

Lemma 2.4.11. Let K be a CW-complex. For any map ¢ : D™ — K such that p(S™1) C
K@= » is homotopic rel S*~* to a map D* — K™,

Proof. Since D" is compact, ¢(D") C K’ for some finite subcomplex K’ C K. Thus we may
replace K by a space X =Y U D™ for m > n and assume ¢ : (D", 0D") — (X,Y). Take an
open set U = X \Y = Int(D™). Then there is some open set F C U with compact closure
E. By smooth approximation (Corollary 1.1.15), ¢ is homotopic rel D™ \ o~} (E) to a map
g that is smooth on ¢~ !(F). Since m > n, Sard’s theorem guarantees there is a point p € E
outside the image of ¢. Now Y ~\ {p} deformation retracts to X so there is a homotopy rel
S"=1 of g to a map with codomain Y. Since homotopy is an equivalence relation, we get the
desired homotopy rel S*! of . m
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Corollary 2.4.12. Any map f : D" x {0} U S™™' x I — K with f(S*! x {1}) € K~V
extends to a map g : D" x I — K such that g(D" x {1}) C K™.

Proof. The pair (D™ x I, D" x {0} U S""! x I) is homeomorphic to (D™ x I, D" x {0}) so
apply Lemma 2.4.11. ]

Theorem 2.4.13 (Cellular Approximation). If ¢ : K — Y is a map between CW-complexes
and L C K is a subcomplex such that |, is a cellular map, then ¢ is homotopic to a cellular
map on K.

Proof. By hypothesis, we have a map K x {0} UL x I — Y. We extend this inductively
over the increasing n-skeleta of K using Corollary 2.4.14. m

Corollary 2.4.14. If f,g : K — Y are cellular maps that are homotopic, then they are
homotopic via a cellular homotopy.

Proof. Apply cellular approximation to such a homotopy, F': K x I — Y. O

Next, we describe the maps in homology induced by cellular maps between CW-complexes.
Given a cellular map g : K — L, there is an induced map on the cellular complexes
Co(K) = C,(L) given by g, : H,(K™ K=Yy — H, (L™ L") This is a chain map,
i.e. the following diagram commutes:

H,y (K™, D) O (K0 T g (g0 g2y
g 9 g
0, Jx

Lemma 2.4.15. Under the isomorphism H,(Ce(K),0") = H,(K), the induced map g, :
Cy(K) — Cu(L) coincides with the induced map H,(K) — H,(L).

Proof. From Theorem 2.4.5, we have the following commutative diagram with exact rows:

0 —— imJ, H,(K™) —— H,(K)

R

0 —— im 9! ——— ker 9° — H,(Co(K), ") —— 0

0

Applying g, gives us a commutative diagram
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which commutes by the preceding discussion. Thus the two induced maps coincide. O

Next, take two cells 0 € C,,(K) and 7 € C,,(L). Then the diagram

|

K(n)/K(nfl) - L(n)/L(nfl) — gn

Sn

induces a map g, : S™ — S".
Lemma 2.4.16. For any cells 0 € Co(K) and 7 € Co(L), 9:(0) = 3 e, (1) (deg gr0) T
Proof. Consider the diagram

Cn(K)

Cu(L)
(I)K (I)L
Hn<K(n),K(n—1)) & Hn(L("), L(n—l))

By previous work,

g«(0) = Z O((Pr)«gs(fo)«[D", OD"])T = Z (deg gr.0)T.

T€C, (L) T7€CH(L)
]

Example 2.4.17. Take a (p, q) curve on the torus 7 for relatively prime integers p and ¢,
the map ¢ — t(p, q) € R? induces a closed curve in T' = R?/Z?:

This induces a map in homology H;(S') — Hy(T). The torus may be given the following
CW-structure:

a
x x
1 0O-cell =«
b A o AD 2 1l-cells a,b
1 2-cell o
T ” T
a
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Thus the cellular complex for T' is
02572257 -0,
In particular, the complex is already exact, so it is its own homology:
Hy(T)=17, H(T)=7* Hy(T)=17%, H,(T)=0forn>3.

The map 7 : S* — T which realizes the (p,q) curve is homotopic to a map along the frame
of the quotient square:

Hence the induced map on homology is v.(c) = pa+gb, where c is a generator of H;(S') = Z.

2.5 FEuler Characteristic

Recall that if G is a finitely generated abelian group, then G = F @& T where F is a free
abelian group of finite rank and 7T is a finite torsion group, T = Z/mZ & - -+ & Z/niZ for
integers ny | -+ | ng. The rank of G is defined to be rank G = r, where r is the rank of
the free part of G. It is a well-known fact from algebra that rank is additive on short exact
sequences, meaning if

11

0-G -G—->G" =0

is a short exact sequence of abelian groups, then rank G = rank G’ 4+ rank G”.
In this section, let X be a topological space such that rank H;(X) is finite for all 7 and
the set {i € Ny : rank H;(X) > 0} is finite.

Definition. The rank [5; := rank H;(X) is called the ith Betti number of X. We call the

alternating sum
o0 [e.e]

X(X) =) (=1)'8; = > (—1)' rank H;(X)

=0 =0

the Euler characteristic of X.
Examples.

@ By Theorem 2.3.5, we can compute the Euler characteristic of any sphere:

0, nisodd
x(5") = {

2, s even.
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@ By Example 2.3.20, the Euler characteristic of the projective plane is y(RP?) = 1.
Moreover, the Klein bottle is a connect sum of projective planes, K = RP2#RP?, so
by the additivity axiom, y(K) = 0.

@ Our computations of the homology of a torus in Example 2.4.17 show that x(7) = 0
as well. However, the torus and Klein bottle are not homeomorphic (the Klein bottle
is non-orientable, for example), so this shows that Euler characteristic cannot detect
topological equivalence completely.

Theorem 2.5.1 (Euler-Poincaré). Let (C,,0) be a finite dimensional chain complex, i.e. a
chain complex such that rank (.2, C;) < co. Then

o0 oo

Z(—l)i rank H;(C,) = Z(—l)i rank C;.

i=0 i=0
Proof. Consider the exact sequences

0—kerd;, - C; —1im09; — 0
and 0 — im0;1; — kerd; — H;(Cy) — 0.

Since rank is additive,

Z(—l)i rank C; = Z(rank ker 0; + rank im 0;)
i=0 i=0
= Z(—l)i(rank im 041 + rank H;(C,) + rankim 9;)
=0
= Z(—l)i rank H;(Cl,)
i=0
since the first and third terms in each summand telescope. O

In particular, the Euler characteristic for a (finite) CW-complex is easy to calculate if
only its CW-structure is known.

Corollary 2.5.2. For a CW-complex X, its Euler characteristic may be computed by

oo

X(X) = Z(—l)inz‘

i=0
where n; is the number of i-cells of X.

Corollary 2.5.3. For any complex polyhedron X, x(X) =V — E+ F =2, where V, E and
F are, respectively, the number of vertices, edges and faces in the polyhedron.

Proposition 2.5.4. Given a covering space p : X — Y with k sheets, where Y is a finite
CW-complez, then X is also a finite CW-complex with Euler characteristic x(X) = kx(Y).
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Proof. By covering space theory, each map f, : D! — Y lifts to X in exactly k ways. This
gives a CW-structure on X consisting of exactly k£ times as many i-cells as Y for each i > 0.
The Euler characteristic equation follows immediately. O]

Example 2.5.5. If p : S — Y is a covering space of a finite CW-complex Y by an even-
dimensional sphere S?*, then the number of sheets of the cover is 1 or 2. In particular, every
even-dimensional projective space RP?* has Euler characteristic 1 since p : S?* — RP?* is a
nontrivial cover (see Example 1.2.12).

Example 2.5.6. Let ¥, = T#---#7T be the closed, orientable surface obtained as the
——

g times
connected sum of g > 1 copies of T'. Using a CW-structure, one can show that

Z, i=0 (X, is path-connected)

Hi(S,) = wr =l
)7z, i=2 (e.g. there is one 2-cell in a CW structure)
0, >3

Then the Euler characteristic is x(X,) = 1 —2g+ 1 = 2 — 2g. To complete the picture,
we may view S? as the ‘connected sum of zero tori’, by which x(S?) = 2. Thus the Euler
characteristic completely determines a closed, orientable surface.

2.6 More Singular Homology

In this section we finally prove the existence of a homology theory by verifying that singular
homology satisfies the Eilenberg-Steenrod axioms of Section 2.3. Note that we already
have proven three of the axioms, namely exactness (Theorem 2.2.4), dimension (this is
obvious from the definition of singular homology; see Theorem 2.6.3 below) and additivity
(Lemma 2.1.9). This leaves the homotopy and excision axioms. To prove the homotopy
axiom, we introduce another useful concept from homological algebra.

Definition. Let A, and B, be chain complexes and o, : Ae — B, be chain maps. We
say ¢ and 1 are chain homotopic if there exists a homomorphism H : Aqy — B, such that
H(A,) C B4 for eachn € Z, and 0o H+ H o0 = ¢ —1.

: %AnJrl 0 An 0 Anfl
QOM / @ w/w‘w
: *’BnJrl P Bn 9 anl

Lemma 2.6.1. If p,¢ : A, — B, are chain homotopic then ¢, = . on H,(A.) for all
n e z.
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Proof. For any n-cycle a € A,, we have

(px — thi)la] = [p(a) — ¥(a)] = [0H (a) — HO(a)] = [0H (a) — H(0)] = [0H (a)] = 0.
Hence ¢, = 1, as claimed. ]
Lemma 2.6.2. Chain homotopy is an equivalence relation.

Proof. Take ¢,1,x : Ae — B, and suppose there exist degree —1 maps H,G : A, — B,
such that 0H + HO = ¢ — ¢ and 0G + GO = ) — x. Then

p—x=(p—v)+ W —x)=(0H + HY) + (0G + GI) = d(H + G) + (H + G)0.
Therefore ¢ and x are chain homotopic by the map H + G. n

Definition. A chain map ¢ : Ae — B, is a (chain) homotopy equivalence if there exists
some chain map vV : By — A4 such that oo and o are chain homotopic to idg and id 4,
respectively.

Theorem 2.6.3 (Dimension). If X is contractible then its nth singular homology group
H,(X) is zero for all n > 0.

Proof. Define a map D : A,(X) — A,41(X) as follows. Let F' : X x I — X be the
contraction to a point xzy € X. For an n-simplex o € A, (X), define an (n + 1)-simplex

D(U) . An+1 — X
n+1 n+1 s
Z )\jej — F (0’ (Z f@j) ,)\0)
j=0 j=0

where \ = Z;ié Aj. This defines our map D : A, (X) = A, 41(X). Notice that when n > 0,

dD(c) =0 — Z(—l)j’lD(a)U) — 0 — Z(—l)jle(a(j’l))
=o—-D (i(—l)jam> =0 — D(0o).

If n = 0, then 0D(0) = 0 — g, where oy is the unique 0-simplex at zy. Also, D(0o) =
D(0) = 0, so we have
>0
(9D + Dd)(0) = {“’ "
o—o9, n=0.
We thus see that 0D + DO = 1 — ¢, where € : X — {0} is the augmentation map. Since

g, = 0 on homology for all n > 0, we have constructed a chain homotopy from 1 to 0 on
H,(X) for all n > 0. Therefore H,(X) =0 for all n > 0. O

This establishes the dimension axiom for singular homology. To prove the homotopy
axiom, we introduce a bilinear map on products of homology groups, called the cross product.
First, we define a bilinear map on the product of the singular chain groups.
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Theorem 2.6.4. Let X and Y be spaces and fix p,q > 0. Then there is a bilinear map
Ap(X) X Ag(Y) — Apyg(X xY)
(a,b) — a x b
which satisfies

(a) If ¢ =0 then o x {y} = (0(-),y) : A, = X x Y. Similarly, if p =0 then {z} x 7 =
(x,7(-)) : A, > X x Y.

() If f: X = X and g:Y =Y, then (f X g)«(a x b) = fi(a) X g.(b), i.e. we have a
commutative diagram

Ad(X) x A(Y) (X xY)

Je X gs (f X g)«

Au(X') % Ag(Y') —— A(X' x V)

(c) O(a xb) =0da x b+ (—1)%% x Ob.
Proof. We prove all three statements by induction on p+q. If p = 0 or ¢ = 0, the statements
are clear by the definition in (a). Now fix p + ¢ where p > 0 and ¢ > 0. View the identity
maps ¢, : A, = A, and i, : A, = A, as a p-simplex and a g-simplex, respectively. Then 01,
is a (p — 1)-simplex so by induction, 0i, x i, + (—1)Pi, x 0i, is defined and satisfies

8(Biy, X iq + (—=1)Pi, X Dig) = 8%y X ig + (—1)P710iy, X Dig + (—1)PBiy X Dig + (—1)"4y, x %,
=0+ (=1)""(9i, x di, — di, x Biy) + 0= 0.
So 0y X iy + (—1)? x iy is a cycle in Z,,1(A, x A,). However, A, x A, is a contractible
space, so by Theorem 2.6.3, Hy.,1(A, x A,) = 0. This implies 0i, x i, + (—1)?i, X 0i, is a
boundary, that is, there is some ¢ € A, (A, x A,) for which
(c) = iy X ig+ (—1)Piy x Di,.

Define the cross product on these ‘standard’ simplices to be i, X i, := ¢, where ¢ is chosen as
above. Now for any simplices 0 : A, = X and 7 : A, = Y, we have 0 = 0.(ip) and 7 = 7.(i,)
so it makes sense to define o x 7 := (0,7).(i, X i,). Extend this definition linearly to all of
Ap(X) x Ay(Y). In the base case, we already proved (a) and (b) holds by our definition of
the cross product on simplices. We finish by showing (c) holds: for any simplices o € A,(X)
and 7 € A,(Y), we have

Ao x 1) =0((0,7)(ip X ig))
= (0,7).0(ip X i,) by naturality of chain maps
= (0,7)«(9ip x ig + (=1)Pip x Diy)
= (0,7):(9ip X ig) + (0, 7)u((—=1)Pip x Dig)
)

*

(
= 0.(0ip) X T(iy) + (—1)P0.(ip) X 7(0i,) by induction
= 00.(ip) X Tu(lq) + (—1)P0.(ip) X O7.(i,) by naturality
=00 x 17+ (=1)Po x Or.
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Finally, extend by linearity to all of A, x A, to obtain the result. m

Corollary 2.6.5. There is a bilinear map, called the cross product, defined on homology by

Hy(X) X Hy(Y) — Hpi (X xXY)
(lal, [b]) — [a x 1]

Proof. 1t’s enough to check that the bilinear map in Theorem 2.6.4 is well-defined on homol-
ogy classes. For any cycles a € Z,(X),b € Z,(Y) and boundary da’ € B,(X), we have

(a+0d)xb=axb+0dd xb
=axb+09(a' xb)—(—1)Pa’ x b by Theorem 2.6.4
=a x b+ 9d(a’ x b) — 0.

So [(a+ 9d") x b] = [a x b]. O

Theorem 2.6.6 (Homotopy). If f,g : X — Y are homotopic maps then the induced maps
on homology fs, g« : Ho(X) — Ho(Y) are equal.

Proof. We will show that the inclusions
o, X = X x I, mo(X) = X x {0}, m(X) =X x {1},

induce chain homotopic maps Aq(X) — A¢(X X I). This implies the homotopy axiomm,
since if F': X x I — Y is a homotopy from f to g then we will have Fony= f,Fon =g
and

f*:(FOHO)*:F*O(TIO)*:F*O(nl)*:(Fonl)*:g*

View the interval I as a 1l-simplex with endpoints ey, e; so that I = e; — ¢y. Define
D Ay(X) = Apia(X) by D(o) = o x I, using the cross product from Theorem 2.6.4. Then
for any chain ¢ € A,(X),

(0D — DO)(c) =0(cx ) —0cx I
=0cx I+ (=1)Pe x OI —dc x I by Theorem 2.6.4
= (=1)Pc x (e1 — €p)
= (—1)P(cx e; —c X ep)

= (=1)P((m)«(e) = (m0)«(c))-
This shows that (7). is chain homotopic to (7). as claimed. O

To prove the remaining axiom of excision, we need to understand how to subdivide
open sets U which are to be excised. View A,, C R""! as a subspace of Euclidean space.
For 0 < p < n, let L,(A,) C A,(A,) be the subcomplex generated by affine simplices
o= [vg,...,Up.

Definition. For a point v € A,,, the cone of v on an affine p-simplex o = [vy, . .., v,] is the
affine (p + 1)-simplex vo = [v, vy, ..., v,
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(%

Vo

U1

the cone vo on an affine 2-simplex o

Extending the cone definition by linearity, we get a map v : L,(A,) — Ly+1(4A,) which
satisfies the following properties:

e Forp >0, d(vo) = 0w, vy, ...,y = [vo,...,v,| —vO|vy, ..., vy] =0 —vdo. As aresult,
for a general p-chain ¢, (vc) = o — voe.

e For p =0, d(vec) = c—e(c)[v].

In order to subdivide, we need to be able to turn a simplex into multiple smaller simplices.
To this end, we have:

Definition. Let o = [vy,...,v,| be a p-simplex and define its barycenter by
1 p
g = m - Up.

This defines a map, called barycentric subdivision, Y : L,(A,) — L,(A,) defined on
affine p-simplices by

o, p=20
T p—
) {aor(aa», p>0

and extended by linearity.

barycentric subdivision of a 2-simplex

Lemma 2.6.7. T is a chain map.
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Proof. Let o be a p-simplex. For p =0, T(do) =0 = 9Y(0). For p =1, T(do) = do, while
on the other hand,

0Y (o) = 0o(Y(Jo)) = 0a(0o) = 0o — £(do)[a] = do

so Y0 and 0T agree on 1-simplices. Finally, if p > 1,

So Yo = 07. O
Lemma 2.6.8. T is chain homotopic to the identity on L,(A,).

Proof. Inductively define the map

T:L,(A,

for p-simplices ¢ and extend linearly. For any 0-simplex o, we have
(TO+9T) (o) =0= (T —1)(0).
Further, for p > 0 and any p-simplex o,

OTo =00(Y(0) — o —T0o)

=Y(0) —0—Tdo — (90X (0) — do — (T o))
=Y(0)—0—T0oc —a(0Y(0) — do — (T (o) + Y(do) — o))
=7Y(0) —0—T0do —a(0Y (o) — Y(Jo))

=7T(0) —0 —T0o —0 since T is a chain map

= (T —-1)(o) — T0o.
Hence 0T +T0 =T — 1 so T is chain homotopic to the identity. O

Theorem 2.6.9. There exists a chain map T : A,(X) — A,(X) and a chain homotopy
T:Ay(X) = Apii(X) from Y to the identity such that

(1) Y and T agree with their definitions on L,(A,,).
(2) Y(fic) = fiX(c) and T(f.c) = f.T(c) for any map f: X — Y.
(8) Y(o) and T'(0) are chains in the image of o.

Proof. As above, a p-simplex o : A, — X can be written ¢ = 0,(i,). Define the maps T
and T on p-simplices by Y (o) = 0.(Y(i,)) and T'(0) = 0.(1(i,)) and extend to all of A,(X)
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by linearity. Then (1) holds by construction, (2) follows from naturality of T and (3) follows
from (2). Now, T is a chain map:

= 0Y(0.(ip)) = 0Y (o).
Also, T is a chain map:
Tdo = T(0.(0iy)) = 0.(TDi,)

— 0.(0T (i) = 00,(T(iy)) = DT (o).

Finally,
(TO+ 9T)(0) = 0.((TD + IT)ip) = 0w ((T — 1)iy)
= (T = 1Dou(ip) = (T = 1)(0).

Therefore TO + 0T =T — 1 so T is a chain homotopy as desired. m

Corollary 2.6.10. For any k > 1, the map Y% : A, (X) — A (X) is chain homotopic to
the identity on A, (X).

Proof. Follows inductively from the fact that Y2 =T oY ~Tol =7 ~ 1. ]

The key idea with barycentric subdivision is that for any affine simplex o € L,(A,,), each
Y*(o) is a linear combination of simplices whose diameters approach 0 as k — oco. (This is
made precise in IV.17 of Bredon.) As a result, we have:

Corollary 2.6.11. If X is a space with an open cover U = {U,}, then for any simplex
o € Ay(X), there exists a k > 0 such that each simplex in Y*(o) has image in some U,.

Let X be a space and suppose U is any collection of sets in X whose interiors cover X. Let
AY(X) C A.(X) be the subcomplex generated by simplices with image lying in the interior
of some U € U. We denote the homology of this subcomplex by HY(X) := H (AY(X)).

Theorem 2.6.12. The inclusion I : AY(X) — A.(X) induces an isomorphism I, : HY(X) —
Ho(X).

Proof. Suppose dc = 0 in AY(X) and I,[c] = 0 in Hy(X). Then there exists d € A,(X) such
that dd = c. By Corollary 2.6.11, one can find k > 0 such that Y*(d) € AY(X). Since T* is
homotopic to the identity by Theorem 2.6.9, there is some chain homotopy 7} such that

Tk(d) —d ="T,0d+ 0T,d = Ti,c + 0T}d
— 0Y*(d) — 0d = 0Tyc+ 0
— ¢ =0d = 9(T*(d) + Tyc).

Since T*(d) and Tyc both lie in AY(X), ¢ € (AY(X)), ie. [c] = 0 in HY(X) as desired.
This shows injectivity. For surjectivity, take ¢ € Aq(X) with dc = 0. Let k£ > 0 such that
T*(c) € AY(X) using Corollary 2.6.11. Then

T*(c) — ¢ = Tyoc + 0Ty = 0Ty
so [c] = [T*(c)] € HY(X). Hence I, is an isomorphism. O
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For a pair (X, A) and a cover U as above, let AY(A) denote the subcomplex of A4(A)
generated by all simplices having image in the interior of a set of the form U N A for U € U.
Set

AY(X,A) = AY(X)/AY(A).

Then there is a commutative diagram with exact rows:

0 AY(A) — AYU(X) — AY(X,A) —— 0
0 Ag(A) —— Ay(X) — A.(;(, A) 0

By the Five Lemma (2.2.3), the dashed arrow is an isomorphism: HY (X, A) & H,(X, A).
We are now prepared to prove the excision axiom for singular homology.

Theorem 2.6.13 (Excision). Let B C A C X be sets such that B C Int(A). Then the
inclusion (X N\ B, A~ B) — (X, A) induces an isomorphism on relative homology:

HJ (X ~ B,A~ B) =~ H,(X, A).

Proof. The collection i = { A, X\ B} covers X so by the above work, HY (X, A) & H,(X, A).
Every simplex o € AY(X) has image lying in A or X \ B, so we can write AY(X) =
Ad(A) + A(X N B). Moreover, A (A N B) = AJA) N Ad(X \ B) so there exists an

isomorphism

CAMXNB) AXNB) AN NB)+A(4)  AYX)
A XNBANB) = R 0 ) T A A N AKX <B) AJ(4) A4

by the isomorphism theorems. This gives us a commutative diagram

~Y

AJX ~ B, A\ B) — AY(X)/AJ(A)

~
~
N
N
N
N
~
~
~
Sa

Ad(X)/A(A)

By Theorem 2.6.12, I, is an isomorphism on homology so He(X \ B, AN B) = H (X, A) as
desired. O

Corollary 2.6.14. Singular homology is a homology theory.

2.7 The Mayer-Vietoris Sequence

In this section we construct a long exact sequence called the Mayer-Vietoris sequence which
is useful for computing homology groups. This can be seen as an analog to the Seifert-van

Kampen theorem (1.5.1).
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Theorem 2.7.1 (Mayer-Vietoris Sequence). Suppose A, B C X are sets whose interiors
cover X ; set U = {A, B}. Then there is a short exact sequence of chain complexes

0= AJANDB) = AJA) D AJ(B) = AY(AUB) = 0
mducing a long exact sequence in homology
o> Hy (X)) - Hy(ANB) —» Hy(A) @ Hy(B) = Hy(X) — - -

Proof. Define the inclusions iy : ANB — Ajig : ANB — B,ja : A — AUB and
jp: B — AU B. Then the maps determining the short exact sequence are:

0= Ad(ANB) 428 A(A) @ Au(B) 22722 AY(AU B) — 0.

All that remains is to define the boundary map 0, : H,1(X) — H,(AN B). To do this,
take a cycle ¢ € Z,41(X) and use barycentric subdivision (e.g. Theorem 2.6.12) to write
¢ =a+b for chains a € A,11(A) and b € A, 11(B). Then da+ 0b = 0(a +b) = dc = 0 so
we can take O.[c] = [0a] = [-0b]. Exactness of the long sequence is now a straightforward
diagram chase. O

Example 2.7.2. The Mayer-Vietoris sequence allows us to calculate the homology groups
for all spheres in a straightforward fashion (compare this to Theorem 2.3.5 and the cellular
homology calculations in Examples 2.4.6 and 2.4.7). For n = 1, write S' = AU B where A
and B are the illustrated arcs:

A

B

Then A and B are acyclic and A N B is homotopy equivalent to S°. The Mayer-Vietoris
sequence for S' = AU B then reduces to the following terms:

0= H(A)@® H\(B) — H\(S') = Hy(AN B) = Hy(A) ® Hy(B) — Hy(S*) — 0.

By Corollary 2.1.10, Hy(A N B) = Hy(SY) = Z?, and also Hy(A) = Hy(B) = Z, so it’s
enough to describe the map Z2 2225 72 hetween these groups. One can check that this

is represented by the matrix G D, which has null space of rank 1, and thus H;(S') =

Hy(S') = Z. This agrees with earlier computations.
Now for any n > 2, decompose S™ into ‘enlarged’ hemispheres A and B:
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Then AN B is homotopy equivalent to S"~! so by induction and the same Mayer-Vietoris
sequence argument as above, we get

H;(S") = {Z’ =

0, otherwise.

Example 2.7.3. In this example, we use the Mayer-Vietoris sequence to compute the ho-
mology of RP?. (Compare to Example 2.3.20.) View RP? as the union of a disk A = D?
and a Mobius band B, allowing these two sets A, B to overlap a bit so that there interiors
cover RP2. The Mayer-Vietoris sequence for X = AU B is

H,(ANB) — H,(A) ® H,(B) — H,(RP?) —

o HQ(A N B) — Hy(A) @ Hy(B) — Hy(RP?) —

— H\ (AN B) — H(A) @ Hi(B) — H,(RP?) —
— Ho(AN B) — Hy(A) ® Ho(B) — Hy(RP?) — 0.

Now A is a disk and B is homotopy equivalent to a circle, so we know their homology groups:

Z, n=20
0, n>0

Z, n=0,1
0, n>1.

H,(A) = { and H,(B)= {

Also, AN B has the homotopy type of a circle, so Hy(AN B) = Hi(AN B) = Z and
H, (AN B) =0 otherwise. We are therefore left with the following terms to compute:

0— 0— Hy(RP?) —
— 7 — 7 — H(RP?) —
— 7 — 7Z* — Hy(RP?) — 0.

The inclusions ANB C A and AN B C B induce an injection Hy(ANB) — Hy(A)® Hy(B),
so the arrow Z — 72 is injective in the diagram above. It follows from exactness that
Ho(RP?) = Z. Finally, H (AN B) — H(A) & H;(B) = 0® Z is the zero map in the
first component plus a degree two map (see Example 2.3.20), so Z — Z is multiplication
by 2. In particular, this is injective, so Ho(RP?) = 0, and the cokernel is Z/27Z, proving
H,(RP?) = Z/2Z. In total, we have the expected homology of the projective plane:

Z, n=>0
H,(RP*) =<17/2Z, n=1
0, n > 2.
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Definition. For a space X, define its (unreduced) suspension SX as the quotient of
X X I by the equivalence relation ~ identifying X x {0} to a point zo and X x {1} to another
point x1.

X1

Zo

Proposition 2.7.4. For a space X, there are isomorphisms H;(SX) = H;_1(X) for all i.

Proof. Consider the open sets A = SX \ {x¢} and B = SX \ {z1}. Then SX = AU B so
the Mayer-Vietoris sequence for this covering is

Notice that ANB = SX ~{xg, z1} is homotopy equivalent to X; in fact, there is a deformation
retract of AN B to the image of X x {1/2} in SX obtained by composing the deformation
retract X x (0,1) — X x {1/2}, fs(x,t) = (z,|t — 1/2]), with the restriction of the quotient
map X x (0,1) = SX ~ {zo,z1}. Thus H;(AN B) = H;(X) for all ¢ > 0. By a similar
argument, A contracts to the point z; and B contracts to x1, so we get H;(A) = H;(B) =0
for i > 0 and Hy(A) = Hy(B) = Z. Thus the Mayer-Vietoris sequence becomes

v Hi 1 (SX) — Hy(X) = 0 = Hy(SX) — -+ Hi(SX) — Ho(X) = Z* — Hp(SX) — 0.

For all i@ > 0, we immediately get isomorphisms H;1(SX) = H;(X) and since reduced
homology is isomorphic to ordinary homology for ¢ > 0, we get H;1(SX) = H;(X) fori > 0.
The case ¢ = 0 is easy using the definitions of the suspension and reduced homology. O

There is an analogue of the Mayer-Vietoris sequence for relative homology:

Theorem 2.7.5 (Relative Mayer-Vietoris). For any open sets U,V C X, there is a short
exact sequence

AdX)  AJSX) ASX)  AJX)
TAUNY) A T AV AU UV

— 0,

where U = {U,V'}, inducing a long exact sequence in relative homology

o Hy (X, UUV) = Hy (X, UNV) = Hy(X,U) & Hy(X, V) = Hy(X,UUV) = -+

97



2.8 Jordan-Brouwer Separation Theorem 2 Homology

2.8 Jordan-Brouwer Separation Theorem

Recall that the classic Jordan Curve Theorem states that any embedding of S* in the plane
R? separates the plane into two regions, an ‘inside’ and an ‘outside’. In this section we
generalize this property using homology.

Lemma 2.8.1. Fiz n € N and suppose a compact space Y has the property that for any
embedding f:Y — S™, H;(S" ~ f(Y)) =0 for alli. Then'Y x I has the same property.

Proof. Fix an embedding f : Y x [ < S™ and suppose ﬁj(S” N f(Y x I)) # 0 for some j.
Then there is a cover AU B = S™ ~\ f(Y x {1/2}) consisting of

A=S"~ (Y x[0,1/2))
B=8"~ f(Y x[1/2,1])

ANB = 8"~ f(Y xI)

AUB = 8"~ f(Y x {1/2}).

Viewing Y x{1/2} =Y, the hypothesis gives f[i(AUB) = 0 for all i. Then the Mayer-Vietoris
sequence for AU B is

oo = Hi(AUB) =0 — Hi(ANB) — Hy(A) @ Hy(B) = H(AUB) =0 — ---

so we have isomorphisms H;(A N B) = H;(A) & H;(B) for all i. Therefore at least one of
H;(A), H;(B) is nonzero. Now repeat the Mayer-Vietoris argument using [0, 1/2] in place of

[0,1]. A fact from homological algebra says that direct limits commute with homology, so if
Iy =10,1],I; = [0,1/2], etc. then we have

0 # lim H, (L:JO SN f(Y X L)) >~ H,(S"~ f(Y x {x0})) =0,

a contradiction. ]

Lemma 2.8.2. Let f: D™ — S™ be an embedding. Then fIZ(S” N f(D™)) =0 for alli > 0.

Proof. Induct on m, using D™ = D™ ! x I and Lemma 2.8.1. [
In particular, this shows that S™ ~ f(D™) is a connected space.

Theorem 2.8.3 (Generalized Jordan Curve Theorem). For any embedding f : S™ < S™,

Z, ifi=n—m-—1

]:Q(Sn\f(sm)): {O ifi#n—m— 1.

In particular, Hy(S™ — f(S™)) = H;(S™™Y) for all i.
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Proof. We induct on m. For the base case, m = 0 and S™ . f(S°) = R™ \ {0} which is
homotopy equivalent to S™~!. The result then follows from Theorem 2.3.5. Now suppose
that for any embedding g : S™ ! < S" H,(S" \ g(S™™)) X Z for i = n —m and is 0
otherwise. Let f:S™ < S™ be an embedding and define
A=S"\f(DY)
and B=S"~ f(D™),

where D' and D™ are the closed upper and lower hemispheres of D™, respectively. Then
ANB = 8"\ f(S™) and AUB = S™~ f(S™!) so the Mayer-Vietoris sequence for AU B is

o= Hi g (57 f(S™7Y) = Hy(S™ N f(S™)) = Hy(A) @ Hy(B) — - -

Now by Lemma 2.8.2, H;(A)@® H;(B) = 0 for all i, so we get isomorphisms H;(S™~ f(S™)) =
H;1(S™~\ f(S™1)). The result follows by the inductive hypothesis. O
Corollary 2.8.4 (Jordan-Brouwer Separation Theorem). Suppose f : S™! < S™ is an

embedding. Then S™ ~. f(S™™1) consists of two connected components, U and V', such that
H;(U) = H;(V) =0 for all i, and f(S™ ') is the boundary of each of U and V.

Proof. By the generalized Jordan curve theorem, Ho(S™ f(S™ 1)) = Zso Ho(S™~ f(S™1)) =
Z®Z. Then Corollary 2.1.10 says that S™\ f(S™™!) has two (path) components, call them U
and V. Theorem 2.8.3 also says that H;(S™~ f(S™!)) = 0 for all i > 0, so by the additivity
axiom, H;(U) = H;(V) =0 for all i > 0.

Finally, since f(S™!) is compact, it is closed in S™ so any point outside f(S™!) lies
in an open set completely contained in one of U or V. This proves OU C f(S"!) and
OV C f(S™hH. If f(z) € f(S™!) but f(x) & AU for some x € S™!| then f(x) lies in a

neighborhood N that does not intersect U. Thus there exists an open (n—1)-disk N C S™!
such that f(N) € N. Since S" '\ N = D" ! Lemma 2.8.2 shows that W = S"~\ f(S" '\ N)
is acyclic. In particular, it is open and connected. On the other hand, we can write

W =258"f(S" ' N)=UnNW)U(VUN)NW)

which is a disjoint union of nonempty, open sets, a contradiction. Hence U = f(S™!) = 9V
as claimed. O]

Corollary 2.8.5. Suppose n > 2 and f : S"™' — R™ is an embedding. Then R™ ~ f(S"!)
has exactly two connected components, U and V', such that V' is bounded and acyclic and
H;(U) = H;(S™ ') for alli.

Proof. By the Jordan-Brouwer separation theorem, S™ \. f(S"~!) has two components, call
one of them V. Consider the long exact sequence for the pair (V,V ~\ {z}):

o= Hia (V) = Hio(V,V S {ad) = Hi(V S {z}) = Hi(V) — -
Then since V' is acyclic, we get isomorphisms
Hy(V ~A{z}) = Hiy(V,V \ {z})
~ H; (D", D" . {0}) by excision
>~ H,(D" ~. {0}) by the exact sequence for the pair (D", D" <. {0})
>~ H,(S"') by the homotopy axiom.
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Since R™ \ (V ~\ {z}) is homotopy equivalent to U := R™ \. V, the result follows. O

2.9 Borsuk-Ulam Theorem

In this section we combine the theory of covering spaces with homology to prove several
important results in topology, including the Borsuk-Ulam Theorem. Suppose 7 : X — Y
is a double covering and fix a deck transformation ¢ : X — X such that g(z) # x for any
z € X and ¢g? = 1. For any p-simplex 7 € A,(Y)), there are precisely two lifts of 7 to A,(X),
o and goo.

X
gOO'
T
g
A, Y

T

Definition. For the double covering m : X — Y, the transfer map is define to be the chain
map

t:AY;2/27) — Ao(X;7Z/27)
T—>0+goo

where o is any lift of T to X.
There is another important chain map induced by the cover:
Tw : De(X;Z)27) — A(Y;Z/27.).
This fits into an exact sequence with the transfer map, as the following lemma proves.
Lemma 2.9.1. There is a short exact sequence of chain complezes
0= AJ(Y;Z)27) 5 AJ(X;Z/27) T AJ(Y;Z/27) — 0.

Proof. First, t is injective by the lifting property (Theorem 1.2.13) and 7, is surjective by the
lifting property applied to simplices in Y, as above. Next, for any simplex 7 € A,(Y;Z/27Z),

T(t(7)) =m(c+goT)=7+7=0 (mod 2)

by definition of lifts, so 7, ot = 0. Finally, if ¢ € ker,, we can write ¢ = >_ a;0; such that if
o; appears in ¢, so does g o g;. Then ¢ € imt so we have shown the sequence is exact. O

Theorem 2.9.2. For any double covering @ : X — Y, there is a long exact sequence in
homology

o Ho (Y3 72)22) 25 Hi(YZ/22) 2 Hy(XZ)27) = Hi(Y; Z)27) — - - -
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Proof. This is just Theorem 2.2.2 applied to the short exact sequence in Lemma 2.9.1. [

Example 2.9.3. An important application of these mod 2 homology calculations is to the
double cover 7 : S™ — RP™. Since the homology groups for S and RP" vanish in dimension
greater than n, the long exact sequence from Theorem 2.9.2 is

0 = H,(RP™Z/27) & H,(S"; Z,/27) = H,(RP", Z/27) — - --

By Theorem 2.3.5, H,(S™;Z/27) = Z/2Z. For any [o] € H,(RP™,Z/2Z), set T = 7|circo.
Then we have t,(7.(0)) = t.(7) = 0 + g o 0, but since g is a deck transformation, hence a
homeomorphism, Corollary 2.1.19 says that g, is an isomorphism on homology. Therefore

trome=14+¢g,=14+1=0 (mod 2).

Since t, is injective, we must have 7, = 0 as well. Thus the long exact sequence becomes

i H;(RP"Z/27) H;(S™;Z/2Z) H;(RP";Z/27)

" Z/2L Z/2Z — 7.)27 =
n—1 Z/2Z 0 727 —=
n—2 Z)27 0 7.)27. =

1 727 0 7./2Z =

0 7.)27. 2, 727, 7/27

In particular, all the connecting homomorphisms 0, : H;(RP™Z/2Z) — H;_(RP™;Z/2Z)
are isomorphisms. These computations of transfer and induced maps allow us to prove
important results for sphere homology.

Definition. Let a : S™ — S™ be the antipodal map. We say a map ¢ : S™ — S™ 1is
equivariant if poa =ao ¢.

Theorem 2.9.4. For any map ¢ : S™ — S™, if ¢ is equivariant, then n < m.

Proof. An equivariant map induces a map on projective spaces ¢ : RP™ — RP™. By the long
exact sequences in mod 2 homology for each space (Theorem 2.2.6), we get a commutative
diagram for each ¢ > 0:

*

H;(RP"™; 7,/27)

Hy 1 (RP" Z/22) — -+
1/}* 2/}*
o8

For + = 0, the homology groups on the right are 0 so v, on the right is an isomorphism.
Moreover, by Example 2.9.3, the connecting homomorphisms 0, are isomorphisms in every
degree. Thus by commutativity, ¢, on the left is an isomorphism. By the same argument,
¥, is an isomorphism H;(RP™;Z/27) — H;(RP™;Z/27) whenever i < min(m,n). Suppose
n > m. Then 1, is an isomorphism when ¢ < m, but one of the squares of the above
commutative diagram is
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*

H,,(RP™; 7,/27) H,,(RP",Z,/2Z) = 0

w* 90*
by
H(RP™7,/27) —— H,(RP™;Z,/27) = 7./27.
The above discussion shows v, are isomorphisms, but H,,(S™;Z/27Z) = 7./27., a contradic-

tion. Therefore n < m. O]

Theorem 2.9.5 (Borsuk-Ulam). For any map f : S™ — R", there ezists a point x € S™
such that f(—x) = f(x).

Proof. Suppose to the contrary that f(—x) # f(x) for any x € S™. Then the map ¢ : S™ —
S"=1 given by

fl@) = f(—=x
oy - Sl = f=0)
|f(z) = f(=2)]
is well-defined and continuous. Notice that ¢(x) = ¢(—x), so ¢ is equivariant. However,

n > n — 1 so this contradicts Theorem 2.9.4. OJ

Although the Borsuk-Ulam theorem has a simple statement, it truly requires the full
power of homology theory to prove. We provide two corollaries to Borsuk-Ulam which are
important theorems in their own right.

Corollary 2.9.6 (Ham Sandwich Theorem). Suppose Ay, ..., A, C R™ are bounded, mea-
surable subsets. Then there is an (m — 1)-dimensional plane cutting each A; into two pieces
of equal measure.

Proof. View R™ C R™"! as the set of points with x,,.; = 1. Then every affine plane in R™
is uniquely determined by a subspace in R™~! and therefore by a unit vector x € R™*!. For
such a vector z, set

Vo ={y e R" x {1} [ (z,y) > 0}

Hy = {y € R" x {1} | {z,y) = 0}
where (-,-) is the standard vector inner product on R™™. Let u be Lebesgue measure on
R™ ! and define f;(z) = p(A; NV,) for each 1 < j <m. Set f = (f1,..., fm): S™ = R™.
Since each A; is bounded, f is a continuous map by standard measure theory. Now by the

Borsuk-Ulam theorem, there exists xg € S™ C R™*! such that f(zg) = f(—z0). The plane
H,, is the desired affine plane. O

Corollary 2.9.7 (Lusternik-Schnirelmann). If Ay, ..., A,41 are closed sets covering S,
then at least one of the A; contains a pair of antipodal points of the sphere.

Proof. Suppose none of the A; contains a pair of antipodal points. Then for all 1 < j < n,
A; and —A; are disjoint closed subsets of S™. By Urysohn’s Lemma (see Bredon), one can
define continuous maps f; : S™ — [0, 1] such that f; =0 on A; and f; =1 on —A;, for each
1 <j <n. Then the map f = (f1,..., fn): S™ — R" is continuous, so by the Borsuk-Ulam
theorem, there exists a point x € S™ with f(z) = f(—z). However, by construction of f,
none of Ay,..., A, can contain either x or —x. Therefore since the A;,1 < j <n + 1, cover
S™, we must have x, —x € A, 1. n
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2.10 Simplicial Homology

Definition. A simplicial complex is a subset K of R* that is a union of affine simplices
satisfying:

(1) For each simplex o in K, every face o9 is in K as well.
(2) If 0,7 are simplices, either cNT =@ or o N7 =¥ =7 is a face of each simplex.

Definition. A space X is said to be triangulable if there exists a homeomorphism f : K —
X for some simplicial complex K. The pair (K, f) is called o triangulation of X .

If K is a simplicial complex, then K has a natural CW-structure formed by identifying
simplices as cells. The advantage of the simplicial approach is that subdivision of a simplicial
complex is much easier than with CW-complexes.

Let K be a finite simplicial complex, i.e. one that has bounded dimension n on its
simplices. We denote a simplex o of K by o = (vq,...,v,]. The boundary formula

n

O(v1,...,0,) = Z(—l)i@l, ey U1, Uiy e ey Up)

=1

describes a chain complex C$™9(K') from which we can define the simplicial homology groups
H;(C:m9(K)). By Theorem 2.4.5, and considering K as a finite CW-complex, we get iso-
morphisms

Hy(K) = Hy(C™(K))

for all 7 > 0.

Definition. Let K and L be simplicial complexes. A map f : K — L is called a simplicial
map if f maps the set vertices of any simplex of K into the vertices of a simplex of L, and

for any simplex o =32, Nvg, f(o) = fF (O Aivi) =D ooy N (v).

Definition. For any map f: K — L between simplicial complexes, a simplicial approxi-
mation to f is a map f: K — L satisfying

(1) f is a simplicial map that is homotopic to f.
(2) Forallz € K, f(x) lies in the smallest simplex containing f(x).
As with cellular approximation (Theorem 2.4.13), we have:

Theorem 2.10.1 (Simplicial Approximation). For every map f : K — L between simplicial
complezes, there is somen € N and a map f : K" — L such that K™ is the nth subdivision
of K and f is a simplicial approximation to f.

Proof. Omitted; see Bredon, 1V.22. O
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2.11 Lefschetz’s Fixed Point Theorem

Let X be a topological space and consider a map f : X — X. We are interested in finding
criteria for when f has a fixed point, i.e. a point z € X such that f(z) = x. Fix a
homology theory H with coefficients in Z and suppose the homology He(X) has finite rank,
or equivalently, that Ho(X;Q) is a finite dimensional vector space. For simplicity, we also
suppose H;(X) =0 for i < 0.

Definition. The Lefschetz number of X is the alternating sum

o0

L(f) = S (1) tr( i Hi(X;Q) — Hi(X;Q))

i=0
where tr is the trace of a linear map.
Remarks.

@ One can define the Lefschetz number over an arbitrary field K by

L(f,K) =) (=1)tr(f. : Hi(X; K) = Hi(X; K)).

=0

@ For each i > 0, H;(X;Q) = H;(X;Z) ®z Q so each trace tr(f.) can be computed over
Z by restricting to the free part of H;(X;Z). Therefore each tr(f,) lies in Z.

@ If f is the identity on X, L(f) = x(X), so our results about the Lefschetz number will
apply to the Euler characteristic (Section 2.5).

@ If f and g are homotopic maps on X, then L(f) = L(g) since f and g induce the same
map on homology by the homotopy axiom.

Example 2.11.1. For the torus 7' = R?/Z?, consider the map f : T'— T induced by the

matr 0 -1
atrix | ;4 ).

Then we compute

L(f) =tr(fs : Hy(T) — Ho(T)) — tr(fs : Hi(T) = Hy(T)) + tr(fs : Ho(T) — Ho(T))
—1-0+1=2.

Notice that L(f) # x(T') (the Euler characteristic is 0 by Example @ in Section 2.5) so f
is not homotopic to the identity on 7.

104



2.11 Lefschetz’s Fixed Point Theorem 2 Homology

The following lemma shows that one may compute the Lefschetz number of a map using a
chain complex or its homology. This is a direct generalization of the Euler-Poincaré theorem
(2.5.1) for Euler characteristic.

Lemma 2.11.2 (Hopf Trace Formula). For a finite dimensional chain complex C, that is a
vector space over some field K, and a chain map fo : Co — C,,

[e.o] o0

YD) =) (S (i) s Hi(Cl) = Ha(C).

=0 =0

Proof. Given a short exact sequence of vector spaces 0 — W — V/W — 0 and a map
f:V — V such that f(WW) C W, by linear algebra we have

tr(f) = tr(flw) + tr(f)

where f is the induced map V/W — V/W. Applying this to the chain map f, : Cy — C,
and the short exact sequence 0 — ker 0; — C; N 0; — 0, we get

tr(fz) = tr(.ﬂkera,-) + tr(.ﬂimai)‘

Likewise, the short exact sequence 0 — im 0;,1 — ker 9; — H;(C,) — 0 gives us

tr(flrers,) = t0(flimo,,) + tr(fe : Hi(Co) = Hi(CL)).
Combining these and cancelling terms gives the result. O]

Theorem 2.11.3 (Lefschetz Fixed Point Theorem). Suppose X is a finite simplicial complex
or a compact manifold. Then for any map f: X — X with L(f) # 0, f has a fized point.

Proof. We show the contrapositive, that if f : X — X has no fixed points, then L(f) = 0.
By hypothesis, we can view X as a compact subset of R* for some k¥ € N. By compactness,
there exists some § > 0 such that d(z, f(x)) > § for all € X, where d is the Euclidean
distance function. We may subdivide X so that each new simplex has diameter less than
g using barycentric subdivision (see Section 2.6). Write X for this subdivided complex.
By the simplicial approximation theorem (2.10.1), there exists a large enough n so that
f : X"l — X is a simplicial approximation to f. Viewing only the underlying topological
space, X = X[ so we have a cellular map f : X[ — X[ this may not be simplicial.
Since f moves cells of X" off themselves (there are no fixed points), tr(f.) = 0 on the chain

complex (C,, 0°!"). However, this is enough by Lemma 2.11.2 to deduce that L(f) =0. O

The Lefschetz fixed point theorem gives yet another proof of Brouwer’s fixed point the-
orem: by Theorem 2.3.5, H;(D";Q) = 0 for all i # 0 and Hy(D™;Q) = Q, so every map
f: D™ — D™ induces the identity on Hy(D";Q), and thus has Lefschetz number 1.

Corollary 2.11.4. For a compact smooth manifold M without boundary, if x(M) # 0 then
any vector field on M must have a zero.

Corollary 2.11.5. For any map f : S™ — S™ such that deg f # (—=1)"', f has a fived
point.
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Note that this shows once again that the antipodal map on S™ has degree (—1)"*! (as in
Corollary 2.3.10).

In differential topology, the Lefschetz number has a different interpretation. Suppose X
is a compact manifold and f : X — X is a smooth map. Then fixed points of X coincide
with intersections between the graph I'; of f and the diagonal A of X within X x X.

X A

]
T

x X

Definition. A fized point of f : X — X is nondegenerate if the intersection of Ay and
A is transverse at (x, f(x)) in X x X. Equivalently, x is a nondegenerate fived point of f if
det(idx — D, f) # 0. Otherwise, = is degenerate.

Assuming f : X — X has no degenerate fixed points, the Lefschetz number can be
written

L(f)= ) sign(det(idy — D, f)).

zeX
fl@)=z

This is really the jumping off point for the study of intersection theory in differential topology.
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3 Cohomology
3.1 Singular Cohomology

Recall from Section 0.4 that if M is a smooth manifold and V' C M is a closed, oriented
submanifold of dimension p, then integration over V' induces a well-defined linear map

HY (M) — R

MH/VM.

Moreover, if W C M is a (p + 1)-submanifold such that 9W =V, then [, =0 on HY,(M)
since by Stokes’ theorem (0.4.5),

/w:/ w:/ dw = 0.
1% ow w

Thus boundaries of submanifolds correspond to the trivial class in HY,(M). This is similar
to the trivial class in singular homology H,(M) defined by boundaries of singular simplices
in M.

To compare de Rham cohomology and singular homology, we instead look at smooth
singular homology, that is, the homology of the chain complex generated by smooth simplices
A, — M. This poses only technical problem, as the homology groups coming from these
two chain complexes are the same.

In addition, we must orient the standard p-simplices in a canonical way. Given an orien-
tation of a point (say, positive), inductively choose an orientation on A, such that the Oth
face map Fy : A,y — A, is orientation-preserving.

€o
.+.
° €0 €1 €92 €1
b2 R
AV Ay = AV
° — €1
[607 61] ? [617 62] .
Thus, since F; = [e;, €0, ..., 6, ...,€,] 0o Fy, the ith face map F; is orientation-preserving if

and only if 7 is even.
Now if w € QP(M) is a p-form and ¢ : A, — M is a smooth p-simplex, define the integral

of w over o by
/w = / o*w.
o Ap
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Extend to all chains ¢ = Y n,0 € A,(M) by [ w= > n, [ w. Thus each p-form w induces
a linear map A,(M) — R, so we have a map

U QP(M) — Hom(A,(M),R).
Proposition 3.1.1. The map ¥ : Q*(M) — Hom(A4(M),R) is a chain map.

Proof. For every p-form w and p-simplex o,

:/wa:/Apa*(dw)

:/ d(c*w) by Proposition 0.3.4

/ o*w by Stokes’ theorem (0.4.5)
p .
Z / Totw = Z(—l)z/ w

i=0 O’OFZ'
/ 90).

This shows that the following diagram is commutative:

OP(M) Hom(A, (M), R)

)

(M) Hom (A, 4:(M), R)

where ¢ : a — a0 0. Therefore ¥ is a chain map. m

In the diagram above, the left column is the familiar chain complex defining de Rham
cohomology HYo(M). The right column is a different kind of complex, called a cochain
complex.

Definition. For a topological space X, the singular cochain complex of X with coeffi-
cients in an abelian group G is the chain Hom(A4(X), G) with differential § : o — a0 0,
where 0 is the singular boundary operator, written

A*(X; @) := Hom(A(X), Q).

The prefix “co” (e.g. cochain, cocycle, coboundary) signifies that the boundary operator
raises the degree of the chain: § : AP(X;G) — AP X; G).

Definition. The pth singular cohomology of a topological space X is the homology of the
cochain complex A*(X; G), that is,

HP(X;G) = H,(A*(X;G)).
We will prove in Section 3.6 that the map ¥ induces an isomorphism on cohomology

U* : H3p(M) — H*(M;R) for any smooth manifold M.
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3.2 Exact Sequences and Functors

The discussion of singular cohomology in the previous section motivates the following ques-
tion: What effect do functors (such as Hom(—, G)) have on complexes and their homology?
For example, one may ask if the following diagram of functors commutes:

. —®G .
ChainCx ChainCx
Ho (_) H‘ (_ )
Groups —®G Groups

where ChainCx is the category of chain complexes. It turns out that such a diagram does
not commute in general.

Lemma 3.2.1 (Right Exactness of Tensor). Given a short exact sequence of abelian groups

0= A5 AL A" = 0 and an abelian group G, the following sequence is exact:

A0G2 Ao 8 A9 G = 0.

In other words, — ® G s a right exact functor.

Proof. Observe that (j®1)o(i®1) =joi®1ol =0®1 = 0 because the original sequence
is exact. So the tensored sequence is a complex. Next, j ® 1 is still surjective: any element
of A” ® G is a linear combination of elementary tensors a” ® g for a” € A” and g € G, and
since j is surjective, a” = j(a) for some a € A. Then ¢”" ® g = (j ® 1)(a ® g). This shows
Jj ® 1 is surjective on a generating set of A” ® GG, so j ® 1 is surjective. Finally, the original
short exact sequence gives A” = A/i(A’). Then A/i(A) ® G = A® G/i(A" ® G) implies
exactness at A ® G. Hence the tensor functor is right exact. m

Example 3.2.2. For an integer n > 0,
0—>7Z 57— 7Z/nZ — 0
is a short exact sequence. Tensoring with the Z-module Z/nZ gives a sequence
Z/nZ = 7)nZ — 7.JnZ @ Z./nZ — 0.

However, multiplication by n is the zero map on Z/nZ, so this shows that — ® Z/nZ is not
left exact. As a bonus, the tensored exact sequence splits into

0— Z/nZ — Z/nZ & Z/nZ — 0.

So Z/nZ @ Z/nZ = Z/nZ as abelian groups.
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Lemma 3.2.3 (Left Exactness of Hom). Let 0 — A 5 B4 0 =0 be an ezact sequence of
left R-modules and G a left R-module. Then the following sequences are exact:

0 — Homg(G, A) TN Hompg(G, B) £ Hompg(G, C)
and 0 — Homp(C,G) L Homp(B, G) L5 Hompg(4, G).
In other words, Homg(G, —) and Homg(—, G) are left exact functors.

Proof. The proof for Hompg(G, —) is given; the proof for Hompg(—, G) is similar.

We need to show that f, is one-to-one and ker g, = im f,. First, take h € Homg(G, A)
such that fh = 0. Note that f is one-to-one if and only if there exists a morphism f : im f —
A such that ff = id4. In this case

h=idsh=ffh=f0=0

which shows that A = 0, i.e. f, is one-to-one.

Now let j € Hompg(G, B) such that gj = 0, i.e. j € kerg,. We need to construct a
function k& : G — A such that fk = j. Let x € G. Then g(j(z)) = 0 so j(z) € kerg. But
ker g = im f so there exists a (unique) element a € A such that f(a) = j(z). Now we can
define k : G — A by mapping = to this unique a. Then j(z) = f(a) = f(k(z)) so j = fk as
desired. Hence Hompg(G, —) is left exact. O

Note that Homg(X, —) may not always be right exact. In fact, even in the category of
abelian groups, Homyz(X, —) is not right exact, as the following example shows.

Example 3.2.4. Consider the exact sequence
0—2Z —7Z— Z/2Z — 0.
Let X =Z/2Z. Then Lemma 3.2.3 tells us that
0 — Hom(Z/2Z,27) — Hom(Z/27,7.) — Hom(Z /27, 7./ 27.)
is exact. But up to isomorphism, this sequence is
0—0—0—2Z/2Z.

Clearly adding a zero on the right makes the sequence not exact, since the kernel of Z /27 — 0
is necessarily Z/27.

Definition. An R-module P is projective if the following diagram with exact bottom row
can always be made to commute:
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In other words, projectives allow you to [lift along surjections. There is a dual notion
obtained by reversing the arrows:

Definition. An R-module E is injective if the following diagram with exact bottom row
can always be made to commute:

0 A B

Proposition 3.2.5. An R-module P is projective if and only if Homg(P, —) is exact.
Proof. By Lemma 3.2.3, Hompg(P, —) is always left exact. That is, for a sequence
0— M <5 M M —0
applying Hompg (P, —) induces an exact sequence with solid arrows:
0 — Hom(P, M') — Hom(P, M) — Hom(P, M") --» 0.

To get the 0 on the right, note that by definition of projective, every f : P — M" factors
through o : M — M":

M M 0

Notice that is equivalent to showing Hom(P, M) — Hom(P, M") is surjective. The converse
follows by reversing the entire argument. O]

The dual statement holds for injective modules:
Proposition 3.2.6. A left R-module E is injective if and only if Homg(—, E) is ezact.

Proof. Suppose we have an exact sequence
05AL B C=o.
We must show that the sequence
0 — Hompg(C, E) &5 Homp(B, E) < Homp(A, E) — 0

is exact. By Lemma 3.2.3 that Hompg(—, £) is always left exact, so it remains to show
exactness at Hompg(A, E). In other words we must prove ¢* is surjective if and only if 7 is
injective. On one hand, if f € Hom(A, E) there exists g € Hom(B, F) with f = i*(g) = gi;
that is,
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commutes, showing F is injective. Conversely, if F is injective then for any f : A — E there
exists g : B — F making the above diagram commute. Then we see that f = gi = i*(g) €
imi* so i* is surjective. This proves Hom(—, F) is an exact functor. ]

Proposition 3.2.7. Every free module is projective.

Proof. Suppose F is a free module with basis {f;}ic;. Let a : M — N be a surjection, i.e.
the row of the following diagram with solid arrows is exact.

M N 0

If o : FF— N is an R-linear map, denote ¢(f;) = n; € N. Since « is surjective, there exists
an m; € M such that a(m;) = n;. Then we will define &(f;) = m; and extend by linearity
to all of F. It is clear that aa and ¢ agree on {f;} which is a basis for F'; therefore the
diagram commutes. O

Lemma 3.2.8. An R-module P is projective if and only if P is a direct summand of a free
R-module.

Proof. ( =) Observe that if P is projective and 0 - A — B — C — 0 is short exact,
then the sequence splits via the diagram

B P 0

Next, every module is the image of a surjective morphism out of a free module, so let F' be
such a free module for P. Then there is an exact sequence

0-Q—-FLP—=0

where () = ker m. By the above, this sequence splits, so F' = P & Q.
(<= ) Suppose F' = P @ (@ is free and consider a diagram
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f

N M 0

Let m: P®Q — Pandi: P— P® (@ be the canonical projection and inclusion. Since F
is free, it is projective by Proposition 3.2.7, so the composition f o7 lifts to j : F — N such
that the following diagram commutes:

T
F P
! 1
j: \ f
N M 0
Then g =joi: P — N lifts f as required. O

Corollary 3.2.9.  (a) Every module over a field is projective.
(b) If R is a PID, then every projective R-module is also free.

Proof. (a) A module over a field is a vector space which is free, hence projective by Propo-
sition 3.2.7.

(b) For modules over a PID, every submodule of a free module is free. Apply Lemma 3.2.8.

]

We have similar results as those above for injective modules, though we will not prove
them here.

Proposition 3.2.10. Direct sums and direct summands of injectives are injective.

Definition. A module M over a domain R is divisible if for allm € M and nonzeror € R,
there is some m’' € M such that m = rm’.

Informally, this says that in a divisible R-module, you can ‘divide’ by R.

Example 3.2.11. Q is a divisible Z-module. In fact, this holds for the field of fractions of
any domain.

Theorem 3.2.12. Every injective left R-module is divisible.
The converse holds when R is a PID:

Theorem 3.2.13. Let R be a PID. Then
(1) Every divisible R-module is injective.
(2) Quotients of injectives are injective.

Example 3.2.14. By Example 3.2.11 we see that QQ is an injective Z-module.
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Our next goal is to show that every left R-module can be realized as a submodule of an
injective left R-module. We begin by proving this for Z-modules (abelian groups). Let M
be a Z-module. Then M = F/S where F' is some free abelian group and S is the module

of relations. By the fundamental theorem of abelian groups, M = @ Z/S and @ Z can be
il
embedded in @ Q so we have a composition

M=Pz/s— /s
iel iel
Now Q is divisible so @ Q is also divisible. Then by Theorem 3.2.13, @ Q/S is injective.

Before proving the property for R-modules in general, we will need

Proposition 3.2.15. Let ¢ : R — S be a ring homomorphism and E an injective left
R-module. Then Hompg(S, E) is an injective left S-module.

Proof. Note that by Proposition 3.2.6, Homg(S, F) is an injective left S-module if and only
if Homg(—, Homg(S, F)) is an exact functor. By Hom-Tensor adjointness,

Homg(—, Homg(S, E)) = Homg(S ®s —, E) = Hompg(—, F)

and Hompg(—, F) is exact precisely when E is injective. (In fact we have proven the converse
of the proposition as well.) ]

Corollary 3.2.16. For any divisible abelian group D, Homgz(R, D) is an injective left R-
module.

Theorem 3.2.17. For any left R-module M, there is an embedding M — E where E is an
injective left R-module.

Proof. (Sketch) Every module is an abelian group so embed M < D where D is a divisible
abelian group. Apply Homgz(R, —), which preserves injectivity by left exactness:

Homyz(R, M) — Homg(R, D).
To put M inside Homy(R, M), consider the map

M — Homgy (R, M)
m > (r — rm).
We can verify that the composite M < Homy(R, M) — Homgz(R, D) is R-linear. Then by

Corollary 3.2.16, Homgz(R, D) is injective which proves we can embed M into an injective
left R-module. O

Proposition 3.2.18. If the short exact sequence 0 — M’ — M — M" — 0 is split, and N
1s another R-module, then the sequences

0>MeN->MN-—->M@N-—=0 (1)
0 — Hom(M", N) — Hom(M, N) — Hom(M', N) — 0 (2)
0 — Hom(N, M') — Hom(N, M) — Hom(N, M") — 0 (3)

are all exact.
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Proof. (1) Tensor is right exact so it suffices to show i ® 1 : M’ ® N — M ® N is injective.
Notice that (7 ® 1)(i ® 1) =m® 1 =0® 1 =0 s0 i ® 1 has a left inverse and is therefore
injective.

(2) By Lemma 3.2.3, we only need to check that i* : Hom(M, N) — Hom(M’', N) is
surjective. But the splitting M’ < M gives i*7* = (7i)* = (idyp)* = 1 so i* has a right
inverse and is therefore surjective.

(3) Similarly, covariant Hom is always left exact so it’s enough to show j, : Hom(NV, M)

_>
Hom(N, M") is surjective. The other splitting M L mr gives us jufu = (jf)s = (idpr)s = 1,
so j, has a right inverse and is surjective. O]

Definition. A projective resolution of an R-module M is an exact sequence
Po=-—>PFP, —-FP_1— =P —-F—>M=0

where each P; is projective. If there exists a smallest n such that P; = 0 for all j > n, then
the resolution is said to have length n; otherwise it has infinite length.

As always, there is a dual notion for injectives:
Definition. An injective resolution of an R-module M is an eract sequence
Ee=0-M—>E"-E'-... 5E,_, - E, = ---
such that each E’ is injective. The length of an injective resolution is defined as above.
Lemma 3.2.19. (a) Every module over a field has a projective resolution of length 0.
(b) Every module over a PID has a projective resolution of length at most 1.

Proof. (a) If V is a module over a field, it is a vector space and therefore free and projective.

Hence 0 >V 4V - 0is a projective resolution.

(b) Let P be a projective module with a surjection P — M, so that P is also free by
Corollary 3.2.9. Then the kernel K of this map is a submodule of P, so it’s free and therefore
projective by Corollary 3.2.9 again. Hence 0 - K — P — M — 0 is a projective resolution
of M. O

Definition. A deleted projective resolution of an R-module M is a complex
Po=---—=PFP, —-P_1—-—=P—=>F—=0

such that Py — M is a projective resolution. Likewise, a deleted injective resolution of
M is a complex
E,=0—-E"-E'—-... 2 E, |, > E, — -

such that Eq — M is an injective resolution. Notice that deleted resolutions need not be
ezxact.
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3.3 Tor and Ext

A fundamental concept in homological algebra is the derived functors of Hom and tensor.
We define derived functors in their most general form, but we will only concern ourselves
with Tor and Ext, whose definitions follow.

Definition. Suppose T : A — C is a covariant additive functor between categories of mod-
ules. The nth left derived functor of T' is

L,T:A—¢C
Ar— H,(T(P,))

where P, is a fized deleted projective resolution of A.

Derived functors in some sense measure the failure of exactness in the nth homological
dimension of the functor 7.

Definition. In the category R-Mod of left R-modules, if Tyy = — Qg M then its left derived
functors are called Tor:

Torf!(M, N) := (L,Tu)(N) = Hy(P. @r N).
Likewise for a right R-module M, the left derived functors of Ty, = M ®r — are called tor:
tor®(N, M) := (L, Ty;)(N) = H,(M ®g P,).

The notation tor is only temporary, as the following theorem shows (for a proof, see
Rotmatn’s Introduction to Homological Algebra).

Theorem 3.3.1. For all left R-modules A and right R-modules B, and all n > 0,
Torf(A, B) = torf(A, B).
The dual of left derived functors is right derived functors, which we define now.

Definition. For a covariant additive functor S : A — C between categories of modules, the
nth right derived functor of S is

R'S: A—C
A+— H"(S(F,))

where Eq is a fized injective resolution of A.

The counterpart to Tor is a right derived functor called Ext.

Definition. In R-Mod, the right derived functors of Sy = Hompg(M, —) are called Ext:

Ext™(M, N) := (R"Sy)(N) = H"(Homp(M, E.)).
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Example 3.3.2. For all right R-modules A and left R-modules B, Tor{ (A, B) = A ®p B.
Likewise, if A and B are both left R-modules then Homp(A, B) = Ext%(4, B).

Example 3.3.3. Fix n > 0,m > 1 and consider Exty(Z/mZ,Z). A simple projective
resolution of Z/mZ is the short exact sequence

0—=7Z 7 — Z/mZ — 0.
Applying Hom(—,Z) and deleting Z/mZ, we obtain a complex
0 — Hom(Z,Z) = Z % Hom(Z,Z) = 7 — 0.
The homology of this sequence is now easy to calculate:
Ext (Z/mZ,7) =0 and Ext'(Z/mZ,Z) = 7/mZ.

In defining left and right derived functors, we have neglected the fact that we are choosing
a particular projective (or injective) resolution of A. The comparison theorem resolves this
issue using chain homotopy (see Section 2.6).

Theorem 3.3.4 (Comparison Theorem). Let P, : -+ — P, — P, — Py be a projective
chain complex and suppose Cq : ---Cy — C1 — Cy is an acyclic chain complex. Then for
any homomorphism ¢ : Hy(Ps) — Hy(Cl,), there is a chain map f : Py — Cs whose induced
map on Hy is @, and ¢ is unique up to chain homotopy.

Proof. Consider the diagram

5, 0 15,
Py 2 P . Py . HO(P-) —0
fa fi fo @
. % . & . oA
02 Cl C() HO(C.) —0

Since F, is projective, there exists an fj lifting ¢ to Py — Cy. Inductively, given f, ; we
have a diagram

O

Pn"Pn—l

v 0

Cn #} Cn—l

Note that f,_10 has image lying in ker 9, C C,_;, but C, is acyclic, so 0., (C,) = ker d,_,.
Since P, is projective, we can lift f,,_10, to the desired map f, : P, — C,. By construction,
[ ={fu}>2, satisfies the desired properties.

For uniqueness, suppose g : P, — C, is another chain map restricting to ¢ on Hj. Since
fo — g0 = 0 on Hy, it must be that (fo — go)(Py) C ker 9y = im 9], so by projectivity of Py
there exists sg : Py — C} making the following diagram commute:
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Py

’

89/// fO — 90

’

N

C) —— imd, —— 0

Inductively, given so, ..., s, satisfying fy —gr = O} 5k + sp10k for all 0 <k <n—1, we
have

a;l(f'ﬂ — Gn — Sn—lan) = (fn—l - gn—l)an - ailsn—lan since fa g are chain maps
= (8;8,1,1 - Sn,26n71>an — (97’1371,18” =0.

Hence there is a commutative diagram

I

’
’

Sn,” fn — Gn — sn—lan
Chit — ker 9, —— 0
n+1
This establishes the chain homotopy s : P, — C, such that f, — g, = ' 4150 + Sp410, for

n

all n > 0. Hence f is unique up to chain homotopy. O

Corollary 3.3.5. Let g : M — N be R-linear and pick projective resolutions P, and Qe of
M and N, respectively. Then there exists a chain map f : Py — Qo such that Ho(f) = g
and f is unique up to chain homotopy.

Proof. Given projective resolutions P,, Qs — M, we have M = Hy(P,) = Hy(Qs) so let
@ = idys. Since projective resolutions are acyclic, the comparison theorem gives us a chain
map f : P, — Q.. Reversing the roles of P, and (), gives a chain map in the opposite
direction, and uniqueness forces the composition of these maps to be the identity in either
direction. O]

Corollary 3.3.6. For R-modules M and N, the assignments (M, N) — H,(P, ® N) and
(M,N) — H"(Hom(P,, N)) are independent of the deleted projective resolution Py — M
and are functorial in both M and N. In particular, Ext and Tor are well-defined functors.

Proof. If P,,QQe — M are two projective resolutions, then by Corollary 3.3.5, P, and @,
are chain homotopy equivalent, and it easily follows that P, ® N and Qe ® N, as well as
Hom(PF,, N) and Hom(Q,, V), are chain homotopy equivalent as well.

Next, a map N — N’ induces a map P, ® N — P, ® N’ which is functorial since ®
and H, are functors to begin with. On the other hand, suppose P, — M and P, — M’ are
projective resolutions. Then given a map M — M’, the uniqueness portion of Corollary 3.3.5
says that the map is functorial.

The proof for Hom is analagous. O]
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Corollary 3.3.7. If 0 - N' — N — N” — 0 is a short exact sequence of R-modules, then
for any R-module M, there are long exact sequences in Tor and Ext:

.-+ — Tor,(M,N'") — Tor,(M,N) — Tor,(M,N") — Tor,_1(M,N") — ---
and - — Ext"(M,N') — Ext"(M, N) = Ext"(M,N") — Ext"*" (M, N') — --.
Proof. Both Tor and Ext are defined in terms of the homology of a chain complex, so this
is a direct application of Theorem 2.2.2. O
Proposition 3.3.8. Let R be a ring and let M and N be R-modules.
(a) If M is a free R-module, then Tor®(M, N) = Ext%(M, N) =0 for n > 0.
(b) If R is a PID, then Tor®(M,N) = Ext},(M,N) =0 forn > 1.
Proof. Apply Lemma 3.2.19. O

Lemma 3.3.9 (Horseshoe Lemma). Given a short exzact sequence of R-modules 0 — A —
B — C — 0 and deleted projective resolutions P, — A and R, — C, there is a deleted
projective resolution Qe — B and a short exact sequence of chain compleres 0 — P, —
Qe — Re — 0 inducing the maps of the original short exact sequence on Hy.

Proof. We must have )y = P,® R, so that the short exact sequence 0 — P, — Qg — Re — 0
splits. Consider the following diagram with exact columns and exact top and bottom row:

0
€
P, P Py A 0
7
do
Qn o3 Qo——B----- >0
o |7
R, T Ry Ry C 0

Our goal is to complete the middle row such that the diagram commutes. We begin by
constructing oy : Qg — B. Since Ry is projective, there exists a map ¢ : Ry — B lifting 7,
given by the dashed arrow above. Then define dy on Qo = Py @ Ry by dg = (ioe) & (—P).
Having constructed oy, ..., d,_1, we have the following portion of the above diagram:

’ %PH*’Pn—I*)Pn—2*’"'

671—1
T Qn o anl - anQ —

’ 4’Rn4’Rn714’Rn724’"'
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Setting K = ker(P,_1 — P,_2),L = ker(Q,—1 — Qn_2) and M = ker(R,_; — R, ), the
above diagram induces a smaller diagram of the same form as the base case:

P, K 0
On
Qn — L
R, M 0
Complete the diagram as in the base case to construct d,,. O]

Corollary 3.3.10. If0 - M’ — M — M" — 0 is a short exact sequence of R-modules and
N s any R-module, then there are long exact sequences

— Tor,(M', N) — Tor,(M, N) — Tor,(M", N) — Tor,_1(M', N) —
— Ext®(M",N) — Ext"(M, N) — Ext"(M’', N) — Ext"**(M",N) —

Proof. Take projective resolutions P, — M’ and P! — M"; then Lemma 3.3.9 provides a
projective resolution P, for M and a short exact sequence of complexes

0— P, — P, — P/ —0.

Since each term in the sequence is a complex of projective modules, applying — ® N and
Hom(—, N) yield short exact sequences again. Then the desired long exact sequences are
merely the long exact sequences in homology for these induced short exact sequences. O

Theorem 3.3.11. For each n > 0, there ezists a functor Tort : R—Mod x R—Mod — R—Mod
which satisfies

(1) Torf(M,N)=M ® N.

2) For any short exact sequence 0 — M’ — M — M" — 0 and any R-module N, there
Y Y
is a long exact sequence

— Tor,(M', N) — Tor, (M, N) — Tor,(M", N) — Tor,_1(M',N) —
which is natural in N.
(8) For any free module F, Tor®(F,N) =0 for alln > 0.
Moreover, any functor satisfying these three properties is naturally isomorphic to Torf.

Proof. We have proven that Tor,, satisfies the stated properties so it remains to show that
these in fact characterize Tor,. We prove this inductively on n. For n = 0, uniqueness
follows from the universal property of the tensor product. For n > 1, take modules M and
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N and a free module F' such that there is an exact sequence 0 - K — F' — M — 0. Then
by (2), there is a long exact sequence

0 = Tor,(F, N) — Tor, (M, N) — Tor,_1(K,N) — Tor,_1(F,N) — ---

When n > 1, Tor,_1(F,N) = 0 as well so Tor,(M,N) = Tor,_1(K,N). When n = 1,
Tory (M, N) Zker(K @ N — F®N). In all cases, induction implies that Tor,, is determined
as a functor by Tor,,_; so uniqueness holds. O

Corollary 3.3.12. For anyn > 0 and any modules M and N, there is a natural isomorphism
Tor, (M, N) = Tor, (N, M).

Proof. Consider the assignment (M, N) +— tor, (M, N) := Tor, (N, M). Then

(1) torg(M,N) = Torg(N,M)=N®@ M =M ® N.

(2) tor, has a long exact sequence in the first variable because Tor,, has a long exact sequence
in the second variable by Corollary 3.3.7.

(3) For a free module F, tor,(F, N) = Tor,(N, F') = 0 for each n > 0 since — ® F preserves

exactness.
Hence by Theorem 3.3.11, Tor,, and tor,, are naturally isomorphic. O]
There is an analagous theorem for Ext:

Theorem 3.3.13. For each n > 0, there exists a functor Extl, : R—Mod x R—Mod — R—Mod
which satisfies

(1) Ext% (M, N) = Homp(M, N).

(2) For any short exact sequence 0 — M' — M — M" — 0 and any R-module N, there
is a long ezact sequence

— Ext"(M",N) — Ext"(M, N) — Ext"(M', N) — Ext"*'(M" N) —
which is natural in N.
(3) For any free module F', Ext(F,N) =0 for alln > 0.
Moreover, any functor satisfying these three properties is naturally isomorphic to Exty.
Proof. Reverse the arrows in the proof of Theorem 3.3.11. [

Proposition 3.3.14. Let R be a commutative ring, a € R a non-zero-divisor and M an
R-module. Write ,M = {m € M | am = 0} for the a-torsion part of M. Then

(a) R/aR® M = M/aM.
(b) Tory(R/aR, M) = ,M.
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(¢) Hom(R/aR, M) = ,M.
(d) Ext'(R/aR, M) = M/aM.

Proof. (a) Define a map ¢ : R/aR x M — M/aM by (r,m) — rm. If r —1’ € aR, then
r —1r'" = as for some s € R. Then (r —r')m = (as)m = a(sm) € aM so the map is
well-defined on the quotient R/aR. It is also clearly bilinear. By the universal property of
tensor products, this determines a linear map ® : R/aR®@ M — M/aM. If ®(r®@m) =0 in
M/aM then ®(r @ m) = rm € aM. Thus rm = am’ for some m’ € M, and since the tensor
is over R, we can pass elements of R across the tensor:

rem=1rm=1®am =a®@m' =0@m' =0in M/aM.

So @ is one-to-one. Clearly ® is also surjective: 1 ® m — m for any m € M. Hence we have
the desired isomorphism.
(b) Consider the exact sequence

0—+R%R— R/aR — 0.
Tensoring with M gives a long exact sequence in Tor:
0 = Tory (R, M) — Tory(R/aR,M) - R M — R M — R/aR® M — 0.

(By Proposition 3.3.8, since R is a free R-module, Tori(R, M) = 0.) Using the facts that
R® M = M and, from part (a), R/aR® M = M/aM, we get an isomorphic exact sequence:

0 — Tory(R/aR, M) — M % M — M/aM — 0.

Since the map out of Tori(R/aR, M) is injective and the sequence is exact, we see that
Tory(R/aR, M) is isomorphic to the kernel of M = M, which is clearly ,M. Hence
Tor;(R/aR, M) = ,M.

(c) For each m € M, there is an R-map f,, : R — M,r — rm. Moreover, if m € ,M, then
fm factors through the quotient R/aR, giving an element f,, of Hom(R/aR, M). This de-
termines a map ¢ : M — Hom(R/aR, M), m + f,,. Conversely, each g € Hom(R/aR, M)
determines an element ¢(1) € ,M, since ag(l) = g(al) = g(a) = 0. This gives ¢ :
Hom(R/aR, M) —,M, and we have

e(9)(r) = (9(1)) = fo)(r) = rg(1) = g(r)
and  Y(m) = (fm) = fm(1) = Im =m.

So we see that ¢ and 1 are inverses. Hence Hom(R/aR, M) =, M.
(d) Using the same exact sequence

0—R3R— R/aR — 0
and applying Hom(—, M), we get a long exact sequence in Ext:

0 — Hom(R/aR, M) — Hom(R, M) — Hom(R, M) — Ext'(R/aR, M) — Ext' (R, M) = 0.
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(Again since R is free, Ext'(R, M) = 0.) Replacing Hom(R/aR, M) with ,M and Hom(R, M)
with M, we get

0 =M — M= M — Ext'(R/aR, M) — 0.
By exactness, Ext'(R/aR, M) is isomorphic to the cokernel of the map M % M, which is
M /aM by definition. O

Example 3.3.15. Let G be an abelian group, with torsion part T'(G). For another abelian
group B, applying — ® B to the short exact sequence 0 — 7'(G) — G — G/T(G) — 0 gives
a long exact sequence in Tor (coefficients in Z):

0 — Tory(T(G), B) — Tory(G, B) — Tor(G/T(G), B) =0,

with the final 0 coming from Proposition 3.3.8 (using that G/T'(G) is torsion-free). Thus one
may replace G by T'(G) when computing Tor;. Further, consider the short exact sequence
0—>2Z—Q— Q/Z— 0. Applying T(G) ® — gives another long exact sequence

Tory (T(G),Z) — Tor (T(G),Q) — Tor (T(G),Q/Z) - T(G)RZ — T(G) ® Q = 0.
Further, Tor (T(G),Q) = 0, so we get Tor (Q/Z, G) = Tor1(Q/Z,T(G)) = T(G).

Example 3.3.16. Let m > 2 and n > 0 be integers. Then using the above results, we can
compute

Z/mZ, n=0

Tor,(Z, Z/mZ) = Torn(Z/mZ,7) = {o/m o )
, n >

0, n=>0

Ext™(Z/mZ,Z) = Z/mZ, n=1

0, n>1

Z/mZL, n=
Ext”(Z,Z/mZ):{O/m o g
, n > 0.

3.4 Universal Coefficient Theorems

Now that we have sufficiently described the functors ® and Hom and their derived functors,
it is natural to ask: what is the relation between He(Co ® M) and He(C,) ® M for a chain
complex C, and module M? Likewise, what is the relation between H,(Hom(C,, M)) and
Hom(H.(C,), M)? The universal coefficient theorems give answers to these questions in
terms of Tor and Ext.

Theorem 3.4.1 (Universal Coefficient Theorem for Homology with Coefficients). For a free
chain complex Cy over a PID and a coefficient module M, for each n > O there is a short
exact sequence

0— H,(Co) ® M — H,(Co ® M) — Tor,(H,—1(Cs), M) — 0.

Moreover, this short exact sequence splits and is natural in Cy and M.
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Proof. The map g : H,(Cs) ® M — H,(Ce ® M) may be defined by [a] ® m +— [a ® m].
Write Z,, = ker(0: C,, — Cp,—1), B, =im(0 : Cp,y1 — C,) and H,, = H,(C,). Then for each
n > 0, there are exact sequences

0> B, Z, % H, =0 (1)
O—>Zni>Cn3>Bn,1—>O (2)

where (2) is split. Tensoring with M, we get a diagram with exact rows and columns:

0 0
0
B, ® M ! Z, @M a H,® M 0
. g -
j /////
<9
Cp1 @M C,@M Cho1 @M
P
B
0 TOI'l(anl, M) anl %) M anl &® M
0
0 0

The bottom row is the long exact sequence in Tor coming from the short exact sequence (1),
but it terminates after Tor; because Z,_; is free. Also, since (2) is split we get the zeroes at
the top of the middle column and bottom of the right column. By diagram chasing, one can
define f and ¢ and show that the sequence is exact. Moreover, the sequence is split due to
the fact that sequence (2) is split. Finally, naturality follows from naturality of tensor, H,
and Tor;. O

Theorem 3.4.2 (Universal Coefficient Theorem for Cohomology). For a free chain complex
C, over a PID and a coefficient module M, for each n > 0 there is a short exact sequence

0 — Ext'(H,_1(C,), M) — H"(Hom(C,, M)) — Hom(H,,(C,), M) — 0
which splits and is natural in Cy and M.

Proof. Replacing — ® M with Hom(—, M), Tor; with Ext' and reversing the arrows in the
proof of Theorem 3.4.1 gives a diagram:
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0 0
P 0
Hom(B,, M) —— Hom(Z,, M) Hom(H,, M) —— 0
. g -~
] /,//
Hom(C) 41, M) Hom(C,,, M) Hom(C),—1, M)
f ////3
0

0 e Ext'(H,_1, M) —— Hom(B,_;, M) —— Hom(Z,_1, M)

0 0

The proof is dual to the proof of Theorem 3.4.1.

Example 3.4.3. In this example we compute the cohomology groups of S™. Fix k
0. By the universal coefficient theorem for cohomology, H*(S™) = Hom(H(S"),Z)
Ext'(Hy_1(S™),7Z). Recall from Theorem 2.3.5 that

®Iv O

Z, k=0,n

0, otherwise.

Hi(S") = {

Since Hj(S™) is always free, we see that Ext'(H(S™),Z) = 0 for all k. Thus

Z, k=0,n

H*(S™) = Hom(H,(S™),Z) =
(57) om(Hi(57), Z) {0, otherwise.

In particular, H*(S™) = H(S™)*, i.e. cohomology and homology are dual.

Example 3.4.4. Recall from Example @ in Section 2.1 the definition of Lens space L(p, q)
as a quotient of S® by the Z/pZ action. Using a CW-structure on L(p, ¢), one can compute
its singular homology groups:

Z, k=0,3
Hi(L(p,q)) =X Z/pZ, k=1
0, k=2k>4.

Then by the universal coefficient theorem,

H°(L(p,q)) =7Z by duality

H'(L(p,q)) = Hom(Z/pZ,7Z) & Ext (Z,Z) =0®0 =0

H*(L(p,q)) = Hom(0,Z) ® Ext'(Z/pZ,Z) = Z./pZ by Example 3.3.16
H*(L(p,q)) = Hom(Z,Z) ® Ext'(0,Z) = Z ® 0 = Z.
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Lemma 3.4.5. Let G = F(G) & T(G) be a finitely generated abelian group, where F(G)
is the free part of G and T(QG) is the torsion part of G. Then Hom(G,Z) = F(G) and
Ext'(G,Z) 2 T(G).

Proof. Use the universal coefficient theorem, Example 3.3.16 and additivity. O

Corollary 3.4.6. Suppose X is a topological space and A C X is a subspace. If H,(X, A)
and H, 1(X, A) are finitely generated, then so is H"(X, A) and there is an isomorphism

HY(X,A) = F, & Ty,
where F,, = F(H, (X, A)) and T,,_1 = T(H,—1(X, A)).

Note that the isomorphism in Corollary 3.4.6 is not canonical.

3.5 Properties of Cohomology

Lemma 3.5.1. Let A, and B, be free chain complexes over a PID and take a chain map
¢ : Ae — B, such that ¢* : H,(As) — H,(B.) is an isomorphism for alln > 0. Then

(a) For any M, the map o™ : Ay ® M — B, @ M induces isomorphisms H,(As; M) —
H,(Be; M) for allm > 0.

(b) For any M, the map @y : Hom(B,, M) — Hom(A,, M) induces isomorphisms H"(Aqy; M) —
H"™(Be; M) for allm > 0.

Proof. (a) From the universal coefficient theorem for homology with coefficients, we get a
commutative diagram

0 H,(As) @ M H,(A¢ @ M) —— Tory(H,11(As), M) — 0
& 1 ‘QOM h
0 H,(B,) ® M H, (B, ® M) —— Tor,(Hy,1(B,), M) — 0

By naturality of each row in the universal coefficient theorem, the third column is an iso-

morphism and by hypothesis, ¢ ® 1 is an isomorphism. Hence by the Five Lemma (2.2.3),

©M is an isomorphism.

(b) is similar, using the universal coefficient theorem for cohomology. [
This implies the excision axiom for homology with coefficients and cohomology.

Corollary 3.5.2 (Excision). If B C A C X are sets such that B C Int(A), then the inclusion
(X N\ B,AN B) — (X, A) induces isomorphisms

Ho(X NB,ANB;M) — HJ(X,A; M)
H* (X \B,A\B;M)— H*(X,A; M)

for any coefficient module M.
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We also get an analogue of the Mayer-Vietoris sequence (Theorem 2.7.1) for these ho-
mology theories.

Theorem 3.5.3 (Mayer-Vietoris). If A, B C X are subspaces such that Int(A) and Int(B)
cover X, then for any coefficient module M, there are long exact sequences

o> Hy 1 (ANB; M) — Hi(X; M) — Hi(A; M) @ Hy(B; M) — He (AN B; M) — -
<o H"Y(ANB) - H*(X) - H*(A)® H*(B) = H*(ANB) — -
Proof. The ordinary Mayer-Vietoris sequence arises from a short exact sequence
0= AJANB) = AJ(A) & AB) = AY(X) — 0

for U = {A,B}. Recall that AY(X) — A,(X) induces an isomorphism on homology.
Then by Lemma 3.5.1, there are induced isomorphisms on homology with coefficients and
cohomology. O

Theorem 3.5.4 (Additivity). If X = [[ X, is a disjoint union of subspaces, then the inclu-
sions X, — X and projections X — X, induce isomorphisms

HY(X; M) = [[ H*(Xo; M)

for any coefficient module M .

Proof. We have A, (] X,) = 6 As(X,) and applying Hom to a direct sum gives a direct
product, so we have

Hom (A. (H Xa> ,]\/[> ~ Hom (@ Ad(X,), M) = [ [Hom(A.(X,), M).

]

Theorem 3.5.5 (Homotopy). If f,g: (X, A) — (Y, B) are homotopic maps then they induce
the same map on homology with coefficients and cohomology.

Proof. Given the notation in Theorem 2.6.6, 19 and 7, are chain homotopic maps on A4(X).
It follows that ng ® 1 and n; ® 1 are chain homotopic, so the same proof goes through.
Likewise, Hom(no, M) and Hom(r;, M) are chain homotopic, so we get the same result for
cohomology. O]

Corollary 3.5.6. For any coefficient module M, the functors H,(—; M) and H"(—; M) are
homology theories.
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3.6 de Rham’s Theorem

Recall from Section 3.1 that integration of differential forms determines a map
U:QP(M) — Hom(A,(M),R)

We know that W is linear (since integration is linear) and Stokes’ theorem (0.4.5) shows that
U is a chain map (see Proposition 3.1.1). Thus we get an induced map on cohomology:

U*: HY (M) — HP(M:R).

De Rham’s theorem says that this map is an isomorphism for any smooth manifold M. To
prove this, we need a Mayer-Vietoris sequence for de Rham cohomology.

Theorem 3.6.1 (Mayer-Vietoris). Suppose M = U UV for open subsets U,V C M. Then
the inclusions iy : U — M,1y -V — M and jy - UNV — U,jy : UNV <= V induce a
short exact sequence for each p > 0:

0 — QP (M) L5 or )y @ Qr(vV) X ru A v = o,

Proof. For exactness, suppose w € (M) such that if;w = 0 and ij,w = 0. Then w = 0
since M = U UV so if; @ 7}, is injective. Next, if (w,n) — jiw — jiw = 0 then w = 7 on
UNV. One can define a € QP(M) by a|y = w and a|y = n, so that (w,n) = (if; & i})(a).
This shows exactness at the middle term. Finally, if 7 € QP(U N'V), take a partition of
unity (Section 0.4) to extend 7 to w on U and n on V, such that w +n =1 on M. Then
(35 — Jv)(w, —n) = (w + n)|unv = T so the last arrow is surjective. O

Corollary 3.6.2. If the de Rham map V : Hjp(—) — H*(—;R) is an isomorphism on the
cohomologies of open sets U,V and U NV C M, then it is also an isomorphism for U UV .

Proof. The Mayer-Vietoris sequence in Theorem 3.6.1 is natural and V¥ is a chain map, so
we get a diagram

0 QUUV) QU) e (V) QUNV) 0

0 A (UUV) A*(U) @ AP(V) A(UNV) 0
Taking cohomology, we get a similar diagram

0 —— H3,(UUV) —— H},(U)® H(V) —— Hj,(UNYV) 0

0 —— H*(UUV;R) — H*(U;R) & H?(V:R) — H*(UNV;R) —— 0

By hypothesis, the middle and right arrows are isomorphisms so by the Five Lemma (2.2.3),
H3,(UUuV)= H*(UUV;R). O
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Lemma 3.6.3 (Poincaré). The de Rham map is an isomorphism for all convex, open subsets
of R™. In particular, for such a set U C R",

R, k=0

Hip(U) = {o, k> 0.
Proof. For k =0, H),(U) = ker(d : Q°(U) — QY(U)). A function f € Q°(U) is in kerd if
and only if f is locally constant, which is equivalent to f being constant since U is a convex
set. Say f =r. Then W assigns to f the cochain that maps a O-simplex z to [ f = f(x) =
Thus U(f) : Ag(d) — R is the constant map on R. It follows that H°(U;R) = R, so the
Poincaré Lemma holds for £ = 0.

Now suppose k > 0. We must show that HY,(U) = 0, i.e. every closed k-form on U is
exact. Consider dzy = dx;, A -+ Adx;,_, for I = (ig,...,i;_1). Define n; € Q*1(U) by

k-1
Ny = Z(—l)jxijda:io N Ndxg N - Nd, .
=0

Then dn; = kdzy, which determines a map ¢ : QF(U) — Q¥ Y(U), whereif w = f(zy,...,1,)dzs,

o) = ([ sty at)

(Such a (k — 1)-form is well-defined since U is convex. Moreover, after translation we may
assume without loss of generality that U contains the origin in R™.) Now by the chain rule
for the exterior derivative, we have

dp(w) =d ( /0 () dt) A+ ( /0 1 f(ta) dt) di
= Z </ tkaai (tz) dt) dx; Nnp + (/Olt’“‘lf(tx) dt) dn;.

On the other hand,

n n a
pdw) = ¢ (Z Oz o —dzj A dx1> = ( t* 3xf (tz) dt) gyor
j

Jj=1

- zn:% (/ tm) dt) dxy — Xn: (/0 t’“g—g‘i(m) dt) dzj Ay

j=1

e,
(/0 tkzxja% (tz) ) dx; — Z ( 3xf] (tz) dt) dxj Ay
= (/U tka{ tz) dt) dx; — Z ( tkga‘i (tz) dt) dx; Ang

=1

129



3.6 de Rham’s Theorem 3 Cohomology

= [tkf(mﬂg - /Olktk‘lf(tx) dt} dr; — Xn: (/Oltkg—gj(tx) dt) dz; An;

j=1
by integration by parts

= f(x)dz; — (/Oltk—lf(tx) dt) dnr — n (/ t’fa;gf tr) dt) dz; An;

=w — dp(w).

So p(dw) + dp(w) = w for all w, and in particular w = dp(w) if w is closed. Therefore closed
forms are exact. O

Lemma 3.6.4. If the de Rham map V is an isomorphism for any collection of disjoint open
sets {Uy} then it is an isomorphism for [ U,.

Proof. By additivity, we have natural isomorphisms

HSp (]_[ Ua> ~ [ H:x(Us) and H* (H Ua;R> =~ [[H (UsiR).
O

Lemma 3.6.5. Let P(U) be a statement about open sets U of a smooth manifold M which
satisfies:

(1) P(U) holds for all U diffeomorphic to a convez, open subset of R™.

(2) If P(U), P(V) and P(UNV) are valid then so is P(UUV).

(3) If {U,} are disjoint, open sets and each P(U,) is valid, then P (][ Us,) is valid.
Then P(M) is true.

Proof. We construct a smooth, proper function f : M — [0,00) as follows. When M C R",
this is easy: f(x) = |z|* for all z € M will suffice. In general, take a locally finite open cover
{U;} of M with each U; compact, and a partition of unity {f;} subordinate to {U;}. Then
f(@) =3 5, 5 fi(x) will work.

To prove the lemma, first suppose M C R" is itself an open subset of Euclidean space. If
M is convex, the proof is trivial so suppose otherwise. Then P(U;U---UU,,) is true for any
finite collection of convex, open subsets Uy, ...,U,, € M. Let f : M — [0, 00) be the proper
map constructed in the first paragraph. For each m > 0, let A,, = f~*(fm,m +1]) C M
which is compact by properness of f. Then A,, may be covered by finitely many open balls
Uj, which we may assume are contained in f~' ((m — 3, m + 2)). Set U, = |J,;U},. By
construction, the U, for m even are all disjoint, so by condition (3), P(Uepen) = P (][ Uak)
holds. Likewise, the U, for m odd are disjoint so P(U,qq) = P (][ U2k+1) holds. Moreover,

Ueven N Uodd - H(UQk N U2k:+1)

k>0
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is a disjoint union and each Us N Usgyy is convex and open, so by conditions (1) and (3),
P(Ucyen N Usgq) holds. Since M is covered by the A,,, we are done by condition (2).

Now if M is any smooth manifold, we can cover each A,, = f~*([m,m + 1]) by finitely
many open sets which are diffeomorphic to open sets of R”. By the above, P holds for all
elements of this cover, hence for each A,, and M by condition (2). O

Theorem 3.6.6 (De Rham). The de Rham map ¥ : H3p(M) — H*(M;R) is an isomor-
phism for all smooth manifolds M.

Proof. Let P(U) be the statement that U : H3,(U) — H*(U;R) is an isomorphism. To prove
de Rham’s theorem, we need only check that the conditions of Lemma 3.6.5 are satisfied.
(1) follows from the Poincaré Lemma (3.6.3); (2) was proven in Corollary 3.6.2; and (3) is
Lemma 3.6.4. Therefore P(M) holds. O

Example 3.6.7. Consider complex projective n-space CP", the set of lines through the
origin in C"*!, given by

CP" ={[z0,- -, 2n) : [N20y-- -, A2n] = [20, ..., 25] for any A € C~ {0}}.

As with real projective space, CP™ can be covered by coordinate charts

Ui =A{lz0,---,2n] 1 2 #0} = {[2_3""71""’%}} ~n
For instance, in the complex projective plane CP? we have a chart

Up = {[1,u,v]} = Cim.
This can be parametrized by polar coordinates: set u = 2 = re?™ and v = 2= se2mie,
Define a 1-form n € QY(Up) by

B r?df + s* do
14248
Note that since 6 = arctan (%)7 the differential df is given by
1 Y 1
df = —— | —Sde+ —-dy ) = —yd dy).

Thus df is defined everywhere except the origin. Moreover, 2 df = —y dx + x dy is smooth
everywhere on Uj. Since 72 = 22 4 9% is also smooth and rdr = xdx + ydy, we see that
rdr N\ df = dz N\ dy is smooth everywhere.
Unfortunately, n does not define a 1-form on all of CP2. Indeed, for one of the other
coordinate charts of CP?,
U= {[u/7 177/]} = Cz’,vh

0! e !
we have v/ = 2 = /™ and ' = 2= se®™ Thusu= 2L andv =%, s0r=2,0=

1
-0, s = f—i and ¢ = ¢’ —#'. Thus 6 can be written in the coordinates v/, v’ as

/o 1 . 8/2 / 812 /
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But —((s')? + 1) d¢’ is singular at ' = 0. However, the 2-form dn € Q?(Uy) does extend to
a 2-form on all of CP?, since for example on Uy, we have

(dn)' = dn’ since d is natural with change of coordinates
1 9 ) )
= T el 027 A =2 ' (1) )= 2(s') ' A

— 28 ds' A ()2 dO' + (14 (') + (s')*)2s" ds' A dg).

By the calculations above, each piece is smooth on all of CP?. The form w € Q?(CP?)
defined by extending dn or dn’ to CP? is called the Fubini-Study form on CP?. A similar
construction on CP™ defines a Fubini-Study form w € Q*(CP").

Note that dw = 0 everywhere since w = dn is closed on each affine patch of CP?. We claim
that w is not exact. Notice that it suffices to show w A w is not exact: by Proposition 0.2.4,
dwAw)=dwAw+ (—1)2wAdw=0+0=0, sowAw is closed. Then if w = da for some
a € QN (CP?), we have d(a Aw) =daAw+ (—1)2aANdw=daAw=wAw.

By Stokes’ theorem (0.4.5), it’s enough to check that fCPQ wAw # 0. Since Uy only misses
a measure zero subset of CP?, we can integrate over this coordinate patch:

8rs
ANw = ————dr NdOANds Ndod = 1.
/(CPZW W /(]0(1+7“2+52)3r s N\ do

Likewise, the Fubini-Study form w € Q*(CP") determines a top form w A - - - A w which is

n
closed but not exact. This proves:

Theorem 3.6.8. Let n > 1. Then

R, 0<k<n

wier) - {2

Moreover, H3(CP™) is generated by [w] and for each 2 < k < n, H¥*(CP") is generated by

(W], where w* =W A -+ Aw.
k

Recall that the wedge product induces a multiplication on de Rham cohomology:
Hjjp(M) x Hjp(M) — Hjp" (M)
([w], []) — [w An].
This gives Hj,(M) the structure of a differential graded algebra.
Corollary 3.6.9. As an algebra, H3z(CP™) = R[c]/ ("), where ¢ = [w].

This additional structure on cohomology allows us to deduce more topological information
than homology. For example, Lefschetz’s fixed point theorem (2.11.3) and the work above

imply:
Corollary 3.6.10. Any smooth map f : CP? — CP? has a fized point.
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Proof. By Lefschetz’s fixed point theorem, it suffices to show L(f) # 0. Using the universal
coefficient theorem (3.4.2) and de Rham’s theorem, one can show that the Lefschetz number
may be computed by taking traces on de Rham cohomology instead of real homology:

L(f) =Y (=1)tx(f. : H(CP*Q) — H;(CP*Q))

0

)

(=1)"tx(f* « Hyp(CP?) = Hap(CP?)).

I
.Mg

Il
=)

)

Since H25(CP?) = R(c) by Theorem 3.6.8, we know that f*(c) = rc for some ¢ € R. Let f;

denote the restriction of f* to H)p(CP?). Then

tr(fo) = tr(id) =1

tr(f1) = tr(fs) =0

tr(fz) = tr([r]) = r

tr(fa) = te([r]) =
Thus L(f) = 1+ r + 72 for some r € R, but 1 + = + 22 is irreducible over R, i.e. never
vanishes. Hence L(f) # 0. O

Example 3.6.11. CP? is obtained as a CW-complex by attaching a 4-cell to CP! via the
Hopf map 0D* = S3 — S? = CP.

Corollary 3.6.12. The Hopf map h : S — S? is not homotopic to a constant. In particular,
7T3(52) # 0.

Proof. If h : 83 — S? is homotopic to a constant, Example 3.6.11 shows that CP? is
homotopy equivalent to S? vV S*. Under this identification, we get a map

g2V St 828 G2y 52y gt

which has no fixed points, where a is the antipodal map. This contradicts Corollary 3.6.10.
Hence h : 252 = $3 — S? defines a nontrivial class in m3(S5?). O

It turns out that 73(S?) = Z. We saw in Chapter 1 that the higher homotopy groups
of spheres are difficult to compute, and in most cases are not fully understood yet, so
Corollary 3.6.12 is a highly nontrivial result.

Example 3.6.13. In this example we prove that CP? and S? x S* have the same cohomology
groups, but that they are not homotopy equivalent. All cohomology groups are assumed to
have coefficients in R but notation will be suppressed. CP3 and S? x S* each have a CW-
structure consisting of one cell in dimensions 0, 2, 4 and 6. In each case the cell complex
is

0=+2Z—-0—-2—-0—-2Z—-0—72Z—0.

Each arrow is 0, so the complex is its own homology:

Z, k=0,2,4,6

H,(CP?) = Hy(S* x S*) =
Kl ) (57 57) {O, otherwise.

133



3.6 de Rham’s Theorem 3 Cohomology

Suppose CP? and S? x S* are homotopy equivalent. This would determine an isomorphism
on cohomology v : H*(CP3) — H*(S? x S*) (e.g. by the universal coefficient theorem for
cohomology). We will prove that H*(CP?) is not isomorphic as a graded ring to H®(S% x S*).

We know H?*(CP?3) =2 HZ,(CP?) is generated by ¢ = [w], the class of the Fubini-Study
form w € Q*(CP?). On the other hand, H"(S™) = R for each n > 1, and by the universal
coefficient theorem, H?(S? x S*) = R. Consider the projection f : S* x S* — S2. This
induces a contravariant map on cohomology,

frH*(S?) — H?*(S* x S%).

Explicitly, for a 2-form n € Q5(5?), a point (x,y) € S? x S* and vector fields v = v; + vy
and w = wy + wy € Ty, (S? x §*) =T,5* ® T,5*, we have

F ) (0, w) = Mg (df (), df (W) = Np () (01, w01).

Since H?(S? x S*) = R # 0, this cannot be the zero map on H?(S5?), so f* is an isomorphism
R — R. If r € H*(S?) is a generator (i.e. any nonzero element), then f*r is a generator
of H*(S? x S%). But r Ar € H*(S?) = 0, so we must have (f*r)> = 0. Therefore such a
map ¢ : H*(CP?) — H*(S* x S*) would take ¢ = [w] to a generator r € H*(S? x S%), but
P(c?) = (Ye)? = r? = 0, so the map is not injective. Hence H*(CP3) and H*(S? x S?) are
not isomorphic. We conclude that CP? and S? x S* cannot be homotopy equivalent.
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4 Products in Homology and Cohomology
One of the easiest products on homology and cohomology rings is the Kronecker pairing,
which is established via the following proposition.

Proposition 4.0.1. For a chain complex (C.,0) of R-modules, where R is a commutative
ring, with corresponding cochain compler C? = Homp(C}, R), there is a bilinear map

Oj X Cj — R
given by the “application” (o, 0) — (o). This induces a bilinear pairing of R-modules,

HI(C*) x Hj(C,) — R
([a], [o]) — (o, 0) = a(o).

Proof. Take a cocycle a € €V and a cycle o € C;. If ¢ = 9(7) for 7 € Cj41 then afo) =
a(01) = (ad)T = 6(a)T = 0 since « is a cocycle. Likewise, if o = () = S0 for some
B € CI7! then a(o) = (o) = 5(0) = 0 since o is a cycle. Hence if o is a coboundary and
o’ is a boundary, then

(a+d,0)={a,0)+ {(d,0) = (a,0) + 0 = (, 0)

and (a,0+0') = (a,0)+ (a,0") = (o, 0) + 0 = (a,0).
So (-,-) : HI(C*) x H;(C.) — R is well-defined. O
Corollary 4.0.2. There is a map
H(C*) — Hom(H;(C.), R).

Proof. This is just given by [a] — («,-), which is a well-defined functional by Proposi-
tion 4.0.1. O

The Kronecker pairing is a special case of the cap product, which will be described in
Section 4.4.

4.1 Acyclic Models

Suppose (A, M) is a category with models, that is, a category A with a collection of models
M C obj(A). Let C is the category of chain complexes over a ring R.

Definition. We say a functor F : A — C is acyclic if F(M) is an acyclic chain complex
for all models M € M.

Definition. A functor F': A — C is free if for any X € A, the chain group F(A), is free
with basis some subset of

{F(u)(F(M),) | M € M,u € Homa(M, X)}.
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Example 4.1.1. Singular homology is a free, acyclic functor on the category of topological
spaces with models M = {simplices}.

Theorem 4.1.2. Let F,G : A — C be functors such that F is free, G is acyclic and
o : Ho(F) — Ho(G) is a natural transformation. Then there is a natural transformation
¢ : F' — G inducing po on Hy which is unique up to chain homotopy.

Proof. For an object X € A, we must define a map ®x : F'(X) — G(X) which is natural in
X. Start with a model M € M. Then F(M) is a free chain complex and G(M) is acyclic.
Since we have a homomorphism ¢ : Ho(F(M)) — Hy(G(M)), the comparison theorem
(3.3.4) provides a chain map @y, : F(M) — G(M) which is unique up to chain homotopy.
Fix such a &, for each model M.

Now for X € A, F(X) is free with basis in {F(u)(F(M)) | M € M,u € Hom(M, X)}.
Define &y : F(X) — G(X) by specifying the images of the generators, using ®;:

Oy F(u)(F(M)) — G(u)(@n(F(M))).

(Note that ®x must be defined this way for it to be natural.) It follows that since the @y,
are unique up to chain homotopy, the same is true of the ®x. This completes the proof. [

Corollary 4.1.3. If G : A — C are free, acyclic functors on a category with models
(A, M) such that Hyo(F') and Ho(G) are naturally isomorphic, then F' and G are naturally
1somorphic.

4.2 The Kunneth Theorem

We saw in Section 3.6 that the homology H*(CP") inherits a product structure from the
wedge product on HJ,(CP™) via de Rham’s theorem. In the next few sections, we generalize
this structure to the cohomology ring of an arbitrary space in the form of the cup product.
To define this, we first must understand the tensor product of chain complexes.

Definition. For chain complezes A, and B,, their tensor product is the complex

i+j=k
with differential 0(a ® b) = da @ b+ (—1)la ® 9b.

Theorem 4.2.1. For a pair of spaces X,Y , there exists a cross product on singular chain
groups

Ag(X) R Af(Y) — Ag(X X Y)
CQT+——=>0 XT

which is unique up to chain homotopy, such that for x € Ag(X) and y € Ag(Y), @y —
(z,y).
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Proof. Let A be the category of pairs of spaces with pairs of morphisms, and define functors
F.G:A—Cby F(X,Y) = Ad(X) @ As(Y) and G(X,Y) = A(X,Y). On Hy, the map
o : @y +— (z,y) induces the natural transformation
Ho(Ae(X) @ Ag(Y)) — Ho(As(X X Y))
[z @yl — [(z,9)].

The models in A are pairs of simplices (A,, A,), so clearly F' is a free functor (by definition
of singular chain complexes) and G is acyclic (since A, x A, is contractible). Apply acyclic
models (Theorem 4.1.2) to define the cross product on all of A,(X) ® A.(Y). O

Theorem 4.2.2 (Eilenberg-Zilber). For any spaces X,Y, there is a natural chain homotopy
equivalence Ag(X) @ Ag(Y) = Ao(X X Y) inducing a natural isomorphism

Ho(X XY) = Hy(Ad(X) @ Ag(Y)).

Definition. A chain homotopy equivalence 6 : Ag(X X Y) — Ag(X) ® A(Y) is called an
Eilenberg-Zilber map.

The Kiinneth theorem gives a formula in terms of Tor; for computing the homology of a
tensor product of chain complexes.

Theorem 4.2.3 (Kiinneth). Let K, and L, be free chain complexes over a PID R. Then
for each n > 0, there is a short exact sequence

0— P H,(K.)® Hy(Ls) - Hi(Ke® L) = @5 Tori(H,(K.), Hy(Ls)) = 0

pt+g=n p+g=n—1

which is split and natural in K, and L,.

Proof. The map €, ,_, Hy(K.) ® Hy(L) % H, (K, ® L,) is given by [k] @ [(] — [k ® 1].
Fix n > 0 and set Z,, = ker(0 : K,, — K,,_1) and B,, = im(0 : K,,y1 — K,). Then there is a
short exact sequence

0—>Zn—>Knﬁ>Bn_1—>0

which splits since K, is free. Thus tensoring with L, preserves exactness, so we get another
short exact sequence

0= Ze@ Ly — K¢ ® Ly — Be 1 ® Le — 0. (1)

Then He(Ze ® Lo) = Zo ® Hqo(Ls). In particular,

H,(Z, ® L,) @Z@H

pt+gq=n

Likewise, Ho(Be ® Lo) = Be ® H4(L,). The long exact sequence in homology coming from
(1) is
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H,(Zs @ L) H,(K,® L) H,(Be-1 @ L) Hy1(Ze ® L)

S0 D Z 0 HilLe) (K, o L) D B e L) 2t @ Z,0H,(L)

ptg=n p+g=n—1 ptg=n—1

This induces a pair of short exact sequences
0 — coker A, — H,(K,® Lo) = ker A,,_; — 0 (2)
0— B, = Z, = H,(K,) — 0. (3)

Tensoring (3) with H,(L.) gives a long exact sequence in Tor,

0 = Tory(Z,H,(Ls)) — Tor1(H,(K,), H,(Ls)) = B,&H,(Ls) AN Z,QH,(Ls) — H,(Ks)®H,(Ls) — 0.
(Here, 0 : b® [(] — b® [¢].) One can show that the map
A @ Be ()5 @ Zen) - @ 260
p+a=n ptq=n—1 p+a=n
is just the diagonal sum of the § from the long exact sequence above. Hence

coker A, = @D Hy(K,)® H,(L.)

ptq=n

and kerAn_l = @ Torl(Hp(Ko)qu(LO))

ptg=n—1

so sequence (3) becomes the desired short exact sequence. The proofs of splitting and
naturality of this sequence are routine. O]

Corollary 4.2.4. For two spaces X and Y and any integer n > 0, there is an isomorphism

(X xY)2 P HX)eH,(Y)e @ Tori(H,(X) H(Y)).

p+g=n ptg=n—1

Example 4.2.5. If X =Y = RP2, then by Example 2.3.20, we have

Z, p=0
H,(X) = Hy(Y) = Z/2Z, p=1
0, p=>2

Applying the Kiinneth theorem and relevant calculations in Tor; from Example 3.3.16, we
obtain

7, n =70
Z)2L ®L)2Z, n=1
H,(RP? x RP?) = { /2L L[22, n
)27, n=23
0, n > 4.
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4.3 The Cup Product 4 Products in Homology and Cohomology

Example 4.2.6. For a pair of spheres X = S™ and Y = S™, all singular homology groups
are free Z-modules by Theorem 2.3.5 so Tor; always vanishes. Hence the Kiinneth theorem
gives

Z, k=0nm,n+m

0, otherwise.

Hi(S" x S™) = D) Hy(S") ® Hy(S™) = {

p+q=k
4.3 The Cup Product

We have defined a cross product A,(X) ® Ay(Y) = Ay(X x Y) which is a chain homotopy
equivalence by the Eilenberg-Zilber theorem. We would like to dualize this to get a product
on cochain complexes, but this requires that we first understand the relation between the

dual (A4(X) ® Al(Y))* and A*(X) @ A*(Y).
Definition. The map defined by
Xatg  A°(X) @ A*(Y) — (Au(X) © A(Y))*
0@ B (axay B: 3 5w D (—1)* = a () B(w;) )
15 called the algebraic cross product on cochains.
Lemma 4.3.1. The algebraic cross product is a chain map.

The algebraic cross product determines a map on the tensor product of homologies:

H'(X) @ H? — H"™((Ad(X) @ Au(Y))")
o] @ [B] — [a Xag B].

Definition. The cohomology cross product is the composition
x 1 HP(X) @ HYY) 22% HPT((AJ(X) ® AJ(Y))") L HP(X x Y)
where 0 : Ag(X X Y) = Ag(X) ® A(Y) is an Eilenberg-Zilber map.

Note that since any Eilenberg-Zilber map is unique up to chain homotopy, the induced
map 0* is well-defined.

Definition. For a space X, the cup product on cohomology is the product map
U: H?(X)® HI(X) — HP"(X)
defined on cochains by
AP(X) ® AY(X) 55 APFI(X x X) 25 APTI(X),

where A : X — X x X is the diagonal map © — (x,x). That is, for « € HP(X) and
pe H(X), aUpf=A*axp).
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Proposition 4.3.2. Let X and Y be spaces and px : X XY — X and py : X XY — Y the
natural projections. Then

(1) For any maps f: X' = X and g:Y' =Y, (f x g)"(a x B) = ffa x g*5.

(2) The cup product is natural, i.e. f*(a; Uaz) = f*aq U fras for any oy, a9 € H*(X)
and map f:Y — X.
(3) ax B =pkaUpiyf for any o € HP(X) and 5 € HI(Y).

Proof. (1) An Eilenberg-Zilber map 6 is a chain map and so is its transpose 6%, so the cross
product is natural in both X and Y.
(2) We have

ffarU ffag = A™(ffaqr x ffa)
= A"(f x f)"(o1 X @) by (1)
= ((f x )A) (a1 x )
= (Af)" (a1 x az)
= ["A%(aq X ag)
= f"(aq U ).
(3) Let Axxy : X XY - (X xY) x (X xY)
maps px,py and any a € HP(X) and 5 € HY(Y),

be the diagonal map. For the projection

pxaUpy B = A,y (pxa x pyf)
= A,y (px X py) (o x )
= ((px X py)A)"(a x B3)
=idy . .y(a X ) =axf.
O

Definition. A diagonal approximation is a chain map 7 : Ag(X) — Ae(X) @ Ag(X) for
each space X such that 7 is natural in X and 7(x) = x @ x on 0-simplices x € Ay(X).

By acyclic models (Theorem 4.1.2), such a 7 exists and is unique up to chain homotopy.
Observe that if 6 : Ag(X x X) — A (X) ® Ae(X) is an Eilenberg-Zilber map, then the
composition

TIAX) 25 AJX x X) D A(X) ® AJ(X)
is a diagonal approximation. Then the cup product can be written in terms of a diagonal
approximation: a U ff = 7"(a ® ).
Lemma 4.3.3. Any Filenberg-Zilber map 6 : Ag(X X X) — Ad(X) @ Ae(X) uniquely
determines a diagonal approzimation T : Ae(X) — Ae(X) ® A(X).

Proof. We saw above that 7 = fo A, is a diagonal approximation whenever 6 is an Eilenberg-
Zilber map. Conversely, a diagonal approximation 7 determines 6 by the composition

AdX xY) D A(X XY)@AJX xY) I A (X))@ Ad(Y).
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4.3 The Cup Product 4 Products in Homology and Cohomology

For any space X, there is a “distinguished” cochain ¢ € A%(X) satisfying e(z) = 1 for
every O-simplex x. As a map, this is the just the augmentation map e : Ag(X) — Z. As
a cohomology class, we write [¢] = 1 € H°(X). We can now show that the cup product
endows H*(X) with the structure of a graded commutative ring with unity 1 = [¢].

Proposition 4.3.4. For any o € HP(X),
(a) a x 1y = pi(a) € HP(X X Y) for any space Y .
(b) aUl=1Ua = .
Proof. (a) Let P be a point space and consider the functors
F:X—=AJX xP) and G: X+ Au(X).
Then there is a natural transformation F' — G given by
AdX x P) L AJX) @ A(P) 2E5 AJ(X)RZ = AJX). (%)

On the other hand, (px )« : Ae(X X P) — Aq(X) gives another natural transformation ' — G
that determines the same map on 0-simplices as (). Thus by acyclic models (Theorem 4.1.2),
F and G are naturally isomorphic. Taking the dual of (x), we get a +— « x 1p, while the
dual of (px)« is (px)*. Hence (a) holds for a point space P.

Now for any Y, there is a unique map f : Y — P to a point space, with f*¢ = ¢, and
(dx f)*

thus f*(1p) = 1y. Then under the composition H?(X) — H?(X x P) —— HP(X xY),
any o € H?(X) maps to

(Zd X f)*(a X 1p) = X f*<1p> =aXly
but by the above case for P, o x 1p = p%(a), so we also have

(id > f)*(a x 1p) = (id x f)"px () = (px(id x [))* () = px ().

Hence p% () = a x 1y as claimed.
(b) Now for a € HP(X),

aUl=A%ax1)=A"DPy(a) = (pxA) (o) =id*a = a.
The proof is similar for 1 U a. O]

Theorem 4.3.5. The cup product is associative and graded-commutative, that is, U 3 =
(=D)lelPI3 U o for any a, B € A*(X).

Proof. First, there are Eilenberg-Zilber maps 6 and ¢ that fit into the following diagram:
0

A X XY x 2Z) Ad X XY)® A(2)

Ad(X) R A(Y X Z) — Af(X) @ Ag(Y) ® Ag(2)
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Both are natural transformations of functors (X,Y,Z) — A (X x Y x Z), so by acyclic
models (Theorem 4.1.2), it’s enough to show that 6 and ¢ induce the same map on H,,
which clearly they do since tensor products are associative. Hence 6 and ¢ are naturally
chain homotopic. Taking the transpose, we see that X, is associative. Finally, associativity
of the cup product follows from this observation, and the commutativity of the diagram:

X A X x X

A A x id

X x X — X xXxX
id X

where A is the diagonal map.
Next, we show U is graded-commutative. Consider the “geometric” and “algebraic”
order-reversing maps:

S: XxY — Y xX T: AdX)A(Y) — AJY)@A(X)
(=

(x,y) — (y,2) and a®b — 1)lalblp @ a.

Note that S is a homeomorphism and 7" is a chain homotopy equivalence. Then the maps 70
and 65 are both natural transformations giving the same map on Hy, so by acyclic models
(Theorem 4.1.2), they are naturally isomorphic; that is, the following diagram commutes:

AvX xY)— A @ ALY
s T
BulY % X) ———— A1) © Au(X)

Further, SA = A, so we have

aUpf=A"axp)=A"S"(ax[)
= A"S"0"(a ® ) interpreting cross product using diagonal approximation
= A"0*"T*"(a® ) up to a boundary
= A*0*((—1 )Ial Wlﬂ@a) (— 1)'“”6|BUQ.

Therefore the formulas agree on cohomology. O]
How do we compute cup products in practice?

Definition. Suppose o : A, — X is an n-simplex and p,q > n. The front p-face of o is
the p-simplex o, : A, — X given by o],(to,....t,) = o(to,...,tp,0,...,0). Similarly, the
back g¢-face of o is the g-simplezx ;|0 : A, — X, 4lo(to,....ty) =0(0,...,0,t0,...,1,).
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Definition. For a pair (X,Y), the Alexander-Whitney map is the map 0 : Ay(X XY) —
Ad(X) ® Ag(Y) defined on an n-simplex o € A, (X xY) by

00)= > (rx®0)|,®,4|(py ®0).
p+q=n
Lemma 4.3.6. The Alexander-Whitney map is an Eilenberg-Zilber map.
Proof. One sees that 6 induces (z,y) — = ® y on Hy and is chain map. O
By Lemma 4.3.3, the Alexander-Whitney map determines a diagonal approximation 7.

Definition. The diagonal approximation corresponding to 6 is called the Alexander-Whitney
diagonal approximation; explicitly,

T:Ag(X) — Ad(X) ® Ag(X)
o— Z olp® 4|0
ptg=n
Corollary 4.3.7. The cup product may be computed on the chain level for « € AP(X), [ €
AYX) and 0 € Apiy(X) by

(aUp)(o) = (=1)"alo]p)B(4l0)-
Proof. Let 7 be the Alexander-Whitney diagonal approximation. Then we have
(U p)(o) = 7"(a x B)(0) = (o x B)7(0)
—(axp) Y o ®,0
r+s=p+q

= Z (=1)®I" by definition of the cross product
rs=p+q

= (=1)"a(o],)B(410)-
O

Example 4.3.8. In this example, we compute the cup products of X = RP? with coefficients
in Z/27Z. Recall from Example 2.3.20 that the projective plane has the following mod 2
homology groups:

7)27, k=0,1,2

H,(RP% 7,/27) =
k( /2Z) {07 k>3

Since Z/27 is a field, Proposition 3.3.8 ensures the Ext groups in the universal coefficient
theorem vanish, so over Z/27Z, the cohomology and homology of RP? are isomorphic:

7)27, k=0,1,2

H*RP?,7/27) =
0, k> 3.

Let o be a 1-cochain such that [a] generates H?(RP?;Z/2Z) and take ~y to be a 1-chain such
that [y] € Hy(RP?;Z/27Z) is a generator; then a(y) = 1. We would like to compute [a]U [a].

Consider the following 2-simplex o:
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€p X

€9 0 €1
xT

Notice that 0o = v — ¢; +7 = 27 — ¢1, where ¢; is a constant 1-simplex. On the other
hand, if ¢, is a constant 2-simplex then dcy = ¢1, so we have d(o + ¢1) = 27 but this is 0 in
A(RP?;Z/27). Thus [o+c;] generates Hy(RP?% Z/27Z). Now using the Alexander-Whitney

approximation, we have

(@Ua)(o) = alo)i)a(ilo) = a(y)a(y) =1-1=1
and (aUa)(c1) = aler]1)ali]|er) = a(0ca]2)a(1|0c) =0-0 =0,

since « is a cocycle. Hence (o U a)(oc + ¢;) = 1 so [@ U a] must be a generator of
H*(RP*Z/27Z) = Z/2Z. The cohomology of RP? with mod 2 coefficients therefore has
the following ring structure: H*(RP?% Z/27) = Fy[a]/(a?), where Fy = Z /27 and |a] gener-
ates H'(RP?;7Z/27Z). This generalizes to projective n-space:

Theorem 4.3.9. For any n > 2, H*(RP";Z/27Z) = Fy[a]/(a™), where [a] is a generator
of H\(RP™; Z,/27).

4.4 The Cap Product

In this section we define the cap product between homology and cohomology, that is, a map
HP(X)® H,(X) — H,_,(X)
which generalizes the Kronecker pairing (the case n = p) of Proposition 4.0.1.
Definition. For a space X, the cap product is the product map
N: H(X)® H,(X) — H,—,(X)
defined on cochains and chains by

AP(X) @ Ap(X) =5 A(X)© @D (Ap(X) @ Ay(X)) HZ@A, = A,

p'+q'=n

where T is a diagonal approximation and k is the Kronecker pairing of AP(X) with each
Ay (X), which is zero when ¢' # n — p.

Using the Alexander-Whitney diagonal approximation, the cap product can be written
anNo = (=1)"a(o],)qlo

for any cochain a € AP(X) and chain o € A, (X), with p+ ¢ = n.
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Theorem 4.4.1. The cap product is a well-defined product H?(X) @ H,(X) — H,_,(X)
satisfying the following properties:

(a) When n = p, the cap product equals the Kronecker pairing H?(X) ® H,(X) — Z.
(b) For any o € AP(X) and o0 € A, (X), O(ano)=daNoc+ (—1)Pando.
(¢) N is natural and is the unique product satisfying (a) — (c).

(d) For any chain o, 1N o = o where 1 = [g] is the cohomology class of the augmentation
£ Ao(X) — 7.

(e) an(fno)=(aUP)Nao for any o, B € A*(X) and 0 € A(X).
(f) For spaces X andY with a continuous map f: X — Y, and for classes o € HP(Y)
and ¢ € H,(X), f«(f*(a) Nec) =an fc).

Proof. (a) is clear using the Alexander-Whitney diagonal approximation: for a@ € AP(X)
and o € A,(X),

2

aNo = (=1 ac],) o= alc) = (v 0).
(b) Consider the diagram

o (X) @ Ha(X) 22190 ey o ()
N N
Ha(X) . H.(X)

This represents two functors H*(X) ® He(X) — He(X), so to show the diagram commutes,
it’s enough by Theorem 4.1.2 to show the diagram commutes on the level of Hy(X). But by
(a), for any O-chain = we have

Ianzx)=0o0a(r)=(0a)x)=(da)(z)+ (-1)’Pan0=danz+ (—1)Pan dz.

We now use (b) to prove that cap product is well-defined on (co)homology. It is clear
that N is bilinear. If & = Ja’ for some cochain o/, then by (b),

d(ano)=0(0d' No)=d6ad" No+ (—1)P6a’ Ndo = (—1)P5a’ N Do = 0.
Likewise, if 0 = 0o’ then
daneo)=0(andd) =dandd + (—1)Pand®c’ = saNds’ = 0.

Therefore N : H?(X) ® H,(X) — H,—p(X), [a] ® [0] — [N o] is well-defined.

(¢) Naturality follows from naturality of diagonal approximations (by definition) and
the Kronecker pairing (Proposition 4.0.1). Uniqueness follows from the fact that diagonal
approximations are up to chain homotopy.

(d) is trivial from the Alexander-Whitney diagonal approximation definition of N.

(e) Consider the diagram
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HY(X) @ H*(X) © H(X) — 2 1(x) @ Ha(X)
1N N
H(X) @ H.(X) . H.(X)

As in part (b), it suffices to show the diagram commutes on 0-cochains and 0O-chains, by
Theorem 4.1.2. If z,y € H°(X) and z € Hy(X), we have

(zUy)Nz=(zy)(2) = 2(y(2)) =z Ny(z) =2 N (yN2)

so the diagram commutes.
(f) Set ¢ = n — p. Using the Alexander-Whitney diagonal approximation, we have

f(frane) = LIEDP(Fa)(ple)e) ] = (DY () (ple) fiulelo)

= (=D (ao f)(ple)filc]q);
while an fi(c) = (=D)"a(,[(fec))(fec)]q
= (=1)"(ao f)(ple)flelq

Thus they are equal. O

Property (e) shows that He(X) can be made into a module over the cohomology ring
H*(X). Cap product can be defined analogously for homology and cohomology with coeffi-
cients in an abelian group G. There is also a relative cap product which we define as follows.
Let A C X. Define the relative cap product on chains by:

AP(X,A) @ Apg(X, A) — Ay(X)
aRQ®Rcr—> anec.

A, (X Ayl (X
Write AP(X, A) = Hom ( it ),Z) and A, (X, A) = Bpig(X) Then « lifts uniquely to

Ap(A) Apiq(A)
a cochain & : A,(X) — Z that vanishes on A,(A). Soif c € A, ,(A), then
aNc=anNc=(—LMa(,|c)c],=(-1)P"-0-¢|,=0

since ,|c¢ € A,(A). Thus the relative cap product is well-defined on chains. Now to show
this defines a cap product on relative (co)homology, take a cocycle a € A®*(X, A) and a cycle
c € Ay(X,A). Then by Theorem 4.4.1(b), we have

danc)=daNc+ (—1)’Pandc=0+0
since « is a cocycle and Oc € A4(A). Moreover, if @ = da’ then
aNc=da'Nc=9(' Nc)— (=1’ Ndec=09(a'Nc)
since dc € A4(A), so [aN¢] =0 in homology. Similarly, if ¢ = d¢, then

aNc=andd =(-1)Po(and) — (=1)Pdand = (—1)Pd(and)
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which is 0 in homology. Thus the relative cap product is well-defined:

N:HP(X,A)® H,(X,A) — H,_,(X)
[a] N [¢] — [N d].

More generally, if A, B C X are subspaces for which A4(A) + As(B) — A (AU B) is an
isomorphism on homology, then there is a relative cap product

N:H?(X,A)® H,(X,AUB) — H,_,(X, B).

All of the above definitions generalize to arbitrary coefficients.
The formulas in Theorem 4.4.1 specialize to the Kronecker pairing:

Corollary 4.4.2. Let X and Y be spaces, o, € H*(X), v € H*(Y) and 0 € Hy(X). Then
(a) (aUB,0) = (a,BN0).
(b) (f*(a),0) = (e, fu(0)).

In particular, (b) demonstrates the ‘duality’ of the cup and cap products. This will
become more evident in Chapter 5.
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5 Duality

In the previous chapter, we saw how the cap and cup products exhibited a kind of duality
between the homology and cohomology groups of a space. In this chapter we make that
connection explicit for manifolds. We will prove that if M is a compact, oriented n-manifold

then there is an isomorphism
H,(M)= H"?(M).

More generally, for a compact manifold with boundary we will also obtain isomorphisms
H,(M,0M) = H"P(M) and H,(M) = H"P(M,0M). From this we will deduce many
beautiful results about manifolds.

5.1 Direct Limits

Definition. A direct system is a family of groups (Aa)acr, for some directed index set I,
together with homomorphisms fgo : Aa — Apg for all B > o such that when v > 8 > «, we

have fyg0 fga = fra-

Definition. Given a direct system (Aa, fza) over a direct set I, the direct limit is defined
as the quotient group

linAa = (@Aa> [{fsala) —a|a € Ay, B> a).
acl

There are natural inclusions A, — @ A, which induce homomorphisms i, : A, — lim 4,
—)

making the following diagrams commute:

foo
PRELIYY

!

lim A,
H
The next result says that direct limits are a solution to a universal mapping property for

direct systems.

Proposition 5.1.1. Suppose (Aa, fsa) is a direct system of abelian groups with direct limit
A =1lim A,. Then for any abelian group G and any collection of homomorphisms g, : Aq —
H

G satisfying gs © faa = Ga, there exists a unique homomorphism g : lim A, — G such that
—

(1) goiy = go for alla € I.
(2) img ={x € G|x = ga(xy) for some a and x, € Au}.

(3) kerg={a € A|a=1i4(rs) and go(zs) = 0 for some a}.

148



5.2 The Orientation Bundle 5 Duality

Corollary 5.1.2. Let (Aa, fsa) be a direct system, with A =lim A,. Then a collection of
—

homomorphisms g, : Aq — G for which gz o fsa = go defines an isomorphism g : A — G if
and only if the following conditions hold:

(1) For all x € G, there exists « € I and x, € A, such that go(x,) = .
(2) If go(xo) = 0 then there exists B > « for which fza(zs) = 0.

Theorem 5.1.3. Suppose (An), (AL) and (AL) are direct systems over I. Then if for each
a € [ there is a short exact sequence 0 — AL, — A, — A — 0 which is natural with respect
to the homomorphisms in each direct system, then the induced sequence

0—limA, —limA, —limA” =0
— — —

18 exact.

5.2 The Orientation Bundle

To ‘orient’ our path to proving Poincaré duality so to speak, we begin with the following
observation.

Lemma 5.2.1. Let M be an n-dimensional manifold and G any coefficient group. Then for
each © € M, there is an isomorphism H,(M,M ~\ {z};G) = G.

Proof. Let x € A C M be any bounded, convex subset with respect to some coordinate
chart of M. Then A is contained in a closed disk D™ ¢ R® C M. Consider the commutative
diagram

Hy(M, M~ A;G) Hy(M, M~ {2} G)

I
I

H,(R" R"\ A;G) —— H,(R",R" \ {z}; G)

1%
I

H,(D",0D";G) H,(D",0D";G)

id

Here, the horizontal arrows are induced by inclusion, the top pair of vertical arrows are by ex-
cision and the bottom pair of vertical arrows are by homotopy. Moreover, by Theorem 2.3.5,
H,(D",0D™;G) = G so the diagram implies H,,(M, M \ A;G) and H,(M, M \ {z}; G) are
each isomorphic to G. O
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Definition. When G = Z, a local orientation of M at x € M is a choice of generator
0, € H,(M,M ~ {z}) = Z

Definition. An orientation of M is a choice of local orientation x — 0, € H,(M, M ~{z})
for each x € M that is locally constant. That is, for each x € M there is a neighborhood
UC M of v and a class 0y € H,(M, M ~ U) such that for each y € U, the restriction map
Gyt Ho(M, M \U) = H,(M, M \ {y}) satisfies j,v(0y) = 0,,.

Definition. The assignment U — (0y) defines the structure of a sheaf on M with stalks
(0,) = Z, called the orientation sheaf of M.

Definition. The orientation bundle of an n-manifold M with coefficients in G is the set

Ou(G) = [] HaM, M~ {z}; G)

zeM

with the following topology. Let p: ©y(G) — M be the map sending H, (M, M ~ {z}; G) to
x. For U C M open and o € H,(M,M \ U;G), define the subset

Ua = {yu(@) € Ho(M, M\ {y};G) [y € U}

Then the collection {U, | U C M is open and o € H,(M,M ~ U;G)} is a basis for the
topology on O y(G).

Lemma 5.2.2. The orientation bundle ©y(G) is a topological space with the described
topology, with respect to which p : Oy (G) — M and fibrewise addition are continuous maps.

Proof. 1f g € H,(M,M ~\ {z};G) C Op(G) then for any convex neighborhood U of z,
Lemma 5.2.1 says that g = j,y(8) for some 8 € H,(M,M \ U;G) and y € U. Hence
{U.} is a cover of Oy (G). Next, if g € U, N Vp for open sets U,V C M and elements
a, B of the corresponding homology groups, we must produce an open set W C M and a
class v € H,(M,M ~ W;G) such that g € W, C U, N Vs. Note that if g = p~!(z) =
H,(M,M ~ {z};G), then g = j,v(a) = j.v(B). Take W C U NV, a convex neighborhood
of xz. By Lemma 5.2.1, the map j,w : H(MM\WG) — H,(M,M ~ {y};:G) is an
isomorphism for all y € W. Let v = ]xll/V( ) € Hy(M,M ~W;G). Then g € W, and by
definition of the basis sets, W, = {j,w(v) |y € W}. If ¢ = ij(v) € W, we must show
g € U, N V. Consider the maps

H,(M,M\U;G) jwo

— jy,W

H,(M,M ~W;G) ——— H,(M,M ~{y};G)
/
H,(M,M\V;G) WV

Since j, w o jwu = Jyu, we have j, w o jwu (@) = j,v(a), but since j, w is an isomorphism,

we get jwu(a) = jy_Il/V o jyu(a). This holds for any y € W. In particular, for y = = we
know j,p(a) = ¢ and j;%y(g) = 7, so we must have jyy(a) = . Hence ¢ = j,w(y) =
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Jyw © jwu(a) = jyu(a) € Uy. A similar proof shows that ¢" € V3. Hence {U,} forms a
basis for a topology on ©/(G).

Next, take an open, convex set U C M with U compact (within some coordinate chart
in M). Then for a € H,(M,M ~\ U;G) = G, the restriction p|y, : U, — U is a bijection.
In particular, p~'(U) = U,y Hn(M, M ~ {z}; G) is the union of open sets in the collection
{jow (Ho (M, M\ U;G))} so p~H(U) itself is open.

Finally, for any convex U C M, the map oy : U x Hy,(M, M~\U;G) — H,(M, M~U;G)
given by (z,a) — j,u(e) is a bijection, since each j, y is an isomorphism. Here, we view
H,(M,M \U;G) = G with the discrete topology. If V C U is open and o € H,, (M, M ~
U; @), then ¢y (V x {a}) = V,, which is open by definition of the topology on ©,,(G). Hence
ou is open. Now {V,, | V C U} is a basis for p~*(U), so we also see that ¢ is continuous.
Hence ¢y is a homeomorphism. As a consequence, we see that p~(U) has the discrete
topology, so it follows that H,, (M, M ~{z}; G) x H,(M, M ~{z};G) — H,(M, M ~{z};G)
is continuous with respect to this topology. O]

This proves something more:
Corollary 5.2.3. p: Oy(G) — M is a topological cover.

Proof. For each convex, open neighborhood U C M and for each a € H,(M, M \U;G), the
restriction p|y, : U, — U is a homeomorphism. It follows that p is a local homeomorphism,
hence a cover. O

Definition. A section of the orientation bundle over a subset A C M is a continuous map
o: A — Ouy(GQ) such that po o = ida. The collection of all sections over A is denoted
I'(A, Om(G)).

Concretely, a section o € T'(A,O)(G)) is an assignment of an element of H, (M, M ~
{z};G) to each x € A that varies continuously with z. By the proof of Lemma 5.2.2, this is
equivalent to o : x +— o(z) being locally constant.

Definition. Let M be a manifold and A C M a subset. An orientation along A is a
section 04 € T'(A, O (Z)) such that 04(x) is a generator of Hy(M, M ~ {x}) = Z for each
x € A. If such a section exists, we say M is orientable along A. For A = M, we say an
orientation along M s a global orientation and M is orientable.

Proposition 5.2.4. For an n-manifold M, the following are equivalent:
(1) M 1is orientable.
(2) M is orientable along every compact subset of M.
(8) M is orientable along every loop in M.

(4) The collection of units in each fibre p~'(x) C Ox(Z) forms a trivial double cover of
M, i.e. one homeomorphic to M X Z./27.

(5) There is a bundle isomorphism ©y(Z) = M X Z.
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Proof. (1) = (2) = (3) are easy.

(3) = (4) Assume M is connected. Then the units in ©,,(Z) form a double cover with
either one or two components; if two components, we are done. Suppose instead that the
cover is nontrivial, so that there is a path in ©,,(Z) connecting the two elements of p~!(x)
for some x € M. Project this path to M to get a loop based at z. Since the units form
a double cover, there can be no section of ©,,(Z) along this loop, so (3) fails. Thus the
implication holds by contrapositive.

(4) = (5) Fix a component of the double cover, U;. Then any g € ©,,(Z) can be
written uniquely as g = nu, for some n € Z and u, € U;. The map g — (x,n) gives the
desired bundle isomorphism.

(5) = (1) x — (x,1) defines a global section, making M orientable. O

The key idea contained in (3) of Proposition 5.2.4 is the orientability is a “one-dimensional
question”, decidable by orientability along loops.

Sections of the orientation bundle can arise as follows. Let A C M. For a class o €
H, (M, M ~\ A;G), define a section over A by z — j, a(«). This determines a function

Ja: Hy(M, M\ A;G) — T'(A,0(G))
ar— (x> jrala)).

Lemma 5.2.5. For any A C M, J4 is continuous, and for any o € H,(M, M ~ A;G), the
section Ja(a) has compact support, i.e. Ja(a)(y) =0 for all y outside some compact set.

Proof. Represent o by a chain a, so that a lies in some compact set B. If x € B, then
a € A(M,M~ A;G) maps to 0 in A, (M, M ~ {z};G) via j, 4. Thus Ja(a) = 0 on
M~ B. ]

Definition. For a set A C M, define the set of compactly supported sections of the
orientation bundle over A by

[.(A,0)(G)):={0c €l (A ON(G)) | oc=0 on M~ B for some compact B}.

Then Lemma 5.2.5 says that the image of J, lies in I'.(A, ©(G)). We will prove that
whenever A is a closed subset of M, J, determines an isomorphism H, (M, M \ A;G) =
[.(A, ©,(G)). To prove this, we need:

Lemma 5.2.6. The map Jy : H,(M, M ~ A;G) — I'(A,O,(G)) is natural with respect to
inclusions of open sets B — A.

Proof. We must show that for any closed sets B C A, the following diagram commutes:

/l;*

H,(M,M \ A;G) H,(M,M \ B;G)
JA JB

But this follows from the fact that j, 4 and j, p agree for all x € B. O
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Lemma 5.2.7. Let Ay O Ay DO --- be a decreasing sequence of compact subsets of an n-
manifold M, and let A = () A;. Then for any p, inclusion induces an isomorphism

lim H,(M, M — A;) = H,(M, M — A).

Proof. Let H,(M, M —A,) EIN H,(M,M—A,) 2, ... be the maps induced by the inclusions
(M, M — Ay) — (M,M — Ay) — --- and set fi; = f;fi. Let g; + H(M,M — A;) —
lim H,(M, M — A;) be the canonical maps. Since A C A, for each 4, we also have inclusions
H

(M,M — A;) — (M,M — A). These induce maps on homology ¢; : H,(M,M — A;) —
H,(M,M — A;) which commute with the f;;, so by the universal property of direct limits
(Proposition 5.1.1), we get a map

® : lim H,(M, M — A;) — H,(M, M — A)
_>

which commutes with the g;, that is, ®g; = ¢;.

. A (M) . _

For any p—chaln o € AP(M,M - A) = m, lift o to 7 € AP(M) and set g; =
Ap(M) _

T+ A, (M- A;) € A A A,(M,M — A;). Then o = [H,(M, M — A;), 0;] defines

an element of the direct limit, and
P(a) = P[H,(M, M — A;), 0]
= ®(g;(0;)) by Proposition 5.1.1
= ;i(0;) = 0.

Therefore ® is surjective on the level of chains.

Next, suppose ®(a) = o =0 in A,(M, M — A). This means 7 € A,(M — A) so 7 must
lie in A,(M — A;) for some j. This says that o, =7+ A, (M — A;) =0in A,(M, M — A)),
so a = [H,(M,M — A;),0;] = g;(0;) = g;(0) = 0. Hence ® is injective. O

Lemma 5.2.8. Let Py (A) be a statement about closed subsets A of a manifold M and
suppose that the following conditions are met:

(i) Py(A) is true when A is a convex, compact subset of a coordinate chart of M.
(11) If Py(A), Py (B) and Py(AN B) are true then Py (AU B) is true.

(i) If Ay D Ay D -+ is a descending chain of compact subsets and Py(A;) holds for all
j > 1, then Py <ﬂ;’i1 Aj> holds.

Then Py (A) is true for all compact A C M. If in addition,

(w) If {A;} are compact subsets of M that have disjoint neighborhoods separating them
and Py (A;) holds for all j, then Py (U;’il Aj> holds,

then Pyr(A) is true for all closed subsets A C M. Further, if (i) — (iv) hold for all closed
A C M and all manifolds M, and the following condition also holds:
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(v) If A C M is closed and Py (W N A) holds for all open sets W C M with W compact,
then Py (A) also holds,

then Py (A) is true for all closed subsets A of all manifolds M.
Proof. Similar to the proof of Lemma 3.6.5; see Bredon for the full proof. O

Theorem 5.2.9. For an n-manifold M, a closed subset A C M and any coefficient group
G, we have

(a) Hi(M, M~ A;G) =0 for all i > n.
(b) Ja gives an isomorphism H,(M,M \ A;G) — T'.(A,Ox(G)).

Proof. For a closed set A C M, let Py;(A) be the statement that H;(M, M ~\ A;G) = 0 for
i >n and J4 is an isomorphism. By Lemma 5.2.8, it suffices to prove that conditions (i) —
(v) are met for this statement Py (A).

(i) This follows immediately from Lemma 5.2.1 — for ¢ > n, the diagram in the proof of
said lemma is identical and has H,(D",dD";G) = 0 by Theorem 2.3.5.

(i) Set X = MU = M~AandV = M~ B,sothat UNV = M \ (AU B) and
UUV =M ~ (AN B). Applying the relative Mayer-Vietoris sequence (Theorem 2.7.5), we
get a diagram with exact rows:

H!°¢, (AN B) H!*(AU B) —— H!**(A) @ H"*(B) —— H!**(AN B)
I Jaup Ja® Jp Jans
0 T(AUB,0) — T.(A,0)&T.(B,0) — I'.(AN B,0)

where H!*°(Y) = H;(M, M\Y;G) and © = O,,(G). The diagram commutes by Lemma 5.2.6.
Moreover, by hypothesis, J4 @ Jp and Janp are isomorphisms so the Five Lemma (2.2.3),
Jaup is also an isomorphism. Moreover, the top row of the diagram makes it clear that
H;(M,M ~ (AU B);G) = 0 whenever i > n.

(iii) Consider a sequence of compact sets Ay D Ay DO - - - for which the hypotheses Py (A;)
hold. Then if A = ﬂ]oil A;, the restriction maps induce an isomorphism

@ : 1 T4, 04(G)) — T(4,0(G))
[F(AZ,@M(G)),CTZ] — Ui|A

where the direct limit is ordered by restriction of sections. Indeed, if [I'(A;, O (G)), 04
maps to 0 under this assignment, then for all x € A, there exists a neighborhood U, of x
such that o;|y, = 0. Thus o;|y = 0, where U = |J,4 Us, so for some j > 1, A; C U and
0i|a, = 0. By Proposition 5.1.1, this shows @ is one-to-one. In order to show it is onto, for
o€ I'(A,0uy(G)), we want to extend o to a neighborhood of A. For each x € A, there is a
neighborhood U, and a section o, € T'(U,, ©y(G)) such that o,|anv, = 0|anv,. Since A is
compact, we may cover A by finitely many of these U,,,...,U,,. Then

U={yeM]|o,y) = ij(?/) ify € Uy, mU:fcj}
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is an open set containing A and the o, give an extension of o to U. This proves ® is an
isomorphism. Now we have a commutative diagram

lim H;(M, M N A G) . Hy(M, M~ A;G)

J4

lim I'(A;, ©2/(G)) (A, 0:(G))

where the top row is an isomorphism by Lemma 5.2.7, the left column is an isomorphism by
hypothesis and the bottom row is the isomorphism ®. When j = n, the diagram shows J4
is an isomorphism, and when j > n, the top row implies H;(M, M \ A;G) = 0.

(iv) Say {A;} are compact sets with disjoint neighborhoods {N;} in M. Then for A =
|J A; and any j € N, we have isomorphisms

H;(M, M~ A;G) = H, <U Ni,UNZ» N UAgG) by excision
= éHj(NuNi N A G)
i=1

= @Hj(]\/[, M ~\ A;;G) by excision.
i=1

Therefore when j > n, property (a) of Py;(A) follows immediately. Moreover, since the A;
are compact, we have

T.(A,04(G)) = @MAZ-, Oum(G))

so property (b) also follows.

(v) Consider the system of neighborhoods W C M such that W is compact. Then
{H;,(W,W~(WnNA);G)} and {T'.(WNA,BN(G))} are direct systems ordered by inclusion
W C W’'. So for each j we have a diagram

lim H; (W, W (W A);G) — H (M, M\ 4;G)

Ja

m Te(W N A, ©u(G)) T.(4,04(G))
Here, the top row is an isomorphism by Lemma 5.2.7, the left column by hypothesis and the
bottom row by a similar argument as in (iii). Hence H;(M, M \ A;G) =0 for j > n and Ju
is an isomorphism for j = n.

We have verified statements (i) — (v) of Lemma 5.2.8, so the entirety of the theorem is
proved. O
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Proposition 5.2.10. If A C M is closed and connected, then

G, if M is orientable along A
oG, if M is not orientable along A

I'(A,0M(G)) = {

where 3G denotes the 2-torsion part of G.

Proof. Define the map

O :T(A,04(G) — Hy(M,M~{z};G) =G
or— o(x).

Since ©/(G) is locally constant and A is connected, we see that if any two sections agree at
x then they agree locally and therefore on a set which is both open and closed. This implies
® is one-to-one. On the other hand, for each g € G, there is a map Oy (Z) — Oy (G)
induced by

H,(M,M~{z})®Z — H,(M,M ~{z})® G = H,(M,M \ {z};G)
aRl—a®g

for each € M and extended to Oy (Z) = (J,cpy Ho(M, M N {x};Z). Applying the section
functor I'(A, —) for a fixed closed subset A gives a map of bundles v, : I'(4,0)(Z)) —
I'(A, ©(G)). Supposing M is orientable along A, define

UG — T(A 04(G))
g+ (1),

where 1 € T'(A,0,,(A)) is an orientation of M along A. We claim ® and U are inverses. On
one hand, W is injective: if W(g) is the zero section of ©,,(G), by definition 1,(1) = 0 but
this implies 1 ® g = 0 and hence g = 0. On the other hand, for o € T'(A4, O, (G)),

W o B(0)(x) = V(o (x)) = (1) = o(2)

so W o ® = id. In particular, ® is an isomorphism I'(4, Oy (G)) = G.

Now suppose M is not orientable along A. Fix a section o € I'(A,0)(G)) and set
g = ®(0) € G. Consider the preimage ¢, '(0) C ©)(Z). Over z, this consists precisely of
a € H,(M, M~{z}) such that a®g — g € Oy(G)., so that we may view ! (o(z)) = {a €
Z | ag = g}. Then 1 € ¥ !(o(z)) and for each y € A, "' (o(y)) must contain at least one
of the two generators of H,,(M, M ~ {y}). Since the orientation bundle is locally constant
and A is connected, this means the number of generators in )~!(o(y)) is independent of the
choice of y € A. Supposing this number is 1, this determines an orientation of M over A by
Proposition 5.2.4, contradicting the assumption. Therefore {1} C (o (z)). Of course,
this now implies that —g = g, that is, g € 2G. It follows that ® has image lying in »G, but
for any g € oG, the assignment y — 1),(1) determines a section of ©,;(G) over A mapping
to g under ®. As above, ® is injective so we have proven I'(A4, ©/(G)) = »G as required. [

We now derive some important results about manifold homology and cohomology.
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Corollary 5.2.11. If A C M is any closed, connected set of an n-manifold, then for any
coefficient group G,

G, Ais compact and M is orientable along A
H, (M, M\ A;G) =< G, A is compact and M is not orientable along A

0, A is not compact.

Proof. Apply Theorem 5.2.9. O]

Corollary 5.2.12. For a connected n-manifold M without boundary and a coefficient group
G, H(M;G) =0 for alli > n, and

G, M is compact, orientable
H,(M;G) =X 2G, M is compact, not orientable

0, M is not compact.

Corollary 5.2.13. For a connected n-manifold M, the torsion part of H,_1(M) is Z/27 if
M s compact and non-orientable, and 0 otherwise.

Proof. First, apply Example 3.3.15to G = H,,_1(M) to get that the torsion part is TH,,_1 (M)
Tory(H,—1(M),Q/Z). Then the universal coefficient theorem (3.4.1) gives a short exact se-
quence

0— H,(M)®Q/Z — H,(M;Q/Z) — Tor1(H,_1,Q/Z) — 0.

When M is non-compact, H,(M) ® Q/Z and H,(M;Q/Z) are 0 by Corollary 5.2.12; so
the third term is 0 as well. When M is compact and orientable, both H, (M) ® Q/Z and
H,(M;Q/Z) are Q/Z, and the map between them is the identity, so by exactness, the
third term is 0. Finally, when M is compact and non-orientable, H,(M) ® Q/Z = 0 but
H,(M;Q/Z) = Z/2Z by Corollary 5.2.12. This implies TH,,_1(M) = Z/2Z. O

We can now deduce the top cohomology of any compact manifold.

Corollary 5.2.14. If M is a compact, connected n-manifold without boundary, then for any
coefficient group G,

G, M is orientable

H"(M;G) =
( ) {G/QG, M is not orientable.

Proof. By the universal coefficient theorem (3.4.2),
H"(M;G) = Hom(H,(M),G) @ Ext'(H,_1(M), Q).

If M is orientable, then Hom(H,(M),G) = Hom(Z,G) = G, while H,_1(M) is torsion-
free by Corollary 5.2.13. We will show that the homology groups of a compact manifold
are finitely generated (cite), but taking this to be true, the above implies H, 1(M) is in
fact free, and therefore Ext'(H,_1(M),G) = 0 by Proposition 3.3.8. Hence H"(M;G) =
Hom(H,(M),G) = G.

On the other hand, if M is not orientable, then Hom(H, (M), G) = Hom(0,G) = 0 and
Ext'(H, 1(M),G) = Ext'(Z/2Z,G) = G/2G by Proposition 3.3.14. O
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Finally, we connect this chapter’s definition of orientability (in terms of a global section
of the orientation bundle) with the notion of orientability for smooth manifolds.

Theorem 5.2.15. If M is a smooth manifold, then it is chartwise orientable if and only if
there exists a global section of the orientation bundle Oy (Z).

5.3 Cech Cohomology

In this section we introduce an important cohomology theory, called Cech cohomology, which
is vital for proving the duality theorems in Section 5.4. Assume M is an oriented n-manifold
and L C K C M are compact subsets. Suppose U D K and V D L are open sets in
M containing each compact set, with V' C U. A key idea in the proof of duality is that
HP(U, V') approximates H?(K, L) in some fashion. Indeed, if U C U and V' C V are smaller
open subsets containing the respective compact sets, then inclusion of pairs induces a map
HP(U,V) — HP(U',V'). In fact, the pairs of open sets {(U,V) : U D K,V D L} form a
direct system under inclusion.

Definition. The pth Cech cohomology of the pair (K, L) is the direct limit

HP(K, L) = lim H?(U, V),
—

where the direct limit is over all pairs U D K,V D L.

Lemma 5.3.1. If there exists a pair of neighborhoods U D K,V D L such that the pair
(U, V) deformation retracts to (K, L), then HP(K,L) = HP(K, L) for all p > 0.

We will show in this section that:
(1) When M is a manifold or a finite CW-complex, H*(M) = H*(M).
(2) The definition of H?(A, B) does not depend on the embeddings A, B < M.
(3) In general, H*(X) 2 H*(X).

Definition. A set X C R" is called a Euclidean neighborhood retract (ENR) if X is
the retract of some neighborhood U C R™ of X.

A key observation is that an ENR X — U C R” is closed in R™ and therefore locally
compact.

Lemma 5.3.2. Let Y C R” be locally compact. Then there is an embedding Y — R"*! as
a closed subset.

Proof. By local compactness, Y = UNY for some open set U C R”. Then C :=Y ~ U is
closed and the map

FiR"— R
x — dist(z, C)
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is continuous. Define

p:Y — R"xR=R""

1
R
f(y)
Then it is easy to check that ¢ is an embedding and p(Y) is closed in R™!. O]

Theorem 5.3.3 (Borsuk). If X is locally compact and locally contractible, then any embed-
ding X — R"™ is an ENR.

Proof. By Lemma 5.3.2, we may assume X C R” is closed. The idea now is to divide
R™\ X into cells which get “small” close to X, and define a retraction by defining a map on
enough of these cells around X. Explicitly, divide R™ into hypercubes with vertices having
integer coordinates. Let C7 be the union of all cubes not intersecting X. For p € R”, if
dist(p, X) > y/n, where y/n is viewed as the diameter of a cube with side-length 1, then
p € Cy and so X C R" ~\ (.

Next, divide R \Int(C}) into cubes of side-length 3 and set C5 as the union of all 1-cubes
not intersecting X. Continue in this manner to define a chain of subsets

C;CCy,CC3C---

and set C' = (J;2, C;. By the first paragraph, any p € R" satisfying dist(p, X) > ‘2/? lies
in C;_1, so every points p € R™ ~. X lies in C. Further, each of these points lies in a finite
number of the C;. Thus C'=R" ~ X so R” \ X is a locally finite CW-complex.

Now let a be a 0-cell of C' and choose r¢(a) € X such that

dist(a,ro(a)) < 2inf{dist(a,z) | z € X}.
For any cell 0 C C and any map f : 0 — X, define the number

p(f) == max{dist(z, f(z)) | z € o}.

Given a map 7; : A; = X where A; C C' is a union of some i-cells, we define r;,; as follows.
Let o be an (i + 1)-cell of C such that do € A;. Let A;;; be the cells in C' such that
Tiloo : 0o — X extends to 0 — X and let f, : 0 — X be some extension such that

p(fo) <2inf{p(f) | f:0 — X and fls, = 1ilo0}-

Then the f, together define an extension r; 1 : A;11 — X.

Now set A = [J;°; A; UX and let 7 : A — X be defined by 7|4, = r; and r|x = idx.
Then it follows from the above construction that r is a continuous retraction and A is a
neighborhood of X. Hence X is an ENR. [

Corollary 5.3.4. Every topological manifold and every CW-complez is an ENR.
We get the following important consequence for manifold homology and cohomology.

Corollary 5.3.5. For every manifold M, Hy(M) and H*(M) are finitely generated.
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Proof. By the proof of Theorem 5.3.3, there is an embedding i : M — K C R" where K is
a finite CW-complex with some retraction r : K’ — M. Then 1 = r,i, : Hi(M) — Ho(K) —
Ho.(M) so Hy(M) must be finitely generated. For cohomology, apply the universal coefficient
theorem (3.4.2). O

Lemma 5.3.6. If X — R" is an ENR and U C R" is any neighborhood of X, then there is
a smaller neighborhood V- C U such that V' deformation retracts onto X through U.

Corollary 5.3.7. If X is an ENR, then the neighborhoods X — R™ of a fized embedding
form a direct system and the resulting map

HP(X) = lim HP(U) — H?(X)
—
1s an isomorphism for all p > 0.

Proof. Choose a neighborhood U C R" of X small enough so that r : U — X is a retract.
Then the induced map i* : H*(U) — H*(X) has right inverse r* and so is surjective. By
Lemma 5.3.6, choose a neighborhood X C V C U and a deformation F': V x I — U. Then
s=F(,1)|vxpy : V x {1} = X C U is a retract. Consider the commutative diagram

H(X) =2 B (V x {1})

o) L v X 1

NS

H*(V x {0})

Here, the isomorphisms are by homotopy and j* is induced by inclusion. Then for any
a € H*(U) such that i*a = 0, the diagram implies j*a = 0 in H*(V) = H*(V x {0}) as

well, so there is a triangle
H*(U) H*(V
X

which commutes with o — 0 for every inclusion of open sets V' C U. Hence we get an
isomorphism

H*(X) =lim H*(U) = H*(X)

as claimed. n
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Corollary 5.3.8. For an ENR X, the Cech cohomology groups H?(X) are independent of
the embedding X — R".

Remark. The property that H*(X) is independent of the embedding of X in R™ holds for
arbitrary subsets X of R™, but it is harder to prove. Spanier (Algebraic Topology, Ch. 6)
does this by generalizing to sheaf cohomology, where the coefficient group is allowed to vary
across X in some fashion. For our purposes, Corollary 5.3.8 will suffice.

Example 5.3.9. Let I' C R? be the topologist’s sine curve:

r

!
!
|
|
|
|
|
T
|
|
!
!
|
|
|
|

A standard exercise in general topology shows that I' is connected but has two path com-
ponents. Hence H*(T';Z) = Z* but for any neighborhood U C R? of T, U is locally path-
connected, thus locally connected, so I' must lie in a single component of U. Therefore

70 /1. . 0 .
H(T;Z) = lim HY(C; 2)

where the limit is over all connected neighborhoods I' C C' C R?. In particular, H(I'; Z) =
7.+ HO(T; 7).

The moral of this story is the singular cohomology detects path-components, while Cech
cohomology only detects connected components.

5.4 Poincaré Duality

Poincaré duality is a classic result in algebraic topology that relates the homology groups
of a manifold with the cohomology groups of complementary dimension. Let M be an
orientable n-dimensional manifold and fix an orientation 0y, € T'(M, ©,,(Z)). We first prove
a duality theorem for so-called compactly supported cohomology, using the cap product with
the orientation class and the bootstrap method of Lemma 3.6.5.

Lemma 5.4.1. If K C M s a compact subset, then any choice of orientation 0y, determines
a generator O for H, (M, M\ K), and this choice is natural with respect to inclusions K C L
of compact subsets.

Proof. Restriction of sections I'(M,©(M)) — T'(K,0(M)), 0 +— o|x defines the desired
generator: 6y, restricts to 0x € H,(M,M ~ K). Moreover, for an inclusion K — L of
compact subsets of M, we have maps
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H, (M) — v, (01, 0(01)
Jr
Hy(M, M~ L) (L, 0(M))

H, (M, M~ K) _Jx I'(K,0(M))

Here, r is restriction of sections. Since the Jx maps are natural by Lemma 5.2.6, the diagram
commutes so we must have 7(07) = 0. O

Lemma 5.4.2. Cap product with the orientation class 0k gives a homomorphism

HP(M, M\ K;G) — H,_,(M;G)
ar— aNlx

that is natural with respect to inclusions K C L, and therefore this operation gives rise to a
well-defined homomorphism

li_n>1Hp(M,M N K;G) — H,_,(M;G)

K
where the direct limit is over the collection of compact subsets K C M, directed by inclusion.

Proof. That this defines a homomorphism is obvious from the construction of the relative
cap product. Thus it suffices to show this map is natural with respect to inclusions. By the
universal property of the direct limit, this will define a homomorphism

lgan(M,M\ K;G) — H,_,(M;G).

K

If K < L is an inclusion of compact sets, we get an inclusion of pairs i : (M, M \ L) —
(M, M \ K). Then we must show the following diagram commutes:

HP(M,M \ K)
\
i Hyp (M)
/
HP(M,M \ L)
For a € H?(M, M ~\ K), Theorem 4.4.1(f) gives us
e N HL = Z*(Z*Oé N QL) = (Xﬂi*eL = ﬂ@K

Thus the diagram commutes. O
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Definition. For a manifold M, a coefficient group G and an integer p > 0, the pth com-
pactly supported cohomology of M s defined to be

Hp

cpt

(M;G) ::li_r)an(M,M\K;G).

K

Theorem 5.4.3 (Poincaré). Let M be an oriented n-manifold. Then cap product with the
orientation class gives an isomorphism for each p and any coefficient group G:

(M;G) — H,—,(M;G)
ar— anby.

Hp

cpt

Proof. Let Pp(U) be the statement that cap product with the orientation class induces
an isomorphism H.,(U;G) — H,_,(U;G) for each p. We prove the duality theorem by
verifying (1) — (3) of Lemma 3.6.5.

(1) Consider an “exhausting sequence” of compact subsets K; C Ky C --- C U, with the
property that each K; is homeomorphic to a ball, and any compact subset K C U lies in
K;. We may assume K; = {z} for a point € U. Then each pair (U, U \ K;) retracts onto
(U,U \ K;11), so we get isomorphisms

@ HP(U,U N K;) = HP(U,U \ Ki41).

1

Taking ¢; = ¢; ~ and f; = 1); 0 - - - 0 19 gives compatible maps

HP(U,U \ K;) f,

\

%‘ Hp(U,U\Kl)

/
H(U,UNKioy) Tt

Thus we get an isomorphism lim H?(U,U \ K;) = HP(U,U \ K;), which is unique since the
H

direct limit is a universal object. Finally, the duality homomorphism
lim H?(U,U \ K;) = H?(U,U \ K;) — H,_,(U)
—

is given by a — «a N0k, where O, is a generator of H,(U,U \ K;) = G (recalling that
K = {x} is a point). This is clearly an isomorphism when p # n, since H(U,U ~\ K;) and
H;(U) are 0 when i # n. When p = n, the cap product reduces to the Kronecker pairing:
H"(U,UNK,) — Hy(U) 2 G, a— anfk, = a(fk,). So for a generator 1 € H*(U, U\ K}),
1(fk,) = 1. Hence the duality cap product is an isomorphism for every p.

(2) First, if A < B is an inclusion and K C A is any compact set, then excision gives us
an isomorphism ¢4 p making the diagram commute:

A,
HY(A, AN K) 22 g7 (B, B K)

I excision

HP(BN (BNA),(ANK)N (BN A))
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Using the inclusions UNV — U UNV — V.U - UUV and V — U UV, we get maps
= Yunvu, tveunvy, Ju = Yooy and jy = @ypuy. This determines the top row of the
following diagram:

. o
WY g, U~ K) @ HY(V,V ~ K) L

H(UNV,UNV ~\K)

HP(UUV,UUV N K)

H, ,(UNV) H, ,(U)® H,_,(V) H, ,(UUV)

where the bottom row is the Mayer-Vietoris sequence in ordinary homology for (U, V). Since
the top row is induced from inclusions, it is clear that it is exact, with connecting homomor-
phism H?(UUV,UUV N\ K) = HPPY({UNV,UNV \ K) given by a — da|yny. Moreover,
by Lemma 5.4.2 the vertical arrows commute with maps induced from inclusions, so the
whole diagram commutes. Since the above construction holds for all compact K CUNV,
we may apply the exact (by Theorem 5.1.3) functor 11_11}1 over the set of all such K, directed

by inclusion, to obtain a similar commutative diagram with exact rows:

prt(U N V) H(I:)pt(U) D prt(v) prt(U U V)
H,_,(UNV) H, ,(U)® H,_,(V) H,_,(UUV)

By the hypotheses Py (U), Py (V) and Py (U NV), two out of every three of these vertical
arrows is an isomorphism so by the Five Lemma (2.2.3), we get Py (U U V).

(3) Set U = |JU,. Then this follows from additivity for compactly-supported cohomol-
ogy, which in turn is a consequence of direct limits commuting with direct sums:

H,_,(U) = H.—p(Us) = P HE,(U) = 113@ H? (Ua, Us ~ Ko) = lim HY(U, U N K),

where the first direct limit is over compact K, C U,, and in the second direct limit, any
compact K C U = |JU, can be written as a disjoint sum of compact sets K = | J K. This
concludes the proof. O

The version of Poincaré duality we have just proved relies on three things: the trivial
local structure of manifolds, compactness (in some form) and orientability. In proving more
modern versions of duality, we will see how these conditions can be stretched.

Now, as in Section 5.3, assume M is an oriented n-manifold, . C K C M are compact
subsets and U D K,V D L are open neighborhoods with V' C U.

Lemma 5.4.4. If M is an oriented manifold, then cap product determines a homomorphism

HP(K,L) — H,_,(M ~ L, M \ K)
a+— anNbg,

where O € T'(K, 05 (Z)) is a fized orientation.
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Proof. For each pair of neighborhoods (U, V) of (K, L), we have isomorphisms He(M ~
LMNK)= HJ (UNLUNK) and Hi(M,M \ K) = H,(U,U \ K). Consider the cap
product

HY(U,V)® H,_y(U,U~ K) — Hy_ (U~ L,U ~ K)
[a] ® [c] — [aN¢].

Explicitly, take [a] € HP(U,V), where v € AP(U) such that o = 0 and «|y = 0; and take
lc] € H,(U,U N K) with c = cy +cpp € Ad(V) + Ad(U N L), with dc € Ay(U \ K). Then

anNc=aN(cy +cpp) =aNcy +aNcy, =aNcy
since aly = 0, so we see that a Nc € Ay(U \ L). Further,
Ianc)=danc+ (—1)’andec=0+ (—1)’andc,

and since 0c € A4 (U ~ K), this shows d(a Nc¢) € AU ~\ K). As a result, we have
[anc € H,—,(UN L, U~ K). It is routine to check that this cap product is well-defined on
classes and that it is compatible with inclusions of pairs (U, V') < (U, V). Thus we get a
diagram

HP(U,V) ® Hy(U,U~ K) — Hp_p(U~ LU~ K)

HP(U', V') @ Hy(U',U' ~ K) » Hy_p(U' ~ L, U’ . K)

where the left vertical arrow is the induced map i* : H?(U,V) — H?(U’, V") tensored with
an excision isomorphism and the right vertical arrow is an excision isomorphism. Further, it
follows from Theorem 4.4.1 that the diagram commutes. Extending to the direct limit, we
may define a cap product

HP(K,L) ® Hy(M, M~ K) — H,_,(M ~ L, M ~ K).

Since K is compact, Oy defines a generator 0 € H,(M,M ~\ K), so we get the desired
homomorphism H?(K,L) — H,_,(M ~ L, M \ K). O

Lemma 5.4.5. For an oriented n-manifold M and compact subsets L C K C M, there is a
commutative diagram with exact rows:

HP(K, L) HP(K) HP(L) HPY(K, L)

Hy (ML, M~NK)— Hy (M, M~ K) — H,_,(M,M~ L) —— Hy,_, (M~ L, M~ K)
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Proof. The top row comes from the long exact sequence in cohomology for each pair (U, V);
moreover, taking the direct limit in each term preserves exactness (Theorem 5.1.3), so we
get the desired long exact sequence in Cech cohomology. The left and middle squares in the
diagram are all induced by inclusion of pairs, so commutativity is ensured. Finally, for the
right square, take a class [0] € H,,(M, M ~ K) and represent it by a chain 6 € A, (M) such
that 00 € A,(M~ K) — by naturality,  also represents the orientation class in H, (M, M\ L).
We have the following diagram for any pair (U, V') of neighborhoods of (K, L):

HP(V) HPY(U,V)

Hy (M, M~ L) —— H,_, (M ~ L, M~ K)

For o € HP(V'), we have
danb)=dand+ (—1)Pan oo,

but anadd € A,_, 1 (M N K), so [0(an®)] =[0anb]in H, ,_1(M~ L, M~ K). Hence
the diagram commutes. O]

Theorem 5.4.6 (Poincaré-Alexander-Lefschetz Duality). Let M be an oriented n-manifold,
L C K C M compact subsets and G any coefficient group. Then for each p > 0, cap product
with an orientation class O € H,(M, M \ K) gives an isomorphism

HY(K,L;G) — H,—,(M ~ L,M \ K;G)
oa+— aNbg.

Proof. The coefficient group G has no bearing on the proof, so we will suppress it in the
notation for homology /cohomology groups. Since Lemma 5.4.5 and the Five Lemma (2.2.3)
allow us to reduce to the case L = &, let K be a compact subset of M and let Py;(K) be the
statement that the duality homomorphism H?(K) — H,_,(M, M ~ K) is an isomorphism.
We prove duality via (i) — (iii) of Lemma 5.2.8 as follows.

(i) Suppose K is a compact, convex subset of a coordinate chart of M. When K = {z},
we have
0, p>0

HP(K) = H(K) = {G b0

by the dimension axiom, while Lemma 5.2.1 gives us

0, p>0

Ho (M, M {a)) = { S

Over Z, the map H°({z}) — H,(M,M ~ {z}) is given by 1 = 1N 60 = 0, and 0 is a
generator of the local cohomology group at x, so this must be an isomorphism. By the
universal coefficient theorem (3.4.1), this holds for any G. Now for an arbitrary compact,
convex set K, we have a commutative diagram for any point x € K:
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I

HP(K) HP({x})

~

~Y

Hy (M, M N K) ——— H, (M, M~ {z})

Since three out of the four arrows are isomorphisms, the fourth is as well, which establishes
Py (K).
(ii) The following diagram has exact rows and commutes:

HP(K UL) HP(K) @ HP(L) HP(K N L) e+t ...
H,_,(M,M ~ K) h
H, (MM~ (KUL)) — @ —— H, (MM~ (KNL))— Hy 1

H, (M, M ~ L)

Therefore by the Five Lemma (2.2.3), Py(K), Py(L) and Py (K N L) imply that Py (K UL)
holds as well.

(iii) Suppose A; D Ay D --- are compact sets and put A = ()2, A;. The restriction
maps HP(A;) — HP(A;;,) form a direct system, and one can show that

: TP A\ o ETP
lim H"(4;) = F7(A).

Thus there is a commutative diagram

12

lim F77(A;) HP(A)

~

lim Hy, (M, M~ A;j) —— - H,_ (M, M~ A)
—

Here, the top row isomorphism comes from above, the left isomorphism is by each hypoth-
esis Ppr(A;) and the bottom row isomorphism comes from Lemma 5.2.7. Hence the right
arrow is also an isomorphism, that is, Py;(A) holds. Now the duality theorem follows from
Lemma 5.2.8 as desired. O]

Let M be a compact, oriented n-manifold and fix an orientation 6 € I'(M, O,/ (Z)).

Definition. The generator of H,(M) = Z corresponding to 6 is called the fundamental
class of M, denoted [M].

In this language, Poincaré duality (either Theorem 5.4.3 or 5.4.6) says that
HP(M;G) — H,_,(M;G)

ar— an[M]
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is an isomorphism for each p > 0. Note that if M is non-orientable, the proof of duality
still works as long as one can find a class [M] generating H,(M;G) — this is possible when

Example 5.4.7. For the torus T2, we have the following homology and cohomology groups:

Z, i=0,2
H,(T*7Z)=H (T*7Z) =172 i=1
0, +>2.

Example 5.4.8. Let L(p, q) be the (p,q) Lens space. Then duality implies that

Z, i=0,3 Z, i=0,3
H,(L(p,q);Z) = Z/pZ, i=1 and H'(L(p,q);Z) = {0, i=1,i>3
0, i=2,i>3 Z/pZ, i=2.

(Compare this to Example 3.4.4.)

Example 5.4.9. RP? is non-orientable, so we cannot use duality with Z coefficients. How-
ever, with Z /27 coefficients, we have

7/27, i=0,1,2
0, 1> 2

727, i=0,1,2

H,(RP%7,/27) =
( /22) { 0, i>2.

and H'(RP%7/27) = {

(Compare this to Example 4.3.8.)

Corollary 5.4.10 (Lefschetz Duality). For a compact, oriented n-manifold M and any
compact subset L C M, there is a commutative diagram

HP(M, L) HP(M) HP(L) HPHY(M, L)

| | | |

Hy (M~ L Hy (M Hy (M, M~ L) — H,_, (M~ L)
p p p p

In particular, there is an isomorphism HP(M,L) — H,_,(M ~ L) for every p > 0.

Corollary 5.4.11. Suppose M 1is a connected, compact, oriented n-manifold such that
Hi(M;Z) =0 and A is any closed set, then

(1) H"'(A) is free.
(2) The number of components of M ~. A is equal to 1 + rank H" ' (A).
Proof. Consider the sequence in reduced homology for the pair (M, A):

0= Hy (M) — Hy(M, M~ A) = Hy(M ~ A) — Hy(M) = 0.
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Then by duality, H"*(A) = H,(M, M ~ A) = Hy(M ~. A) which is always free. Finally, the
number of components of the compliment is given by

rank Hy(M ~ A) = 1+ rank Hy(M ~ A) = 1 + rank H"}(A)
as claimed. n
This provides another proof of the Jordan-Brouwer separation theorem (Corollary 2.8.4).

Corollary 5.4.12. Any topological embedding S™ — S™*! separates S™*! into two compo-
nents.

Proof. Let A be the image of S* in S"™*!. Then H"(A) = H™(S") = Z, so by (2) of
Corollary 5.4.11, S"*! \_ A has two components. O

5.5 Duality of Manifolds with Boundary

If M is a compact, oriented manifold with nonempty boundary 0M, we can still apply the
results of the previous section to the manifold M = Int(M) = M ~ OM, which is now a
manifold without boundary, though not necessarily compact.

Lemma 5.5.1. For any manifold M with boundary and any p > 0, there is an isomorphism

HP (M) = HP(M,0M).

cpt

Theorem 5.5.2. Let M be a compact, oriented n-manifold with boundary OM. Then there
are isomorphisms H?(M,0M) = H,,_,(M) and H?(M) = H,_,(M,0M) for every p > 0.

Proof. Taking a “collared neighborhood” 0M %[0, 1) of the boundary, we have H,,_,(M,0M) =
H,_,(M,0M x [0,1)). Consider the isomorphisms
H, (M, 0M x [0,1)) = H,_,(M, M x (0,1)) by excision
>~ H, (M, M~ K) where K = M~ 0M x [0,1)
= HP(M) by duality.
Likewise,
HP(M) = HP(M ~ OM x [0, 1))
~ H, ,(M,0M x (0,1)) by duality for M
~ H, ,(M,0M x [0,1))
~ ,_,(M,0M).

Note the special case H,(M,0M) = H°(M) = Z.

Definition. A generator of H,(M,0M) = 7Z is called a relative orientation class of M,
denoted [M].
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Given a relative orientation class [M] € H,(M,0M), cap product gives us two duality
maps

ar(M,oM) 2 m, ()
M)

and HP(M) — H,_,(M,0M).

Lemma 5.5.3. If M is compact and orientable, then OM is orientable and [OM] := 0,[M]
is an orientation class for OM.

Proof. First, suppose OM and consider the long exact sequence
o= Hy(M) = H,(M,0M) — H,1(0M) — Hp (M) — - -+

Then it’s enough to show that H,(M) = 0, since then we will have ZH, (M,0M) —
H,_1(0M), so it will follow that 0,[M] is a generator and thus OM is orientable. By excision

and Corollary 5.2.12, H,(M) = Hn(]\;[) = 0 so the result follows. Further, Corollary 5.2.12
says that H,(M;G) = 0 holds for any coefficient group G, so by the universal coefficient
theorem,

0= H,(M;Q/Z) = H,(M)® Q/Z & Tor,(H,_1(M),Q/Z) = 0 & TH,_(M)

(with the last equality coming from Example 3.3.15). Hence H,_1(M) has no torsion, so
[M] maps to a generator in H,,_1(9M). For the disconnected case, see Bredon. O

Theorem 5.5.4 (Duality for Manifolds with Boundary). If M is a connected, compact,
oriented n-manifold with boundary, then there is a commutative diagram with exact rows

- — HP(M) HP(OM) HP(M,0M) HPYY (M) — -
BH[M] hm[aM] BO[M] ‘H[M]
o Hyp(M,0M) —— Hypp 1 (OM) ——— Hyp i (M) —— Hypopt (M, OM )< -

In particular, all the columns are isomorphisms.

Proof. The first column is an isomorphism by Theorem 5.5.2 and the second is an isomor-
phism by Poincaré duality for M, so it’s enough to show the diagram commutes and apply
the Five Lemma.

Consider the diagram

HP (M) HP(OM)

.

(M, OM) —2— H,_, 1 (9M)
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For o € HP(M), we have

dlanN M| =dan[M]+ (-1)’and[M]
=04 (—1)’Pan[0M] by Lemma 5.5.3
= (=1)Pi*a N [OM].

So the diagram commutes. For the next square,

HP(OM) —2— HeL(0, 00

| |

Hy, p1(OM) ——— Hyp 1 (M)

we have for any a € HP(OM ) that dan[M] = d(an[M])—(=1)?(an[0M]), but d(an[M]) =0
in homology, so daN[M] and (—1)P~*(aN[0M]) define the same homology class. Hence this
diagram commutes as well. Finally, the proof that the third square commutes is similar. []

We now investigate some applications of duality for manifolds with boundary.

Definition. For a compact, oriented n-manifold M, there is a pairing

HP(M)® H" P(M,0M) — Ho(M) =17
a®fr— (aUp, [M])
called the cup product pairing.

Theorem 5.5.5. The cup product pairing is nondegenerate on free parts, i.e. for each p >0
there 1s an induced isomorphism

FHP(M) —s Hom(FH"""(M,0M),7)
B (= (U B, [M])).

Proof. By the universal coefficient theorem and duality, there are isomorphisms
FHP(M) = Hom(FH,(M),Z) = Hom(FH" ?(M,0M),Z).
Explicitly, these maps are given by a +— («, —) and  — (8, — N [M]). However,

(@, BN[M]) = an(BN[M])
= (aUp)N[M] by Theorem 4.4.1(e)
= (a U B, [M]).
So the isomorphism is as described. O

A classic question in topology is: Given a manifold M", how can one determine if M is
the boundary of a compact manifold V"+1?
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Example 5.5.6. For n = 1,2, all compact, orientable n-manifolds M are the boundary of a
compact manifold V**1. In fact, for n = 3 this is true as well, although it is highly nontrivial
to prove.

Theorem 5.5.7. Let A be a field, M a compact, connected manifold and V***! a compact,
oriented manifold such that OV = M. Then

(a) The cohomology H"(M;A) has even dimension over A.
(b) Let K =ker(i, : H,(M;A) — H,(V;A)). Then

1
dim K = édimH”(M;A) = dimim(¢* : H"(V;A) — H"(M;A)).

(c) If a, p € im(i* : H"(V;A) — H"(M; A)) then a U = 0.

Proof. (a) — (b) We will suppress the coefficients A. By duality for manifolds with boundary
(Theorem 5.5.4), there is a commutative diagram with vertical isomorphisms and exact rows:

v )

HY(V) HY (M) 2 H™\(V, M)
MM] V]
H, (M) H,(V)

Then ker 6 = imd* C H"(M) maps isomorphically onto K = keri, C H,(M). Thus

rank 7" = dimim+:* = dimker¢, = dim K
= dim H,, (M) — rank ,.

But by duality, i, : H,(M) — H,(V) and ¢* : H*(V) — H"(M) may be viewed as each
other’s transpose, so in particular they have the same rank. Hence dim H,,(M) = 2rank i* =
2dimim¢* = 2dim K.
(c) For a,b € H*(V), let a = i*a and 8 = i*b. Then by (2) of Proposition 4.3.2,
aUf=iaUib=1i"(aUb).
Thus by exactness, d(a U ) = 6i*(a U b) = 0. Now, the diagram
J

H2n(M) ]{2n+1(‘/7 M)
Ho(M) Ho(V)
commutes and the bottom row is injective, so we must have a U g = 0. O

Corollary 5.5.8. For n even, CP™ is not the boundary of a compact, orientable (2n + 1)-
manifold.

172



5.5 Duality of Manifolds with Boundary 5 Duality

Proof. By Theorem 3.6.8, CP™ has real cohomology isomorphic to R in even dimensions, so
when n is even, dim H"(CP™;R) is odd. Apply Theorem 5.5.7 with A = R. O]

Corollary 5.5.9. For n even, RP" is not the boundary of a compact, orientable (n + 1)-
manifold.

Proof. Apply Theorem 5.5.7 with A = Z/27Z. O

Let M be a 4n-dimensional closed, orientable manifold. Then the cup product pairing

by o H*(M;R) @ H*(M;R) — H*"(M;R) =R
a®fr— (U, [M])

is bilinear, symmetric and nondegenerate and has, with respect to an appropriate basis, a
diagonal matrix form @),;. Let p be the number of positive eigenvalues and m be the number
of negative eigenvalues along the diagonal of Q).

Definition. The signature of M*" is o(M) = p —m, where p and m are defined for the
diagonal matriz QQp; above.

Since the sign of each eigenvalue of ), is preserved under basis change, we see that
o(M) is well-defined. The signature gives a way of determining when a 4n-manifold is the
boundary of another manifold.

Corollary 5.5.10. If M is a closed, orientable 4n-manifold and M = OV for some compact,
orientable (4n + 1)-manifold V', then o(M) = 0.

Proof. Write H = H*"(M;R) so that by Theorem 5.5.7(a), dim H = 2k. Diagonalizing Q
allows us to decompose H as a sum of subspaces H = H* @ H~, where Q) is positive-
definite on H* and negative-definite on H~. Then dim H* = p, dim H~ = m and we have
the following equations:

o(M)=p—m and 2k=p+m.

By Theorem 5.5.7(c), there exists a subspace K = im(i* : H**(V;R) — H) of dimension k
on which the cup product is trivial. Hence K " H" = 0 and K N H~ = 0. The first implies
k+p <2k, so p < k; while the second gives k + m < 2k, or m < k. Putting these together
with the equations above, we must have p =m = k. Hence c(M)=p—-m=k—k=0. O

Example 5.5.11. By Corollary 5.5.8, we know CP? is not the boundary of an orientable
5-manifold, but M = CP?#CP? has H*(M) = R?, which is even dimensional, so the same
trick will not work for M. However, one can compute the matrix for the cup product pairing

by to be
10
QM:(O 1).

Thus o(M) = 2, so by Corollary 5.5.10, CP?#CP? is not the boundary of a 5-manifold
either.
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6 Intersection Theory

The objective in intersection theory is to give a geometric way of computing cup products
using Poincaré duality. In particular, if M™ is a compact, connected, oriented manifold, we
will define an “intersection product”

Hi(M)® H;j(M) — Hitj_,(M)

that is dual to the cup product. This will be given a geometric interpretation in terms of
submanifolds of M, which will make it easier to compute cup products of M in general.

6.1 The Thom Isomorphism Theorem

Let N be a compact manifold without boundary and let 7 : W — N be a disk bundle over
N, i.e. a surjection in which each preimage 7=!(U) is homeomorphic to U x D* and the
choices of homeomorphisms are compatible with overlaps of charts UNV C N. If dim N =n
and dim 7~ 1(U) = k (i.e. the disks are k-disks), then dim W = n+ k. Assume N and W are
both oriented.

Definition. The Thom class of the bundle m : W — N 1is the Poincaré dual T of the
0-section of the bundle w. That is, if i : N — W is the section i(n) = 0 € 7~ (n) & D,
then T € H*(W,0W) is the unique class such that T N [W] = i,[N].

uT,

We will prove that for a disk bundle 7 : W — N, the composition H?(N) LN Hr(W) —
HPE(W, 0W) is an isomorphism for any p > 0. This is known as the Thom isomorphism
theorem.

Definition. Let Dy : H;(M,0M) — H""(M), be the inverse of the Poincaré duality
isomorphism. We define the intersection product on M to be the map

H;(M,0M) ® Hj(M) — Hiyjn(M)
a® b+ Dy} (D (b) U Dy(a)),

where n = dim M .

Alternatively for the dual isomorphism Dy : H;(M) — H™"(M,dM), we can define the
intersection product by

H1<M, 8M) ® Hj(M, 8]\/[) — Hi+j—n<M7 8M)

Remark. By the definition of Dj;, we have
Dy (Dar(b) U Dys(a)) = (Dar(b) U Days(a)) N [M] = Das(b) N (Das(a) N [M]) = Dy () Na.

Equivalently, the intersection product of a and b is the unique class a ¢ b € H;y;_,,(M)
satisfying Dys(a @ b) = Dy(b) U Dys(a).
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Lemma 6.1.1. For any a € H;(M),b € H;(M) and ¢ € Hi,(M), the intersection product
satisfies:

(a) (Graded commutativity) a e b = (—1)"=)("=1)p e q.
(b) (Associativity) (aeb)ec=ae(bec).

Proof. (1) follows from the Theorem 4.3.5.
(2) Since Dy, is an isomorphism, it suffices to show Dy(a e (bec)) = Dy((a e b) e c).
Indeed, we have

Dy(ae(bec))=Dy(bec)UDyl(a)
= (Du(c) U D (b)) U D ()
= Dp(c) U (Dp(b) U Dys(a)) by Theorem 4.3.5
= Du(c)U (aeb)
= Dy((aeb)ec).

Therefore e is associative. O

Definition. Let M be an m-manifold, N be an n-manifold and f : (N,ON) — (M,0M) be
a map of manifolds with boundary. The transfer maps of f are defined on cohomology by

f' H"P(N) — H™ (M)
o — f!(a) = DMf*D;,l(a)

and on homology by
fro Hopp(M) — Hppp(N)
o+ fi(o) == Dy f*Du(0).

Let N be a connected, oriented, closed n-manifold and let 7 : W — N be a k-disk bundle
over N. This means that dim W = n + k. Then the O-section ¢ : N — W, i.e. the section
taking 2 € N to the center of the corresponding disk DF, is an embedding. Also, OW is a
(k — 1)-sphere bundle over N. Here, the transfer map 4, : H,(N) — H, (W) determines the
Thom class:

7 = Dwiy[N] € H*(W,0W).
Explicitly, 7 N [W] = i [N].

Theorem 6.1.2 (Thom Isomorphism Theorem). Let 7 : W — N be a k-disk bundle and
1: N < W the 0-section. Then for any p > 0,

HP(N) Zs HP(W) = HPTH(W, W)

is an isomorphism which is equal to the transfer map i'.
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Proof. By definition, i' = Dyi,Dy', so because the duality maps are isomorphisms, it’s
enough to show that 7, is an isomorphism. Note that since ¢ is a section, mi = idy. On the
other hand, W deformation retracts onto i(N), so im is homotopic to the identity on W.
Thus 7 and ¢ are homotopy inverses, which implies 7, is an isomorphism as desired. Now we
show the Thom isomorphism 7*(—) U7 is equal to i'. For 8 € HP(N), let a = 7*(f3) so that
f =1i*(a). Then

*(8) = Dwi.D3'(B)

= Dwi.(8N[N])
= Dwi(i" () N [N])
= Dw(aNi[N]) by Theorem 4.4.1(f)

= Dw(an(rN[W])) by the above
=Dy ((eUT)N[W]) by Theorem 4.4.1(e)
=aUT=71"(f)UT.

Therefore the Thom map is an isomorphism. O

Lemma 6.1.3. Let 7 : W — N be a k-disk bundle. For any closed subset A C N, let
A=7"YA) CW and 9A = ANOW. Then

(a) For alli <k, H'(A,0A) = 0.
(b) The restriction T, € H’“(@, a@) for any x € N is a generator.

We now give a geometric interpretation of the intersection product and Thom class.

Definition. Leti: N < W be a smooth embedding of smooth manifolds such that ON meets
OW transversely. We define the Thom class of the embedding by 7% = Dy [N]w, where
[N|w = i.[N] is the restriction of the fundamental class of N to W. In other words, T\ is
the unique class satisfying 7' N [W] = [N]w.

Theorem 6.1.4. If K, N — W are two embedded submanifolds of W whose boundaries
intersect OW transversely, then [K]w o [N]w = (137 U)Y) N [W]. Moreover, if K and N
intersect transversely in W, then their normal bundles satisfy VN-x = V¥ |nok = VN |vnk -

Corollary 6.1.5. If K, N — W are embedded submanifolds intersecting transversely in W,
then [Nﬂ K]W = [N]W [ J [K]W

Proof. Leti: K < W and j : N < W be the embeddings. Then 74, = 7*7;7 by definition
of the Thom class, so by Theorem 6.1.4,

[Nl o [K]w = (¢ UTy) N [W]
=77 N (Y N[W]) by Theorem 4.4.1(e)
=1xW N [Nlw
=[N N K]w.
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6.1 The Thom Isomorphism Theorem 6 Intersection Theory

Corollary 6.1.6. If K, N — W are submanifolds such that NNK = &, then the intersection
product on N and K is degenerate, i.e. for allc € H;(N) andn € H;(K), cen=0.

Example 6.1.7. Let W = S™ x S™, fix a point (z,y) € S™ x S™ and set N = S™ x {y} and
K ={z}xS5™. Then NNK = {(z,y)} so N and K intersect transversely. By Corollary 6.1.5,
[Nlwe[K|w = [NNK]w = £[(z,y)]. Thus if « is the Poincaré dual of N, i.e. [N] = an[W],
and [ is the Poincaré dual of K, i.e. [K] = SN [W], then a U 8 generates H"™™(S™ x S™).
Also, taking two copies of N intersecting transversely in W gives [N] e [N] = 0 which implies
a? = aUa = 0. Likewise, f2 = BU S = 0. This information completely determines the
cohomology ring of S™ x S™.

Let 7 : E — N be a k-disk bundle over an oriented, closed, compact n-manifold N. Then
the Thom class of the bundle is 7 € H*(E,0E) = H*(E, E ~. N). There is a cup product

H'(E)® H'(E,0F) — H*(E,0F)

and 7* : H*(N) — H*(E) is an isomorphism, so this turns H*(E,JFE) into a module over
H*(N) via

H*(N) x H*(E,0E) —s H*(E,0E)
(@, f) — T (a) U,

By the Thom isomorphism theorem (6.1.2), there is an isomorphism H*(N) = H*(E,0F),
so it follows that H*(E,OF) is a free module of rank 1 over H*(N) generated by the Thom
class .

Next, suppose i : N — W™ is an embedding of closed, oriented manifolds. The normal
bundle of N in W, V}G/, has a Thom class 7 and N has a Poincaré dual ay := [N]y,. What
is the relation between these classes 7 and ay? By definition, 7 € H*™"(V{V,0VY) and
ay = Dwi[N] € H*="(W). Moreover, we have a commutative diagram

He=M (W WS\ VY) —— H (W) — H (W N VY) — -
H=" (VY 0VY) —nw]

—N[N]

- —— Hp(N) —— H,(VY)

where the vertical arrows are isomorphisms by excision (top left) and duality (bottom left and
right). This shows that ay is the image of 7 under the map H*~"(V¥,0VY) — H¥~™(W).
Hence the Thom class coincides with the Poincaré dual of N in W.

There is a smooth manifold version of the Thom isomorphism theorem which is compat-
ible with de Rham cohomology. Suppose M = R* is Euclidean k-space. Then by de Rham’s
theorem (3.6.6) and compact duality (5.4.3),

H’(Dkﬂ aDk) - H‘(Rk’Rk N {0}> = H(:pt(Rk) = H;R,cptGRk)'
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6.2 Euler Class 6 Intersection Theory

Moreover, we have
cpt
0, [(#k.
On the other hand, H, SR,cpt(Rk) is generated by ¢ dxy A- - - Adzxy, for some compactly supported
function ¢ satisfying [, ¢ = 1.

Theorem 6.1.8 (Thom). Let 7 be the Thom class of a vector bundle over R¥. Then 7, =
pdxy A -+ Adxyg, where T, is the restriction of T to the fibre 7 (x) and ¢ is a compactly
supported function satisfying ka p=1.

This is in fact a characterization of the Thom class in the smooth case: 7 is the unique
cohomology class in Hjp, ,.,(R*) which integrates to 1 on each fibre. Therefore the following
holds:

Corollary 6.1.9. For any vector bundle 7 : E — RF, there is an isomorphism
HéR(Rk) — H;E{“Cpt(E), ar— TTaANT

where T is the Thom class.

6.2 FEuler Class

Let m: E — N be a k-disk bundle over a closed n-manifold N. Consider the diagram

H,(N) e H,(E) D, H*(E,0F) L H*(E) A H*(N)

[N] Di,[N] =71 i*j*r =e(E)

where 7 is the Thom class of 7 and D is duality.

Definition. The class e(E) = i*j*1 = i*j*Di,[N] is called the Euler class of N for the
bundle m: £ — N.

Lemma 6.2.1. Suppose a bundle m : E — N has a nonzero section o0 : N — E such that
o(N)C E~N CON. Thene(E)=0.

Proof. Such a section o determines maps
H*(N) =5 H*(E) — H*(OE) <5 H*(N)

which is the identity on H*(N). In particular, H*(E) — H*(JF) is injective, so in the exact
sequence
H*(E,0F) X+ H*(E) — H*(OF)

we get that j* is 0. Therefore e(F) = ¢*j*1 = 0. O
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Suppose N — W is an embedding of smooth manifolds. Then T'N is a submanifold of
TW, so the normal bundle V = VYV = (T'N)+ C TW is defined. Consider the composition

H,(W) D™ HYW, W V) — H*V,0V) —— H*(V)

HE(N)

QN | T(V) } G(V>

Definition. The Euler class of the embedding N — W is x = e(V) € H¥(N).

A special case of interest is when W = N x N and d: N - A C N x N is the diagonal
embedding. On the level of tangent spaces, TN 2 TA CT(N x N) =TN @ TN. Observe
that TANTN x {0} =0 and TAN {0} x TN = 0. Thus the quotient map

m:T(N xN)—T(N x N)/TA
induces a homeomorphism T'N x {0} = n(T'N x {0}) = T(N x N)/TA. Identifying N with
its diagonal via d, we can write the Thom class of the embedding 7 = aa € H"(N x N), i.e
T = d,[N].
Definition. The Euler class of any n-manifold N is x :== d*t € H"(N).

By definition, we have that x = d*7 = d*xX*" = d*e(V(A)) = e(T'N), so this shows
that x is equivalent to the Fuler class of the tangent bundle to the diagonal A C N x N.

Let A be a field. Then by the universal coefficient theorem (3.4.2) and Poincaré duality,
we get isomorphisms

H{(N;A)

Homy (H;(N; A), A) — Homy (H"*(N;A), A)

o (a, —) 1 (a, — N [N])
By Theorem 4.4.1(a) and (e), we can interpret (o, — N [N]) as (a« U—, [N]). For any basis B
of H*(N), this determines a dual basis {a"},cp such that (o U 3, [N]) = a5
Theorem 6.2.2. For any n-manifold N, the Thom class T = d.[N] satisfies
T = Z(—l)wao x a€ H'(N x N; ).
acB
Proof. By the Kiinneth formula (Theorem 4.2.3), 7 can be written

T = Z Agpa® x B

05756B

for some A, g € A, but all of these coefficients are 0 except when |a| = |3|. Let |a| = |B] = p.

Then
(ax B°UT [N x N])={axB°7N[N x N])
= (a x 8% di[N])
= (d*(a x #°),[N]) by Theorem 4.4.1(a) and (f)
= {(aUB%[N]) by definition of U
= (=
(=

1)ptn= p)(ﬁo Ua, [N]) by Theorem 4.3.5
175 5.
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On the other hand,

o',p'eB
1)(” P  Aap((@Ua®) x (82U ), [N] x [N])
Dl ((aUa ) N NT) < (8% U B) N N])(=1)"
1)rA a5<a Ua, [N]}(B"U B, [N]) in HY
1)pn PP A, 3.

(axB°Ur, [N x N]) = <ax@°u > Awp (@) x 3, [NXN]>
= (-
= (=
= (-
= (-

Setting these expressions equal gives A, g = (—1)Pd,,3. The result follows. O

Corollary 6.2.3. For a manifold N, the FEuler class can be written
=
aEB

and moreover, (x,|[N]) = x(N) is the Euler characteristic of N.

Proof. For A = Q, we have x = d*7 = >__(—1)l*la® U o by definition of the cup product
(see Section 4.3). Thus

OGIND) =D (=D’ Ua, [N]) = Y (=1) = x(N).

« «

]

Foramap f : N — N, let Gy = (1 x f)od : N — N x N be the graph of f,
ie. Gy(N) = {(z,f(z)) | © € N} =: I Then with appropriate orientation, we have

[I] = (Gy).[N].

Definition. The intersection number of I' with A is the augmentation of the intersection
product [U|[A] = e.(['] o [A]).

The intersection number gives us an interpretation of Lefschetz theory (Section 2.11) in
terms of intersection products.

Theorem 6.2.4. The Lefschetz number of f: N — N is equal to [I'][A].

Proof. Let B be a basis of H*(N; Q). Then for any o € H*(N;Q), we may write

fra=Y" fusB

BeB
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for fo s € Q. Let v be the Poincaré dual of [I'], i.e. so that yN [N x N] = [I']. Then
[ClIA] = e.((rUy) N[N x N])

{

= (r,7N [N x N]) by Theorem 4.4.1(e)

= (1,[I']) = (7, (G¢)«[N]) by the above
((Gy)*r,[N]) by Theorem 4.4.1(f)

(=1 (G )" (a” x ), [N])

(=D*a® U f*a, [N]) by (2) of Prop. 4.3.2

=> (=) <a° U fasb, [N]>

aEB BEB
= Z(—l)'a‘fma by definition of the a"
a€B

=Y (=)"tr(f*: H"(N;Q) — H"(N;Q)) by Corollary 6.2.3

O
Corollary 6.2.5. If f, does not have 1 as an eigenvalue for any fixed point x € N, then
L(f) = ) sign(det(l — f.)).
fl@)=
This gives another proof of Lefschetz’s fixed point theorem (2.11.3):
Corollary 6.2.6. If f has no fived points, then L(f) = 0.

Example 6.2.7. Let M be a smooth, oriented n-manifold. Then T'M is an oriented vector
bundle of rank n. This defines an Euler class e(M) := e(T'M) € H"(M) which satisfies

(e(M), [M]) = x(M).
Proposition 6.2.8. For an oriented disk bundle m : E — N, the Euler class e(N) is dual
in N to the self-intersection class of N in E.
Proof. The self-intersection class of N in E is i,[N] e i,[N] = (Dg|[N]U Dg[N]) U[E], where
i : N < E is the O-section of the bundle (sending each z € N to the zero vector in 7~1(z))
and D : H, (E) — H*(E,0F) is Poincaré duality. On the other hand, by definition
Dg[N] = 7 is the Thom class of the bundle, so we have
ix[N] @ i,[N] = (tg UTp) N [E]
=715 N(tg U[E]) by Theorem 4.4.1(e)
= 7 Ni[N] by definition of 75
= 1.(i"tg N [N]) by Theorem 4.4.1(f)
= i.(e(E)N[N]) by definition of the Euler class.
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Hence [N] - [N] and e(FE) are Poincaré dual in N. O

6.3 The Gysin Sequence

Lemma 6.3.1. Suppose 7w : E — N is a k-disk bundle. Then there is a commutative diagram
of H*(N)-modules

HP(N) — =5 ek
m™(=)UrT hw*
HPY(E,OF) e HP+(E)

Proof. Notice that 7* = (¢*)~! is an isomorphism, where i is the O-section, and 7*(—) U T is
an isomorphism by the Thom isomorphism theorem (6.1.2). Then for § € HP(N), we have

i BUT) = (B U ST =t B U T = B Ue.

Therefore the diagram commutes. Moreover, the maps are H®(N)-modules because cup
product is natural. O

Theorem 6.3.2 (Gysin Sequence). Suppose w: X — N is an oriented sphere bundle with
fibres S*=1. Then there is a long exact sequence of H®*(N)-modules

oo HP(N) =25 grth(N) I goth(X) < HPP(N) = - -
where e is the Euler class of the disk bundle E — N obtained by the mapping cone of .

Proof. The long exact sequence for the disk bundle 7z : £ — N is the top row in the
following commutative diagram:

J" k*

HP+k(E) 5

.+ HP*H(E,OF)
T(=)uT %E %d %*(—) ur

C— HY)

Hp+1(8E) Hp+k+1(E, aE) PR

Hp+k(N) . Hp+k(X)

HPH(N) .
—Ue s o

where the first and fourth vertical arrows are the Thom isomorphisms. The left square
commutes by Lemma 6.3.1, while the middle and right squares commute since the third
vertical arrow is just the identity.

To check that the module structure is compatible, take o, 5 € H*(N). Then 7*(aU ) =
m*aUn*f by Proposition 4.3.2, so 7* is a module map. Likewise, (aUS)Ue = aU(SUe) by
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Theorem 4.3.5, so — U e is also a module map. Finally, c* = (7*(—) U 7)~1§* by definition.
Write h = (7*(—) U T)~!. Then for any v € H*(X), we have

o (m*fU~y) =hod* (7" U~)
= (—1 )Iﬁl My o S (yUk*myB)
= (=1)PIIn(s*y U s B) by naturality of U
= (- DIBIHBII D zBUIY) by Theorem 4.3.5
= (- 1)|6| I+IBIY I+ 8y hdo*~ since h is a module map
= (-1)Plguo*y.

Hence 0* is a module map. ]

Corollary 6.3.3. Let X be a (k — 1)-sphere bundle over M such that X = S™*=1 is also a
sphere. Then n = kr for some r € Z and H*(M) = Zle]/e"™ where e € H*(M) is the Euler
class of the disk bundle E — M having X as its boundary.

Proof. In this situation, the Gysin sequence is
c— HPHREL (SR [P(M) =S HPPR(M) — HPPR(SMHRL)

Suppose a € HP%(M) is nonzero for p+k > 0. Sincedim M =n, 0 < p+k <n<n+k—1
so a maps to 0 in HPT*(S™*=1) Thus a = S U e for some 3 € HP(M) by exactness.
Replacing p with p’ = p — k, the argument may be repeated as long as p’ + k > 0. This
terminates when p’ = 0. Then M has nontrivial cohomology only in dimensions which are
multiples of &k, and moreover H*(M) is spanned as a ring by {1,e,...,e"} where r satisfies

kr = n. O

6.4 Stiefel Manifolds

Definition. For any integers 0 < k < n, the Stiefel manifold V,, ;. is defined to be the
space of orthonormal k-frames in R™, i.e. the set

Vn,k = {(”{71, - ,’Uk) e R"™ . <Ul,17]> = 6ij foralll <i,5 < k‘}

Remark. Complex Stiefel manifolds V}, ,(C) can be defined similarly using the Hermitian
inner product. As a manifold, V;, x(C) is not a complex manifold. To distinguish between
the real and complex case, we denote the real Stiefel manifolds by V,, x(R) when necessary.

Proposition 6.4.1. For all0 < k < n, V,, 1 (R) and V,, x(C) are smooth, compact, orientable
manifolds of finite (real) dimension.

Example 6.4.2. For any n, V,,;1(R) = 5" and V,,1(C) = 5! are homeomorphic to unit
spheres.

Example 6.4.3. For any n, V,,,(R) = O,(R), the set of n x n orthogonal matrices, and
Von(C) = U, (R), the set of n x n unitary matrices.
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Example 6.4.4. There is a natural map V,,;, — Gr(k,n) into the Grassmannian manifold
Gr(k,n), defined as the set of all k-dimensional linear subspaces of R"™, which takes the k-
tuple (¥, ..., U) to the k-dimensional subspace they span in R”. In fact, this map is a fibre
bundle over the Grassmannian with fibres O (R) in the real case and U(R) in the complex
case.

There is a transitive action of O,(R) on V,, x(R) given by
A-(T,...,0) = (A", ..., AT).

Under this action, the stabilizer of a point is isomorphic to O,,_x(R). In particular, V,, x(R) =
On(R)/O,,—(R) as a coset space.

If ¢/ < k, there is a natural map V,,, — V,, sending (vy,...,0;) — (¥h,...,7;). This
coincides with the induced map

Vn,k = On/On—k — On/On—ﬁ = Vn,€~

Hence V,, , — V,,, can be viewed as a bundle projection with fibres O,,_;/O,,_j. Specifically,
projecting one dimension at a time, we get fibre bundles V;,, — V, 1 with fibres S"7*.
Similarly, V,, x(C) = V;,x_1(C) may be viewed as a fibre bundle with fibres S2("=*)+1,

Our goal is to compute the cohomology ring of V,,x(C). If k = 1, V,,1(C) = S?"~! by
Example 6.4.2, so we know that H*(V},1(C)) = A(z2,-1), the exterior algebra on a generator
Ton—1 € H*1(V,1(C)). Next, if k = 2, there is a bundle projection V,,2(C) — V,,1(C) =
5?1 with fibres S?"~3, by the above. The Euler class for this bundle lies in H*"2(V,,1(C)),
but since V;,1(C) = S?"~!, we have H**~%(V,,1(C)) = 0. Thus the Euler class is 0, so the
Gysin sequence (Theorem 6.3.2) for this bundle breaks into short exact sequences:

0 — HP(S2"1) I HP(V,,5(C)) L HP-20H3(5%71) 5 0,

Since HP(S5?"!) is free abelian, this sequence splits and therefore H?(V,, ) is also free. We
then can compute:

P Hp(SQn—l) Hp(Vmg((C)) Hp—2n+3(52n—1)
0 Z Z 0
1 0 0 0

2n —3 0 / /

2n — 2 0 0 0

2n —1 V) Z 0

dn — 4 0 ) Z

This implies that

Z, p=0,2n—3,2n—1,4n—4

0, otherwise.

Hp(vn,Q(C» = {
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To determine the ring structure, take a generator z € H*"3(V,,5(C)) such that o*z = 1.
Define

U H(S™ ) @ N\ (wan-s) — H*(V,5(C))
a®lr— 1

a® Top_3 —> T U Xg,_3.

Since the degree of xa,_3 is odd, 223, 5 = 2(22,-3Ux2,_3) = 0 but since H*(V},2(C)) is free,
we must have z3,_, = 0. Hence ¥ is a well-defined ring map. Further, by the naturality
statement in Theorem 6.3.2, we get

o*(m*aUzg,_s) = (Do Uo*(z9n_3) = (-1)*a U1 = +a.
So VU is a group isomorphism and thus a ring isomorphism. This generalizes as follows.

Theorem 6.4.5. For any 0 < k < n, the cohomology ring of the Stiefel manifold V,, j, is the
exterior algebra

H.<Vn,k<(c)> = /\<x2n717 Lon—3; - - - 7x2(n—k)+1>
where x; is a generator of H?(V,, x(C)).

Proof. Induct on k; the base cases were shown above. Using the bundle projection V,, ; —
Voko1 with fibres S2=F)+1 we know its Euler class lies in H2"=®+2(V, . ), but since

2ln—k)+2<2n—k)+3=2n—(k—-1))+1

is the dimension of the smallest nonzero cohomology in H2"~®+2(V, ) by induction, we
get that e = 0. Now the inductive argument from above goes through. ]

Corollary 6.4.6. The unitary group U,(R) has cohomology
H.(Un(R>) = /\<x2n717 Ton—3y .- - 7$1>-
Remark. Notice that as rings, H*(V,1(C)) & H*(S?""! x §2"73 x ... x §*n=k)+1) Byt

when n > 2, U,(R) is not even homotopy equivalent to a product of spheres. This shows
that cohomology is not a complete homotopy invariant.

6.5 Steenrod Squares

The cup product “square” is a cohomology operation
H'(X) — H*(X)

which maps o — a? = a U a. The Steenrod operations generalize the cup product square
for cohomology with Z /27 coefficients.
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Definition. A set of Steenrod operations, or Steenrod squares, are cohomology oper-

ations . ‘
Sq* H”(X,A;Z/ZZ) — H”“(X,A;Z/2Z)

which are natural and satisfy
(i) Sq° is the identity on H™(X, A;7Z/27).
(i) If v € H(X, A, Z/27), then Sq'(z) = 2> = v U z.
(iii) If v € H"(X, A;Z/2Z), then for all i > n, Sq'(z) = 0.

k

(iv) (Cartan formula) Sq*(x Uy) = Z Sq'(z) U Sq* ™ (y).
i=0
(v) (Adém relation) Sq Sq” = ZWOQJ (" 17) Sq*™7 S¢’ (mod 2).

a—2j

In fact, Axiom (v) can be deduced from the other axioms, so we will not deal with it for
NOW.

Theorem 6.5.1. Steenrod squares exist and are unique.

Definition. The total Steenrod square s the ring homomorphism

Sq;<H‘@XrA;Z/QZ)——+<H‘@X‘A:Z/QZ)

x — Sq(x ZSq

By Aziom (i11), the sum is finite so these are well-defined.
Notice that Axiom (iv) implies that Sq(zUy) = Sq(2)USq(y) for any z,y € H*(X, A;Z/27Z).
Proposition 6.5.2. If v € H'(X, A;Z/2Z) then for any i,k > 1, Sq'(z¥) = (¥)a*+,

Proof. By the comment preceding the proposition, Sq(z*) = Sq(z)*, and we have

Sq(z)* = (z +2*)* by Axioms (i) - (iii)
= 2" (x + 1)"

[k
_ ok Z k-+i
T 2 (Z)ZL' .

Therefore the ith Steenrod square of z* is (lf) and n

Lemma 6.5.3. Let z,y € H*(X) so that x x y € H*(X x Y'), where X is the cohomology
cross product. Then for any n > 0,

"z xy) }:Sq ) X Sq" " (y).
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6.5 Steenrod Squares 6 Intersection Theory

Proof. By (3) of Proposition 4.3.2, z xy = (x x1)U(1 xy). Now apply Cartan’s formula. ]

Proposition 6.5.4. The Steenrod operations commute with the coboundary map, i.e. for
any pair (X, A) there is a commutative diagram

H7(A) —O L g, A)

Hrti (A) Hn+i+1 (X, A)

Corollary 6.5.5. The Steenrod squares are stable, i.e. they commute with suspension.

Proof. Suspension may be realized as a connecting homomorphism:
S HY(X) S HYY(CX, X) = H'Y(EX),

where C'X is the cone on X and the last isomorphism is by the homotopy axiom. Thus
Proposition 6.5.4 applies. O

We have the following deep result on homotopy groups of spheres, generalizing Corol-
lary 3.6.12.

Corollary 6.5.6. For alln > 2, m,1(S™) # 0.

Proof. Consider CP? = S? U;, D* where h : S — 5? is the Hopf map. Taking suspensions
on each side, we get YCP? = S3 Uyy, D°. If h = 0, then XCP? = S3 A S is just a wedge
of spheres. Since Steenrod squares are natural, we have a commutative diagram

H3(S%) Sl H3 (%)
H3(S% A §9) H5(S3 A 5%)
Sq?

Since H°(S%) = 0 by Theorem 2.3.5, this implies Sq* = 0 on XCP2. However, the cohomology
ring of CP? is generated by 1 € H°(CP?),z € H*(CP?) and 22 € H*(CP?). By the Steenrod
axioms, we must have Sq*(z) = 2% and in particular Sq* # 0. Thus Sq” # 0 on XCP? since
Steenrod squares commute with suspension by Corollary 6.5.5. This implies that >h cannot
be trivial. Now induct to see that the nth suspension of the Hopf map, X"h : S+ — §n+2,
cannot be trivial. By definition X"h represents a class in [S"™ S"] = m,,1(S™) so Xh # 0
implies the result. O

The following formula helps us compute the coefficients of Steenrod squares.
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Lemma 6.5.7. Let a = > a;27 and b = > b;27 be formal sums with coefficients a;,b; €

Z.)2Z. Then
(§)-T) s

Proof. Over the polynomial ring Z/27Z[z], we have

L+a) =]Ja+2) =J[a+2") =] > (CZ)ijk (mod 2).

Now let k& = b to obtain the desired formula. ]

Corollary 6.5.8. If x € H' (X, A;Z/2Z), then

xzk, 1=20
qu(l,Q’“) _ ZL‘2k+i, j = 9ok
0, otherwise.

Theorem 6.5.9. Ifi is not a power of 2, then Sq" can be written as a sum of compositions

of Sq* for k < i.

Proof. The Adém relations can be written

b—1 2y o
( ) Sqa—I—b _ Sqa qu+ Z ( . ) Sqa+b—] qu
a o a—2j

whenever 0 < a < 2b. Thus Sq*™ can be written as a sum of smaller degree Steenrod

squares whenever (bgl) =1 (mod 2). Supposing i is not a power of 2, write i = a + 2% for
0<a<2F Then 28 —1 =1+2+422+4 ...+ 281 and this implies by Lemma 6.5.7 that
(Qk_l) =1 (mod 2). Hence Sq' can be decomposed. O

Example 6.5.10. Some of the following decompositions are useful:
Sq’ = Sq' S¢?,
Sq” = Sq' Sq*,
Sq® = Sq?Sq* 4+ Sq' Sq* Sq* .
Corollary 6.5.11. If v € H"(X, A;Z/27) such that x> # 0, then Sq'(x) # 0 for some i

which satisfies 0 < 28 < n.

Corollary 6.5.12. If M is a closed 2n-manifold with H;(M;Z/2Z) = 0 for all0 < i <n
and H,(M;7/27) = 727, then n is a power of 2.

In fact, Adams has shown that the only possibilities for the dimension of such a manifold
aren =1,2,4,8.
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For any map f : S** 1 — S" n > 2 let X = Cy = S"U; D" be the mapping cone of
f. Then X has a natural CW-structure with a single cell in dimensions 0, n and 2n. The
inclusion S™ < X and collapsing map X — S?" induce isomorphisms on cohomology:

H™(S™) = H™(X) and H>(X) = H*(S™).

Therefore z = [S"] € H"(X) and y = [S*"] € H*"(X) are well-defined. Since y generates
H?"(X) by definition, we must have 2> = h;y for some integer h;.

Definition. The integer h; is called the Hopf invariant of f : S?"~1 — S™.

Corollary 6.5.13. If f : S*~1 — S™ is a map such that hy is odd, then n is a power of 2
equal to one of n =1,2,4 or 8.
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7 Higher Homotopy Theory

The contents of this chapter follow Chapter 6 in Davis and Kirk’s Lectures Notes in Algebraic
Topology. We first discuss compactly generated spaces. For the entire chapter, assume all
spaces are Hausdorff.

Definition. A Hausdorff topological space X is compactly generated if for every set
A C X, A is closed if and only if AN K s closed for all compact K C X.

Example 7.0.1. Every locally compact Hausdorff space is clearly compactly generated.
This includes all manifolds.

Example 7.0.2. More generally, any metric space is compactly generated.

Example 7.0.3. An important class of compactly generated spaces is the CW-complexes
having finitely many cells in each dimension.

Definition. Let X be any Hausdorff space. Define k(X) to be X with the topology such that
A is closed in k(X) if and only if AN K is closed in X for all compact K C X.

Lemma 7.0.4. Let X be a Hausdorff space. Then
(a) k(X) is compactly generated.
(b) If X is compactly generated, then k(X) = X.

(¢) For any function f : X — Y, the corresponding map k(f) : k(X) — k(YY) is continu-
ous if and only if f|k is continuous for all compact K C X.

(d) If X is compactly generated and C(X,Y’) denotes the space of continuous maps X —
Y, then the assignment k : f +— k(f) is a bijection k : C(X,Y) < C(X, k(y)).

(e) X and k(X)) have the same singular chain complexes and the same homotopy groups.

Let K be the category of compactly generated topological spaces. Then the above shows
that k£ : X — k(X) is a functor HTop — K on the category HTop of Hausdorff topological
spaces.

Definition. The compact-open topology on C(X,Y) is the topology generated by sets of
the form
UK, W)= {f: X Y | /(K) C W}

where K C X is compact and W CY 1is open.

Let Map(X,Y) = k(C(X,Y)). For two compactly generated spaces X,Y € K, we define
their product in this category to be X x Y := k(X X Y') — where the product on the right
is taken in the category of topological spaces.
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Theorem 7.0.5. For XY, Z € K, there is a homeomorphism

Map(X x Y, Z) — Map(X, Map(Y, Z))

where f, is the map y — f(x,y).
Proposition 7.0.6. Let X,Y, 7 € K. Then
(1) The evaluation map

e:Map(X,Y)x X — Y
(f,x) — f(x)

18 continuous.
(2) Map(X,Y x Z) = Map(X,Y) x Map(X, Z).

(3) Composition gives a continuous map Map(X,Y) x Map(Y, Z) — Map(X, Z).

7.1 Fibration

Definition. A map p : E — B is called a fibration if it has the homotopy lifting
property, i.e. for any space Y, the following diagram can be completed:

Y x {0} E
{ G

p

Y % [0,1] B

Remark. The property of being a fibration is a ‘local condition’, i.e. p : F — B is a
fibration if and only if every point b € B has a neighborhood U such that p: p~*(U) — U is
a fibration. (This follows from a theorem of Hurewicz.)

Example 7.1.1. Theorem 1.2.6 says precisely that every covering map is a fibration, and
that the G' completing the diagram in the definition above is always unique. This uniqueness
property is not true of every fibration.

Example 7.1.2. Let p: E — B be a fibre bundle, i.e. a surjection in which each preimage
p Y (U) of an open set U C B in a covering of B is homeomorphic to U x F for some fixed
space F'. Then p is a fibration.

Theorem 7.1.3. Suppose B is path-connected and p : ' — B s a fibration. Then

(1) All of the fibres E, := p~'(x) are homotopy equivalent.
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(2) Every choice of path o in B from x to y determines a homotopy class of homotopy
equivalences o, : B, — E, depending only on the homotopy class of a el endpoints.

(3) Under the above, concatenation of paths corresponds to composition of homotopy equiv-
alences. In other words, there is a well-defined homomorphism of groups

m (B, x) — {homotopy classes of self homotopy equivalences of E,}
[a] — (a7h),.

Proof. Take a path «a from x to y in B. Then the inclusion E, < FE induces the following
diagram:

E, x{0} —— E

ExX[07].]T’B

where G(e,t) = a(t) for all t € [0,1]. Since p is a fibration, we get a lift G. At ¢t = 0,
CNJO : B, x {0} — E is just the inclusion of the fibre E, < E. On the other hand, for any t,
poét is the constant map at a(t) so in particular at t = 1, él gives a map £, — E,1) = E,,.
Set a, = [CNJI] To check «, is well-defined, suppose o : [0, 1] — B is another path homotopic
rel endpoints to a. Set H = o' o projyy ;; where projy y @ £, x [0,1] — [0,1] is the second
coordinate projection. Then using the homotopy lifting property on the diagram

E,x{0} —— E

&XMH—EHB

we get a map H:E,x [0,1] — E and, as above, a map H, : E, — E,. One then constructs
a_homotopy from G — H using that o ~ o’ rel endpoints; this then induces a homotopy
G1 — H,. Hence a is well-defined and (2) is proved.

It is clear that for paths a, 8 in B such that 3(0) = «(1), we have (a * ), = i 0 .
Thus when 8 = a™!, S, 0a, = (¢;)., where ¢, is the constant path at z. Since (¢, ). = [idg,],
we have that 3, = (a™!), is a homotopy inverse of a,. Hence . is a homotopy equivalence,
so using path-connectedness we see that all fibres are homotopy equivalent, proving (1).

Finally, it is routine to prove the homotopy classes of homotopy equivalences FE, — F,
form a group under composition. Then for (3), the above shows that (a * ), = (. o a, and
the trivial class goes to the homotopy class of the identity map E, — E,, so [a] — (a™ 1), is
a homomorphism. O

Definition. For a space Y, the free path space on Y is

Y' = Map([0,1],Y).
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For a point yy € Y, the based path space on Y with basepoint yq is
P,Y ={a Y| a(0) =y}
Further, the based loop space at y, is
QY ={aeP,Y |a(l) =y}
For Y! and P,Y, define the endpoint map,
p: Yl —Y
ar— afl)

(and restricting to P,,Y for the based version), which is continuous on both Y; and P, Y.
The fibre of p: P,)Y — Y is, up to homotopy, exactly the loop space 2,,Y".

Theorem 7.1.4. For any Y, the endpoint map p : Y — Y is a fibration with fibre over 1,
homeomorphic to P,,Y .

Proof. To prove p satisfies the homotopy lifting property, we need to complete the following
diagram for any space A:

Ax {0y —L .y
p
A x [0,1] Y

For a € A, g(a) € YT is a map such that po g(a) = H(a,0). That is, g(a) is a path ending
at the starting point of the homotopy H (a,—). To lift, just continue this path by defining

N {g(a)((l—l—s)t), 0<t< L

H<a75)(t) = H(a,(l—i-S)t—l)? 1+_s <t <1

Then H is continuous, H(a,0) = g(a) and p o H(a,s)(=) = H(a,s)(1) = H(a,s). Hence
p:Y! =Y is a fibration. [
Corollary 7.1.5. For anyyo €Y, p: P,Y =Y s a fibration with fibres €, Y .

Proof. The same proof goes through. O]

Lemma 7.1.6. The map p:Y! =Y is a homotopy equivalence.

Proof. Define i : Y — Y by i(y) = ¢,, the constant path at y € Y. Then poi(y) = p(c,) =
¢y(1) =y, while for &« € Y/, iop(a) = i(a(1)) = caq), but of course « is homotopy equivalent
to the constant path at its endpoint (since [0, 1] is contractible). Hence i o p ~ id so ¢ and p
are homotopy inverses. O]
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Lemma 7.1.7. For any yo € Y, P, Y s contractible.
Proof. Similar. O]

One also defines the starting point fibration ¢ : Y — Y (and its restriction to P, Y’) by
a +— «(0). Then analogues to the preceding results hold for ¢ by identical proofs.

Definition. If p : E — B is a fibration and f : A — B is a continuous map, then the
pullback fibration of f along p is the space

J'E ={(a,e) € Ax E| f(a) = p(e)}

along with the map f*p: f*E — A, (a,e) — a. That is, f*p is the pullback in the category
of topological spaces.

Proposition 7.1.8. For any fibration p: E — B and map f : A— B, f'p: f*E — A is a
fibration.

Proof. Routine. O]

Definition. A map of fibrations between p : E — B and p’' : E' — B’ is a pair of maps
f:B— B and f : E — E’" making the following diagram commute:

5 S

E/

p

- B

S

Definition. A fibre homotopy between maps of fibrations (fos fo) and (fl, fl) is a pair of
homotopies (H, H) such that H is a homotopy fo — fi, H is a homotopy fo — f1 and the
following diagram commutes:

Ex1I E'
pxidh o
BxI B’

Two fibrations p : E — B and q : E' — B owver the same base are said to be fibre homotopy
equivalent if there exist maps of fibrations
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such that f o g and go f are fibre homotopic to the identity.

We next make rigorous the idea that ‘every continuous map is a fibration’. Suppose
f X — Y is continuous.

Definition. The mapping path space of f is the pullback fibration Py := f*(Y') along the
starting point fibration q : Y1 — Y, a+ «(0). That is, Py = {(z,a) € X xY' | a(0) = f(x)}
and there is a commutative diagram

Pf YI
I*q q
X Y

Definition. The mapping path fibration of f : X — Y is the map py : Py — Y given by
p(z, ) = a(l), that is, the restriction of the endpoint fibration.

Theorem 7.1.9. For any continuous f: X — Y,

(1) There is a homotopy equivalence h : X — Py such that the diagram

Py
v N
f

X

Y

commutes.
(2) ps: Py —Y is a fibration.
(8) If f is a fibration, then h is a fibre homotopy equivalence.

Proof. (1) Define h(z) = (z, ¢f(y)) Where ¢,y is the constant path (in Y) at f(x). Then the
projection 7 : Py — X is obviously a homotopy inverse to h, since moh(z) = 7(x, cpz)) = ;
and hom ~id via F((x,a),s) = (z,as), where a,(t) = a(st).

(2) We must complete the following diagram for any space A:

Ax {0y —2 . p
Py
A x [0,1] Y
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For a € A, we have g(a) = (g1(a), 92(a)) where g;(a) € X and ¢o(a) is a path in Y starting
at f(g1(a)) and ending at H(aﬁ,v()). As in the proof of Theorem 7.1.4, continue this path to
get the desired lift by setting H (a, s)(t) = (g1(a), Ha(a, s)(t)), where

() (1+s)), 0<t< -
H(a,(1+s)t—1), = <t<1

Hy(a, s)(t) = {

(3) Note that 7 : Pf — X is not a fibration map a priori. To fix this, define y : PpxI — Y
by vy(z, a,t) = «(t). Then we have a diagram

Prx {0} —— x

~ -
-
r-)/ .
-
-
-
-
-
-

PfX]

S

Y

which commutes by definition of Py, so there exists a lift 7 since f is a fibration. Define
g: Pr— X by g(x,a) =5(z,o,1). Then the diagram

9

Py

N

Y

X

commutes by construction and ¢ is a fibre homotopy inverse of f. m

7.2 Fibration Sequences

Suppose f : E — B is a fibration with fibres F' (up to homotopy). Then the inclusion of
fibres ¢ : F' — FE is, up to homotopy, a fibration by Theorem 7.1.9. This process can be
iterated to produce a sequence of fibrations.

Theorem 7.2.1. Let f : E — B be a fibration with fibre ' — E and Z equal to the
homotopy fibre of i : I — E, i.e. the fibre of the fibration P; — E. Then Z is homotopy
equivalent to the loop space Q, B, when all maps are based at y, € B.

Proof. By Theorem 7.1.9, we may replace £ with Py, with path space fibration p : Py —
B, (e,a) — «a(1). The fibre of p over yy € B is

Pryo = {(e; ) | f(e) = (0), 40 = a(1)}.
Define 7 : Py, — E by (e, a) = e. Then it suffices to show 7 is a fibration with fibre ), B.
Indeed, since f is a fibration, £ — Pf,e — (e, cs()) is a fibration homotopy equivalence, so
f (yo) = Pyyy- Now to prove the new statement, take eg € f~'(yo) C E. Then

™ (eo) = {(e0, @) | yo = f(eo) = a(0), 30 = (1)} =, B,

so we need only check that 7 is a fibration. For a space A, consider the diagram
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g
A X {0} E— Pf,yo

~ /"
.
H-
.
:
;
)
)
)
)

AxT

™

E

If a € A= Ax {0}, then g(a) = (¢1(a),g2(a)) where gi(a) = H(a,0) € E is the start
of the path H(a,t), while gs(a) is the path starting at gs(a)(0) = f(g1(a)) and ending at
g2(a)(1) = yo. Extend H to Py, by:

~ H(a,—(1 t <t < S
H(a,s)(t) = f(H(a, =(1+ )t +5)), 0 <5
g2(a)((1 + )t — s), S<t<L
As in previous proofs, this H completes the diagram. O

This allows us to construct a so-called long exact sequence of fibrations.

Corollary 7.2.2. If E — B is a fibration with fibre ' — E, there is a sequence of fibrations

= QF - QF QB+ F —-E—- B
where each pair of consecutive terms is the inclusion of a fibre in a fibration.

Definition. A sequence of set maps A I B % C with fixed basepoint ¢y € C' is exact at B

if f(A) =g (co)-

Theorem 7.2.3. Let p: E — B be a fibration, by € B a basepoint and F = p~1(by) its fibre,
with some point eq € F' specified. Then for any space Y, the sequence of maps

Y, F] & [Y, E] 2 [Y, B
is exact at [Y, E|.

Proof. Clearly p. o1, is equal to ¢, the constant map at by, which is the basepoint of the
set [Y, B]. Suppose f : Y — F has p.[f] = [cs,]. Then there exists a null-homotopy of po f,
call it H, making the diagram commute:

Y x {0} E
[ ﬁ/ h
/// p

Y x I B

Then by the homotopy lifting property, we get a lift H such that H (—,1): Y — E lifts ¢,.
In other words, [f] = i.[H(—,1)]. Hence the sequence is exact. O
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Corollary 7.2.4. For any fibration E — B with fibre F' — E and any space Y, there is a
long exact sequence

c = [V QB — [V, Q" F)g — [Y, Q"E]g — [Y,Q"Bly — -+

Proof. The proof of Theorem 7.2.3 can be directly adapted to based maps and based homo-
topy spaces. This implies the result. O

Let X AY =X xY/({zo} x Y UX x{yo}) be the smash product of X and Y at a pair
of points xg € X,yy € Y. Then there are bijections

Map(X x Y, Z) +— Map(X, Map(Y, 7))
Mapy (X AY, Z) «— Map, (X, Map,(Y, Z2)),

where Map,, denotes the space of based maps (with the compactly generated topology). Let
YX = X A St be the reduced suspension of X. Then we have:

Corollary 7.2.5. For spaces X and Y and any integer n > 0,
(1) Mapy(2X,Y) = Map, (X, QY).
(2) [S™, QY] = [S"1, Y.
(8) m, (QY) Z 7,1 (Y).

Theorem 7.2.6 (Homotopy Long Exact Sequence). For any fibration E — B with fibre
F — FE, there is a long exact sequence of homotopy groups

v = T (B) = m(F) = mp(E) = m(B) — - -
Proof. Apply Corollary 7.2.4. O

Corollary 7.2.7. If p : Y — X s a covering map, then p, : m,(Y) — m,(X) is an
isomorphism for alln > 1.

Proof. For any covering space, the fibre F' < Y is a discrete set, so 7,(F') = 0 for all n > 0.
Thus in the long exact sequence of homotopy groups,

oo (F) = mp(Y) 25 1y (X) = mp(F) = -+
we get a 0 in every third term, so p, is an isomorphism as claimed. O

Example 7.2.8. Consider the standard circle bundle S — CP> (i.e. the fibre is, up to
homotopy, S'). Then Theorem 7.2.6 gives a long exact sequence

oo = M1 (S®) = T (CP®) — mo(Sh) — mp(S%°) — -+

It is a standard fact that S° is contractible, so m,(5%) = 0 for n > 1 by Corollary 1.1.13.
Hence the long exact sequence tells us that

7Tn(s,l):{Z, n=1

0, otherwise
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thus confirming Corollary 1.2.18. In fact, this shows that CP> is an Eilenberg-Maclane space
of type K(Z,2) — see Section 7.6. Further, the fibration long exact sequence (Corollary 7.2.2)
shows 7 is an isomorphism on all homotopy groups:

S5 Q8® 5 QCP® L ST 5 5% 5 CP>.

By definition, j : QCP> — S! is a weak homotopy equivalence, so we see that S* is the loop
space of CP*°.

7.3 Hurewicz Homomorphisms

Recall from Theorem 2.1.14 that the homomorphism
T (X) — H1 (X)
o] — o]

is surjective with kernel [m(X), 7 (X)], the commutator of the fundamental group of X, so
that H,(X) = 7,(X)?. In this section, we generalize this result to higher homotopy groups.

Definition. For each n > 1, the Hurewicz homomorphism is defined on m,(X) —
H,(X) by sending a class [f] € m,(X), represented by a map f : S™ — X, to the pushforward
[:[S™], where [S™] is the fundamental class of the n-sphere.

Example 7.3.1. Note that m,(CP>*) = Z for n = 2 and is zero otherwise, whereas
H,(CP>) = Z for all even n and is zero otherwise. Thus Hurewicz homomorphisms are
not all isomorphisms. However, Hurewicz’s theorem for higher homotopy groups gives the
correct generalization:

Theorem 7.3.2 (Hurewicz). Let X be path-connected, n > 1 and assume my(X) = 0 for all
k <mn. Then the Hurewicz map mp(X) — Hp(X) is an isomorphism for all k < n.

Example 7.3.3. By Theorem 1.1.17, we know that for n > 1 and for all k£ < n, m(S™) = 0.
Moreover, Theorem 2.3.5 gives H,(S™) = Z, so by Hurewicz’s theorem, ,(S™) = Z, a fact
that is very difficult to prove otherwise.

Example 7.3.4. Let n > 1. A space X is said to be n-connected if 7;(X) = 0 for all
k<n. Amap f: X — Y is n-connected if f, : mx(X) — m(Y) is an isomorphism for all
k <nand f,:m,(X) = m.(Y).

Note that 1-connected is just a new way to say simply connected.

Definition. For a pair (X, A) and n > 1, the nth relative homotopy group is defined as
the based homotopy space

(X, A) = (D", 5" 1), (X, A)o.
Proposition 7.3.5. For all pairs (X, A), there is a long exact sequence in relative homotopy

e = m(A) = (X)) = (XS A) 5 T (A) > -
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Given a map f: X — Y, one defines the mapping cylinder of f by
M =X x[0,1]UY/(z,1) ~ f(x).

Note that My is homotopy equivalent to Y, since [0, 1] is contractible, and the inclusion
X — X x {0} C M; makes the following diagram commute:

/N

(In terminology we have not introduced, these facts prove that every map is a cofibration,
just as Theorem 7.1.9 showed that every map is a fibration.)

X

Y

Proposition 7.3.6. Letn > 1. A map f : X — Y is n-connected if and only if the pair
(Mg, X) is n-connected, i.e. m,(Ms, X) =0 for all k <n.

Proof. Apply the long exact sequence in Proposition 7.3.5. O]

There is a relative version of Hurewicz’s theorem as well.

Theorem 7.3.7. If (X, A) is a CW-pair which is n-connected, i.e. m(X,A) = 0 for all
k < n, then my(X,A) — Hg(X,A) is an isomorphism for all k < n and is surjective for
k=n.

From this, one can deduce several very important results in homotopy theory.

Corollary 7.3.8 (Whitehead Theorem). If f : X — Y is n-connected, then f.: Hy(X) —
Hi(Y) is an isomorphism for k < n and is surjective for k = n.

Corollary 7.3.9. If X and Y are simply connected spaces and f : X — Y induces an
isomorphism f, : Hy(X) — Hp(Y) for all k < n and is surjective for k = n, then f is an
n-connected map.

Corollary 7.3.10. If X and Y are simply connected and f : X — Y induces an isomorphism
on all homology groups, then f is a weak homotopy equivalence.

Corollary 7.3.11. If X and Y are simply connected CW-complexes and f : X — Y induces
an isomorphism on all homology groups, then f is a homotopy equivalence.

7.4 Obstruction Theory

A main principle in homotopy theory is the following. A map S™ — Y extends to D! — Y
if and only if the map is nullhomotopic. This fact is used to study the extension problem:
suppose (X, A) is a CW-pair and f : A — Y is any map. Then does f extend to a map
X — Y? With CW-complexes, we can work cell-by-cell. First, let (X, A)®™ = AU X® be
the n-skeleton of the pair. It is trivial to extend f : A — Y over the O-skeleton (X, A4)©.
Next, for (X, A)®M), we can extend as long as Y is connected (i.e. mo(Y) = 0). In this way,
we can work inductively.
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Definition. A space Y is called n-simple if [S™, Y] = [S",Y]..
For the remainder of the section, assume Y is n-simple.
Definition. Let g : (X, A)™ — Y. The obstruction cochain of g is the element 6"+ (g) €

C" (X, A;m,(Y)) whose value on an (n + 1)-cell e, 41 is the class [0"(g)] represented by
the composition 6" (g) = g o dae,,, = S" 2 x5, Y, where ¢ is the characteristic map.

Lemma 7.4.1. A map g : (X, A)™ — Y extends to (X, A)"*V if and only if 9"+ (g) = 0.
Proposition 7.4.2. 6""1(g) is a cocycle.

Proof. Recall from Section 2.4 that the cellular chain groups are the free abelian groups
Co(X) = H,(X™, X(=1)) for a fixed homology theory (H,,d), together with the cellular
boundary maps

ol s [, (X, X0y 2 [ (XY 5 H, (XD, X (),

Consider the diagram

7T”+2(X(n+2)’ X(n+l)) - 7rn+1(X(n+1)) - 7rn+1 (X(n+1)7 X(n)) JEE— ﬂ'n(X(n))

a b & G«

2 1 6 1 1 9”"’1(9)
Hppo( X042 X4y ——— g (X)) ——— (XD X () ——=5 1, (X ()

where the vertical arrows are the Hurewicz homomorphisms, the top row is the long ex-
act sequence from Proposition 7.3.5, the bottom row is #"*! o 9° = §9"*+1. Note that
Te(X 2 X4 — 0 for all k < n + 1, so it follows from Hurewicz’s theorem (7.3.2) that
a is surjective. Further, the Hurewicz maps are natural, so each square commutes. This
means that 66" (g) is equal to the composition along the top row which is 0 by exactness.
Hence 6"*1(g) is a cocycle. O

Theorem 7.4.3. If g : (X,A)™ — Y and Y is n-simple, then the cohomology class
07+ (g)] € H™H(X, A;m,(Y')) is trivial if and only if g| x aym-v extends to (X, A)0H).

Proof. Suppose fy, fi : X™ — Y are homotopic on X~ Y. Then any homotopy F between
them determines a difference cochain d = d( fo, f1, F) € C™(X, A;7,(Y)) with the property
that 6d = 0""(fy) —0""'(f1). Consider the CW-pair (X x I, A x I); note that the k-skeleton
of this pair is (X, A)*® x oI U (X, A)* D x I. So amap (X x I,Ax )™ — Y is a pair
of maps fy, f1 : (X, A)™ — Y and a homotopy between their restrictions on the (n — 1)-
skeleton, f0|( x,4)n-1 and f1|( x,4)n-1 . This is an extension problem which can be described
by the obstruction cocycle

0" (fo, f1, F) € C"TH X x [,Ax I;m,(Y)).
Define d( fy, f1, F) by restricting this cocycle to (X, A)™ x I and defining
d(fo, f1, F)(en) = (=1)" 10" (fo, f1, F)(en x I).
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Then we have
0=080""(epy1 x 1) =0""0(epyy x I)
= 0" (Oenyr x I) 4+ (—=1)" 1O (enq x {1}) — 0" (enyr x {0}))
= (=1)"[0(en+1) + (0" (f1) — 0" (fo)) (entn))-

This proves that if fy, fi are homotopic on (X, A)™~Y then the corresponding obstruction
cocycles are cohomologous.

We need the converse as well, namely that if [0"71(fo)] = [0" T (f1)] in H"TH(X, A; m,(Y)),
then fy and f; are homotopic on (X, A)™~Y. The details of this can be found in Davis and
Kirk. But given the converse, we finally need to realize any d € C™"(X, A;m,(Y)) as a
difference cochain for some fy, f1, F' — this is also in Davis and Kirk. Then if [#""(g)] = 0,
we would have

0" (g) = dd = dd(fo, f1, F) = 0" (fo) — 0" (f1).

So if 9"*1(f1) = 0, then f; will extend to (X, A)"*+1. O

Suppose two maps fo, f1 : X — Y are homotopic on A C X. What are the obstructions
to them being homotopic on all of X7 This question can be stated as an extension problem
via the diagram

X {o,13uAxo,1] Ly

-
-
-
-
-
-
-
-
-
-
-
-

X x1I

There is an obstruction

0" (F)] € H"NX x [, X x {0,1}UA x I;m,(Y)) =2 H" (X, A; 7, (Y))
explicitly given by [0"1(F)] = d(fo, f1, F) using the notation of Theorem 7.4.3, with the
result that [0"T1(F)] = 0 in HY(X, A;7,(Y)) if and only if F_X"2 x I extends to a
homotopy between fo|xm and fi|xm).

Corollary 7.4.4. A continuous map from an n-dimensional CW-complex into an n-connected
space is nullhomotopic.

Proof. Let fo : X — Y be such a map and let f; : X — Y be a constant map. Then
obstructions to a homotopy fy ~ fi lie in H*(X;m(Y)), but by hypothesis m(Y) = 0 for
k <n,so H*(X;m,(Y)) = 0 for these k. On the other hand, for k > n, H*(X;m(Y)) = 0
since X is n-dimensional. Hence there are actually no obstructions to a homotopy. O

Theorem 7.4.5. If Y is (n — 1)-connected, A C X and g : A — Y is any map, then g
extends to a map (X, A)™ — Y and any two such extensions are homotopic.

Proof. Obstructions to an extension to (X, A)*+Y lie in H*!(X, A; 7(Y)) which is 0 for
kE < n—1, so we can extend to the n-skeleton by Theorem 7.4.3. On the other hand,
obstructions to homotopy between these extensions lie in H*(X, A; 74(Y')) which is 0 for
k < n — 1, but note that for any two extensions go, g1, [0""(g0)] = [6"(g1)] since these
classes are determined by go|yn-1 = g = 91| xn-1). O
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7.5 Hopf’s Theorem

The goal in this section is, for an n-dimensional CW-complex K, to completely describe
[K, S™] in terms of cohomology. Recall the notation of Section 2.4, where o denotes an n-cell
of K, f, : D" — K the characteristic map, fs, : S"! — K the attaching map along the
disk’s boundary and p, : K™ — S™ the map which collapses the n-skeleton around o.

Definition. For cells 0 € K™ and 7 € K"V, define the incidence number of o and 7
to be

[7,0] := det(p, o far)-

Then the cellular chain complex (C,, 9°!') consists of C,, = C,(K) = Z{0 | ¢ is an n-cell}
with boundary map /o = 3" _[r,0]T.

One defines a cellular cohomology for K (with coefficents in any coefficient module G) by
setting

C"(K;G) = Hom(C,(K), G)
§:cr—cogl
This makes (C*,§) into a cochain complex. Further, it follows from the universal coefficient
theorem (3.4.2) that H"(K;G) = H"(C*(K;G)), so cellular cohomology coincides with
ordinary cohomology for K.
We treat S™ and D"! as nested CW-complexes, with a 0-cell *, an n-cell e, and an

(n + 1)-cell e,4+1 such that de, 11 = e,. To study [K, S"], we will use cellular approximation
quite freely, which says:

(1) (Theorem 2.4.13) Any map ¢ : K — S™ is homotopic to a cellular map, i.e. a map
that restricts to K (1) — x.

(2) (Corollary 2.4.14) If ¢, : K — S™ are homotopic maps, then they are homotopic via
a cellular homotopy K x I — S™, i.e. such that (K x I)"™) — x.

Let e = e,. There is a commutative diagram

/

D —7 g
pro fr hw
S oo > S
QPC,T

where (., is the map in Lemma 2.4.15. We know that ¢ : K™ — S™ induces a linear map

i 1 Cp(K) — Cr(S™)
T — (deg e, )e.

Define ¢, € C"(K;Z) by c,(7) = deg @e. -, so that ¢, (1) = ¢, (7)e.
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Proposition 7.5.1. For any map ¢ : K — S", ¢, is a cocycle.
Definition. c, is called the obstruction cocycle for ¢ : K — S™.

This definition agrees with the definition of obstruction cocycle given in the previous
section (see Davis and Kirk for details).

Proposition 7.5.2. If o is an (n + 1)-cell of K and ¢ : K™ — S™, then

(0¢p)(0) = cp(00) = deg(p © foo)-
Proof. This follows from a diagram chase of the commutative diagram:

Cryr (D) Uo): ni1(K)

0

n(SnJrl)

]

Now suppose F : (K x I)™ — S" is a continuous map, with @o(z) = F(x,0) and
¢1(z) = F(x,1) for certain maps ¢; : K™ — S". We next compare c,, and c,,. Define
drp € C" Y K;Z) by dp(1) = cp(T x I) = deg Fj -1

Proposition 7.5.3. For any such F : (K x 1) — S and any n-cell 0 C K, we have

(0dr)(0) = deg(F o foxn) + (=1)"(Cor = C4o)()-

Proof. By Proposition 7.5.2, deg(F'o fyox1)) = cr(0(ox1)). Moreover, by definition c,, (¢) =
cr(o x {1}) and ¢,y (o) = cp(o x {0}). Finally, the boundary formula (Theorem 2.6.4(c))
gives

o xI)=00xI+(-1)"c x {1} = (—1)"c x {0}.
Combining these gives the desired formula. O
Note that if F': K™ x I — 5", then deg(F X faoxn) = 0. This implies:
Corollary 7.5.4. If pg, 1 : K — S™ are homotopic maps then [cy,| = [cp,] in H"(K;Z).

Thus we may replace any ¢ : K — S™ with a cellular approximation g : K — S™ and
define an obstruction class &, = [c,,| € H"(K;Z).

Theorem 7.5.5 (Hopf). Let K be a CW-complex of dimension d. Then for n = 1,d, there
s a bijective correspondence

[K :S" «— H"(K;Z)
] — &
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Proof. There are two steps to prove:
(1) ¢o and ¢y are homotopic if and only if &,, = &, .
(2) For any £ € H"(K;Z), there exists a map ¢ : K — S™ such that &, = ¢.

(1, = ) is given by Corollary 7.5.4. To prove ( <= ), assume {,, = ,,. By Corol-
lary 7.5.4, we may also assume both g, ¢; are cellular. Then there is some a € C"1(K)
such that Ja = (—=1)"*(c,, — c,y). Define F: K™ x 9T U K™D x [ — S™ as follows: F
takes K (™Y — x (so that it is a cellular map); Flrxqoy = ¢o and F|gxq1y = ¢1; and for any
(n —1)-cell 7 of K, deg F, ;x1 = a(7). Then by definition,

dp(T) =cp(T x I) =deg Fi rusr = a(T),
so we see that drp = a. Hence Proposition 7.5.3 implies that for any n-cell o,

(=1)""H (o, = cg)(0) = (6)(0)
= (ddr)(0)
= deg(F X foexn) + (1) (cpy — ) (0).

Therefore deg(F' X fawxrn) = 0, so by properties of degree, when n = d, F' extends over
K x I. When n = 1, the statement follows from the proof of (2) below.
(2) First suppose n = d. Let ¢ be a cocycle such that [¢] = . Then we have a sequence
of maps
K™ — KM /KD — A sm 2 g,

where the wedge product is taken over all n-cells 7 and the last map ¢ is given by the wedge
of each degc,(7). Then c,(7) = deg ., = (), so &, = £&. Now suppose n = 1. We can
get the same map ¢ : K — S as above but now we want to extend it over a 2-cell o.
By Proposition 7.5.2, the composition ¢ o Fy, : ST — S! has degree (dc)(c) = 0 since ¢ is a
cocycle. Therefore o Fy, extends over D?, so ¢ extends over . This gives us ¢ : K& — S!.
To extend this to the entirety of K, use the fact (Corollary 1.2.18) that any map S* — S?
extends over D¥ for any k > 1. This defines ¢ : K — S! as required, and clearly ¢, =c. O

This allows us to reprove the result in Example 7.3.3 concerning 7, (S™).
Corollary 7.5.6. The degree function deg : m,(S™) — Z is a bijection for alln > 1.

Corollary 7.5.7. For any CW-complex K, there is an isomorphism of groups
(K, S~ H'YK;Z).

7.6 Eilenberg-Maclane Spaces

Theorem 7.6.1. If G is an abelian group and n € N, then there exists a CW-complex
K(G,n) such that

G, k=n
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Definition. A space K(G,n) with 7,(K(G,n)) = G and 7,(K(G,n)) = 0 otherwise is called
an Eilenberg-Maclane space of type (G,n).

Note that by Hurewicz’s theorem (7.3.2), for such a space K(G,n) we have

- G ifk=n

Then by the universal coefficient theorem (3.4.2), H"(K (G, n); G) = Hom(H,(K(G,n);Z),G) =
Hom(G, G), and the latter group has a distinguished element 1 : G — G.

Definition. The fundamental class of an Eilenberg-Maclane space K(G,n) is the class
v € H"(K(G,n);G) corresponding to 1 € Hom(G, G).

Theorem 7.6.2. For a space X, define ®,¥ : [X, K(G,n)] - H"(X;G) by ® : [f] — f*
and U : [f] — the obstruction class to a homotopy between f and a constant map. Then
® = U and both maps are bijections and natural.

In particular, the natural isomorphism H™(X; G) = [X, K(G,n)] shows that cohomology
is a representable functor.

Example 7.6.3. K(Z,1) = S' by Corollary 1.2.18. Moreover, Corollary 7.5.7 says that
HY(X;Z) = [X, S"] for any CW-complex X, confirming the n = 1 case of Theorem 7.6.2.

Corollary 7.6.4. For any pair of abelian groups G, G, there are one-to-one correspondences
[K(G,n), K(G',n)]p «+— [K(G,n), K(G',n)] +— Hom(G,G").

Proof. Send a map f : K(G,n) — K(G',n) to f. : m,(K(G,n)) — m,(K(G’,n)) which by
definition is a map G — G’. Then by Theorem 7.6.2 and the universal coefficient theorem,

[K(G,n), K(G',n)] =2 H"(K(G,n);G") 2 Hom(H,(K(G,n);Z),G’) = Hom(G, G").
[

Corollary 7.6.5. If K and K’ are two FEilenberg-Maclane spaces for a pair (G,n), there
exists a homotopy equivalence K — K' which is unique up to homotopy and induces the
identity m,(K) — m,(K').

Definition. For integers n,m and abelian groups G,G’, a cohomology operation of type
(n,G,m,G") is a natural transformation

0:H"(— G) — H"(— ).

Suppose 6 is a cohomology operation. Then applying it to the fundamental class of
K(G,n) determines a class 6(:) € H™(K(G,n);G") = [K(G,n), K(G',m)]. Further, if
O(n,G,m,G") represents the set of all cohomology operations of this type, then evaluation
on ¢ induces a bijection

O(n,G,m,G") +— H™(K(G,n);G') = [K(G,n), K(G',m)].
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Example 7.6.6. It’s easy to compute K(Z/27,1) = RP> by considering the CW-structure
of RP*. One can in fact prove that H*(RP>;Z/27Z) = 7Z/2Z|x], the polynomial ring in one
variable with Z/2Z-coefficients generated by the fundamental class z € H'(RP>;Z/27Z). Tt
turns out that 22 € H?(RP>;Z/27Z) represents the “Steenrod square” cohomology operation,

HI(X;Z/2Z) — H2(X;Z/2Z)
a— o> =aUa.
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