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This book is intended mainly for graduate students, and will include abs-
tract homotopical algebra as well as a concrete treatment of the basic homo-
topy theory of simplicial sets. This first chapter establishes, with a new proof,
the classical Quillen model structure on simplicial sets. Further chapters will
treat covering spaces and the fundamental groupoid (including the Van Kampen
Theorem), bundles and classifying spaces, simplicial groups and groupoids and
the Dwyer-Kan Theorem, K(π, n)′s and Postnikov towers, Quillen model struc-
tures on diagrams and sheaves, homotopy limits and colimits, and bisimplicial
sets. There will be appendices on basic category theory, cartesian closed cate-
gories and compactly generated spaces, introductory topos theory with torsors
and descent, CW-complexes and geometric realization, and abstract homotopy
theory.



Chapter 1

The homotopy theory of
simplicial sets

In this chapter we introduce simplicial sets and study their basic homotopy
theory. A simplicial set is a combinatorial model of a topological space formed
by gluing simplices together along their faces. This topological space, called the
geometric realization of the simplicial set, is defined in section 1. Its properties
are established in Appendix D. In section 2 we discuss the nerve of a small
category.

The rest of the chapter is concerned with developing the basic ingredients
of homotopy theory in the context of simplicial sets. Our principal goal is to
establish the existence of the classical Quillen homotopy structure, which will
then be applied, in various ways, throughout the rest of the book. Thus, we
give the general definition of a Quillen structure in section 3 and state the main
theorem. In section 4 we study fibrations and the extremely useful concept of
anodyne extension due to Gabriel and Zisman [ ]. Section 5 is concerned with
the homotopy relation between maps. Next, section 6 contains an exposition
of the theory of minimal complexes and fibrations. These are then used in
section 7 to establish the main theorem, which is the existence of the classical
Quillen structure. The proof we give is different from those in the literature,
[ ] or [ ]; from [ ], for example, in that it is purely combinatorial, making
no use of geometric realization. However, none seems to be able to avoid the
use of minimal fibrations. In section 8, we introduce the homotopy groups
of a Kan complex, establish the long exact sequence of a fibration, and prove
Whitehead’s Theorem. We treat Milnor’s Theorem in section 9, which shows
that the category of Kan complexes and homotopy classes of maps is equivalent
to the category of CW-complexes and homotopy classes of maps. Finally, in
section 10, we show that the weak equivalences we used in the proof of the
Quillen structure are the same as the classical ones.
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2 CHAPTER 1. THE HOMOTOPY THEORY OF SIMPLICIAL SETS

1.1 Simplicial sets and their geometric realiza-
tions

The simplicial category ∆ has objects [n] = {0, . . . , n} for n ≥ 0 a nonnegative
integer. A map α : [n]→ [m] is an order preserving function.

Geometrically, an n-simplex is the convex closure of n+ 1 points in general
position in a euclidean space of dimension at least n. The standard, geometric
n-simplex ∆n is the convex closure of the standard basis e0, . . . , en of Rn+1.
Thus, the points of ∆n consists of all combinations

p =
n∑
i=0

tiei

with ti ≥ 0, and
∑n
i=0 ti = 1. We can identify the elements of [n] with the

vertices e0, . . . , en of ∆n. In this way a map α : [n] → [m] can be linearly
extended to a map ∆α : ∆n → ∆m. That is,

∆α(p) =
n∑
i=0

tieα(i)

Clearly, this defines a functor r : ∆→ Top.
A simplicial set is a functor X : ∆op → Set. To conform with traditional

notation, when α : [n] → [m] we write α∗ : Xm → Xn instead of Xα : X[m]→
X[n].

Many examples arise from classical simplicial complexes. Recall that a sim-
plicial complex K is a collection of non-empty, finite subsets (called simplices)
of a given set V (of vertices) such that any non-empty subset of a simplex is a
simplex. An ordering on K consists of a linear ordering O(σ) on each simplex
σ of K such that if σ′ ⊆ σ then O(σ′) is the ordering on σ′ induced by O(σ).
The choice of an ordering for K determines a simplicial set by setting

Kn = {(a0, . . . , an)|σ = {a0, . . . , an} is a simplex of K,

and a0 ≤ a1 ≤ . . . ≤ an in the ordering O(σ).}

For α : [n]→ [m], α∗ : Km → Kn is α∗(a0, . . . , am) = (aα(0), . . . , aα(n)).

Remark: An α : [n] → [m] in ∆ can be decomposed uniquely as α = εη,
where ε : [p]→ [m] is injective, and η : [n]→ [p] is surjective. Moreover, if εi :
[n− 1]→ [n] is the injection which skips the value i ∈ [n], and ηj : [n+ 1]→ [n]
is the surjection covering j ∈ [n] twice, then ε = εis . . . εi1 and η = ηjt . . . ηj1

where m ≥ is > . . . > i1 ≥ 0, and 0 ≤ jt < . . . < j1 < n and m = n− t+ s. The
decomposition is unique, the i’s in [m] being the values not taken by α, and the
j’s being the elements of [m] such that α(j) = α(j+1). The εi

′s and ηj
′s satisfy

the following relations:
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εjεi = εiεj−1 i < j
ηjηi = ηiηj+1 i ≤ j

ηjεi =

 εiηj−1

id
εi−1ηj

i < j
i = j or i = j + 1
i > j + 1

Thus, a simplicial set X can be considered to be a graded set (Xn)n≥0

together with functions di = εi∗ and sj = ηj∗ satisfying relations dual to those
satisfied by the εi

′s and ηj
′s. Namely,

didj = dj−1di i < j
sisj = sj+1si i ≤ j

disj =

 sj−1di

id
sjdi−1

i < j
i = j or i = j + 1
i > j + 1

This point of view is frequently adopted in the literature.
The category of simplicial sets is [∆op, Set], which we often denote simply

by S. Again for traditional reasons, the representable functor ∆(, [n]) is written
∆[n] and is called the standard (combinatorial) n-simplex. Conforming to this
usage, we use ∆ : ∆ → S for the Yoneda functor, though if α : [n] → [m], we
write simply α : ∆[n]→ ∆[m] instead of ∆α.

Remark: We have

∆[n]m = ∆([m], [n]) = {(a0, . . . , am)|0 ≤ ai ≤ aj ≤ n for i ≤ j}

Thus, ∆[n] is the simplicial set associated to the simplicial complex whose n-
simplices are all non-empty subsets of {0, . . . , n} with their natural orders.
the boundary of this simplicial complex has all proper subsets of {0, . . . , n} as
simplices. Its associated simplicial set is a simplicial (n-1)-sphere ∆̇[n] called
the boundary of ∆[n]. Clearly, we have

∆̇[n]m = {α : [n]→ [m]|α is not surjective}

∆̇[n] can also be described as the union of the (n-1)-faces of ∆[n]. That is,

∆̇[n] =
n⋃
i=0

∆i[n]

where ∆i[n] = im(εi : ∆[n − 1] → ∆[n]). Recall that the union is calculated
pointwise, as is any colimit (or limit) in ∆− Set [A 4.4].

Using the universal property (A.5.4) of ∆ − Set, the functor r : ∆ → Top
can be extended to a functor r] : S → Top, called the geometric realization.
Following Milnor [ ], we write |X| instead of r]X for the geometric realization
of a simplicial set X. Thus, we have a commutative triangle
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∆

r !!C
CCC

CCC
C

∆ // S

| |~~| |
| |
| |
| |

Top

where
|X| = lim−→∆n

∆[n]→X

As in A.5.4, r] = | | has a right adjoint r]. For any topological space T ,
r]T is the singular complex sT of T . That is,

(r]T )[n] = Top(∆n, T ) = (sT )n

Using the fact that a left adjoint preserves colimits (A.4.5), we see that the geo-
metric realization functor | | : S → Top is colimit preserving. A consequence
of this is that |X| is a CW-complex. Furthermore, if Top is replaced by Topc
- the category of compactly generated spaces - then | | is also left-exact, i.e.
preserves all finite limits. See Appendix B for the basic properties of Topc, and
Appendix D for CW-complexes and the proofs of the above facts.

1.2 Simplicial sets and categories

Denote by Cat the category of small categories and functors. There is a functor
∆→ Cat which sends [n] into [n] regarded as a category via its natural ordering.
Again, by the universal property of ∆− Set this functor can be extended to a
functor R : S→ Cat so as to give a commutative triangle

∆

!!D
DDD

DDD
D

∆ // S

R}}{ {
{ {
{ {
{ {

Cat

where

RX = lim−→[n]
∆[n]→X

As before, R has a right adjoint N . If A is a small category, NA is the nerve
of A and

(NA)n = Cat([n],A)

An n-simplex x of a simplicial set X is said to be degenerate if there is
a surjection η : [n] → [m] with m < n and an m-simplex y such that x =
η ∗ y. Otherwise, we say x is non-degenerate. Consider the case when X is the
nerve NP of a partially ordered set P . Then an n-simplex of NP is an order-
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preserving mapping x : [n]→ P which is non-degenerate iff it is injective. Since
N preserves monomorphisms, the singular n-simplex ∆[n]→ NP associated to
x is also injective. Thus, the image of a non-degenerate n-simplex of NP is a
standard n-simplex.

Suppose P is finite. Call a totally ordered subset c of P a chain of P . Then
there are a finite number c1 . . . cr of maximal chains of P , and every chain c
is contained in some ci. If ci contains ni + 1 elements we can associate to it
a unique non-degenerate simplex xi : [ni] → P whose image in P is ci. Each
non-degenerate simplex of NP is a face of some xi. The xi together yield a
commutative diagram

∑
1≤i<j≤r [nij ]

µ //

ν
//
∑

1≤i≤r[ni] // P

where nij + 1 is the number of elements in ci ∩ cj , and µ, respectively ν, is
defined by the inclusion of ci ∩ cj in ci, respectively cj . Moreover, applying N ,
we obtain an exact diagram∑

1≤i<j≤r ∆[nij ]
//
//
∑

1≤i≤r ∆[ni] // NP

in S, i.e. a diagram which is both a coequalizer and a kernel pair. To see this,
simply evaluate the diagram at any m ≥ 0, and check that the result is exact
as a diagram in Set. We call this the finite presentation of NP corresponding
to the maximal chains of P .

We examine in detail the example P = [p] × [q] as this will be of use to
us later. We claim first that a maximal chains of [p] × [q] can be pictured as
a path from (0, 0) to (p, q) in the lattice of points (m,n) in the plane with
integral coordinates where at each point (i, j) on the path, the next point is
either immediately to the right, or up. An example follows for p = 3, q = 2.

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 1) (1, 1) // (2, 1) // (3, 1)

OO

(0, 0) // (1, 0)

OO

(2, 0) (3, 0)

The number of elements in each of these chains is p + q + 1 and they are
clearly the maximal ones, since any maximal chain must contain (0, 0) and (p, q),
and whenever it contains (i, j) it must contain either (i+ 1, j) or (i, j + 1).

We can identify these chains with (p, q)-shuffles (σ; τ), which are partitions
of the set (1, 2, . . . , p + q) into two disjoint subsets σ = (σ1 < . . . < σp) and
τ = (τ1 < . . . < τq). Such a partition describes a shuffling of a pack of p cards
through a pack of q cards, putting the cards of the first pack in the positions
σ1 < . . . < σp, and those of the second in the positions τ1 < . . . < τq. The
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identification proceeds as follows. Given a maximal chain c, lets the σ’s be the
sums of the coordinates of the right-hand endpoints of the horizontal segments.
The τ ’s are then the sums of the coordinates of the upper endpoints of the
vertical segments. Thus, the shuffle associated to the maximal chain above is
(1, 3, 4; 2, 5). On the other hand, given a (p, q) shuffle (σ; τ), form a chain by
selecting (0, 0), then (0, 1) if 1 ∈ σ and (0, 1) if 1 ∈ τ . In general, if (i, j) has
been selected, select (i+ 1, j) if i+ j+ 1 ∈ σ and (i, j+ 1) if i+ j+ 1 ∈ τ . Since

the correspondence is clearly 1− 1, and there are

(
p+ q
p

)
such shuffles, this is

also the number of maximal chains. We thus obtain the presentation

∑
1≤i<j≤r ∆[nij ]

//
//
∑

1≤i≤r ∆[p+ q] // ∆[p]×∆[q]

of N([p] × [q]) ' ∆[p] × ∆[q], where r =

(
p+ q
p

)
. Taking the geometric rea-

lization of this presentation yields a triangulation of ∆p × ∆q into

(
p+ q
p

)
(p+q)-simplices.

1.3 Quillen homotopy structures

Let K be a category with finite limits and colimits. A Quillen homotopy struc-
ture on K (also called a Quillen model structure on K) consists of three classes
of mappings of K called fibrations, cofibrations, and weak equivalences. These
are subject to the following axioms:

Q1.(Saturation) If f : X → Y and g : Y → Z are mappings of K, and any
two of f , g or gf are weak equivalences, then so is the third. This is sometimes
called the “three for two” property.

Q2.(Retracts) Let

X

f

��

i // X ′

f ′

��

u // X

f

��
Y

j
// Y ′ v

// Y

be a commutative diagram with ui = idX and vj = idY . Then if f ′ is a fibra-
tion, cofibration or weak equivalence, so is f .

Q3.(Lifting) If
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A

i

��

// X

f

��
B

>>~
~

~
~

// Y

is a commutative diagram in which i is a cofibration and f is a fibration, then
if i or f is a weak equivalence, there is a dotted lifting making both triangles
commute.

Q4.(Factorization) Any map f : X → Y can be factored as

X

f   @
@@

@@
@@

i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is a cofibration and p is a fibration in two ways: one in which i is a
weak equivalence, and one in which p is a weak equivalence.

The homotopy structure is said to be proper, if, in addition, the following
axiom is satisfied.

Q5. If

X ′

w′

��

// X

w

��
Y ′

f
// Y

is a pullback diagram, in which f is a fibration and w is a weak equivalence,
then w′ is a weak equivalence. Dually, the pushout of a weak equivalence by a
cofibration is a weak equivalence.

An example of a Quillen homotopy structure is obtained by taking K to be
Topc. A map f : X → Y is a weak equivalence if π0(f) : π0(X) → π0(Y )
is a bijection, and for n ≥ 1 and x ∈ X, πn(f) : πn(X,x) → πn(Y, fx) is an
isomorphism. Fibrations are Serre fibrations, i.e. maps p : E → X with the
covering homotopy property (CHP) for each n-simplex ∆n, n ≥ 0. This means
that if h : ∆n × I → X is a homotopy (I = [0, 1]), and f : ∆n → E is such
that pf = h0, then there is a “covering homotopy” h̄ : ∆n × I → E such that
h̄0 = f , and ph̄ = h. Cofibrations are mappings i : A→ B having the left lifting
property (LLP) with respect to those fibrations p : E → X which are also weak
equivalences. That is, if

A

i

��

// E

p

��
B

>>~
~

~
~

// X
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is a commutative diagram where p is a fibration and a weak equivalence, then
there is a dotted lifting making both triangles commute. Details of the proof
can be found in Quillen [ ] (for the case Top which is the same as Topc), or see
exercise [ ] at the end of the chapter.

Our principal example is in S, the category of simplicial sets. Here, the
weak equivalences are geometric homotopy equivalences, by which we mean a
map f : X → Y such that |f | : |X| → |Y | is a homotopy equivalence, i.e. there
is a map f ′ : |Y | → |X| such that f ′|f | is homotopic to id|X|, and |f |f ′ is
homotopic to id|Y |. The cofibrations are monomorphisms.

To define the fibrations, recall that the ith face of ∆[n] (n ≥ 1, 0 ≤ i ≤ n) is
∆i[n] = im(εi : ∆[n− 1]→ ∆[n]). The kth horn of ∆[n] is

Λk[n] =
⋃
i6=k

∆i[n]

The geometric realization of Λk[n] is the union of all those (n-1)-dimensional
faces of ∆n that contain the kth vertex of ∆n. For example,

0 1

4 4 4 4 4 4 4 4 4 4 4

2

is the geometric realization of Λ1[2].

Definition 1.3.1 A Kan fibration is a map p : E → X of simplicial sets ha-
ving the right lifting property (RLP) with respect to the inclusions of the horns
Λk[n]→ ∆[n] for n ≥ 1, and 0 ≤ k ≤ n.

That is, if

Λk[n]

��

// E

p

��
∆[n]

=={{{{{
// X

is a commutative diagram with n ≥ 1, and 0 ≤ k ≤ n, then there is a dotted
lifting making both triangles commute. We express this by saying “any horn in
E which can be filled in X, can be filled in E”. For example, if p : E → X is a
Serre fibration in Topc, then sp : sE → sX is a Kan fibration in S. This is so,
because a diagram

Λk[n]

��

// sE

sp

��
∆[n] // sX
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is equivalent to a diagram

|Λk[n]|

��

// E

p

��
|∆[n]|

<<yyyyy
// X

and |Λk[n]| → |∆[n]| is homeomorphic to ∆n−1 → ∆n−1 × I.
The rest of the chapter will be devoted to the proof of the following theorem.

Theorem 1.3.1 The fibrations, cofibrations and weak equivalences defined above
form a proper Quillen homotopy structure on S.

1.4 Anodyne extensions and fibrations

A class A of monomorphisms is said to be saturated if it satisfies the following
conditions:

(i.) A contains all isomorphisms.

(ii.) A is closed under pushouts. That is, if

A

i

��

f // A′

i′

��
B

f
// B′

is a pushout diagram, and i ∈ A, then i′ ∈ A.

(iii.) A is closed under retracts. That is, if

A

i

��

j // A′

i′

��

u // A

i

��
B

k
// B′ v

// B

is a commutative diagram with uj = idA, vk = idB and i′ ∈ A, then i ∈ A.

(iv.) A is closed under coproducts. That is, if (Al
il−→ Bl|l ∈ L) is a family of

monomorphisms with il ∈ A for each l ∈ L, then∑
l∈L

il :
∑
l∈L

Al −→
∑
l∈L

Bl

is in A.
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(v.) A is closed under countable composition. That is, if

(An → An+1|n = 1, 2, . . . )

is a countable family of morphisms of A, then

µ1 : A1 −→ lim−→
n≥1

An

is a morphism of A.

The intersection of all saturated classes containing a given set of monomor-
phisms Γ is called the saturated class generated by Γ.

For example, if m : A→ X is an arbitrary monomorphism of S, then (D.4.9)∑
e(X−A)n

∆̇[n]

��

//
∑
e(X−A)n

∆[n]

��
Skn−1(X) ∪A // Skn(X) ∪A

is a pushout for n ≥ −1. Furthermore,

X = lim−→
n≥−1

(Skn(X) ∪A) and µ−1 : Sk−1(X) ∪A −→ lim−→
n≥−1

(Skn(X) ∪A)

is m : A→ X. Thus, the saturated class generated by the family

(∆̇[n]→ ∆[n]|n ≥ 0)

is the class of all monomorphisms.
The saturated class A generated by the family

(Λk[n]→ ∆[n]|0 ≤ k ≤ n, n ≥ 1)

is called the class of anodyne extensions.
Evidently, from the nature of conditions (i.) - (v.) we can conclude

Proposition 1.4.1 A map p : E → X is a (Kan) fibration iff it has the right
lifting property (RLP) with respect to all anodyne extensions.

Definition 1.4.1 A map p : E → X is said to be a trivial fibration if it has the
RLP with respect to the family (∆̇[n] → ∆[n]|n ≥ 0) or, equivalently as above,
with respect to the family of all monomorphisms.

Theorem 1.4.1 Any map f : X → Y of S can be factored as

X

f   @
@@

@@
@@

i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is anodyne and p is a fibration.
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Proof: Consider the set L of all commutative diagrams

Λk[n]

��

// X

f

��
∆[n] // Y

with n ≥ 1 and 0 ≤ k ≤ n. Summing over L yields a commutative diagram∑
L Λk[n]

i

��

// X

f

��∑
L ∆[n] // Y

with i anodyne. In the pushout ∑
L Λk[n]

i

��

// X

i0

��∑
L ∆[n] // X1

i0 is anodyne, and we have a commutative diagram

X

f ��@
@@

@@@
@@

i0 // X1

f1
~~| | |
| | |
| |

Y

Now repeat the process with f1, obtaining

X

f   B
BB

BB
BBB
i0 // X1 i1 //

f1

��

X2

f2

}}{ { {
{ { {

{ {

Y

with i1 anodyne, etc. Let X0 = X, and f0 = f . Putting E = lim−→
n≥0

Xn let

p : E → Y be the map induced by fn on each Xn. Writing i for the map
µ0 : X → E, we obtain a commutative diagram

X

f   @
@@

@@
@@

i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is anodyne. It remains to show that p is a fibration. So let
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Λk[n]

��

h // E

p

��
∆[n] // Y

be a commutative diagram with n ≥ 1 and 0 ≤ k ≤ n. Λk[n] has only finitely
many non-degenerate simplices, so h factors through Xn for some n ≥ 0. But
then we have a lifting into Xn+1

Λk[n]

��

h // Xn

fn

��

in // Xn+1

fn+1

||y y
y y
y y
y y y

∆[n]

66llllllll // Y

and hence a dotted lifting in

Λk[n]

��

h // E

p

��
∆[n]

=={
{

{
{

// Y

Corollary 1.4.1 i : A → B is anodyne if it has the LLP with respect to the
class of all fibrations.

Proof: Factor i in the form

A

i ��@
@@

@@
@@

j // E

p
��~ ~
~ ~
~ ~
~

B

where j is anodyne and p is a fibration. Since i has the LLP with respect to p,
we can find a dotted lifting in

A

i

��

j // E

p

��
B

k

>>~
~

~
~
idB

// B

But then i is a retract of j, so i is anodyne.
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Theorem 1.4.2 Any map f : X → Y of S can be factored as

X

f   @
@@

@@
@@

i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is a monomorphism, and p is a trivial fibration.

Proof: Repeat the proof of Theorem 1.4.1 using the family (∆̇[n]→ ∆[n]|n ≥ 0)
instead of the family (Λk[n]→ ∆[n]|0 ≤ k ≤ n, n ≥ 1).

Definition 1.4.2 A simplicial set X is called a Kan complex if X → 1 is a
fibration.

As an example, we have the singular complex sT of any topological space
T . Another important example is provided by the following theorem.

Theorem 1.4.3 (Moore) Any group G in S is a Kan complex.

Theorem 1.4.3, together with the following lemma, provides many examples
of fibrations.

Lemma 1.4.1 The property of being a fibration, or trivial fibration, is local.
That is, if p : E → X and there exists a surjective map q : Y → X such that in
the pullback

E′

p′

��

// E

p

��
Y q

// X

p′ is a fibration, or trivial fibration, then p is a fibration, or trivial fibration.

The straightforward proof is left as an excersise.

Definition 1.4.3 A bundle with fiber F in S is a mapping p : E → X such
that for each n-simplex ∆[n]→ X of X, there is an isomorphism φ in

∆[n]× F

π1 $$JJ
JJJ

JJJ
J

φ // ∆[n]×X E

π1yys s s
s s s

s s s
s

∆[n]
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Let Y =
∑

∆[n]→X ∆[n]. Then the cannonical map Y → X is surjective.
Since π1 : Y ×F → Y is clearly a fibration when F is a Kan complex, it follows
from Lemma 1.4.1 that a bundle with Kan fiber F is a fibration. In particular,
a principal G-bundle, which is a bundle with fiber a group G, is a fibration.

Proof of Theorem 1.4.3: We give a new proof of the theorem, which perhaps
involves less extensive use of the simplicial identities than the classical one.
Thus, let G be a group and let f : Λk[n] → G. We want to extend f to ∆[n]
and we proceed by induction on n. The case n = 1 is obvious, since each Λk[1]
is ∆[0] and a retract of ∆[1]. For the inductive step, let Λk,k−1[n] be Λk[n] with
the (k − 1)-st face removed (if k = 0 use Λ0,1[n]). Then there is a commutative
diagram of inclusions

Λk,k−1[n]

��

// Λk−1[n− 1]×∆[1]

��
∆[n] // ∆[n− 1]×∆[1]

whose geometric realizations in dimension 3 look like

jjjjjjjjjjjjjjjjjjj

TTTTT
TTTTT

TTTTT
TTTT

??
??

??
??

?

���������

//

jjjjjjjjjjjjjjjjjjj

TTTTT
TTTTT

TTTTT
TTTT

? ? ? ? ? ? ? ? ?

� �
� �
� �
� �
�

??
??

??
??

?

??
??

??
??

?

���������

��

jjjjjjjjjjjjjjjjjjj

TTTTT
TTTTT

TTTTT
TTTT

??
??

??
??

?

���������

//

jjjjjjjjjjjjjjjjjjj

TTTTT
TTTTT

TTTTT
TTTT

? ? ? ? ? ? ? ? ?

� �
� �
� �
� �
�

??
??

??
??

?

���������

��

Now f restricted to Λk,k−1[n] can be extended to Λk−1[n−1]×∆[1], since the
inclusion Λk,k−1[n]→ Λk−1[n− 1]×∆[1] is an anodyne extension of dimension
n− 1. Moreover, this extension can be further extended to ∆[n− 1]×∆[1] by
exponential adjointness and induction, since G∆[1] is a group. Restricting this
last extension to ∆[n] we see that f restricted to Λk,k−1[n] can be extended to
∆[n].

We are thus in the following situation. We have two subcomplexes Λk,k−1[n]
and ∆[n−1] of ∆[n] where the inclusion ∆[n−1]→ ∆[n] is εk−1. Furthermore,
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we have a map f : Λk[n] = Λk,k−1[n] ∪ ∆[n − 1] → G whose restriction to
Λk,k−1[n] can be extended to ∆[n]. Now put r = ηk−1 : ∆[n]→ ∆[n− 1]. Then
r|∆[n − 1] = id and it is easy to see that r : ∆[n] → ∆[n − 1] → Λk[n] maps
Λk,k−1[n] into itself. The following Lemma then completes the proof.

Lemma 1.4.2 Let A and B be subcomplexes of C, and r : C → B a mapping
such that r = id on B and r : C → B → A ∪ B maps A into itself. Let
f : A∪B → G where G is a group. Then if f |A can be extended to C, f can be
extended to C

Proof: Extend f |A to g : C → G, and define h : C → G by h(x) =
g(x)g(r(x))−1f(r(x)).

1.5 Homotopy

Definition 1.5.1 Let X be a simplicial set. In the coequaliser

X1

d0
//

d1
// X0

// π0(X)

π0(X) is called the set of connected components of X.

We remark that this π0(X) is the same as the set of connected components
of X considered as a set-valued functor and defined in A.5, i.e. π0(X) = lim−→X.

For the proof, see excercise [ ] at the end of the chapter.
Let us write the relation on X0 determined by d0 and d1 as x ∼ y, saying

“x is connected to y by a path”. That is, writing I for ∆[1] and (0) ⊆ I,
respectively (1) ⊆ I, for the images of ε1 : ∆[0] → ∆[1] and ε0 : ∆[0] → ∆[1],
then x ∼ y iff there is a map α : I → X such that α(0) = x, and α(1) = y.
In general, x ∼ y is not an equivalence relation, so that if we denote the map
X0 → π0(X) by x 7→ x̄ then x̄ = ȳ iff there is a “path of length n’ connecting x
and y”, i.e, we have a diagram of the form

x→ x1 ← x2 → x3 · · ·xn−1 → y

x ∼ y is an equivalence relation, however, when X is a Kan complex. For
suppose α : I → X and β : I → X are such that α(1) = β(0). Let s : Λ1[2]→ X
be the unique map such that sε0 = β and sε2 = α. A picture is given by

0 α 1

β

4 4 4 4 4 4 4 4 4 4 4

2

γ
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If X is Kan, there is a t : ∆[2]→ X extending s, and γ = tε1 connects α(0) to
β(1), showing transitivity. Using Λ0[2] and the constant (degenerate) path α(0)
as in

0 α 1

β

4
4
4
4
4
4

2

α(0)


 


 


 


 


 




yields the symmetry.
A useful fact is the following.

Proposition 1.5.1 If X and Y are simplicial sets, the canonical mapping

π0(X × Y ) −→ π0(X)× π0(Y )

is a bijection.

Proof: The canonical mapping, in the notation defined above, is given by
(x, y) 7→ (x̄, ȳ). It is clearly surjective. If (x̄1, ȳ1) = (x̄2, ȳ2) then x̄1 = x̄2, and
ȳ1 = ȳ2. Thus, there is a path of length n connecting x1 to x2, and a path
of length m connecting y1 to y2. By using constant paths, we we may assume
n = m, so that (x1, y1) = (x2, y2) and the map is injective.

Definition 1.5.2 If f, g : X → Y , we say f is homotopic to g if there is a map
h : X × I → Y such that h0 = f and h1 = g.

Clearly, we can interpret a homotopy h as a path in Y X such that h(0) = f
and h(1) = g. As above, the relation of homotopy among maps is not an equi-
valence relation in general (see excercise [ ] for an example), but it is when Y X

is Kan. We will show below that Y X is Kan when Y is, which, by adjointness,
amounts to showing that each Λk[n]×X → ∆[n]×X is anodyne.

We denote by ho(S) the category of Kan complexes and homotopy classes of
maps. That is, its objects are Kan complexes, and the set of morphisms between
two Kan complexes X and Y is [X,Y ] = π0(Y X). Composition is defined as
follows. Given X, Y and Z, there is a map Y X × ZY → ZX , which is the
exponential transpose of the mapping

Y X × ZY ×X ' ZY × Y X ×X id×ev→ ZY × Y ev→ Z

The composition in ho(S), [X,Y ]× [Y,Z]→ [X,Z], is obtained by applying π0

to this map, using Proposition 1.5.1.
Notice that an isomorphism of ho(S) is a homotopy equivalence, i.e. X ' Y

in ho(S) iff there are mappings f : X → Y and f ′ : Y → X such that ff ′ ∼ idY
and f ′f ∼ idX .
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ho(S) has a number of different descriptions, as we will see. For example, it
is equivalent to the category of CW-complexes and homotopy classes of maps.

Returning to the problem of showing that Y X is Kan when Y is, we will, in
fact, prove the following more general result. Let k : Y → Z be a monomorphism
and suppose p : E → X. Denote the pullback of Xk and pY by

(k, p)

��

// EY

pY

��
XZ

Xk
// XY

(k, p) is the “object of diagrams” of the form

Y

k

��

// E

p

��
Z // X

The commutative diagram

EZ

PZ

��

Ek // EY

pY

��
XZ

Xk
// XY

gives rise to a map k|p : EZ → (k, p), and we have

Theorem 1.5.1 If p : E → X is a fibration, then k|p : EZ → (k, p) is a
fibration, which is trivial if either k is anodyne, or p is trivial.

Proof: Let i : A → B be a monomorphism. The problem of finding a dotted
lifting in

A

i

��

// EZ

k|p
��

B

=={
{

{
{

// (k, p)

coincides with the problem of finding a dotted lifting in the adjoint transposed
diagram

(A× Z) ∪ (B × Y )

��

// E

p

��
B × Z

77ooooooo
// X
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which exists for any i if p is trivial. By Theorem 1.5.2, below, the left-hand
vertical map is anodyne if either i or k is, which will complete the proof.

Taking k to be the identity yields, in particular,

Corollary 1.5.1 If p : E → X is a fibration, so is pY : EY → XY for any Y.

This, of course, generalizes the original statement that XY is a Kan complex
when X is.

Let i : A → B, and k : Y → Z be monomorphisms. Then we have i × Z :
A×Z → B×Z and B×k : B×Y → B×Z, and we write i ? k for the inclusion
(A× Z) ∪ (B × Y )→ B × Z.

Theorem 1.5.2 (Gabriel-Zisman) If i is anodyne, so is i ? k.

For the proof of Theorem 1.5.2 we need the following auxiliary result. Recall
that we denoted by A the class of anodyne extensions, which is the saturated
class generated by all the inclusions Λk[n] → ∆[n] for n ≥ 1 and 0 ≤ k ≤ n.
Denote by a the anodyne extension (e)→ ∆[1] and by in the inclusion ∆̇[n]→
∆[n]. Now let B be the saturated class generated by all the inclusions

a ? in : ((e)×∆[n]) ∪ (∆[1]× ∆̇[n]) −→ ∆[1]×∆[n]

for e = 0, 1 n ≥ 1. ∆[1]×∆[n] is called a prism and ((e)×∆[n])∪(∆[1]×∆̇[n])
an open prism. For example, the geometric realization of the inclusion

a ? i1 : ((1)×∆[1]) ∪ (∆[1]× ∆̇[1]) −→ ∆[1]×∆[1]

is

(0, 0) (1, 0)

(1, 1)(0, 1)

//

(0, 0) (1, 0)

(1, 1)(0, 1)

Finally, we denote by C the saturated class generated by all inclusions

a ? m : ((e)× Y ) ∪ (∆[1]×X) −→ ∆[1]× Y

where m : X → Y is a monomorphism of S and e = 0, 1.

Theorem 1.5.3 B ⊆ A and A = C

With Theorem 1.5.3, whose proof we give shortly, we can complete the proof
of Theorem 1.5.2.
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Proof of Theorem 1.5.2: Let k : Y → Z be an arbitrary monomorphism
of S, and denote by D the class of all monomorphisms i : A → B such that
i ? k : (A × Z) ∪ (B × Y ) → B × Z is anodyne. D is clearly saturated, so it
suffices to show that C ⊆ D since A = C.

Thus, let m′ : Y ′ → Z ′ be a monomorphism of S, and consider the inclusion
a ? m′ : ((e)× Z ′) ∪ (∆[1]× Y ′) −→ ∆[1]× Z ′ of C. Then

(a ?m′) ? k : (((e)×Z ′)∪ (∆[1]×Y ′))×Z ∪ (∆[1]×Z ′)×Y −→ (∆[1]×Z ′)×Z

is isomorphic to

a ? (m′ ? k) : ((e)× Z ′ × Z) ∪∆[1]× (Y ′ × Z ∪ Z ′ × Y ) −→ ∆[1]× (Z ′ × Z)

which is in C, and hence anodyne. It follows that a ? m′ is in D, which proves
the theorem.

Proof of Theorem 1.5.3:

B ⊆ A: Taking e = 1, we want to show the inclusion

a ? in : ((1)×∆[n]) ∪ (∆[1]× ∆̇[n]) −→ ∆[1]×∆[n]

is anodyne. From section 2, we know that the top dimensional non-degenerate
simplices of ∆[1] ×∆[n] correspond, under the nerve N , to the injective order-
preserving maps σj : [n+ 1]→ [1]× [n] whose images are the maximal chains

((0, 0), . . . , (0, j), (1, j), . . . , (1, n))

for 0 ≤ j ≤ n. As to the faces of the σj , we see that dj+1σj = dj+1σj+1 with
image

((0, 0), . . . , (0, j), (1, j + 1), . . . , (1, n))

for 0 ≤ j ≤ n. Also, diσj ∈ ∆[1]× ∆̇[n] for i 6= j, j + 1, d0σ0 ∈ (1)×∆[n] and
dn+1σn ∈ (0)×∆[n].

So, we first attach σ0 to the open prism ((1) ×∆[n]) ∪ (∆[1] × ∆̇[n]) along
Λ1[n+ 1] since all the faces diσ0 except d1σ0 are already there. Next we attach
σ1 along Λ2[n+ 1] since now d1σ1 = d1σ0 is there, and only d2σ1 is lacking. In
general, we attach σj along Λj+1[n + 1] since djσj = djσj−1 was attached the
step before, and only dj+1σj is lacking. Thus, we see that the inclusion of the
open prism in the prism is a composite of n+1 pushouts of horns. For example,
the filling of the inclusion

a ? i1 : ((1)×∆[1]) ∪ (∆[1]× ∆̇[1]) −→ ∆[1]×∆[1]

above proceeds as follows:
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(0, 0) (1, 0)

(1, 1)(0, 1)

//

(0, 0) (1, 0)

(1, 1)(0, 1)
�����������������

σ0

(0, 0) (1, 0)

(1, 1)(0, 1)
�����������������

σ0

σ1

//

When e = 0, we first attach σn, and work backwards to σ0.

C ⊆ A: We proved above that a ? in is anodyne. Thus, a ? in has the left lifting
property (LLP) with respect to any fibration p : E → Z. By adjointness, in
has the LLP with respect to a|p. But then any member of the saturated class
generated by the in, i.e. any monomorphism m : X → Y , has the LLP with
respect to a|p. Thus, again by adjointness, a ? m has the LLP with respect to
p, and hence is anodyne.

A ⊆ C: For 0 ≤ k < n, let sk : [n] → [1] × [n] be the injection sk(i) = (1, i)
and rk : [1] × [n] → [n] the surjection given by rk(1, i) = i, and rk(0, i) = i
for i ≤ k, rk(0, i) = k i ≥ k. Clearly, rksk = id[n]. It is easy to check that

Nsk : ∆[n]→ ∆[1]×∆[n] induces a map Λk[n]→ ((0)×∆[n])∪ (∆[1]×Λk[n])
and Nrk : ∆[1]×∆[n]→ ∆[n] a map ((0)×∆[n]) ∪ (∆[1]×Λk[n])→ Λk[n]. It
follows that we have a retract

Λk[n]

��

// ((0)×∆[n]) ∪ (∆[1]× Λk[n])

��

// Λk[n]

��
∆[n] // ∆[1]×∆[n] // ∆[n]

The middle vertical map is in C, so the horns Λk[n]→ ∆[n] for k < n are in C.
For k = n, or in general k > 0, we use the inclusion uk : [n] → [1] × [n] given
by uk(i) = (0, i) and the retraction vk : [1] × [n] → [n] given by vk(0, i) = i,
vk(1, i) = k if i ≤ k and vk(1, i) = i for i ≥ k.

An important consequence of Theorem 1.5.2 is the covering homotopy ex-
tension property (CHEP) for fibrations, which is the statement of the following
proposition.

Proposition 1.5.2 Let p : E → X be a fibration, and h : Z × I → X a
homotopy. Suppose that Y → Z is a monomorphism, and h′ : Y × I → E is a
lifting of h to E on Y × I, i.e. the diagram
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Y × I

��

h′ // E

p

��
Z × I

h
// X

commutes. Suppose further that f : Z × (e) → E is a lifting of he(e = 0, 1) to
E, i.e.

Z × (e)

��

f // E

p

��
Z × I

h
// X

commutes. Then there is a homotopy h̄ : Z × I → E, which lifts h, i.e. ph̄ = h,
agrees with h′ on Y × I, and is such that h̄e = f .

Proof: The given data provides a commutative diagram

(Y × I) ∪ (Z × (e))

��

// E

p

��
Z × I

h̄

77ooooooo
h

// X

which has a dotted lifting h̄ by Theorem 1.5.2, since (e)→ I is anodyne.

We establish now several applications of the CHEP, which will be useful
later. To begin, let i : A→ B be a monomorphism of S.

Definition 1.5.3 A is said to be a strong deformation retract of B if there is
a retraction r : B → A and a homotopy h : B × I → B such that ri = idA,
h0 = idB, h1 = ir, and h is “stationary on A”, meaning

A× I

π1

$$II
III

III
II

// B × I h // B

A

i

<<xxxxxxxxx

commutes.

Proposition 1.5.3 If i : A→ B is anodyne, and A and B are Kan complexes,
then A is a strong deformation retract of B.

Proof: We get a retraction as a dotted filler in
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A

idA

��

i // B

r
��~
~
~
~

A

The required homotopy h : B× I → B is obtained as the exponential transpose
of the dotted lifting in the diagram

A

i

��

iπ1 // BI

��
B

(idB,ir)
//

::vvv
vv

B((0)+(1))

where the right-hand vertical mapping is a fibration by Theorem 1.5.1.

Proposition 1.5.4 If i : A → B is a monomorphism such that A is a strong
deformation retract of B, then i is anodyne.

Proof: Let r : B → A be a retraction, and h : B× I → B a strong deformation
between idB and ir. If a diagram

A

i

��

a // E

p

��
B

>>~
~

~
~

b
// X

is given with p a fibration, consider

A× I
i×I

��

π1 // A

i

��

a // E

p

��
B × I

h
// B

b
// X

A lifting of bh at 1 is provided by ar : B → E, so lift all of bh by the CHEP,
and take the value of the lifted homotopy at 0 as a dotted filler in the original
diagram. i is then anodyne by Corollary 1.4.1

Proposition 1.5.5 A fibration p : E → X is trivial iff p is the dual of a strong
deformation retraction. That is, iff there is an s : X → E and h : E × I → E
such that ps = idX , h0 = idE, h1 = sp, and

E × I
π1

��

h // E

p

��
E p

// X
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commutes.

Proof: If p is trivial, construct s and h as dotted liftings in

0

��

// E

p

��
X

s

>>}
}

}
}

=
// X

and

E × ((0) + (1))

��

(idX ,sp)// E

p

��
E × I

h

88qqqqqq
pπ1

// X

On the other hand, if p is the dual of a strong deformation retraction as above,
and a diagram

A

i

��

a // E

p

��
B

b
// X

is given, with i an arbitrary monomorphism, lift provisionally by sb, then adjust
by the CHEP as in Proposition 1.5.4.

We can use Proposition 1.5.5 to obtain

Proposition 1.5.6 A fibration p : E → X is trivial iff p is a homotopy equi-
valence.

Proof: Suppose p is a homotopy equivalence, i.e. there is a map s : X → E
together with homotopies k : X × I → X and h : E × I → E such that k0 = ps,
k1 = idX , h0 = sp, h1 = idE . First, let k′ be a lifting in the diagram

X × (0)

��

s // E

p

��
X × I

k
//

k′
;;wwwww
X

Then s′ = k′1 is such that ps′ = idX , so we may assume from the beginning that
ps = idX . Now we have two maps I → EE . Namely the adjoint transposes of
h and sph, which agree at 0, giving a diagram
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Λ0[2]

��

a // EE

pE

��
∆[2]

b=phη1
//

α

<<y
y

y
y

XE

Since p is a fibration, we can find a dotted filler α. Then, αε0 = h′ is a homotopy
between idE and sp, which is fiberwise, i.e.

E × I
π1

��

h′ // E

p

��
E p

// X

commutes. Thus, p is trivial by Proposition 1.5.5. The converse follows imme-
diately from Proposition 1.5.5.

Proposition 1.5.7 Let p : E → X be a fibration, and i : A→ X a monomor-
phism. If A is a strong deformation retract of X, then in

p−1(A)

��

// E

p

��
A

i
// X

p−1(A) is a strong deformation retract of E.

Proof: Let h : X × I → X denote the deformation of X into A. Then we have
two commutative diagrams

E × (0)

��

id // E

p

��
E × I

p×id
// X × I

h
// X

and

p−1(A) × I

��

π1 // p−1(A) // E

p

��
E × I

p×id
// X × I

h
// X

These provide a diagram
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(p−1(A)× I) ∪ (E × (0))

��

// E

p

��
E × I

p×id
//

k

33hhhhhhhhhhhhh
X × I

h
// X

A dotted lifting k, which exists by the CHEP, provides a deformation of E into
p−1(A).

As applications of Proposition 1.5.7 we have the following.

Corollary 1.5.2 Let p : E → X × I be a fibration. Denote p−1(X × (0)) and
p−1(X × (1)) by p0 : E0 → X and p1 : E1 → X. Then p0 and p1 are fiberwise
homotopy equivalent. That is, there are mappings

E0

p0   A
AAA

AAA
A

f // E1

p1~~} } }
} } }
} }

X

and

E1

p1   A
AAA

AAA
A

g // E0

p0~~} } }
} } }
} }

X

together with homotopies h : E0 × I → E0 and k : E1 × I → E1 such that
h0 = idE0, h1 = gf , k0 = idE1, k1 = fg and the diagrams

E0 × I
π1

��

h // E0

p0

��
E0 p0

// X

and

E1 × I
π1

��

k // E1

p1

��
E1 p1

// X

commute.

Proof: X × (0) and X × (1) are both strong deformation retracts of X × I.
Thus, by Proposition 1.5.7, E0 and E1 are strong deformation retracts of E.
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The inclusions and retractions of E0 and E1 yield homotopy equivalences f and
g. It follows easily from the proof of Proposition 1.5.7 that the homotopies h
and k are fiberwise.

Corollary 1.5.3 Let p : E → Y be a fibration and f, g : X → Y two homotopic
maps Then the pullbacks f∗(E) and g∗(E) are fiberwise homotopy equivalent.

Proof: It suffices to consider the case of a homotopy h : X × I → Y such that
h0 = f and h1 = g. For this, take the pullback

h∗(E)

q

��

// E

p

��
X × I

h
// Y

and apply Corollary 1.5.2 to q.

Corollary 1.5.4 Let X be connected and p : E → X a fibration. Then any two
fibers of p are homotopy equivalent.

Proof: It is enough to show that the fibers over the endpoints of any path
α : I → X are homotopy equivalent. For this, apply Corollary 1.5.3 to the
inclusion of the endpoints of α.

1.6 Minimal complexes

Let X be a simplicial set and x, y : ∆[n] → X two n-simplices of X such
that x|∆̇[n] = y|∆̇[n] = a. We say x is homotopic to y mod ∆̇[n], written
x ∼ y mod ∆̇[n], if there is a homotopy h : ∆[n] × I → X such that h0 = x,
h1 = y and h is “stationary on ∆̇[n]”, meaning

∆̇[n]× I

��

π1 // ∆̇[n]

a

��
∆[n]× I

h
// X

commutes. It is easy to see that x ∼ ymod ∆̇[n] is an equivalence relation when
X is a Kan complex.

Definition 1.6.1 Let X be a Kan complex. X is said to be minimal if x ∼
y mod ∆̇[n] entails x = y.

Our main goal in this section is to prove the following theorem, and its
corresponding version for fibrations.
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Theorem 1.6.1 Let X be a Kan complex. Then there exists a strong deforma-
tion retract X ′ of X which is minimal.

In the proof of Theorem 1.6.1 we will need a lemma.

Lemma 1.6.1 Let x and y be two degenerate n-simplices of a simplicial set X.
Then x|∆̇[n] = y|∆̇[n] implies x = y.

Proof: Let x = sidix and y = sjdjy. If i = j, we are done. If, say, i < j, we
have x = sidix = sidiy = sidisjdjy = sisj−1didjy = sjsididjy. Thus, x = sjz,
where z = sididjy. Hence, djx = djsjz = z and x = sjdjx = sjdjy = y.

Proof of Theorem 1..1: We construct X ′ skeleton by skeleton. For Sk0X ′

take one representative in each equivalence class of π0(X). Suppose we have de-
fined Skn−1X ′. To define SknX ′ we take one representative in each equivalence
class among those n-simplices of X whose restrictions to ∆̇[n] are contained
in Skn−1X ′, choosing a degenerate one wherever possible. Lemma 1.6.1 shows
that X ′n contains all degenerate simplices from X ′n−1.

For the deformation retraction, suppose we have h : Skn−1X × I → X.
Consider the pushout ∑

e(X)n
∆̇[n]× I

��

//
∑
e(X)n

∆[n]× I

��
Skn−1X × I // SknX × I

To extend h to SknX × I we must define it on each ∆[n]× I consistent with its
given value on ∆̇[n]× I. Thus, let x ∈ e(X)n. Since h is already defined on the
boundary of x, we have an open prism

���������? ? ? ? ? ? ? ? ?

��������� x? ? ? ? ? ? ? ? ?

h

in X whose (n− 1)-simplices in the open end belong to X ′. Since X is Kan, we
can fill the prism obtaining a new n-simplex y at the other end whose boundary
is in X ′. Now take a homotopy mod ∆̇[n] to get into X ′. This defines the
retraction r and the homotopy h.

Theorem 1.6.2 Let X and Y be minimal complexes and f : X → Y a homo-
topy equivalence. Then f is an isomorphism.

The proof of Theorem 1.6.2 follows immediately from the following lemma.

Lemma 1.6.2 Let X be a minimal complex and f : X → X a map homotopic
to idX . Then f is an isomorphism.
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Proof: We show first that fn : Xn → Xn is injective by induction on n, letting
X−1 be empty. Thus, let x, x′ : ∆[n] → X be such that f(x) = f(x′). By
induction, x|∆̇[n] = x′|∆̇[n] = a. Let h : X × I → X satisfy h0 = f and
h1 = idX . Then the homotopy h(x × I) is f(x) at 0 and x at 1. Similarly,
h(x′ × I) is f(x′) at 0 and x′ at 1. Since f(x) = f(x′), we obtain a map
∆[n]×Λ0[2]→ X. Let ∆̇[n]×∆[2]→ X be the map h(a× η1). These agree on
the intersection of their domains, so we obtain a diagram

(∆[n]× Λ0[2]) ∪ (∆̇[n]×∆[2])

��

// X

∆[n]×∆[2]

k

66llllllll

which has a dotted filler k by Theorem 1.5.2. k(id× ε0) is a homotopy between
x and x′ mod ∆̇[n]. Since X is minimal, x = x′.

Now assume that fm : Xm → Xm is surjective for m < n, and let x : ∆[n]→
X be an n-simplex of X. By induction, and the first part of the proof, each xεi

is uniquely of the form f(yi) for yi : ∆[n − 1] → X. Hence, we obtain a map
y : ∆̇[n] → X such that f(y) = x|∆̇[n] . The maps h(a × I) and x× (0) agree
on their intersections giving a diagram

(∆[n]× (0)) ∪ (∆̇[n]× I)

��

// X

∆[n]× I

k

66nnnnnnnn

which has a dotted filler k. k at 0 is x, and k at 1 is some n-simplex z. The
homotopy h(z× I) is f(z) at 0 and z at 1. Thus, as above, we obtain a diagram

(∆[n]× Λ1[2]) ∪ (∆̇[n]×∆[2])

��

// X

∆[n]×∆[2]

l

66llllllll

which has a dotted filler l by Theorem 1.4.1. k(id× ε1) is a homotopy between
x and f(z) mod ∆̇[n]. Since X is minimal, x = f(z).

We discuss now the corresponding matters for fibrations. Thus, let p : E →
X be a map and e, e′ : ∆[n] → E two n-simplices of E such that e|∆̇[n] =
e′|∆̇[n] = a, and pe = pe′ = b. We say e is fiberwise homotopic to e’ mod ∆̇[n],
written e ∼f e′ mod ∆̇[n], if there is a homotopy h : ∆[n] × I → E such that

h0 = e, h1 = e′, h = a on ∆̇[n] as before, meaning
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∆̇[n]× I

��

π1 // ∆̇[n]

a

��
∆[n]× I

h
// X

commutes, and h is “fiberwise”, meaning

∆[n]× I

π1

��

h // E

p

��
∆[n]

b
// X

commutes. As before, it is easy to see that e ∼f e′ mod ∆̇[n] is an equivalence
relation when p is a fibration.

Definition 1.6.2 A fibration p : E → X is said to be minimal if e ∼f e′mod∆̇[n]
entails e = e′.

Notice that minimal fibrations are stable under pullback.

Theorem 1.6.3 Let p : E → X be a fibration. Then there is a subcomplex E′

of E such that p restricted to E′ is a minimal fibration p′ : E′ → X which is a
strong, fiberwise deformation retract of p.

Proof: The proof is essentially the same as that for Theorem 1.5.1, with x ∼
y mod ∆̇[n] replaced by e ∼f e′mod ∆̇[n].

Theorem 1.6.4 Let p : E → X and q : G → X be minimal fibrations and
f : E → G a map such that qf = p. Then if f is a fiberwise homotopy
equivalence, f is an isomorphism.

Proof: Again, the proof is essentially the same as that for Theorem 1.5.2, with
x ∼ y mod ∆̇[n] replaced by e ∼f e′mod ∆̇[n].

Theorem 1.6.5 A minimal fibration is a bundle.

Proof: Let p : E → X be a minimal fibration, and x : ∆[n]→ X an n-simplex
of X. Pulling back p along x yields a minimal fibration over ∆[n] so it suffices
to show that any minimal fibration p : E → ∆[n] is isomorphic to one of the
form π1 : ∆[n]× F → ∆[n].

For this, define c : [n] × [1] → [n] as follows: c(i, 0) = i and c(i, 1) = n for
0 ≤ i ≤ n. Nc = h is a homotopy ∆[n]× I → ∆[n] between the identity of ∆[n]
and the constant map at the nth vertex of ∆[n]. From Corollary 1.5.3 it follows
that p : E → ∆[n] is fiberwise homotopy equivalent to π1 : ∆[n] × F → ∆[n]
where F is the fiber of p over the nth vertex of ∆[n]. By Theorem 1.6.4, p is
isomorphic to π1 over ∆[n].
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1.7 The Quillen homotopy structure

Here we establish Theorem 1.3.1, or rather a modified version thereof.

Definition 1.7.1 Let f : X → Y be a mapping in S. We say f is a weak
equivalence if for each Kan complex K, [f,K] : [Y,K]→ [X,K] is a bijection.

For example, a homotopy equivalence is a weak equivalence. Thus, a trivial
fibration is a weak equivalence by Proposition 1.5.6. Or, if i : A→ B is anodyne
and K is Kan, then Ki : KB → KA is a trivial fibration by Theorem 1.5.1,
hence a homotopy equivalence by Proposition 1.5.6. Thus, π0(Ki) = [i,K] is a
bijection and i is a weak equivalence. Also, if f : X → Y is a weak equivalence
with X and Y Kan, then f is a homotopy equivalence since f becomes an
isomorphism in ho(S).

Notice that Definition 1.7.1 is equivalent to saying that if X → X and
Y → Y are anodyne extensions with X and Y Kan, and f is any dotted filler in

X

f

��

// X

f

���
�
�

Y // Y

then f is a homotopy equivalence.
Now, in S we take as fibrations the Kan fibrations, as cofibrations the mono-

morphisms, and as weak equivalences the ones given in Definition 1.7.1. Then
the main theorem of this chapter is the following.

Theorem 1.7.1 The fibrations, cofibrations and weak equivalences defined above
form a proper Quillen homotopy structure on S.

Remark: We will show in section 10 that the weak equivalences of Definition
1.7.1 coincide with the goemetric homotopy equivalences of section 3, so that
Theorem 1.7.1 is, in fact, the same as Theorem 1.3.1.

The proof of Theorem 1.7.1 is based on the following two propositions, which
we establish first.

Proposition 1.7.1 A fibration p : E → X is trivial iff p is a weak equivalence.

Proposition 1.7.2 A cofibration i : A → B is anodyne iff i is a weak equiva-
lence.

Proof of Proposition 1.7.1: Let p : E → X be a fibration and a weak
equivalence. By Theorem 1.6.3 there is a minimal fibration p′ : E′ → X which
is a strong deformation retract of p, and hence also a weak equivalence. Let
X → X be an anodyne extension with X Kan (Theorem 1.4.1). By Theorem
1.6.5, p′ is a bundle. Using Lemma 1.7.1 below, we can extend p′ uniquely to a
bundle p : E → X in such a way as to have a pullback
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E′

p′

��

// E

p

��
X // X

with E′ → E anodyne. Now p is a fibration since its fiber is a minimal Kan
complex, so E is Kan. Furthermore, p is a weak equivalence since all the other
maps in the diagram are. Thus, p is a homotopy equivalence. So, by Proposition
1.5.6, p is a trivial fibration. It follows that p′ is also trivial, hence a homotopy
equivalence. But this shows that p is also a homotopy equivalence, and thus a
trivial fibration.

Proof of Proposition 1.7.2: Let i : A → B be a cofibration and a weak
equivalence. Factor i as

A

i ��@
@@

@@
@@

j // E

p
��~ ~
~ ~
~ ~
~

B

where j is anodyne and p is is a fibration. p is a weak equivalence since i and
j are. Thus, by Proposition 1.7.1, p is a trivial fibration. But then there is a
dotted lifting s in

A

i

��

j // E

p

��
B

s

>>~
~

~
~
idB

// B

so that i is a retract of j and hence anodyne.

Lemma 1.7.1 Let A → B be an anodyne extension and p : E → A a bundle.
Then there is a pullback diagram

E

p

��

// E′

p′

��
A // B

such that p′ : E′ → B is a bundle, and E → E′ is anodyne. Furthermore, such
an extension p′ of p is unique up to isomorphism.

Proof: Let E be the class of all monomorphisms having the unique extension
property above. We will show that E contains the horn inclusions and is satu-
rated, hence contains all anodyne extensions.
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For the horn inclusions, let C be a contractible simplicial set, i.e. one provi-
ded with an anodyne map c : 1 → C. Let p : E → C be a principal G-bundle
over C. Picking a point e : 1→ E such that pe = c, we have a dotted lifting in
the diagram

1

x

��

e // E

p

��
C

??~
~

~
~
idC

// C

so that p has a section and hence is trivial. In case p : E → C is a bundle
with fiber F , Iso(C × F,E) → C is a principal Aut(F )-bundle, and hence has
a section. But such a section is a trivialization of p. Thus, any bundle over C
is trivial. In particular, any bundle p : E → Λk[n] is trivial (the kth vertex is
an anodyne point), and hence can be extended uniquely as a trivial bundle over
Λk[n]→ ∆[n].

E clearly contains all the isomorphisms. Let us see that its maps are stable
under pushout. Thus, let A→ B be in E , and let A→ A′ be an arbitrary map.
Form the pushout

A

��

// A′

��
B // B′

and suppose p′ : E′ → A′ is a bundle. Pull back p′ to a bundle p : E → A and
extend p as

E

p

��

// G

q

��
A // B

with E → G anodyne since A→ B is in E . Now form the pushout

E

��

// E′

��
G // G′

giving a cube
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E

��� � �
�

//

��

E′

��

��� �
�

G //

��

G′

��
A //

��� � �
�

A′

��� �
�

B // B′

where q′ : G′ → B′ is the natural induced map. In this cube, the left-hand
and back faces are pullbacks.Hence, by the lemma following this proof, we can
conclude that the front and right-hand faces are also. Thus, the pullback of q′

over the surjection B + A′ → B′ is the bundle q + p′ : G + E′ → B + A′. It
follows that q′ is a bundle and unique, for any other bundle which extends p′

must pull back over B → B′ to q by the uniqueness of q. Clearly, E′ → G′ is
anodyne.

Now let

A

��

// A′

��

// A

��
B // B′ // B

be a retract with A′ → B′ in E . Pushing out A′ → B′ along A′ → A, and using
the stability of E under pushouts, we see that it is enough to consider retracts
of the form

A

~~} }
} }
} }
}

��@
@@

@@
@@

B′
r //

B
i

oo

ri = idB, with A → B′ in E . Thus, let p : E → A be a bundle. Extend p
to p′ : E′ → B′, then take the pullback p′′ : E′′ → B of p′ along i, yielding a
diagram of pullbacks

E

p

��

// E′

p′

��

E′′oo

p′′

��
A // B′ B

ioo

with E → E′ anodyne. Pulling back p′′ back along A → B gives the pullback
of p′ along A → B′, i.e. p. Thus, p′′ is a bundle extending p. But any bundle
over B which extends p pulls back along r to a bundle over B′ which extends
p, so it must be p′ by uniqueness. Thus p′′ is unique and we have a retract



34 CHAPTER 1. THE HOMOTOPY THEORY OF SIMPLICIAL SETS

E

~~} }
} }
} }
}

  B
BBB

BBB
B

E′
//
E′′oo

so that E → E′′ is anodyne.
We leave the straightforward verification of coproducts and countable com-

posites as an excercise for the reader.

Lemma 1.7.2 Let

E

��� � �
�

//

��

E′

��

��� �
�

G //

��

G′

��
A //

��� � �
�

A′

��� �
�

B // B′

be a commutative cube in S, whose left-hand and back faces are pullbacks. If
A → B is a monomorphism, and the top and bottom faces are pushouts, then
the right-hand and front faces are pullbacks.

Proof: It is enough to prove the lemma in the category of sets. In that case,
the right-hand and front faces are

E′

��

// E′ + (G−E)

��
A′ // A′ + (B −A)

and

E + (G−E)

��

// E′ + (G−E)

��
A+ (B −A) // A′ + (B −A)

In these diagrams, G−E maps to B −A since the left-hand face of the cube is
a pullback. Thus, these two faces are the coproducts of

E′

��

id // E′

��
A′

id // A′
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and

0

��

// (G−E)

��
0 // (B −A)

and

E

��

// E′

��
A // A′

and

(G−E)

��

id // (G−E)

��
(B −A)

id // (B −A)

respectively. Now use the fact that the coproduct of two pullbacks in Sets is a
pullback.

Remark: Notice that Lemma 1.7.1 shows that weak equivalences are stable
under pullback along a bundle. In fact, let w : A → B be a weak equivalence
and p′ : E′ → B a bundle. Factor w as w = pi where i is a cofibration and
p is a trivial fibration (Theorem 1.4.2). i is a weak equivalence since w and p
are, hence anodyne by Proposition 1.7.2. Trivial fibrations are stable under any
pullback, and anodyne extensions are stable under pullback along a bundle by
Lemma 1.7.1, so the result follows.

Proof of Theorem 1.7.1: Q1 and Q2 are clear. Q3 follows immediately from
Propositions 1.7.1 and 1.7.2, and Q4 follows from Theorems 1.4.1 and 1.4.2.

For Q5, let w : A → B be a weak equivalence and p : E → B a fibration.
By Theorem 1.6.3 there is a minimal fibration p0 : E0 → B which is a strong
fiberwise deformation retract of p. Let p′ : E′ → A be the pullback of p along w
and p′0 : E′0 → A the pullback of p0. Then p′0 is a strong fiberwise deformation
retract of p′, and the map E′0 → E0 is a weak equivalence by the remark following
Lemma 1.7.1. Thus E′ → E is a weak equivalence. Dually, let

A

i

��

w // B

i′

��
A′

w′
// B′
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be a pushout diagram with w a weak equivalence and i a cofibration. If K is a
Kan complex, the diagram

KB′

Kw′

��

Ki′
// KB

Kw

��
KA′

Ki

// KA

is a pullback with Ki a fibration by Theorem 1.5.3. Kw is a weak equivalence
(factor w as a cofibration followed by a trivial fibration to see this) so Kw′ is a
weak equivalence by the first part of Q5. Thus w′ is a weak equivalence, which
proves the theorem.

1.8 Homotopy groups and Whitehead’s Theo-
rem

Let ∆̇[n]→ ∆[n], n ≥ 1, be the inclusion of the boundary, and

∆̇[n]

��

// ∆[n]

��
1

b
// ∆̇[n]/∆[n]

a pushout. If X is a Kan complex, and x ∈ X0, we write πn(X,x), n ≥ 1, for
the set of homotopy classes of maps ∆̇[n]/∆[n]→ X, which take b to x, modulo
homotopies which are constantly equal to x at b. At the moment, the πn(X,x)
are simply pointed sets, the point being the class [x] of the constant map at x. In
our final version we will, in fact, show combinatorially that the πn(X,x), n ≥ 1,
are groups, which are abelian for n ≥ 2. We will not use this here, however,
though we remark that in section 10 we will show that πn(X,x) ' πn(|X|, |x|)
so this will follow, albeit unsatisfactorially.

Let p : E → X be a fibration with X Kan, and write i : F → E for the
inclusion p−1(x) → E. Let e ∈ F0. If α : ∆[n] → X represents an element of
πn(X,x), let γ denote a dotted filler in the diagram

Λ0[n]

��

// E

p

��
∆[n]

γ

=={
{

{
{

α
// X

where Λ0[n] → E is constant at e. Then d0γ sends ∆̇[n − 1] to x, and is
independent up to homotopy of the choice of γ and the choice of α. It thus
defines a function
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∂ : πn(X,x)→ πn−1(F, e)

called the boundary map.

Theorem 1.8.1 The boundary map is a homomorphism for n ≥ 2, and the
sequence

. . .→ πn(F, e)
πni→ πn(E, e)

πnp→ πn(X,x)
∂→ . . . π1(X,x)

∂→ π0(F )
π0i→ π0(E)

π0p→ π0(X)

is exact as a sequence of pointed sets, in the sense that for each map, the set of
elements of its domain which are sent to the point is the image of the preceding
map.

Again, we will prove this in detail combinatorially in the final version. We
remark only that, as above, it will follow later from Quillen’s theorem that |p|
is a Serre fibration, which is proved in Appendix D.

Let f : X → Y be a mapping of simplicial sets. We will call f , just in this
chapter, a homotopy isomorphism if π0f : π0(X) → π0(Y ) is a bijection, and
πnf : πn(X,x)→ πn(Y, fx) is an isomorphism for n ≥ 1 and x ∈ X0.

Lemma 1.8.1 Let X be a minimal Kan complex such that X → 1 is a homotopy
isomorphism. Then X → 1 is an isomorphism.

Proof: Clearly, X → 1 induces an isomorphism Sk−1X → Sk−11. Suppose
Skn−1X → Skn−11 is an isomorphism, with inverse represented by a basepoint
x : 1→ X. Let σ : ∆[n]→ X be an n-simplex of X. σ|∆̇[n] = x, so σ represents
an element of πn(X,x). πn(X,x) = [x], so σ ∼ x mod∆̇[n]. But then σ = x.

Corollary 1.8.1 Let X be a Kan complex, and p : E → X a minimal fibration.
If p is a homotopy isomorphism, then p is an isomorphism.

Proof: The homotopy exact sequence of p as above has the form

. . .→ πn+1(E, e)
'→ πn+1(X, pe)→ πn(F, e)→ πn(E, e)

'→ πn(X, pe) . . .

π1(E, e)
'→ π1(X, pe)→ π0(F )→ π0(E)

'→ π0(X)

It follows that π0(F ) = [e] and πn(F, e) = [e] for n ≥ 1. By Lemma 1.8.1, the
fiber F over each component of X is a single point, so p is a bijection.
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Theorem 1.8.2 (Whitehead) Let X and Y be Kan complexes and f : X → Y
a homotopy isomorphism. Then f is a homotopy equivalence.

Proof: Factor f as

X

f   @
@@

@@
@@

i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is anodyne and p is a fibration. Y is Kan, so E is and i is a strong
deformation retract by Proposition 1.5.3. By Theorem 1.6.3, let

E′

p′   A
AA

AA
AA

// E

p
��~ ~
~ ~
~ ~
~

Y

be a minimal fibration which is a strong, fiberwise deformation retract of p. Since
p induces isomorphisms on πn for n ≥ 0 so does p′. Thus p′ is an isomorphism
by Corollary 1.8.1. It follows that p is a homotopy equivalence, so the same is
true of f .

1.9 Milnor’s Theorem

Our goal in this section is to prove the following theorem.

Theorem 1.9.1 (Milnor) Let X be a Kan complex, and let ηX : X → s|X| be
the unit of the adjunction | | a s. Then ηX is a homotopy equivalence.

The proof of Theorem 1.9.1 uses some properties of the path space of X, so
we establish these first. To begin, since (0) + (1) → I is a cofibration and X
is a Kan complex, (p0, p1) : XI → X × X is a fibration. Let x : 1 → X be a
basepoint. Define PX as the pullback

PX

p1

��

// XI

(p0,p1)

��
1×X

x×idX
// X ×X

(0) → I is anodyne, so p0 : XI → X is a trivial fibration, again by Theorem
1.5.1. The diagram

PX

��

// XI

p0

��
1 x

// X
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is a pullback, so PX → 1 is a trivial fibration and hence a homotopy equivalence.
Let ΩX denote the fiber of p1 over x, and write x again for the constant path
at x. Then the homotopy exact sequence of the fibration p1 has the form

. . .→ πn(PX, x)→ πn(X,x)
∂→ πn−1(ΩX,x)→ πn−1(PX, x) . . .

π1(PX, x)→ π1(X,x)
∂→ π0(ΩX)→ π0(PX)→ π0(X)

where π0(PX) = [x] and πn(PX, x) = [x] for n ≥ 1. It follows that the
boundary map induces isomorphisms π1(X,x) → π0(ΩX) and πn(X,x) →
πn−1(ΩX,x) for n ≥ 2.

Proof of Theorem 1.9.1: First, let X be connected. Then any two vertices
of |X| can be joined by a path. But then any two points of |X| can be joined
by a path, since any point is in the image of the realization of a simplex, which
is connected. Thus |X| is connected, as is s|X|. Otherwise, X is the coproduct
of its connected components. Since s| | preserves coproducts, it follows that
π0ηX : π0(X) → π0(s|X|) is a bijection. Assume by induction that for any
Y , and any y ∈ Y0 πmηX : πm(Y, y) → πm(s|Y |, |y|) is an isomorphism for
m ≤ n− 1. By naturality we have a diagram

ΩX

��

ηΩX // s|ΩX|

��
PX

p1

��

ηPX // s|PX|

s|p1|
��

X
ηX

// s|X|

By Quillen’s theorem (see Appendix B), |p1| is a Serre fibration, so s|p1| is a
Kan fibration. Since PX → 1 is a homotopy equivalence, so is s|PX| → 1.
Hence we have a commutative diagram

πn(X,x)

'
��

πnηX // πn(s|X|, |x|)

'
��

πn−1(ΩX,x)
πn−1ηΩX

// πn−1(s|ΩX|, x)

πn−1ηΩX is an isomorphism by induction, so πnηX is an isomorphism. By
Whitehead’s Theorem, ηX is a homotopy equivalence.
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An entirely similar argument, using the topological path space, shows that
if T is a topological space, then the counit εT : |sT | → T is a topological weak
equivalence. Thus, if T is a CW-complex εT is a homotopy equivalence by
the topological Whitehead Theorem. Since | | and s both clearly preserve the
homotopy relation between maps, we see that they induce an equivalence

ho(Topc)
//
ho(S)oo

where ho(Topc) is the category of CW-complexes and homotopy classes of maps.

1.10 Some remarks on weak equivalences

Here we collect all the possible definitions we might have given for weak equi-
valence, and show they are all the same. We begin with a lemma.

Lemma 1.10.1 If j : C → D is a mapping in Topc which has the left lifting
property with respect to the Serre fibrations, then C is a strong deformation
retreact of D.

Proof: ∆n is a retract of ∆n× I, so every space in Topc is fibrant. Also, if T is
a space and X a simplicial set, we see easily that s(T |X|) ' (sT )X . From this
it follows that the singular complex of (p0, p1) : T I → T × T is a Kan fibration,
so it itself is a Serre fibration. Now we obtain the retraction r as a lifting in

C

j

��

idC // C

D

r

>>~
~

~
~

and the strong deformation h as the exponential transpose of a lifting in

C

j

��

jπ1 // DI

(p0,p1)

��
D

h

;;xxxxx
(idD,jr)

// D ×D

As a consequence we obtain immediately

Proposition 1.10.1 If i : A→ B is an anodyne extension then |i| : |A| → |B|
and |A| is a strong deformation retract of |B|.

Proposition 1.10.2 Let X be an arbitrary simplicial set. Then ηX : X → s|X|
is a weak equivalence.
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Proof: Let i : X → X be an anodyne extension with X Kan. Then in the
diagram

X

i

��

ηX // s|X|

s|i|
��

X
ηX

// s|X|

|i| is a homotopy equivalence by the above, ηX is a homotopy equivalence by
Milnor’s Theorem, and i is a weak equivalence, so ηX is a weak equivalence.

Proposition 1.10.3 w : X → Y is a weak equivalence in the sense of Defini-
tion 1.7.1 iff w is a geometric homotopy equivalence.

Proof: Factor w as

X

w
  @

@@
@@

@@
i // E

p
��~ ~
~ ~
~ ~
~

Y

where i is a cofibration and p is a trivial fibration. Since w and p are weak
equivalences so is i. i is anodyne by Proposition 1.7.2, so |i| is a homotopy
equivalence. p is a homotopy equivalence by Proposition 1.5.6, so |p| is. Thus
|w| is a homotopy equivalence.

On the other hand, suppose w : X → Y is a goemetric homotopy equivalence.
Then in the diagram

X

w

��

ηX // s|X|

s|w|
��

Y
ηY

// s|Y |

ηX and ηY are weak equivalences as above, and |w| is a homotopy equivalence,
so s|w| is. Thus w is a weak equivalence.

Let w : U → V be a topological weak equivalence. From the diagram

|sU |

εU

��

|sw| // |sV |

εV

��
U w

// V
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we see that |sw| is a weak equivalence since εU , εV and w are. By the topological
Whitehead Theorem, it follows that |sw| is a homotopy equivalence. Thus sw
is a geometric homotopy equivalence, and a weak equivalence by the above.
Thus, both s and | | preserve weak equivalences. Since εT : |sT | → T and
ηX : X → s|X| are weak equivalences, we see that s and || induce an equivalence

Topc[W
−1]

//
S[W−1]oo

where W stands for the class of weak equivalences in each case. This is not
surprising, of course, since by Appendix E we have that ho(Topc) is equivalent
to Topc[W

−1] and ho(S) is equivalent to S[W−1].
When X is a Kan complex, the homotopy equivalence ηX : X → s|X| pro-

vides a bijection π0(X)→ π0(|X|) and an isomorphism πn(X,x)→ πn(|X|, |x|)
for n ≥ 1 and x ∈ X0. As remarked above, this shows that the πn(X,x) are
groups for n ≥ 1 and abelian for n ≥ 2, though this is certainly not the way to
see that. In any case, for X an arbitrary simplicial set we can define πn(X,x)
as πn(X,x) = πn(|X|, |x|) as this is consistent with the case when X is Kan.

Finally, let f : X → Y be a homotopy isomorphism, i.e. π0f : π0(X) →
π0(Y ) is a bijection, and πnf : πn(X,x) → πn(Y, fx) is an isomorphism for
n ≥ 1 and x ∈ X0. Now, if f is a geometric homotopy equivalence, f is a ho-
motopy isomorphism. On the other hand, if f is a homotopy isomorphism then
f is a geometric homotopy equivalence by the topological Whitehead Theorem.
Thus, the classes of weak equivalences, geometric homotopy equivalences and
homotopy isomorphisms all coincide.


