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- DISKS, DUALITY AND 0-CATEGORIES
A. Joyal

The goal of this note is to define a simple concept of infinite dimensional (weak) categories
that makes possible the development of a theory [BD,B,HMP,BFSV,T]. Our method Is to

structure that generalises to higher dimension the idea of an interval (a linearly ordered set
with distinct first and last elements). The euclidian n-ball B® C R™ is an example of n-disk.
Every finite disk-D has a dual D" = hom(D, B*®)} which is a polyhedral ball. This defines
the geometric realisation of the cells from which we obtain a geometric realisation functoy
from the category 8Set of cellular sets to CW-complexes. We define the ‘concepts of horns
and of inner horns. A 8-category is then defined to be a cellular-set for which inner horns
can be filled: The category of finite disks has an increasing filtration Disk! ¢ Djgi? C -
defined by disk dimension and there Is a corresponding leve! filtration B'Sets C 028ets . ..
on the category of cellular sets. A f-category of level < 7 is called a 0"-category: it is an
infinite dimensional (weak) category for which all cells of dimension > 7 are invertibles. A
#'-category is a restricted Kan complex. A concept of (weak) n-categories can be obtained
by further truncating §"-categories to cells of dimension™%~~14, In 3 second note we shall
prove that 8Cat, the category of f-categories, is cartesian closed. We shall define & concept
of h-isomorphism for arrows in f-categories and prove that a B-category is a (cellular) Kan
complex iff all its cells are h-invertible. We shall define the fundamental n-category 1, X of a
f-category X and homotopy groups 7 (X, f) for cells f € X and n > dim f. We shall prove
- Whitehead theorem. : - ‘
In what f'qllow’s we shall define most concepts mentioned aboved.

§ 1.1 Simplicial se‘ts‘and intervals

We begin by recalling the connection between simplicial sets and the theory of intervals.
It can be phrased in topos theoretic terms as in [MM] but we shall limit-the discussion to its
combinatorial aspects. The category of finite non-empty ordinals and order preserving maps -
is denoted A. It is-standart to denote the ordinal n 4 1 = {0,...,n} by [n]. Recall that a_
simplicial set is a contravariant functor X A Sets The opposite category A° has a direct
combinatorial description with the category of finite strict intervals. Let us recall this duality.

and 1, or L and F. If 0 # 1 the interval js said to be strict. A morphism is a map f: 7] — J
preserving the order (<) and such that F(0) =0 and f(1) = 1. We shali denote by 7 the
category of finite strict intervals. Let us describe the duality '

(=):A°~7T (=) 7° > A,
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By definition [n}* = A([n],[1}) = [n + Ewhere for f,g: [n) [1} we put’f < g iff £(3) < g(3)
for every i € [n]. Similarly, I"= Z(I{[2]). We shall view the interval [n]* = [n + 1] as the set
of Dedekind cuts on [n]. For example, [3] has 5 cuts, hence [3]" = [4]: '

[0123, 0]123, 01]23, 012}3 0123].
Similarly, the &ué.l I'is the set of inner-cuts of I. For example, [4] has four inner cuts:
0%1234, 01%234, 012%34 0123%4.

The duality is illustrated by the picture:

bl felo

“The duals f*or f*of amap f : [n] 5 [m]is obtained by taking inverse images of cuts. Notice
that if I = [n]* then the set hom(I, B') is the geometric simplez of dimension n where B!
denotes the real interval [0, 1). It follows from the duality that a simplicial set could be defined
as a covarignt functor X : 7 — Sets. ' .

§1.2 Disks

We now describe a combinatorial concept of n-disks, an interval being a 1-disk. The
euclidian ball B" = {z € R" :|} # ||< 1} is the main geometric example of n-disk. Observe
that the projection p, : B® — [—1,1] is surjective and that its fibers p~}(z) are n — 1-disks
except for z = 41 ‘where they degenerate to a point. There is a complementary view with
the projection ¢ : B™ — B™~!. The fiber ¢~}(z) is a 1-disk except if z € 8B where it
degenerates to a point. We shall say that ¢ is a bundle of intervals. If we order the coordinates
we obtain a sequence of bundles of intervals: : ‘
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Each projection p : B**! — B has two canonical sections dg, d; : B™ — B! that correspond
to the bottom and top hemispheres. We have dy(z) = d;(z) iff z € 8B™. Observe also that
8B™ 1 = dy(B*) U dy(B"). :

- We now define the combinatorial concept of bundles of intervals in the category Sets.
- Shortly, a bundle of intervals over B € Sets is an interval object in the category Sets/B.
More explicitly, it is a map p: X — B whose fibers have an interval structure. It has then &
top and a bottom section dy,dy : B'— X and we have z € [do(pz), d; (pz)] for every z € X.
We shall say that the equaliser of dy and d; is the singular set of the bundle. '

Definition 1: A disk D of dimension < N is a sequence of length NV of bundles of intervals:
1=Dp Dy hrDz —-Dy_1—Dy. .. - et e

such that the singular set of p : Dyyy — D, is equal to do(Dy-1) U di(Dy1) for every .
0 <n < N. If n =0 this condition means that D is a strict interval. )

Disks of dimension <'co are defined by using infinite sequences. It follows from the
definition that each map do,di : Dy_y — D; equalizes the pair dg,dy : D; — D41, hence
dody = didyp and dod; = didy. We define the boundary 8D, to be dy(D,_1) U d, (Dp-1) and
the interior +(Dy,) to be D,\8D,. By convention 8D, = 0. ' :




“lemma 1. We have p(+(Dr)) C +(Dp-y) for every n.

Préof: If p(x) € 8D, _; then da(pz) = di(pz) by the condition in the definition. But z ¢
[do(px), di{pz)} and it follows that z = do{pz) € 8D,. QED

By restricting the projections to the interiors we obtain a sequence of maps
1 =14(Do) < +(D1) —1(D3) & o(Dz) « -

This is a (generalised) planar tree since the fibers of each projection #(D;) — 4(D;_,) are
linearly ordered. We shall say that it is the interior of I and denote it by +(D). We define
the level of D to be the height of YD). We define the wolume | D | of D to be the cardinality
of o(D) minus 1 (we do not include Dy = 1 in counting the volume). If | D |< oo we shall say
that D'is finite .~ ~ T o e R S T

Propdsition 1. A disk is determined by its interior (up to unique isomorphism). Any tree is
the interior of a disk. - . '

Proof: Tt follows from definition 1 that the square

.. d,
OD,_; —> dl(D ._1)
dp

do(Dp_1) ——> 8D,

is cartesian. Iﬁ is thus a pushout square and we have 8D, ~ D,,_; YUsp,_, Dn—1. The result
then follows from the formula D,, = ¥(Dn) U D, by induction on . :

A morphism S — T of planar trees is a sequence of maps fp : S, — T commuting with
the projections ' ' - :

1 < Sy Sy <— S3
f f2 f3
1—' _ Tl ) : . T2 @ T3 P

and respecting the order of the fibers. A morphism D' — D’ of disks is a mor_phisrn‘of planar
trees that respects the endpoints of each fiber, For any planar tree S we shall denote by S the
unique-disk such that S = +(5). This is a functorial construction. :

Proposition 2. The functor S+ S is left adjoint to the forgetful functor from disks to pfémar
trees. - . ‘

- Remark: The construction §+— § is'a monad on the category of planar trees. The c_étegory
of algebras for thi;: monad is the category of disks. It follows from proposition 1 that every
disk is free on its interior, Hence the category of disks is also a Kleisly category.




A map f: D — D' between disks is open if f(2(D)) C +(D'). The category of planar trees
is equivalent to the category of disks with open maps. ‘
The suspension o(T') of a planar tree is defined by shifting : 6(T); = T;_; for ¢ > 0 where
- Ty ='1. There is also the operation of concatenation for trees: (S*7T); = S5; UT; fori >0
" where U is disjoint union for i > 1 and the ordinal sum for i = 1. The suspension S(D) of a
disk is the disk
12} = Diufl) e Dy U]l]

where the map Dy U [1] — {2] sends D; to the mid point of [2] and is equal to d; : [1] — [2]
on [1]. All the other maps are the obvious ones. The suspension of disks is defined so that
S(T) = o(T). These operations are functorial on disks and trees. There is-also an operation
of composition o for disks so that SoT = (S *T) but 1t has a 11m1ted functorxahty (1t is of
course funp}:qr_;al_,_for ‘open maps). - ST : : :

§ 1.3 Duality and Cellular sets
For the next result we need the infinite dimensional euclidian ball B*;
1— B!« B? —

Proposition 3. Let D be a finite disk. Then the set hom(D B®) has the structure of an
euclidian ball of dimension | D |. :

Proof . We only sketch the construction. Let us denote respectively by homga(D,D’) and
homs(T'T’) the maps in the categories of disks and trees. If T" = ¢(D) then we have
homg(D, B*} = hom,(T, B®) by adjointness. We shall describe the polyhedron R(T) =
hom(T, B*®) by structural induction on trees. If T=0then B(T)=1 IfT = o(A) then
R(T) is obtamed as a pushout square :

{-1, 1.} X R(A) —> [—1,1] x.R(A)
4!

(1,1} —— 5 R(T)

and this shows that R(T) is the suspension SR(A) of R(A). Observe now that there is a
structure map ¢ : SR(A) — [-1,1]. f T'=0A; -+ % g A, then there is a cartesian square

R(T) —> ﬁ SR(4;)

i=1

where (z1,...,2,) € A" iff 2y < -+ < 2y,




We shall denote by Disks (resp. Trees ) the category of finite disks (vesp. of finite trees).
We define the category © of Batanin cells to be the opposite of Disks. We shall write ¢ = D°
and D = C° for a disk and its opposite cell. For any C € © let us put R(C) = hom(C°, B*®).
This define the geometric realisation functor ‘

R : O — CW—complexes.

The dimension of C = D° is defined to be | D |. If t is a finite tree we shall denote the
corresponding disk by ¥ and the dual cell by [¢] = (£)°. The dimension of [t] is thus the
cardinality of ¢ {not counting the root). We shall denote by 0 the null tree { with only the
root) . Recall the set of planar (rooted) trees can be constructed inductively from 0 by using

. the operation of (non-empty) concatenation * and the operation of succession o. Let us-put - o

1=0(0) and n+1=nx*1. The disk 7 is the interval {0,1,2,..., 7,5+ 1} and its dual 36~~~ "

[n]. The cells [n] for n € N are the classical simplicial cells. The tree c™(0) is a chain of n
nodes, The corresponding cell has dimension n and we shall denote it 8n. From the inclusion
a"~}(0) C o™(0) we obtain an arrow §, — 6,_;. A

We define a cellular set to be a functor X : Disks — Sets, that is, a functor X :
©°% — Sets. We shall denote by 8Sets the category of cellular sets. We shall use the Yoneds
embedding © C 8Sets to identify © with a full subcategory of #Sets. By Kan extension we
obtain' a geometric realisation functor R : 8Sets — CW —complexes,

‘Theorem 1. In the category 8Sets the sequence § = (6n)
1=45 & g —

“has the structure of a disk. It is the universal disk in a topos theoretic sense.

For the purpose of the discussion we shall say that a functor between two Grothendieck
toposes is a realisation functorif it preserves colimits and finite limits (that is, it is the inverse
image part of a geometric morphism). The universal property in theorem 1 means that for
any topos £ and for any disk D € £ there is a unique realisation functor r : 8Sets — & such
that r(6) = D. For example the topos SSets of simplicial sets classifies strict intervals [MM].
There is a realisation functor SSets — 0Sets that transforms the classical Simpl_icial interval
A[1] into &;. The category 8Sets is equipped with many operations that can be defined from
its universal property. As an example, the truncated sequence §;.« 6, «— - - is-almost a disk
in the category #Sets/8;. 1t is not only because the bundle of intervals 6 — 6§; degenerates

“on @6; # B. This is easy to cure with the subtopos 8Sets/:(8;). The objects of this category
are the maps X — §; that are isomorphism (if pulled back) over 86; C 6,. The operation of
suspension S : §Sets — §Sets/2(6)) is the realisation functor that send § to this truncated
sequence. We obtain a suspension functor S : 8Sets — 8Sets by further composing with the
forgeful functor 6Sets/1(6,) — 6Sets. We then have §™(1) = 6, for every n > 0 and this

~ indicate that the topos #Sets is essentially generated by an abstract operation of suspension.

It might be interesting to investigate the properties of such an operation. There are many

realisation functors from 6Sets to SSets. Let us define the suspension of a simplicial set

X € SSets by putting S(X) = All] x X/ ~ where the equivalence relation ~ is collapsing

{0} x X to {0} and {1} x X to {1}. We obtain an infinite disk S°%(pt) ~ S'(pt) —~ ... in

S5ets. We could also choose the suspension defined by the formula S(X) = X %1 /X where x

is the simplical join. o ’ L




To identify the horns in #Sets we need to understand the (codimension 1} faces of a cell
C € ©. A (codimension 1) face of C = [t} is a quotient of ? that identifies exactly two points.
The tree ¢ is a disjoint union of intervals J(z) = p~!(z). Let us say that a pair {a, b} of vertices
of t is contractible if @ and b are adjacents to each other in the same interval of ¢. In this case
we obtain a quotient tree t/{a, b} by first identifying a with b and then schuffling the intervals
J(a) and J(b). Let us called such a quotient an inner contraction.

Let us say that a vertex @ € t is bounding if it is a leaf and an extremal point of its
interval. In this case we shall say that a vertex o’ € % adjacent to a in T is a compagnon of
a. We can then form a quotient disk #/{a,a’}. Its interior is the tree s = t\{a} obtained by

deleting a since @ is now identified to a boundary point. Let us call such a quotient boundary

contraction. Notice that the map ¢ — 5 depends on the choice of a’.

Proposition-4.-Let ¢ be a finite planar tree. Then the faces of codimension 1 of [t]-are of the =~ ~,

foHowmg two kinds:
(i)- the faces [s] C [t] where't — 3 is an inner contraction t/{a,b};
(ii) the faces [s] C [t]. where t — 5 is a boundary contraction t\{a, a’}.

We call a face of type (i) inner and of type (ii) outer. A codimension 1 face [s] C [t] is
inner iff the dual map ¥ — 3 is open. The boundary 9] of the cell [¢] is the union of its faces
of codimension 1. If [s] is a face of codimension 1 the horn A®(t] is the union of the faces of
codimension 1 other than [s]. If X is a cellular set a map £ : A*{t] — X isa horn in X. A
filler for ¢ is an extension &’ : [t] = X.

We say that a horn A®[t] C [t} is inner if [s] is an inner face of [t}.

Definition 2: A 8-category (resp. a cellular Kan complez) is a cellular set X in which every
inner horn (resp. every horn) & : A*{t] — X has a filler.

References

[B] Batanin M. A. . Monoidal globular categories as an environment for the theory of weak
n-categories. Preprint (67 pages). 22 April 1997. :

‘ [BD] Baez J.C., Dolan J..Higher-Dimensional Algebra III: n-Categories and the Algebra of
Opetopes. Preprmt (59 pages). February 5 1997.

[BV] Boardman J.M., Vogt R.M. Homotopy Invariant Algebraic Structures on TOpological
Spaces. Lecture Notes in Mathematics, vol.347, Springer Verlag, 1973.

[G] Grothendieck A. A la poursuite des champs. Manuscrit.

[HMP] Hermida C. Makkai M. Power J.. On weak higher dimensional categories. Preprint (64
pages). August 1997.

[BFSV] Balteanu C., Fiedorowicz Z. Schwanzl R., Vogt R. Iterated Monoidal Category
Preprint (52 pages). March 1997. :

[T} Tamasamani Z. Sur des_notmns de n-categorie et n-groupoide non strictes via des ensembles
multi-simpliciaux. Peprint (73 pages) , Universite Paul Sabatier.

[MM] Mac Lane S., Moerdijk I.Sheaves in Geometry and Logic. Universitext, Sprmger Ver-

lag,1991.

' Departement de mathemathues, UQAM, Montreal, Quebec HBC P8
e-mail: goyal@math ugam.ca

i AT




