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Introduction

The notion of quasi-category was introduced by Boardman and Vogt in their work
on homotopy invariant algebraic structures [BV]. A Kan complex and the nerve
of a category are examples. The goal of our work is to extend category theory to
quasi-categories and to develop applications to homotopy theory, higher category
theory and (higher) topos theory.

Quasi-category are examples of (∞, 1)-categories in the sense of Baez and
Dolan. Other examples are simplicial categories, Segal categories and complete
Segal spaces (here called Rezk categories). To each example is associated a model
category and the model categories are connected by a network of Quillen equiva-
lences. Simplicial categories were introduced by Dwyer and Kan in their work on
simplicial localisation. Segal categories were introduced by Hirschowitz and Simp-
son in their work on higher stacks in algebraic geometry. Many aspects of category
theory were extended to Segal categories. A notion of Segal topos was introduced
by Toen and Vezzosi, and a notion of stable Segal category by Hirschowitz, Simp-
son and Toen. A notion of higher Segal category was studied by Tamsamani, and
a notion of enriched Segal category by Pellisier. The theory of Segal categories is
a source of inspiration for the theory of quasi-categories.

Jacob Lurie has recently formulated his work on higher topoi in the language
of quasi-categories [Lu1]. In doing so, he has extended a considerable amount of
category theory to quasi-categories. He also developed a theory of stable quasi-
categories [Lu2] and applications to geometry in [Lu3], [Lu4] and [Lu5]. Our lec-
tures may serve as an introduction to his work.

The present notes were prepared for a course on quasi-categories given at the
CRM in Barcelona in February 2008. The material is taken from two manuscripts
under preparation. The first is a book in two volumes called the ”Theory of Quasi-
categories” which I hope to finish before I leave this world if God permits. The
second is a paper called ”Notes on Quasi-categories” to appear in the Proceedings
of an IMA Conference in Minneapolis in 2004. The two manuscripts have somewhat
different goals. The aim of the book is to teach the subject at a technical level by
giving all the relevant details while the aim of the paper is to brush the subject
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154 Introduction

in perspective. Our goal in the course is to bring the participants at the cutting
edge of the subject. The perspective presented in the course is very sketchy and a
more complete one will be found in the IMA Conference Proceedings. To the eight
lectures that were originally planned for the course we added four complementary
lectures for a total of twelve. We included support material organised in eight
appendices. The last appendix called ”Open boxes and prismes” was originally a
chapter of the book. But it is so technical that we putted it as an appendix.

The results presented here are the fruits of a long term research project
which began around thirty years ago. We suspect that some of our results could
be given a simpler proofs. The extension by Cisinski [Ci2] of the homotopy theory
of Grothendieck [Mal2] appears to be the natural framework for future develope-
ments. We briefly describe this theory in the perspective and we use some of the
results.

The fact that category theory can be extended to quasi-categories is not
obvious a priori but it can discovered by working on the subject. The theory of
quasi-categories depends strongly on homotopical algebra. Quasi-categories are
the fibrant objects of a Quillen model structure on the category of simplicial sets.
Many results of homotopical algebra become more conceptual and simpler when
reformulated in the language of quasi-categories. We hope that this reformula-
tion will help to shorten the proofs. In mathematics, many details of a proof are
omitted because they are considered obvious. But what is ”obvious” in a given
subject evolves through times. It is the result of an implicit agreement between
the reseachers based on their knowledge and experience. A mathematical theory
is a social construction. The theory of quasi-categories is presently in its infancy.

The theory of quasi-categories can analyse phenomena which belong properly
to homotopy theory. The notion of stable quasi-category is an example. The notion
of meta-stable quasi-category introduced in the notes is another. We give a proof
that the quasi-category of parametrized spectra is an utopos (joint work with
Georg Biedermann). All the machinery of universal algebra can be transfered to
homotopy theory. We introduce the notion of para-variety (after a suggestion by
Mathieu Anel).

In the last chapters we venture a few steps in the theory of (∞, n)-categories.
We introduce a notion of n-disk and of n-cellular sets. If n = 1, a n-disk is an
interval and a n-cellular set is a simplicial set. A n-quasi-category is defined to
be a fibrant n-cellular set for a certain model structure on n-cellular sets. In the
course, we shall formulate a conjecture of Cisinski about this model structure.

A few words on terminology. A quasi-category is sometime called a weak Kan
complex in the literature [KP]. The name Boardman complex was recently proposed
by Vogt. The purpose of our terminology is to stress the analogy with categories.
The theory of quasi-categories is very closely apparented to category theory. We are
calling utopos (upper topos) a “higher topos”; alternatives are “homotopy topos”
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or “homotopos”. We are calling pseudo-fibration a fibration in the model structure
for quasi-categories; alternatives are “iso-fibration”, “categorical fibration” and
“quasi-fibration”. We are calling isomorphism a morphism which is invertible in a
quasi-category; alternatives are “quasi-isomorphism”,“equimorphism” and “equiv-
alence”.

I warmly thank Carles Casacuberta and Joachim Kock for the organisation of
the Advanced Course and their support. The 2007-2008 CRM research program on
Homotopy Theory and Higher Categories is the fruit of their initiative. I thank the
director of the CRM Joaquim Bruna and the former director Manuel Castellet for
their support. The CRM is a great place for mathematical research and Barcelona
a marvelous cultural center. Long live to Catalunya!
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Perspective

The notion of quasi-category

Recall that a simplicial set X is called a Kan complex if it satisfies the Kan
condition: every horn Λk[n]→ X can be filled by a simplex ∆[n]→ X,

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

The notion of quasi-category is a slight modification of this notion. A simplicial
set X is called a quasi-category if it satisfies the Boardman condition: every horn
Λk[n] → X with 0 < k < n can be filled by a simplex ∆[n] → X. A quasi-
category is sometime called a weak Kan complex in the literature [KP]. The name
Boardman complex was recently proposed by Vogt. A Kan complex and the nerve
of a category are examples of quasi-categories. The purpose of our terminology is
to stress the analogy with categories. The theory of quasi-categories is very closely
apparented to category theory. We often say that a vertex of a quasi-category is
an object of this quasi-category, and that an arrow is a morphism. A map of quasi-
categories f : X → Y is a map of simplicial sets. We denote the category of (small)
categories by Cat and the category of (small) quasi-categories by QCat. If X is
a quasi-category, then so is the simplicial set XA for any simplicial sets A. Hence
the category QCat is cartesian closed.

The notion of quasi-category has many equivalent descriptions. For n > 0,
the n-chain I[n] ⊆ ∆[n] is defined to be the union of the edges (i − 1, i) ⊆ ∆[n]
for 1 ≤ i ≤ n. We shall put I[0] = 1. A simplicial set X is a quasi-category iff the
projection X∆[2] → XI[2] defined by the inclusion I[2] ⊂ ∆[2] is a trivial fibration.
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158 Perspective

The nerve functor

The nerve functor N : Cat → S, from the category of small categories to the
category of simplicial sets is fully faithful. It can be regarded as an inclusion
by adopting the same notation for a small category and its nerve. If I denotes
the category generated by one arrow 0 → 1 and J the groupoid generated by
one isomorphism 0 → 1, then we have ∆[1] = I ⊂ J . The nerve functor has a
left adjoint τ1 : S → Cat which associates to a simplicial set X its fundamental
category τ1X. The fundamental category of a quasi-categoryX is isomorphic to the
homotopy category hoX constructed by Boardman and Vogt. If X is a simplicial
and a, b ∈ X0, let us denote by X(a, b) the fiber at (a, b) of the projection

(s, t) : XI → X{0,1} = X ×X

defined by the inclusion {0, 1} ⊂ I. We have (hoX)(a, b) = π0X(a, b). The com-
position law

(hoX)(b, c)× (hoX)(a, b) → (hoX)(a, c)

is defined by filling horns Λ1[2]→ X.

Quasi-categories and Kan complexes

We say that an arrow in a quasi-category X is invertible, or that it is an isomor-
phism, if the arrow is invertible in the category hoX. An arrow f ∈ X is invertible
iff the map f : I → X can be extended along the inclusion I ⊂ J . If Kan de-
notes the category of Kan complexes, then the inclusion functor Kan ⊂ QCat
has a right adjoint J : QCat → Kan which associates to a quasi-category X its
simplicial set of isomorphisms J(X): a simplex x : ∆[n]→ X belongs to J(X) iff
the arrow x(i, j) : x(i) → x(j) is invertible for every i < j. There is an analogy
between Kan complexes and groupoids. A quasi-category X is a Kan complex iff
its homotopy category hoX is a groupoid.

The 2-category of simplicial sets

The functor τ1 preserves finite products by a result of Gabriel and Zisman. If we
apply it on the composition map CB ×BA → CA, we obtain the composition law

τ1(B,C)× τ1(A,B)→ τ1(A,C)

of a 2-category Sτ1 , where we put Sτ1(A,B) = τ1(A,B). A 1-cell of this 2-category
is a map of simplicial sets. Hence the category S has the structure of a 2-category
Sτ1 .. We call a map of simplicial sets X → Y a categorical equivalence if it is
an equivalence in this 2-category. If X and Y are quasi-categories, a categorical
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equivalence X → Y is called an equivalence of quasi-categories, or just an equiv-
alence if the context is clear. An adjunction between two maps of simplicial sets
f : X ↔ Y : g is defined to be an adjunction in the 2-category Sτ1 . We remark
here that in any 2-category, there is a notion of left (and right) Kan extension of
a map A→ X along a map A→ B.

A map between quasi-categories is an equivalence iff it is fully faithful and
essentially surjective. Let us define these notions. A map between quasi-categories
f : X → Y is said to be fully faithful if the map X(a, b) → Y (fa, fb) induced
by f is a weak homotopy equivalence for every pair of objects a, b ∈ X0. A map
of simplicial sets u : A → B is said to be essentially surjective if the functor
τ1(u) : τ1(A)→ τ1(B) is essentially surjective.

Limits and colimits in a quasi-category

There is a notion of limit (and colimit) for a diagram with values in any quasi-
category. A diagram in a quasi-category X is defined to be a map A→ X, where
A is an arbitrary simplicial set. The notion of limit depends on the notions of
terminal object and of exact projective cone. An object a in a quasi-category
X is said to be terminal if every simplical sphere x : ∂∆[n] → X with target
x(n) = a can be filled. An object a ∈ X is terminal iff the simplicial set X(x, a)
is contractible for evry object x ∈ X iff the map a : 1→ X is right adjoint to the
map X → 1. The notion of projective cone is defined by using the join A ? B of
two simplicial sets A and B. A projective cone with base d : A→ X in X is a map
c : 1 ? A → X which extends the map d; the object c(1) ∈ X is the apex of the
cone. There a quasi-category X/d of projective cones with base d in X. A simplex
∆[n→ X/d is a map ∆[n ?A→ X which extends d. A projective cone c ∈ X/d is
said to be exact if it is a terminal object of X/d. The limit

l = lim
←−

a∈A

d(a).

is defined to be the apex l = c(1) ∈ X of an exact cone c : 1 ? A → X. The full
simplicial subset of X/d spanned by the exact projective cones is a contractible
Kan complex when non-empty. Hence the limit of a diagram is homotopy unique
if it exists. The colimit of a diagram is defined dually with the notions of initial
object and of coexact inductive cone.

A simplicial set A is said to be finite if it has a finite number on non-
degenerate cell. A diagram A→ X is said to be finite if A is finite. A quasi-category
X is said to be finitely complete or cartesian if every finite diagram d : A → X
has a limit. A quasi-category is cartesian iff it has pullbacks and a terminal object
iff the diagonal X → XA has a right adjoint for any finite simplicial set A. A
quasi-category X is said to be finitely cocomplete or cocartesian if its opposite Xo
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is cartesian. A (large) quasi-category is cocomplete iff it has pushouts and coprod-
ucts iff the diagonal X → XA has a left adjoint for any (small) simplicial set A. If
X is a cocomplete quasi-category and u : A→ B is a map of simplicial sets, then
the map Xu : XB → XA has a left adjoint u!. The map u!(f) : B → A is the left
Kan extension of a map f : A→ X along u.

The loop space Ωu(x) of a pointed object u : 1 → x in a cartesian quasi-
category is defined by a pullback square

Ωu(x)

��

// 1

u

��
1

u // x.

A null object in a quasi-category X is an object 0 ∈ X which is both initial and
terminal. The suspension Σ(x) of an object x in a cocartesian quasi-category with
null object 0 is defined by a pushout square

x //

��

0

��
0 // Σ(x)

A quasi-category A is said to be cartesian closed if it admits finite prod-
ucts and the map a × − : A → A has a right adjoint for any object a ∈ A. A
quasi-category A is said to be locally cartesian closed if the quasi-category A/a is
cartesian for any object a ∈ A.

Cisinski theory

We briefly describe Cisinki’s theory of model structures on a Grothendieck topos.
It can be used to generate the model structure for quasi-categories. It can also
used to generate the model structure for higher quasi-categories.

We say that a map in a topos E is a trivial fibration if it has the right lifting
property with respect to the monomorphisms. This terminology is non-standard
but useful. If A is the class of monomorphisms in a topos E and B is the class
of trivial fibrations, then the pair (A,B) is a weak factorisation system D.1.12.
A map of simplicial sets is a trivial fibration iff it has the right lifting property
with respect to the inclusion δn : ∂∆[n] ⊂ ∆[n] for every n ≥ 0. See B.0.9. An
object I in a topos is said to be injective if the map I → 1 is a trivial fibration.
For example, the Lawvere object L of a topos is injective. An injective object I
equipped with a monomorphism (i0, i1) : {0, 1} → I is called an injective interval.
For example, the Lawvere object L is an injective interval, where i1 : 1→ L is the
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map which classifies the subobject 1 ⊆ 1 and i0 : 1→ L is the map which classifies
the subobject ∅ ⊆ 1. The (nerve of the) groupoid J is an injective interval in the
topos of simplicial sets S.

We say that a cofibrantly generated model structure on a Grothendieck topos
E is a Cisinski model structure if the cofibrations are the monomorphisms. The
acylic fibrations of a Cisinski model structure are the trivial fibrations. The Bous-
field localisation of a Cisinski model structure with respect to a (small) set of maps
Σ ⊆ E is a Cisinski model structure.

A model structure on a category is determined by its cofibrations and its fi-
brant objects by E.1.10. Hence a Cisinski model structure on a topos is determined
by its class of fibrant objects.

The classical model structure on the category of simplicial sets S is a Cisinski
model structure whose fibrant objects are the Kan complexes. The weak equiva-
lences are the weak homotopy equivalences and the fibrations are the Kan fibra-
tions. We say that it is the Kan model structure on S and denote it shortly by
(S,Kan) or by (S,Who), where Who denotes the class of weak homotopy equiva-
lences.

We say that a model structure (C,W,F) on a category E is cartesian if the
cartesian product × : E × E → E is a left Quillen functor of two variables and
the terminal object 1 is cofibrant (definition E.3.8). A Cisinki model structure is
cartesian iff the cartesian product of two weak equivalences is a weak equivalence.
The classical model structure on S is cartesian. If X is a fibrant object in a
cartesian Cisinski model E , then so is the object XA for any object A ∈ E . Hence
the (full) subcategory Ef of fibrant object of E is cartesian closed.

[Ci1] Let C be the class of monomorphisms in a Grothendieck topos E . A
class of maps W ⊆ E is called an (accessible) localizer if the following conditions
are satisfied:

• W has the“three for two” property;

• the class C ∩W is saturated and accessible;

• W contains the trivial fibrations.

If W ⊆ E is a localizer and F = (C ∩ W)t, then the triple M(W) = (C,W,F)
is a Cisinski model structure. The map W 7→ M(W) induces a bijection between
the class of localizers in E and the class of Cisinski model structures on E . The
partially ordered class of localizers in E is closed under (small) intersection. Its
maximum element is the class W = E . Every set of maps S ⊂ E is contained in a
smallest localizer W(S) called the localiser generated by S . In particular, there is
a smallest localizerW0 =W(∅). We shall say that M(W0) is the minimal Cisinski
structure. The model structure M(W0) is is cartesian closed. Every Cisinski model
structure on E is a Bousfield localisation of M(W0).
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[Ci2] Let I = (I, i0, i1) be an injective interval in a topos E . Then an object
X ∈ E is fibrant with respect to minimal Cisinski model structure iff the projection
Xik : XI → X is a trivial fibration for k = 0, 1. A monomorphism A→ B is acyclic
iff the map XB → XA is a trivial fibration for every fibrant object X.

The model structure for quasi-categories

We say that a functor p : A → B (in Cat) is a pseudo-fibration if for every
object a ∈ A and every isomorphism g ∈ B with source p(a), there exists an
isomorphism f ∈ A with source a such that p(f) = g. Equivalently, a functor is a
pseudo-fibration iff it has the right lifting property with respect to the inclusion
{0} ⊂ J . We say that a functor u : A→ B is monic on objects if the induced map
Ob(A) → Ob(B) is monic. The category Cat admits a Quillen model structure
in which a cofibration is a functor monic on objects, a weak equivalence is an
equivalence of categories and a fibration is a pseudo-fibration. Every object is
fibrant and cofibrant. The model structure is cartesian and proper. We call it the
natural model structure on Cat. We shall denote it by (Cat, Eq), where Eq is the
class of equivalences of categories. It induces a (natural) model structure on Grp.

The category of simplicial sets S admits a Cisinski model structure in which
the fibrant objects the quasi-categories. We say that it is the model structure
for quasi-categories and we denote it shortly by (S,QCat). A weak equivalence
is called a weak categorical equivalence and a fibration a pseudo-fibration. The
model structure is cartesian. We call it the model structure for quasi-categories.
We denote it shortly by (S,QCat) or by (S,Wcat), where Wcat denotes the class
of weak categorical equivalences.

We shall say that the n-chain I[n] ⊆ ∆[n] is the spine of ∆[n]. The localizer
Wcat is generated by the spine inclusions I[n] ⊂ ∆[n].

A map between quasi-categories is a weak categorical equivalence iff it is a
categorical equivalence. We call a map of simplicial set a mid fibration if it has the
right lifting property with respect to the inclusions Λk[n] ⊂ ∆[n] with 0 < k < n.
A map between quasi-categories f : X → Y is a pseudo-fibration iff it is a mid
fibration and the functor ho(f) : hoX → hoY is a pseudo-fibration.

The pair of adjoint functors τ1 : S↔ Cat : N is a Quillen adjunction between
the model structure for quasi-categories and the natural model structure on Cat.
A functor u : A→ B in Cat is a pseudo-fibration iff the map Nu : NA→ NB is
a pseudo-fibration in S.

The Kan model structure on : S is a Bousfield localisation of the model
structure for quasi-categories. Hence a weak categorical equivalence is a weak
homotopy equivalence and the converse is true for a map between Kan complexes
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by E.2.18. A Kan fibration is a pseudo-fibration and that the converse is true for
a map between Kan complexes.

The Kan model structure on S is a Bousfield localisation of the model struc-
ture for quasi-categories. Many results on Kan complexes can be extended to
quasi-categories. For example, every quasi-category has a skeletal (or minimal)
model which is unique up to isomorphism.

Equivalence with simplicial categories

The theory of simplicial categories was developped by Dwyer and Kan in their
work on simplicial localisation.

Recall that a category enriched over simplicial sets is called a simplicial cat-
egory. An enriched functor between simplicial categories is said to be simplicial.
We denote by SCat the category of simplicial categories and simplicial functors.
An ordinary category is a simplicially enriched category with discrete hom. The
inclusion functor Cat ⊂ SCat has a left adjoint

ho : SCat→ Cat

which associates to a simplicial category X its homotopy category hoX. By con-
struction, we have (hoX)(a, b) = π0X(a, b) for every pair of objects a, b ∈ X. A
simplicial functor f : X → Y is said to be homotopy fully faithful if the map
X(a, b) → Y (fa, fb) is a weak homotopy equivalence for every pair of objects
a, b ∈ X. A simplicial functor f : X → Y is said to be homotopy essentially
surjective if the functor ho(f) : hoX → hoY is essentially surjective. A simpli-
cial functor f : X → Y is called a Dwyer-Kan equivalence if it is homotopy fully
faithful and homotopy essentially surjective. A simplicial functor f : X → Y is
called a Dwyer-Kan fibration if the map X(a, b) → Y (fa, fb) is a Kan fibration
for every pair of objects a, b ∈ X, and the functor ho(f) is a pseudo-fibration.
The category SCat admits a Quillen model structure in which the weak equiv-
alences are the Dwyer-Kan equivalences and the fibrant objects the Dwyer-Kan
fibrations. We call it the Bergner model structure on SCat. The fibrant objects
are the categories enriched over Kan complexes.

Recall that a reflexive graph is a 1-truncated simplicial set. Let Grph be
the category of reflexive graphs. The obvious forgetful functor U : Cat → Grph
has a left adjoint F . The composite C = FU has the structure of a comonad on
Cat. Hence the sequence of categories CnA = Cn+1(A) (n ≥ 0) has the structure
of a simplicial object C∗(A) in Cat for any small category A. The simplicial set
n 7→ Ob(CnA) is constant with value Ob(A). It follows that C∗(A) can be viewed
as a simplicial category instead of a simplicial object in Cat. This defines a functor

C∗ : Cat→ SCat.
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If A is a category then the augmentation C∗(A) → A is a cofibrant replacement
of A in the model category SCat. If X is a simplicial category, then a simplicial
functor C∗(A)→ X is said to be a homotopy coherent diagram A→ X [V].

The simplicial category C?[n] has the following simple description. The ob-
jects of C?[n] are the elements of [n]. If i, j ∈ [n] and i ≤ j, then the category
C?[n](i, j) is the poset of subsets S ⊆ [i.j] such that {i, j} ⊆ S. If i > j, then
C?[n](i, j) = ∅. If i ≤ j ≤ k, then the composition operation

C?[n](j, k)× C?[n](i, j)→ C?[n](i, k)

is the union (T, S) 7→ T ∪ S.

The coherent nerve of a simplicial categoryX is the simplicial set C !X defined
by putting

(C !X)n = SCat(C?[n], X)

for every n ≥ 0. A homotopy coherent diagram A→ X indexed by a category A is
a map of simplicial sets A→ C !X. The functor C ! : SCat→ S has a left adjoint
C! and we have C!A = C?A when A is a category [J4]. The pair of adjoint functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for quasi-categories and the
Bergner model structure[J4][Lu1]. The simplicial set C !(X) is a quasi-category
when the simplicial category X is enriched over Kan complexes [CP].

A quasi-category can be large. The (large) quasi-category of homotopy types
U is defined to be the coherent nerve of the (large) simplicial category of Kan
complexes Kan. The quasi-category U is bicomplete and locally cartesian closed.
It is the archetype of an utopos.

The category QCat becomes enriched over Kan complexes if we put

Hom(X,Y ) = J(Y X)

for X,Y ∈ QCat. The (large) quasi-category of (small) quasi-categories U1 is
defined to be the coherent nerve of QCat. The quasi-category U1 is bicomplete
and cartesian closed.

Equivalence with Segal categories

The notion of Segal categories was introduced by Hirschowitz and Simpson in their
work on higher stacks in algebraic geometry.

A bisimplicial set is a contravariant functor ∆ × ∆ → Set. We denote the
category of bisimplicial sets by S(2). A simplicial space is a contravariant functor
∆ → S. We can regard a simplicial space X as a bisimplicial set by putting
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Xmn = (Xm)n for every m,n ≥ 0. Conversely, we can regard a bisimplicial set X
as a simplicial space by putting Xm = Xm? for every m ≥ 0. The box product of
two simplicial sets A and B is the bisimplicial set A�B obtained by putting

(A�B)mn = Am ×Bn

for every m,n ≥ 0. This defines a functor of two variables � : S× S→ S(2).

A simplicial space X : ∆o → S is called a precategory if the simplicial set
X0 is discrete. We shall denote by PCat the full subcategory of S(2) spanned by
the precategories. A bisimplicial set X : (∆o)2 → Set is a precategory iff it takes
every map in [0]×∆ to a bijection. Let us put

∆|2 = ([0]×∆)−1(∆×∆)

and let π be the canonical functor ∆2 → ∆|2. We can regard the functor π∗ as an
inclusion by adopting the same notation for a contravariant functor X : ∆|2 → Set
and the precategory π∗(X). The functor π∗ : PCat ⊂ S(2) has a left adjoint π!

and a right adjoint π∗.

If X is a precategory and n ≥ 1, then the vertex map vn : Xn → Xn+1
0 takes

its values in a discrete simplicial set. We thus have a decomposition

Xn =
⊔

a∈X
[n]0
0

X(a),

where X(a) = X(a0, a1, . . . , an) denotes the fiber of vn at a = (a0, a1, · · · , an). If
u : [m]→ [n] is a map in ∆, then the map X(u) : Xn → Xm induces a map

X(a0, a1, . . . , an)→ X(au(0), au(1), . . . , au(m))

for every a ∈ X [n]0
0 . A precategory X is called a Segal category if the canonical

map
X(a0, a1, . . . , an)→ X(a0, a1)× · · · ×X(an−1, an)

is a weak homotopy equivalence for every a ∈ X [n]0
0 and n ≥ 2. This condition is

called the Segal condition.

If C is a small category, then the bisimplicial set N(C) = C�1 is a Segal
category. The functor N : Cat→ PCat has a left adjoint

τ1 : PCat→ Cat.

We say that τ1X is the fundamental category of a precategory X. A map of precat-
egories f : X → Y is said to be essentially surjective if the functor τ1(f) : τ1X →
τ1Y is essentially surjective. A map of precategories f : X → Y is said to be fully
faithful if the map

X(a, b)→ Y (fa, fb)
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is a weak homotopy equivalence for every pair a, b ∈ X0. We say that f : X → Y
is an equivalence if it is fully faithful and essentially surjective.

Hirschowitz and Simpson construct a completion functor

S : PCat→ PCat

which associates to a precategory X a Segal category S(X) “generated” by X. A
map of precategories f : X → Y is called a weak categorical equivalence if the map
S(f) : S(X) → S(Y ) is an equivalence of Segal categories. The category PCat
admits a model structure in which a a weak equivalence is a weak categorical
equivalence and a cofibration is a monomorphism. The model structure is left
proper and it is cartesian closed by a result of Pellisier in [P]. We say that it is
the model structure for Segal categories.

We recall that the category of simplicial spaces [∆o,S] admits a Reedy model
structure in which the weak equivalences are the level wise weak homotopy equiv-
alences and the cofibrations are the monomorphisms. A Segal category is fibrant
iff it is Reedy fibrant as a simplicial space by a result of Bergner [B3]. Hence the
Hirschowitz-Simpson model structure is the Cisinki model structure on PCat for
which the fibrant objects are the Reedy fibrant Segal category.

The functor ii : ∆ → ∆ × ∆ defined by putting i1([n]) = ([n], 0) is right
adjoint to the projection p1 : ∆×∆ → ∆. The projection p1 inverts every arrow
in [0] ×∆. Hence there is a unique functor q : ∆|2 → ∆ such that qπ = p1. The
composite functor j = πi1 : ∆ → ∆|2 is right adjoint to the functor q. Hence the
functor j∗ : PCat → S is right adjoint to the functor q∗. If X is a precategory,
then j∗(X) is the first row of X. If A ∈ S, then q∗(A) = A�1. It was conjectured
in [T1] and proved in [JT2] that the adjoint pair of functors

q∗ : S↔ PCat : j∗

is a Quillen equivalence between the model category for quasi-categories and the
model category for Segal categories.

Let us put d = πδ : ∆ → ∆|2, where δ is the diagonal functor ∆ → ∆ ×∆.
The simplicial set d∗(X) is the diagonal of a precategory X. The functor

d∗ : PCat→ S

admits a left adjoint d! and a right adjoint d∗. It was proved in [JT2] that the
adjoint pair of functors

d∗ : PCat↔ S : d∗

is a Quillen equivalence between the model category for Segal categories and the
model category for quasi-categories.
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Equivalence with Rezk categories

Rezk categories were introduced by Charles Rezk under the name of complete Segal
spaces. We describe the equivalence between Rezk categories and quasi-categories.

The box product funtor � : S × S → S(2) is divisible on both sides. This
means that the functor A�(−) : S→ S(2) admits a right adjoint A\(−) : S(2) → S
for every simplicial set A, and that the functor (−)�B : S→ S(2) admits a right
adjoint (−)/B : S(2) → S for every simplicial set B. Let In ⊆ ∆[n] be the n-chain.
For any simplicial space X we have a canonical bijection

In\X = X1 ×∂0,∂1 X1 × · · · ×∂0,∂1 X1,

where the successive fiber products are calculated by using the face maps ∂0, ∂1 :
X1 → X0. We shall say that a simplicial space X satisfies the Giraud condition if
the map

in\X : ∆[n]\X −→ In\X
obtained from the inclusion in : In ⊆ ∆[n] is an isomorphism for every n ≥ 2 (the
condition is trivially satisfied if n < 2). We say that a simplicial space X satisfies
the Segal condition if the same map is a weak homotopy equivalence for every
n ≥ 2.

We recall that the category [∆o,S] of simplicial spaces admits a Reedy model
structure in which the weak equivalences are the level wise weak homotopy equiva-
lences and the cofibrations are the monomorphisms. We say that a simplicial space
X : ∆o → S is a Segal space if it is Reedy fibrant and satisfies the Segal condition.
The Reedy model structure admits a Bousfield localisation in which the fibrant
objects are the Segal spaces by a theorem of Rezk in [Rezk1]. We call the localised
model structure the model structure for Segal spaces.

Let J be the groupoid generated by one isomorphism 0→ 1. We regard J as
a simplicial set via the nerve functor. Wel say that a Segal space X satisfies the
Rezk condition if the map

1\X −→ J\X
obtained from the map J → 1 is a weak homotopy equivalence. We say that a
Segal space which satisfies the Rezk condition is complete, or that it is a Rezk
category. The model structure for Segal spaces admits a Bousfield localisation in
which the fibrant objects are the Rezk categories by a theorem of Rezk in [Rezk1].
It is the model structure for Rezk categories.

[JT2] The first projection p1 : ∆ × ∆ → ∆ is left adjoint to the functor
i1 : ∆ → ∆ × ∆ defined by putting i1([n]) = ([n], [0]) for every n ≥ 0. The
simplicial set i∗1(X) is the first row of a bisimplicial set X. Notice that we have
p∗1(A) = A�1 for every simplicial set A. The pair of adjoint functors

p∗1 : S↔ S(2) : i∗1
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is a Quillen equivalence between the model category for quasi-categories and the
model category for Rezk categories.

[JT2] Recall that the inclusion functor π∗ : PCat ⊂ S(2) has a left adjoint π!

and a right adjoint π∗. It was proved by Bergner in [B2] that the pair of adjoint
functors

π∗ : PCat↔ S(2) : π∗

is a Quillen equivalence between the model structure for Segal categories and the
model structure for Rezk categories. The functor π∗ preserves and reflects weak
equivalences.

Homotopy localisations

The theory of simplicial localisation of Dwyer and Kan can be formulated in the
language of quasi-categories. The homotopy localisation of a quasi-category X
with respect to a set Σ of arrows in X is the quasi-category L(X,Σ) defined by a
homotopy pushout square

Σ× I //

��

X

��
Σ× J // L(X,Σ),

where the vertical map on the left side is induced by the inclusion I ⊂ J . The
functor τ1 preserves homotopy pushouts and it follows that there is an equivalence
of categories,

hoL(X,Σ) ' Σ−1hoX.

If C is a category, then L(C,Σ) is equivalent to the coherent nerve of the Dwyer-
Kan localisation of C with respect to the set Σ. If X is a quasi-category, then every
map C → X which inverts every arrow in Σ admits an extension L(C,Σ) → X
which is unique up to a unique 2-cell. A pair (C,Σ) is a homotopical category in
the sense of Dwyer, Hirschhorn, Kan and J.H. Smith [DHKS]. If X is a quasi-
category, we call a map C → X a representation of X by (C,Σ) if its extension
L(C,Σ)→ X is an equivalence of quasi-categories. Every quasi-category admits a
representation by a homotopical category (C,Σ). The homotopy localisation of a
model category E is defined to be the quasi-category L(E) = L(E ,W), where W
is the class of weak equivalences. Notice the equivalence of categories

hoL(E)) ' W−1E = Ho(E).

It follows from a result of Simpson [Si3] and of [Du] that the quasi-category L(E)
is locally presentable when the model category E is combinatorial [Hi]. Conversely,
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every locally presentable quasi-category is the homotopy localisation of a combi-
natorial model category. We conjecture that the quasi-category L(E) is finitely
bicomplete for any model category E and conversely, that every (small) finitely bi-
complete quasi-category is the homotopy localisation of a (small) model category.

Homotopy factorisation systems

Factorisation systems arise in category theory and homotopical algebra. They
play an important role in the theory of quasi-categories. We consider four kinds
of factorisation systems: strict, weak, Bousfield and homotopy. Strict factorisation
systems occur in category theory and weak factorisation systems in homotopical
algebra. Homotopy factorisation systems were introduced in homotopy theory by
Bousfield as a side product of his localisation theory. We introduce a general no-
tion to formalise natural examples from category theory, homotopy theory and the
theory of quasi-categories. Each class of a homotopy factorisation system (A,B)
is homotopy replete and closed under composition. The left class A has the right
cancellation property and the right class B has the left cancellation property; the
intersection A∩B is the class of weak equivalences. If A is the class of essentially
surjective functors and B is the class of fully faithful functors, then the pair (A,B)
is a homotopy factorisation system in the category Cat (equipped with the natural
model structure). Each class determines of a homotopy factorisation system deter-
mines the other. The category Cat admits a homotopy factorisation system (A,B)
in which B is the class of conservative functors. A functor u : A → B belongs to
the class A of this system iff it admits a factorisation u = eu′ : A → B′ → B
with e an equivalence and u′ an iterated localisation. Each of these systems is
related to a corresponding homotopy factorisation system in the model category
(S,QCat). Let us say that map of simplicial sets u : A→ B is essentially surjec-
tive if the functor τ1(u) is essentially surjective. The model category (S,QCat)
admits a homotopy factorisation system (A,B) in which A is the class of essen-
tially surjective maps; a map in B is said to be fully faithful. Let us say that a map
of simplicial sets f : X → Y is conservative if the functor τ1(f) is conservative.
The model category (S,QCat) admits a homotopy factorisation system (A,B) in
which B is the class of conservative maps; a map in A is an iterated homotopy
localisation. We say that a homotopy factorisation system (A,B) is strong if the
pair (A′,B′) = (A ∩ C,B ∩ F) is a weak factorisation system; the pair (A′,B′) is
what we call a Bousfield factorisation system. There is a bijection between the
strong homotopy factorisation systems and the Bousfield factorisation systems.
In the model category Cat, every homotopy factorisation system in the model
category Cat is strong but this is false in the model category (S,QCat).

Recall that a functor u : A → B induces a pair of adjoint functors between
the presheaf categories

u! : [Ao,Set]↔ [Bo,Set] : u∗.
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A functor u is said to be final, but we shall say 0-final, if the functor u! takes a
terminal object to a terminal object. A functor u : A→ B is final iff the category
b\A defined by the pullback square

b\A

��

// A

u

��
b\B // B

is connected for every object b ∈ B. The model category Cat admits a (strict)
factorisation system (A,B) in which A is the class of 0-final functors and B is the
class of discrete fibrations. The system is not a homotopy factorisation system,
since the class B is not invariant under equivalences. There is however an associated
homotopy factorisation system (A,B′), where a functor f : X → Y belongs to B′
iff it admits a factorisation f = f ′e : X → X ′ → Y with e an equivalence and f ′ a
discrete fibration. The notion of 0-final functor u : A → B can be strengthtened.
A functor u : A → B is said to be 1-final if the category b\A is 1-connected for
every object b ∈ B. The model category Cat admits a homotopy factorisation
system (A,B) in which A is the class of 1-final functors. A functor f : X → Y
belongs to B iff it admits a factorisation f = f ′e : X → X ′ → Y with e an
equivalence and f ′ a 1-fibration. A 1-fibration is a Grothendieck fibration whose
fibers are groupoids. There is an obvious notion of 2-final functor but the model
category Cat does not admit a homotopy factorisation system (A,B) in which A
is the class of 2-final functors. But such a system exists if we replace the model
category Cat by the model category (S,QCat). There is a notion of n-final map
of simplicial sets for every n ≥ 0, and the model category (S,QCat) admits a
homotopy factorisation system (An,Bn) in which An is the class of n-final maps.
There is also a notion of ∞-final map of simplicial sets and the model category
(S,QCat) admits a homotopy factorisation system (A∞,B∞) in which A∞ is the
class of ∞-final maps. For simplicity, a map in A∞ is said to be final. A map
f : X → Y belongs to B∞ iff it admits a factorisation f = f ′e : X → X ′ → Y
with e a weak categorical equivalence and f ′ a right fibration.

Left and right fibrations

We call a map of simplicial sets a left fibration, or a covariant fibration, if it has the
right lifting property with respect to the inclusions Λk[n] ⊂ ∆[n] with 0 ≤ k < n.
A map f : X → Y is a left fibration iff the map XI → Y I ×Y X obtained from
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the square

XI
Xi1 //

��

X

��
Y I

Y i1 // Y

is a trivial fibration, where i0 denotes the inclusion {0} ⊂ I = ∆[1]. We say that a
map is left anodyne if it belongs to the saturated class generated by the inclusions
Λk[n] ⊂ ∆[n] with 0 ≤ k < n. The category S admits a factorisation system (A,B)
in which A is the class of left anodyne maps and B is the class of left fibrations.
The system (A,B) is a Bousfield system with respect to the model structure for
quasi-categories. There is an associated homotopy factorisation system (A′,B′)
where A′ is the class of initial maps, where a map u : A → B is initial iff it
admits a factorisation u = eu′ : A → B′ → B with u′ a left anodyne map and e
a weak categorical equivalence. A functor f : X → Y belongs to B′ iff it admits
a factorisation f = f ′e : X → X ′ → Y with e a weak categorical equivalence
and f ′ a left fibration. Dually, we call a map of simplicial sets a right fibration,
or a contravariant fibration, if it has the right lifting property with respect to the
inclusions Λk[n] ⊂ ∆[n] with 0 < k ≤ n. We say that a map is right anodyne if
it belongs to the saturated class generated by the inclusions Λk[n] ⊂ ∆[n] with
0 < k ≤ n. If A is the class of right anodyne maps and B is the class of right
fibrations, then the pair (A,B) is a Bousfield factorisation system in the model
category (S,QCat). We say that a map of simplicial sets u : A → B is terminal
if it admits a factorisation u = eu′ : A → B′ → B with u′ a right anodyne map
and e a weak categorical equivalence.

If u : A → B is a final map, then the colimit of a diagram d : B → X
with values in a quasi-category X exists iff the colimit of the composite diagram
du : A→ X exists, in which case the two colimits are naturally isomorphic. Dually,
if a map u : A→ B is initial, then the limit of a diagram d : B → X exists iff the
limit of du : A→ X exists, in which case the two limits are naturally isomorphic.

Contravariant and covariant model structures

The category S/B is enriched over the category S for any simplicial set B. We
denote by [X,Y ]B , or more simply by [X,Y ], the simplicial set of maps X → Y
between two objects of S/B. If we apply the functor π0 to the composition map

[Y, Z]× [X,Y ]→ [X,Z]

of a triple X,Y, Z ∈ S/B, we obtain a composition law

π0[Y, Z]× π0[X,Y ]→ π0[X,Z]
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for a category (S/B)π0 , where we put (S/B)π0(X,Y ) = π0[X,Y ]. We say that a
map X → Y in S/B is a fibrewise homotopy equivalence if the map is invertible
in the category (S/B)π0 . If X ∈ S/B, let us denote by X(b) the fiber of the
structure map X → B over a vertex b ∈ B. If a map f : X → Y in S/B is a
fibrewise homotopy equivalence, then the map fb : X(b) → Y (b) induced by f
is a homotopy equivalence for each vertex b ∈ B. Let R(B) (resp. L(B)) be the
full subcategory of S/B spanned by the right (resp. left) fibrations with target
B. Then a map f : X → Y in R(B) (resp. in L(B) ) is a fibrewise homotopy
equivalence iff the map fb : X(b)→ Y (b) induced by f is a homotopy equivalence
for every vertex b ∈ B.

We call a map u : M → N in S/B a contravariant equivalence if the map

π0[u,X] : π0[M,X]→ π0[N,X]

is bijective for every X ∈ R(B). A fibrewise homotopy equivalence is a contravari-
ant equivalence and the converse is true for a map in R(B). A final map is a
contravariant equivalence and the converse is true for a map with codomain in
R(B). The category S/B admits a simplicial Cisinski model structure called the
contravariant model structure, in which the weak equivalences are the contravari-
ant equivalences. A fibration is called a dexter fibration and a fibrant object is an
object of R(B). We denote the model structure by (S/B,R(B)). A dexter fibra-
tion is a right fibration and the converse is true for a map in R(B). Dually, we say
that u : M → N in S/B is a covariant equivalence if the map π0[u,X] is bijective
for every X ∈ L(B). The category S/B admits a simplicial Cisinski model struc-
ture, called the covariant model structure, in which the weak equivalences are the
covariant equivalences. A fibration is called a sinister fibration and a fibrant object
is an object of L(B). We denote the model structure by (S/B,L(B)).

If C is a small category, then the category [Co,S]. of simplicial presheaves
Co →,S admits two model structures respectively called the projective and the
injective model structures [GJ]. The weak equivalences are the pointwise weak
homotopy equivalences in both model structures. A fibration is a pointwise Kan
fibration in the projective structure and a cofibration is a pointwise cofibration in
the injective structure. Consider the functor Γ : S/C → [Co,S] which associates
to an object E ∈ S/C the simplicial presheaf c 7→ HomC(C/c,E). The functor
Γ is the right adjoint in a Quillen equivalence between the dexter model category
(S/C,R(C)) and the projective model category [Co,S].

Morita Equivalences

For any simplicial set A, let us put P(A) = Ho(S/A,R(A). A map of simplicial
sets u : A→ B induces a pair of adjoint functors

u! : S/A↔ S/B : u∗.
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The pair is a Quillen adjunction with respect to the contravariant model structure
on these categories. We thus obtain a derived adjunction

P!(u) : P(A)↔ P(B) : P∗(u),

where P!(u) = Lu! is the left derived of u! and P∗(u) = Ru∗ is the right derived
of u∗. Many properties of the map u : A → B can be related to properties of the
functrors P!(u) and P!(u). For example, the map u is final iff the functor P!(u)
takes a terminal object to a terminal object. The map u is fully faithful iff the
functor P!(u) is fully faithful. A map u is said to be dominant if the functor P∗(u)
is fully faithful. It is not obvious (but true) that the notion of dominant map is
self dual: a map u : A → B is dominant iff the the opposite map uo : Ao → Bo

is dominant. A homotopy localisation is dominant. A map u is called a Morita
equivalence if the adjunction P!(u) ` P∗(u) is an equivalence. A map u is a Morita
equivalence iff it is fully faithful and every object of τ1B is a retract of an object
in the image of u.

Karoubi envelopes

Recall that a category A is said to be Karoubi complete if every idemptent in A
splits. Every category A has a Karoubi envelope κ(A) obtained by splitting freely
the idempotents in A. A functor f : A→ B is a Morita equivalence iff the functor
κ(f) : κ(A) → κ(B) is an equivalence of categories. Let E be the monoid freely
generated by one idempotent e ∈ E. Its Karoubi envelope is the category E′ freely
generated by two arrows s : 0→ 1 and r : 1→ 0 such that rs = 10. A category A
is Karoubi complete iff every functor E → A can be extended along the inclusion
E ⊂ E′. The category Cat admits a model structure in which a weak equivalence
is a Morita equivalence and a cofibration is a functor monic on objects. A category
is fibrant iff it is Karoubi complete.

A quasi-category X is said to be Karoubi complete if every map u : E → X
can be extended along the inclusion E ⊂ E′. The category S admits a Cisinki
model structure in which the fibrant objects are the Karoubi complete quasi-
categories. A weak equivalence is a Morita equivalence. The fibrant replacement
of a quasi-category A is its Karoubi envelope κ(A).

Grothendieck fibrations

There is a notion of Grothendieck fibration for maps between simplicial sets. If
p : E → B is a mid fibration between simplicial sets, we say that an arrow
f : a→ b in E is cartesian if the map E/f → B/pf ×B/pb E/b obtained from the

JK

JK
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commutative square
E/f //

��

E/b

��
B/pf // B/pb

is a trivial fibration. We say that a mid fibration p : E → B is a Grothendieck
fibration if for every vertex b ∈ E and every arrow g ∈ B with target p(b), there
exists a cartesian arrow f ∈ E with target b such that p(f) = g. Every right
fibration is a Grothendieck fibration and every Grothendieck fibration is pseudo-
fibration.

There is a dual notion of cocartesian arrow and a dual notion of Grothendieck
opfibration.

If X is a quasi-category, then the source map s : XI → X is a Grothendieck
fibration, and it is an opfibration when X admits pushouts. Dually, the target
map t : XI → X a Grothendieck opfibration, and it is a fibration when X admits
pullbacks.

Every map between quasi-categories u : X → Y admits a factorisation

u = qi : X → P → Y

with q a Grothendieck fibration and i a fully faithful right adjoint. The quasi-
category P can be constructed by the pullback square

P
h //

p

��

Y I

t

��
X

u // Y,

where t is the target map. If s : Y I → Y is the source map, then the composite
q = sh : P → Y is a Grothendieck fibration. There is a unique map i : X → P
such that pi = 1X and hi = δu, where δ : Y → Y I is the diagonal. We have p ` i
and the counit of the adjunction is the identity of pi = 1X . Thus, i is fully faithful.

Proper maps

There is a notion of proper (resp. smooth) map between quasi-categories and more
generally beween simplicial sets. We say that a map of simplicial sets u : A → B
is proper if the pullback functor u∗ : S/B → S/A takes a right anodyne map
to a right anodyne map. A map of simplicial sets u : A → B is proper iff the
inclusion u−1(b(n)) ⊆ b∗(E) is right anodyne for every simplex b : ∆[n] → B. A
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Grothendieck opfibration is proper. A map of simplicial sets u : A→ B induces a
pair of adjoint functors

u∗ : S/B ↔ S/A : u∗.

When u is proper, it is a Quillen adjunction with respect to the contravariant
model structure on these categories. We thus obtain a derived adjunction

P∗(u) : P(B)↔ P(A) : P∗(u),

where P∗(u) is both the left and the right derived functor of the functor u∗, and
where P∗(u) is the right derived functor of u∗. The base change of a proper map
u : A→ B along any map v : B′ → B is a proper map u : A′ → B′,

A′ v′ //

u′

��

A

u

��
B′ v // B.

Moreover, the Beck-Chevalley law holds. This means that the following square of
functors commutes up to a canonical isomorphism,

P(A′)

P∗(u′)
��

P(A)
P∗(v′)oo

P∗(u)

��
P(B′) P(B).

P∗(v)oo

Dually, a map of simplicial sets u : A → B is said to be smooth if the opposite
map uo is proper. A Grothendieck fibration is smooth.

The right derived functor

P∗(u) : P(B)→ P(A)

has a right adjoint for any map of simplicial sets u : A → B. To see this, it
suffices by Morita equivalence to consider the case where u is a map between
quasi-categories. The result is obvious in the cases where u is proper and where
u has a right adjoint. The general case follows by factoring u as a left adjoint
followed by a Grothendieck opfibration.

The quasi-category U

Recall that the quasi-category of homotopy types U is defined to be the coherent
nerve of the category Kan. An object of the quasi-category U′ = 1\U is a pointed
homotopy type. The canonical map q : U′ → U is a universal left fibration. he
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universality means that the functor So → CAT which associate to a simplicial set
B the homotopy category Q(B) of left fibrations with target B is ”representable”
by the object U′ ∈ Q(U) (it is not truly representable, since the quasi-category
U fails to be small). Concretely, the universality means that for any left fibration
E → B there exists a homotopy pullback square

E

��

f0 // U′

��
B

f1 // U

and moreover that the pair (f0, f1) is unique up to a unique invertible 2-cell
in a certain 2-category of maps. The simplicial set of elements E(f) of a map
f : A → U is defined by putting E(f) = f∗(U′). If eA is the evaluation map
A×UA → U, then the left fibration LA defined by the pullback square

LA

��

// U′

��
A×UA

eA // U

”represents” the functor So → CAT which associates to a simplicial set B the
homotopy category Q(A × B) of left fibrations with target A × B. When B = 1,
this gives an equivalence of categories

ho UA ' Q(A).

A prestack on a simplicial set A is defined to be a map Ao → U. The prestacks
form a cartesian closed quasi-category

P(A) = UAo

= [Ao,U].

The simplicial set of elements Eo(f) of a prestack f : Ao → U is defined by
putting Eo(f) = E(f)o. The canonical map Eo(f) → A is a right fibration. The
left fibration LAo → Ao×P(A) defined above ”represents” the functor So → CAT
which associates to a simplicial set B the homotopy category Q(Ao × B) of left
fibrations with target Ao×B. When B = 1, this gives an equivalence of categories

ho P(A) ' P(A).

Yoneda Lemma

The twisted category of arrows θ(C) of a category C is the category of elements
of the hom functor Co × C → Set. The twisted quasi-category of arrows of a
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quasi-category A is defined by putting θ(A) = a∗(A), where a : ∆ → ∆ is the
functor obtained by putting a([n]) = [n]o ? [n] for every n ≥ 0. The canonical map
(s, t) : θ(A)→ Ao ×A is a left fibration; it is thus classified by a map

homA : Ao ×A→ U.

This defines the Yoneda map

yA : A→ P(A)

by adjointness. We say that a prestack on A is representable if it belongs to the
essential image of yA. The map homX : Xo × X → U can be defined for any
locally small quasi-category X; if A is a simplicial set and f : A → X, then by
composing the maps

Ao ×X
fo×X // Xo ×X

homX // U

we obtain a map Ao ×X → U, hence also a map f ! : X → P(A) by adjointness.
One form of the Yoneda lemma says that the map f ! is the identity of P(A) when
f is the Yoneda map yA : A→ P(A). It implies that for any f ∈ P(A) we have a
homotopy pullback square

Eo(f)

��

// P(A)/f

��
A

yA // P(A).

If X is a locally small quasi-category and A is a simplicial set, we say that a
map f : A→ X is dense if the map f ! : X → P(A) is fully faithful. For example,
let i : ∆ → U1 be the map obtained by applying the coherent nerve functor to
the inclusion ∆→ QCat. It can be proved that the map

i! : U1 → P(∆)

is fully faithful. This means that the map i is dense.

The quasi-category U is cocomplete, and it is freely generated by the object
1 ∈ U as a cocomplete quasi-category. More generally, if A is a simplicial set, then
the quasi-category P(A) is cocomplete and freely generated by the Yoneda map
yA : A → P(A). If X is a cocomplete locally small quasi-category, then the left
Kan extension f! : P(A) → X of a map f : A → X is left adjoint to the map
f ! : X → P(A).
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Factorisation systems in a quasi-category

There is a notion of factorisation system in a quasi-category. Let us define the
orthogonality relation u⊥f between the arrows of a quasi-category X. If u : a→ b
and f : x→ y is a pair of arrows in X, then a commutative square

a //

u

��

x

f

��
b // y

is a map s : I×I → X such that s|{0}×I = u and s|{1}×I = f . A diagonal filler
for s is a map I ? I → X which extends s along the inclusion I × I ⊂ I ? I. Let us
denote by Fill(s) the fiber at s of the projection q : XI?I → XI×I defined by the
inclusion I×I ⊂ I ?I. The simplicial set Fill(s) is a Kan complex, since q is a Kan
fibration. We shall say that the arrow u is left orthogonal to f , or that f is right
orthogonal to u, and we shall write u⊥f , if the simplicial set Fill(s) is contractible
for every commuative square s such that s|{0} × I = u and s|{1} × I = f .

We say that an object x in a quasi-category X is local with respect to an
arrow u : a→ b, and we write u⊥x, if the map

homX(u, x) : homX(b, x)→ homX(a, x)

is invertible. WhenX has a terminal object 1, an object x is local with respect to
an arrow u : a→ b iff the arrow x→ 1 is right orthogonal to u.

If h : X → hoX is the canonical map, then the relation u⊥f between the
arrows of X implies the relation h(u)⊥h(f) in hoX, but the converse is not nec-
essarly true. However, the relation u⊥f only depends on the homotopy classes of
u and f . If A and B are two sets of arrows in X, we shall write A⊥B to indicate
the we have u⊥f for every u ∈ A and f ∈ B. We shall put

A⊥ = {f ∈ X1 : ∀u ∈ A, i⊥f}, ⊥A = {u ∈ X1 : ∀f ∈ A, u⊥f}.

The set A⊥ contains the isomorphisms, has the left cancellation property, and it
is closed under composition and retracts. It is also closed under the base changes
which exists.

Let X be a (large or small) quasi-category. We say that a pair (A,B) of
class of arrows in X is a factorisation system if the following two conditions are
satisfied:

• A⊥ = B and A = ⊥B;

• every arrow f ∈ X admits a factorisation f = pu (in hoX) with u ∈ A and
p ∈ B.
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We say that A is the left class and that B is the right class of the factorisation
system.

If X is a quasi-category, then the image by the canonical map h : X → hoX
of a factorisation system (A,B) is a weak factorisation system (h(A), h(B)) on the
category hoX. Moreover, we have A = h−1h(A) and B = h−1h(B). Conversely,
if (C,D) is a weak factorisation system on the category ho(X), then the pair
(h−1(C), h−1(D)) is a factorisation system in X iff we have h−1(C)⊥h−1(D).

The intersection A ∩ B of the classes of a factorisation system (A,B) on a
quasi-category X is the class of isomorphisms in X. The class A of a factorisation
system (A,B) has the right cancellation property and the class B the left cancel-
lation property. Each class is closed under composition and retracts. The class A
is closed under the cobase changes which exist. and the class B under the base
changes which exist.

Let (A,B) be a factorisation system in a quasi-category X. Then the full
sub-quasi-category of XI spanned by the elements in B is reflective. Hence this
sub-quasi-category is closed under limits. Dually, the full sub=quasi-category of
XI spanned by the elements in A is coreflective.

If p : X → Y is a left or a right fibration between quasi-categories and (A,B)
is a factorisation system on Y , then the pair (p−1(A), p−1(B)) is a factorisation
system on X. We say that it is obtained by lifting the system (A,B) along p. In
particular, every factorisation system on X can lifted to X/b (resp. b\X) for any
vertex b ∈ X.

Let p : E → L(E) be the localisation of a model category with respect the
class of weak equivalences. If (A,B) is a factorisation system in L(E), then the
pair (p−1(A), p−1(B) is a homotopy factorisation system in E , and this defines a
bijection between the factorisation systems in L(E) and the homotopy factorisation
systems in E .

We say that a factorisation system (A,B) in a quasi-category with products
X is closed under products if the class A is closed under products (as a class of
objects in XI). The notion of a factorisation closed under finite products in a
quasi-category with finite products X is defined similarly. When X has pullbacks,
we say that a factorisation system (A,B) is stable under base changes if the class
A is closed under base changes, in other words, if the implication f ∈ A⇒ f ′ ∈ A
is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y.
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We say that an arrow u : a → b in a quasi-category X is a monomorphism
or that it is monic if the commutative square

a
1a //

1a

��

a

u

��
a

u // b

is cartesian. A monomorphism in X is monic in hoX but the converse is not
necessarly true. A map between Kan complexes u : A→ B is monic in U iff it is
homotopy monic.

We say that an arrow in a cartesian quasi-category X is surjective, or that
is a surjection , if it is left orthogonal to every monomorphism of X. Wel say that
a cartesian quasi-category X admits surjection-mono factorisations if every arrow
f ∈ X admits a factorisation f = up, with u a monomorphism and p a surjection.
In this case X admits a factorisation system (A,B), with A the set of surjections
and B the set of monomorphisms. If quasi-category X admits surjection-mono
factorisations, then so do the quasi-categories b\X and X/b for every vertex b ∈ X,
and the quasi-category XS for every simplicial set S.

We say that a cartesian quasi-category X is regular if it admits surjection-
mono factorisations stable under base changes. The quasi-category U is regular.
If a quasi-category X is regular then so are the quasi-categories b\X and X/b for
any vertex b ∈ X and the quasi-category XA for any simplicial set A.

Recall that a simplicial set A is said to be a 0-object if the canonical map
A→ π0(A) is a weak homotopy equivalence, If X is a quasi-category, we shall say
that an object a ∈ X is discrete or that it is a 0-object if the simplicial set X(x, a)
is a 0-object for every node x ∈ X. When the square a×a exists, an object a ∈ X is
a 0-object iff the diagonal a→ a×a is monic. When the exponential aS1

exists, an
object a ∈ X is a 0-object iff the projection aS1 → a is quasi-invertible. We shall
say that an arrow u : a→ b is a 0-cover if it is a 0-object of the slice quasi-category
X/b. An arrow u : a → b is a 0-cover iff the map X(x, u) : X(x, a) → X(x, b) is
a 0-cover for every node x ∈ X. We shall say that an arrow u : a → b in X is
0-connected if it is left orthogonal to every 0-cover in X. We shall say that a quasi-
category X admits 0-factorisations if every arrow f ∈ X admits a factorisation
f = pu with u a 0-connected arrow and p a 0-cover. In this case X admits a
factorisation system (A,B) with A the set of 0-connected maps and B the set of
0-covers. The quasi-category U admits 0-factorisations and they are stable under
base changes. If a quasi-category X admits 0-factorisations, then so do the quasi-
categories b\X and X/b for every vertex b ∈ X, and the quasi-category XS for
every simplicial set S.

There is a notion of n-cover and of n-connected arrow in every quasi-category
for every n ≥ −1. If X is a quasi-category, we shall say that a vertex a ∈ X is
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a n-object if the simplicial set X(x, a) is a n-object for every vertex x ∈ X. See
[Bi2] for the homotopy theory of n-objects. If n = −1, this means that X(x, a)
is contractible or empty. When the exponential aSn+1

exists, the vertex a is a n-
object iff the projection aSn+1 → a is quasi-invertible. We shall say that an arrow
u : a → b is a n-cover if it is a n-object of the slice quasi-category X/b. If n ≥ 0
and the product a×a exists, the vertex a is a n-object iff the diagonal a→ a×a is
a (n−1)-cover. We shall say that an arrow in a quasi-category X is n-connected if
it is left orthogonal to every n-cover. We shall say that a quasi-category X admits
n-factorisations if every arrow f ∈ X admits a factorisation f = pu with u a
n-connected map and p a n-cover. In this case X admits a factorisation system
(A,B) with A the set of n-connected maps and B the class of n-covers. If n = −1,
(A,B) is the surjection-mono factorisation system. The quasi-category U admits
n-factorisations and they are stable under base changes. If a quasi-category X
admits n-factorisations, then so do the quasi-categories b\X and X/b for every
vertex b ∈ X, and the quasi-category XS for every simplicial set S.

Suppose that a quasi-category X admits k-factorisations for every −1 ≤ k ≤
n. Then we have a sequence of inclusions

A−1 ⊇ A0 ⊇ A1 ⊇ A2 ⊇ A3 · · · ⊇ An

B−1 ⊆ B0 ⊆ B1 ⊆ B2 ⊆ B3 · · · ⊆ Bn,

where (Ak, Bk) denotes the k-factorisation system in X. If n > 0, we shall say that
a n-cover f : x → y is an Eilenberg-MacLane n-gerb if f is (n − 1)-connected. A
Postnikov tower (of height n) for an arrow f : a→ b is defined to be a factorisation
of length n+ 1 of f

a x0
q0oo x1

p1oo · · ·p2oo xn
pnoo b,

qnoo

where q0 is a 0-cover, where pk is an EM k-gerb for 1 ≤ k ≤ n and where qn is
n-connected. The tower could be augmented by further factoring q0 as a surjection
p0 : x0 → x−1 followed by a monomorphism x−1 → a. Every arrow in X admits a
Postnikov tower of height n and this tower is unique up to a unique isomorphism
in the homotopy category of the quasi-category of towers.

We say that a factorisation system (A,B) in a quasi-category X is generated
by a set Σ of arrows in X if we have B = Σ⊥. Let X be a cartesian closed quasi-
category. We shall say that a factorisation system (A,B) in X is multiplicatively
generated by a set of arrows Σ if it is generated by the set

Σ′ =
⋃

a∈X0

a× Σ.

Most factorisation systems of interest are multiplicatively generated. For example,
in the quasi-category U, the surjection-mono factorisation system is multiplica-
tively generated by the map S0 → 1. More generally, the n-factorisation system
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is multiplicatively generated by the map Sn+1 → 1. In the quasi-category U2, the
system of essentially surjective maps and fully faithful maps is multiplicatively
generated by the inclusion ∂I ⊂ I. The system of final maps and right fibrations
described is multiplicatively generated by the inclusion {1} ⊂ I. The dual system
of initial maps and left fibrations is multiplicatively generated by the inclusion
{0} ⊂ I. The system of localisations and conservative maps is multiplicatively
generated by the map I → 1 (or by the inclusion I ⊂ J , where J is the groupoid
generated by one isomorphism 0→ 1). The system of weak homotopy equivalences
and Kan fibrations is multiplicatively generated by the pair of inclusions {0} ⊂ I
and {1} ⊂ I.

Distributors, cylinders and spans

The purpose of the theory of distributors is to give a representations of the co-
continuous maps P(A) → P(B), where A and B are simplicial sets. A cocontin-
uous map P(A) → P(B) is determined by its composite with the Yoneda map
yA : A → P(A), since P(A) is freely generated by yA as a cocomplete quasi-
category. But a map A→ P(B) = UBo

is the same thing as a map Bo ×A→ U.
Hence the quasi-category of cocontinuous maps P(A)→ P(B) is equivalent to the
quasi-category UBo×A. The quasi-category UBo×A is the homotopy localisation
of the model category (S/(Bo ×A,L(Bo ×A)) A distributor B ⇒ A is defined to
be an object D of the category S/Bo×A; the distributor is fibrant if its structure
map D → Bo × A is a left fibration. Every cocontinuous map P(A)→ P(B) can
be represented by a fibrant distributor X → Bo ×A.

A cylinder is defined to be a simplicial set C equipped with a map p : C → I.
The base of a cylinder p : C → I is the simplicial set C(1) = p−1(1) and its cobase
is the simplicial set C(0) = p−1(0). For example the join A ? B of two simplicial
sets has the structure of a cylinder with base B and cobase A. Every cylinder C
with base B and cobase A is equipped with a pair of maps A t B → C → A ? B
which factors the inclusion AtB ⊆ A?B. The category C(A,B) of cylinders with
base B and cobase A is a full subcategory of S/A ? B. The model structure for
quasi-categories induces a model structure on C(A,B) for any pair of simplcial
sets A and B. A cylinder X ∈ C(A,B) is fibrant for this model structure iff the
canonical map X → A ? B is a mid fibration. The simplicial set ∆[n]o ?∆[n] has
the structure of a cylinder for every n ≥ 0. The anti-diagonal of a cylinder C is
the simplicial set a∗(C) obtained by putting

a∗(C)n = HomI(∆[n]o ?∆[n], C)

for every n ≥ 0. The simplicial set a∗(C) has the structure of a distributor C(0)⇒
C(1). The resulting functor a∗ : C(A,B)→ S/Ao×B has a left adjoint a! and the
pair (a!, a

∗) is a Quillen equivalence between the model category C(A,B) and the
model category (S/(Bo × A,L(Bo × A)). The cocontinuous map P(A) → P(B)
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associated to a cylinder C ∈ C(B,A) is the map i∗A(iB)! : P(B) → P(A), where
(iA, iB) : B tA→ C is the inclusion.

A span A⇒ B between two simplicial sets is defined to be a map (s, t) : S →
A×B. The spans A⇒ B form a category Span(A,B) = S/A×B. The realisation
of a span (s, t) : S ∈ Span(A,B) is the simplicial set σ∗(S) defined by the pushout
square of canonical maps,

S t S stt //

��

A tB

��
I × S // σ∗(S).

The simplicial set σ∗(S) has the structure of a cylinder in C(A,B). The resulting
functor

σ∗ : Span(A,B)→ C(A,B)

has a a right adjoint σ∗. We call a map u : S → T in Span(A,B) a bivalence if
the map σ∗(u) : σ∗(S) → σ∗(T ) is a weak categorical equivalence. The category
Span(A,B) admits a Cisinski model structure in which a weak equivalence is a
bivalence. The pair of adjoint functors (σ∗, σ∗) is a Quillen equivalence between
the model categories Span(A,B) and C(A,B). The simplicial set ∆[n] ?∆[n] has
the structure of a cylinder for every n ≥ 0. The diagonal of a cylinder C is the
simplicial set δ∗(C) obtained by putting

δ∗(C)n = HomI(∆[n] ?∆[n], C)

for every n ≥ 0. The simplicial set δ∗(C) has the structure of a span C(0)⇒ C(1).
The resulting functor δ∗ : C(A,B) → Span(A,B) has a right adjoint δ∗ and the
pair (δ∗, δ∗) is a Quillen equivalence between model categories. The cocontinuous
map P(A) → P(B) associated to a span S ∈ Span(B,A) is the map (pB)!p∗A :
P(A)→ P(B), where (pB , pA) : S → B ×A is the structure map.

Limit sketches

The notion of limit sketch was introduced by Ehresmann [Eh]. A structure which
can be defined by a limit sketch is said to be essentially algebraic by Gabriel and
Ulmer [GU]. Recall that a projective cone in a simplicial set A is a map of simplicial
sets 1 ? K → A. A limit sketch is a pair (A,P ), where A is a simplicial set and P
is a set of projective cones in A. The sketch is finitary if every cone in P is finite.
A model of the sketch with values in a quasi-category X is a map f : A → X
which takes every cone c : 1 ? K → A in P to an exact cone fc : 1 ? K → X.
We write f : A/P → X to indicate that a map f : A → X is a model of (A,P ).
A model A/P → U is called a homotopy model, or just a model if the context
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is clear. A model A/P → Set is said to be discrete. We say that an essentially
algebraic structure is finitary if it can be defined by a finitary limit sketch. The
notion of stack on a fixed topological space is essentially algebraic, but it is not
finitary in general. The models of (A,P ) with values in a quasi-category X form a
quasi-category Mod(A/P,X); by definition, it is the full simplicial subset of XA

spanned by the models A/P → X. We shall write

Mod(A/P ) = Mod(A/P,U).

The quasi-category Mod(A/P ) is bicomplete and the inclusion Mod(A/P ) ⊆ UA

has a left adjoint.

Recall that a quasi-category with finite limits is said to be cartesian. A carte-
sian theory is defined to be a small cartesian quasi-category T . A model of T with
values in a quasi-category X is a map f : T → X which preserves finite limits
(also called a left exact map). We also say that a model T → X with values in a
quasi-category X is an interpretation of T into X. The identity morphism T → T
is the generic model of T . The models of T → X form a quasi-category Mod(T,X),
also denoted T (X). By definition, it is the full simplicial subset of XT spanned by
the models T → X. We say that a model T → U is a homotopy model, or just a
model if the context is clear. We say that a model T → Set is discrete. We shall
write

Mod(T ) = Mod(T,U).

The quasi-category Mod(T ) is bicomplete and the inclusion Mod(T ) ⊆ UT has a
left adjoint.

Every finitary limit sketch (A,P ) has a universal model u : A → T (A/P )
with values in a cartesian theory T (A/P ). The universality means that the map

u∗ : Mod(T (A/P ), X)→Mod(A/P,X)

induced by u is an equivalence for any cartesian quasi-category X. We say that
T (A/P is the cartesian theory generated by the sketch (A,P ).

A morphism S → T of cartesian theories is a left exact map. (ie a model
S → T ). We shall denote by CT the category of cartesian theories and morphisms.
The category CT has the structure of a 2-category induced by the 2-category
structure of the category of simplicial sets. If u : S → T is a morphism of theories,
then the map

u∗ : Mod(T )→Mod(S)

induced by u has a left adjoint u!. The adjoint pair (u!, u
∗) an equivalence iff the

map u : S → T is a Morita equivalence.

If S and T are two cartesian theories then so is the quasi-category Mod(S, T )
of models S → T . The (2-)category CT is symmetric monoidal closed. The tensor
product S � T of S and T is the target of a map S × T → S � T left exact in each
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variable and universal with respect to that property. The unit object for the tensor
product is the cartesian category freely generated by one object. For any cartesian
quasi-category X, large or small, we have an equivalence of quasi-categories,

Mod(S � T,X) 'Mod(S,Mod(T,X))

In particular, we have two equivalences,

Mod(S � T ) 'Mod(S,Mod(T )) 'Mod(T,Mod(S)).

The notion of spectrum or stable object is essentially algebraic and finitary. By
definition, a stable object in a cartesian quasi-category X is an infinite sequence
of pointed objects (xn) together with an infinite sequence of isomorphisms

un : xn → Ω(xn+1).

This shows that the notion of stable objects is defined by a finitary limit sketch
(A,P ). The theory T (A/P ) is the (cartesian) theory of spectra Spec We denote by
Spec(X) the quasi-category of stable objects in a cartesian quasi-category X.

The notion of monomorphism between two objects of a quasi-category is
essentially algebraic (and finitary): an arrow a→ b is monic iff the square

a
1a //

1a

��

a

u

��
a

u // b

is cartesian. The notion of (homotopy) discrete object is essentially algebraic: an
object a is discrete iff the diagonal a→ a× a is monic. The condition is expressed
by two exact cones,

b
p1

����
��

��
�� p2

��?
??

??
??

?

a a,

a
1a //

1a

��

a

d

��
a

d // b.

and two relations pd = qd = 1a. The notion of 0-cover is also essentially algebraic,
since an arrow a → b is a 0-cover iff the diagonal a → a ×b a is monic. It follows
that the notion of 1-object is essentially algebraic, since an object a is a 1-object
iff its diagonal a→ a× a is a 0-cover. It is easy to see by induction on n that the
notions of n-object and of n-cover are essentially algebraic for every n ≥ 0. We
denote by OB(n). the cartesian theory of n-objects. We have

Mod(OB(n)) = U[n],
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where U[n] is the quasi-category of n-objects in U. In particular, the quasi-
category Mod(OB(0)) is equivalent to the category Set. If T is a cartesian theory,
then a model of the theory T � OB(n) is a model of T in U[n]. In particular,
T �OB(0) is the theory of discrete models of T .

The notion of category object is essentially algebraic and finitary. If X is a
cartesian category, a simplicial object C : ∆o → X is said to be a category if it
satisfies the Segal condition. This condition can be expressed in many ways, for
example by demanding that C takes every pushout square of the form

[0]

m

��

0 // [n]

��
[m] // [m+ n],

to a pullback square in X. If C : ∆o → X is a category object, we say that
C0 ∈ X is the object of objects of C and that C1 is the object of arrows. The
source morphism s : C1 → C0 is the image of the arrow d1 : [0] → [1], the
target morphism t : C1 → C0 is the image of d0 : [0] → [1], the unit morphism
u : C0 → C1 is the image of s0 : [1] → [0]. and the multiplication C2 → C1 is
image of d1 : [1]→ [2]. If Q is the set of pushout squares which express the Segal
condition, then the pair (∆o, Qo) is a finitary limit sketch. The (cartesian) theory
of categories Cat is defined to be the cartesian theory T ((∆o/Qo) We denote the
quasi-category of category objects in a cartesian quasi-category X by Cat(X).

The notion of groupoid object is essentially algebraic and finitary. By defini-
tion, a category object C : ∆o → X is said to be a groupoid if it takes the squares
(but one is enough)

[0]

d0

��

d0 // [1]

d0

��
[1]

d1 // [2],

[0]

d1

��

d1 // [1]

d2

��
[1]

d1 // [2]

to pullback squares,

C2

∂0

��

m // C1

t

��
C1

t // C0,

C2

∂2

��

m // C1

s

��
C1

s // C0.

We denote the (cartesian) theory of groupoids by Gpd and the quasi-category
of groupoid objects in a cartesian quasi-category X by Gpd(X). The inclusion
Gpd(X) ⊆ Cat(X) has a right adjoint which associates to a category C ∈ Cat(X)
its groupoid of isomorphisms J(C).
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If X is a quasi-category, we say that a diagram d : A → X is essentially
constant if it belongs to the essential image of the diagonal X → XA. A simplicial
object C : ∆o → X is essentially constant iff the map C inverts every arrow. If the
quasi-category X is cartesian, then a category object C : ∆o → X is essentially
constant iff the unit morphism C0 → C1 is invertible. We say that a category C
satisfies the Rezk condition, or that it is reduced, if the groupoid J(C) is essentially
constant. The notion of a reduced category is essentially algebraic and finitary. We
denote the cartesian theory of reduced categories by RCat and the quasi-category
of reduced category objects in a cartesian quasi-category X by RCat(X).

Let U1 be the quasi-categories of small quasi-categories and let i : ∆→ U1

be the map obtained by applying the coherent nerve functor to the inclusion
∆→ QCat. It follows from [JT2] that the map i! : U1 → P(∆) is fully faithful and
that its essential image is the subcategory Mod(RCat) ⊂ P(∆). It thus induces
an equivalence of quasi-categories

U1 'Mod(RCat).

This means that quasi-category is a reduced category.

If T is a cartesian theory and b is an object of a cartesian quasi-category X,
we say that a model T → X/b is a parametrized model or a based model of T in
X; the object b is the parameter space or the base of the model. For any algebraic
theory T , there is another algebraic theory T ′ whose models are the parametrized
models of T . A model T ′ → U is essentially the same thing as a model T → U/K
or a model UK for some Kan complex K. It is a Kan diagram of models of T .

Locally presentable quasi-categories

The theory of locally presentable categories of Gabriel and Ulmer [GU] can be ex-
tended to quasi-categories. See [Lu1] for a different approach and a more complete
treatment.

Recall that an inductive cone in a simplicial set A is a map of simplicial
sets K ? 1 → A. A colimit sketch is a pair (A,Q), where A is a simplicial set
and Q is a set of inductive cones in A. A model of the sketch with values in a
quasi-category X is a map f : A → X which takes every cone c : K ? 1 → A
in Q to a coexact cone fc : K ? 1 → X in X. We shall write f : Q\A → X to
indicate that a map f : A → X is a model of (A,Q). The models of (A,Q) with
values in a quasi-category X form a quasi-category Mod(Q\A,X). By definition,
it is the full simplicial subset of XA spanned by the models Q\A → X. Every
colimit sketch (A,Q) has a universal model u : A → U(Q\A) with values in a
(locally small) cocomplete quasi-category U(Q\A). We say that a quasi-category
X is locally presentable is if it is equivalent to a quasi-category U(Q\A) for some
colimit sketch (A,Q). The universal model Q\A → X is a presentation of X
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by (A,Q). Every locally presentable quasi-category is bicomplete. If X is locally
presentable, then so are the slice quasi-categories a\X and X/a for any object
a ∈ X and the quasi-category XA for any simplicial set A. More generally, the
quasi-category Mod(A/P,X) is locally presentable for any limit sketch (A,P ).
The quasi-category U is locally presentable but its opposite Uo is not.

A colimit sketch (A,Q) is said to be finitary if every cone in Q is finite.
We say that a quasi-category X is finitary presentable if it is equivalent to a
quasi-category U(Q\A) for some finitary colimit sketch (A,Q). If X is finitary
presentable, then so are the slice quasi-categories a\X and X/a for any object
a ∈ X and the quasi-category XA for any simplicial set A. More generally, the
quasi-category Mod(A/P,X) is finitary presentable for any finitary limit sketch
(A,P ).

The opposite of an inductive cone c : K ? 1 → A is a projective cone co :
1 ? Ko → Ao. The opposite of a colimit sketch (A,Q) is a limit sketch (Ao, Qo),
where Qo = {co : c ∈ Q}. If u : A→ U(Q\A) is the canonical map, then the map

ρ : U(Q\A) 'Mod(Ao/Qo)

defined by putting ρ(x) = hom(u(−), x) : Ao → U for every x ∈ A is an equiv-
alence of quasi-categories. Hence the quasi-category U(Q\A) is equivalent to the
quasi-category of models of the limit sketch (Ao, Qo). Conversely, the opposite of
a limit sketch (A,P ) is a colimit sketch (Ao, P o). The quasi-category Mod(A/P )
is equivalent to the quasi-category U(P o\Ao). Hence a quasi-category is locally
presentable iff it is equivalent to the quasi-category of models of a limit sketch.
A quasi-category is finitary presentable if it is equivalent to a quasi-category of
models of a finitary limit sketch.

If X is a locally presentable quasi-category, then every cocontinuous map
X → Y with codomain a locally small cocomplete quasi-category has a right
adjoint. In particular, every continuous map Xo → U is representable.

If X and Y are locally presentable quasi-categories, then so is the quasi-
category Map(X,Y ) of cocontinuous maps X → Y . The 2-category LP of locally
presentable quasi-categories and cocontinuous maps is symmetric monoidal closed.
The tensor product X ⊗Y of two locally presentable quasi-categories is the target
of a map X×Y → X⊗Y cocontinuous in each variable and universal with respect
to that property. This means that there is an equivalence of quasi-categories

Map(X ⊗ Y, Z) 'Map(X,Map(Y, Z))

for any cocomplete quasi-category Z, The unit object for the tensor product is
the quasi-category U. There is thus a natural action · : U × X → X of the
quasi-category U on any quasi-category X ∈ LP. The action associates to a pair
(A, x) ∈ U×X the colimit A · x of the constant diagram A→ X with value x.
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If A is a (small) simplicial set, then the quasi-category P(A) is locally pre-
sentable and freely generated by the Yoneda map yA : A→ P(A). It follows that
the map

y∗A : Map(P(A), X)→ XA

is an equivalence of quasi-categories for any X ∈ LP. If we compose the maps

Ao ×A×X
homA×X // U×X · // X

we obtain a map Ao × A ×X → X, hence also a map A ×X → XAo

; it can be
extended as a map P(A)×X → XAo

cocontinuous in each variable. The resulting
map

P(A)⊗X → XAo

is an equivalence of quasi-categories. It follows that the functor X 7→ XAo

is left
adjoint to the functor X 7→Map(P(A), X) = XA. We thus obtain an equivalence
of quasi-categories

Map(XAo

, Y ) 'Map(X,Y A)

for X.Y ∈ LP.

The external product of a pre-stack f ∈ P(A) with a pre-stack g ∈ P(B) is
defined to be the prestack f�g ∈ P(A×B) obtained by putting

(f�g)(a, b) = f(a)× g(b)

for every pair of objects (a, b) ∈ A×B. The map (f, g) 7→ f�g is cocontinuous in
each variable and the induced map

P(A)⊗P(B)→ P(A×B)

is an equivalence of quasi-categories. The trace map

TrA : P(Ao ×A)→ U

is defined to be the cocontinuous extension of the map homA : Ao ×A→ U. The
quasi-categories P(A) and P(Ao) are mutually dual as objects of the monoidal
category LP. The pairing P(Ao)⊗P(A)→ U which defines the duality is obtained
by composing the equivalence P(Ao)⊗P(A) ' P(Ao ×A) with the map TrA.

We say that a (small) simplicial set A is directed if the colimit map

lim
−→
A

: UA → U

is preserves finite limits. This extends the classicial notion of a directed category.
A non-empty quasi-category A is directed iff the simplicial set d\A is (weakly)
contractible for any diagram d : Λ0[2]→ A.
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We say that a diagram d : A → X in a quasi-category X is directed if A is
directed, in which case we shall say that the colimit of d is directed when it exists.
We say that an object a in a quasi-category X with directed colimits is compact

if the map
homX(a,−) : X → U

preserves directed colimits.

A model of a cartesian theory T is compact iff it is a retract of a representable
model. The map y : T o → Mod(T ) induces an equivalence between the Karoubi
envelope of T o and the full simplicial subset of Mod(T ) spanned by the compact
models.

A locally small cocomplete quasi-category X is finitary presentable iff it is
generated by a small set of compact objects (ie every object of X is a colimit of a
diagram of compact objects).

Universal algebra

Recall that an algebraic theory in the sense of Lawvere is a small category with
finite products [Law1]. We can extend this notion by declaring that an algebraic
theory is a small quasi-category T with finite products. A theory T is discrete if it
is equivalent to a category. A model of a theory T with values in a quasi-category
with finite products X (possibly large) is a map f : T → X which preserves finite
products. We also say that a model T → X is an interpretation of T into X. The
identity map T → T is the generic model of T . The models T → X form a quasi-
category Mod×(T,X), also denoted T (X). By definition, it is the full simplicial
subset of XT spanned by the models T → X. We call a model T → U a homotopy
algebra and a model T → Set a discrete algebra. We shall put

Mod×(T ) = Mod×(T,U).

The quasi-category Mod×(T ) is bicomplete and the inclusion Mod×(T ) ⊆ UT has
a left adjoint.

A morphism S → T between two algebraic theories is a map which preserves
finite products (ie a model S → T ). We shall denote by AT the category of
algebraic theories and morphisms. The category AT has the structure of a 2-
category induced by the 2-category structure of the category of simplicial sets. If
u : S → T is a morphism of theories, then the map

u∗ : Mod×(T )→Mod×(S)

induced by u has a left adjoint u!. The adjoint pair (u!, u
∗) an equivalence iff the

map u : S → T is a Morita equivalence.
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If T is an algebraic theory, then the Yoneda map T o → UT induces a map
y : T o → Mod×(T ) which preserves finite coproducts. We say that a model of T
is representable or finitely generated free if it belongs to the essential image of y.
The Yoneda map induces an equivalence between the opposite quasi-category T o

and the full sub-quasi-category of Mod×(T ) spanned by the finitely generated free
models. We say that a model of T is finitely presented if it is a finite colimit of
representables.

The quasi-category Mod×(S, T ) of morphisms S → T between two algebraic
theories is an algebraic theory since it has finite products. This defines the internal
hom of a symmetric monoidal closed structure on the 2-category AT. The tensor
product S � T of two algebraic theories is defined to be the target of a map
S × T → S � T which preserves finite products in each variable and which is
universal with respect to that property. There is then a canonical equivalence of
quasi-categories

Mod×(S � T,X) 'Mod×(S,Mod×(T,X))

for any quasi-category with finite product X. In particular, we have two equiva-
lences of quasi-categories,

Mod×(S � T ) 'Mod×(S,Mod×(T )) 'Mod×(T,Mod×(S)).

The unit for the tensor product is the algebraic theory O generated by one object.
The opposite of the canonical map S × T → S � T can be extended along the
Yoneda maps as a map Mod×(S) ×Mod×(T ) → Mod×(S � T ) cocontinuous in
each variable. The resulting cocontinuous map

Mod×(S)⊗Mod×(T )→Mod×(S � T )

is an equivalence of quasi-categories.

We denote by Mon the algebraic theory of monoids. By definition, Mono is
the category of finitely generated free monoids. The theory Mon is unisorted. If
u : OB →Mon is the canonical morphism, we conjecture that the two morphisms

u�Mon : Mon→Mon�Mon and Mon� u : Mon→Mon�Mon

are canonically isomorphic in two ways. We conjecture that Mon2 = Mon �
Mon is the algebraic theory of braided monoids. For example, if C̃at denotes the
coherent nerve of Cat (viewed as a category enriched over groupoids), then the
quasi-category Mon2(C̃at) is equivalent to the coherent nerve of the category of
braided monoidal categories. More generally, we conjecture that Monn = Mon�n

is the algebraic theory of En-monoids for every n ≥ 1. algebraic theory of En-
monoids—textbf This means that the quasi-category Mod×(Monn) is equivalent
to the coherent nerve of the simplicial category of En-spaces. Let us put

un = u�Monn : Monn →Monn+1
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for every n ≥ 0. We conjecture that the (homotopy) colimit of the infinite sequence
ot theories

OB
u0 // Mon

u1 // Mon2
u2 // Mon3

u3 // · · ·

is the theory of E∞-spaces.

We denote by Grp the algebraic theory of groups. By definition, Grpo is
the category of finitely generated free groups. The conjecture above implies that
Grpn = Grp�n is the algebraic theory of n-fold loop spaces for every n ≥ 1. The
theory Grp is unisorted. By tensoring with the canonical morphism u : O → Grp,
we obtain a morphism un : Grpn → Grpn+1 for every n ≥ 0. The (homotopy)
colimit of the infinite sequence

OB
u0 // Grp

u1 // Grp2 u2 // Grp3 u3 // · · ·

is the algebraic theory of infinite loop spaces [BD].

Varieties of homotopy algebras

We call a quasi-category a variety of homotopy algebras if it is equivalent to a
quasi-category Mod×(T ) for some (finitary) algebraic theory T . If X is a variety
of homotopy algebras then so are the slice quasi-categories a\X and X/a for any
object a ∈ X and the quasi-category XA for any simplicial set A. More generally,
the quasi-category Mod×(T,X) is a variety for any finitary algebraic theory T .

Recall that a category C is said to be sifted, but we shall say 0-sifted, if the
colimit functor

lim
−→

: SetC → Set

preserves finite products. This notion was introduced by C. Lair in [Lair] under
the name of categorie tamisante. We say that a simplicial set A is (homotopy)
sifted if the colimit map

lim
−→

: UA → U

preserves finite products. The notion of homotopy sifted category was introduced
by Rosicky [Ros]. A non-empty quasi-category A is sifted iff the simplicial set
a\A×A b\A defined by the pullback square

a\A×A b\A

��

// b\A

��
a\A // A
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is (weakly) contractible for any pair of objects a, b ∈ A. A category is homotopy
sifted iff it is a test category in the sense of Grothendieck [Gro] (Rosicky). The
category ∆o is sifted.

If X is a quasi-category, we say that a diagram d : A → X is sifted if the
simplicial set A is sifted, in which case the colimit of d is said to be sifted if it
exists. A quasi-category with sifted colimits and finite coproducts is cocomplete.
A map between cocomplete quasi-category is cocontinuous iff it preserves finite
coproducts and sifted colimits iff it preserves directed colimits and ∆o-indexed
colimits.

Let X be a (locally small) quasi-category with sifted colimits. We say that
an object a in a cocomplete (locally small) quasi-category X is bicompact if the
map

homX(a,−) : X → U

preserves sifted colimits; we say that a is adequate if the same map preserves ∆o-
indexed colimits. An object is bicompact iff it is compact and adequate (this is a
theorem). A (locally small) cocomplete quasi-category X is a homotopy variety iff
it is generated by a small set of bicompact objects.

Para-varieties and descent

We call a locally presentable quasi-category X a para-variety if it is a left exact
reflection of a variety of homotopy algebras. If X is a para-variety, then so are the
slice quasi-categories a\X and X/a for any object a ∈ X and the quasi-category
XA for any simplicial set A. More generally, the quasi-category Prod(T,X) is a
para-variety for any (finitary) algebraic theory T . If X is a para-variety, then the
colimit map

lim
−→
A

: XA → X

preserves finite products for any sifted simplicial set A. This is true in particular
if A = ∆o.

A para-variety admits surjection-mono factorisations and the factorisations
are stable under base changes. More generally, it admits n-factorisations stable
under base changes for every n ≥ −1.

Let X be a cartesian quasi-category. Then the map Ob : Gpd(X)→ X has a
left adjoint Sk0 : X → Gpd(X) and a right adjoint Cosk0 : X → Gpd(X). The left
adjoint associate to b ∈ X the constant simplicial object Sk0(b) : ∆o → X with
value b. The right adjoint associates to b the simplicial object Cosk0(b) obtained
by putting Cosk0(b)n = b[n] for each n ≥ 0. We say that Cosk0(b) is the coarse
groupoid of b. More generally, the equivalence groupoid Eq(f) of an arrow f : a→ b
in X is defined to be the coarse groupoid of the object f ∈ X/b (or rather its image
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by the canonical map X/b → X). The loop group Ω(b) of a pointed object 1 → b
is the equivalence groupoid of the arrow 1→ b.

If C : ∆o → X is a category object in a cartesian quasi-category X, we call
a functor p : E → C in Cat(X) a left fibration if the naturality square

E1
s //

p1

��

E0

p0

��
C1

s // C0

is cartesian, where s is the source map. We denote by XC the full simplicial subset
of Cat(X)/C spanned by the left fibrations E → C. The pullback of a left fibration
E → D along a functor in Cat(X) is a left fibration f∗(E)→ C. This defines the
base change map

f∗ : XD → XC .

Let X be a cartesian quasi-category. The equivalence groupoid of an arrow
u : a → b is equipped with a map Eq(u) → b. and the base change map u∗ :
X/b→ X/a admits a lifting ũ∗,

XEq(u)

p

��
X/b

ũ∗
;;vvvvvvvvv

u∗
// X/a,

where p is the forgeful map. We call ũ∗ the lifted base change map; it associates
to an arrow e→ b the arrow a×b e→ a

a×b e //

��

e

��
a

u // b

equipped with a natural action of the groupoid Eq(u). We say that an arrow
u : a→ b is a descent morphism if the lifted base change map ũ∗ is an equivalence
of quasi-categories. If u : 1 → b is a pointed object in a cartesian quasi-category
X, then the groupoid Eq(u) is the loop group Ωu(b). In this case, the lifted base
change map

ũ∗ : X/b→ XΩu(b)

associates to an arrow e → b its fiber e(u) = u∗(e) equipped with the natural
action (say on the right) of the group Ωu(b).

In the quasi-category U, every surjection is a descent morphism. This is true
more generally of any surjection in a para-variety.
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Exact quasi-categories

In a cartesian quasi-category X, we say that a groupoid C ∈ Gpd(X) is effective
if it has a colimit p : C0 → BC and the canonical functor C → Eq(p) is invertible.

Recall that a cartesian quasi-category X is said to be regular if it admits
surjection-mono factorisations stable under base changes. We say that a regular
quasi-category X is exact if it satisfies the following two conditions:

• Every surjection is a descent morphism;

• Every groupoid is effective.

The quasi-category U is exact. If X is an exact quasi-category, then so are
the quasi-categories b\X and X/b for any vertex b ∈ X, the quasi-category XA for
any simplicial set A and the quasi-category Mod×(T,X) for any algebraic theory
T . A variety of homotopy algebras is exact. A left exact reflection of an exact
quasi-category is exact. A para-variety is exact.

We say that a map X → Y between regular quasi-categories is exact if it is
left exact and preserves surjections. If u : a → b is an arrow in an exact quasi-
category X, then the base change map u∗ : X/b→ X/a is exact. Moreover, u∗ is
conservative if u is surjective. Moreover, the lifted base change map

ũ∗ : X/b→ XEq(u)

is an equivalence of quasi-categories. A pointed object u : 1→ b is connected iff u
is a surjective map. In this case the map

ũ∗ : X/b→ XΩu(b)

is an equivalence of quasi-categories.

An exact quasi-category X admits n-factorisations for every n ≥ 0. An object
a is connected iff the arrows a→ 1 and a→ a× a are surjective. An arrow a→ b
is 0-connected iff it is surjective and the diagonal a→ a×b a is surjective. If n > 0,
an arrow a → b is n-connected iff it is surjective and the diagonal a → a ×b a is
(n − 1)-connected. If a → e → b is the n-factorisation of an arrow a → b, then
a→ a×e a→ a×b a is the (n− 1)-factorisation of the arrow a→ a×b a. An exact
map f : X → Y between exact quasi-categories preserves the n-factorisations for
every n ≥ 0.

Let X be a cartesian quasi-category. We say that a functor f : C → D
in Cat(X) is a Morita equivalence if the induced map f∗ : XD → XC is an
equivalence of quasi-categories. If X is regular, we say that a functor f : C → D
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in Gpd(X) is essentially surjective if the morphism tp1 in the square

D1 ×D0 C0
p2 //

p1

��

tp1

yytttttttttt
C0

f0

��
D0 D1t

oo s // D0

is surjective. Let J : Cat(X) → Gpd(X) be the right adjoint to the inclusion
Gpd(X) ⊆ Cat(X). We say that a functor f : C → D in Cat(X) is essentially
surjective if the functor J(f) : J(C)→ J(D) is essentially surjective. We say that
f is a weak equivalence if it is fully faithful and essentially surjective. For example,
if u : a → b is a surjection in X, then the canonical functor Eq(u) → b is a
weak equivalence. If X is an exact quasi-category, then every weak equivalence
f : C → D is a Morita equivalence, and the converse is true if C and D are
groupoids.

Let X be an exact quasi-category. Then the map Eq : XI → Gpd(X) which
associates to an arrow u : a → b its equivalence groupoid Eq(u) has left adjoint
B : Gpd(X)→ XI which associates to a groupoid C its ”quotient” or ”classifying
space” BC equipped with the canonical map C0 → BC. Let us denote by Surj(X)
the full simplicial subset of XI spanned by the surjections. The map B is fully
faithful and its essential image is equal to Surj(X). Hence the adjoint pair B ` Eq
induces an equivalence of quasi-categories

B : Gpd(X)↔ Surj(X) : Eq.

Let X be a pointed exact quasi-category. Then an object x ∈ X is connected
iff the morphism 0 → x is surjective. More generally, an object x ∈ X is n-
connected iff the morphism 0 → x is (n − 1)-connected. If CO(X) denotes the
quasi-category of connected objects in X, then we have an equivalence of quasi-
categories

B : Grp(X)↔ CO(X) : Ω.

Hence the quasi-category CO(X) is exact, since the quasi-category Grp(X) is
exact. A morphism in CO(X) is n-connected iff it is (n + 1) connected in X.
Similarly, a morphism in CO(X) is a n-cover iff it is a (n+ 1) cover in X. Let us
put COn+1(X) = CO(COn(X)) for every n ≥ 1. This defines a decreasing chain

X ⊇ CO(X) ⊇ CO2(X) ⊇ · · · .

An object x ∈ X belongs to COn(X) iff x is (n− 1)-connected. Let Grpn(X) be
the quasi-category of n-fold groups in X. By iterating the equivalence above we
obtain an equivalence

Bn : Grpn(X)↔ COn(X) : Ωn
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for every n ≥ 0.

Let X be an exact quasi-category. We say that an arrow in X is∞-connected
if it is n-connected for every n ≥ 0. An arrow f ∈ X is ∞-connected iff it is a
n-equivalence for every n ≥ 0. We say that X is t-complete if every ∞-connected
arrow is invertible.

Let X be an exact quasi-category. If RCat(X) is the quasi-category of re-
duced categories in X, then the inclusion RCat(X) ⊆ Cat(X) has a left adjoint

R : Cat(X)→ RCat(X)

which associates to a category C ∈ Cat(X) its reduction R(C). When C is a
groupoid, we have R(C) = B(C). In general, we have a a pushout square in
Cat(X),

J(C) //

��

C

��
B(J(C)) // R(C),

where J(C) is the groupoid of isomorphisms of a category C. The simplicial object
R(C) can be constructed by putting (RC)n = B(J(C [n])) for every n ≥ 0, where
C [n] is the (internal) category of functor [n]→ C. The canonical map C → R(C)
is an equivalence of categories, hence it is also a Morita equivalence. A functor
f : C → D in Cat(X) is an equivalence iff the functor R(f) : R(C) → R(D) is
a isomorphism in RCat(X). If W ⊆ Cat(X) is the set of equivalences, then the
induced map

L(Cat(X),W )→ RCat(X)
is an equivalence of quasi-categories.

Additive quasi-categories

We say that a quasi-category X is pointed if the natural projection XI → X ×X
admits a section X ×X → XI . The section is homotopy unique when it exists; it
then associates to a pair of objects a, b ∈ X a null arrow 0 : a→ b. The homotopy
category of a pointed quasi-category X is pointed. In a pointed quasi-category,
every initial object is terminal. A null object in a quasi-category X is an object
0 ∈ X which is both initial and terminal. A quasi-category X with a null object
is pointed; the null arrow 0 = a → b between two objects of X is obtained by
composing the arrows a→ 0→ b. The quasi-category a\X/a has a null object for
any object a of a quasi-category X.

The product of two objects x × y in a pointed quasi-category X is called a
direct sum x⊕ y if the pair of arrows

x
(1x,0) // x× y y

(0,1y)oo
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is a coproduct diagram. A pointed quasi-category with finite products X is said
to be semi-additive if the product x× y of any two objects is a direct sum x⊕ y.
The opposite of a semi-additive quasi-category X is semi-additive. The homotopy
category of a semi-additive quasi-category is semi-addditive. The set of arrows
between two object of a semi-additive category has the structure of a commutative
monoid. A map f : X → Y between semi-additive quasi-categories preserves finite
products iff it preserves finite coproducts iff it preserves finite direct sums. Such
a map is said to be additive. The canonical map X → hoX is additive for any
semi-additive quasi-category X.

A semi-additive category C is said to be additive if the monoid C(x, y) is
a group for any pair of objects x, y ∈ C. A semi-additive quasi-category X is
said to be additive if the category hoX is additive. The opposite of an additive
quasi-category is additive. If a quasi-category X is semi-additive (resp. additive),
then so is the quasi-category XA for any simplicial set A and the quasi-category
Mod×(T,X) for any algebraic theory T .

The fiber a→ x of an arrow x→ y in a quasi-category with null object 0 is
defined by a pullback square

a //

��

x

��
0 // y.

The cofiber of an arrow is defined dually. An additive quasi-category is cartesian
iff every arrow has a fiber. Let X be a cartesian additive quasi-category. Then to
each arrow f : x→ y in X we can associate a long fiber sequence,

· · · // Ω2(y) ∂ // Ω(z)
Ω(i) // Ω(x)

Ω(f) // Ω(y) ∂ // z i // x
f // y .

where i : z → x is the fiber of f . An additive map between cartesian additive
quasi-categories is left exact iff it preserves fibers.

An additive quasi-category X is exact iff the following five conditions are
satisfied:

• X admits surjection-mono factorisations;

• The base change of a surjection is a surjection;

• Every morphism in has a fiber and a cofiber;

• Every morphism is the fiber of its cofiber;

• Every surjection is the cofiber of its fiber.

Let X be an exact additive quasi-category. If a morphism f : x → y is
surjective, then a null sequence 0 = fi : z → x → y is a fiber sequence iff it is a
cofiber sequence.
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Stable quasi-categories

See Lurie [Lu2] for another approach and a more complete treatment.

Let X be a quasi-category with null object 0 ∈ X. Recall that the loop space
Ω(x) of an object x ∈ X is defined to be the fiber of the arrow 0 → x. We say
that X is stable if every object x ∈ X has a loop space, and the loop space map
Ω : X → X is an equivalence of quasi-categories. If X is a stable quasi-category,
then the inverse of the map Ω is the suspension Σ : X → X. The opposite of a
stable quasi-category X is stable. The loop space map Ω : Xo → Xo is obtained
by putting Ω(xo) = Σ(x)o for every object x ∈ X. A stable quasi-category with
finite products is additive.

Let Spec be the cartesian theory of spectra. If X is a cartesian quasi-category,
then the quasi-category Spec(X) of stable objects in X is stable. In particular,
the quasi-category of spectra Spec = Mod(Spec) is stable. The quasi-category of
spectra Spec is exact.

An additive quasi-category X is stable and exact iff the following two condi-
tions are satisfied:

• Every morphism has a fiber and a cofiber;

• A null sequence z → x→ y is a fiber sequence iff it is a cofiber sequence.

The opposite of an exact stable quasi-category is exact and stable.

Utopoi

The notion of utopos (higher, upper topos) presented here is attributed to Charles
Rezk. See Lurie [Lu1] for a more complete treatment.

Recall that a category E is said to be a Grothendieck topos, but we shall
say a 1-topos if it is a left exact reflection of a presheaf category [Co,Set]. A
homomorphism E → F between Grothendieck topoi is a cocontinuous functor
f : E → F which preserves finite limits. Every homomorphism has a right adjoint.
A geometric morphism E → G between Grothendieck topoi is an adjoint pair

g∗ : F ↔ E : g∗

with g∗ a homomorphism. The map g∗ is called the inverse image part of g and
the map g∗ its direct image part. . We shall denote by Gtop the category of
Grothendieck topoi and geometric morphisms. The category Gtop has the struc-
ture of a 2-category, where a 2-cell α : f → g between geometric morphisms is a
natural transformation α : g∗ → f∗.

We say that a locally presentable quasi-category X is an upper topos or an
utopos if it is a left exact reflection of a quasi-category of pre-stacks P(A) for
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some simplicial set A. The quasi-category U is the archetype an utopos. If X
is an utopos, then so is the quasi-category X/a for any object a ∈ X and the
quasi-category XA for any simplicial set A.

Recall that a cartesian quasi-category X is said to be locally cartesian closed
if the quasi-category X/a is cartesian closed for every object a ∈ X. A cartesian
quasi-category X is locally cartesian closed iff the base change map f∗ : X/b →
X/a has a right adjoint f∗ : X/a → X/b for any morphism f : a → b in X. A
locally presentable quasi-category X is locally cartesian closed iff the base change
map f∗ : X/b→ X/a is cocontinuous for any morphism f : a→ b in X.

(Giraud’s theorem)[Toen, Vezzozi] A locally presentable quasi-category X is
an utopos iff the following conditions are satisfied:

• X is locally cartesian closed and exact;

• the canonical map
X/ t ai →

∏
i

X/ai

is an equivalence for any family of objects (ai : i ∈ I) in X.

Recall that if X is a bicomplete quasi-category and A is a simplicial set,
then every map f : A → X has a left Kan extension f! : P(A) → X. A locally
presentable quasi-category X is an utopos iff the map f! : P(A)→ X is left exact
for any cartesian category A and any left exact map f : A→ X.

A homomorphism X → Y between utopoi is a cocontinuous map f : X → Y
which preserves finite limits. Every homomorphism has a right adjoint. A geometric
morphism X → Y is an adjoint pair

g∗ : Y ↔ X : g∗

with g∗ a homomorphism. The map g∗ is called the inverse image part of g and
the map g∗ the direct image part. . We shall denote by UTop the category of
utopoi and geometric morphisms. The category UTop has the structure of a 2-
category, where a 2-cell α : f → g between geometric morphisms is a natural
transformation α : g∗ → f∗. The opposite 2-category UTopo is equivalent to the
sub (2-)category of LP whose objects are utopoi, whose morphisms (1-cells) are
the homomorphisms, and whose 2-cells are the natural transformations.

If u : A → B is a map of simplicial sets, then the pair of adjoint maps
u∗ : P(B) → P(A) : u∗ is a geometric morphism P(A) → P(B). If X is an
utopos, then the adjoint pair f∗ : X/b → X/a : f∗ is a geometric morphism
X/a→ X/b for any arrow f : a→ b in X.

If X is an utopos, we shall say that a reflexive sub quasi-category S ⊆ X is a
sub-utopos if it is locally presentable and the reflection functor r : X → S preserves
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finite limits. If i : S ⊆ X is a sub-utopos and r : X → S is the reflection, then the
pair (r, i) is a geometric morphism S → X. In general, we say that a geometric
morphism g : X → Y is an embedding if the map g∗ : X → Y is fully faithful. We
say that a geometric morphism g : X → Y is surjective if the map g∗ : Y → X
is conservative. The (2-) category UTop admits a homotopy factorisation system
(A,B) in which A is the class if surjections and B the class of embeddings.

Stabilisation

The homotopy colimit of an infinite sequence of maps

X0
f0 // X1

f1 // X2
f2 // · · ·

in the category LP can be computed as the homotopy limit in the category QCAT
of the corresponding sequence of right adjoints

X0 X1
g0oo X

g1oo · · · .g2oo

An object of this limit L is a pair (x, a), where x = (xn) is a sequence of objects
xn ∈ Xn and a = (an) is a sequence of isomorphisms an : xn ' gn(xn+1).
The canonical map u0 : X0 → L has no simple description, but its right adjoint
L→ X is the projection (x, a) 7→ x0. The quasi-category L can also be obtained by
localising another locally presentable quasi-category of L′ constructed as follows.
An object of L′ is pair (x, b), where x = (xn) is a sequence of objects xn ∈ Xn

and b = (bn) is a sequence of morphisms bn : fn(xn) → xn+1. The object (x, b)
can also be described as a pair y = (x, a), where x = (xn) is a sequence of objects
xn ∈ Xn and a = (an) is a sequence of morphisms an : xn) → gn(xn+1). The
obvious inclusion L ⊆ L′ has a left adjoint q : L′ → L which can be described
explicitly by a colimit process using transfinite iteration. If y = (x, a) ∈ L′ let us
put ρ(y) = ρ(x, a) = ρ(x), ρ(a)), where ρ(x)n = gn(xn+1) and g(a)n = gn(an+1).
This defines a map ρ : L′ → L′ and the sequence an : xn → gn(xn+1) defines a
morphism θ(y) : y → ρ(y) in L′ which is natural in y. It is easy to see that we
have θ ◦ ρ = ρ ◦ θ : ρ → ρ2. By iterating ρ transfinitly, we obtain a cocontinuous
chain

Id
θ // ρ θ // ρ2 θ // ρ3 θ // · · ·

where
ρα(y) = lim

−→
i<α

ρi(y).

for a limit ordinal α. The chain stabilises enventually and we have

q(x) = lim
−→
α

ρα(x).
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If directed colimits commute with finite limits in each Xn, then the reflection
q : L′ → L is left exact. We conjecture that the quasi-category L′ is a para-variety
(resp. an utopos) if each quasi-category Xn is a para-variety (resp. an utopos) It
follows that the quasi-category L is a para-variety (resp. an utopos) in this case. If
φ : X → X is a cocontinuous endomorphism of a locally presentable quasi-category
X, we shall denote by S(X,φ) the (homotopy) colimit in LP of the sequence of
quasi-categories

X
φ // X

φ // X
φ // · · ·

If ω : X → X is right adjoint to φ : X → X, then S(X,φ) is the (homotopy) limit
of the sequence of quasi-categories

X X
ωoo X

ωoo · · ·ωoo

An object of X ′ is an ω-spectrum.

(Joint work with Georg Biedermann) If X is a para-variety (resp. an utopos),
then so is the quasi-category of parametrised spectra in X. Let us sketch the proof.
Let us denote by Spec be the cartesian theory of spectra and by Spec′ the cartesian
theory of parametrized spectra. Similarly, let us denote by PSpec be the cartesian
theory of pre-spectra and by PSpec′ be the cartesian theory of parametrized pre-
spectra. The quasi-category Spec(X) is a left exact reflection of the quasi-category
PSpec(X). Similarly, the quasi-category Spec′(X) is a left exact reflection of the
quasi-category PSpec′(X). An object of PSpec′(X) is a pre-spectrum in X/b for
some object b ∈ X. A pointed object of X/b is an arrow p : x→ b equipped with a
section s : b→ x. A pre-spectrum in X/b is an infinite sequence of pointed objects
(xn, pn, sn) together with an infinite sequence of commutative squares

xn
pn //

pn

��

b

sn+1

��
b

sn+1 // xn+1.

Clearly, a parametrised pre-spectrum in X is a map B → X, where B is a certain
category. Hence the quasi-category PSpec′(X) of parametrized pre-spectra in X
is of the form XB . It is thus a para-variety (resp. an utopos), since X is a para-
variety (resp. an utopos). But the quasi-category Spec′(X) is a left exact reflection
of PSpec′(X).

Meta-stable quasi-categories

We say that an exact quasi-category X is meta-stable if every object in X is
∞-connected. A cartesian quasi-category X is meta-stable iff if it satisfies the
following two conditions:
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• Every morphism is a descent morphism;

• Every groupoid is effective.

The sub-quasi-category of∞-connected objects in an exact quasi-category is
meta-stable. The quasi-category of spectra is meta-stable. In a meta-stable quasi-
category, every monomorphism is invertible and every morphism is surjective.

If a quasi-category X is meta-stable then so are the quasi-categories b\X and
X/b for any vertex b ∈ X, the quasi-category XA for any simplicial set A, and the
quasi-category Prod(T,X) for any algebraic theory T . A left exact reflection of a
meta-stable quasi-category is meta-stable.

Let u : a→ b be an arrow in a meta-stable quasi-category X. Then the lifted
base change map

ũ∗ : X/b→ XEq(u)

is an equivalence of quasi-categories. In particular, if u : 1→ b is a pointed object,
then the map

ũ∗ : X/b→ XΩu(b)

is an equivalence of quasi-categories.

Let X be a meta-stable quasi-category. Then the map Eq : XI → Gpd(X)
which associates to an arrow u : a→ b the equivalence groupoid Eq(u) is invertible.
We thus have an equivalence of quasi-categories

B : Gpd(X)↔ XI : Eq.

The equivalence can be iterated and it yields an equivalence of quasi-categories

Bn : Gpdn(X)↔ XIn

: Eqn

for each n ≥ 1.

Let X be a meta-stable quasi-category. Then the equivalence

B : Gpd(X)↔ XI : Eq.

induces an equivalence
B : Gpd(X, a)↔ a\X : Eq

for each object a ∈ A, where Gpd(X, a) is the quasi-category of groupoids C ∈
Gpd(X) with C0 = a. In particular, it induces an equivalence

B : Grp(X)↔ 1\X : Ω,

where Grp(X) is the quasi-category of groups in X. By iterating, we obtain an
equivalence

Bn : Grpn(X)↔ 1\X : Ωn,

for each n ≥ 1.
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Higher Categories

We introduce the notions of n-fold category object and of n-category object in a
quasi-category. We also introduce the notions of reduced n-category and of equiv-
alence of n-categories.

If Cat denotes the cartesian theory of categories then Cat2 = Cat�c Cat is
the theory of double categories. If X is a cartesian quasi-category, then an object
of

Cat2(X) = Cat(Cat(X))

is a double category in X. By definition, a double simplicial object ∆o ×∆o → X
is a double category iff it is a category object in each variable. We shall denote by
Catn(X) the quasi-category of n-fold categories in X and by Catn the cartesian
theory of n-fold categories.

Let X be a quasi-category. If A is a simplicial set, we say that a map f : A→
X is essentially constant if it belongs to the essential image of the diagonal X →
XA. If A is weakly contractible, then a map f : A→ X is essentially constant iff it
takes every arrow in A to an isomorphism in X. A simplicial object C : ∆o → X in
a quasi-category X is essentially constant iff the canonical morphism sk0(C0)→ C
is invertible. A category object C : ∆o → X is essentially constant iff it inverts
the arrow [1] → [0]. A n-fold category C : (∆n)o → X is essentially constant
iff C inverts the arrow [ε] → [0n] for every ε = (ε1, · · · , εn) ∈ {0, 1}n, where
[0n] = [0, . . . , 0].

Let X be a cartesian quasi-category. We call a double category C : ∆o →
Cat(X) a 2-category if the simplicial object C0 : ∆o → X is essentially constant.
A double category C ∈ Cat2(X) is a 2-category iff it inverts every arrow in [0]×∆.
Let us denote by Id the set of identity arrows in ∆. Then the set of arrows

Σn =
⊔

i+1+j=n

Idi × [0]×∆j

is a subcategory of ∆n. We say that a n-fold category object C ∈ Catn(X) is a
n-category if it inverts every arrow in Σn. The notion of n-category object in X
can be defined by induction on n ≥ 0. A category object C : ∆o → Catn−1(X)
is a n-category iff the (n − 1)-category C0 is essentially constant. We denote by
Catn the cartesian theory of n-categories and by Catn(X) the quasi-category of
n-category objects in X.

The object of k-cells C(k) of a n-category C : (∆o)n → X is the image by C
of the object [1k0n−k]. The source map s : C(k) → C(k − 1) is the image of the
map [1k−1]×d1× [0n−k] and the target map t : C(k)→ C(k−1) is the image of the
map [1k−1]×d0×[0n−k]. From the pair of arrows (s, t) : C(k)→ C(k−1)×C(k−1)
we obtain an arrow ∂ : C(k) → C(∂k), where C(∂k) is defined by the following
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pullback square
C(∂k) //

��

C(k − 1)

(s,t)

��
C(k − 1)

(s,t) // C(k − 2)× C(k − 2).

If n = 1, ∂ = (s, t) : C(1)→ C(0)× C(0).

There is a notion of n-fold reduced category for every n ≥ 0. If RCat denotes
the cartesian theory of reduced categories, then RCatn is the theory of n-fold
reduced categories. If X is a cartesian quasi-category, then we have

RCatn+1(X) = RCat(RCatn(X))

for every n ≥ 0.

We say that a n-category C ∈ Catn(X) is reduced if it is reduced as a n-fold
category. We denote by RCatn the cartesian theory of reduced n-categories. A
n-category C : ∆o → Catn−1(X) is reduced iff it is reduced as a category object
and the (n− 1)-category C1 is reduced. If X is an exact quasi-category, then the
inclusion RCatn(X) ⊆ Catn(X) has a left adjoint

R : Catn(X)→ RCatn(X)

which associates to a n-category C ∈ Catn(X) its reduction R(C) . We call a
map f : C → D in Catn(X) an equivalence if the map R(f) : R(C) → R(D) is
invertible in RCatn(X). The quasi-category

Un = Mod(RCatn)

is cartesian closed.

The object [0] is terminal in ∆. Hence the functor [0] : 1→ ∆ is right adjoint
to the functor ∆ → 1. It follows that the inclusion in : ∆n = ∆n × [0] ⊆ ∆n+1

is right adjoint to the projection pn : ∆n+1 = ∆n ×∆ → ∆n. For any cartesian
quasi-category X, the pair of adjoint maps

p∗n : [(∆o)n, X]↔ [(∆o)n+1, X] : i∗n

induces a pair of adjoint maps

inc : Catn(X)↔ Catn+1(X) : res.

The ”inclusion” inc is fully faithful and we can regard it as an inclusion by adopting
the same notation for C ∈ Catn(X) and inc(C) ∈ Catn+1(X). The map res
associates to C ∈ Catn+1(X) its restriction res(C) ∈ Catn(X). The adjoint pair
pn ` i∗n also induces an adjoint pair

inc : RCatn(X)↔ RCatn+1(X) : res.
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In particular, it induces an adjoint pair

inc : Un ↔ Un+1 : res.

When n = 0, the map inc is induced by the inclusion Kan ⊂ QCat and the map
res by the functor J : QCat → Kan. The inclusion Un ⊂ Un+1 has also a left
adjoint which associates to a reduced (n + 1)-category C the reduced n-category
obtained by inverting the (n+ 1)-cells of C.
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Chapter 1

Elementary aspects

In this second lecture we introduce the notion of quasi-category, the fundamen-
tal category of a simplicial set, the homotopy category of a quasi-category, the
notion of weak categorical equivalence and describe the model structure for quasi-
categories. We also introduce a notion of adjoint maps between simplicial sets.

We denote by Cat the category of small categories and by S the category
of simplicial sets. Recall that the nerve of a category C is the simplicial set NC
defined by putting

(NC)n = Cat([n], C)

for every n ≥ 0. A simplex x ∈ (NC)n can be represented as a chain of length n
of arrows in C,

x(0)
x1 // x(1)

x2 // x(2) // · · · xn // x(n).

The nerve functor N : Cat→ S is fully faithful. We shall regard it is an inclusion
by adopting the same notation for a small category and its nerve. The nerve
functor has a left adjoint τ1 : S→ Cat, which associates to a simplicial set X its
fundamental category τ1X. The fundamental groupoid π1X is obtained by freely
inverting all the arrows of τ1X. If Gpd denotes the category of small groupoids,
then the functor π1 : S → Gpd is left adjoint to the inclusion Gpd ⊂ S defined
by the nerve.

The category τ1X can be described by generators and relations. Let GX
be the graph of non-degenerate arrows of X, and let FX be the category freely
generated by GX. By construction, a morphism a→ b in FX is a path in GX,

a = a0
f1 // a1

f2 // a2 · · ·
fn // an = b.

There is a natural injection X1 → F (X) which takes a non-degenerate arrow in to
a path of length one and a degenerate arrow to a unit. And let ≡ the congruence

209
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relation on FX generated by the relations (td0)(td2) ≡ td1, one for each non-
degenerate simplex t ∈ X with boundary ∂t = (∂0t, ∂1t, ∂2t):

t(1)
∂0t

""D
DD

DD
DD

D

t(0)

∂2t
=={{{{{{{{
∂1t // t(2).

The proof of the following result is left as an exercice.

Proposition 1.1. [GZ] Let FX be the category freely generated by the graph of
non-degenerate arrows of a simplicial set X. Then we have

τ1X = FX/ ≡,

where ≡ is the congruence described above. Moreover, the functor τ1Sk2X → τ1X
induced by the inclusion Sk2X ⊆ X is an isomorphism of categories.

Corollary 1.2. The nerve of a category is 2-coskeletal.

Proof: For any category C there is a natural bijection between the maps Sk2∆[n]→
NC and the functors τ1Sk2∆[n] → C. We have τ1Sk2∆[n] = τ1∆[n] by 1.1. It
follows that every map Sk2∆[n]→ NC has a unique extension ∆[n]→ NC.

Proposition 1.3. [GZ] The functor τ1 : S→ Cat preserves finite products.

See B.0.15 for a proof.

We denote by τ0A the set of isomorphism classes of objects of the category
τ1A. This defines a functor

τ0 : S→ Set.

It follows from 1.3 that

Corollary 1.4. The functor τ0 preserves finite products.

Recall that a simplicial set X is said to be n-coskeletal if the canonical map
X → CosknX is an isomorphism. A simplicial set X is n-coskeletal iff every
simplicial sphere ∂∆[m]→ X with m > n has a unique filler.

We say that a horn Λk[n] is inner if we have 0 < k < n.

Definition 1.5. [BV] We call a simplicial set X a quasi-category if every inner
horn Λk[n]→ X has a filler ∆[n]→ X.
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The notion of quasi-category was introduced by Boardman and Vogt in their
work on homotopy invariant algebraic structures [BV]. A Kan complex and the
nerve of a category are examples. A quasi-category is sometime called a weak Kan
complex in the literature [KP]. The purpose of our terminology is to stress the
analogy with categories.

A map of quasi-categories is a map of simplicial sets. We shall denote the
category of (small) quasi-categories by QCat. Notice the diagram of inclusions

Gpd

��

// Cat

��
Kan // QCat.

where the vertical inclusions are induced by the nerve functor. We have Kan ∩
Cat = Gpd, since the nerve of a category is a Kan complex iff the category is a
groupoid. A Kan complex may be called a quasi-groupoid. A quasi-category with
a single vertex may be called a quasi-monoid. The opposite of a quasi-category is
a quasi-category. We shall prove in 4.16 that a quasi-category X is a Kan complex
iff the category τ1X is a groupoid.

The following lemma is useful for proving that the nerve of a category is
a quasi-category. From the inclusion hk

n : Λk[n] ⊂ ∆[n], we obtain a functor
τ1(hk

n) : Λk[n]→ τ1∆[n].

Lemma 1.6. If 0 < k < n, then the functor τ1(hk
n) : Λk[n]→ τ1∆[n] is an isomor-

phism of categories.

Proof: If n > 3, we have Sk2Λk[n] = Sk2∆[n]; hence we have τ1Λk[n] = τ1∆[n] in
this case by 1.1. If n = 2 then k = 1, since 0 < k < 2. The simplicial set Λ1[2] has
two non-degenerate arrows 0 → 1 → 2 and no higher dimensional simplicies. It
follows from this description and from 1.1 that τ1Λ1[2] = [2]. If n = 3, then k = 1
or k = 2, since 0 < k < 3. It is enough to consider the case k = 1 by symmetry.
The 1-skeleton of Λ1[3] has six (non-degenerate) arrows fji : i → j, one for each
0 ≤ i < j ≤ 3,

2

��

0

77ooooooooooooooooooooooooooo //

''OOOOOOOOOOOOOOOOOOOOOOOOOOO 1

??����������������

��?
??

??
??

??
??

??
??

?

3.
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The category τ1Sk1Λ1[3] is freely generated by this graph. The simplicial set Λ1[3]
has three non-degenerate 2-simplices (012), (013) and (123). It follows by 1.1 that
the category τ1Λ1[3] is the quotient of the category τ1Sk1Λ1[3] by the congruence
≡ generated by the conditions:

f21f10 ≡ f20, f31f10 ≡ f30, f32f21 ≡ f31.

But these conditions imply that we have f32f20 ≡ f30. It follows that we have
τ1Λ1[3] = [3].

Proposition 1.7. [BV] If C is a category, then every inner horn Λk[n]→ C has a
unique filler ∆[n]→ C. Hence the nerve of a category is a quasi-category.

Proof: If 0 < k < n, let us show that every map Λk[n] → NC can be extended
uniquely to a map ∆[n] → NC. It is equivalent to showing that every functor
τ1Λk[n] → C can be extended uniquely to a functor τ1∆[n] → C, since we have
τ1 ` N . But the functor τ1Λk[n]→ τ1∆[n] induced by the inclusion Λk[n] ⊂ ∆[n]
is an isomorphism by 1.6. The result follows.

The fundamental category of a simplicial set X has a nice description when
X is a quasi-category: it is the homotopy category hoX introduced by Boardman
and Vogt in [BV].

Definition 1.8. If X is a quasi-category, a, b ∈ X0 and f, g : a→ b a left homotopy
u : f ⇒L g is a 2-simplex u : ∆[2]→ X with boundary ∂u = (1b, g, f),

b
1b

��>
>>

>>
>>

>

a

f

@@��������
g

// b.

Dually, a right homotopy v : f ⇒R g is a 2-simplex v : ∆[2] → X with boundary
∂v = (g, f, 1a),

a
g

��@
@@

@@
@@

a

1a

??��������
f

// b.

Two arrows f, g : a→ b in a quasi-category X are said to be left homotopic
(resp right homotopic) exists a left homotopy f ⇒L g (resp. right homotopy f ⇒R

g).

If X is a simplicial and a, b ∈ X0, let us denote by X(a, b) the fiber at (a, b)
of the projection

(s, t) : XI → X{0,1} = X ×X



213

defined by the inclusion {0, 1} ⊂ I. A vertex of the simplicial set X(a, b) is an
arrow a → b in X. The proof of the following lemma is left as an exercise to the
reader.

Recall that two vertices u and v of a simplicial set Z are said to be homotopic
if there exists an arrow u→ v in Z1.

Lemma 1.9. [BV] If X is a quasi-category and a, b ∈ X0 then the homotopy relation
on the simplicial set X(a, b) is an equivalence relation. Moreover, two arrows f, g :
a→ b are homotopic iff they are left homotopic iff they are right homotopic.

We shall denote the homotopy relation between the arrows a→ b by fg̃ and
the homotopy class of an arrow f by [f ]. A map x = (g, h, f) : ∂∆[2] → X is a
triangle of arrows in X,

x1

g

!!C
CC

CC
CC

C

x0

f
==||||||||

h
// x2.

We say that the triangle commutes if it can be extended to a simplex ∆[2]→ X.
Let us write gf ∼ h to indicate that a triangle (g, h, f) commutes.

We leave the proof of the following theorem as an exercise to the reader.

Theorem 1.10. [BV] Let X be a quasi-category. If f ∈ X1(a, b), g ∈ X1(b, c) and
h ∈ X1(a, c), then the relation gf ∼ h depends only on the homotopy classes of
f, g and h. It induces a composition law

hoX(b, c)× hoX(a, b) → hoX(a, c)

for a category hoX. We have [g][f ] = [h] in hoX iff the triangle (g, h, f) : ∂∆[2]→
X commutes.

Let X be a quasi-category. If x : ∆[n] → X, then ho(x) : [n] → hoX, since
ho∆[n] = [n]. This defines a map h : X → hoX if we put h(x) = ho(x). Hence
also a functor

i : τ1X → hoX

by the universality of τ1X.

Proposition 1.11. Let X be a quasi-category. Then the canonical functor i : τ1X →
hoX is an isomorphism of categories.

Proof: It suffices to show that the map h : X → hoX reflects the simplicial set in
the subcategory Cat ⊆ S. That is, we have to show that for any category C and
any map u : X → C there is a unique functor v : hoX → C such that vh = u.
The existence of v is clear, since we can take v = ho(u) : hoX → hoC = C. The
uniqueness is left to the reader.



214 Chapter 1. Elementary aspects

Definition 1.12. We shall say that an arrow in a simplicial set A is invertible or
that it is an isomorphism if the arrow is invertible in the category τ1A.

Proposition 1.13. If X is a quasi-category, then two objects a, b ∈ X are isomorphic
in ho(X) = τ1X iff there exists an isomorphism a→ b in X.

Proof: We have τ1X = hoX by 1.11. Thus, a and b are isomorphic in τ1X iff they
are isomorphic in hoX.

Proposition 1.14. Let X be a quasi-category. Then an arrow f : a → b in X is
invertible iff there exists an arrow g : b→ a such that gf ∼ 1a and fg ∼ 1b.

Proof: We have τ1X = hoX by 1.11. Thus, the arrow f is invertible iff the mor-
phism [f ] ∈ hoX is invertible. But the morphism [f ] is invertible in hoX iff there
exists an arrow g : b → a in X such that [g][f ] = 1a and [f ][g] = 1b. This proves
the result, since the relation [g][f ] = 1a is equivalent to the relation gf ∼ 1a and
the relation [f ][g] = 1b equivalent to the relation fg ∼ 1b by 1.10.

1.1 Exercises

Exercise 1.15. Prove Proposition 1.1.

Exercise 1.16. Show that the fundamental category of a Kan complex is a groupoid.

If X is a simplicial set, a map Sk1∆[3]→ X is a diagram of six arrows in X,

x2

��

x0

66nnnnnnnnnnnnnnnnnnnnnnnnnnnn //

((PPPPPPPPPPPPPPPPPPPPPPPPPPPP x1

>>||||||||||||||||

  B
BB

BB
BB

BB
BB

BB
BB

B

x3.

Each face of the diagram is a triangle ∂kx : ∂∆[2]→ X.

Exercise 1.17. [BV] Let X be a quasi-category and x : Sk1∆[3]→ X be a diagram
as above. Suppose that the triangles ∂0x and ∂3x commute. Show that the triangle
∂1x commutes iff the triangle ∂2x commutes.

Exercise 1.18. Prove Lemma 1.9.

Exercise 1.19. Prove Theorem 1.10.
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1.2 Equivalences

We recall the construction of the homotopy category of simplicial sets Sπ0 by
Gabriel and Zisman [GZ]. The category S is cartesian closed and the functor
π0 : S→ Set preserves finite products. If A,B ∈ S let us put

π0(A,B) = π0(BA).

If we apply the functor π0 to the composition map CB ×BA → CA we obtain a
composition law

π0(B,C)× π0(A,B)→ π0(A,C)

for a cartesian closed category Sπ0 , where we put Sπ0(A,B) = π0(A,B). We
call a map of simplicial sets a combinatorial homotopy equivalence if the map is
invertible in the homotopy category Sπ0 . A map of simplicial set u : A → B is a
weak homotopy equivalence iff the map

π0(u,X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X.

The functor τ0 : S→ Set preserves finite products by 1.4. If A,B ∈ S let us
put

τ0(A,B) = τ0(BA).

If we apply the functor τ0 to the composition map CB × BA → CA we obtain a
composition law

τ0(B,C)× τ0(A,B)→ τ0(A,C)

for a cartesian closed category Sτ0 , if we put Sτ0(A,B) = τ0(A,B).

Definition 1.20. We call a map of simplicial sets a categorical equivalence if the
map is invertible in the category Sτ0 . If X and Y are quasi-categories, then a
categorical equivalence X → Y is called an equivalence of quasi-categories . We
call a map u : A→ B a weak categorical equivalence if the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every quasi-category X.

Proposition 1.21. A categorical equivalence is a weak categorical equivalence. The
converse is true for a map between quasi-categories.

Proof: Let us prove the second statement. Let us denote by QCatτ0 the full sub-
category of Sτ0 spanned by the quasi-categories. A map between quasi-categories
is an equivalence iff it is invertible in the category QCatτ0 . Let u : X → Y be a
weak categorical equivalence between quasi-categories. Then the map τ0(u,X) :
τ0(Y,Z)→ τ0(X,Z) is bijective for every object Z ∈ QCatτ0 . It follows by Yoneda
Lemma that u is invertible in QCatτ0 .
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Recall that map of simplicial sets is called a trivial fibration if has the right
lifting property with respect to every monomorphism. A trivial fibration f : X →
Y has a section s : Y → X, since the square

∅ //

��

X

f

��
Y

1Y // Y

has a diagonal filler.

Proposition 1.22. A trivial fibration f : X → Y in S is a categorical equivalence.

Proof: A trivial fibration f : X → Y has a section s : Y → X by the above.
We have fs = 1Y , by definition of a section. Let us show that we have 1X = sf
in τ0(X,X) = τ0(XX). For this it suffices to show that the maps 1X and sf
are isomorphic in τ1(XX) Let J be the groupoid generated by one isomorphism
σ : 0→ 1 and let j = (j0, j1) be the inclusion {0, 1} ⊂ J . Let us put u = (1X , sf) :
X × {0, 1} → X and let p1 be the projection X × J → X. The following square
commutes, since we have f = fsf and fp1(X × j) = f(1X , 1X) = (f, f),

X × {0, 1} u //

X×j

��

X

f

��
X × J

fp1 // Y.

Hence the square has a diagonal filler d : X × J → X, since f is a trivial fibration
and X × j is monic. From the map d we obtain a map k : J → XX such that
kj0 = 1X ∈ XX and kj0 = sf ∈ XX . Thus, k(σ) : 1X → sf , since σ : 0→ 1. The
arrow k(σ) is invertible in τ1(XX), since σ is invertible in J . This proves that the
maps 1X and sf are isomorphic in τ1(XX).

Proposition 1.23. The functor τ1 : S → Cat takes a weak categorical equivalence
to an equivalence of categories.

Proof: If X ∈ S and C ∈ Cat, then we have CX = Cτ1X by B.0.16. Hence we
have τ0(X,C) = τ0(τ1X,C). It follows that we have τ0(u,C) = τ0(τ1u,C) for any
map of simplicial sets u : X → Y and any category C ∈ Cat. If u : X → Y is a
weak categorical equivalence, then the map τ0(u,C) is bijective for any category
C (since a category is a quasi-category by 1.7). Hence also the map τ0(τ1u,C). It
follows by Yoneda Lemma that τ1u is invertible in the category Catτ0 . Thus, τ1u
is an equivalence of categories.
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1.3 The 2-category of simplicial sets

Recall that a 2-category is a category enriched over Cat. An object of a 2-category
E is often called a 0-cell. If A and B are 0-cells, an object of the category E(A,B)
is called a 1-cell and an arrow is called a 2-cell. We shall often write α : f → g :
A → B to indicate that α is a 2-cell with source the 1-cell f : A → B and target
the 1-cell g : A→ B. The composition law in a fixed hom category E(A,B) is said
to be vertical. We shall denote the vertical composition α : f → g and β : g → h
in E(A,B) by βα : f → h. The composition law

E(B,C)× E(A,B)→ E(A,C)

is said to be horizontal. We shall denote the horizontal composition α : f → g :
A→ B and β : u→ v : B → C by β ◦ α : uf → vg : A→ C.

If A and B are simplicial sets, let us put

τ1(A,B) = τ1(BA).

The functor τ1 : S→ Cat preserves finite products by Proposition 1.3. If we apply
the functor τ1 to the composition map CB×BA → CA, we obtain the composition
law

τ1(B,C)× τ1(A,B)→ τ1(A,C)

of a 2-category Sτ1 if we put Sτ1(A,B) = τ1(A,B). A 1-cell of this 2-category is
a map of simplicial sets. A 2-cell f → g : A → B is a morphism of the category
τ1(BA). We should be careful to distinguish between a homotopy α : f → g
between two maps f, g : A → B and the corresponding 2-cell [α] : f → g in
τ1(A,B). The former is an arrow in the simplicial set BA and the latter is an
arrow in the category τ1(BA).

There is a notion of equivalence in any 2-category. Recall that 1-cell u : A→
B is said to be an equivalence if there exists a 1-cell v : B → A together with a
pair of invertible 2-cells 1A → vu and 1B → uv. A map of simplicial sets is an
equivalence in the 2-category Sτ1 iff it is a categorical equivalence.

1.4 Exercises

Exercise 1.24. Show that a map of simplicial set u : A → B is a weak homotopy
equivalence iff the map

π0(u,X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X.

Exercise 1.25. Show that the class of weak categorical equivalences has the “3 for
2” property.



218 Chapter 1. Elementary aspects

1.5 Adjoint maps

There is a notion of adjunction in any 2-category. Recall that if u : A → B and
v : B → A are 1-cells, then a pair of of 2-cells α : 1A → vu and β : uv → 1B is
called an adjunction if the following adjunction identities hold:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

The 2-cell α is said to be the unit of the adjunction and the 2-cell β to be the
counit. Each of these 2-cells determines the others. Hence it suffices to specify
the unit (resp. counit) of an adjunction to specify the adjunction. The 1-cell u is
said to be the left adjoint and the 1-cell v to be the right adjoint. We shall write
(α, β) : u ` v to indicate that the pair (α, β) is an adjunction between u and v.
We shall write u ` v to indicate that u is the left adjoint and v the right adjoint
of an adjunction (α, β) : u ` v.

Definition 1.26. We shall say that a map of simplicial sets is a left adjoint (resp.
right adjoint) if it is a left (resp. right) adjoint in the 2-category Sτ1 . We shall
say that a homotopy α : 1A → vu is an adjunction unit if the 2-cell [α] : 1A → vu
is the unit of an adjunction in the 2-category Sτ1 . Dually, we shall say that a
homotopy β : uv → 1B is an adjunction counit if the 2-cell [β] : uv → 1B is the
counit of an adjunction.

Proposition 1.27. The functor τ1 : Sτ1 → Cat is a 2-functor. Hence it takes a cate-
gorical equivalence to an equivalence of categories, an adjunction to an adjunction,
a left adjoint to a left adjoint and a right adjoint to a right adjoint.

Proof: We have τ1(A) = τ1(1, A) = Sτ1(1, A) for any simplicial set A. Hence the
functor τ1 is representable by the object 1 ∈ Sτ1 . It is thus a 2- functor.

The notion of adjoint map in Sτ1 can be weakened. Observe that 1-cell u :
A→ B in a 2-category E is a left adjoint iff the functor

E(u,X) : E(B,X)→ E(A,X)

is a right adjoint for every object X ∈ E . This motivates the following definition:

Definition 1.28. We say that a map of simplicial sets u : A → B is a weak left
adjoint if the functor

τ1(u,X) : τ1(B,X)→ τ1(A,X)

is a right adjoint for every quasi-category X. Dually, we say that u is a weak right
adjoint if the functor τ1(u,X) is a left adjoint for every quasi-category X.
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A map of simplicial sets u : A→ B is a weak left adjoint iff the opposite map
uo : Ao → Bo is a weak right adjoint. The composite of two weak left adjoints
is a weak left adjoint. A map between quasi-categories X → Y is a left adjoint
iff it is a weak left adjoint. The notion of weak left adjoint is invariant under
weak categorical equivalence. This means that given a commmutative square of
simplicial sets

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are weak categorical equivalences, then u is a weak
left adjoint iff u′ is a weak left adjoint.

1.6 Exercises

Exercise 1.29. Show that a map of simplicial sets is an equivalence in the 2-category
Sτ1 iff it is a categorical equivalence.

Exercise 1.30. Show that each of the 2-cells of an adjunction (α, β) : u ` v deter-
mines the other.

Exercise 1.31. Show that a map between quasi-categories X → Y is a left adjoint
iff it is a weak left adjoint.

Exercise 1.32. Show that the notion of weak left adjoint is invariant under weak
categorical equivalence.

Exercise 1.33. Show that the functor τ1 : S→ Cat takes a weak categorical equiv-
alence to an equivalence of categories, and a weak left (resp. right) adjoint to a
left (resp. right) adjoint.
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Chapter 2

Three classes of fibrations

In this chapter we introduce three classes of fibrations respectively called left, mid
and right fibrations. Each class of fibrations forms a factorisation system with a
class of anodyne maps respectively called left, mid and right anodyne maps. We
also study the behavior of fibrations under exponentiation and apply the results
to weak categorical equivalences

2.1 Left, right and mid fibrations

Recall from D.1.1 that an arrow u : A → B in a category is said to have the left
lifting property (LLP) with respect to an arrow f : X → Y , or that f is said
to have the right lifting property (RLP) with respect to u, if every commutative
square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a diagonal filler d : B → X (that is, du = x and fd = y). We shall denote this
relation by u t f .

Recall that a map of simplicial sets p : X → Y is said to be a Kan fibration
if it has the RLP with respect to the inclusion hk

n : Λk[n] ⊂ ∆[n] for every n > 0
and 0 ≤ k ≤ n. This suggests the following definition.

Definition 2.1. [J1] We shall say that a map of simplicial sets is a

• left fibration or a covariant fibration if it has the RLP with respect to hk
n for

every 0 ≤ k < n;

• mid fibration if it has the RLP with respect to hk
n for every 0 < k < n;

221



222 Chapter 2. Three classes of fibrations

• right fibration or a contravariant fibration if it has the RLP with respect to
hk

n for every 0 < k ≤ n.

A map p : X → Y is a left fibration iff the opposite map po : Xo → Y o is a
right fibration. A map is a Kan fibration iff it is both a left and a right fibration.
Each class of fibrations is closed under composition and base change. A simplicial
set X is a quasi-category iff the map X → 1 is a mid fibration.

We remark that if p : X → Y is a right fibration, then for every vertex b ∈ X
and every arrow g ∈ Y with codomain p(b), then there exists an arrow f ∈ X with
codomain b such that p(f) = g. There is a dual property for left fibration.

There are other many classes of fibrations than the three classes introduced
in this chapter. We recall from B.0.9 that a map of of simplicial sets is a trivial
fibration iff it has the right lifting property with respect to the inclusion δn :
∂∆[n] ⊂ ∆[n] for every n ≥ 0. A notion of pseudo-fibration will be introduced later
in these notes6.3. The pseudo-fibrations are the fibrations of the model structure
for quasi-categories 6.12. There is also a notion of Grothendieck fibration between
simplicial sets and a dual notion of Grothendieck opfibration In all, we have the
following diagram of inclusions between eight classes of fibrations.
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mid fibrations

pseudo−fibrations

OO

Groth. opfibrations

77ooooooooooooooooooooooooo
Groth. fibrations

ggOOOOOOOOOOOOOOOOOOOOOOOOO

left fibrations

OO

right fibrations

OO

Kan fibrations

ggPPPPPPPPPPPPPPPPPPPPPPPPPP

77ooooooooooooooooooooooooo

trivial fibrations

OO

Proposition 2.2. If X is a quasi-category and C is a category, then every map
X → C is a mid fibration. In particular, every functor in Cat is a mid fibration.

Proof: We have to show that if 0 < k < n, then every commutative square

Λk[n]

��

x // X

p

��
∆[n]

y // C

has a diagonal filler. The horn x : Λk[n] → X has a filler z : ∆[n] → X, since X
is a quasi-category. Let us show that pz = y. But the maps pz : ∆[n] → C and
y : ∆[n] → C both fill the same horn px : Λk[n] → C. Thus, pz = y by 1.7, since
C is a category. This shows that z is a diagonal filler of the square.
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2.1.1 Supplement

Recall that a Grothendieck fibrations p : E → B in Cat is called a 1-fibration if
its fibers are groupoids.

Proposition 2.3. A functor p : E → B in Cat is a right fibration in S iff it is a
1-fibration.

Proof: (⇐) Let p : E → B be a 1-fibration in Cat. If 0 < k ≤ n, let us show that
every commutative square

Λk[n]

��

x // E

p

��
∆[n]

y // B

has a diagonal filler. This is clear if n = 1 and k = 1, since p is a Grothendieck
fibration. This is clear if 0 < k < n, since p is a mid fibration by 2.2. It remains to
consider the case where k = n > 1. If n = 2, we have px(02) = y(02) and px(12) =
y(12), since the square commutes. Hence there is a unique arrow u : x(0)→ x(1)
such that p(u) = y(01) and x(02) = x(12)u, since every arrow in E is cartesian.
The chain of arrows

x(0) u // x(1)
x(12) // x(2)

determines a 2-simplex ∆[2]→ E which is a diagonal filler of the square. If n > 2
we have (i, i+ 1) ∈ Λn[n] for every 0 ≤ i < n. The chain of arrows

x(0)
x(01) // x(1)

x(12) // x(2) // · · · // x(n− 1)
x(n−1,n) // x(n)

defines a simplex ∆[n]→ E which is a diagonal filler of the square. (⇒) Let us first
show that every arrow f : a→ b in E is cartesian with respect to p. If g : c→ b is
an arrow in E and p(g) = p(f)u : p(c) → p(a) → p(b) is a factorisation in B, let
us show that there is a unique arrow v : c → a such that g = fv and p(v) = u.
Consider the commutative square

Λ2[2]

��

x // E

p

��
∆[2]

y // B,

where where x is the horn (f, g, ?) and where y is the 2-simplex defined by the
chain of arrows

p(a) u // p(b)
p(f) // p(c).

The square has a diagonal filler z : ∆[2] → E, since p is a right fibration. If
v = zd2, then v : c → a, g = fv and p(v) = u. This proves the existence of v. It
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remains to prove its uniqueness. Let v′ : c→ a be another arrow such that g = fv′

and p(v′) = u. Let s : Sk1∆[3]→ E be the map defined by the following diagram
of six arrows in E:

a

f

��

c

v′

77ooooooooooooooooooooooooooo 1c //

g

''OOOOOOOOOOOOOOOOOOOOOOOOOOO c

v

??~~~~~~~~~~~~~~~~

g

��?
??

??
??

??
??

??
??

?

b.

The faces ∂0s, ∂1s and ∂2s of this diagram commutes. Hence we have ∂0s = ∂h0,
∂1s = ∂h1 and ∂2s = ∂h2, where hi : ∆[2] → E. This defines a horn h =
(h0, h1, h2, ?) : Λ3[3] → E. The image by p of the diagram of arrows above is the
following diagram,

p(a)

p(f)

��

p(c)

u

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmm 1p(c) //

p(g)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ p(c)

u

==|||||||||||||||||

p(g)

!!B
BB

BB
BB

BB
BB

BB
BB

BB

p(b).

The diagram commutes and it defines a degenerate simplex ys0 : ∆[3]→ E. This
shows that the following square commutes,

Λ3[3]

��

h // E

p

��
∆[3]

ys0 // B.

The square has a diagonal filler e : ∆[3] → E, since p is a right fibration. If
e0 = ed3, then ∂e0 = (v, v′, 1c). Thus, v = v′. We have proved that every arrow
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in E is cartesian. Let us now show that p is a Grothendieck fibration. For every
object a ∈ E and every arrow g ∈ B with target p(a), there exists an arrow f ∈ E
with target b such that p(f) = g, since the square

Λ1[1]

��

a // E

p

��
∆[1]

g // B

has a diagonal filler. The arrow f is cartesian, since every arrow is cartesian. This
proves that p is a Grothendieck fibration.

2.1.2 Exercises

Exercise 2.4. (Descent property of fibrations) If the base change of a map p : X →
B along a surjection u : A → B is a Kan fibration, then p is a Kan fibration. A
similar result is true for right fibrations, left fibrations, mid fibrations and trivial
fibrations.

Proposition 2.5. A directed colimit of Kan fibrations is a Kan fibration. A similar
result is true for right fibrations, left fibrations, mid fibrations and trivial fibrations.

Proof: If u : A→ B and f : X → Y are two maps of simplicial sets let us denote
by F (u, f) the map

S(B,X)→ S(B, Y )×S(A,Y ) S(A,X)

obtained from the square

S(B,X)

S(B,f)

��

S(v,X) // S(A,X)

S(A,f)

��
S(B, Y )

S(v,Y ) // S(A, Y ).

If we fix u, this defines a functor F (u,−) : SI → SetI . It is easy to verify that the
functor F (u,−) preserves directed colimits when u is a map between finite simpli-
cial sets (finite simplicial set=finitely generated=finitely presented). In particular,
the functor F (hk

n,−) preserves directed colimits, since hk
n is a map between finite

simplicial sets. But a map f : X → Y is Kan fibration iff the map F (hk
n, f) is

surjective for every horn hk
n. This proves the result, since a directed colimit of

surjections is a surjection.
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Recall from Definition B.0.11 that a map of simplicial sets X → Y is said to
be 0-full if the naturality square

X

��

// Cosk0X

��
Y // Cosk0Y

is cartesian. We shall say that a simplicial subset S ⊆ X is full f the map S → X
defined by the inclusion is 0-full.

Exercise 2.6. A 0-full map is a mid fibration. In particular, a full simpliical subset
of a quasi-category is a quasi-category.

2.2 Left, right and mid anodyne maps

Recall from D.2.2 that a class of maps A in a cocomplete category is said to be
saturated if it satisfies the following conditions:

• A contains the isomorphisms and is closed under composition ;

• A is closed under cobase change and retract;

• A is closed under transfinite composition.

In a cocomplete category, every class of maps Σ is contained in a small-
est saturated class Σ called the saturated class generated by Σ. For example, in
the category S, the saturated class of monomorphisms is generated by the set of
inclusions δn : ∂∆[n] ⊂ ∆[n] for n ≥ 0. See Proposition B.0.8.

Recall from [GZ] that a map of simplicial sets is said to be anodyne if it
belongs to the saturated class generated by the inclusions Λk[n] ⊂ ∆[n] with
0 ≤ k ≤ n > 0. Every anodyne map is monic.

Definition 2.7. We say that a map of simplicial sets is

• left anodyne if it belongs to the saturated class generated by the inclusions
Λk[n] ⊂ ∆[n] with 0 ≤ k < n;

• mid anodyne if it belongs to the saturated class generated by the inclusions
Λk[n] ⊂ ∆[n] with 0 < k < n;

• right anodyne if it belongs to the saturated class generated by the inclusions
Λk[n] ⊂ ∆[n] with 0 < k ≤ n.
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These classes of maps fit in the following diagram of inclusions.

mid anodyne maps

��
monic w.cat.eq.

yyrrrrrrrrrrrrrrrrrrrrr

&&LLLLLLLLLLLLLLLLLLLLLL

left anodyne maps

%%LLLLLLLLLLLLLLLLLLLLL right anodyne maps

xxrrrrrrrrrrrrrrrrrrrrrr

anodyne maps

��
monomorphisms

A map u : A→ B is left anodyne iff the opposite map uo : Ao → Bo is right
anodyne. We shall see in A that a monic weak categorical equivalence is a both
left and right anodyne.

Theorem 2.8. Each of the following pairs (A,B) of classes of maps in S is a weak
factorisation system:

• A is the class of monomorphisms and B the class of trivial fibrations;

• A is the class of anodyne maps and B the class of Kan fibrations;

• A is the class of mid anodyne maps and B the class of mid fibrations;

• A is the class of left anodyne maps and B the class of left fibrations;

• A is the class of right anodyne maps and B the class of right fibrations.

Proof: The first two results are classical [GZ]. See D.1.11 for a proof of the first.
The others follow from Theorem D.2.11.
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Definition 2.9. We say that a map of simplicial sets u : A → B is biunivoque
indexmap!biunivoque—textbf if the map u0 : A0 → B0 is bijective.

A functor u : A → B in Cat is biunivoque iff the map Ob(A) → Ob(B)
induced by u is bijective. indexfunctor!biunivoque—textbf

Proposition 2.10. A mid anodyne map is biunivoque. The functor τ1 : S → Cat
takes a mid anodyne map to an isomorphism of categories.

Proof: It is easy to see that the class of biunivoque maps is saturated. Every inner
horn hk

n : Λk[n] ⊂ ∆[n] is biunivoque, since hk
n is biunivoque when n > 1. It follows

that every mid anodyne map is biunivoque. The first statement is proved. Let us
prove the second statement. Let A ⊂ S be the class of maps u : A→ B, such that
τ1(u) is an isomorphism of categories. The class A is saturated by Proposition
D.2.5, since the functor τ1 is cocontinuous. Every inner horn hk

n : Λk[n] ⊂ ∆[n]
belongs to A by Lemma 1.6. It follows that every mid anodyne map belongs to A.

We say that a functor u : A→ B is said to be 1-final if the category b\A =
(b\B)×B A defined by the pullback square

b\A

��

h // A

u

��
b\B // B.

is simply connected for every object b ∈ B.

Proposition 2.11. The functor τ1 : S→ Cat takes a right anodyne map to a 1-final
functor (hence also to a 0-final functor).

Proof: If B ⊂ S is the class of right fibrations and A is the class of right anodyne
maps, then the pair (A,B) is a weak factorisation system in S by 2.8. If B′ ⊂ Cat
is the class of 1-fibrations and A′ is the class of 1-final cofibrations then the pair
(A′,B′) is a weak factorisation system in Cat by D.1.8. We have, N(B′) ⊆ B by
2.3. It follows by adjointness D.1.14 that we have τ1(A) ⊆ A′.

2.2.1 Supplement

If A is a subset of [n], the generalised horn ΛA[n] is the simplicial subset of ∆[n]
defined by putting

ΛA[n] =
⋃
i 6∈A

∂i∆[n].

Notice that Λ{k}[n] = Λk[n]. If A ⊆ B ⊆ [n] then ΛB [n] ⊆ ΛA[n]. If a, b ∈ [n]
and a ≤ b, let us put [a, b] = {x ∈ [n] : a ≤ x ≤ b}. We shall say that [a, b] is an
interval.
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Proposition 2.12. Let A ⊆ [n] be a non-empty subset of [n].

• (i) if A is a proper subset, then the inclusion iA : ΛA[n] ⊂ ∆[n] is anodyne;

• (ii) if A ⊆ [0, n− 1], then iA is left anodyne;

• (iii) if A ⊆ [1, n], then iA is right anodyne;

• (iv) if the complement of A is not an interval, then iA is mid anodyne.

Proof: Let us prove (i). We shall argue by induction on r = Card(A). If r = 1,
then we have ΛA[n] = Λk[n] for some k ∈ [n]. The result is obvious in this case.
Let us now suppose r > 1. In this case, let us choose an element a ∈ A and put
B = A\{a}. The inclusion ΛB [n] ⊂ ∆[n] is anodyne by the induction hypothesis,
since B is a proper non-empty subset of [n] and Card(B) < r. Hence the result
will be proved if we show that the inclusion ΛA[n] ⊂ ΛB [n] is anodyne. The square

∂a∆[n] ∩ ΛA[n]

��

// ΛA[n]

��
∂a∆[n] // ΛB [n]

is a pushout, since ΛB [n] = ∂a∆[n] ∪ ΛA[n]. Hence it suffices to show that the
inclusion ∂a∆[n]∩ΛA[n] ⊂ ∂a∆[n] is anodyne. Let S ⊆ [n−1] be the inverse image
of the subset A by the map da : [n−1]→ [n]. The map da : ∆[n−1]→ ∆[n] induces
an isomorphism between ΛS [n−1] and ∂a∆[n]∩ΛA[n]. It follows that the inclusion
∂a∆[n]∩ΛA[n] ⊂ ∂a∆[n] is isomorphic to the inclusion ΛS [n−1] ⊂ ∆[n−1]. Hence
it suffices to show that the inclusion ΛS [n − 1] ⊂ ∆[n − 1] is anodyne. The map
da induces a bijection between S and B. Thus, S 6= ∅, since B 6= ∅. Moreover,
Card(S) = Card(B) = r − 1 ≤ n − 1, since r = Card(A) ≤ n. This shows that S
is a proper non-empty subset of [n− 1]. Hence the inclusion ΛS [n− 1] ⊂ ∆[n− 1]
is anodyne by the induction hypothesis, since Card(S) < r. The result is proved.

Let us prove (ii) and (iii). By symmetry, it is enough to prove (ii). Let us
suppose that A ⊆ [0, n − 1] and show that iA is left anodyne. We shall argue by
induction on r = Card(A). If r = 1, we have ΛA[n] = Λk[n] for some 0 ≤ k < n.
The result is obvious in this case. Let us suppose that r > 1. In this case, let us
choose an element a ∈ A and put B = A\{a}. The inclusion ΛB [n] ⊂ ∆[n] is left
anodyne by the induction hypothesis, since Card(B) < r. Hence the result will be
proved if we show that the inclusion ΛA[n] ⊂ ΛB [n] is left anodyne. As above, let
S ⊆ [n − 1] be the inverse image of A by the map da : [n − 1] → [n]. It suffices
to show that the inclusion ΛS [n − 1] ⊂ ∆[n − 1] is left anodyne. As above, S is
a non-empty subset of [n − 1]. We have a 6= n, since n 6∈ A and a ∈ A. Thus,
da(n− 1) = n. It follows that S ⊂ [0, n− 1]. We have Card(S) = Card(A)− 1 < r,
since a ∈ A. Hence the inclusion ΛS [n − 1] ⊂ ∆[n − 1] is a left anodyne by the
induction hypothesis. The result is proved.
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Let us prove (iv). If A′ = [n] \ A is not an interval, let us show that iA is
mid anodyne. We shall prove the result by induction on r = Card(A). If r = 1,
then we have A = {k} for some 0 < k < n. The result is obvious in this case. We
can suppose that r > 1. There are elements s < b < t with s, t ∈ A′ and b ∈ A,
since A′ is not an interval. There is an element a ∈ A \ {b}, since r > 1. Let us
put B = A\{a}. We have B 6= ∅, since r > 1. The complement B′ = [n] \ B is
not an interval, since s, t ∈ B′ and b ∈ B. Hence the inclusion ΛB [n] ⊂ ∆[n] is
mid anodyne by the induction hypothesis, since Card(B) < r. Hence the result
will be proved if we show that the inclusion ΛA[n] ⊂ ΛB [n] is mid anodyne. As
above, let S ⊆ [n − 1] be the inverse image of A by the map da : [n − 1] → [n].
It suffices to show that the inclusion ΛS [n − 1] ⊂ ∆[n − 1] is mid anodyne. As
above, S is a non-empty subset of [n− 1]. The elements s, t and b belongs to the
image of da, since a 6∈ {s, t, b}. It follows that S is not an interval. Hence the
inclusion ΛS [n− 1] ⊂ ∆[n− 1] is mid anodyne by the induction hypothesis, since
Card(S) = Card(A) − 1 < r. It follows that the inclusion ΛA[n] ⊂ ΛB [n] is mid
anodyne.

For n > 0, the n-chain I[n] ⊆ ∆[n] is defined to be the union of the edges
(i− 1, i) ⊆ ∆[n] for 1 ≤ i ≤ n. We shall put I[0] = 1.

Proposition 2.13. The inclusion I[n] ⊆ ∆[n] is mid anodyne for every n ≥ 0.

Proof: Let us first show that the inclusion ∂0∆[n] ∪ I[n] ⊆ ∆[n] is mid anodyne
by induction on n > 0. This is clear if n = 1. Let us suppose n > 1. The square

I[n− 1] ∪ ∂0∆[n− 1]

��

// ∂0∆[n] ∪ I[n]

��
∂n∆[n] // ∂0∆[n] ∪ ∂n∆[n]

is a pushout, since

∂n∆[n] ∩ (∂0∆[n] ∪ I[n]) = I[n− 1] ∪ ∂0∆[n− 1]

and
∂n∆[n] ∪ (∂0∆[n] ∪ I[n]) = ∂0∆[n] ∪ ∂n∆[n].

The inclusion I[n − 1] ∪ ∂0∆[n − 1] ⊆ ∂n∆[n] is mid anodyne by the induction
hypothesis. It follows that the inclusion ∂0∆[n] ∪ I[n] ⊆ ∂0∆[n] ∪ ∂n∆[n] is mid
anodyne. But the inclusion ∂0∆[n] ∪ ∂n∆[n] ⊆ ∆[n] is mid anodyne by 2.12. It
follows by composing that the inclusion ∂0∆[n] ∪ I[n] ⊆ ∆[n] is mid anodyne.
Hence also the inclusion I[n] ∪ ∂n∆[n] ⊆ ∆[n] by symmetry. We can now prove
by induction on n that the inclusion I[n] ⊆ ∆[n] is mid anodyne. We can suppose



232 Chapter 2. Three classes of fibrations

n > 1. The square
I[n− 1]

��

// I[n]

��
∂n∆[n] // I[n] ∪ ∂n∆[n]

is a pushout, since I[n − 1] = ∂n∆[n] ∩ I[n]. The inclusion I[n − 1] ⊆ ∂n∆[n]
is mid anodyne by the induction hypothesis. It follows that the inclusion I[n] ⊆
I[n]∪∂n∆[n] is mid anodyne. But we saw that the inclusion I[n]∪∂n∆[n] ⊆ ∆[n]
is mid anodyne. It follows by composing that the inclusion I[n] ⊆ ∆[n] is mid
anodyne.

2.3 Function spaces

The proofs of this section depend heavily on the Appendix on boxes and prisms.
If u : A→ B and f : X → Y are maps of simplicial sets, we shall denote by

〈u, f〉 the map
XB → Y B ×Y A XA.

obtained from the square
XB //

��

XA

��
Y B // Y A,

The main result of the chapter is the following theorem. The first statement is
classical.

Theorem If f : X → Y is a Kan fibration (resp. mid fibration, left fibration, right
fibration) then so is the map

〈u, f〉 : XB → Y B ×Y A XA

for any monomorphism u : A → B. Moreover, 〈u, f〉 is a trivial fibration if in
addition u is anodyne (resp. mid anodyne, left anodyne, right anodyne).

The theorem is proved in 2.18. It follows from this theorem that if X is a
quasi-category, then so is the simplicial set XA for any simplicial set A.

We shall denote by SI the category of arrows in S. A morphism u→ f in SI

is a commutative square in S:

A
x //

u

��

X

f

��
B

y // Y.



2.3. Function spaces 233

If u : A→ B and v : S → T are two maps in S, we shall denote by u×′ v the map

(A× T ) tA×S (B × S)→ B × T

obtained from the commutative square

A× S
u×S //

A×v

��

B × S

B×v

��
A× T

u×T // B × T.

The operation (u, v) 7→ u×′ v is functorial in u, v ∈ SI . The resulting functor

×′ : SI × SI → SI

defines a symmetric monoidal structure on SI . The unit object given by the arrow
∅ → 1.

Lemma 2.14. The monoidal category (SI ,×′) is closed. The right adjoint to the
functor v 7→ u×′ v is the functor f 7→ 〈u, f〉. We have

u t 〈v, f〉 ⇐⇒ (u×′ v) t f ⇐⇒ v t 〈u, f〉.

Proof: This follows from D.1.18

Proposition 2.15. [GZ] If u : A → B and v : S → T are monic, then u ×′ v is
monic.

Proof: We can suppose that u is an inclusion A ⊆ B and that v is an inclusion
S ⊆ T . In this case we have

(A× T ) ∩ (B × S) = A× S,

where the intersection is taken in B × T . It follows that the square of inclusions

A× S //

��

B × S

��
A× T // (A× T ) ∪ (B × S)

is a pushout, where the union is taken in B × T . Thus, u×′ v is the inclusion

(A× T ) ∪ (B × S) ⊆ B × T.
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The following result is classical.

Proposition 2.16. [GZ] If f : X → Y is a trivial fibration then so is the map

〈u, f〉 : XB → XA ×Y A Y B

for any monomorphism u : A→ B.

Proof: Let us show that 〈u, f〉 has the right lifting property with respect to every
monomorphism v : S → T . But the condition v t 〈u, f〉 is equivalent to the
condition (u×′ v) t f by 2.14. But we have (u×′ v) t f , since u×′ v is monic by
2.15.

Theorem 2.17. If a monomorphism of simplicial sets u : A ⊆ B is anodyne (resp.
mid anodyne, left anodyne, right anodyne), then so is the monomorphism u ×′ v
for any monomorphism v : S → T .

Proof: Let us prove the second statement. We shall use D.2.6. Let us denote by
M the saturated class generated by a classM of maps in S. IfM and N are two
classes of maps we denote by M×′ N the class of maps u ×′ v, for u ∈ M and
v ∈ N . Let us show that we have

A×′ C ⊆ A,

where A is the class of mid anodyne maps and C is the class of monomorphisms.
The class C is saturated and generated by the set Σ1 of inclusions δn : ∂∆[n] ⊂ ∆[n]
for n ≥ 0 by B.0.8. The class A is saturated and generated by the set Σ2 of
inclusions hk

m : Λk[m] ⊂ ∆[m] with 0 < k < m. We have Σ1 ×′ Σ2 ⊆ A, since we
have hk

m ×′ δn ∈ A for every 0 < k < m and n ≥ 0 by H.0.20. Hence we have
Σ1×′ Σ2 ⊆ A by D.2.6. The inclusion A×′ C ⊆ A is proved. The other statements
have a similar proof.

We can now prove the main theorem of the section:

Theorem 2.18. If f : X → Y is a Kan fibration (resp. mid fibration, left fibration,
right fibration) then so is the map

〈u, f〉 : XB → Y B ×Y A XA

for any monomorphism u : A → B. Moreover, 〈u, f〉 is a trivial fibration if in
addition u is anodyne (resp. mid anodyne, left anodyne, right anodyne).

Proof: Let us prove the second statement. IfM and N are two classes of maps in
S, let us denote by M×′ N the class of maps u×′ v, for u ∈ M and v ∈ N , and
by 〈M,N〉 the class of maps 〈u, v〉, for u ∈ M and v ∈ N . We have A×′ C ⊆ A
by 2.17. It follows that we have

〈C,A〉 ⊆ A

by D.1.20. The other statements have a similar proof.
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Corollary 2.19. If X is a quasi-category, then so is the simplicial set XA for any
simplicial set A. In particular, the category QCat is cartesian closed.

Proof: It sufices to apply theorem 2.18 to the maps ∅ ⊆ A and X → 1.

Corollary 2.20. If X is a quasi-category, then the map Xu : XB → XA is a mid
fibration for any monomorphism of simplicial sets u : A→ B.

Proof: It sufices to apply theorem 2.18 to the maps i : A→ B and X → 1.

Corollary 2.21. If f : X → Y is a map between quasi-categories then the simplicial
set Y B ×Y A XA is a quasi-category for any monomorphism of simplicial sets u :
A→ B.

Proof: The map Y u : Y B → Y A is a mid fibration by 2.20. Hence also the projec-
tion p2 in the cartesian square

Y B ×Y A XA

��

p2 // XA

��
Y B // Y A.

It follows that the simplicial set Y B ×Y A XA is a quasi-category, since XA is a
quasi-category by 2.19.

A homotopy α : f → g between two maps f, g : B → X can be represented as
a map α : B × I → X, or as a map λIα : B → XI or as an arrow λBα : I → XB .
If p : X → Y , we shall denote the homotopy pα : B× I → Y by p ◦α : pf → pg; if
u : A→ B, we shall denote the homotopy α(u×I) : A×I → X by α◦u : fu→ gu.

Proposition 2.22. (Covering homotopy extension property for left fibrations) Sup-
pose that we have a commutative square

A
a //

i

��

X

p

��
B

b // Y

in which p is a left fibration and i is monic. Suppose also that we have a map
c : B → X and two homotopies α : ci→ a and β : pc→ b such that p ◦ α = β ◦ i.
Then there exists a pair (d, σ), where d : B → X is a diagonal filler of the square
and σ : c→ d is a homotopy such that σ ◦ i = α and p ◦ σ = β.
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Proof: We can suppose that i is an inclusion A ⊆ B. We have α(x, 0) = c(x) for
every x ∈ A. Hence there is a map

u : (A× I) ∪ (B × {0})→ X

such that u(x, t) = α(x, t) for (x, t) ∈ A × I, and such that u(x, 0) = c(x) for
x ∈ B. The following square commutes

(A× I) ∪ (B × {0}) u //

��

X

p

��
B × I

β // Y,

since we have pα(x, t) = β(i(x), t) for (x, t) ∈ A × I and we have pc(x) = β(x, 0)
for x ∈ B. The inclusion (A× I)∪ (B ×{0}) ⊆ B × I is left anodyne by Theorem
2.18, since the inclusion {0} ⊂ I is left anodyne. Hence the square has a diagonal
filler σ : B × I → X, since p is a left fibration. We then have σ(x, t) = u(x, t) =
α(x, t) for (x, t) ∈ A × I, and fσ(x, t) = β(x, t) for (x, t) ∈ B × I. Let us put
d(x) = σ(x, 1) for x ∈ B. The map d : B → X is a diagonal filler of the original
square, since we have d(i(x)) = σ(i(x), 1) = α(x, 1) = a(x) for x ∈ A, and we
have fd(x) = fσ(x, 1) = β(x, 1) = b(x) for x ∈ B. We have σ : c → d, since
σ(x, 0) = u(x, 0) = c(x).

2.3.1 Supplement

Let us denote by hk
n the inclusion Λk[n] ⊂ ∆[n].

Lemma 2.23. If 0 < k < n, then the inclusion hk
n is a retract of the inclusion

hk
n ×′ h1

2 :
(
Λk[n]×∆[2]

)
∪

(
∆[n]× Λ1[2]

)
⊂ ∆[n]×∆[2].

Proof: Let s : [n]→ [n]× [2] be the map defined by

s(x) =

 (x, 0) if x < k
(x, 1) if x = k
(x, 2) if x > k,

and r : [n]× [2]→ [n] the map defined by

r(x, t) =

 x ∧ k if t = 0
k if t = 1

x ∨ k if t = 2.

We have rs(x) = x for every x ∈ [n]. The result will be proved if we show that s
induces a map

s′ : Λk[n]→
(
Λk[n]×∆[2]

)
∪

(
∆[n]× Λ1[2]

)
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and that r induces a map

r′ :
(
Λk[n]×∆[2]

)
∪

(
∆[n]× Λ1[2]

)
→ Λk[n].

If i ∈ [n], then we have p1sdi(x) = di(x) 6= i for every x ∈ [n− 1]. Hence we have

s(∂i∆[n]) ⊆ ∂i∆[n]×∆[2]

for every i ∈ [n]. This shows that s induces a map s′. If i 6= k, then we have
r(di(x), t) 6= i for every x ∈ [n− 1]. Thus,

r(∂i∆[n]×∆[2]) ⊆ ∂i∆[n]

in this case. If k > 0 and t > 0, then we have r(x, t) ≥ k > 0 for every x ∈ [n].
Thus,

r(∆[n]× ∂0∆[2]) ⊆ ∂0∆[n]

in this case. If k < n and t < 2, then we have r(x, t) ≤ k < n for every x ∈ [n].
Thus,

r(∆[n]× ∂2∆[2]) ⊆ ∂2∆[n]

in this case. Altogether, this shows that r induces a map r′.

If X is a simplicial set, consider the projection pn : X∆[n] → XI[n] defined
from the inclusion I[n] ⊆ ∆[n].

Proposition 2.24. The following conditions on a simplicial set X are equivalent:

• (i) X is a quasi-category;

• (ii) the projection p2 : X∆[2] → XΛ1[2] is a trivial fibration;

• (iii) the projection pn : X∆[n] → XI[n] is a trivial fibration for every n ≥ 0.

Proof: Let us prove the implication (i)⇒(iii). The projection pn is a trivial fibration
by 2.18, since the inclusion I[n] ⊆ ∆[n] is mid anodyne by 2.13. The implication
(i)⇒(iii) is proved. The implication (iii)⇒(ii) is trivial, since Λ1[2] = I2. Let us
prove the implication (ii)⇒(i). We have p2 = 〈h1

2, pX〉 where pX is the map X → 1.
If p2 is a trivial fibration, then we have hk

n t 〈h1
2, pX〉 for every hk

n. Hence we have
(hk

n ×′ h1
2) t pX for every hk

n by 2.14. But the map hk
n is a retract of the map

hk
n×′h1

2 if 0 < k < n by 2.23. It follows that we have hk
n t pX for every 0 < k < n.

This shows that X is a quasi-category.
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Lemma 2.25. If 0 < k ≤ n, the inclusion hk
n is a retract of the inclusion

hk
n ×′ h1

1 :
(
Λk[n]× I

)
∪

(
∆[n]× {1}

)
⊂ ∆[n]× I.

Proof: Consider the map s : [n] → [n] × [1] given by s(x) = (x, 0) and the map
r : [n]× [1]→ [n] given by

r(x, t) =
{

x if t = 0
x ∨ k if t = 1.

We have rs(x) = x for every x ∈ [n]. The result will be proved if we show that s
induces a map

s′ : Λk[n]→
(
Λk[n]× I

)
∪

(
∆[n]× {1}

)
and that r induces a map

r′ :
(
Λk[n]× I

)
∪

(
∆[n]× {1}

)
→ Λk[n].

We have s(Λk[n]) = Λk[n] × {0} ⊆ Λk[n] × I. This shows that s induces a map
s′. If i 6= k, we have r(di(x), t) 6= i for every x ∈ [n − 1] and t ∈ [1]. It follows
that we have r(∂i∆[n] × ∆[2]) ⊆ ∂i∆[n] for every i 6= k. Moreover, we have
r(x, 1) = x ∨ k ≥ k > 0 for every x ∈ [n]. Thus, r(∆[n] × {1}) ⊆ ∂0∆[n]. This
shows that r induces a map r′.

Proposition 2.26. A map of simplicial sets f : X → Y is a right fibration iff the
map

〈i1, f〉 : XI → X ×Y Y I

defined from the inclusion i1 : {1} ⊂ I is a trivial fibration.

Proof: (⇒) The projection 〈i1, f〉 is a trivial fibration by 2.16, since i1 is right
anodyne. (⇐) Let us suppose that 〈i1, f〉 is a trivial fibration. Then we have
hk

n t 〈i1, f〉 for every horn hk
n : Λk[n] ⊂ ∆[n]. It follows by 2.14 that we have

(hk
n×′ i1) t f . If 0 < k ≤ n, the map hk

n is a retract of the map hk
n×′ h1

1 = hk
n×′ i1

by 2.25. It follows that we have hk
n t f for every 0 < k ≤ n. This shows that f is

a right fibration.

2.4 Applications to weak categorical equivalences

Recall from definition 1.20 that a map of simplicial sets u : A→ B is said to be a
weak categorical equivalence if the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every quasi-category X.
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Proposition 2.27. A map u : A→ B is a weak categorical equivalence iff the map

Xu : XB → XA

is an equivalence of quasi-categories for every quasi-category X.

Proof: (⇒) Let u be a weak categorical equivalence. If X is a quasi-category then
so is the simplicial set XS for any simplicial set S by 2.19. Hence the map

τ0(u,XS) : τ0(B,XS)→ τ0(A,XS)

is bijective, since u is a weak categorical equivalence. But the map τ0(u,XS) is
isomorphic to the map

τ0(S,Xu) : τ0(S,XB)→ τ0(S,XA),

since the category Sτ0 is cartesian closed. Hence the map τ0(S,Xu) is bijective
for any simplicial set S. It follows by Yoneda Lemma that Xu is a categorical
equivalence. (⇐) If X is a quasi-category, then the map

τ0(1, Xu) : τ0(1, XB)→ τ0(1, XA)

is bijective, since the map Xu is a categorical equivalence. But the map τ0(1, Xu)
is isomorphic to the map

τ0(u,X) : τ0(B,X)→ τ0(A,X).

This shows u is a weak categorical equivalence.

Proposition 2.28. The cartesian product of two weak categorical equivalences is a
weak categorical equivalence.

Proof: Let u : A → B and v : S → T be two weak categorical equivalences.
Consider the decomposition u× v = (B× v)(u×S). It suffices to show that u×S
is a weak categorical equivalence. The map τ0(u×S,X) is isomorphic to the map
τ0(u,XS) for any simplicial set X, since the category Sτ0 is cartesian closed. Thus,
it suffices to show that the map τ0(u,XS) is bijective for any quasi-category X.
But this is clear, since XS is a quasi-category by 2.19, and since u is a weak
categorical equivalence by hypothesis.

Corollary 2.29. Every mid anodyne map is a weak categorical equivalence.

Proof: If u : A → B is mid anodyne then the map Xu : XB → XA is a trivial
fibration for any quasi-category X by 2.18 applied to the maps u : A → B and
X → 1. It is thus a categorical equivalence by 1.22. The result then follows from
2.27.
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It follows from D.2.8 that there exists a functor Q : S → S together with a
natural transformation η : Id→ Q having the following properties:

• the simplicial set Q(A) is a quasi-category for every A ∈ S;

• the map ηA : A→ Q(A) is mid anodyne for every A ∈ S;

Corollary 2.30. A map of simplicial set u : A→ B is a weak categorical equivalence
iff the map Q(u) : Q(A)→ Q(B) is an equivalence of quasi-categories.

Proof: Consider the naturality square

A
ηA //

u

��

Q(A)

Q(u)

��
B

ηB // Q(B).

The horizontal maps of the square are weak categorical equivalences by 2.29, since
they are mid anodyne. It follows by three-for-two that u is a weak categorical
equivalence iff Q(u) is a weak categorical equivalence. But Q(u) is a weak cate-
gorical equivalence iff it is an equivalence of quasi-categories by 1.21.



Chapter 3

Join and slices

In this chapter we introduce and study the join A ? B of two simplicial sets as
well as the upper slice a\X and the lower slice X/a of a simplicial set X by a map
a : A→ X. The chapter has two sections.

3.1 Join and slice for categories

Before defining the join of two simplicial sets, we describe this operation for cate-
gories. The join of two categories A and B is the category C = A ?B obtained as
follows: Ob(C) = Ob(A)tOb(B) and for any pair of objects x, y ∈ Ob(A)tOb(B)
we have

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B

1 if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. Notice that the category A ? B is a poset if
A and B are posets: it is the ordinal sum of the posets A and B. The operation
(A,B) 7→ A ? B is functorial and coherently associative. It defines a monoidal
structure on Cat, with the empty category as the unit object. The monoidal
category (Cat?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

The category 1?A is called the projective cone with base A and the category A?1
the inductive cone with base A. The object 1 is terminal in A ? 1 and initial in
1 ? A. The category A ? B can be equipped with the functor A ? B → I = 1 ? 1
obtained by joining the functors A → 1 and B → 1. The resulting functor ? :
Cat×Cat→ Cat/I is right adjoint to the functor

i∗ : Cat/I → Cat×Cat,

241
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where i denotes the inclusion {0, 1} = ∂I ⊂ I,. This gives another description of
the join operation.

3.1.1

The monoidal category (Cat, ?) is not closed. But for any category B ∈ Cat, the
functor

(−) ? B : Cat→ B\Cat

which associates to A ∈ Cat the inclusion B ⊆ A ? B has a right adjoint. The
right adjoint takes a functor b : B → X to a category that we shall denote by
X/b. We shall say that X/b is the lower slice of X by b. For any category A, there
is a bijection between the functors A → X/b and the functors A ? B → X which
extend b along the inclusion B ⊆ A ? B,

B

��

b

##G
GG

GG
GG

GG

A ? B // X.

In particular, an object 1→ X/b is a functor c : 1 ? B → X which extends b; it is
a projective cone with base b.

3.1.2

Dually, the functor A ? (−) : Cat → A\Cat has a right adjoint which takes a
functor a : A→ X to a category that we shall denote a\X. We shall say that a\X
is the upper slice of X by a. An object 1→ a\X is a functor c : A ? 1→ C which
extends a; it is an inductive cone with base a.

3.2 Join for simplicial sets

We use augmented simplicial sets for defining the join operations for simplicial sets.
Let ∆+ ⊃ ∆ be the category of finite ordinals and order preserving maps. The
empty ordinal 0 = ∅ is the only object of ∆+ which is not in ∆. We shall denote
the ordinal n by n, so that we have n = [n − 1] for n ≥ 1. We may occasionally
denote the ordinal 0 by [−1]. The ordinal sum (m,n) 7→ m+ n is functorial with
respect to order preserving maps. This defines a monoidal structure on ∆+,

+ : ∆+ ×∆+ → ∆+,

with 0 as the unit object.

An augmented simplicial set is defined to be a contravariant functor ∆+ →
Set. We shall denote by S+ the category [(∆+)o,Set] of augmented simplicial
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sets. By a general procedure due to Brian Day [Da], the monoidal structure
+ : ∆+ ×∆+ → ∆+ can be extended to S+ as a closed monoidal structure

? : S+ × S+ → S+.

We call X ? Y the join of X and Y . By construction, the contravariant functor
X ? Y : ∆+ → Set is the left Kan extension of the contravariant functor (p, q) 7→
X(p)×Y (q) along the functor ∆+×∆+ → ∆+. The unit object for this operation
is the augmented simplicial set 0 = ∆+(−, 0).

Proposition 3.1. If X,Y ∈ S+, then we have

(X ? Y )(n) =
⊔

i+j=n

X(i)× Y (j)

for every n ≥ 0.

Proof: By construction, we have

(X ? Y )(n) =
∫ p∈∆+ ∫ q∈∆+

∆+(n, p+ q)×X(p)× Y (q).

It follows that we have

(X ? Y )(n) = lim
−→
En

X(p)× Y (q),

where the colimit is taken over the category En of elements of the functor (p, q) 7→
∆+(n, p + q). But every map f : n → p + q in ∆+ is of the form f = u + v :
i+ j → p+ q for a unique pair of maps u : i→ p and v : j → q. Hence the set of
decompositions n = i+ j is initial in the category En. The result follows.

From the inclusion i : ∆ ⊂ ∆+ we obtain a pair of adjoint functors

i∗ : S+ ↔ S : i∗.

The functor i∗ delete the augmentation of an augmented simplicial set, and the
functor i∗ augment a simplicial set A with the trivial augmentation A0 → 1.
More precisely, we have i∗(A)(0) = 1 and i∗(A)(n) = Xn−1 for every n ≥ 1.
Clearly, the functor i∗ is full and faithful. An augmented simplicial set X belongs
the the essential image of i∗ iff X(0) = 1. If X(0) = 1 and Y (0) = 1, then
(X ?Y )(0) = X(0)×Y (0) = 1 3.1. Hence the operation ? : S+×S+ → S+ induces
a monoidal structure on S,

? : S× S→ S.

By definition, we have
i∗(A ? B) = i∗(A) ? i∗(B)
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for any pair A,B ∈ S. We call A?B the join of the simplicial sets A and B. Notice
that we have

A ? ∅ = A = ∅ ? A
for any simplicial set A, since the augmented simplicial set i∗(∅) = 0 is the unit
object for the operation ? on S+. Hence the empty simplicial set is the unit object
for the operation ? on S. The monoidal structure ? is not a symmetric but there
is a natural isomorphism

(A ? B)o = Bo ? Ao.

For every pair m,n ≥ 0 we have

∆[m] ?∆[n] = ∆[m+ 1 + n],

since we have [m] + [n] = [m+ n+ 1]. In particular,

1 ? 1 = ∆[0] ?∆[0] = ∆[1] = I.

We call the simplicial set 1 ? A the projective cone with base A and the simplicial
set A?1 the inductive cone. The join of the maps A→ 1 and B → 1 is a canonical
map A ? B → I.

Proposition 3.2. If A,B ∈ S, then we have

(A ? B)n = An tBn t
⊔

i+1+j=n

Ai ×Bj

for every n ≥ 0.

Proof: This follows from 3.2.

The formula shows that we have A t B ⊆ A ? B. It shows also that if a
simplex of x : ∆[n] → A ? B does not belongs to A t B, then it admits a unique
decomposition x = u?v : [i]? [j]→ A?B, for a unique pair of simplices u : [i]→ A
and v : [j]→ B.

Corollary 3.3. The nerve functor N : Cat ⊂ S preserves the join operation.

Proof: If A,B ∈ Cat, let us first define a natural map

θ : N(A) ? N(B)→ N(A ? B)

By the formula in 3.2 we have

(N(A) ? N(B))n = N(A)n tN(B)n t
⊔

i+1+j=n

N(A)i ×N(B)j

for every n ≥ 0. The map N(A) tN(B) → N(A ? B) induced by θ is defined by
the inclusion A tB ⊆ A ? B. The map N(A)i ×N(B)j → N(A ? B)n induced by
θ takes a pair u : [i] → A and v : [j] → B to the simplex u ? v : [i] ? [j] → A ? B.
It is easy to verify that θ is bijective.
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If X,Y ∈ S, then we have X tY ⊆ X ?Y by 3.2. If we join the maps X → 1
and Y → 1, we obtain a canonical map X ? Y → I, since 1 ? 1 = I. This defines a
functor

? : S× S→ S/I.

Lemma 3.4. The following square of canonical maps is cartesian,

X t Y //

��

X ? Y

��
∂I // I,

where ∂I = 1 t 1 = {0, 1} ⊂ I.

Proof: We have I = 1 ? 1. It then follows from 3.2 that we have

In = (1 ? 1)n = 1 t 1 t
⊔

i+1+j=n

1× 1

for every n ≥ 0. The canonical map X ?Y → I takes Xn tYn to 1t 1 and Xi×Yj

to 1× 1. This proves the result, since (∂I)n = 1 t 1.

We have S/∂I = S× S, since ∂I = {0, 1} = 1 t 1. If i denotes the inclusion
∂I ⊂ I, then the pullback functor

i∗ : S/I → S/∂I = S× S,

has a right adjoint i∗ : S × S → S/I. If X,Y ∈ S, then we have i∗(X ? Y ) =
X t Y = (X,Y ) by 3.4. We thus obtain a canonical map c : X ? Y → i∗(X,Y ) by
the adjointness i∗ ` i∗.

Proposition 3.5. The canonical map X ? Y → i∗(X,Y ) is an isomorphism.

Proof: Let p be the canonical map i∗(X,Y ) → I. By definition, a simplex x :
∆[n]→ i∗(X,Y ) is a map y : i∗(∆[n], f)→ X tY , where f = px. It is easy to see
that ⊔

f :∆[n]→I

i∗(∆[n], f) = ∆[n] t∆[n] t
⊔

i+1+j=n

∆[i] t∆[j].

The result follows from this formula and from 3.2.

Proposition 3.6. If A,B, S and T are simplicial sets, then

(A ? B)×I (S × T ) = (A× S) ? (B × Y ).

Proof: The functor i∗ : S × S → S/I preserves cartesian products, since it is a
right adjoint. But we have

(A,B)× (S, T ) = (A× S,B × T )
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in the category S× S. It follows that that we have

i∗(A,B)×I i∗(S, T ) = i∗(A× S,B × Y ).

This proves the formula by Proposition 3.5.

Corollary 3.7. If A and B are simplicial sets, then

A ? B = (A ? 1)×I (1 ? B)

Lemma 3.8. If A ⊆ X and B ⊆ Y , then A ? B ⊆ X ? Y . Moreover, if A,A′ ⊆ X
and B,B′ ⊆ Y , then

(A ? B) ∩ (A′ ? B′) = (A ∩A′) ? (B ∩B′).
(A ∪A′) ? Y = (A ? Y ) ∪ (A′ ? Y ),
X ? (B ∪B′) = (X ? B) ∪ (X ? B′)

Proof: The functor i∗ :: S × S → S/I preserves monomorphisms, since it is a
right adjoint. Thus, if A ⊆ X and B ⊆ Y , then i∗(A,B) ⊆ i∗(X,Y ). Moreover, if
A,A′ ⊆ X and B,B′ ⊆ Y then

i∗(A ∩A′S,B ∩B′) = i∗(A,B) ∩ i∗(B,B′).

The other formulas can be proved by using Proposition 3.5.

If u : A→ B and v : S → T are two maps in S, we shall denote by u ?′ v the
map

(A ? T ) tA?S (B ? S)→ B ? T

obtained from the commutative square

A ? S

A?v

��

u?S // B ? S

B?v

��
A ? T

u?T // B ? T.

This defines a functorial operation

?′ : SI × SI → SI ,

where SI is the category of maps in S. The operation is coherently associative but
it has no unit object.

Lemma 3.9. If u is the inclusion A ⊆ B and v the inclusion S ⊆ T , then the map
u ?′ v is the inclusion

(A ? T ) ∪ (B ? S) ⊆ B ? T.
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Proof: It follows from 3.8 that the square of inclusions

A ? S

��

// B ? S

��
A ? T // B ? T

is a pullback. Hence the square

A ? S

��

// B ? S

��
A ? T // (A ? T ) ∪ (B ? S)

is a pushout, where the union is taken in B ? T .

Lemma 3.10. • (i) If n ≥ 0, then

∂∆[0] ?∆[n] = ∂0∆[n+ 1] and ∆[n] ? ∂∆[0] = ∂n+1∆[n+ 1];

• (ii) if m > 0 and i ∈ [m], then

∂i∆[m] ?∆[n] = ∂i∆[m+ n+ 1];

• (iii) if n > 0 and j ∈ [n], then

∆[m] ? ∂j∆[n] = ∂m+j+1∆[m+ n+ 1];

• (iv) If n ≥ 0, then

∂∆[n] ? 1 = Λn+1[n+ 1] and 1 ? ∂∆[n] = Λ0[n+ 1].

Proof: Let us prove (i). If i denotes the inclusion ∅ ⊂ ∆[0], then i ? 1[n] = d0 :
∆[n] → ∆[n + 1]. This proves the first formula. The second formula is proved
similarly. Let us prove (ii). If di : [m − 1] → [m], then di ? 1[n] = di : [m + n] →
[m+n+1]. This proves formula (ii). Formula (iii) is proved similarly. Let us prove
the first formula in (iv). If n = 0, then

∂∆[0] ? 1 = ∅ ? 1 = ∂0∆[1] = Λ1[1].

If n > 0 and i ∈ [n], then ∂i∆[n] ? 1 = ∂i∆[n+ 1]. It follows that by 3.8 that

∂∆[n] ? 1 =
( ⋃

i∈[n]

∂i∆[n]
)
? 1

=
⋃

i∈[n]

∂i∆[n] ? 1

=
⋃

i∈[n]

∂i∆[n+ 1]

= Λn+1[n+ 1].
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The first formula in (iv) is proved. The second formula proved similarly.

Lemma 3.11. • (i) If m,n ≥ 0, then(
∂∆[m] ?∆[n]

)
∪

(
∆[m] ? ∂∆[n]

)
= ∂∆[m+ 1 + n];

• (ii) if m > 0, k ∈ [m] and n ≥ 0, then(
Λk[m] ?∆[n]

)
∪

(
∆[m] ? ∂∆[n]

)
= Λk[m+ 1 + n];

• (iii) if m ≥ 0, n > 0 and k ∈ [n], then(
∂∆[m] ?∆[n]

)
∪

(
∆[m] ? Λk[n]

)
= Λm+1+k[m+ 1 + n].

Proof We shall use lemmas 3.8 and 3.10. Let us prove (i). If m = 0 and n = 0,
then (∅ ? 1)∪ (1 ? ∅) = ∂∆[1]. The formula (i) is proved in this case. If m > 0 and
n = 0, then

(∂∆[m] ?∆[0]) ∪ (∆[m] ? ∂∆[0]) = Λm+1[m+ 1] ∪ ∂m+1∆[m+ 1]
= ∂∆[m+ 1].

And similarly in the case m = 0 and n > 0. If m,n > 0, then

∂∆[m] ?∆[n] =
( ⋃

i∈[m]

∂i∆[m]
)
?∆[n]

=
⋃

i∈[m]

∂i∆[m] ?∆[n]

=
⋃

i∈[m]

∂i∆[m+ n+ 1].

Also

∆[m] ? ∂∆[n] = ∆[m] ?
( ⋃

j∈[n]

∂j∆[n]
)

=
⋃

j∈[n]

∆[m] ? ∂j∆[n]

=
⋃

j∈[n]

∂j+m+1∆[m+ n+ 1].

By taking union we then obtain that

(∂∆[m] ?∆[n]) ∪ (∆[m] ? ∂∆[n]) = ∂∆[m+ n+ 1].

This proves (i). The formulas (ii) and (iii) are proved similarly.
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3.3 Slice for simplicial sets

The functor (−)?B : S→ S does not preserve the initial object when B 6= ∅, since
we have ∅ ? B 6= ∅ in this case. Hence the functor (−) ? B does not have a right
adjoint if B 6= ∅. Hence the monoidal category (S, ?) is not closed. But consider
the functor

(−) ? B : S→ B\S

which associates to X ∈ S the inclusion B ⊆ X ? B.

Proposition 3.12. The functor (−) ? B : S→ B\S has a right adjoint.

Proof: It suffice to show that the functor (−) ? B : S → B\S is cocontinuous,
since its domain is a presheaf category. We first make a few observations. The
evaluation functor Un : S→ Set defined by putting Un(X) = Xn is cocontinuous
for every n ≥ 0. Hence also the functor Vn : B\S → Bn\Set which takes a map
B → X to the map Bn → Xn. Moreover, the functors (Un : n ≥ 0) are collectively
conservative (this means that a map of simplicial set f is invertible iff the map
Un(f) is invertible for every n ≥ 0). Hence also the functors (Vn : n ≥ 0). It
follows from these observations that a functor F : S → B\S is cocontinuous iff
the functor VnF : S→ Bn\Set is cocontinuous for every n ≥ 0. Let us now show
that the functor F (−) = (−) ? B : S→ B\S is cocontinuous. If X ∈ S, let us put

Gn(X) = Xn t
⊔

i+1+j=n

Xi ×Bj .

Then we have VnF (X) = Gn(X) t Bn by 3.2. The functor Gn : S → Set is
cocontinuous, since it is a coproduct of cocontinuous functors. The functor (−) t
Bn : Set→ Bn\Set is also cocontinuous, since it is a left adjoint. This shows that
the functor X 7→ VnF (X) = Gn(X)tBn is cocontinuous. We have proved that F
is cocontinous. It follows that it has a right adjoint

The right adjoint to the functor (−)?B : S→ B\S takes a map of simplicial
sets b : B → X to a simplicial set that we shall denote by X/b. We shall say
that X/b is the lower slice of X by b. It follows by the adjointness that for any
simplicial set A, there is a bijection between the maps A → X/b and the maps
A?B → X which extends b along the inclusion B ⊆ A?B. In particular, a simplex
∆[n]→ X/b is a map ∆[n] ? B → X which extends b,

B

��

b // X

∆[n] ? B.

::vvvvvvvvv

A vertex 1→ X/b is a map c : 1 ? B → X, it is a projective cone with base b; the
apex of c is the vertex c(1) ∈ X0.
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Dually, the right adjoint to the functor A ? (−) : S → A\S takes a map
of simplicial sets a : A → X to a simplicial set that we shall denote a\X. By
duality, we have (a\X)o = (Xo/ao). We shall say that the simplicial set a\X is
the upper slice of X by a. t follows by the adjointness that for any simplicial set
B, there is a bijection between the maps A → a\X and the maps A ? B → X
which extends the map a along the inclusion A ⊆ A ? B. A simplex ∆[n]→ a\X
is a map A ?∆[n]→ X which extends a. A vertex 1→ a\X is an inductive cone
A ? 1→ X with base a.

The functor
A ? (−) ? B : S→ A ? B\S

which associates to a simplicial set X the inclusion A ?B ⊆ A ?X ?B has a right
adjoint which associates to a map f : A?B → X a simplicial set that we denote by
Fact(f,X). A vertex of Fact(f,X) is a map g : A ? 1 ? B → X which extends the
map f : A?B → X along the inclusion A?B ⊆ A?1?B. When A = B = 1, the map
f is the same thing as an arrow f : a → b in X and Fact(f,X) is the simplicial
set of factorisations of the arrow f By restricting the map f : A ? B → X to the
simplicial subsets A ⊆ A?B and B ⊆ A?B we obtain a pair of maps fA : A→ X
and fB : B → X, hence also a pair of maps f ′B : B → fA\X and f ′A : A→ X/fB

by adjointness. It is easy to see that we have

Fact(f,X) = (fA\X)/f ′B) = f ′A\(X/fB).

Proposition 3.13. The nerve functor N : Cat ⊂ S preserves the slice operations.

Proof: Let b : B → X be a functor in Cat. There is natural bijection between
the simplices ∆[n] → N(X/b), the functors [n] → X/b, the functors [n] ? B → X
which extend the functor b, the maps ∆[n] ? N(B) → N(X) which extend the
map N(b) (since the nerve functor preserves the join operation by 3.3) and the
simplices ∆[n] → N(X)/N(b). It follows by Yoneda Lemma that the simplicial
sets N(X/b) and N(X)/N(b) are canonically isomorphic.

The simplicial set X/b depends functorially on the map b : B → X. More
precisely, to every commutative diagram

B

b

��

A
uoo

a

��
X

f // Y

we can associated a map
f/u : X/b→ Y/a.

By definition. the image of a simplex x : ∆[n] → X/b by the map f/u is defined
to be the composite the maps

∆[n] ? A
∆[n]?u // ∆[n] ? B x // X

f // Y.
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For any chain of three maps

S
s // T

t // X
f // Y

we shall denote by 〈s, t, f〉 the map

X/t→ Y/ft×Y/fts X/ts

obtained from the commutative square

X/t

��

// X/ts

��
Y/ft // Y/fts,

Our next goal is to prove the following theorem:

Theorem Let s : S → T , t : T → X, f : X → Y be a chain of three maps of
simplicial sets, where s is monic.

• (i) if f is a mid fibration then 〈s, t, f〉 is a right fibration;

• (ii) if f is a left fibration then 〈s, t, f〉 is a Kan fibration ;

Moreover, 〈s, t, f〉 is a trivial fibration in each of the following cases:

• (iii) f is a trivial fibration;

• (iv) f is a right fibration and s is anodyne:

• (v) f is a mid fibration and s is left anodyne.

The proof is given in 3.19. We need to establish a few intermediate results.

Let u : A→ B and v : S → T then the map

u ?′ v : (A ? T ) tA?S (B ? S)→ B ? T

can be viewed as a map in the category T\S, since T ⊆ A ? T .

Lemma 3.14. Let s : S → T , t : T → X and f : X → Y be a chain of three
maps of simplicial sets. Then for any map u : A→ B, there is a natural bijection
between the following commutative squares

A

u

��

// X/t

〈s,t,f〉
��

B // Y/ft×Y/fts X/ts
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and
(A ? T ) tA?S (B ? S)

u?′s

��

//

��

X

f

��
B ? T // Y,

where the top map of the second square is a map in the category T\S. Moreover,
if one of the square has a diagonal filler then so has the other.

Proof: Let us prove the first statement. We shall use lemma D.1.15. We first define
two functors G0, G1 : T\S → S and a natural transformation β : G1 → G0. By
definition, G1(X, t) = X/t and G0(X, t) = X/ts. The map β(X, t) : G1(X, t) →
G0(X, t) is the map X/t → X/ts obtained by composing with s : S → T . If
f : X → Y is a map in T\S. then the map

β•(f) : G1X → G1Y ×G0Y G0X

obtained from the naturality square

G1X

G1f

��

βX // G0X

G0f

��
G1Y

βY // G0Y.

is equal to the map 〈s, t, f〉. The functor G1 has a left adjoint F1 which takes a
simplicial set X to the canonical map T → T ? X. From the commutative square

S ////

s

��

X ? S

X?v

��
T // X ? T,

we obtain a map αX : T tS (X ? S) → X ? T . The functor G0 has a left adjoint
F0 which takes a simplicial set X to the canonical map T → T tS (X ? S). The
natural transformation α : F0 → F1 defined by the map αX is the left transpose
of of the natural transformation β : G1 → G0. If u : A→ B is a map of simplicial
sets, let us compute the map

α•(u) : F0B tF0A F1A→ F1B

obtained from the naturality square

F0A

F0u

��

αA // F1A

F1u

��
F0B

αB // F1B.
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From the commutative diagram

S //

��

A ? S //

��

B ? S

��
T // A ? T // B ? T

we can construct the following diagram in which every square is a pushout:

S //

��

A ? S //

��

B ? S

��
T //

%%JJJJJJJJJJJ T tS (A ? S) //

��

T tS (B ? S)

��
A ? T //

$$JJJJJJJJJJJJJJJJJJJJJ (A ? T ) tA?S (B ? S)

��
B ? T.

The diagram shows that α•(u) = u ?′ s. It then follows from lemma D.1.15, that
there is a bijection between the maps u → β•(f) in the category SI and the
maps α•(u) → f in the category of (T\S)I . The first statement of the lemma
is proved. Moreover, there is a bijection between the diagonal fillers of a square
u → β•(f) and the diagonal fillers of the corresponding square α•(u) → f . The
second statement of the lemma is proved. It follows that α•(u) t f ⇔ u t β•(f).

Lemma 3.15. Let u : A→ B, s : S → T and f : X → Y . Then we have u t 〈s, t, f〉
for every t : T → X iff we have (u ?′ s) t f .

Proof: If k : T → C and r : C → D are two maps in S, let us denote by (r, k) the
map (C, k) → (D, rk) defined by r in the category T\S. It is easy to verify that
we have r t f iff for every t : T → X we have (r, k) t (f, t),

T
k

��~~
~~

~~
~

t

  @
@@

@@
@@

C //

r

��

X

f

��
D // Y.
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Let k be be the canonical map T → (A ? T ) ∪ (B ? S) and let us put r = u ?′ s.
Then the condition (r, k) t (f, t) is equivalent to the condition u t 〈s, t, f〉 by
Lemma 3.14. The result follows.

In the following lemma, Σ denotes the saturated class generated by a class
of maps Σ ⊆ S.

Lemma 3.16. Let (A,B) be a weak factorisation system in the category S. If Σ1 ⊆ S
and Σ2 ⊆ S are two classes of maps then,

Σ1 ?
′ Σ2 ⊆ A =⇒ Σ1 ?

′ Σ2 ⊆ A.

Proof: It suffices to prove the implication Σ1 ?
′ Σ2 ⊆ A ⇒ Σ1 ?

′ Σ2 ⊆ A. For this,
it suffices to prove the implication (Σ1 ?

′ Σ2) t B ⇒ (Σ1 ?
′ Σ2) t B, since A = tB.

For this, it suffices to prove the implication (Σ1 ?
′ v) t f ⇒ (Σ1 ?

′ v) t f for any
pair of maps v : S → T and f : X → Y . Let C be the class of maps i : A→ B such
that (i ?′ v) t f . It follows from 3.15 that a map i : A → B belongs to C iff we
have i t 〈j, t, f〉 for every map t : T → X. This description shows that the class C
is saturated. Thus, Σ1 ⊆ C ⇒ Σ1 ⊆ C.

Theorem 3.17. If u : A → B and v : S → T are monomorphisms of simplicial
sets, then the map u ?′ v : A ? T tA?S B ? S ⊆ B ? T is

• (i) mid anodyne, if u is right anodyne or v is left anodyne;

• (ii) left anodyne, if u is anodyne;

• (iii) right anodyne, if v is anodyne.

Proof: Let us denote the class of monomorphisms by C, the class of mid anodyne
maps by Cm, the class of right anodyne maps by Cr, the class of left anodyne maps
by Cl and the class of anodyne maps by Ca. By B.0.8, the class C is generated
as a saturated class by the set of inclusions δn : ∂∆[n] ⊂ ∆[n] for n ≥ 0. By
2.7, the saturated class Cr is generated is generated by the set of inclusions hk

m

with 0 < k ≤ m. We have hk
m ?′ δn = hk

n+m+1 by lemma 3.11. But we have
0 < k ≤ m ⇒ 0 < k < m + n + 1 for every n ≥ 0. Thus, hk

m ?′ δn ∈ Cm for every
0 < k ≤ m and every n ≥ 0. It follows by 3.16 that we have Cr ?′ C ⊆ Cm. This
shows that u?′ v is mid anodyne if u is right anodyne. It follows by symmetry that
u?′ v is mid anodyne if v is left anodyne. We have 0 ≤ k ≤ m⇒ 0 ≤ k < m+n+1
for every n ≥ 0. Thus, hk

m ?′ δn ∈ Cl for every 0 ≤ k ≤ m and every n ≥ 0. Hence
we have Ca ?′ C ⊆ Cl by 3.16. The statement (ii) is proved. The statement (iii)
follows from (ii) by duality.
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Corollary 3.18. If u : A → B and v : S → T are mid anodyne (resp. anodyne),
then so is the map u ? v : A ? S → B ? T

Proof: Let us first show that the map u ? T is mid anodyne. There is no loss of
generality in supposing that u is an inclusion A ⊆ B. The inclusion u is right
anodyne, since a mid anodyne map is right anodyne. Hence the inclusion (A?T )∪
(B ? ∅) ⊆ B ? T is mid anodyne by theorem 3.17. The square of inclusions

A

��

// A ? T

��
B // (A ? T ) ∪ (B ? ∅)

is a pushout, since (A ? T ) ∩ (B ? ∅) = A ? ∅ by 3.8. Hence the inclusion A ? T ⊆
(A ? T ) ∪ (B ? ∅) is mid anodyne, since the inclusion A ⊆ B is mid anodyne by
hypothesis. It follows that the composite

u ? T : A ? T ⊆ (A ? T ) ∪ (B ? ∅) ⊆ B ? T

is mid anodyne. Similarly, the map A?v is mid anodyne by symmetry. Hence also
the composite u ? v = (u ? T )(A ? v). The first statement is proved. The second
statement is proved similarly.

Theorem 3.19. Let s : S → T , t : T → X, f : X → Y be a chain of three maps of
simplicial sets where s is monic. Consider the map

〈s, t, f〉 : X/t→ Y/ft×Y/fts X/ts.

• (i) if f is a mid fibration then 〈s, t, f〉 is a right fibratio;

• (ii) if f is a left fibration then 〈s, t, f〉 is a Kan fibration;

Moreover, 〈s, t, f〉 is a trivial fibration in each of the following cases:

• (iii) f is a trivial fibration;

• (iv) f is a right fibration and s is anodyne;

• (v) f is a mid fibration and s is left anodyne:

Proof: Let us put p = 〈s, t, f〉. Let us start with the easiest case (iii). In order
to prove that p is a trivial fibration, it suffices to show that we have u t 〈s, t, f〉
for every monomorphism u. But the map u ?′ s is monic by 3.9, since u and s are
monic. Hence we have (u ?′ s) t f , since f is a trivial fibration. It follows that
we have u t p by 3.15. Let us prove (i). For this it suffices to show that we have
u t 〈s, t, f〉 for every right anodyne map u. But we have (u ?′ s) t f , since f is a
mid fibration by assumption, and since u ?′ s is mid anodyne by 3.17. This shows
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that we have u t p by 3.15. Let us prove (ii). For this it suffices to show that we
have u t 〈s, t, f〉 for every anodyne map u. But we have (u ?′ s) t f , since f is
a left fibration by assumption, and since u ?′ s is left anodyne by 3.17. Hence we
have u t p by 3.15. Let us prove (iv). For this it suffices to show that we have
u t 〈s, t, f〉 for every monomorphism u. But we have (u ?′ s) t f , since f is a
right fibration by assumption, and since u ?′ s is right anodyne by 3.17. Hence we
have u t p by 3.15. Let us prove (v). For this it suffices to show that we have
u t 〈s, t, f〉 for every monomorphism u. But we have (u ?′ s) t f , since f is a mid
fibration by assumption, and since u ?′ s is mid anodyne by 3.17. Hence we have
u t p by 3.15.

Corollary 3.20. If X is a quasi-category then so is the simplicial set X/t for any
map t : T → X. Moreover, the projection X/t→ X/ts is a right fibration for any
monomorphism s : S → T .

Proof: The projection X/t→ X/ts is a right fibration by theorem 3.19 applied to
the monomorphism s : S → T and to the map X → 1. The second statement is
proved. Hence the projection X/t → X is a right fibration by the same result in
the case S = ∅. But a right fibration is a mid fibration. This shows that X/t is a
quasi-category, since X is a quasi-category.

If B is an object of a category E , andM is a class of maps in E , we shall say
that a morphism f : (X, p) → (Y, q) in the category E/B belongs to M if this is
true of the map f : X → Y .

Lemma 3.21. If i0 denotes the inclusion {0} ⊂ I, then the functor

i∗0 : S/I → S

preserves mid (resp. left) anodyne maps.

Proof: Let A be the class of mid anodyne maps in S and let A′ be the class of
mid anodyne maps in S/I. By definition, we have A′ = U−1(A), where U is the
forgetful functor S/I → S. Let us show that we have i∗0(A′) ⊆ A. The class A′ is
saturated, since the class A is saturated. The class A is generated by the set Σ of
inclusions hk

n : Λk[n] ⊂ ∆[n] with 0 < k < n. If follows by Proposition D.2.7 that
the class A′ is generated by the set Σ′ = U−1(Σ). Let us show that i∗0(Σ

′) ⊆ A.
For this, we have to show that the inclusion u−1(0)∩Λk[n] ⊆ u−1(0) belongs to A
for any map u : ∆[n]→ I and any 0 < k < n. This is clear if u−1(0) = ∅. This is
also clear if u−1(0) = ∆[n]. Otherwise we have u−1(0) = ∆[r] for some 0 ≤ r < n.
Observe that we have ∆[r] ⊆ ∂n∆[n] ⊆ Λk[n], since r < n and k < n. It follows
that u−1(0)∩Λk[n] = u−1(0). Hence the inclusion u−1(0)∩Λk[n] ⊆ u−1(0) belongs
to A. Thus, i∗0(Σ

′) ⊆ A. It follows that we have i∗0(A′) ⊆ A, since the functor i∗0 is
cocontinuous, and since A′ is generated by Σ′. The first statement is proved. The
second statement is proved similarly.
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Proposition 3.22. If f : S → T and g : X → Y are mid fibrations, then so is the
map f ? g : S ? X → T ? Y .

Proof: We shall use 3.5. It suffices to show that the functor i∗ : S×S→ S/I takes
a mid fibration to a mid fibration. For this, it suffices to show that the functor
i∗ : S/I → S × S preserves mid anodyne maps by Lemma D.1.14. But we have
i∗ = (i∗0, i

∗
1), where i0 denotes the inclusion {0} ⊂ I and i1 the inclusion {1} ⊂ I.

Hence it suffices to shows that each functor i∗0, i
∗
1 : S/I → S preserves mid anodyne

maps. The result follows from Lemma 3.21.

Corollary 3.23. If X and Y are quasi-categories then so is the simplicial set X?Y .

Proof: If the maps X → 1 and Y → 1 are mid fibrations, then the map X ? Y →
1 ? 1 = I is a mid fibration by Proposition 3.22. Hence also the map X ? Y → 1,
since I is a quasi-category.

Proposition 3.24. A mid fibration p : E → B is a right fibration iff the map
p/a : E/a→ B/pa is a trivial fibration for every vertex a ∈ E.

Proof: A mid fibration p : E → B is a right fibration iff it has the right lifting
property with respect to the inclusion hn

n : Λn[n] ⊂ ∆[n] for every n > 0. If σn

denotes the inclusion ∂∆[n] ⊂ ∆[n] then we have hn+1
n+1 = σn ? 1 by 3.11. The

functor from (−) ? 1 : S → 1\S is left adjoint to the functor (X, a) 7→ X/a. For
each vertex a ∈ E the map p : E → B induces a map (p, a) : (E, a) → (B, pa) in
the category 1\S. It is easy to verify the equivalence

(σn ? 1) t p ⇔ ∀a ∈ E (σn ? 1, 1) t (p, a).

But the condition (σn ? 1, 1) t (p, a) is equivalent to the condition σn t (p/a) by
3.14. Thus, p is a right fibration iff the map p/a is a trivial fibration for every
a ∈ E.

Corollary 3.25. The map i ? 1 : A ? 1→ B ? 1 is right anodyne for any monomor-
phism i : A→ B.

Proof: It suffices to show that we have (i ?1) t f for every right fibration f : X →
Y . If a = x(1), then the square

S

��

// X/a

f/a

��
T // Y/fa

has a diagonal filler, since f/a is a trivial fibration by 3.24. Hence also the square

A ? 1

��

// X

f

��
B ? 1 // Y
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by 3.14.

Corollary 3.26. The inclusion 1 ⊆ B ? 1 is right anodyne for any simplicial set B.

Proof: The inclusion ∅ ? 1 ⊆ B ? 1 is right anodyne by Corollary 3.25.



Chapter 4

Quasi-categories and Kan
complexes

In this chapter we introduce the notion of pseudo-fibration between quasi-categories.
We show that a quasi-category is a Kan complex iff its fundamental category is a
groupoid. We show that every quasi-category contains a largest sub Kan complex.
The chapter has three sections.

4.1 Pseudo-fibrations between quasi-categories

Definition 4.1. We say that a functor is a pseudo-fibration if for every object x ∈ E
and every isomorphism g ∈ B with source p(x), there exists an isomorphism f ∈ E
with source x such that p(f) = g.

A functor p : E → B is a pseudo-fibration iff the opposite functor po : Eo →
Bo is a pseudo-fibration. Hence a functor p : E → B is a pseudo-fibration iff for
every object y ∈ E and every isomorphism g ∈ B with target p(y), there exists
an isomorphism f ∈ E with target x such that p(f) = g. We shall see in 6.2 that
the category Cat admits a model structure in which a a weak equivalence is an
equivalence of categories and a fibration is a pseudo-fibration.

Recall from Definition 1.12 that an arrow in a quasi-category X is said to an
isomorphism if the arrow is invertible in the category hoX.

Definition 4.2. We call a map between quasi-categories p : X → Y a pseudo-
fibration if it is a mid fibration and for every object x ∈ X and every isomorphism
g ∈ Y with source p(x), there exists an isomorphism f ∈ X with source x such
that p(f) = g.

259
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The general notion of pseudo-fibration for maps between simplicial sets will
be defined in 6.3.

The composite of two pseudo-fibrations is a pseudo-fibration. The canonical
map X → 1 is a pseudo-fibration for any quasi-category X.

Proposition 4.3. A functor p : E → B in Cat is a pseudo-fibration iff the map
Np : NE → NB is a pseudo-fibration in QCat.

Proof: A functor in Cat is a mid fibration by 2.2.

Proposition 4.4. A trivial fibration between quasi-categories is a pseudo-fibration.
The canonical map X → hoX is a pseudo-fibration for any quasi-category X.

Proof: Let p : X → Y a trivial fibration between quasi-category. A trivial fibration
is a mid fibration. Let a ∈ X0 and let g ∈ Y be an isomorphism with source p(a).
Then there exists an arrow f ∈ X with source a such that p(f) = g, since p
has the right lifting property with respect to the inclusion {0} ⊂ I. The map
p is a categorical equivalence by 1.22. Hence the functor ho(p) : hoX → hoY
is an equivalence of categories by 1.27, since ho(p) = τ1(p). Hence the arrow f
is invertible in hoX, since the arrow p(f) is invertible in hoY . This proves that
p is a pseudo-fibration. Let us prove the second statement. The canonical map
X → hoX is a mid fibration by 2.2, since hoX is a category. If a ∈ X0, then every
arrow with source a in hoX is of the form [f ] for an arrow f ∈ X with source a.
Moreover f is invertible, since [f ] is invertible. The second statement is proved.

Proposition 4.5. A mid fibration between quasi-categories p : X → Y is a pseudo-
fibration iff the functor ho(p) : hoX → hoY is a pseudo-fibration.

Proof: (⇒) Let a ∈ X0 and let g′ ∈ hoY be an isomorphism with source p(a).
The construction of hoY shows that we have g′ = [g] for an arrow g ∈ Y with
target p(a). The arrow g is invertible, since g′ is invertible. Hence there exists
an isomorphism f ∈ X with target a such that p(f) = g, since p is a pseudo-
fibration by assumption. The arrow f ′ = [f ] ∈ hoX is invertible and we have
ho(p)(f ′) = g′, since we have p(f) = g. This shows that the functor ho(p) is a
pseudo-fibration. (⇐) Let a ∈ X0 and g ∈ Y1 be an isomorphism with target p(a).
The arrow g′ = [g] is invertible, since g is invertible. Hence there exists an arrow
f ′ ∈ hoX with target a such that ho(p)(f ′) = g′, since ho(p) is a pseudo-fibration
by assumption. The construction of hoX shows that we have f ′ = [f ] for an arrow
f ∈ X with target a. The arrow f is invertible, since f ′ is invertible. We have
[p(f)] = [g], since ho(p)(f ′) = g′. Thus, p(f) is homotopic to g. Hence there exists
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a 2-simplex t ∈ Y with boundary (1pa, g, p(f)). Consider the commutative square

Λ0[2]

��

h // X

p

��
∆[2] t // Y,

where h is the horn (1a, ?, f). The square has a diagonal filler u : ∆[2]→ Y , since p
is a mid fibration by assumption. Let us put k = ud1. The target of k is equal to a,
since kd0 = ud1d0 = ud0d0 = 1ad0 = a. Moreover, we have pk = pud1 = td1 = g.
The arrows k and f are homotopic, since ∂u = (1a, k, f). This shows that k is
invertible in hoX, since f is invertible in hoX. Thus, k is an isomorphism. The
implication (⇐) is proved.

Corollary 4.6. A map between quasi-categories p : X → Y is a pseudo-fibration iff
the opposite map po : Xo → Y o is a pseudo-fibration.

Proof: The map p is a mid fibration iff the opposite map po is a mid fibration.
The functor ho(p) is pseudo-fibration iff the opposite functor ho(p)o = ho(po) is
pseudo-fibration. The result then follows from 4.5.

Recall that a functor u : A→ B is said to be conservativeindexconservative!functor—textbf
if the implication

u(f) invertible ⇒ f invertible

is true for every arrow f ∈ A.

Definition 4.7. We shall say that a map of simplicial sets u : A→ B is conservative
indexconservative!map of simplicial sets—textbf if the functor τ1(u) : τ1A → τ1B
is conservative.

Proposition 4.8. A map between quasi-categories p : X → Y is conservative iff the
implication

p(f) invertible ⇒ f invertible

is true for every arrow f ∈ X.

Proof: The functor τ1(p) : τ1X → τ1Y is isomorphic to the functor ho(p) : hoX →
hoY by 1.11. Moreover, every arrow in hoX is the homotopy class of an arrow in
X by 1.10. The result follows.
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Proposition 4.9. Every left (resp. right) fibration between quasi-categories is con-
servative.

Proof: Let p : X → Y be a left fibration between quasi-categories. Let f : a → b
be an arrow in X and suppose that p(f) : pa→ pb is invertible. Then there exists
an arrow g : pb → pa such that [g][p(f)] = 1pa. Hence there exists a 2-simplex
t ∈ Y with boundary (g, 1pa, p(f)) by theorem 1.10. We then have commutative
square

Λ0[2]� _

��

z // X

p

��
∆[2] t // Y,

where z is the horn (?, 1a, f). The square has a diagonal filler u : ∆[2]→ X, since
p is a left fibration. Let us put f ′ = ud0. Then we have p(f ′) = pud0 = td0 = g.
Moreover, we have [f ′][f ] = 1a in hoX, since ∂u = (f ′, 1a, f). This shows that
[f ′] is a left inverse of [f ] in hoX. We shall prove that [f ] is invertible by showing
that [f ′] has also a left inverse. The arrow [g] is invertible in hoY , since we have
[g][p(f)] = 1pa, and since [p(f)] is invertible. Hence the arrow p(f ′) = g is invertible
in Y . If we repeat the argument above with f ′ instead of f , we obtain that [f ′]
has a left inverse in hoX. This shows that [f ] is invertible in hoX. Thus, p is a
conservative map.

Proposition 4.10. If Y is a quasi-category, then every left (resp. right) fibration
p : X → Y is a pseudo-fibration.

Proof: The map p is a mid fibration, since a left fibration is a mid fibration. Thus,
X is a quasi-category, since Y is a quasi-category. Let a ∈ X0 and let g ∈ Y1 be
an isomorphism with source p(a). The square

Λ0[1]

��

a // Y

p

��
∆[1]

g // X

has a diagonal filler f : ∆[1] → Y , since p is a left fibration. The arrow f is
invertible, since p(f) is invertible and p is conservative by 4.9. This proves that p
is a pseudo-fibration.

4.2 Quasi-categories and Kan complexes

Lemma 4.11. Let f : X → Y be a map between quasi-categories, T a simplicial
set, S ⊆ T a simplicial subset and t : T → X a map. Then the simplicial set
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Y/T ×Y/S X/S defined by the pullback square

Y/T ×Y/S X/S
pr2 //

��

X/S

��
Y/T // Y/S,

is a quasi-category.

Proof: The projection Y/T → Y/S obtained from the inclusion S ⊆ T is a right
fibration by 3.20. Hence also the projection pr2 in the pullback square. It follows
that pr2 is a mid fibration, since every right fibration is a mid dibration. The
simplicial set X/S is a quasi-category by 3.20. This shows that Y/T ×Y/S X/S is
a quasi-category.

If S ⊆ T are simplicial sets, consider the inclusion

({0} ? T ) ∪ (I ? S) ⊆ I ? T

where I = ∆[1]. Observe that I ⊆ ({0} ? T ) ∪ (I ? S).

Lemma 4.12. Suppose that we have a commutative square

({0} ? T ) ∪ (I ? S)

��

u // X

p

��
I ? T

v // Y,

where p is a mid fibration between quasi-categories. If the arrow u(I) ∈ X is
invertible, then the square has a diagonal filler.

Proof: Let i be the inclusion {0} ⊂ I and let us put t = u|T . We shall use lemma
3.14 applied to the triple of maps i : {0} ⊂ I, j : S ⊆ T , t : T → X and p : X → Y .
The lemma shows that the square has a diagonal filler iff the following square has
a diagonal filler,

{0}

��

u′1 // X/T

q

��
I

(v′,u′2) // Y/T ×Y/S X/S,

where q = 〈j, t, p〉, where v′ : I → Y/T corresponds by adjointness to v : I?T → Y ,
where u′1 : {0} → X/T corresponds to u|{0} ? T → X and where u′2 : I → X/S
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correspnds to u|I ? S → X. A diagonal filler of the second square is an arrow
f ∈ X/T with domain u′1 ∈ X/T such that qf = g. We shall prove the existence
of f by showing that q is a pseudo-fibration between quasi-categories and that g is
invertible. Let us first show that q is a pseudo-fibration between quasi-categories.
By 4.10, it suffices to show that q is a right fibration between quasi-categories.
But q is a right fibration by 3.19, since p is a mid-fibration. The codomain of q is a
quasi-category by 4.11. Thus, q is a pseudo-fibration between quasi-categories. Let
us now show that the arrow g is invertible. The canonical projection k : X/S → X
is a right fibration by 3.20. Hence also the composite kp2. Thus, kp2 is conservative
by 4.10. But we have kp2g = ku′2 = u|I. This shows that the arrow g is invertible,
since the arrow u|I = u(I) is invertible by assumption. Hence there exists an arrow
f ∈ X/T with domain u′1 ∈ X/T such that qf = g, since q is a pseudo-fibration.
We have proved that the square has a diagonal filler.

The horn Λ0[n] ⊂ ∆[n] contains the edge (0, 1) ⊂ [n] if n > 1.

Theorem 4.13. Suppose that we have a commutative square

Λ0[n]

��

x // X

p

��
∆[n] // Y,

in which p is a mid fibration between quasi-categories. If n > 1 and the arrow
x(0, 1) ∈ X is invertible, then the square has a diagonal filler.

Proof: Observe that ∆[n] = I ?∆[n− 2] and that

Λ0[n] = ({0} ?∆[n− 2]) ∪ (I ? ∂∆[n− 2]).

The result then follows from 4.12.

Theorem 4.14. A quasi-category X is a Kan complex iff the category hoX is a
groupoid.

Proof: The implication (⇒) follows from 1.16. (⇐) Let us show that every horn
x : Λk[n]→ X can be filled. This is true if n = 1, since each inclusion {0} ⊂ I and
{1} ⊂ I admits a retraction. This is true if 0 < k < n, since X is a quasi-category.
This is also true if n > 1 and k = 0 by 4.13 applied to the map X → 1, since
every arrow in X is invertible. This is true if n > 1 and k = n by duality, since
hoXo = (hoX)o is a groupoid.
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Corollary 4.15. Let p : X → Y be a conservative map between quasi-categories. If
Y is a Kan complex, then so is X.

Proof: The functor ho(p) : ho(X)→ ho(Y ) is conservative, since p is conservative.
But the category ho(Y ) is a groupoid, since Y is a Kan complex. Hence also the
category ho(X), since ho(p) is conservative. It then follows by 4.14 that Y is a
Kan complex.

Corollary 4.16. A simplicial set X is a Kan complex iff the map X → 1 is a right
fibration.

Proof: The implication (⇒) is clear, since a Kan fibration is a right fibration.
Conversely, if the map X → 1 is a right fibration, let us show that X is a Kan
complex. The simplicial set X is a quasi-category, since a right fibration is a mid
fibration. But the map X → 1 is conservative, since a right fibration between
quasi-categories is conservative by 4.10. It then follows from 4.15, that X is a Kan
complex.

Corollary 4.17. The fibers of a right fibration are Kan complexes.

Proof: Let p : E → B be a right fibration. If b ∈ B0 then the map p−1(b) → 1 is
a right fibration, since it is a base change of the map p : E → B. It is thus a Kan
complex by 4.16.

Let Grpd be the category of (small) groupoids. The inclusion functor Grpd ⊂
Cat admits a right adjoint,

J : Cat→ Grpd,

where J(C) is the groupoid of isomorphisms of a category C. If X is a quasi-
category, let us denote by J(X) the simplicial subset of X defined by the pullback
square

J(X)

��

// J(hoX)

��
X

h // hoX,

where h is the canonical map.

Lemma 4.18. The inclusion J(X) ⊆ X is 1-full (see Definition B.0.11). A simplex
x : ∆[n]→ X belongs to J(X) iff the arrow x(i, j) is invertible for every 0 ≤ i <
j ≤ n.

Proof: A subcategory of a category is 1-full. Hence the inclusion J(hoX) ⊆ hoX
is 1-full. Hence also the inclusion J(X) ⊆ X by base change. Hence a simplex
x : ∆[n] → X belongs to J(X) iff the arrow x(i, j) is invertible for every 0 ≤ i <
j ≤ n.
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Theorem 4.19. [J1] The simplicial set J(X) is a Kan complex for any quasi-
category X and it is the largest sub-Kan complex of X. The functor

J : QCat→ Kan

is right adjoint to the inclusion functor Kan ⊂ QCat.

Proof: Let us first verify that J(X) is a quasi-category. The inclusion J(hoX) ⊆
hoX is a mid fibration by 2.2, since hoX is a category. Hence the inclusion J(X) ⊆
X is a mid fibration by base change. Thus, J(X) is a quasi-category, since X is a
quasi-category. Let us now show that J(X) is a Kan complex. By 4.14, it suffices
to show that every arrow f : a→ b in J(X) has an inverse in J(X). But f has an
inverse in X, by definition of J(X). If g : b→ a is an inverse of f , then there is a
2-simplex s ∈ X with boundary (g, 1a, f) and a 2-simplex t ∈ X with boundary
(f, 1b, g) by 1.10. We have s, t ∈ J(X), since the arrows f , g and 1a belongs to
J(X), and since the inclusion J(X) ⊆ X is 1-full. This shows that g is an inverse
of f in J(X). Thus, J(X) is a Kan complex. Let us now prove that the functor
J : QCat → Kan is right adjoint to the inclusion functor Kan ⊂ QCat. For
this, it suffices to show that if K is a Kan complex, then every map u : K → X
factors through the inclusion J(X) ⊆ X. But the functor ho(u) : hoK → hoX
factors through the inclusion J(hoX) ⊆ hoX, since hoK is a groupoid by 4.14.
This proves the result, since J(X) = h−1J(hoX). This proves also that J(X) is
the largest sub Kan complex of X.

The canonical map X → hoX induces a map J(X) → J(hoX) hence also a
functor hoJ(X)→ J(hoX).

Proposition 4.20. The canonical functor hoJ(X) → J(hoX) is an isomorphism
for any quasi-category X.

Proof: The functor is obviously bijective on objects. Let us show that it is fully
faithful. The canonical map h : X → hoX is surjective on arrows, hence also
the induced map J(X) → J(hoX), since J(X) = h−1J(hoX). It follows that the
functor hoJ(X) → J(hoX) is surjective on arrows. It remains to show that the
induced map hoJ(X)(a, b) → J(hoX)(a, b) is injective for every pair a, b ∈ X0.
For this, it suffices to show that if two arrows f, g : a→ b in J(X) are homotopic
in X, then they are homotopic in J(X). But if f ' g, there is a 2-simplex t ∈ X2

such that ∂t = (f, g, 1a). We have t ∈ J(X), since the inclusion J(X) ⊆ X is 1-full
by 4.18. This shows that f and g are homotopic in J(X). This completes the proof
that the canonical functor hoJ(X)→ J(hoX) is an isomorphism.

Proposition 4.21. Let A be a simplicial set and X be a quasi-category. If τ1A is a
groupoid, then every map u : A→ X factors through the inclusion J(X) ⊆ X by

Proof: The inclusion J(X) ⊆ X is 1-full by Lemma 4.18. Hence it suffices to show
that we have u(A1) ⊆ J(X). But every arrow in A1 is invertible, since τ1A is a
groupoid. Hence also every arrow in u(A1). This shows that u(A1) ⊆ J(X).
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Let J be the groupoid generated by one isomorphism 0→ 1.

Proposition 4.22. An arrow f in a quasi-category X is invertible iff the corre-
sponding map f : I → X can be extended along the inclusion I ⊂ J .

Proof: (⇒) If f ∈ X1 is invertible, then the map f : I → X can be factored
through the inclusion J(X) ⊆ X, since f ∈ J(X). The simplicial set J(X) is a
Kan complex by 4.19. The inclusion I ⊂ J is anodyne by a classical result [GZ],
since it is a weak homotopy equivalence. Hence the map f : I → J(X) can be
extended along the inclusion I ⊂ J . (⇐) Let g : J → X be an extension of the
map f : I → X. The arrow i = (0, 1) is invertible in J , since J is a groupoid. It
follows that f = g(i) is invertible in X.

Corollary 4.23. Two objects a and b of a quasi-category X are isomorphic iff there
exist a map u : J → X such that u(0) = a and u(1) = b.

Proof: (⇒) There exist an isomorphism f : a→ b in X by 1.13. The corresponding
map f : I → X can be extended as a map u : J → X by 4.22, since f is invertible.
(⇐) Let u : J → X be a map such that u(0) = a and u(1) = b. The arrow
u(0, 1) : a→ b is invertible in X, since the arrow (0, 1) is invertible in J .

An homotopy α : A × I → B between two maps f, g : A → B defines an
arrow [α] : f → g in the category τ1(A,B).

Definition 4.24. We say that a homotopy α : A × I → B between two maps
f, g : A→ B is invertible f the arrow [α] : f → g is invertible in τ1(A,B).

Let j0 be the inclusion {0} ⊂ J and j1 the inclusion {1} ⊂ J .

Corollary 4.25. If X is a quasi-category, then a homotopy α : A × I → X is
invertible iff it can extended along the inclusion A × I ⊆ A × J . Two maps f, g :
A→ X are isomorphic in τ1(A,X) iff there exist a map h : A× J → X such that
h(1A × j0) = f and h(1A × j1) = g.

Proof: This follows from 4.22, since the simplicial set XA is a quasi-category by
2.19.

Recal that two maps f, g : X → Y are said to be isomorphic if they are
isomorphic in the category τ1(X,Y ) = τ1(Y X).

Proposition 4.26. Let X and Y be quasi-categories. If two maps f, g : X → Y are
isomorphic, then so are the maps J(f), J(g) : J(X)→ J(Y ). If a map f : X → Y
is a categorical equivalence, then so is the map J(f) : J(X)→ J(Y ).

Proof: By 4.25, an isomorphism f → g can be represented by a map h : X×J → Y
such that h(1X × j0) = f and h(1X × j1) = g. The functor J : QCat → Kan
preserves products, since it is a right adjoint by 4.19. We have J(J) = J , since
the simplicial set J is a Kan complex. Hence the map J(h) : J(X) × J → J(Y )
represents an isomorphism J(f)→ J(g). The first statement is proved. The second
statement follows.
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4.3 Pseudo-fibrations and Kan fibrations

Proposition 4.27. Let X and Y be two quasi-categories. Then a mid fibration
p : X → Y is a pseudo-fibration iff the map J(p) : J(X) → J(Y ) is a Kan
fibration.

Proof: (⇒) If p is a pseudo-fibration, let us show that every square

Λk[n]

��

x // J(X)

J(p)

��
∆[n]

y // J(Y )

has a diagonal filler. This is true if n = 1 and k = 0, since p is a pseudo-fibration.
This is true also if n = 1 and k = 1, since po is a pseudo-fibration by 4.6. We can
thus suppose n > 1 for the rest of the proof. Let us first show that the following
square has a diagonal filler,

Λk[n]

��

iXx // X

p

��
∆[n]

iY y // Y,

where iX denotes the inclusion J(X) ⊆ X and iY the inclusion J(Y ) ⊆ Y . This
is true if 0 < k < n, since p is a mid fibration. This is true if k = 0 by 4.13, since
the arrow x(0, 1) ∈ J(X) is invertible. This is also true if k = n by symmetry. We
have completed the proof that the second square has a diagonal filler. Let us now
prove hat the first square has a diagonal filler. For this it suffice to show that every
diagonal filler d : ∆[n] → X of the second square factors through the inclusion
iX . The inclusion iX is 1-full by 4.18. Hence it suffices to show that that d takes
every arrow of ∆[n] to an isomorphism in X. If n > 2, every arrow of ∆[n] is in
Λk[n]. The result follows in this case, since the restriction d|Λk[2] factors through
iX . It remains to consider the case n = 2. We have d(0, 2) = d(1, 2)d(0, 1) in hoX.
Thus, if two of the arrows d(0, 1), d(1, 2) and d(0, 2) is an isomorphism then so
is the third. But two at least of these arrows is invertible, since the restriction
d|Λk[2] factors through iX . This proves that d factor through the inclusion iX .
Let us prove the implication (⇐). Let a ∈ X0 and let g ∈ Y be an isomorphism
with source p(a). Then there exists an arrow f ∈ J(X) with source a such that
p(f) = g, since J(p) is a Kan fibration. The arrow f is invertible in X, since
f ∈ J(X). This shows that p is a pseudo-fibration.

Corollary 4.28. Let X and Y are Kan complexes, then every pseudo-fibration p :
X → Y is a Kan fibration.
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Proof: We have J(p) = p, since X and Y are Kan complexes. But J(p) is a Kan
fibration by 4.27, since p is a pseudo-fibration.

Lemma 4.29. A map between quasi-categories p : X → Y is conservative iff the
square

J(X)

J(p)

��

// X

p

��
J(Y ) // Y

is cartesian.

Proof: (⇒) We have J(X) ⊆ p−1(J(Y )), since the square commutes. Let us show
that we have p−1(J(Y )) ⊆ J(X). If a simplex x : ∆[n]→ X belongs to p−1(J(Y ))
then the simplex px : ∆[n] → Y belongs to J(Y ). Hence the arrow px(i, j) is
invertible in Y for every i < j. It follows that the arrow x(i, j) is invertible in X
for every i < j, since p is conservative. Hence the simplex x : ∆[n]→ X belong to
J(X) by 4.18. The implication (⇒) is proved. The converse is obvious.

Proposition 4.30. Let p : X → Y be a conservative pseudo-fibration between quasi-
categories. If Y is a Kan complex then p is a Kan fibration.

Proof: The square

J(X)

J(p)

��

// X

p

��
J(Y ) // Y

is a pullback by lemma 4.29, since p is conservative. If Y is a Kan complex, then
J(Y ) = Y . Hence we have J(p) = p, since the square is a pullback. Thus, p is a
Kan fibration, since J(p) is a Kan fibration by 4.27.

Corollary 4.31. If p : X → Y is a right fibration and Y is a Kan complex then p
is a Kan fibration.

Proof: The simplicial set X is a quasi-category, since Y is a quasi-category and
a right fibration is a mid fibration. Moreover, p is a conservative pseudo-fibration
by 4.9. It follows that p is a Kan fibration by 4.30.
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Proposition 4.32. A mid fibration between quasi-categories p : X → Y is a pseudo-
fibration iff it has the right lifting property with respect to the inclusion j0 : {0} ⊂
J .

Proof: (⇒) The functor J : QCat→ Kan is right adjoint to the inclusion functor
Kan ⊂ QCat by 4.19. Hence the condition j0 t J(p) is equivalent to the condition
j0 t p by D.1.14. But we have j0 t J(p), since J(p) is a Kan fibration by 4.27. It
follows that we have j0 t p. (⇐) Let a ∈ X0 and let g ∈ Y1 be an isomorphism
with source p(a). We shall prove that there exists an arrow f ∈ X with source a
such that p(f) = g. The map g : I → Y can be extended to a map g′ : J → Y by
4.22. The square

1

j0

��

a // X

p

��
J

g′ // Y

has then a diagonal filler f ′ : J → X, since we have j0 t p by assumption. The
arrow f = f ′(0, 1) is invertible in X, since the arrow (0, 1) is invertible in J . We
have pf = g, since pf ′ = g′. Moreover, f(0) = f ′(0) = a.

Corollary 4.33. The class of pseudo-fibrations in QCat is closed under base change
and retracts. Similarly for the class of conservative pseudo-fibrations in QCat.

Proof: Let us prove the first statement. Let B be the class of mid fibrations in S.
The base change of a mid fibration between quasi-categories along a map of quasi-
categories is a mid fibration between quasi-categories. Hence the class B∩QCat is
closed under base change. It is also closed under retracts. If j0 denotes the inclusion
{0} ⊂ J , then the class {j0}t ⊂ S is closed under base change and retracts, since
this is true of every class of the form {u}t for any map u ∈ S. It follows that
the intersection {j0}t ∩ B ∩QCat is closed under base change and retracts. This
proves the result by 4.32. Let us prove the second statement. Let p : X → Y
be a conservative pseudo-fibration between quasi-categories and let A → X be a
map between quasi-categories. Let us show that the map p1 : A ×Y X → A is
conservative. Consider the cube

J(A×Y X) //

��

&&NNNNNNNNNNN
J(Y )

""E
EEEEEEE

��

A×Y X

p1

��

// Y

p

��

J(A)

''NNNNNNNNNNNN
// J(X)

""E
EE

EE
EE

E

A // X.
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The front face is a pullback square of quasi-categories. Hence the back face is a
pullback square in the category of Kan complexes, since the functor J : QCat→
Kan is a right adjoint by 4.19. But J(p) is a Kan fibration by 4.27. Hence the
back face is actually a pullback square in the category of simplicial sets. The right
hand face is a pullback by 4.29. It then follows by the cube lemma C.0.29, that
the left hand face is a pullback. This proves that p1 is conservative.

Corollary 4.34. Every fiber of a conservative pseudo-fibration between quasi-categories
is a Kan complex.

Proof: Let p : X → Y be a conservative pseudo-fibration between quasi-categories.
If y ∈ Y , then the map p−1(y) → 1 is a conservative pseudo-fibration by 4.33. It
is thus a Kan fibration by 4.30. This shows that p−1(y) is a Kan complex.
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Chapter 5

Pseudo-fibrations and function
spaces

The main results of the chapter are the following.

Theorem A If f : X → Y is a pseudo-fibration between quasi-categories, then so
is the map

〈u, f〉 : XB → Y B ×Y A XA

for any monomorphism of simplicial sets u : A→ B.

The theorem will be proved in 5.13.

Let J be the groupoid generated by one isomorphism 0→ 1.

Theorem B A map between quasi-categories f : X → Y is a pseudo-fibration iff
the projection

XJ → Y J ×Y X

defined from the inclusion {0} ⊂ J is a trivial fibration.

The theorem will be proved in 5.22 .

If A and X are simplicial sets, consider the projection XA → XA0 defined
from the inclusion A0 ⊆ A.

Theorem C. If X is a quasi-category, then the projection

XA → XA0

is conservative.

273
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The theorem will be proved in 5.14. It says that a homotopy α : f → g
between two maps A → X is invertible in XA iff the arrow α(a) : f(a) → g(a) is
invertible in X for each a ∈ A0.

Theorem D A pseudo-fibration between quasi-categories is a trivial fibration iff it
is an equivalence.

The theorem will be proved in 5.15.

Our first goal is to prove theorem C in 5.14. Recall by lemma 4.29 that a
map between quasi-categories X → Y is conservative iff the square

J(X)

��

// X

��
J(Y ) // Y

is cartesian. Thus, theorem C will be proved if we can show that the following
square is cartesian,

J(XA)

J(p)

��

// XA

p

��
J(XA0) // XA0 ,

where p is the projection defined from the inclusion A0 ⊆ A. Let us put

J(A,X) = p−1(J(XA0)).

By definition, the following square is cartesian,

J(A,X)

��

// XA

p

��
J(XA0) // XA0 .

Let us record the following elementary fact:

Proposition 5.1. We have J(XA) ⊆ J(A,X).

We shall prove that J(XA) = J(A,X) in A. The simplicial set J(XA) is
the largest sub-Kan complex of XA by 4.19. Hence we can prove the equality
J(XA) = J(A,X) by showing that J(A,X) is a Kan complex. Observe that the
simplicial set J(A,X) depends contravariantly on A. The contravariant functor
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A 7→ J(A,X) is a subfunctor of the contravariant functor A 7→ XA. We shall see
that it has a right adjoint.

A 0-full simplicial subset U ⊆ X of a simplicial set X is obviously deter-
mined by the subset U0 ⊆ X0; we shall say that X is spanned by U0. A 0-full
simplicial subset of a quasi-category is a quasi-category. If X is a quasi-category
and S is a simplicial set, let us denote by X(S) the 0-full simplicial subset of
XS which is spanned by the set of maps S → X which can be factored through
the inclusion J(X) ⊆ X. The simplicial set X(S) depends contravariantly on S.
The contravariant functor S 7→ X(S) is a subfunctor of the contravariant functor
S 7→ XS .

For any simplicial sets A, S and X, there are natural bijections between the
following three kinds of maps

S → XA, A× S → X, A→ XS .

The bijections associate to a map u : A×S → X a map λAu : S → XA and a map
λSu : A → XS . It shows that the contravariant functor A 7→ XA is right adjoint
to itself.

Proposition 5.2. Let X be a quasi-category. Then the contravariant functors

A 7→ J(A,X) and S 7→ X(S)

are mutually right adjoint. If u : A × S → X, then the map λAu : S → XA

(resp. λSu : A → XS) can be factored through the inclusion J(A,X) ⊆ XA (resp
X(S) ⊆ XS) iff the arrow u(1a, f) is quasi-invertible in X for every vertex a ∈ A0

and every arrow f ∈ S1.

Proof: Let us denote by F (S,A;X) the set of maps u : S × A → X such that
the arrow u(1a, f) is quasi-invertible in X for every vertex a ∈ A0 and every
f ∈ S1. This defines a subfunctor (A,S) 7→ F (A,S;X) of the contravariant set-
valued functor (A,S) 7→ S(A×S,X). Let us show that the map u 7→ λAu induces
a bijection F (A,S;X) ' S(S, J(A,X)) and that the map u 7→ λSu induces a
bijection F (A,S;X) ' S(A,X(S)). Let pA : XA → XA0 be the projection defined
by the inclusion iA : A0 ⊆ A. By definition, we have J(A,X) = p−1

A (J(XA0)).
Hence the map λAu can be factored through the inclusion J(A,X) ⊆ XA iff the
map pAλ

Au = λA0(u(S × iA)) can be factored through the inclusion J(XA0) ⊆
XA0 . But we have J(XA0) = J(X)A0 , since the functor J : QCat → Kan
is a right adjoint, and since a right adjoint preserves products. Hence the map
λA0(u(S × iA)) can be factored through the inclusion J(XA0) ⊆ XA0 iff the map
u(−, a) : S → X can be factored through the inclusion J(X) ⊆ X for each vertex
a ∈ A0. By 4.18, the map u(−, a) : S → X can be factored through the inclusion
J(X) ⊆ X iff the arrow u(f, a) is quasi-invertible inX for every arrow f ∈ S1. This
proves that the map u 7→ λAu induces a bijection F (A,S;X) ' S(S, J(A,X)).
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Similarly, the map λSu can be factored through the inclusion X(S) ⊆ XS iff we
have (λSu)(A0) ⊆ X(S), since the inclusion X(S) ⊆ XS is 0-full. For every a ∈ A0

we have (λSu)(a) = u(−, a) : S → X. Hence the condition (λSu)(A0) ⊆ X(S)

means that the map u(−, a) : S → X can be factored through the inclusion
J(X) ⊆ X for every a ∈ A0. By 4.18, the map u(−, a) : S → X can be factored
through the inclusion J(X) ⊆ X iff the arrow u(f, a) is quasi-invertible in X
for every arrow f ∈ S1. This proves that the map u 7→ λSu induces a bijection
F (A,S;X) ' S(A,X(S)). By composing the two bijections, we obtain is a natural
bijection

S(S, J(A,X)) ' S(A,X(S)).

Proposition 5.3. If X is a quasi-category and S is a simplicial set, then we have
J(X(S)) = J(X)S. Moreover, X(S) = XS and J(X)S = J(XS) = J(S,X) if in
addition τ1S is a groupoid.

Proof: We have J(X)S ⊆ X(S), since X(S) is a 0-full simplicial subset of XS

and every map S → J(X) belongs to X(S). The simplicial set J(X)S is a Kan
complex, since J(X) is a Kan complex. Thus, J(X)S ⊆ J(X(S)), since J(X(S)) is
the largest Kan subcomplex of X(S). Let us show that J(X(S)) ⊆ J(X)S . We shall
prove this by showing that if A is a Kan complex, then every map u : A → XS

which can be factored through the inclusion X(S) ⊆ XS can also be factored
through the inclusion J(X)S ⊆ XS . Let us put v(s, x) = u(x)(s). This defines
a map v : S × A → X and we have λSv = u. We wish to prove that the map
v : S × A → X can be factored through the inclusion J(X) ⊆ X. For this, it
suffices to show that the image by v of every pair of arrows (g, f) ∈ S1 × A1

is quasi-invertible in hoX, since the inclusion J(X) ⊆ X is 1-full by 4.18. If
g : c→ d and f : a→ b then we have a decomposition v(g, f) = v(g, 1a)v(1d, f) in
the category hoX. Hence it suffices to show that each arrow v(g, 1a) and v(1d, f)
is invertible in hoX. The arrow v(g, 1a) is invertible in hoX by 5.2, since the
map u can be factored through the inclusion X(S) ⊆ XS by the hypothesis. The
arrow u(1d, f) is invertible in hoX, since f is invertible in hoA. The equality
J(X(S)) = J(X)S is proved. Let us now suppose that τ1(S) is a groupoid. In this
case let us show that X(S) = XS . For this, it suffices to show that every map
u : S → X can be factored through the inclusion J(X) ⊆ X. But the image by u
of every arrow in S is invertible in τ1X, since every arrow in S is invertible in τ1S.
It follows that u can be factored through the inclusion J(X) ⊆ X. The equality
X(S) = XS is proved. Under the same hypothesis on τ1S, let us now show that
J(X)S = J(XS) = J(S,X). We have J(X)S = J(X(S)) by the first part of the
proof. We have J(X(S)) = J(XS), since we have X(S) = XS by what we just
proved. We have J(XS) ⊆ J(S,X) by 5.1. Thus,

J(X)S = J(XS) ⊆ J(S,X) ⊆ XS .
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Let us prove that we have J(S,X) ⊆ J(X)S . We shall prove this by showing that
if A is a simplicial set, then every map u : A → J(S,X) can be factored through
the inclusion J(X)S ⊆ XS . Let us put v(s, x) = u(x)(s). This defines a map
v : S × A→ X and we have λSv = u. The arrow u(1d, f) is quasi-invertible in X
for every vertex d ∈ S0 and every arrow f ∈ A1 by 5.2, since the map u = λSv
can be factored through the inclusion J(S,X) ⊆ XS . The image by v of every
arrow of the form (g, 1a) is quasi-invertible in X, since g is quasi-invertible in S.
It follows that the image by v of every pair (g, f) ∈ S1 × A1 is quasi-invertible
in X. Thus, v can be factored through the inclusion J(X) ⊆ X. It follows that
u = λSv can be factored through the inclusion J(X)S ⊆ XS .

Let f : X → Y be a map between quasi-categories. If v : S → T is a map of
simplicial sets, we shall denote by 〈(v), f〉 the map

X(T ) → X(S) ×Y (S) Y (T )

obtained from the commutative square

X(T )

f(T )

��

X(v)
// X(T )

f(S)

��
Y (T )

Y (v)
// Y (S).

Similarly, if u : A→ B is a map of simplicial sets, we shall denote by J ′(u, f) the
map

J(B,X)→ J(B, Y )×J(A,Y ) J(A,X)

obtained from the commutative square

J(B,X)

J(B,f)

��

J(u,X)// J(A,X)

J(A,f)

��
J(B, Y )

J(u,Y )// J(A, Y ).

Lemma 5.4. Let f : X → Y be a map between quasi-categories. If u : A→ B and
v : S → T are maps of simplicial sets, then we have

u t 〈(v), f〉 ⇐⇒ v t J ′(u, f).

Proof: We shall use 5.2 and D.1.15. Let f : X → Y be a fixed map between
quasi-categories. For every simplicial set A, let us put F0(A) = J(A,X), F1(A) =
J(A, Y ) and αA = J(A, f). This defines two contravariant functors F0, F1 : S→ S
and a natural transformation α : F0 → F1. For every simplicial set S, let us
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put G0(S) = Y (S), G1(S) = Y (S) and βS = f (S). This defines two contravariant
functors G0, G1 : S→ S and a natural transformation βS : G0 → G1. The functor
G0 is right adjoint to the functor F0 by 5.2 and the functor G1 is right adjoint to
the functor F1. Moreover, the natural transformation β is the right transpose of
the natural transformation α. Hence the condition u t β•(v) is equivalent to the
condition v t α•(u) by D.1.15. This proves the result, since β•(v) = 〈(v), f〉 and
α•(u) = J ′(u, f).

Lemma 5.5. Suppose that we have a commutative square of simplicial sets

A

f

��

i // A′

f ′

��
B

j // B′,

in which j is monic and i is 0-full. If f ′ is a mid fibration, then so is f .

Proof: The map f is a base change of the map jf along j, since j is monic. Hence
it suffices to to show that jf is a mid fibration. But we have jf = f ′i, since the
square commutes. The map i is a mid fibration by 2.6, since it is 0-full. Hence also
the composite f ′i, since f ′ is a mid fibration by assumption.

Lemma 5.6. If f : X → Y is a map between quasi-categories and v : S → T is a
monomorphism of simplicial sets, then 〈(v), f〉 is a map between quasi-categories
and we have J〈(v), f〉 = 〈v, J(f)〉.

Proof: The simplicial set X(T ) is a quasi-category, since the inclusion X(T ) ⊆ XT

is 0-full and the simplicial set XT is a quasi-category by 2.19. Let us show that
the codomain of 〈(v), f〉 is a quasi-category. Consider the pullback square

X(S) ×Y (S) Y (T )

��

p2 // Y (T )

��
Y (T )

Y (v)
// Y (S).

It suffices to show that the projection p2 is a mid fibration, since Y (T ) is a quasi-
category. But for this it suffices to show that Y (v) is a mid fibration. Consider the
square

Y (T )

Y (v)

��

i // Y T

Y v

��
X(S)

j // Y S ,
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where the horizontal maps are inclusions. The map Y v is a mid fibration by 2.20
The inclusion i is 0-full. It follows by lemma 5.5 that Y (v) is a mid fibration. It
follows from 5.3 that the image by the functor J of the square

X(T )

f(T )

��

X(v)
// X(T )

f(S)

��
Y (T )

Y (v)
// Y (S)

is the square

J(X)T

J(f)T

��

J(X)v

// J(Y )T

J(f)S

��
J(Y )T

J(Y )v

// J(Y )S .

But the functor J : QCat→ Kan preserves pullbacks, since it is a right adjoint.
Thus, J〈(v), f〉 = 〈v, J(f)〉.

Theorem 5.7. If f : X → Y is a pseudo-fibration between quasi-categories, then
so is the map

〈(v), f〉 : X(T ) → Y (T ) ×Y (S) X(S)

for any monomorphism of simplicial sets v : S → T .

Proof: We saw in 5.6 that 〈(v), f〉 is a map between quasi-categories. Let us show
that it is a mid fibration. Consider the commutative square

X(T )

〈(v),f〉
��

i // XT

〈v,f〉
��

Y (T ) ×Y (S) X(S)
j // Y T ×Y S XS ,

where i and j are the inclusions. The map 〈v, f〉 is a mid fibration by theorem
2.18, since f is a mid fibration. The inclusion i is 0-full. It follows by lemma 5.5
that 〈(v), f〉 is a mid fibration. Let us show that 〈(v), f〉 is a pseudo-fibration.
By 4.27 it suffices to show that the map J〈(v), f〉 is a Kan fibration, since it is
a mid fibration between quasi-categories. But we have J〈(v), f〉 = 〈v, J(f)〉 by
5.6. The map J(f) is a Kan fibration by 4.27, since f is a pseudo-fibration by the
hypothesis. It follows that 〈v, J(f)〉 is a Kan fibration. This complete the proof
that 〈(v), f〉 is a pseudo-fibration.
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If m > 0, the open box

Λm[m,n] =
(
Λm[m]×∆[n]

)
∪

(
∆[m]× ∂∆[n]

)
contains the edge (m− 1, n)→ (m,n) of ∆[m,n] = ∆[m]×∆[n].

Lemma 5.8. Suppose that we have a commutative square

Λm[m,n]

��

x // X

p

��
∆[m,n] // Y,

in which p is a mid fibration between quasi-categories. If m > 0, m + n > 1 and
the image the arrow (m− 1, n)→ (m,n) by x is quasi-invertible, then the square
has a diagonal filler.

Proof: We shall use the notation of lemma H.0.21. The lemma shows that the
following square

Λm[m,n]

��

x //

(a)

X

p

��
C(P ′) ∪ Λm[m,n] // ∆[m,n]

y // Y

has a diagonal filler d : C(P ′) ∪ Λm[m,n] → X, since p is a mid fibration. Hence
it suffices to show that the following square (b) has a diagonal filler:

C(P ′) ∪ Λm[m,n]

��

d //

(b)

X

p

��
∆[m]×∆[n]

y // Y.

We shall use the notation of lemmas H.0.18 and H.0.19. The poset P = [m]× [n]
is the shadow of the following maximal chain ω,

(0, 0) < (0, 1) < · · · < (0, n− 1) < (0, n) < (1, n) < · · · < (m,n).

We have Ċ(P ) = C(P ′) by lemma H.0.18, since (0, n) is the only upper corner of
ω. It follows that we have C(P ) = C(P ′) ∪∆[ω] by the same lemma. The set of
lower corners of ω is empty and (m,n) is the lowest element of ω on the vertical
line {m} × [n]. It follows from H.0.19 that we have

∆[ω] ∩ (C(P ′) ∪ Λm[m,n]) = Λm+n[ω].
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Therefore, the following square is a pushout,

Λm+n[ω] //

��
(c)

C(P ′) ∪ Λm[m,n]

��
∆[ω] // ∆[m,n].

Hence the square (b) has a diagonal filler iff the following square (b+c)

Λn+m[ω]

��

d′ //

(b+c)

X

p

��
∆[ω]

y′ // Y

has a diagonal filler, But the image of the arrow m+n− 1→ m+n by d′ is equal
to the image of the arrow (n− 1,m)→ (n,m) by x. This image is quasi-invertible
in X by hypothesis. Hence the square (b+c) has a diagonal filler by 4.13, since
m+ n > 1.

Lemma 5.9. Let f : X → Y be a map between quasi-categories and u : A→ B be
a monomorphism of simplicial sets. If the map u0 : A0 → B0 is bijective, then the
square

J(B,X)

J′(u,f)

��

// XB

〈u,f〉
��

J(B, Y )×J(A,Y ) J(A,X) // Y B ×Y A XA

is cartesian.

Proof: We can suppose that u is an inclusion A ⊆ B and that A0 = B0. Consider
the commutative diagram

J(B,X)

J′(u,f)

��

// XB

〈u,f〉
��

J(B, Y )×J(A,Y ) J(A,X)

p2

��

// Y B ×Y A XA

p2

��
J(A,X)

��

// XA

��
J(X)A0 // XA0 ,
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in which the horizontal maps are inclusions. It suffices to show that the boundary
square is cartesian. But the boundary square coincide with the square

J(B,X)

��

// XB

��
J(X)B0 // XB0 ,

since we have A0 = B0 by the hypothesis. This last square is cartesian by definition
of J(B,X).

Theorem 5.10. Let f : X → Y be pseudo-fibration between quasi-categories. Then
the map

J ′(u, f) : J(B,X)→ J(B, Y )×J(A,Y ) J(A,X)

is a Kan fibration for any monomorphism u : A→ B and the map

〈(v), f〉 : X(T ) → Y (T ) ×Y (S) X(S)

is a trivial fibration for any anodyne map v : S → T .

Proof: Let us first verify that the map J ′(u, f) is a Kan fibration in the case where
u is the inclusion σn : ∂∆[n] ⊂ ∆[n]. If n = 0 we we have J ′(δn, f) = J(f). The
result follows from 4.27 in the case. We can thus suppose n > 0. In this case we
shall prove that every commutative square (a)

Λk[m]

��

x //

(a)

J(∆[n], X)

J′(δn,f)

��
∆[m]

(y,z) // J(∆[n], Y )×J(∂∆[n],Y ) J(∂∆[n], X)

has a diagonal filler. The following square (b)

J(∆[n], X)

J′(δn,f)

��

//

(a)

X∆[n]

〈δn,f〉
��

J(∆[n], Y )×J(∂∆[n],Y ) J(∂∆[n], X) // Y ∆[n] ×Y ∂∆[n] X∂∆[n]

is cartesian by Lemma 5.9, since inclusion ∂∆[n] ⊂ ∆[n] is bijective on 0-cells
when n > 0. Hence the square (a) has a diagonal filler iff the following composite
square (a+b) has a diagonal filler,

Λk[m]

��

x′ //

(a+b)

X∆[n]

〈δn,f〉
��

∆[m]
(y′,z′) // Y ∆[n] ×Y ∂∆[n] X∂∆[n].
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But it follows from lemma 2.14 that the square (a+b) has a diagonal filler iff the
following square (c) has a diagonal filler,(

Λk[m]×∆[n]
)
∪

(
∆[m]× ∂∆[n]

)
��

x //

(c)

X

f

��
∆[m]×∆[n]

y // Y,

where x is defined by x′ and z′, and where y is defined by y′. The square (c)
has a diagonal filler if 0 < k < m by H.0.20, since f is a mid fibration. We can
thus suppose k = m (the case k = 0 is similar). The image by x of the arrow
(m − 1, n) → (m,n) is quasi-invertible in X by 5.2, since x′ factors through the
inclusion J(∆[n], X) ⊆ X∆[n] by definition of x. It then follows from lemma 5.8
that the square (c) has a diagonal filler. We have proved that J ′(δn, f) is a Kan
fibration. Let us now show that 〈(v), f〉 is a trivial fibration when v is anodyne.
For this, it suffices to show that we have δn t 〈(v), f〉 for every n ≥ 0. But the
condition δn t 〈(v), f〉 is equivalent to the condition v t J ′(δn, f) by 5.4. And
we have v t J ′(δn, f), since J ′(δn, f) is a Kan fibration by what we just proved,
and since v is anodyne. This completes the proof that 〈(v), f〉 is a trivial fibration
when v is anodyne. We can now prove that J ′(u, f) is a Kan fibration for any
monomorphism u. For this, it suffices to show that we have v t J ′(u, f) for every
anodyne map v. But the condition v t J ′(u, f) is equivalent to the condition
u t 〈(v), f〉 by 5.4. The result follows, since the map 〈(v), f〉 is a trivial fibration
when v is anodyne.

Corollary 5.11. If X is a quasi-category, then we have J(A,X) = J(XA) for
any simplicial set A. The contravariant functors A 7→ J(XA) and S 7→ X(S) are
mutually right adjoint. If f : X → Y is a map between quasi-categories, then we
have

J ′(u, f) = J〈u, f〉

for any monomorphism of simplicial sets u : A→ B.

Proof: Let us prove the first statement. We have J(XA) ⊆ J(A,X) by definition
of J(A,X). The map J(A,X)→ 1 is a Kan fibration by 5.10 applied to the map
X → 1 and to the inclusion ∅ ⊆ A. This shows that J(A,X) is a Kan complex.
Thus, J(A,X) = J(XA), since J(XA) is the largest sub Kan complex of XA. The
first statement is proved. The second statement follows from 5.2, since we have
J(A,X) = J(XA). Let us prove the third statement. The following square

Y B ×Y A XA

��

// XA

��
Y B // Y A,
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is a cartesian square of quasi-categories by 2.21. The functor J : QCat → Kan
preserves pullbacks, since it is a right adjoint. Hence we have

J(Y B ×Y A XA) = J(Y B)×J(Y A) J(XA)
= J(B, Y )×J(A,Y ) J(A,X).

It follows that we have J〈u, f〉 = J ′(u, f).

Corollary 5.12. If X is a quasi-category and A is a simplicial set, then a homotopy
α : A × I → X is quasi-invertible in XA iff the corresponding map A → XI can
be factored through the inclusion X(I) ⊆ XI .

Proof: The map λIα : A→ XI can be factored through the inclusion X(I) ⊆ XI

iff the map λAα : I → XA can be factored through the inclusion J(A,X) ⊆ XA

by 5.2. But we have J(A,X) = J(XA) by 5.11. But the map λAα : I → XA can be
factored through the inclusion J(XA) ⊆ XA iff the homotopy α is quasi-invertible
in XA.

Theorem 5.13. If f : X → Y is a pseudo-fibration between quasi-categories, then
so is the map

〈u, f〉 : XB → Y B ×Y A XA

for any monomorphism of simplicial sets u : A→ B.

Proof: The map 〈u, f〉 is a mid fibration by 2.18. It is a map between quasi-
categories by 2.19 and 2.21. Hence it suffices to show that the map J〈u, f〉 is a
Kan fibration by 4.27. We have J〈u, f〉 = J ′(u, f) by 5.11. But J ′(u, f) is a Kan
fibration by 5.10. This proves that 〈u, f〉 is a pseudo-fibration.

If X is a quasi-category and A is a simplicial set, consider the projection
XA → XA0 defined from the inclusion A0 ⊆ A.

Theorem 5.14. If X is a quasi-category and A is a simplicial set, then the projec-
tion XA → XA0 is conservative.

Proof: The following square is cartesian by definition of J(A,X),

J(A,X)

��

// XA

p

��
J(XA0) // XA0 .
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Hence also the square

J(XA)

J(p)

��

// XA

p

��
J(XA0) // XA0 ,

since J(A,X) = J(XA) by 5.11. This proves that p is conservative by 4.29.

Theorem 5.15. A pseudo-fibrations between quasi-categories is a trivial fibration
iff it is a categorical equivalence.

Proof: The implication (⇒) was proved in 4.4. (⇐) Let f : X → Y be a pseudo-
fibration between quasi-categories. If f is a categorical equivalence, let us show
that it is a trivial fibration. For this, we shall prove that f has the right lifting
property with respect to every monomorphism of simplicial sets u : A → B. For
this it suffices to show that the map 〈u, f〉 is surjective on 0-cells. Equivalently, it
suffices to show that the map J〈u, f〉 is surjective on 0-cells. We shall prove that
J〈u, f〉 is a trivial fibration. The map J〈u, f〉 is a Kan fibration by Theorem 5.10,
since we have J〈u, f〉 = J ′(u, f) by 5.11. Thus, it suffices to show that J〈u, f〉 is
a weak homotopy equivalence. Consider the square

XB

��

// Y A

��
Y B // XA.

The vertical maps of the square are categorical equivalences, since f is a categorical
equivalence. Moreover, the horizontal maps are pseudo-fibrations by 5.13. Its image
by the functor J : QCat→ Kan is a square

J(XB)

��

// J(XA)

��
J(Y B) // J(Y A).

The vertical maps of this square are homotopy equivalences by 4.26. The horizontal
maps are Kan fibrations by 4.27. Hence the map

J(XB)→ J(Y B)×J(Y A) J(XA)

is a weak homotopy equivalence. We have proved that J〈u, f〉 is a trivial fibration.
This completes the proof that f is a trivial fibration.
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Let X be a quasi-category. From the inclusions i0 : {0} ⊂ I and i1 : {1} ⊂ I
we obtain two projections

p0 : X(I) → X and p1 : X(I) → X.

From the map I → 1, we obtain a a diagonal map δX : X → X(I). We have
p0δX = 1X = p1δX .

Proposition 5.16. (Path space 1) If X is a quasi-category, then the map

(p0, p1) : X(I) → X ×X

is a pseudo-fibration and each projection p0, p1 : X(I) → X is a trivial fibration.
Moreover, the diagonal δX : X → X(I) is an equivalence of quasi-categories.

Proof: We have (p0, p1) = X(i), where i denotes the inclusion {0, 1} ⊂ I. Thus,
(p0, p1) is a pseudo-fibration by 5.7 applied to the map X → 1 and to the inclusion
{0, 1} ⊂ I. Moreover, the projection p0 = X(i0) is trivial fibration 5.10 applied
to the map X → 1, since i0 is anodyne. Similarly for p1. It follows that p0 is an
equivalence of quasi-categories by 1.22, since it is a trivial fibration. It then follows
that δX i is an equivalence of quasi-categories by the ”three-for-two” property of
equivalences, since we have p0δX = 1X .

If f : X → Y is a map between quasi-categories we define the mapping path
space P (f) by the pullback square

P (f)

pr1

��

pr2 // X

f

��
Y (I)

p0 // Y.

There is a unique map iX : X → P (f) such that pr1iX = δY f and pr2iX = 1X .
Let us put pX = pr2 and pY = p1pr1 : P (f)→ Y (I) → Y .

Proposition 5.17. (Mapping path space factorisation 1). Let f : X → Y be a map
between quasi-categories. Then the simplicial set P (f) is a quasi-category and we
have a factorisation

f = pY iX : X → P (f)→ Y,

where iX an equivalence of quasi-categories and pY a pseudo-fibration. Moreover,
we have pX iX = 1X where pX : P (f)→ X a trivial fibration.
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Proof: We have pY iX = p1pr1iX = p1δY f = 1Y f = f. Let us show that pY is a
pseudo-fibration. We shall first prove that the joint map (pX , pY ) : P (f)→ X×Y
is a pseudo-fibration. Consider the commutative diagram

P (f)

pr1

��

(pX ,pY ) // X × Y

f×Y

��

pr1 // X

f

��
Y (I)

(p0,p1) // Y × Y
pr1 // Y.

The boundary square is cartesian by definition of P (f). The square on the right
is obviously cartesian. It follows that the square on the left is cartesian. Hence
the map (pX , pY ) is a base change of the map (p0, p1). But (p0, p1) is a pseudo-
fibration by 5.16. The class of pseudo-fibrations in QCat is closed under base
change by 4.33. This proves that the map (pX , pY ) is a pseudo-fibration. The
projection pr2 : X × Y → Y is a pseudo-fibration by base change, since the map
X → 1 is a pseudo-fibration. Thus, pY = pr2(pX , pY ) is a mid fibration. We have
pX iX = 1X , since pX = pr2 and pr2iX = 1X . Let us show that iX is an equivalence
of quasi-categories. For this, it suffices to show that pX is an equivalence of quasi-
categories, since we have pX iX = 1X . But for this, it suffices to show that pX is a
trivial fibration by 1.22. But pX is a base change of the projection p0 : X(I) → X.
It is thus a trivial fibration, since p0 is a trivial fibration by 5.16.

Let α : B × I → X be a homotopy between two maps f, g : B → X. If
u : A→ B we shall denote the homotopy α(u×I) : A×I → X by α◦u : fu→ gu.
If p : X → Y , we shall denote the homotopy pα : B × I → Y by p ◦ α : pf → pg.

Proposition 5.18. (Covering homotopy extension property 1) Suppose that we have
a commutative square

A

i

��

a // X

p

��
B

b // Y,

in which p is a pseudo-fibration between quasi-categories and i is monic. Suppose
also that we have a map c : B → X together with two quasi-invertible homotopies
α : ci→ a and β : pc→ b such that p ◦ α = β ◦ i. Then the square has a diagonal
filler d : B → X and there exists a quasi-invertible homotopy σ : c → d such that
σ ◦ i = α and p ◦ σ = β.

Proof: Let i0 be the inclusion {0} ⊂ I and i1 be the inclusion {1} ⊂ I. We have
α(A×i0) = ci and α(A×i1) = a, since α : ci→ a. Similarly, we have β(B×i0) = pc
and β(B × i1) = b, since β : pc → b. The map λIα : A → XI factors through
the inclusion X(I) ⊆ XI by 5.12, since α is quasi-invertible. It thus defines a map
α′ : A → X(I). Similarly, the map λIβ : B → Y I factors through the inclusion
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Y (I) ⊆ Y I and it defines a map β′ : B → Y (I). The condition p ◦α = β ◦ i implies
that the following square commutes,

A

i

��

α′ // X(I)

q

��
B

(β′,c) // Y (I) ×Y X,

where q = (p(I), p0). By definition, we have q = 〈(i0), p〉. Thus, q is a trivial
fibration by 5.10, since i0 is anodyne. Hence the square has a diagonal filler σ′ :
B → X(I), since i is monic. We have σ′i = α′, p(I)σ′ = β′ and p0σ

′ = c, since σ′ is
a diagonal filler of the square. Consider the homotopy σ : B × I → X defined by
putting σ(x, t) = σ′(x)(t). The homotopy σ is is quasi-invertible by 5.12. We have
σ ◦ i = α, since we have σ′i = α′. We have p ◦ σ = β, since we have p(I)σ′ = β′.
We have σ(B × i0) = c, since we have p0σ

′ = c. If d = σ(B × i1) : B → X, then
σ : c→ d. The relation σ◦ i = α implies that di = a. The relation p◦σ = β implies
that pd = b. This shows that d is a diagonal filler of the square.

Let J be the groupoid generated by one isomorphism 0→ 1. For any quasi-
category X we have X(J) = XJ by 5.3, since J is a groupoid. Hence the projection
X(J) → X(I) defined from the inclusion I ⊂ J is a map XJ → X(I).

Proposition 5.19. The canonical map XJ → X(I) is a trivial fibration for any
quasi-category X. A homotopy α : A× I → X is quasi-invertible in XA iff it can
be extended to A× J .

Proof: The inclusion I ⊂ J is anodyne, since it is a weak homotopy equivalence.
Hence the map X(i) : X(J) → X(I) is a trivial fibration by 5.10. This proves the
first statement, since X(J) = XJ . The second statement follows (it also follows
from 4.25).

Let X be a simplicial set. From the inclusions j0 : {0} ⊂ J and j1 : {1} ⊂ J
we obtain two projections

q0 : XJ → X and q1 : XJ → X.

From the map J → 1, we obtain a a diagonal map ∆X : X → XJ . We have
q0∆X = 1X = q1∆X .

Proposition 5.20. (Path space 2) If X is a quasi-category, then the map

(q0, q1) : XJ → X ×X

is a pseudo-fibration and each projection q0, q1 : XJ → X is a trivial fibration.
Moreover, the diagonal ∆X : X → XJ is an equivalence of quasi-categories.
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Proof: We have (q0, q1) = Xj , where j denotes the inclusion {0, 1} ⊂ J . Thus,
(q0, q1) is a pseudo-fibration by 5.13. We have q0 = Xj0 , where j0 denotes the
inclusion {0} ⊂ J . But we have Xj0 = X(j0) by 5.3, since j0 is a map between
groupoids. The inclusion {0} ⊂ J is anodyne by a classical result [GZ], since it is
a weak homotopy equivalence. Hence the map X(j0) is a trivial fibration by 5.10.
The rest of the proof is similar to the proof of 5.16.

If f : X → Y is a map of simplicial sets, we can define a mapping path space
Q(f) by the pullback square

Q(f)

pr1

��

pr2 // X

f

��
Y J

q0 // Y.

There is a unique map jX : X → Q(f) such that pr1jX = ∆Y f and pr2jX = 1X .
Let us put qX = pr2 and qY = q1pr1 : Q(f)→ Y J → Y .

Proposition 5.21. (Mapping path space factorisation 2). Let f : X → Y be a map
between quasi-categories. Then the simplicial set Q(f) is a quasi-category and we
have a factorisation

f = qY jX : X → Q(f)→ Y,

where jX an equivalence of quasi-categories and qY a pseudo-fibration. Moreover,
we have qXjX = 1X and qX : Q(f)→ X is a trivial fibration.

Proof: Similar to the proof of 5.17.

Let i0 be the inclusion {0} ⊂ I and j0 be the inclusion {0} ⊂ J .

Theorem 5.22. Let f : X → Y be a map between quasi-categories. Then the
folllowing conditions are equivalent:

• (i) f is a pseudo-fibration;

• (ii) f has the RLP with respect to every monic weak categorical equivalence;

• (iii) the map 〈(i0), f〉 : X(I) → Y (I) ×Y X is a trivial fibration;

• (iv) the map 〈j0, f〉 : XJ → Y J ×Y X is a trivial fibration;

• (v) the map 〈u, f〉 : XB → Y B ×Y A XA is a trivial fibration for any monic
weak categorical equivalence u : A→ B.
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Proof: Let us prove the implication (i)⇒(iii). If f is a pseudo-fibration, then the
map 〈(i0), f〉 : X(I) → Y (I)×Y X is a trivial fibration by 5.10, since the inclusion i0
is anodyne. Let us prove the converse (iii)⇒(i). The following diagram commutes

X(I)

p1

��

〈(i0),f〉 // Y (I) ×Y X
pr1 // Y (I)

p1

��
X

f // Y

The composite pY = p1pr1 is a pseudo-fibration by 5.17. The map 〈(i0), f〉 is a
pseudo-fibration by 4.4, since it is a trivial fibration by hypothesis. Hence the com-
posite pY 〈(i0), f〉 = fp1 is a pseudo-fibration. The following diagram commutes,
since (fp1)δX = f(p1δX) = f1X = f ,

X

f

  B
BB

BB
BB

BB
BB

BB
BB

BB
δX // X(I)

fp1

��

p1 // X

f

~~||
||

||
||

||
||

||
||

|

Y.

It shows that f is a retract of fp1. Thus, f is a pseudo-fibration by 4.33, since fp1 is
a pseudo-fibration. The equivalence (i)⇔(iii) is proved. The equivalence (i)⇔(iv) is
proved similarly. Let us prove the implication (i)⇒(v). If f : X → Y is a pseudo-
fibration then the map 〈u, f〉 is a pseudo-fibration between quasi-categories by
5.13. Let us show that it is an equivalence. We need the commutative diagram

XB

((RRRRRRRRRRRRRRRRR
〈u,f〉 // Y B ×Y A XA

pr1

��

pr2 // XA

fA

��
Y B

Y u
// Y A,

where pr2〈u, f〉 = Xu. The map Xu is an equivalence of quasi-categories by 2.27,
since u is a weak categorical equivalence. Similarly for the map Y u. But Y u is a
pseudo-fibration by 5.13. It is thus a trivial fibration by 5.15. Thus, pr2 is a trivial
fibration by base change. It is thus a categorical equivalence by 1.22. Therefore,
〈u, f〉 is an equivalence of quasi-categories by three-for-two. This proves that 〈u, f〉
is a trivial fibration by 5.15. Let us prove the implication (v)⇒ (ii). If u : A→ B is
a monic weak categorical equivalence, then the map 〈u, f〉 is surjective on 0-cells,
since it is a trivial fibration by (v). This proves that u t f . Let us prove the
implication (ii)⇒ (i). Suppose that f : X → Y has the RLP with respect every
monic weak categorical equivalence. Then f is a mid fibration, since every mid
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anodyne map is a weak categorical equivalence by 2.29. The inclusion j0 : {0} ⊂ J
is a weak categorical equivalence, since it is an equivalence of categories. Hence
we have j0 t f by the hypothesis on f . Therefore, f is a pseudo-fibration by 4.32.
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Chapter 6

The model structure for
quasi-categories

6.1 Introduction

In this chapter we show that the category of simplicial sets admits a Quillen
model structure in which the fibrant objects are the quasi-categories. It is the
model structure for quasi-categories. The cofibrations are the monomorphisms,
the weak equivalences are the weak categorical equivalences and the fibrations are
the pseudo-fibrations. The classical model structure on the category of simplicial
sets is both a homotopy reflection and coreflection of the model structure for quasi-
categories. We compare the model structure for quasi-categories with the natural
model structure on Cat.

See E.1.2 for the notion of model structure. Recall that a map of simplicial
sets u : A→ B is a weak homotopy equivalence if and only if the map

π0(u,X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X. The following theorem describes the classical
model structure on S also called the Kan model structure.

Theorem 6.1. [Q] The category of simplicial sets S admits a model structure in
which a cofibration is a monomorphism, a weak equivalence is a weak homotopy
equivalence and a fibration is a Kan fibration. The fibrant objects are Kan com-
plexes. The acyclic fibrations are the trivial fibrations. The model structure is carte-
sian and proper.

See [JT2] for a purely combinatorial proof. The Kan model structure is a
Cisinski model structure. It is thus determined by its class of fibrant objects. We

293
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shall denote it shortly by (S,Kan) or by (S,Who), where Who denotes the class
of weak homotopy equivalences.

Recall from Definition 4.1 that a functor p : E → B (in Cat) is said to be
a pseudo-fibration if for every object a ∈ E and every isomorphism g ∈ B with
target p(a), there exists an isomorphism f ∈ E with target a such that p(f) = g.
Recall also that a functor u : A→ B is said to be monic on objects if the induced
map Ob(A)→ Ob(B) is monic. The following theorem describes the natural model
structure on Cat.

Theorem 6.2. [JT1][Rez] The category Cat admits a model structure in which a
cofibration is a functor monic on objects, a weak equivalence is an equivalence of
categories and a fibration is a pseudo-fibration. The model structure is cartesian
and proper. Every object is fibrant and cofibrant. A functor is an acyclic fibration
iff it is an equivalence surjective on objects.

We shall denote this model category/structure shortly by (Cat, Eq), where
Eq is the class of equivalences between small categories.

Recall that a map of simplicial sets u : A→ B is said to be a weak categorical
equivalence if the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every quasi-category X (Definition 1.20). Let Wcat be the class of
weak categorical equivalences and C be the class of monomorphisms.

Definition 6.3. We call a map of simplicial sets f : X → Y a (general) pseudo-
fibration if it has the right lifting property with respect to the maps in C ∩Wcat.

It follows from Theorem 5.22 that this notion extends the notion of pseudo-
fibration between quasi-categories introduced in 4.2. The main theorem of the
chapter is the following:

The following theorem describes the model structure for quasi-categories.

Theorem The category of simplicial sets S admits a Cisinki model structure in
which a fibrant object is a quasi-category. A weak equivalence is a weak categorical
equivalence and a fibration is a pseudo-fibration. The model structure is cartesian.

The theorem will be proved in 6.12.

6.2 General pseudo-fibrations

The main theorem of the section is the following:
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Theorem Let Wcat be the class of weak categorical equivalences, C be the class of
monomorphisms and F is the class of (general) pseudo-fibrations. Then the pair
(C ∩Wcat,F) is a weak factorisation system.

The theorem will proved in 6.11. We first extend Theorem 5.15.

Theorem 6.4. A (general) pseudo-fibration is a weak categorical equivalence iff it
is a trivial fibration.

Proof: A trivial fibration is a (weak) categorical equivalence by 1.22. Conversely, let
f : X → Y be a (general) pseudo-fibration. If f is a weak categorical equivalence,
let us show that it is a trivial fibration. By D.1.12, there exists a factorisation
f = qi : X → P → Y with i ∈ C and q a trivial fibration. The map i is a weak
categorical equivalence by three-for-two, since q is a weak categorical equivalence
by 1.22. It follows that the square

X

i

��

1X // X

f

��
P

q // Y

has a diagonal filler r : P → X. The relations ri = 1X , fr = q and qi = f show
that the map f is a retract of the map q. Therefore f is a trivial fibration, since
q is a trivial fibration.

Let FQ be the class of pseudo-fibrations between quasi-categories.

Lemma 6.5. We have C ∩Wcat = tFQ. Hence the class C ∩Wcat is saturated.

Proof: We have C ∩Wcat ⊆ tFQ, since we have (C ∩Wcat) t FQ by 5.22. Let us
show that we have tFQ ⊆ C ∩Wcat. Let u : A → B be a map in tFQ. Let us
first verify that u ∈ C. For this, let us choose a mid anodyne map i : A→ X with
values in a quasi-categorie X (this can be done by factoring the map A→ 1 as a
mid anodyne map i : A→ X followed by a mid fibration). The square

A

u

��

i // X

��
B // 1

has a diagonal filler d : B → X, since the map X → 1 belongs to FQ. Thus, u
is monic, since du = i is monic. Let us now show that u ∈ Wcat. For this, let us
first show that the map 〈u, f〉 is a trivial fibration for any map f ∈ FQ. For this,
it suffices to show that we have v t 〈u, f〉 for every monomorphism v : S → T .
But the condition v t 〈u, f〉 is equivalent to the condition u t 〈v, f〉 by 2.14. We
have 〈v, f〉 ∈ FQ by 5.13. Hence we have u t 〈v, f〉, since we have u ∈ tFQ by
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hypothesis. Thus, v t 〈u, f〉. This proves that 〈u, f〉 is a trivial fibration. We can
now show that u is a weak categorical equivalence. If X is a quasi-category, then
the map Xu : XB → XA is a trivial fibration by what we have proved applied
to the map X → 1. Thus, Xu is a categorical equivalence by 1.22. Hence the
functor τ1(Xu) is an equivalence of categories by 1.27. It follows that the map
τ0(u,X) = τ0(Xu) is bijective. Therefore, u ∈Wcat.

We can now extend theorem 5.13.

Theorem 6.6. If f : X → Y is a (general) pseudo-fibration then so is the map

〈u, f〉 : XB → Y B ×Y A XA

for any monomorphism u : A → B. Moreover, 〈u, f〉 is a trivial fibration if in
addition u is a weak categorical equivalence.

Proof: Let us show that 〈u, f〉 is a pseudo-fibration. By definition, we have to
show that we have v t 〈u, f〉 for every map v ∈ C ∩ Wcat. But the condition
v t 〈u, f〉 is equivalent to the condition (u ×′ v) t f by 2.14. Hence it suffices to
show that we have u ×′ v ∈ C ∩Wcat. For this, it suffices to show that we have
(u×′ v) t g for every g ∈ FQ by 6.5. But the condition (u×′ v) t g is equivalent to
the condition v t 〈u, g〉 by 2.14. But the map 〈u, g〉 is a pseudo-fibration between
quasi-categories by 5.13, since g is a pseudo-fibration between quasi-categories.
Therefore, we have v t 〈u, g〉 by 5.22. This completes the proof that 〈u, f〉 is a
pseudo-fibration. The first statement is proved. The second statement follows from
the first and the equivalence v t 〈u, f〉 ⇔ u t 〈v, f〉.

Every map f : X → Y in QCat admits a mapping path space factorisation

f = pY iX : X → P (f)→ Y

by 5.17. The factorisation depends functorially on the map f . Let us put MP (f) =
pY : P (f)→ Y . This defines a functor

MP : QCatI → QCatI .

Notice that a directed colimit of quasi-categories is a quasi-category.

Lemma 6.7. The functor MP : QCatI → QCatI preserves directed colimits.

Proof: The simplicial set P (f) is defined by the pullback square

P (f)

pr1

��

pr2 // X

f

��
Y (I)

p0 // Y.
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Hence it suffices to show that that the functor X 7→ X(I) preserves directed
colimits. But we have a pull-back square

X(I)

��

// XI

��
Cosk0(X(I)) // Cosk0(XI),

since the inclusion X(I) ⊆ XI is 0-full. It thus suffices to show that each functor
X 7→ XI , X 7→ Cosk0(XI) and X 7→ Cosk0(X(I)) preserves directed colimits.
We have Cosk0(XI) = Cosk0(X1) and Cosk0(XI) = Cosk0(X ′

1), where X ′
1 ⊆ X1

denotes the set of quasi-invertible arrows in X. Hence it suffices to show that each
functor X 7→ Cosk0(X1) and X 7→ Cosk0(X ′

1) preserves directed colimits. This
is clear for the first, since the functor Cosk0 : S → S preserve directed colimits.
Hence it remains to show that the functor X 7→ X ′

1 preserves directed colimits.
But we have a pull-back square

X ′
1

��

// Iso(τ1(X))

��
X1

// Ar(τ1(X)),

where Ar(C) (resp. Iso(C)) denotes the set of arrows of a category C. The functor
τ1 : S → Cat is cocontinuous. Hence it suffices to show that the functors Ar
and Iso : Cat → Set preserve directed colimits. We have Ar(C) = Cat(I, C)
and Ar(C) = Cat(J,C), where I = [1] and J is the groupoid generated by one
isomorphism 0→ 1. But the functors Cat(I,−) and Cat(J,−) preserves directed
colimits, since the categories I and J are finitely presentable.

A functor R : EI → EI together with a natural transformation ρ : Id → R
associates to a map u : A→ B a commutative square of simplicial sets

A

u

��

ρ1(u) // R1(u)

R(u)

��
B

ρ0(u) // R0(u).

Lemma 6.8. There exists a functor R : SI → SI together with a natural transfor-
mation ρ : Id→ R such that:

• R preserves directed colimits;

• the map R(u) is a pseudo-fibration between quasi-categories;

• the maps ρ0(u) and ρ1(u) are weak categorical equivalences.
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Proof: Let Σ be the set of inner horns hk
n : Λk[n] ⊂ ∆[n]. It follows from D.2.10

that there exists a functor F : S → S together with a natural transformation
φ : Id→ F having the following properties:

• the map φX : X → F (X) is mid anodyne for every X;

• the simplicial set F (X) is a quasi-categories for every X.

Moreover, the functor F preserves directed colimits, since every Λk[n] is a finitely
presented simplicial set. If u : A → B is a map of simplicial sets, consider the
diagram

A

u

��

φA // F (A)

F (u)

��

iF (A)// P (F (u)),

pF (B)yyttttttttt

B
φB // F (B) ,

where F (u) = pF (B)iF (A) is the mapping path factorisation of map F (u). Let
us put R(u) = pF (B), ρ0(u) = iF (A)φA and ρ1(u) = φB . This defines a functor
R : SI → SI together with a natural transformation ρ : Id→ R. The map φB is a
weak categorical equivalence, since a mid anodyne map is a weak categorical equiv-
alence by 2.29. Similarly, the map φA is a weak categorical equivalence. Hence the
composite iF (A)φA is a weak categorical equivalence, since iF (A) is an equivalence
of quasi-categories by 5.17. Hence the maps ρ0(u) and ρ1(u) are weak categori-
cal equivalences. The map R(u) is a pseudo-fibration between quasi-categories by
5.17. By definition, R(u) = MP (F (u)), where MP is the mapping path functor in
6.7. Hence the functor R preserves directed colimits, since the functor F preserves
directed colimits and the functor MP preserves directed colimits by 6.7.

Lemma 6.9. A map of simplicial set u : A → B is a weak categorical equivalence
iff the map R(u) is a trivial fibration.

Proof: The horizontal maps in the following square are weak categorical equiva-
lences,

A

u

��

ρ1(u) // R1(u)

R(u)

��
B

ρ0(u) // R0(u).

It follows by three-for-two that u is a weak categorical equivalence iff R(u) is a
weak categorical equivalence. But R(u) is a weak categorical equivalence iff it is a
trivial fibration by 6.4, since it is a pseudo-fibration.
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Corollary 6.10. A directed colimit of weak categorical equivalences Wcat ⊂ S is a
weak categorical equivalence.

Proof: The functor R : SI → SI preserves directed colimits. A directed colimits of
trivial fibrations in the category S is a trivial fibration by 2.5. The result follows.

Theorem 6.11. If F is the class of pseudo-fibrations, then the pair (C ∩Wcat,F)
is a weak factorisation system

Proof: The class C ∩Wcat is saturated by 6.5. Let us show that it is generated
by a set of maps. We shall use Theorem D.2.16. It suffices to show that the class
C ∩ Wcat can be defined by an accessible equation. Let us first show that the
class Wcat can be defined by an accessible equation. We shall use the functor R
of Lemma 6.8. A map u : A → B is a weak categorical equivalence iff the map
R(u) is a trivial fibration by 6.9. The functor R is accessible, since it preserves
directed colimits by 6.8 But the class of trivial fibrations can be defined by an
accessible equations by D.2.14. It follows by composing that the class of weak
categorical equivalences can be defined by an accessible equation. The class of
monomorphisms C can be defined by an accessible equation by D.1. It follows that
the intersection C ∩Wcat can be defined by an accessible equation by D.2.13. It
follows by D.2.16 that the saturated class C ∩Wcat ⊂ S is generated by a set of
maps Σ. Then we have Σt = F , since we have (C ∩Wcat)t = F by definition of
F . But the pair (Σ,Σt) is a weak factorisation system by D.2.11. This shows that
the pair (C ∩Wcat,F) is a weak factorisation system.

6.3 The model structure

We can now establish the model structure for quasi-categories:

Theorem 6.12. The category of simplicial sets S admits a Cisinki model structure
in which a fibrant object is a quasi-category. A weak equivalence is a weak cat-
egorical equivalence and a fibration is a pseudo-fibration. The model structure is
cartesian.

Proof: Let us denote by Wcat the class of weak categorical equivalences, by C
the class of monomorphisms, and by F the class of pseudo-fibrations. The class
Wcat has the ”three-for-two” property by 1.25. The pair (C ∩Wcat,F) is a weak
factorisation system by 6.11. The intersection F ∩ Wcat is the class of trivial
fibrations by 6.4. Hence the pair (C,F ∩Wcat) is a weak factorisation system by
D.1.12. This proves that the triple (C,Wcat,F) is a model structure. The model
structure is cartesian, since the product of two weak categorical equivalences is a
weak categorical equivalence by 2.28. Let us now show that the fibrant objects are
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the quasi-categories. If X is a quasi-category, then the map X → 1 is a pseudo-
fibration by 4.4. The converse is obvious since a pseudo-fibration is a mid fibration.
This shows that the fibrant objects are the quasi-categories.

The model structure for quasi-categories is a Cisinski model structure. It is
thus determined by its class of fibrant objects. We shall denote the model structure
for quasi-categories shortly by (S,QCat) or by (S,Wcat).

Remark 6.13. The model structure (S,QCat) is not right proper. However, it can
be shown that the base change of a weak categorical equivalence along a left (resp.
right) fibration is a weak categorical equivalence.

Recall also form Definition E.2.15 that a Quillen pair (F,G) is called a ho-
motopy reflection if the right derived functor GR is fully faithful. Dually, the pair
is called a homotopy coreflection if the left derived functor FL is fully faithful.

Proposition 6.14. The pair of adjoint functors

τ1 : S↔ Cat : N

is a homotopy reflection between the model categories (S,Kan) and (Cat, Eq).

Proof: The functor τ1 takes a monomorphism of simplicial sets to a functor monic
on objects, since we have Obτ1A = A0 for every simplicial set A. It takes a
weak categorical equivalence to an equivalence of categories by Proposition 1.23.
This shows that the pair (τ1, N) is a Quillen adjunction. Let us show that it is
a homotopy reflection. By Proposition E.2.17, it suffices to show that the map
τ1LNC → C is an equivalence for every C ∈ Cat, where LNC → NC de-
notes a cofibrant replacement of NC. But this is clear, since NC is cofibrant and
τ1NC = C.

Recall from Definition E.2.22 that a model structure (C,W,F) on a category
E . is said to be a Bousfield localisation of another model structure (C′,W ′,F ′)
on the same category if C = C′ and W ′ ⊆ W; in which case the first is also a
homotopy reflection of the second.

Proposition 6.15. The classical model structure (S,Kan) is a Bousfield localisation
of the model structure (S,QCat). It is thus a homotopy reflection of the model
structure for quasi-categories.

Proof: The cofibrations are the monomorphisms in both model structures. Every
weak categorical equivalence is a weak homotopy equivalence by 1.21.
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Corollary 6.16. A weak categorical equivalence is a weak homotopy equivalence and
a Kan fibration is a pseudo-fibration. The converse is true for a map between Kan
complexes.

Proof: This follows from Proposition E.2.21 and Proposition E.2.23.

Corollary 6.17. The following conditions on a simplicial set A are equivalent:

• (i) τ1(A) is a groupoid

• (ii) there exists a weak categorical equivalence A→ A′ with codomain a Kan
complex A′;

• (iii) every weak homotopy equivalence A→ A′ with codomain a Kan complex
A′ is a weak categorical equivalence.

Proof: Let i : A → A′ be a weak categorical equivalence with codomain a quasi-
category A′. The functor τ1(i) : τ1(A)→ τ1(A′) is an equivalence of categories by
Proposition 6.14. Hence the category τ1(A) is a groupoid iff the category τ1(A′)
is a groupoid. But τ1(A′) is a groupoid iff A′ is a Kan complex by Theorem 4.14,
since A′ is a quasi-category. The equivalence (i)⇒(ii) is proved. The equivalence
(ii)⇒(iii) then follows from Proposition E.2.21.

Proposition 6.18. The groupoid J is a fibrant interval of the model category (S,QCat).
If A is a simplicial set, then the simplicial set A× J is a cylinder object for A. If
X is a quasi-category, then the quasi-categories XJ and X(I) are both path objects
for X.

Proof: The inclusion {0, 1} ⊂ J is a cofibration since it is monic. The map J → 1
is an acyclic fibration in (S,QCat) since it is an acyclic fibration in (Cat, Eq)
and the nerve functor N : Cat → S is a right Quillen functor by 6.14. The first
statement is proved. The second statement follows from the first, since the model
structure is cartesian. The second statement follows from 5.16 and 5.20.

Definition 6.19. We shall say that two maps of simplicial sets f, g : A → B
are quasi-isomorphic f they define the same morphism in the homotopy category
Ho(S,QCat).

Proposition 6.20. If B is a quasi-category, then two maps f, g : A→ B are quasi-
isomorphic iff they are isomorphic in the category τ1(A,B) = τ1(BA).

Proof: If B is a quasi-category, then the simplicial set BJ is a path object for
B by 6.18, where J is the groupoid generated by one isomorphism 0 → 1. Let
q0, q1 : BJ → B be the projections. By A, two maps f, g : A → B are equal in
the homotopy category iff there exists a map h : A → BJ such that q0h = f and
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q1h = g, since A is cofibrant and B fibrant. But the homotopy h is the same thing
as a map k : J → BA such that k(0) = f and k(1) = g. But the simplicial set
BA is a quasi-category, since B is a quasi-category. Thus, the existence of k is
equivalent to the existence of an isomorphism f → g in the quasi-category BA by
4.22. This proves the result, since f and g are isomorphic in the quasi-category
BA iff they are isomorphic in the category τ1(BA) by 1.13.

Proposition 6.21. Let α : f → g : A → B be a homotopy between two maps of
simplicial sets. If the arrow α(a) : f(a) → g(a) is invertible in the category τ1B
for every vertex a ∈ A, then the maps f, g : A→ B are quasi-isomorphic.

Proof: Let us choose a weak categorical equivalence i : B → X with values in a
quasi-category X. The arrow iα(a) : if(a) → ig(a) is invertible in the category
τ1X for every vertex a ∈ A, since the arrow α(a) is invertible in the category τ1B
by assumption. It follows by 5.14 that the homotopy i ◦ α is invertible in XA by
5.14. It then follows by 6.20 that if = ig in the homotopy category Ho(S,QCat).
Thus, f = g in the homotopy category, since i is invertible in this category.

Consider the functor k : ∆ → S defined by putting k[n] = ∆′[n] for every
n ≥ 0, where ∆′[n] denotes the (nerve of the) groupoid freely generated by the
category [n]. If X ∈ S, let us put

k!(X)n = S(∆′[n], X)

for every n ≥ 0. This defines a functor k! : S→ S. From the inclusion ∆[n] ⊆ ∆′[n],
we obtain a map k!(X)n → Xn for each n ≥ 0 and hence a map of simplicial sets
βX : k!(X) → X. This defines a natural transformation β : k! → Id. The functor
k! has a left adjoint k! which is the left Kan extension of the functor k : ∆ → S
along the Yoneda functor. The natural transformation β : k! → Id has a left
adjoint α : Id→ k!

Theorem 6.22. The pair of adjoint functors

k! : S↔ S : k!

is a Quillen adjunction between the model categories (S,Kan) and (S,QCat).
Moreover, the map αX : X → k!(X) is a weak homotopy equivalence for every X.

Proof: The functor k! takes the inclusion ∂∆[1]→ ∆[1] to the inclusion ∂∆[1]→
∆′[1] . It follows by B.0.17 that the functor k! preserves monomorphisms. If X =
∆[n], then the map αX : X → k!X coincides with the natural inclusion ∆[n] ⊆
∆′[n]. It is thus a weak homotopy equivalence for every n ≥ 0. It follows from
B.0.18 that αX is a weak homotopy equivalence for every X. Hence the horizontal
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maps of the following commutative square are acyclic,

X

f

��

αX // k!(X)

k!(f)

��
Y

αY // k!(Y ).

It follows by three-for-two that the functor k! takes an acyclic map f : X → Y
to an acyclic map k!(f) : k!(X) → k!(Y ). We saw that the functor k! takes a
monomorphism to a monomorphism. This shows that k! is a left Quillen functor.

Proposition 6.23. For every X ∈ S, we have τ1k!X = π1X.

Proof: The functors τ1k! and π1X are cocontinuous. Hence it suffices to prove the
equality τ1k!X = π1X in the case where X = ∆[n]. But in this case where have

τ1k!∆[n] = τ1∆′[n] = π1∆[n].

For any map of simplicial sets u : A→ B, let us denote by α•(u) the map

B tA k!(A)→ k!(B)

obtained from the square

A

u

��

αA // k!(A)

k!(u)

��
B

αB // k!(B).

Dually, for any map f : X → Y let us denote by β•(f) the map

k!(X)→ k!(Y )×Y X

obtained from the square

k!(X)

k!(f)

��

βX // X

f

��
k!(Y )

βY // Y.

Lemma 6.24. The map α•(u) is monic if u is monic.
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Proof: Let us denote by A the class of maps u : A→ B such that α•(u) is monic.
Let us show that A is saturated. By D.1.12, the map α•(u) is monic iff we have
α•(u) t f for every trivial fibration f . But the condition α•(u) t f is equivalent
to the condition u t β•(f) by D.1.15. Thus, u belongs to A iff we have u t β•(f)
for every trivial fibration f . This shows that the class A is saturated. Let us now
prove that every monomorphism belongs to A. By B.0.8, it suffices to show that
the inclusion δn : ∂∆[n] ⊂ ∆[n] belongs to A for every n ≥ 0. This is clear if n = 0
since the map α0 : ∆[0]→ ∆′[0] is an isomorphism. Let us now suppose n > 0. It
is easy to verify that the square of monomomorphisms

∆[n− 1]

di

��

� � // ∆′[n− 1]

d′i
��

∆[n] �
� αn // ∆′[n]

is cartesian for every i ∈ [n]. Let us denote by ∂i∆′[n] the image of the map
d′i : ∆′[n − 1] → ∆′[n]. Then we have α−1

n (∂i∆′[n]) = ∂i∆[n] since the square
obove is cartesian. The functor k! preserves monomorphisms by 6.22. It follows
that it preserves union of sub-objects, since it is cocontinuous. Thus,

k!(∂∆[n]) =
⋃

i∈[n]

∂i∆′[n].

It follows that we have

α−1
n (k!(∂∆[n])) =

⋃
i∈[n]

∂i∆[n] = ∂∆[n].

Hence the square

∂∆[n]

δn

��

// k!(∂∆[n])

k!(δn)

��
∆[n]

αn // ∆′[n]

is cartesian. This shows that α•(δn) is monic. Thus, δn ∈ A for every n ≥ 0. It
follows that every monomorphism belongs to A.

Proposition 6.25. The map αA : A→ k!(A) is monic for any simplicial set A.

Proof: We have αA = α•(iA), where iA denotes the inclusion ∅ → A.
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If X is a quasi-category, then the simplicial set k!(X) is a Kan complex, since
the functor k! is a right Quillen functor Hence the map βX : k!(X) → X can be
factored through inclusion J(X) ⊆ X by 4.19.

Proposition 6.26. The map k!(X)→ J(X) induced by βX is a trivial fibration for
every quasi-category X.

Proof: Every map ∆′[n] → X factors through the inclusion J(X) ⊆ X since the
simplicial set ∆′[n] is a Kan complex. Thus, k!(X) = k!(J(X)). Hence it suffices
to show that the map βX : k!(X) → X is a trivial fibration when X, is a Kan
complex. We shall first prove that β•(f) is a trivial fibration if f is a Kan fibration.
For this, it suffices to show that we have u t β•(f) for every monomorphism u by
D.1.12, But the condition u t β•(f) is equivalent to the condition α•(u) t f by
D.1.15. Hence it suffices to show that α•(u) is a monic weak homotopy equivalence.
The map α•(u) is monic by 6.24. Consider the square.

A

u

��

αA // k!(A)

k!(u)

��
B

αB // k!(B).

The horizontal maps are monic weak homotopy equivalence by 6.25 and 6.22. This
shows that α•(u) is a weak homotopy equivalence. We have proved that β•(f) is
trivial fibration if f is a Kan fibration. We have β•(f) = βX if f is the map X → 1.
Thus, βX is a trivial fibration if X is a Kan complex.

Proposition 6.27. The Quillen adjunction

k! : (S,Kan)↔ (S,QCat) : k!

is a homotopy coreflection.

Proof: Let η : Id → k!k! be the unit of the adjunction k! ` k!. We shall use the
criterion of E.2.17. For this we need to show that the composite

k!(iX)ηX : X → k!k!X → k!X ′

is a weak homotopy equivalence for any simplicial set X, where iX : k!X → X ′

denotes a fibrant replacement of k!X in the model category (S,QCat). We shall
use the commutative diagram

X

αX ""D
DD

DD
DD

DD
ηX // k!k!X

k!(iX) //

βk!X

��

k!X ′

βX′

��
k!X

iX // X ′.
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Let us first show that βX′ is a weak homotopy equivalence. But the functor τ1(iX) :
τ1k!X → τ1X

′ is an equivalence of categories by 6.14, since iX is a weak categorical
equivalence. Hence the category τ1X ′ is a groupoid, since the category τ1k!X is a
groupoid by 6.23. Thus, X ′ is a Kan complex by 4.14. The map k!(X ′) → J(X ′)
induced by βX′ is a trivial fibration by 6.26. But we have J(X ′) = X ′, since
X ′ is a Kan complex. Thus, βX′ is a trivial fibration. This shows that βX′ is a
weak homotopy equivalence. Let us now prove that the composite k!(iX)ηX is
a weak homotopy equivalence. For this, it suffices to show that the composite
βX′k!(iX)ηX is a weak homotopy equivalence by three-for-two, since βX′ is a
weak homotopy equivalence. But we have βX′k!(iX)ηX = iXαX , since the diagram
above commutes. The map iX is a weak homotopy equivalence by 6.15, since it is a
weak categorical equivalence. The map αX is a also a weak homotopy equivalence
by 6.22. Hence the composite iXαX is a weak homotopy equivalence.

Corollary 6.28. A map of simplicial set A → B is a weak homotopy equivalence
iff the map k!(u) : k!(A)→ k!(B) is a weak categorical equivalence.

Proof: This follows from 6.25 if we use E.2.18.

It follows from Proposition 3.12 that the functor (−) ? B : S → B\S has a
right adjoint for any simplicial set B. The right adjoint takes a map of simplicial
sets b : B → X to a simplicial set that we shall denote by X/b or more simply by
X/B if the map b is clear from the context.

Let us denote by (S/B,QCat) the model category/structure on the category
S/B which is induced the model category (S,QCat)

Proposition 6.29. The pair of adjoint functors

(−) ? B : S↔ B\S : (−)/B

is a Quillen pair between the model categories (S,QCat) and (S/B,QCat).

Proof The functor (−)?B takes a monomorphism to a monomorphism by 3.8. Let
us show that u ? B is a weak categorical equivalence if the map u : S → T is a
monic weak categorical equivalence. Consider the commutative diagram

S

u

��

// S ? B

i2
��

u?B

''PPPPPPPPPPPP

T
i1 // (T ? ∅) ∪ (S ? B)

u?′iB

// T ? B,

where iB is the inclusion ∅ ⊆ B. The map i2 is a cobase change of the map u. Thus,
i2 is a (monic) weak categorical equivalence, since u is a (monic) weak categorical
equivalence. Hence the result will be proved by three-for-two if we show that the
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inclusion u?′ iB is a weak categorical equivalence. By Lemma E.2.13, it suffices to
show that we have (u?′ iB) t f for every pseudo-fibration between quasi-categories
f : X → Y . But by 3.15, we have (u ?′ iB) t f iff we have u t 〈iB , t, f〉 for every
map t : T → X. The map p = 〈iB , t, f〉 is a right fibration by 3.19 since f is a
mid fibration. The codomain of p is a quasi-category by 4.11. It follows that p is a
pseudo-fibration by 4.10. This shows that we have u t 〈iB , t, f〉, since u is a monic
weak categorical equivalence. We have proved that u ?′ iB is a weak categorical
equivalence. It follows that u ? B is a weak categorical equivalence.
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Chapter 7

The model structure for
cylinders

7.1 Categorical cylinders and sieves

Recall that a full subcategory S of a category A is said to be a sieve if the im-
plication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow f ∈ A. Dually,
a full subcategory S ⊆ A is said to be a cosieve if the implication source(f) ∈
S ⇒ target(f) ∈ S is true for every arrow f ∈ A. If S ⊆ A is a sieve (resp.
cosieve), then there exists a unique functor p : A→ I such that S = p−1(0) (resp.
S = p−1(1)); we say that the sieve p−1(0) and the cosieve p−1(1) are complemen-
tary. Complementation defines a bijection between the sieves and the cosieves of
A.

We shall say that an object of the category Cat/I is a categorical cylinder.
The base of a cylinder p : C → I is the category C(1) = p−1(1) and its cobase is
the category C(0) = p−1(0). The base of a cylinder (C, p) is a cosieve in C and its
cobase is a sieve.

Recall that if A and B are small categories, a distributor R : A⇒ B is defined
to be a functor R : Ao ×B → Set. The distributors A⇒ B form a category

D(A,B) = [Ao ×B,Set].

To every distributor R : A ⇒ B is associated a collage category C = A ?R B
constructed as follows: Ob(C) = Ob(A) tOb(B) and for x, y ∈ Ob(C), we put

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B
R(x, y) if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

309
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Composition of arrows is obvious. Notice that there is a canonical pair of fully
faithful functors,

A
s // A ?R B B.

too

Notice also that A?∅B = AtB and that A?1B = A?B, where 1 is the terminal
distributor A⇒ B.

The obvious canonical functor c : A ?R B → I shows that A ?K B has
the structure of a cylinder. An external map from a distributor K : A ⇒ B to
a distributor R : C ⇒ D is defined to be a pair of functors f : A → C and
g : B → D together with a natural transformation K → (f × g)∗(R). This defines
the morphisms of a (fibered) category that we shall denote by Dist. The collage
functor induces an equivalence of categories

Dist ' Cat/I.

Theorem 7.1.1. The category Cat/I is cartesian closed. The model category (Cat, Eq)
induces a cartesian closed model structure on the category Cat/I. Every object is
fibrant and cofibrant.

7.2 Simplicial cylinders and sieves

If X is a simplicial set, we say that a full simplicial subset S ⊆ X is a sieve if
the implication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow f ∈ X.
Dually, we say that S is a cosieve if the implication source(f) ∈ S ⇒ target(f) ∈ S
is true for every arrow f ∈ X. If h : X → τ1X is the canonical map, then the
map S 7→ h−1(S) induces a bijection between the sieves of X and the sieve of the
category τ1X, and similarly for the cosieves. If S ⊆ X is a sieve (resp. cosieve)
there exists a unique map f : X → I such that S = f−1(0) (resp. S = f−1(1)).
There is thus a bijection between the sieves and the cosieves of X. We shall say
that the sieve f−1(0) and the cosieve f−1(1) are complementary.

We call an object of the category S/I is a (simplicial) cylinder. The base of
a cylinder p : C → I is the simplicial set C(1) = p−1(1) and its cobase is the
simplicial set C(0) = p−1(0). The cobase of a cylinder (C, p) is a sieve in C and
its cobase is a cosieve. If C(1) = 1 (resp. C(0) = 1) we say that C is an inductive
cone (resp projective cone). If C(0) = C(1) = 1 we say that C is a spindle.

Lemma 7.1. If X is a quasi-category, then every map X → I is a pseudo-fibration.

Proof: Every map X → I is a mid fibration by 2.2, since I is a category. Every
map X → I is thus a pseudo-fibration, since every isomorphism of I is a unit.
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The model structure for quasi-categories (S,QCat) induces a model struc-
ture on the category S/B for any simplicial set B. In particular, it induces a model
structure on the category S/I. It follows from the lemma that its category of fi-
brant objects is QCat/I. We shall denote the model structure by (S/I,QCat/I).
The following theorem is the main result of the chapter:

Theorem The model category (S/I,QCat/I) is cartesian closed. Hence the fiber
product over I of two weak categorical equivalences is a weak categorical equiva-
lence.

The theorem will be proved in 7.9. For this we need to establish a few inter-
mediate results.

If i denotes the inclusion ∂I ⊂ I then the pullback functor i∗ : S/I →
S/∂I = S× S associates to a cylinder X the pair of simplicial sets (X(0), X(1)).
The functor i∗ has a left adjoint i! and a right adjoint i∗. We have i!(A,B) = AtB
for any pair of simplicial sets A and B. The structure map of A t B is the map
AtB → I which takes the value 0 on A and the value 1 on B. Moreover, we have
i∗(A,B) = A ? B by Proposition 3.5. The structure map of A ? B is obtainned
by joining the maps A → 1 and B → 1. Every cylinder X is equipped with two
canonical maps

X(0) tX(1)→ X → X(0) ? X(1).

Recall that a functor is said to be a Grothendieck bifibration if it is both a
Grothendieck fibration and a Grothendieck opfibration. Recall that a functor is
said to be a bireflection if it is both a reflection and a coreflection. If a pseudo-
fibration is bireflection, then it is a Grothendieck bifibration.

Proposition 7.2. The functor i∗ : S/I → S× S is a Grothendieck bifibration.

Proof: The functor i! is fully faithful, since the map i : ∂I → I is monic. Hence
the functor i∗ is a bireflection, since it has a right adjoint. It is easy to verify that
i∗ is a pseudo-fibration. It is thus a Grothendieck bifibration.

A map of cylinders f : X → Y induces a pair of maps of simplicial sets
f0 : X(0) → Y (0) and f1 : X(1) → Y (1). The map is cartesian iff the following
square is a pullback,

X
f //

��

Y

��
X(0) ? X(1)

f0?f1 // Y (0) ? Y (1).
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The map is cocartesian iff the following square is a pushout,

X(0) tX(1)

��

f0tf1 // Y (0) t Y (1)

��
X

f // Y.

We shall denote by C(A,B) the fiber at (A,B) of the functor i∗ : S/I → S×S.
It is the category of cylinders with with cobase A and base B. The initial object of
the category C(A,B) is the cylinder AtB, and its terminal object is the cylinder
A ? B.

Let K be a small category and let us put E = K̂ = [Ko,Set]. If B ∈ E ,
we shall denote by el(B), or by K/B, the category of elements of B. The Yoneda
functor y : K → E induces a functor y/B : K/B → E/B. The following result is
classical:

Lemma 7.2.1. The ”singular” functor

(y/B)! : E/B → [(K/B)o,Set]

is an equivalence of categories.

We shall say that an object (X, p) ∈ E/B is trivial over a sub presheaf A ⊆ B
if the induced map p−1(A) → A is an isomorphism. Let us denote by E/(B,A)
the full subcategory of E/B spanned by the objects which are trivial over A. The
category el(A) is a sieve in the category el(B). Let us denote the category of
elements of the complementary cosieve by el(B,A).

Lemma 7.2.2. If i denotes the inclusion el(B,A) ⊆ el(B), then the composite

E/(B,A) // E/B
(y/B)! // [el(B)o,Set] i∗ // [el(B,A)o,Set]

is an equivalence of categories.

The join of two simplices x : ∆[m]→ A and y : ∆[n]→ B is a simplex

x ? y : ∆[m+ 1 + n]→ A ? B.

This defines a functor ? : el(A)× el(B)→ el(A ? B).

Lemma 7.3. The functor ? : el(A)× el(B)→ el(A ? B) induces an equivalence of
categories

el(A)× el(B) ' el(A ? B,A tB).
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Proof: If x : ∆[m] → A and y : ∆[n] → B, we have a commutative diagram of
canonical maps

∆[m] t∆[n] //

xty

��

∆[m] ?∆[n]

x?y

��
A tB //

��

A ? B

p

��
∂I // I,

where ∂I = 1 t 1 = {0, 1} ⊂ I. The bottom square is a pullback by Lemma 3.4.
And also the composite square by the same lemma. It follows that the top square is
a pullback. This show that x?y cannot be factored through the inclusion AtB ⊂
A ? B. Thus, x ? y ∈ el(A ? B,A t B). Conversely, if a simplex f : ∆[p] → A ? B
belongs to el(A?B,AtB), let us show that we have f = x?y for a unique pair of
simplices x : ∆[m]→ A and y : ∆[n]→ B. The assumption implies that the map
pf : ∆[p]→ I cannot be factored through the inclusion ∂I ⊂ I, since the bottom
square in the diagram above is a pullback. It follows that pf : ∆[p]→ I is the join
of two maps ∆[m] → 1 and ∆[n] → 1, where ∆[m] = p−1(0) and n = p −m − 1.
The simplex x : ∆[m] → A is then obtained by composing f with the inclusion
∆[m] ⊂ ∆[m] ? ∆[n] and the simplex y : ∆[n] → A by composing f with the
inclusion ∆[n] ⊂ ∆[m] ?∆[n].

Let S(2) = [∆o × ∆o,Set] be the category of bisimplicial sets. If A,B ∈ S,
let us put

(A�B)mn = Am ×Bn

for m,n ≥ 0. An object of the category S(2)/A�B is a bisimplicial set X equipped
with two augmentations, a row augmentation X → A and a column augmentation
X → B. The functor

� : el(A)× el(B)→ el(A�B)

is obviously an equivalence of categories. By Proposition 7.2.1, we have an equiv-
alence of categories

S(2)/A�B = [el(A�B),Set]

By combining these equivalences with the equivalence of Lemma 7.3, we obtain
an equivalence of categories

D : C(A,B) ' S(2)/A�B.

The equivalence associates to a cylinder X → I the bisimplicial set D(X) defined
by putting

D(X)mn = (S/I)(∆[m] ?∆[n], X)
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for every m,n ≥ 0. If X ∈ C(A,B), the bisimplicial set D(X) is augmented by a
map (ε1, ε2) : D(X)→ A�B. The image of x : ∆[m]?∆[n]→ X by ε1 : D(X)→ A
is obtained by restricting it to ∆[m] ⊂ ∆[m]?∆[n] and its image by ε2 : D(X)→ B
is obtained by restricting it to ∆[n] ⊂ ∆[m] ?∆[n].

We shall denote by S(2)/S2 the category defined by the pullback square

S(2)/S2 //

p

��

(S(2))I

t

��
S× S

� // S(2),

where (S(2))I is the arrow category of S(2) and where t is the target functor.
The functor p is a Grothendieck bifibration, since the functor t is a Grothendieck
bifibration. An object of the category S(2)/S2 is a quadruple (X, p,A,B), where
X is a bisimplicial set, where (A,B) is pair of simplicial sets and where q is a map
of bisimplicial sets X → A�B. A map (X, q,A,B) → (X ′, q′, A′, B′) is a triple
(f, u, v), where f : X → X ′, u : A → A′ and v : B → B′ are maps fitting in the
commutative square

X
f //

q

��

X ′

q′

��
A�B

u�v // A′�B′.

The square is a pullback iff the map (f, u, v) is cartesian. Recall from Proposition
7.2 that the functor i∗ : S/I → S× S is a Grothendieck bifibration.

Proposition 7.4. The functor D induces an equivalence of fibered categories,

D : S/I → S(2)/S2.

Proof: It suffices to show that the functor D takes a cartesian morphism to a
cartesian morphism, since it induces an equivalence between the fibers. Let u :
A′ → A and v : B′ → B be two maps of simplicial sets, and let C ∈ C(A,B),
Then the cylinder C ′ = (u, v)∗(C) ∈ C(A′, B′) is defined by a pullback square of
simplicial sets

C ′ //

��

C

��
A′ ? B′ u?v // A ? B,

where the vertical maps are canonical. We then have to show that the following
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square is a pullback,
D(C ′) //

��

D(C)

��
A′�B′ u�v // A�B.

But this follows directly form the description of D given above.

Let us describe the functor D−1, (quasi-) inverse to the functor D. Let σ :
∆ × ∆ → ∆ be the ordinal sum functor. The functor σ∗ : S → S(2) has a left
adjoint σ! and a right adjoint σ∗. We have σ!(∆[m]�∆[n]) = ∆[m]?∆[n] for every
m,n ≥ 0, by definition of σ!. In particular, σ!(1) = σ!(∆[0]�∆[0]) = ∆[1] = I. It
follows that σ! has a natural lift

σ! : S(2) → S/I.

If i0 denotes the inclusion {0} ⊂ I, then the functor i∗0σ! : S(2) → S is cocontinuous
and we have

i∗0σ!(∆[m]�∆[n]) = ∆[m]

for every m,n ≥ 0. It follows that we have

σ!(X)(0)m = i∗0σ!(X)m = π0Xm?

for every X ∈ S(2) and every m ≥ 0. Similarly, if i1 denotes the inclusion {1} ⊂ I,
then we have

σ!(X)(1)n = i∗1σ!(X)n = π0X?n

for every n ≥ 0. If X → A�B is the structure map of an object in S(2)/S2,
then from the augmentation X → A we obtain a map σ!(X)(0) → A and from
the augmentation X → B a map σ!(X)(1) → A. The cylinder D−1(X) is then
constructed by the following pushout square

σ!(X)(0) t σ!(X)(1) //

��

σ!(X)

��
A tB // D−1(X),

If A and B are simplicial sets, let us denote by A�B the object of S(2)/A�B
defined by the identity map A�B → A�B.

Lemma 7.5. We have D(A ? B) = A�B.

Proof: We have A ? B = i∗(A,B). Hence the functor ? : S × S → S/I is right
adjoint to the functor i∗ : S/I → S×S. But we habe i∗ = pD by Proposition 7.4,
where p is the canonical functor S(2)/S2 → S2. This proves the result, since the
functor (A,B) 7→ A�B is right adjoint to the functor p.
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If u : A→ B and v : S → T are two maps in S/I, we shall denote by u×′
I v

the map
(A×I T ) tA×IS (B ×I S)→ B ×I T

obtained from the commutative square

A×I S

A×Iv

��

u×IS // B ×I S

B×Iv

��
A×I T

u×IT // B ×I T.

We have D(u ×′
I v) = D(u) ×′ D(v), since the functor D is an equivalence of

categories by Proposition 7.4.

Lemma 7.6. We have a canonical isomorphism between the maps

(u1 ?
′ u2)×′

I (v1 ?′ v2) ' (u1 ×′ v1) ?′ (u2 ×′ v2),

for any quadruple of maps of simplicial sets u1 : A1 → B1, u2 : A2 → B2,
v1 : S1 → T1 and v2 : S2 → T2.

Proof: We shall use the equivalence of categories D : S/I → S(2)/S2 of Proposition
7.4. If A is a simplicial set, let us put θ1(A) = A� 1 and θ2(A) = 1 �A. We have
a canonical isomorphism of maps

θ1(u1)×′ θ2(u2)×′ θ1(v1)×′ θ2(v2) ' θ1(u1)×′ θ1(v1)×′ θ2(u2)×′ θ2(v2),

since the operation ×′ is coherently associative and symmetric. Notice that we
have

θ1(A)× θ2(B) = (A� 1)× (1 �B) = A�B

for any pair of simplicial sets A and B, since we have (A�1) × (1�B) = A�B.
Thus, D(A?B) = θ1(A)×θ2(B) by Lemma 7.5. It follows that we have D(u?′v) =
θ1(u)×′ θ2(v) for any pair of maps u : A→ B and v : S → T . Thus,

θ1(u1)×′ θ2(u2)×′ θ1(v1)×′ θ2(v2) = D(u1 ?
′ u2)×′ D(v1 ?′ v2)

= D((u1 ?
′ u2)×′

I (v1 ?′ v2)).

The functor θ1 preserves pullbacks, since the functor A 7→ A�1 preserves pull-
backs. It also preserves pushout, since the functor A 7→ A ? 1 preserves pushout
by Proposition 3.12, since D is an equivalence of categories and since we have
D(A�1) = A?1 by Lemma 7.5. It follows that we have θ1(u×′ v) = θ1(u)×′ θ1(v)
for any pair of maps of simplicial sets u : A → B and v : S → T . Similarly, we
have θ2(u×′ v) = θ2(u)×′ θ2(v). Thus,

θ1(u1)×′ θ1(v1)×′ θ2(u2)×′ θ2(v2) = θ1(u1 ×′ v1)×′ θ2(u2 ×′ v2)
= D((u1 ×′ v1) ?′ (u2 ×′ v2)).
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We have constructed a canonical isomorphism between the maps

D((u1 ?
′ u2)×′

I (v1 ?′ v2)) ' D((u1 ×′ v1) ?′ (u2 ×′ v2)),

This proves the result, since the functor D is an equivalence of categories.

Let us denote the inclusion ∂∆[n] ⊂ ∆[n] by δn and the inclusion Λk[n] ⊂
∆[n] by hk

n.

Lemma 7.7. The saturated class of monomorphisms in S/I is generated by the
following maps

• the map δm ? ∅ for m ≥ 0;

• the map δm ?′ δn for m,n ≥ 0;

• the map ∅ ? δn for n ≥ 0.

The saturated class of mid anodyne maps in S/I is generated by the following
maps

• the map hk
m ? ∅ for 0 < k < m

• the map hk
m ?′ δn for 0 < k ≤ m and n ≥ 0;

• the map δm ?′ hk
n for m ≥ 0 and 0 ≤ k < n;

• the map ∅ ? hk
n for 0 < k < n

Proof Let us denote the restriction of a simplex u : ∆[n] → I to ∂∆[n] by ∂u.
The saturated class of monomorphisms in S/I is generated by the set of inclusions
(∂∆[n], ∂u) ⊂ (∆[n], u), where u runs in the simplices of I. But the simplices of I
are of the following three kinds:

• a simplex ∆[m] ? ∅ → I for m ≥ 0;

• a simplex ∆[m] ?∆[n]→ I for m,n ≥ 0;

• a simplex ∅ ?∆[n]→ I for n ≥ 0.

Obviuously, we have

• ∂(∆[m] ? ∅) = ∂∆[m] ? ∅ for every m ≥ 0;

• ∂(∅ ?∆[n]) = ∅ ? ∂∆[n] for every n ≥ 0;

Moreover, we have

∂(∆[m] ?∆[n]) =
(
∂∆[m] ?∆[n]

)
∪

(
∆[m] ? ∂∆[n]

)
for every m,n ≥ 0 by Lemma 3.11. The first statement is proved. The second
statement is proved similarly by using Lemma 3.11.
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Theorem 7.8. If a map u : A ⊆ B in S/I is mid anodyne then so is the map u×′
I v

for any monomorphism v : S → T in S/I.

Proof: The class of mid anodyne maps in S/I is generated by a set of maps Σ1

described in Lemma 7.7. The class of monomorphism in S/I is generated by a
set of maps Σ2 described in the same lemma. By Proposition D.2.6, it suffices
to show if u ∈ Σ1 and v ∈ Σ2, then the map u ×′

I v is mid anodyne. There are
twelve cases to consider, most of which are trivial. We consider the non-trivial
cases first. Suppose that v = δp ?

′ δq, where p, q ≥ 0. We first consider the case
where u = hk

m ?′ δn with 0 < k ≤ m and n ≥ 0. By Lemma 7.6, we have

u×′
I v = (hk

m ×′ δp) ?′ (δn ×′ δq).

But the map hk
m×′ δp is right anodyne by Theorem 2.17 since the map hk

m is right
anodyne when 0 < k ≤ m. Hence the map (hk

m ×′ δp) ?′ (δn ×′ δq) is mid anodyne
by Theorem 3.17, since the map δn ×′ δq is monic by Lemma 2.15. This proves
that the map u ×′

I v is mid anodyne in this case. Let us now consider the case
where u = δm ?′ hk

n, with m ≥ 0 and 0 ≤ k < n. By Lemma 7.6, we have

u×′
I v = (δm ×′ δp) ?′ (hk

n ×′ δq).

But the map hk
m ×′ δp is left anodyne by Theorem 2.17, since the map hk

n is left
anodyne when 0 ≤ k < n. Hence the map (δm ×′ δp) ?′ (hk

n ×′ δq) is mid anodyne
by Theorem 3.17, since the map (δm×′ δp) is monic. We have proved that the map
u×′

I v is mid anodyne in the non trivial cases. Let us now suppose that u = hk
m ?∅.

Observe that we have

(A ? ∅)×I (S1 ? S2) = (A× S1) ? ∅

for any triple of simplicial sets A, S1 and S2. It follows from this observation that
if v1 : S1 → T1 and v2 : S2 → T2 are two maps of simplicial sets, then the image
of the square

S1 ? T1

��

// S2 ? T1

��
S1 ? T2

// S2 ? T2

by the functor (A ? ∅)×I (−) is equal to the square

(A× S1) ? ∅

��

// (A× S2) ? ∅

��
(A× S1) ? ∅ // (A× S2) ? ∅,

which is trivially a pushout. Hence the map (A?∅)×I (v1?′v2) is an isomorphism. It
follows that the map (u?∅)×′

I (v1 ?′ v2) is an isomorphism for any map u : A→ B.
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In particular, the map (hk
m ? ∅))×′

I (δp ?′ δq) is an isomorphism. We have proved
that the map u×′

I v is mid anodyne in this cases. The other cases are left to the
reader.

Theorem 7.9. The model category (S/I,QCat/I) is cartesian closed. Hence the
product over I of two weak categorical equivalences is a weak categorical equiva-
lence.

Proof: We have to show that the cartesian product functor

×I : S/I × S/I → S/I

is a left Quillen functor of two variables. For this, we shall use Proposition E.3.4. If
u and v are two monomorphisms in S/I, then the map u×I v is a monomorphism,
since this property is true in any topos. If C = (C, r) ∈ S/I, let us show that the
functor C ×I (−) = r∗(−) : S/I → S/C takes an acyclic cofibration to an acyclic
cofibration. If a map u : A→ B in S/I is mid anodyne, then so is the map C×I u
by Theorem 7.8. If u : A → B is an acyclic cofibration in S/I, let us show that
the map r∗(u) is an acyclic cofibration. For this, let us choose a factorisation of
the structure map B → I as a mid anodyne map y : B → Y followed by a mid
fibration p : Y → I, together with a factorisation of the composite yu : A → Y
as a mid anodyne map x : A → X followed by a mid fibration g : X → Y . The
horizontal maps in the commutative square

A
x //

u

��

X

g

��
C

y // Y

are weak categorical equivalences, since a mid anodyne map is a weak categorical
equivalence by Corollary 2.29. Hence the map g is a weak categorical equivalence
by three-for-two. The horizontal maps in the following commutative square

r∗(A)
r∗(x) //

r∗(u)

��

r∗(X)

r∗(g)

��
r∗(C)

r∗(y) // r∗(Y )

are mid anodynes, since the functor r∗ takes a mid anodyne map to a mid anodyne
map. Hence they are are weak categorical equivalences. Let us show that r∗(g) is a
weak categorical equivalence. But g is a map between fibrant objects of the model
category (S/I,QCat/I). The functor r∗ : S/I → S/C is a right Quillen functor
by Proposition E.2.4. It follows by Ken Brown’s Lemma E.2.6 that r∗(g) is a
weak equivalence. It then follows by three-for-two that r∗(u) is a weak categorical
equivalence. Hence the conditions of Proposition E.3.4 are satisfied. This shows
that the product functor ×I is a left Quillen functor of two variables.
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If u : A→ B is a map of simplicial sets, then the pullback functor u∗ : S/B →
S/A has a right adjoint u∗. Let us denote by (S/A,Wcat) the model structure on
S/A induces by the model structures for quasi-categories on S.

Corollary 7.10. If u : A→ I, then the pair of adjoint functors

u∗ : S/I ↔ S/A : u∗

is a Quillen pair between the model categories (S/I,QCat/I) and (S/A,Wcat).

Proof: The functor u∗ = A×I (−) is a left Quillen functor by Theorem 7.9.

If i denotes the inclusion {0, 1} = ∂I ⊂ I, then the functor i∗ : S/I → S× S
is given by i∗(A,B) = A ? B.

Corollary 7.11. The pair of adjoint functors

i∗ : S/I ↔ S× S : ?,

is a Quillen pair between the model category (S/I,QCat/I) and the model category
(S,QCat)× (S,QCat).

Proof: We have (S/∂I,QCat/∂I) = (S,QCat)× (S,QCat).

The functor τ1 : S→ Cat induces a functor τ1 : S/I → Cat/I since τ1I = I.
From the inclusion N : Cat ⊂ S we obtain an inclusion N : Cat/I ⊂ S/I.

Proposition 7.12. The induced functor τ1 : S/I → Cat/I preserves finite products.
The resulting pair of adjoint functors

τ1 : S/I → Cat/I : N

is a Quillen pair between the model categories (S/I,QCat/I) and (Cat/I,Eq).

Proof: Obviously, we have τ1I = I. Hence the functor τ1 : S/I → Cat/I preserves
terminal objects. Let us show that the canonical map

iXY : τ1(X ×I Y )→ τ1X ×I τ1Y

is an isomorphism for every X,Y ∈ S/I. The functor τ1 is cocontinuous since
it is a left adjoint. Hence the functor (X,Y ) 7→ τ1(X ×I Y ) is cocontinuous in
each variable, since the category S/I is cartesian closed. Similarly, the functor
(X,Y ) 7→ τ1X ×I τ1Y is cocontinuous in each variable, since the category Cat/I
is cartesian closed by Theorem 7.1.1. Every object of S/I is a colimit of a diagram
of simplices u : ∆[n]→ I. Hence it suffices to prove that the natural transformation
iXY is invertible in the case where X = (∆[m], u) and Y = (∆[n], v). We have
(∆[m], u) = N([m], u) and (∆[n], v) = N([n], v). The functor N preserves fiber
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products since it is a right adjoint. We have τ1NC = C for every category C. It
follows that we have

τ1(X ×I Y ) = τ1(N([m], u)×I N([n], v)) = τ1N(([m], u)×I ([n], v))
= ([m], u)×I ([n], v) = τ1(∆[m], u)×I τ1(∆[n], v)
= τ1X ×I τ1Y.

The first statement is proved. The second statement.is a direct consequence of
Proposition 6.14.
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Chapter 8

The contravariant model
structure

In this chapter we introduce the contravariant model structure on the category
S/B whose fibrant objects are the contravariant (ie right) fibrations X → B; the
weak equivalences are called contravariant equivalences and the fibrations dexter
fibrations. We also introduce the dual covariant model structure whose fibrant
objects are the covariant (ie left) fibrations X → B; the weak equivalences are
called covariant equivalences and the fibrations sinister fibrations.

8.1 Introduction

The category S/B is enriched over the category S for any simplicial set B. We shall
denote by [X,Y ]B , or more simply by [X,Y ], the simplicial set of maps X → Y
between two objects of S/B. By definition, a simplex ∆[n] → [X,Y ] is a map
∆[n]×X → Y in S/B, where ∆[n]× (X, p) = (∆[n]×X, pp2) and where p2 is the
projection ∆[n]×X → X.

The enriched category S/B admits tensor and cotensor products. The tensor
product of an object X = (X, p) by a simplicial set A is the object A × X =
(A×X, pp2). The cotensor product of X = (X, p) by A is an object denoted X [A].
If q : X [A] → B is the structure map, then a simplex x : ∆[n] → X [A] over a
simplex y = qx : ∆[n]→ B is a map A× (∆[n], y)→ (X, p). The object (X [A], q)
can be constructed by a pullback square

X [A] //

q

��

XA

pA

��
B // BA,

323



324 Chapter 8. The contravariant model structure

where the bottom map is the diagonal. There are canonical isomorphisms

[A×X,Y ] = [X,Y ]A = [X,Y [A]]

for any pair X,Y ∈ S/B and any simplicial set A.

We say that two maps f, g : X → Y in S/B are fibrewise homotopic if they
belong the same connected component of the simplicial set [X,Y ]. If we apply the
functor π0 to the composition map

[Y,Z]× [X,Y ]→ [X,Z]

of a triple X,Y, Z ∈ S/B, we obtain a composition law

π0[Y, Z]× π0[X,Y ]→ π0[X,Z]

for a category (S/B)π0 , where we put (S/B)π0(X,Y ) = π0[X,Y ]. There is an
obvious canonical functor S/B → (S/B)π0 .

Definition 8.1. We say that a map X → Y in S/B is a fibrewise homotopy
equivalence if the map is invertible in the homotopy category (S/B)π0 .

If X ∈ S/B, let us denote by X(b) the fiber of the structure map X → B
over a vertex b ∈ B. We call a map f : X → Y in S/B a pointwise homotopy
equivalence if the map fb : X(b) → Y (b) induced by f is a homotopy equivalence
for each vertex b ∈ B. A fibrewise homotopy equivalence is a pointwise homotopy
equivalence but the converse is not necessarly true. Let R(B) (resp. L(B)) be the
full subcategory of S/B spanned by the right (resp. left) fibrations with target B.

Theorem A map f : X → Y in R(B) (resp. in L(B) ) is a fibrewise homotopy
equivalence iff the map fb : X(b) → Y (b) induced by f is a homotopy equivalence
for every vertex b ∈ B.

The Theorem is proved in 8.28.

Definition 8.2. We say that a map u : M → N in S/B is a contravariant equiva-
lence if the map

π0[u,X] : π0[M,X]→ π0[N,X]

is bijective for every X ∈ R(B). Dually, we say that u : M → N is a covariant
equivalence if the map π0[u,X] is bijective for every X ∈ L(B).

A map u : M → N in S/B is a contravariant equivalence iff the opposite
map uo : Mo → No is a covariant equivalence in S/Bo

We shall denote by WR(B) the class of contravariant equivalences in S/B
and by WL(B) the class of covariant equivalences.
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The class of fibrewise homotopy equivalences in S/B has the three-for-two
property. This is true also of the class of contravariant equivalences and of the
class of covariant equivalences The following stronger result is also obvious but
useful.

Proposition 8.3. The class of fibrewise homotopy equivalences in S/B has the
six-for-two property. This is true also of the classes of dexter and covariant equiv-
alences.

Proposition 8.4. Every fibrewise homotopy equivalence is a contravariant equiva-
lence and the converse is true for a map in R(B). Dually, every fibrewise homotopy
equivalence is a covariant equivalence and the converse is true for a map in L(B).

Proof: Let u : X → Y be a contravariant equivalence in R(B). Let us show that
u is a fibrewise homotopy equivalence. For this, let us denote by R(B)π0 the full
subcategory of (S/B)π0 spanned by the objects of R(B). The map

R(B)π0(u, Z) : R(B)π0(Y,Z)→ R(B)π0(X,Z)

is bijective for every object Z ∈ R(B)π0 by the assumption on u. It follows by
Yoneda lemma that u is invertible in the category R(B)π0 . It is thus invertible
in the category (S/B)π0 . This shows that u is a fibrewise homotopy equivalence.

Definition 8.5. We say that a map in S/B is a dexter fibration if it has the right
lifting property with respect to every monic contravariant equivalence. Dually, we
say that a map in S/B is a sinister fibration if it has the right lifting property with
respect to every monic covariant equivalence.

Theorem The category S/B admits a simplicial Cisinski structure in which a fi-
brant object is a right fibration with target B. A weak equivalence is a contravariant
equivalence and a fibration is a dexter fibration. Every fibrewise homotopy equiva-
lence is a contravariant equivalence and the converse is true for a map in R(B).
Every dexter fibration is a right fibration and the converse is true for a map in
R(B).

We denote this model structure by (S/B,R(B)) and we say that it is the
model structure for right fibrations with target B or the contravariant model struc-
ture on S/B.

The theorem is proved in 8.20. Dually,

Theorem The category S/B admits a simplicial Cisinski structure in which a fi-
brant object is a left fibration with target B. A weak equivalence is a covariant
equivalence and a fibration is a sinister fibration. Every fibrewise homotopy equiv-
alence is a covariant equivalence and the converse is true for a map in R(B).
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Every sinister fibration is a left fibration and the converse is true for a map in
L(B).

We denote this model structure by (S/B,L(B)) and we say that it is the
model structure for left fibrations with target B or the covariant model structure
on S/B.

8.2 The contravariant model structure

Proposition 8.6. If X ∈ R(B), then X [A] ∈ R(B) for any simplicial set A.

Proof: By construction, we have a pullback square

X [A]

��

// XA

pA

��
B

q // BA,

where p is the structure map X → B. But the map pA is a right fibration by
Theorem 2.18, since p is a right fibration. Hence also the map X [A] → B by base
change.

Proposition 8.7. If a map v : M → N in S/B is a dexter equivalence, then the
map

[v,X] : [M,X]→ [N,X]

is a homotopy equivalence for every X ∈ R(B).

Proof: For any simplicial set A we have X [A] ∈ R(B) by 8.6. Hence the map
π0[v,X [A]] is bijective, since v is a contravariant equivalence by assumption. But
the map [v,X [A]] is isomorphic to the map [v,X]A by the properties of the cotensor
product. Hence the map π0(A, [v,X]) = π0[v,X]A is bijective for every simplicial
set A. It follows by Yoneda Lemma that the map [v,X] is invertible in the category
Sπ0 . It is thus a homotopy equivalence.

Lemma 8.8. A trivial fibration in S/B is a fibrewise homotopy equivalence. Hence
it is a contravariant equivalence.

Proof: Similar to the proof of 1.22 .

Proposition 8.9. If a dexter fibration in S/B is a contravariant equivalence, then
it is trivial fibration.
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Proof: Let f : X → Y be a dexter fibration which is a a contravariant equivalence.
Let us show that f is a trivial fibration. By Theorem D.1.12 in the appendix,
there exists a factorisation f = qi : X → P → Y with i a monomorphism and q
a trivial fibration. The map i is a dexter equivalence by three-for-two, since q is a
contravariant equivalence by Lemma 8.8. It follows that the square

X

i

��

1X // X

f

��
P

q // Y

has a diagonal filler r : P → X. The relations ri = 1X , fr = q and qi = f show
that the map f is a retract of the map q. Therefore f is a trivial fibration, since
q is a trivial fibration.

If u : S → T is a map in S and v : M → N is a map in S/B, we shall denote
by u×′ v the map

(S ×N) tS×M (T ×M)→ T ×N
in S/B obtained from the commutative square

S ×M //

��

T ×M

��
S ×N // T ×N.

If v : M → N and f : X → Y is a pair of maps in S/B, we shall denote by
[f/v] the map

[N,X]→ [N,Y ]×[M,Y ] [M,X]
in S/B obtained from the commutative square

[N,X] //

��

[M,X]

��
[N,Y ] // [M,Y ].

Finally, if u : S → T is a map in S and f : X → Y is a map in S/B, we shall
denote by [u\f ] the map

X [T ] → Y [T ] ×Y [S] X [S]

in S obtained from the commutative square

X [T ] //

��

X [S]

��
Y [T ] // Y [S].
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Lemma 8.10. If u : S → T is a map in S and if v : M → N and f : X → Y are
maps in S/B, then

u t [f/v] ⇐⇒ (u×′ v) t f ⇐⇒ v t [u\f ].

Proof: This follows from Proposition D.1.18 in the appendix.

We shall say that a map f : X → Y in S/B belongs to a class of maps in S
if this is true of the map underlying f .

Theorem 8.11. Let v : M → N and f : X → Y be two maps in S/B and let
u : S → T be a map in S. Let us suppose that u and v are monic. Then

• if f is a trivial fibration, then so are the maps [u\f ] and [f/v];

• if f is a right fibration, then so are the map [u\f ] and [f/v];

• if f is a right fibration and u is right anodyne, then [u\f ] a trivial fibration;

• if f is a right fibration and v is right anodyne, then [f/v] a trivial fibration.

Proof: If u and v are monic, then the map u ×′ v is monic by Proposition 2.15.
Moreover, u×′v is right anodyne if in addition u or v is right anodyne by Theorem
2.17. The result then follows by using Lemma 8.10. See Corollary D.1.20.

Corollary 8.12. A right anodyne map in S/B is a contravariant equivalence.

Proof: Let v : M → N be a right anodyne map in S/B. If X ∈ R(B) then the
map

[v,X] : [N,X]→ [M,X]

is a trivial fibration by Theorem 8.11 applied the the right fibration X → B. Hence
the map π0[v,X] is bijective, since a trivial fibration is a homotopy equivalence.
This proves that v is a contravariant equivalence.

Proposition 8.13. If f : X → Y is a right fibration in R(B), then the map

[f/v] : [N,X]→ [N,Y ]×[M,Y ] [M,X]

is a Kan fibration between Kan complexes for any monomorphism v : M → N in
S/B.

Proof: The map [f/v] is a right fibration by Theorem 8.11. The result will be
proved by Corollary 4.31 if we show that the codomain of [f/v] is a Kan com-
plex. Let us first show that the simplicial set [M,X] is a Kan complex. The map
[M,X] → 1 is a right fibration by Theorem 8.11 applied to the map Y → B and
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to the inclusion ∅ ⊆ N . This shows that [M,X] is a Kan complex by Corollary
4.31. Consider the the pullback square

[N,Y ]×[M,Y ] [M,X]

��

pr2 // [M,X]

��
[N,Y ]

[u,Y ] // [M,Y ].

The map [u, Y ] is a right fibration by Theorem 8.11 applied to the map Y → B
and to the monomorphism u. Hence the projection pr2 is also a right fibration by
base change. It follows that the domain of pr2 is a Kan complex by Corollary 4.31,
since [M,X] is a Kan complex. This shows that the codomain of [f/v] is a Kan
complex.

Proposition 8.14. Every dexter fibration in S/B is a right fibration and the con-
verse is true for a map in R(B).

Proof: Every right anodyne map is a monic contravariant equivalence by Corollary
8.12. It follows that every dexter fibration is a right fibration. Conversely, let us
show that a right fibration f : X → Y in R(B) is a dexter fibration. We have to
show that if v : M → N is a monic contravariant equivalence in S/B, then we
have v t f . For this it suffices to show that the map

[f/v] : [N,X]→ [N,Y ]×[M,Y ] [M,X]

is a trivial fibration, since a trivial fibration is surjective on 0-cells. But the map
[f/v] is a Kan fibration between Kan complexes by Proposition 8.13. Hence it
suffices to show that [f/v] is a weak homotopy equivalence. But the horizontal
maps of the square

[N,X]

��

// [M,X]

��
[N,Y ] // [M,Y ]

are Kan fibrations by Proposition 8.13. They are also weak homotopy equivalences
by Proposition 8.7, since v is a contravariant equivalence. It follows that [f/v] is a
weak homotopy equivalence. It is thus a trivial fibration. This shows that we have
v t f .

Corollary 8.15. Let u : A→ B and v : B → C be two monomorphisms of simplicial
sets. If u and vu are right anodyne, then so is v.

Proof: The maps u and vu are contravariant equivalences in S/C since a right
anodyne map is a contravariant equivalence by Proposition 8.12. Thus, v is a
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contravariant equivalence in S/C by three-for-two. Let us choose a factorisation
v = ip : B → E → C with i : B → E a right anodyne map and p : E → C a
right fibration. The map i is a contravariant equivalence in S/C, since it is right
anodyne. Thus, p is a contravariant equivalence in S/C by three-for-two. But p is
a dexter fibration in S/C by Proposition 8.14, since it is a right fibration in R(C).
It is thus a trivial fibration by Proposition 8.9. Hence the square

B

v

��

i // E

p

��
C //1C // C.

has a diagonal filler s : C → E, since v is monic. This shows that v is a (codomain)
retract if i. Thus, v is right anodyne, since i is right anodyne.

Let WR(B) be the class of contravariant equivalences in S/B.

Lemma 8.16. If C is the class of monomorphisms in S/B and RF (B) is the class
of right fibrations in R(B), then we have

WR(B) ∩ C = tF0.

Hence the class WR(B) ∩ C is saturated.

Proof: It follows from Proposition 8.14 that we have WR(B) ∩ C ⊆ tRF (B).
Conversely, if a map v : M → N in S/B has the left lifting property with respect
to the maps in RF (B), let us show that it is a monic contravariant equivalence.
Let us first choose a factorisation N → Y → B of the structure map N → B as
a right anodyne map j : N → Y followed by a right fibration Y → B. And then
choose a factorisation fi : M → X → Y of the composite jv : M → Y as a right
anodyne map i : M → X followed by a right fibration f : X → Y . Then the
square

M
i //

v

��

X

f

��
N

j // Y

has a diagonal filler k : N → X by the assumption on v, since f ∈ RF (B). Thus v
is monic, since kv = j is monic. The maps i and j are contravariant equivalences by
Corollary 8.12, since they are mid anodyne. It follows by six-for-two in Proposition
8.3 that v is a contravariant equivalence.

If v : M → N is a monomorphism in S/B and u : S → T is a monomorphism
in S, then the map u×′ v is monic by Proposition 2.15.

Theorem 8.17. If v : M → N is a monic contravariant equivalence in S/B or if u :
S → T is monic weak homotopy equivalence, then u×′ v is a monic contravariant
equivalence.
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Proof: Let us suppose that v is a monic contravariant equivalence and that u is
monic. In this case, let us show that u ×′ v is a contravariant equivalence. By
Lemma 8.16, it suffices to show that we have (u×′ v) t f for every right fibration
f : X → Y in R(B). But the condition (u×′ v) t f is equivalent to the condition
v t [u\f ] by Lemma 8.10. The map [u\f ] is a right fibration by Proposition 8.11,
Let us show that it is a map in R(B). For this, it suffices to show that its codomain
belongs to R(B), since it is a right fibration. Consider the pullback square

X [T ] ×Y [S] X [S] //

p1

��

X [S]

f [S]

��
Y [T ] // Y [S].

The object Y [T ] belongs to R(B) by Proposition 8.11 applied to the map Y →
B and to the inclusion ∅ ⊆ T . The map f [S] is a right fibration by the same
proposition applied to the map f : X → Y and to the inclusion ∅ ⊆ T . Hence the
projection p1 is a right fibration by base change. It follows that the domain of p1

belongs to R(B), since its codomain belongs to R(B). We have proved that the
map [u\f ] is a right fibration in R(B). It is thus a dexter fibration by Proposition
8.14. Hence we have v t [u\g], since v is a monic contravariant equivalence by
assumption. We have proved that u×′ v is a contravariant equivalence. Let us now
suppose that u is a monic weak homotopy equivalence and that v is monic. In this
case, let us show that u ×′ v is a contravariant equivalence. By Lemma 8.16, it
suffices to show that we have (u ×′ v) t f for every right fibration f : X → Y
in R(B). But the condition (u ×′ v) t f is equivalent to the condition u t [f/v]
by Lemma 8.10. The map [f/v] is a Kan fibration by Proposition 8.13. Hence we
have u t [f/v], since u is a monic weak homotopy equivalence by assumption. We
have proved that u×′ v is a contravariant equivalence.

Lemma 8.18. There exists a functor R : (S/B)I → (S/B)I together with a natural
transformation ρ : Id→ R such that:

• R preserves directed colimits;

• the map R(u) is a right fibration in R(B) for every map u;

• the maps ρ0(u) and ρ1(u) are right anodyne for every map u.

Proof: To every simplex x : ∆[n] → B and every horn hk
n : Λk[n] ⊂ ∆[n] we can

associate a map
(hk

n, x) : (Λk[n], xhk
n)→ (∆[n], x)

in S/B. Let us denote by Σ the set of maps (hk
n, x) with 0 < k ≤ n. The result

follows from Corollary D.2.9 in the appendix applied to the category E = S/B
and to the set Σ.
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Proposition 8.19. If A is the class of monic contravariant equivalences in S/B
and B is the class of dexter fibrations, then the pair (A,B) is a weak factorisation
system.

Proof: We have A = WR(B) ∩ C, where WR(B) is the class of contravariant
equivalences in S/B and C is the class of monomorphisms. The class A is saturated
by Lemma 8.16. Let us show that it is generated by a set of maps. It suffices to
show that the class A can be defined by an accessible equation by Theorem D.2.16.
Let us first show that the class WR(B) can be defined by an acessible equation.
We shall use Lemma 8.18. Let v : M → N be a map in S/B. The horizontal maps
in the following square are cofinal equivalences, since a right anodyne map in S/B
is a contravariant equivalence by Corollary 8.12,

M

v

��

ρ1(v) // R1(v)

R(v)

��
N

ρ0(v) // R0(v).

It follows by three-for-two that v is a contravariant equivalence iff R(v) is a dex-
terequivalence. But R(v) is a dexter fibration by Proposition 8.14, since it is a right
fibration by Lemma 8.18. Thus, R(v) a contravariant equivalence iff it is a trivial
fibration by Proposition 8.9 and Proposition 8.8. But the class of trivial fibrations
can be defined by an accessible equations by Proposition D.2.14 in the appendix.
The functor R is accessible, since it preserves directed colimits. It follows by com-
posing that the class of contravariant equivalences can be defined by an accessible
equation. The class of monomorphisms C can be defined by an accessible equation
by Lemma D.1. Hence also the intersection WR(B) ∩ C by Proposition D.2.13.
This proves by Theorem D.2.16 that the saturated class WR(B) ∩ C is generated
by a set of maps Σ. Then we have Σt = B since we have At = B by definition of
B. But the pair (Σ,Σt) is a weak factorisation system by Theorem D.2.11. This
shows that the pair (A,B) is a weak factorisation system.

We can now establish the contravariant model structure in S/B:

Theorem 8.20. The category S/B admits a simplicial Cisinski structure in which
a fibrant object is a right fibration with target B. A weak equivalence is a con-
travariant equivalence and a fibration is a dexter fibration. Every dexter fibration
is a right fibration and the converse is true for a map in R(B).

Proof: For simplicity, let us denote byW the class of contravariant equivalences in
S/B, by C the class of monomorphisms and by F the class of dexter fibrations. Let
us show that the triple (C,W,F) is a model structure in S/B. The intersection
F ∩ W is the class of trivial fibrations by Proposition 8.8 and Proposition 8.9.
This shows that the pair (C,F ∩W) is a weak factorisation system by Theorem
D.1.12. The pair (C∩W,F) is a weak factorisation system by Proposition 8.19. We
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have proved that the triple (C,W,F) is a model structure. The fibrant objects are
the right fibrations with target B by Proposition 8.14. Moreover, a map between
fibrant objects is a dexter fibration iff it is right fibration by the same lemma. The
(tensor) product

× : (S,Kan)× (S/B,W)→ (S/B,W)

is a left Quillen functor of two variables by 8.17. Hence the model structure is
simplicial.

The classical model structure (S,Kan) induces a model structure on the
category S/B. We denote the induced model structure by (S/B,Who).

Proposition 8.21. The model structure (S/B,Who) is a Bousfield localisation of
the contravariant model structure (S/B,R(B)).

Proof: The two model structrures have the same cofibrations. Let us show that
every contravariant equivalence is a weak homotopy equivalence. Let us show that
a contravariant equivalence v : M → N in S/B is a weak homotopy equivalence.
For this, let us choose a factorisation of the structure map N → B as a right
anodyne map j : N → Y followed by a right fibration q : Y → B, together with
a factorisation of the composite jv : M → Y as a right anodyne map i : M → X
followed by a right fibration g : X → Y . The following square commutes by
construction,

M

v

��

i // X

g

��
N

j // Y.

The horizontal maps of the square are contravariant equivalences by the first part
of the proof. It follows by three-for-two that g is a contravariant equivalence. But
we have Y ∈ R(B), since q is a right fibration, and we have X ∈ R(B), since qg
is a right fibration. Thus, g is a fibrewise homotopy equivalence by Proposition
8.4. It is thus a homotopy equivalence. But the horizontal maps of the square are
weak homotopy equivalences since a right anodyne map is anodyne. It follows by
three-for-two that v is a weak homotopy equivalence.

Proposition 8.22. A map is a contravariant equivalence in S/1 = S iff it is a weak
homotopy equivalence. The model structures (S/1,R(1)) and (S,Kan) coincide.

Proof: The cofibrations are the same in both model structures. Let us show that
the weak equivalences are the same. A simplicial set X is a Kan complex iff the
map X → 1 is a right fibration by 4.17. It follows from the definitions, that a map
is a weak homotopy equivalence iff it is a contravariant equivalence in S/1.



334 Chapter 8. The contravariant model structure

8.3 Pointwise homotopy equivalences

Recall that a map f : X → Y in S/B is called a pointwise homotopy equivalence if
the map fb : X(b)→ Y (b) induced by f is a homotopy equivalence for each vertex
b ∈ B. We shall prove in 8.28 that a map f : X → Y in R(B) (resp. in L(B) ) is
a fibrewise homotopy equivalence iff it is a pointwise homotopy equivalence.

Recall that a simplicial set X is said to be contractible if the map X → 1 is
homotopy equivalence. Recall also that X is said to be weakly contractible if the
map X → 1 is a weak homotopy equivalence. A Kan complex is contractible iff it
is weakly contractible. The following result is classical:

Proposition 8.23. A Kan fibration is a trivial fibration iff its fibers are contractible.

Proof: If p : X → B is a trivial fibration then so is the map X(b) → 1 for every
vertex b ∈ B by base change. Hence the map X(b)→ 1 is a homotopy equivalence
by 1.22. Conversely, if the fibers of a Kan fibration p : X → B are contractible, let
us show that p is a trivial fibration. Let us first consider the case where B = ∆[n].
The map 0 : 1→ ∆[n] is a weak homotopy equivalence, since ∆[n] is contractible.
Hence the inclusion X(0) ⊆ X is a weak homotopy equivalence, since the base
change of a weak homotopy equivalence along a Kan fibration is a weak homotopy
equivalence by Theorem 6.1. This shows that X is contractible, since X(0) is
contractible by assumption. Thus, p is a weak homotopy equivalence. It is thus a
trivial fibration. Let us now consider the general case. Let us first show that the
base change of p : X → B along any simplex b : ∆[n] → B is a trivial fibration
b∗(X)→ ∆[n]. Every fiber of the map b∗(X)→ ∆[n] is a fiber of the map X → B
by transitivity of base change. Thus, every fiber of the map b∗(X) → ∆[n]. is
contractible. Hence the map b∗(X)→ ∆[n] is a trivial fibration, since it is a Kan
fibration. This shows by the descent property of trivial fibrations in 2.4 that the
map p : X → B is a trivial fibration.

If X ∈ S/B and b ∈ B0, then we have

X(b) = [b,X],

where b is the map b : 1→ B with value the vertex b ∈ B. If f : a→ b is an arrow
in B, let us put

X(f) = [f,X],

where the map f : I → X is representing the arrow f . From the inclusions
i0 : {0} ⊂ I and i1 : {1} ⊂ I, we obtain two projections

q0 = [i0, X] : X(f)→ X(a) and q1 = [i1, X] : X(f)→ X(b).

Lemma 8.24. If p : X → B is a right fibration, then the projection q1 : X(f) →
X(b) is a trivial fibration for every arrow f : a→ b in B.

Proof: This follows from Theorem 8.11 applied to the structure map X → B and
to the inclusion i1 : {1} ⊂ I, since i1 is right anodyne.
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The following result is classical:

Lemma 8.25. The fibers of a Kan fibration over a connected base are homotopically
equivalent.

Proof: Let p : X → B be a Kan fibration over a connected simplicial set B. If
f : a→ b is an arrow in B, then the two projections

X(a) X(f)
q0oo q1 // X(b)

are trivial fibrations by Lemma 8.24, since p is both a left and a right fibration.
Thus, X(a) is homotopically equivalent to X(b), since a trivial fibration is a ho-
motopy equivalence. The result follows, since B is connected.

Lemma 8.26. Let p : X → B be a right fibration with connected fibers. If B is
connected then X is connected.

Proof: Let us first show that if f : a → b is an arrow in B, then for every pair of
vertices (x, y) ∈ X(a)×Y (b) there is a path x→ y in X. Here a path is defined to
be a sequence of arrows in either directions. To see this, observe that there exist
an arrow g ∈ X with target y such that p(g) = f , since p is a right fibration.
If x′ is the source of g, then there is a path γ : x → x′ in X(a), since X(a) is
connected. By concatenating γ with g, we obtain a path x→ y. Let us now show
that X is connected. For every pair of vertices x, y ∈ X, let us construct a path
x→ y. There is a path β : p(x)→ p(y), since B is connected. Let (b0, b1, · · · , bn)
be the sequence of nodes of β. The map p0 : X0 → B0 is surjective since the fibers
of p are non-empty. For each 0 ≤ i ≤ n, let us choose a vertex xi ∈ X such that
p(xi) = bi. There is then a path γi : xi → xi+1 in X by what we have proved,
since the vertices bi and bi+1 are connected by an arrow in either direction. By
concatenating the paths γi we obtain a path x→ y.

Proposition 8.27. A left fibration is a trivial fibration iff its fibers are contractible.

Proof: The necessity is clear. Conversely, if p : X → B be a left fibation with
contractible fibers, let us show that it is a trivial fibration. The fibers of p are Kan
complexes by Corollary 4.17, since p is a left fibration. Hence the map X(b)→ 1 is
a trivial fibration for every vertex b ∈ B, since it is a (weak) homotopy equivalence
by assumption. Let us show that every commutative square

∂∆[n] u //

��
(i)

X

p

��
∆[n] v // B

has a diagonal filler. This is true if n = 0, since the fibers of p are non-empty
by the assumption. Let us suppose n > 0. By pulling back p over ∆[n] we can
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suppose that Y = ∆[n] and that v the identity map. We shall use Lemma 3.14
where the maps u : A→ B, s : S → T , t : T → X and f : X → Y are respectively
the maps ∂∆[n− 1] ⊂ ∆[n− 1], ∅ → 1, u(n) : 1→ X and p : X → ∆[n]. We have
B ? T = ∆[n− 1] ? 1 = ∆[n] and

(A ? T ) tA?S (B ? S) =
(
∂∆[n− 1] ? 1

)
∪

(
∆[n− 1] ? ∅

)
= ∂∆[n].

Moreover, X/t = X/u(n) and

Y/ft×Y/fts X/ts = ∆[n]/n×∆[n] X = X.

It follows from Lemma 3.14 that the square (i) has a diagonal filler iff the following
square

∂∆[n− 1]

��

//

(ii)

X/u(n)

q

��
∆[n− 1] // X.

has a diagonal filler, where q is the projection. Let us show that q is a trivial
fibration. It is a Kan fibration by Theorem 3.19, since p is a left fibration. Let us
show that q has contractible fibers. The simplicial set X is connected by Lemma
8.26, since ∆[n] is connected and p has connected fibers . But the fibers of a Kan
fibration with a connected base are homotopically equivalent by Lemma 8.25. We
can thus proves that q has contractible fibers by showing that the fiber F =
q−1(u(n)) is contractible. We have u(n) ∈ X(n), where X(n) is the fiber at n
of p : X → ∆[n]. Let us show that F is the fiber at u(n) of the projection
X(n)/u(n)→ X(n). The pullback square

X(n)

��

// X

p

��
1

n // ∆[n].

is a pullback square in the category 1\S, if the simplicial set X(n) is pointed by
u(n) ∈ X(n). The functor (−)/1 : 1\S→ S preserves pullbacks, since it is a right
adjoint. If we apply the functor to the pullback square above, we obtain a pullback
square

X(n)/u(n)

��

// X/u(n)

q

��
1

n // ∆[n],
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since 1/1 = 1 and ∆[n]/n = ∆[n]. Consider the diagram

F //

��

X(n)/u(n)

��

// X/u(n)

q

��
1

u(n) // X(n) //

��

X

p

��
1

n // ∆[n],

The top square on the right is cartesian by Corollary C.0.28 in the appendix, since
its composite with the bottom square is cartesian. It follows that the top square
on the left is cartesian by the same lemma. This shows that F is the fiber at u(n)
of the projection X(n)/u(n)→ X(n). But this projection is a trivial fibration by
Theorem 3.19, since the map X(n) → 1 is a trivial fibration. This shows that F
is contractible and hence that the Kan fibration q : X/u(n)→ X has contractible
fibers. It is thus a trivial fibration by Proposition 8.23. This shows that the square
(ii) has a diagonal filler, and hence that the square (i) has a diagonal filler,

Theorem 8.28. A map f : X → Y in L(B) (resp. in R(B)) is a fibrewise homotopy
equivalence iff it is a pointwise homotopy equivalence.

Proof: The necessity is clear. Conversely, suppose that the map fb : X(b)→ Y (b) is
an homotopy equivalence for every vertex b ∈ B. Let us show that f is a fibrewise
homotopy equivalence. Let us first consider the case where f is a left fibration. In
this case the map fb : X(b) → Y (b) is a left fibration for every vertex b ∈ B by
base change. The simplicial set Y (b) is a Kan complex, since the fibers of a right
fibration are Kan complexes by Corollary 4.17. Therefore, fb is a Kan fibration,
since a right fibration whose codomain is a Kan complex is a Kan fibration by
Corollary 4.31. It is thus a trivial fibration by Theorem 6.1, since it is a homotopy
equivalence by assumption. It follows that fb has contractible fibers. But every
fiber of f is a fiber of a map fb for some b ∈ B0. Thus, f has contractible fibers.
This shows that f is a trivial fibration by Proposition 8.27. In the general case.
let us choose a factorisation f = pi : X → E → Y with i a left anodyne map and
p a right fibration. The map i : X → E is a covariant equivalence by Corollary
8.12, since it is left anodyne. It is thus a fibrewise homotopy equivalence, since a
covariant equivalence in L(B) is a fibrewise homotopy equivalence by Proposition
8.4. It this thus a pointwise homotopy equivalence. It follows by three-for-two
that p is a pointwise homotopy equivalence, since f = pi is a pointwise homotopy
equivalence by assumption. Thus, p is a fibrewise homotopy equivalence by the first
part of the proof. This shows that f = pi is a fibrewise homotopy equivalence, since
i is a fibrewise homotopy equivalence.
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Chapter 9

Minimal fibrations

In this chapter we show that every left fibration over a base has a minimal model
which is unique up to isomorphism.

Recall that the category S/B is enriched over simplicial sets for any simplicial
set B. If X,Y ∈ S/B, we denote by [X,Y ] the simplicial object of maps X → Y .
We denote by L(B) the full subcategory of S/B whose objects are the left fibrations
X → B.

Definition 9.1. If X = (X, p) ∈ L(B), we shall say that a simplicial subset S ⊆ X
is a model of X if the induced map S ⊆ X → B is a left fibration and the inclusion
S ⊆ X is a fibrewise homotopy equivalence. We shall say that X (or p) is minimal
if it has no proper model.

The main result of the chapter is the following theorem.

Theorem Every object X ∈ L(B) has a minimal model. Any two minimal models
of X are isomorphic.

The theorem is proved in 9.11 and in 9.13.

If p : X → B, we shall denote by X(b) the fiber of p at a vertex b ∈ B. We
have X(b) = [b,X], where b is the object of S/B defined by the map b : 1 → B.
More generally, if u ∈ Bn, we shall often by ∆[u] the object of S/B defined by
the map u : ∆[n] → B. We shall denote by ∂u] the map ∂∆[n] → B obtained by
restricting the map u to ∂∆[n] and by ∂∆[u] the object of S/B defined by the
map ∂u : ∂∆[n]→ B. If X ∈ S/B we shall put put

X(u) = [∆[u], X] and X(∂u) = [∂∆[u], X].

339
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A vertex x ∈ X(∂u) is a map x : ∂∆[n]→ X which fits in a commutative square

∂∆[n]

��

x // X

p

��
∆[n] u // B,

where p is the structure map of X. From the inclusion ∂∆u ⊂ ∆[u] we obtain a
projection

∂ : X(u)→ X(∂u).

We shall denote by X(x/u) the fiber of the map ∂ at a vertex x ∈ X(∂u). A vertex
of X(x/u) is a diagonal filler of the square above.

Let us consider the case n = 1. In this case, u is is an arrow f : a→ b in B.
We have ∂f = (a, b) and X(∂f) = X(a)×X(b). A vertex x ∈ X(∂f) is a pair of
vertices (x0, x1) ∈ X(a)×X(b). A vertex g ∈ X(x/f) is an arrow g : x0 → x1 in
X such that p(g) = f .

Let us consider the case n = 0. In this case, u is a vertex b ∈ B. We have
∂b = ∅ and X(∂b) = 1. If ∅ denote the (empty) map ∂b→ X, then X(∅/b) = X(b).

Proposition 9.2. If X ∈ L(B), then he projection

∂ : X(u)→ X(∂u)

is a Kan fibration between Kan complexes for any simplex u : ∆[n]→ B. Moreover,
the simplicial set X(x/u) is a Kan complex for any map x : ∂u→ X.

Proof: The map ∂ : X(u)→ X(∂u) is equal to the map

∂ = [i,X] : [∆[u], X]→ [∂∆[u], X],

where i denotes the inclusion ∂u ⊂ u. But the map [i,X] is a Kan fibration between
Kan complexes by Proposition 8.13. Hence its fibers are Kan complexes.

Definition 9.3. Let (X, p) ∈ L(B). We shall say that two simplicies a, b ∈ Xn are
fibrewise homotopic with fixed boundary if pa = pb, ∂a = ∂b and a is homotopic
to b in the simplicial set X(∂a/pa) = X(∂b/b).

We shall write a ∼= b to indicate that that two simplicies a, b ∈ Xn are
fibrewise homotopic with fixed boundary.

If X ∈ S/B, S ⊆ X and x ∈ Xn we shall often write ∂x ∈ S to indicate that
the map ∂x : ∂∆[n]→ X can be factored through the inclusion S ⊆ X.

Theorem A simplicial subset S ⊆ X is a model of an object X ∈ L(B) iff for every
simplex a ∈ X such that ∂a ∈ S, there exist a simplex b ∈ S such that b ∼= a.
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The theorem will be proved in 9.9.

From a map f : X → Y in S/B and a simplex u : ∆[n] → B we obtain a
commutative square

X(u)

∂

��

// Y (u)

∂

��
X(∂u) // Y (∂u),

where the horizontal maps are induced by f . The top map of the square induces
a map between the fibers of the vertical maps. If x : ∂u→ X, this defines a map

f(x/u) : X(x/u)→ Y (fx/u).

If n = 0 and u = b ∈ B0, the map f(∅/b) is equal to the map fb : X(b)→ Y (fu)
induced by f between the fibers at b.

If v : M → N and f : X → Y is a pair of maps in S/B, we shall denote by
[f/v] the map

[N,X]→ [N,Y ]×[M,Y ] [M,X]

in S/B obtained from the commutative square

[N,X] //

��

[M,X]

��
[N,Y ] // [M,Y ].

Proposition 9.4. Let f : X → Y be a map in L(B). If u : ∆[n] → B and x :
∂∆[u]→ X, then the map f(x/u) : X(x/u)→ Y (fx/u)

• is a Kan fibration if f is a left fibration;

• is a homotopy equivalence if f is a fibrewise homotopy equivalence.

Proof: Let us prove the first statement. Consider the following commutative dia-
gram

X(x/u)

f(x/u)

��

//

(a)

X(u)

q

��
Y (fx/u)

��

//

(b)

X(∂u)×Y (∂u) Y (u)

p1

��

p2 //

(c)

Y (u)

∂

��
1

x // X(∂u) // Y (∂u),
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where p1q = ∂ and p2q is the map X(u)→ Y (u) induced by f . The square (c) is a
pullback by construction. The square (b+c) is a pullback by definition of Y (fx/u).
Hence the square (b) is a pullback by the concellation property of pullback squares
in Corollary C.0.28. The square (a+b) is a pullback by definition of X(x/u). Hence
the square (a) is a pullback by the concellation property of pullback squares. This
shows that f(x/u) is a base change of q. But q is isomorphic to the map

[f/i] : [∆[u], X]→ [∆[u], Y ]×[∂∆[u],Y ] [∂∆[u], X],

where i denotes the inclusion ∂∆[u] ⊂ ∆[u]. Thus, q is a Kan fibration by Proposi-
tion 8.13. This shows that f(x/u) is a Kan fibration. The first statement is proved.
Let us prove the second statement. The vertical maps of the following square are
Kan fibrations between Kan complexes by 9.2.

X(u)

∂

��

// Y (u)

∂

��
X(∂u) // Y (∂u)

The horizontal maps are homotopy equivalences, since f is a fibrewise homotopy
equivalence and the covariant model structure is simplicial. It then follows from
the Cube lemma F.4.6 that the top map induces a homotopy equivalence between
the fibers of the vertical maps. This shows that f(x/u) is a homotopy equivalence.

Definition 9.5. We shall say that a map f : X → Y in L(B) satisfies condition C
if the map

π0f(x/u) : π0X(x/u)→ π0Y (fx/u)

is surjective for every u : ∆[n]→ B and x : ∂u→ X.

Lemma 9.6. A fibrewise homotopy equivalence in L(B) satisfies condition C. Let
f : X → Y and g : Y → Z be two maps in L(B).

• If f and g satisfy condition C then so is gf ;

• If g is a fibrewise homotopy equivalence and gf satisfies condition C, then
f satisfies condition C.

Proof: Let f : X → Y be a fibrewise homotopy equivalence in L(B). Then the map
f(x/u) : X(x/u) → Y (fx/u) is a homotopy equivalence for every u : ∆[n] → B
and x : ∂∆[u] → X by Proposition 9.4. Hence the map π0f(x/u) is bijective.
This shows that f satisfies condition C. Let us prove the second statement. Let
f : X → Y and g : Y → Z be two maps in L(B). If u : ∆[n] → B and x :
∂u → X, then (gf)(x/u) = g(fx/u) ◦ f(x/u). Thus, π0(gf)(x/u) = π0g(fx/u) ◦
π0f(x/u). Thus, if f and g satisfy condition C then so does gf . Let us now
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suppose that gf satisfies condition C. If g is a fibrewise homotopy equivalence, then
the map π0g(fx/u) is bijective. Thus, π0f(x/u) is surjective since the composite
π0(gf)(x/u) = π0g(fx/u)◦π0f(x/u) is surjective by assumption. This shows that
f satisfies condition C.

Recall that a fibrewise homotopy between two maps f, g : X → Y in S/B is
a map h : I ×X → Y in S/B such that h(i0 ×X) = f and h(i1 ×X) = g, where
i0 and i1 denote respectively the inclusions {0} ⊂ I and {1} ⊂ I. Equivalently, it
is a map k : X → Y [I] such that p0k = f and p1k = g, where p0 and p1 are the
canonical projections Y [I] → Y . If Y ∈ L(B), then Y [I] is a path object for Y by
Theorem 8.20.

Lemma 9.7. If two maps in L(B) are fibrewise homotopic and one of the maps
satisfies condition C, then so does the other. If the composite of two maps f : X →
Y and g : Y → Z in L(B) satisfies condition C and f is a fibrewise homotopy
equivalence, then g satisfies condition C.

Proof Let us prove the first statement. Let k : X → Y [I] be a homotopy between
two maps f, g : X → Y in L(B). If f satisfies condition C, let us show that
g satisfies condition C. The projection p0 : Y [I] → Y is a fibrewise homotopy
equivalence, since Y [I] is a path object for Y . Thus, p0 satisfies condition C by
Lemma 9.6. It follows that h satisfies condition C by the same lemma, since
p0h = f satisfies condition C by assumption. Hence the composite p1h = g satisfies
condition C by the same lemma, since the projection p1 also satisfies condition
C. Let us prove the second statement. Suppose that the composite of two maps
f : X → Y and g : Y → Z in L(B) satisfies condition C and that f is a fibrewise
homotopy equivalence. Let e : Y → X be a fibrewise homotopy equivalence quasi-
inverse to the map f : X → Y . The map e satisfies condition C by Lemma
9.6, since it is a fibrewise homotopy equivalence. Thus, the composite gfe satisfies
condition C by the same lemma, since gf satisfies condition C by assumption. But
gfe is fibrewise homotopic to g, since fe is fibrewise homotopic to 1X . Therefore,
g is satisfies condition C by the first part.

Theorem 9.8. A map in L(B) is a fibrewise homotopy equivalence iff it satisfies
condition C.

Proof: The necessity was proved in 9.6. Conversely, if a map f : X → Y in L(B)
satisfies condition C, let us show that it is a fibrewise homotopy equivalence. Let
us first consider the case where f is a left fibration. In this case, we shall prove
that f is a trivial fibration. For this, it suffices to show that every commutative
square

∂∆[n]

i

��

x // X

f

��
∆[n] b // Y
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has a diagonal filler. If q is the structure map Y → B and u = qb, it is equivalent
to showing that the map f(x/u) : X〈x/u〉 → Y 〈fx/u〉 is surjective on 0-cells. The
map π0f(x/u) is surjective by assumption. It follows that f(x/u) is surjective on
0-cells, since it is a Kan fibration by Proposition 9.4. This proves that f is a trivial
fibration. It is thus a fibrewise homotopy equivalence by Theorem 8.20. The result
is proved in the case where f is a left fibration. In the general case, let us factor
f as a left anodyne map i : X → P followed by a left fibration q : P → Y . The
map i is a covariant equivalence by Corollary 8.12. It is thus a fibrewise homotopy
equivalence by Proposition 8.12, since it is a map in L(B). It follows by Lemma
9.7 that q satisfies condition C, since qi = f satisfies condition C by assumption.
Thus, q is a fibrewise homotopy equivalence by the first part of the proof. This
shows that f = qi is a fibrewise homotopy equivalence.

Theorem 9.9. A simplicial subset S ⊆ X is a model of an object X ∈ L(B) iff
for every simplex x ∈ X such that ∂x ∈ S, there exist a simplex x′ ∈ S such that
x′ ∼= x.

Proof: Let p : X → B is the structure map. (⇒). Let x ∈ X be a simplex such
that ∂x ∈ S. Let us put u = px. The simplicial set X(∂x/u) is a Kan complex by
Proposition 9.2. The map

π0S(∂x/u)→ π0X(∂x/u)

induced by the inclusion S ⊆ X is surjective by Theorem 9.8, since the inclusion
is a fibrewise homotopy equivalence in L(B) by the assumption on S. Hence there
exists an element x′ ∈ S(∂x/u) homotopic to x ∈ X(∂x/u). The implication
(⇒) is proved. Let us prove the implication (⇐). Let us first show that the map
pi : S → B is a left fibration, where i is the inclusion S ⊆ X. For this, we have to
show that if 0 ≤ k < n, then every commutative square

Λk[n]

��

a //

(1)

S

pi

��
∆[n] u // B

has a diagonal filler. Let us first examine the case n = 1, in which case we have
k = 0. The square

Λ0[1]

��

ia // X

p

��
∆[1] u // B

has a diagonal filler v : ∆[1]→ X, since p is a left fibration. We have v : a→ c for
some c ∈ X. There exists a vertex c′ ∈ S such that c ∼= c′ by the assumption on
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S. If p(c) = b, then there exists an arrow w : c→ c′ in the fiber X(b), since c ∼= c′.
The following square commutes,

Λ1[2]

��

h // X

p

��
∆[2]

us1 // B,

where h : Λ1[2] → X is the horn (w, ?, v). The square has a diagonal filler t :
∆[2] → X, since p is a left fibration. Let us put z = td1. Then z : a → c′ and
p(z) = u,

a
v //

z   @
@@

@@
@@

@ c

w

��
c′.

We have ∂z ∈ S, since a ∈ S and c′ ∈ S. There is then an element d ∈ S such that
d ∼= z by the assumption on S. We have d : a → c′ and p(d) = p(z) = u. Hence
the map d : ∆[1] → S is a diagonal filler of the square (1). Let us now consider
the case n > 1. The following square

Λk[n]

��

ia // X

p

��
∆[n] u // B

has a diagonal filler v : ∆[n] → X, since p is a left fibration. Let us put c = vdk

and b = udk. We have ∂c ∈ S, since we have a ∈ S and since ∂c is equal to the
restriction of a to the boundary of ∂k∆[n]. Hence there exists a simplex c′ ∈ S
such that c′ ∼= c by the assumption on S. We have pc = pc′ and ∂c = ∂c′, since
c′ ∼= c. There is then a unique map x : ∂∆[n]→ X such that x | ∂k∆[n] = c′ and
x | Λk[n] = a, since c′ and a coincide on the intersection ∂k∆[n] ∩Λk[n]. We have
px = ∂u, since

px | Λk[n] = pa = u | Λk[n] = ∂u | Λk[n]

and
px | ∂k∆[n] = pc′ = pvdk = udk = ∂u | ∂k∆[n].

Let us show that the square

∂∆[n]

��

x //

(2)

X

p

��
∆[n] u // B
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has a diagonal filler. For this, it suffices to show that the simplicial set X〈x/u〉 is
non-empty. By definition, it is the fiber of the projection ∂ : X(u) → X(∂u) at
x ∈ X(∂u). The projection is a Kan fibration by 9.4. Its fiber at ∂v is non-empty
since it contains v. Hence it suffices to show that x is homotopic to ∂v in X(∂u).
The following square of inclusions is a pushout in the category S/B,

∂∂k∆[n]

��

� � // ∂k∆[n]

��
Λk[n] // ∂∆[n] // ∆[n] u // B,

Therefore, the corresponding square of projections is a pullback,

X(∂u)

q

��

//

(3)

X(b)

∂

��
X(ui) // X(∂b),

where b = udk and where we put X(ui) = [ui,X]. We have

q(x) = x | Λk[n] = a = ∂v | Λk[n] = q(∂v).

Thus, x and ∂v belongs to the fiber at a ∈ X(ui) of the map q. But this fiber is
isomorphic to the fiber X(∂c/b) of the map ∂ : X(b) → X(∂b) at ∂c ∈ X(∂b),
since the square (3) is a pullback and since x | ∂∂k∆[n] = ∂c. Hence it suffices to
show that the elements x | ∂k∆[n] and ∂v | ∂k∆[n] are homotopic in X(∂c/b). But
we have x | ∂k∆[n] = c′ and ∂v | ∂k∆[n] = c. The elements c and c′ are homotopic
in X(∂c/b) since we have c′ ' c by assumption. Therefore, the simplicial set
X(x/u) is non-empty. We have proved that the square (2) has a diagonal filler
z : ∆[n]→ X. Notice that ∂z = x ∈ S, since c′ ∈ S and a ∈ S. Hence there exists
an element d ∈ S such that d ∼= z by the assumption on S. We have pd = pz = u,
since d ∼= z. We have di = a, since ∂d = ∂z = x and x | Λk[n] = a. Therefore,
the map d : ∆[n] → S is a diagonal filler of the square (1). We have proved that
pi is a left fibration. It remains to prove that the inclusion S ⊆ X is a fibrewise
homotopy equivalence. But this follows from Theorem 9.8.

Lemma 9.10. Let x and y be two degenerate n-simplicies of a simplicial set X. If
∂x = ∂y then x = y.

Proof: We have xdk = ydk for every k ∈ [n], since we have ∂x = ∂y by assumption.
But we have x = xdisi for some i ∈ [n], since x is degenerate. Similarly, we have
y = ydjsj for some j ∈ [n]. If i = j then x = y. Otherwise, we can suppose that
i < j. Then

x = xdisi = ydisi = ydjsjdisi = ydjdisj−1si = ydjdisisj .
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Thus, x = zsj , where z = ydjdisi. Hence xdj = zsjdj = z and it follows that
x = xdjsj = ydjsj = y.

Theorem 9.11. An object X ∈ L(B) is minimal iff the implication

a ∼= b =⇒ a = b

is true for every pair of simplices a, b ∈ X. Every object X ∈ L(B) contains a
minimal model.

Proof:(⇐) If S ⊆ X is a model, let us show that S = X. For this, we shall prove
by induction on n that we have Sn = Xn. If a ∈ X0, then we have a ∼= b for
some element b ∈ S0 by Theorem 9.9. But we have a = b by the assumption on
X. Thus, a ∈ S0. If n > 0 and a ∈ Xn then we have ∂a ∈ S since Xn−1 = Sn−1

by the induction hypothesis. Hence we have a ∼= b for some element b ∈ Sn by
9.9. But we have a = b by the assumption on X. Thus, a ∈ Sn. We have proved
that Sn = Xn. Thus, S = X and this shows that X is minimal. Let us now
show that every object X ∈ L(B) contains a minimal model. Let P be the set of
simplicial subsets A ⊆ X such that A contains and at most one representative of
each equivalence class of the relation ∼= on X. It is obvious that P is closed under
directed union. It thus contains a maximal element S by Zorn lemma. We claim
that if a ∈ Xn and ∂a ∈ S then there exist b ∈ Sn such that b ∼= a. We can suppose
that a 6∈ S, since otherwise we can take b = a. In this case, let us show that a is
non-degenerate. If a is degenerate then we have a = adisi for some i ∈ [n]. But we
have adi ∈ S, since ∂a ∈ S by the assumption on a. Thus, a ∈ S since a = (adi)si

and S is closed under the degeneracy operators. This is a contradiction. Thus, a
is non-degenerate. Let S′ be the simplicial subset of X generated by S and a. The
simplicies of S′ not in S are of the form as, for some surjection s : [m] → [n],
since ∂a ∈ S by assumption. We have S′ 6∈ P, since S′ 6= S and S is maximal.
Thus, S′ contains two simplices u 6= v such that u ' v. One of these simplices
must belongs to S′ \S, since S ∈ P. They cannot both belong to S′, since as ∼= at
implies as = at by Lemma 9.10. Hence, there exists a surjection s : [m]→ [n] and
an element b ∈ S such that as ∼= b. Let i : [n] → [m] a map such that si = Id.
If m > n the relation ∂b = ∂(as) implies that we have bi = asi = a. This is a
contradiction, since a 6∈ S and bi ∈ S. Thus, m = n and we have b ' a. This
proves the claim made above that if a ∈ Xn and ∂a ∈ S, then there exist b ∈ Sn

such that b ' a. It follows that S is a model of X by Theorem 9.9. Let us show
that S is minimal. If a, b ∈ S and a ∼= b in S then we have a ∼= b in X and hence
a = b by definition of S. This shows that S is minimal by the first part of the
proof. We have proved that X contains a minimal model S ⊆ X. We can now
prove the implication (⇒). If X is minimal, then S = X. Thus, a ∼= b ⇒ a = b.
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Proposition 9.12. Let f : X → Y be a fibrewise homotopy equivalence in L(B). If
X is minimal then f is monic. If Y is minimal, then f is a trivial fibration. If X
and Y are minimal then f is an isomorphism.

Proof: If p : X → Y and q : Y → B are the structure maps, then qf = p. Let
us suppose that X is minimal. We shall prove by induction on n that the map
fn : Xn → Yn is monic. Let us consider the case n = 0. Let a, b ∈ X0 be two
vertices such that fa = fb. Then pa = pb since p = qf . Let us put u = pa = pb.
Then a, b ∈ X(u), the fiber of p at u ∈ B0. The map fu : X(u) → Y (u) is a
homotopy equivalence, since f is a fibrewise homotopy equivalence by assumption.
Thus, a and b are homotopic in X(u), since fu(a) = fu(b). It follows that we
have a ∼= b. Hence we have a = b by Theorem 9.11, since X is minimal by
assumption. Let us now suppose n > 0. Let a, b ∈ Xn be two simplicies such
that fa = fb. We have f∂a = ∂fa = ∂fb = f∂b. Thus, ∂a = ∂b since the map
Skn−1f : Skn−1X → Skn−1Y is monic by the induction hypothesis. We have
pa = pb, since p = qf . Let us put u = pa = pb. Hence we have a, b ∈ X〈x/u〉,
where x = ∂a = ∂b. The map f(x/u) : X(x/u) → Y (fx/u) is a homotopy
equivalence by 9.4, since f is a fibrewise homotopy equivalence by assumption.
Thus a and b are homotopic in X〈x/u〉 since we have fa = fb. Hence we have
a = b by 9.11, since X is minimal by assumption. The first statement is proved.
Let us show that f is a trivial fibration if Y is minimal. For this we shall prove
that every commutative square

∂∆[n]

��

x // X

f

��
∆[n]

y // Y

has a diagonal filler. Let us put u = q(y). The map X〈x/u〉 → Y (fx/u) is a
homotopy equivalence by 9.4, since f is a fibrewise homotopy equivalence. We
have y ∈ Y (fx/u) and hence there exist z ∈ X(x/u) such that f(z) is homotopic
to y in Y (fx/u). Thus f(z) ∼= y and it follows that f(z) = y since Y is minimal.
This shows that the map z : ∆[n]→ X is a diagonal filler of the square. The third
statement follows from the first two since a trivial fibration is surjective.

Proposition 9.13. Let X ∈ L(B). If S ⊆ X is a minimal model, then S is a
domain retract of X and every fibrewise retraction X → S is a trivial fibration.
Two minimal models S ⊆ X and T ⊆ X are isomorphic.

Proof: Let i : S ⊆ X be a minimal model of X. The square

S

i

��

1S // S

pi

��
X

p // B
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has a diagonal filler r : X → S by theorem 8.20 since pi is a left fibration and i
is a monic fibrewise equivalence. Thus, S is a domain retract of X since pri = p.
Every fibrewise retraction X → S is a fibrwise equivalence by three-for-two. It
is thus a trivial fibration by 9.12 since it is surjective. The first statement of the
proposition is proved. Let us prove the second statement. The inclusion T ⊆ X has
a fibrewise retraction r : T → X by the first part of the proof. The retraction is a a
fibrewise homotopy equivalence, since it is a trivial fibration. Hence the composite
ri : S ⊆ X → T is a fibrewise homotopy equivalence. It is thus an isomorphism
by 9.12 since S and T are minimal.

Proposition 9.14. Every left fibration f : X → B admits a factorisation f = f ′p :
X → X ′ → B, whith p : X → X ′ a trivial fibration and f ′ : X ′ → B is a minimal
left fibration.

Proof: Let i : X ′ ⊆ X be a minimal model of the object (X, f) ∈ L(B). Then
the map f ′ = fi : X ′ → X is a minimal left fibration. There exists a fibrewise
retraction p : X → X ′ by 9.13 and it is a trivial fibration. We have f ′p = fip = f
since the retraction is fibrewise.

A map of simplicial sets f : A→ B induces a pair of adjoint functors

f! : S/A oo // S/B : f∗.

It is easy to verify that the functors f! and f∗ are simplicial and that adjunction
f! a f∗ is strong. This means that we have a natural isomorphism of simplicial
sets,

θ : [X, f∗Y ]→ [f!X,Y ]

for X ∈ S/A and Y ∈ S/B. If q : Y → B is the structure map, then we have
pullback square

f∗(Y )

q′

��

f ′ // Y

q

��
A

f // B

If g : X → f∗Y is a map in S/A, then θ(g) = f ′g : f!X → Y .

Lemma 9.15. If Y ∈ L(B), then we have a canonical isomorphism

θ : f∗(Y )(x/u)→ Y (θ(x)/fu)

for u : ∆[n]→ A and x : ∂∆[u]→ f∗(Y ),

Proof: If u : ∆[n] → A, then f!(∆[u]) = ∆[fu] and f!(∂∆[u]) = ∂∆[fu]. If
x : ∆[u]→ f∗Y , then θ(x) = f ′x : ∆[fu]→ Y . It follows from the naturality of θ
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that we have a commutative square of simplicial sets

[∆[u], f∗(Y )] θ //

��

[∆[fu], Y ]

��
[∂∆[u], f∗(Y )] θ // [∂∆[fu], Y ]

where the vertical maps are defined from the inclusions ∂∆[u] ⊂ ∆[u] and ∂∆[fu] ⊂
∆[fu]. The square can be written as a square

f∗(Y )(u) θ //

∂

��

Y (fu)

∂

��
f∗(Y )(∂u) θ // Y (∂fu).

The horizontal maps of the square are isomorphisms. Hence, they induce an iso-
morphism between the fibers of the vertical maps. The result follows.

Lemma 9.16. Suppose that Y ∈ L(B). If u : ∆[n] → A and a, b : ∆[u] → f∗Y ,
then

a ∼= b ⇐⇒ θ(a) ∼= θ(b).

Proof: We have ∂a = ∂b ⇔ θ(∂a) = θ(∂b) since the adjunction θ induces an
isomorphism f∗(Y )(∂u) ' Y (∂fu). If ∂a = ∂b = x, then a is homotopic to b
in f∗(Y )(x/u) iff θ(a) is homotopic to θ(b) in X(θ(x)/fu). since θ induces an
isomorphism f∗(Y )(x/u) ' Y (θ(x)/fu) by Lemma 9.15.

Proposition 9.17. The base change of a minimal left fibration is minimal. If the
base change of a map q : Y → B along a surjection A → B is a minimal left
fibration, then q is a minimal left fibration.

Proof: Let p : X → A be the base change of a map q : Y → B along a map
f : A → B. If q is a minimal left fibration, let us show that p is a minimal left
fibration. The map p is a left fibration, since the base change of a left fibration
is a left fibration. If a, b ∈ X and a ∼= b, then we have pa = pb. If u = pa = pb,
then u : ∆[n]→ A and a, b : ∆[u]→ X. We have θ(a) ∼= θ(b) by lemma 9.16 since
we have a ∼= b. Thus, θ(a) = θ(b) since q : Y → B is a minimal left fibration by
assumption. Thus, a = b since θ is bijective. This proves that the map p : X → A
is a minimal left fibration by 9.11. Let us prove the second statement. Suppose
that f : A→ B is surjective and that p is a minimal left fibration. We shall prove
that q is a minimal left fibration. The map q is a left fibration by the descent
property of left fibrations 2.4. Let us show that it is minimal. By Proposition 9.14,
there exists a factorisation q = q′w : Y → Y ′ → B, with w : Y → Y ′ a trivial
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fibration and q′ : Y ′ → B a minimal fibration. By pulling back this factorisation
along f we obtain a factorisation p = p′v : X → X ′ → A, with v a trivial
fibration and p′ a minimal left fibration by the first part of the proof. Hence the
map v is an isomorphism by 9.12, since a trivial fibration is a fibrewise homotopy
equivalence and p is a minimal left fibration by assumption. The pullback functor
f∗ : S/B → S/A is conservative, since f is surjective. Hence the map w : Y → Y ′

is an isomorphism, since the map v : X → X ′ is an isomorphism. This proves that
the left fibration p is minimal, since the left fibration p′ is minimal.
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Chapter 10

Base changes

10.1 Functoriality

If A is a simplicial set, we shall put

P(A) = Ho(S/A,R(A)).

The category P(1) is the classical homotopy category Ho(S,Kan). Dually, for any
simplicial set A we shall put

Q(A) = Ho(S/A,L(A)).

The functor X 7→ Xo induces an isomorphism of model categories,

(S/A,R(A)) ' (S/Ao,L(Ao)),

hence also of homotopy categories,

P(A) ' Q(Ao).

A map of simplicial sets u : A→ B induces a pair of adjoint functors

u! : S/B ↔ S/A : u∗,

where u! is the composition functor (X, p) 7→ (X,up) and u∗ is the base change
functor. Recall that the category S/A is enriched over S for any simplicial set A.
The functors u! and u∗ are simplicial and the adjunction u! a u∗ is strong. The
proof of the following proposition is left to the reader.

Proposition 10.1. The adjuntion u! a u∗ induces an adjunction

u! : (S/A)π0 ↔ (S/B)π0 : u∗

353



354 Chapter 10. Base changes

Theorem 10.2. If u : A → B is a map of simplicial sets, then the pair of adjoint
functors

u! : S/A↔ S/B : u∗

is a Quillen pair with respect to the contravariant model structures on these cate-
gories. Moreover, the functor u! takes a dexter equivalence to a dexter equivalence.

Proof: By Proposition E.2.14 it suffices to show that the functor u! takes a cofi-
bration to a cofibration and that the functor u∗ takes a fibration between fibrant
objects to a fibration. It is obvious that u! preserves cofibrations, since the cofibra-
tions are the monomorphisms. Let us show that the functor u∗ takes a fibration
between fibrant objects to a fibration. The category of fibrant objects of the model
category (S/B,R(B)) is the category R(B). A map in R(B) is a fibration iff it
is a right fibration by Theorem 8.20. But the base change of a right fibration is a
right fibration. This shows that u∗ takes a fibration between fibrant objects to a
fibration. The first statement is proved. Let us prove the second statement. Every
object of the model category (S/B,R(B)) is cofibrant. It follows that the functor
u! takes a weak equivalence to a weak equivalence by Lemma E.2.6.

For any map u : A→ B, the functor u! : S/A→ S/B induces a functor,

P!(u) : P(A)→ P(B)

since it preserves weak equivalences. If v : B → C, then we have v!u! = (vu)!. It
follows that we have

P!(vu) = P!(v)P!(u).

We thus obtain a functor
P! : S→ CAT.

We shall prove in A that the functor P! has the structure of a 2-functor with
respect to the 2-category structure on S.

For any map u : A→ B, the functor u! : S/A→ S/B is a left Quillen functor
with respect to the contravariant model structures by 10.2. The functor P!(u)
induced by u! is the left derived functor Lu!. It follows that the functor P!(u) has
a right adjoint Ru∗ which is the right derived functor of the functor u∗. We thus
have a pair of adjoint functors

P!(u) : P(A)↔ P(B) : P∗(u),

where we put P∗(u) = Ru∗. If v : B → C, then we have a canonical isomorphism

P∗(vu) ' P∗(u)P∗(v)

by uniqueness of adjoints. We thus obtain a pseudo-functor,

P∗ : So → CAT.

Remark: We shall see later that the functor P∗(u) has a right adjoint P∗(u) for
any map u : A→ B.
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10.2 2-Functoriality

If A is a simplicial set, then the projection p : A × I → A has two canonical
sections i0, i1 : A → A × I. If X ∈ S/A, then p∗(X) = X × I, i0!(X) = X × {0}
and i1!(X) = X×{1}. From the inclusions X×{0} ⊆ X×I and X×{1} ⊆ X×I,
we obtain two natural maps

i0!(X)→ p∗(X) and i1!(X)→ p∗(X).

This defines two natural transformations i0! → p∗ and i1! → p∗.

Lemma 10.3. The natural map i1!(X) → p∗(X) is right anodyne for every object
X ∈ S/A.

Proof: We have to show that the inclusion X×{1} ⊆ X×I is right anodyne. This
follows from Theorem 2.17, since the inclusion {1} ⊂ I is right anodyne.

The Lemma shows that the second map in the following diagram

i0!(X)→ p∗(X)← i1!(X).

is invertible in the homotopy category P(A× I) by Corollary 8.12. By composing
the first map with the inverse of the second we obtain a natural map

σX : i0!(X)→ i1!(X)

in the category P(A× I). This defines a natural transformation

σ : P!(i0)→ P!(i1) : P(A)→ P(A× I).

A homotopy α : f → g between two maps A → B is a map h : A × I → B. By
composing the derived functor

P!(h) : P(A× I)→ P(B)

with the natural transformation σ above we obtain a natural transformation

P!(α) = P!(h) ◦ σ : P!(f)→ P!(g) : P(A)→ P(B).

Lemma 10.4. If u : U → A and v : B → V , then

P!(v ◦ α) = P!(v) ◦ P!(α) and P!(α ◦ u) = P!(α) ◦ P!(u).

Proof: The homotopy v ◦α : vf → vg is defined by the map vh : A× I → V , since
the homotopy α : f → g is defined by the map h : A× I → B. Thus,

P!(v ◦ α) = P!(vh) ◦ σ
=

(
P!(v)P!(h)

)
◦ σ

= P!(v) ◦
(
P!(h) ◦ σ

)
= P!(v) ◦ P!(α).
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The first formula is proved. Let us prove the second formula. The homotopy α◦u :
fu → gu is defined by the map h(u × I) : U × I → B. Let q be the projection
U × I → U and let j0 and j1 be the canonical sections U → U × I. For every
X ∈ S/U we have a commutative diagram of canonical maps

i0!(u!X) //

��

p∗(u!X)

��

i1!(u!X)oo

��
(u× I)!j0!(X) // (u× I)!q∗(X) (u× I)!j1!(X)oo

in which the vertical maps are isomorphisms. Notice the vertical maps on the
extremities are identity maps since (u× I)j0 = i0u and (u× I)j1 = i1u. It follows
that we have a commutative square of maps in P(A× I),

i0!(u!X)
σu!X //

��

i1!(u!X)

��
(u× I)!j0!(X)

(u×I)!(σX) // (u× I)!j1!(X)

in which the vertical natural transformations are identities. This shows that we
have

P!(u× I) ◦ σ = σ ◦ P!(u).

Thus,

P!(α ◦ u) = P!(h(u× I)) ◦ σ
=

(
P!(h)P!(u× I)

)
◦ σ

= P!(h) ◦
(
P!(u× I) ◦ σ

)
= P!(h) ◦

(
σ ◦ P!(u)

)
=

(
P!(h) ◦ σ

)
◦ P!(u)

= P!(α) ◦ P!(u).

We say that a simplicial subset i : A ⊆ B is reflexive if there exists a retraction
r : B → A together with a homotopy α : 1B → ir such that α ◦ i = 1i; we say that
the homotopy α is reflecting B into A. Dually, we say that i : A ⊆ B is coreflexive
if there exists a retraction r : B → A together with a homotopy α : ir → 1B such
that α ◦ i = 1i; we say that the homotopy α is coreflecting B into A.

Lemma 10.5. If a simplicial subset A ⊆ B is coreflexive, then the inclusion i : A ⊆
B is left anodyne.
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Proof: Let r : B → A be a retraction and α : ir → 1B be a coreflecting homotopy.
We then have a commutative diagram

A
i1 //

i

��

(A× I) ∪ (B × 0) //

��

A

i

��
B

i1 // B × I α // B

where i1(x) = (x, 1). The diagram shows that the map i is a retract of the middle
map of the diagram. But the middle map is left anodyne by Theorem 2.17, since
the inclusion {0} ⊂ I is left anodyne. This proves that i is left anodyne.

The barycentric subdivision of the poset [n] is defined to be the poset B[n]
of non-empty subsets of [n]. If S ∈ B[n], let us denote by ∆[S] the full simplicial
subset of ∆[n] spanned by the elements of S. Consider the map µ : B[n] → [n]
which associates to S ∈ B[n] its maximum element µ(S).

Lemma 10.6. If S ∈ B[n] and µ(S) = n, then the inclusion ∆[S] ⊆ ∆[n] is right
anodyne.

Proof The inclusion S ⊆ [n] admits a left adjoint r : [n]→ S since n ∈ S. It then
follows from Lemma 10.5 that the inclusion ∆[S] ⊆ ∆[n] is right anodyne.

If A is a simplicial set, we define a functor

qS : S/A→ S/(A×∆[n])

for each S ∈ B[n] by putting qS(X) = X × ∆[S] for every X ∈ S/A. If S ⊆ T ,
then X ×∆[S] ⊆ X ×∆[T ]. This defines a natural transformation qS → qT .

Lemma 10.7. If S, T ∈ B[n], S ⊆ T and µ(S) = µ(T ), then the map qS(X) →
qS(X) is right anodyne for every X ∈ S/A.

Proof: The inclusion ∆[S] ⊆ ∆[T ] is right anodyne by Lemma 10.6. Hence also
the inclusion X ×∆[S] ⊆ X ×∆[T ] by Theorem 2.17.

A 2-simplex in a simplicial set BA is a map z : A × ∆[2] → B. Let us put
fk = z(A × k) : A → B and αk = z(A × dk) : A × I → B for every k ∈ [2]. This
defines a triangle of homotopies in the simplicial set BA.

f1
α0

��?
??

??
??

f0

α2

??������� α1 // f2

The triangle commutes in the category τ1(BA).
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Lemma 10.8. The triangle of natural transformations

P!(f1)
P!(α0)

$$I
IIIIIIII

P!(f0)

P!(α2)
::vvvvvvvvv P!(α1) // P!(f2).

commutes

Proof: Notice that we have a natural isomorphism (ik)!(X) ' qk(X) for every
k ∈ [2] where ik is the canonical sections A × k : A → A × ∆[2]. For every
X ∈ S/A, we have a diagram of inclusions.

q1(X)

##G
GGGGGGGGGGGGGGGGG

{{wwwwwwwwwwwwwwwwww

q01(X)

##G
GGGGGGGGGGGGGGGGG

q12(X)

{{wwwwwwwwwwwwwwwwww

q0(X)

OO

##G
GGGGGGGGGGGGGGGGG
q012(X) q2(X)

OO

{{wwwwwwwwwwwwwwwwww

q02(X)

OO

If S ⊆ T and µ(S) = µ(T ), then the map qS(X) → qS(Y ) invertible in the
category P(A × ∆[2]) by Lemma 10.7. By inverting these maps we obtain the
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following commutative diagram in the category P(A×∆[2]),

q1(X)

##G
GGGGGGGGGGGGGGGGG

q01(X)

;;wwwwwwwwwwwwwwwwww

##G
GGGGGGGGGGGGGGGGG

q12(X)

��
q0(X)

OO

##G
GGGGGGGGGGGGGGGGG
q012(X)

;;wwwwwwwwwwwwwwwwww

��

q2(X)

q02(X)

;;wwwwwwwwwwwwwwwwww

We thus obtain a commutative triangle in the category P(A×∆[2]),

q1(X)

$$I
IIIIIIII

q0(X)

::vvvvvvvvv
// q2(X).

It shows that the following triangle commutes in the category P(A×∆[2]),

i1!(X)
σ0

$$I
IIIIIIII

i0!(X)

σ2

::uuuuuuuuu
σ1 // i2!(X)

if we use the natural isomorphism (ik)!(X) ' qk(X). Hence the following triangle
of natural transformations commutes

P!(i1)
σ0

$$H
HHHHHHHH

P!(i0)

σ2

;;vvvvvvvvv
σ1 // P!(i2).
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By composing it with the functor P!(z) : P(A × ∆[2]) → P(A), we obtain the
following triangle

P!(f1)
P!(α0)

$$I
IIIIIIII

P!(f0)

P!(α2)
::vvvvvvvvv P!(α1) // P!(f2).

The lemma is proved.

Recall from Chapter 2 that the category S has the structure of a 2-category
Sτ1 if we put Sτ1(A,B) = τ1(A,B) = τ1(BA).

Theorem 10.9. The assignement α 7→ P!(α) gives the functor

P! : S→ CAT

the structure of a 2-functor with respect to the 2-category structure on the category
S.

Proof: If A and B are simplicial sets, let us denote by F (A,B) the category
freely generated by the 1-skeleton of the simplicial set BA. By Proposition B.0.14
the category τ1(A,B) is the quotient of the category F (A,B) by the congruence
relation generated by the relations (zd0)(zd2) ≡ zd1, one for each 2-simplex z ∈
BA. It then follows from Lemma 10.8 that the assignement α 7→ P!(α) induces a
functor

P! : τ1(A,B)→ CAT(P(A),P(B)).

It remains to show that if u : U → A and v : B → V , then we have

P!(v ◦ α) = ∂cv! ◦ P!(α) and P!(α ◦ u) = P!α) ◦ ∂cu!

for every arrow α : f → g in τ1(A,B). Let us prove the first equality. Each side of
the equality is the value of a functor defined on the category τ1(A,B). Hence the
equality can be proved by showing that it holds for a generating set of arrows of
this category. But this follows from Lemma 10.4.

Corollary 10.10. The functor P! : S→ CAT takes a categorical equivalence to an
equivalence of categories.

Corollary 10.11. The contravariant pseudo-functor P∗ : S→ CAT has the struc-
ture of a pseudo 2-functor.

Corollary 10.12. If u : A→ B : v is a pair of adjoint maps between simplicial sets,
then we have

P!(u) a P!(v) ' P∗(u) a P∗(v).

Proof: We have P!(u) a P!(v), since a 2-functor takes an adjoint pair to an adjoint
pair. Hence we have P∗(u) a P∗(v) by adjointness. It follows that we have P!(v) '
P∗(u) by uniqueness of adjoints.
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Corollary 10.13. The functor
oP! : S→ CAT

has the structure of a 2-functor contravariant on 2-cells.

Proof: The functor (−)o : S → S is reversing the direction of the homotopies in
the category S. The corresponding 2-functor (−)o : Sτ1 → Sτ1 is reversing the
direction of the 2-cells. The 2-functor oP! is isomorphic to the composite of the
2-functor (−)o : Sτ1 → Sτ1 followed by the 2-functor P!.

Proposition 10.14. If u : A → B is a left fibration then a map f : M → N in
S/A is a covariant equivalence iff the map u!(f) : u!M → u!N is a covariant
equivalence in S/B.

Proof: The implication (⇒) is clear, since the functor u! takes a covariant equiv-
alence to a covariant equivalence by Proposition 10.2. Conversely, if u!(f) is a
covariant equivalence in S/B, let us show that it is a covariant equivalence in
S/A. Let us choose a factorisation of the structure map N → A as a left anodyne
map j : N → Y followed by a left fibration Y → A together with a factorisation
of the composite jf : M → Y as a left anodyne map i : M → X followed by a left
fibration g : X → Y . The horizontal maps of the square

M

f

��

i // X

g

��
N

j // Y

are covariant equivalences in S/A by Corollary 8.12. Let us show that g is a
covariant equivalence in S/A. If we compose the structure map Y → A with u, the
square becomes a square in S/B. The horizontal maps of the square are covariant
equivalences in S/B by Corollary 8.12. Hence also the map g by three-for-two,
since f is a covariant equivalence in S/B by assumption. But g is a left fibration
in L(A), hence also a left fibration in L(B), since u is a left fibration. Thus, g is a
covariant fibration in L(B) by Theorem 8.20. It is thus a trivial fibration. Hence it
is also a covariant equivalence in S/A by Theorem 8.20. It follows by three-for-two
that f is a covariant equivalence in S/A.

Corollary 10.15. If u : A→ B is a right fibration then the functor

P!(u) : P(A)→ P(B)

is conservative.

proof: This follows from Proposition 10.14 since a map in a model category is
invertible in the homotopy category iff it is a weak equivalence by Proposition
E.1.4.
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If X ∈ S/B and b : 1 → B then b∗(X) is the fiber X(b) of the structure
map X → B at the vertex b. The category P(1) is equivalent to the homotopy
category of Kan complexes by Proposition 8.22. If X ∈ P(B) and b : 1→ B, then
P∗(b)(X) is the contravariant homotopy fiber of X at the vertex b. It is the fiber
a fibrant replacement of X in the contravariant model structure of S/B.

TheoremA map f : X → Y in P(B) is invertible iff the map

P∗(b)(f) : P∗(b)(X)→ P∗(b)(Y )

is invertible in the category P(1) for every vertex b ∈ B.

The theorem is proved in 10.16

Theorem 10.16. A map f : X → Y in P(B) is invertible iff the map

P∗(b)(f) : P∗(b)(X)→ P∗(b)(Y )

is invertible in the category P(1) for every vertex b ∈ B.

Proof: The necessity is clear. Let us prove the converse. We can suppose that the
objects X and Y belongs to R(B), since R(B) is the category of fibrant objects
of the model category (S/B,Wc). In this case the map P∗(b)(f) is represented
by the map fb : X(b) → Y (b). The result then follows from Theorem 8.28 since
a map in a model category is invertible in the homotopy category iff it is a weak
equivalence by Proposition E.1.4.

We saw in Corollary 10.11 that the contravariant pseudo functor

P∗ : S→ CAT

has the structure of a pseudo 2-functor. It thus defines a contravariant functor

P∗ : τ1(A,B)→ CAT(P(B),P(A))

for any pair of simplicial sets A and B. If A = 1, it defines a contravariant functor

P∗ : τ1B → CAT(P(B),P(1)).

By adjointeness, this defines a functor

ΦB : P(B)→ [(τ1B)o,P(1)].

By definition, if X ∈ P(B) and b : 1 → B, then ΦB(X)(b) = P∗(b)(X). The
contravariant functor

ΦB(X) : τ1B → P(1)

is called the homotopy diagram of the object X.

Corollary 10.17. The functor

ΦB : P(B)→ [(τ1B)o,P(1)].

is conservative



Chapter 11

Proper and smooth maps

If u : A→ B is a map of simplicial sets, then the pullback functor

u∗ : S/B → S/A

has a right adjoint u∗. We introduce the notions of proper and smooth maps.
When u is proper, the pair of adjoint functors (u∗, u∗) is a Quillen pair for the
contravariant model structures on these categories. It induces a pair of derived
functors between the homotopy categories

P∗(u) : P(B)↔ P(A) : P∗(u).

Dually, when u is smooth, the pair (u∗, u∗) is a Quillen pair for the covariant model
structures It induces a pair of derived functors between the homotopy categories

Q∗(u) : Q(B)↔ Q(A) : Q∗(u).

We show that a left fibration is proper and that a right fibration is smooth.

Definition 11.1. We say that a map of simplicial sets u : A → B is proper if the
functor u∗ takes a right anodyne map to a right anodyne map. Dually, we say that
u is smooth if the functor u∗ takes a left anodyne map to a left anodyne map.

Theorem 11.2. If u : A→ B is smooth, then the pair of adjoint functors

u∗ : S/B ↔ S/A : u∗

is a Quillen pair for the covariant model structures on these categories and the
functor u∗ takes a sinister equivalence to a sinister equivalence. Dually, if u is
proper, then the pair (u∗, u∗) is a Quillen pair with respect to the contravariant
model structures and the functor u∗ takes a dexter equivalence to a dexter equiva-
lence.

363
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Proof: Let us show that the functor u∗ takes a sinister equivalence to a sinister
equivalence. If f : M → N is a sinister equivalence in S/B, let us choose a
factorisation of the structure map N → B as a left anodyne map j : N → Y
followed by a left fibration Y → B together with a factorisation of the composite
jf : M → Y as a left anodyne map i : M → X followed by a left fibration
g : X → Y . The horizontal maps in the square

M

f

��

i // X

g

��
N

j // Y

are sinister equivalences by Corollary 8.12. Hence also the map g by three-for-two,
since f is a sinister equivalence by assumption. Thus, g is a trivial fibration by
Theorem 8.20, since it is a left fibration in L(B). Thus, u∗(f) is a trivial fibration
by base change. It is thus a sinister equivalence by Theorem 8.20. The horizontal
maps of the square

u∗(M)

u∗(f)

��

u∗(i) // u∗(X)

u∗(g)

��
u∗(N)

u∗(j) // u∗(Y )

are left anodyne, since u is smooth by assumption. Hence they are sinister equiva-
lences by Corollary 8.12. It follows by three-for-two that u∗(f) is a sinister equiva-
lence. We have proved that u∗ takes a sinister equivalence to a sinister equivalence.
It follows that u∗ is a left Quillen functor, since u∗ preserves monomorphisms.

When u : A→ B is proper, the functor u∗ : S/B ↔ S/A preserves the dexter
equivalences. It thus induces a functor between the homotopy categories

Ho(u∗) : Ho(S/B,Wc)→ Ho(S/A,Wc)

It follows that we have u∗R = Ho(u∗) = u∗L. This justifies the following notation:

Notation 11.3. When u : A→ B is proper, we shall denote by

P∗(u) : P(B)↔ P(A) : P∗(u)

the pair of derived functors (u∗L, uR
∗ ) in the contravariant case. When u : A→ B

is smooth, we shall denote by

Q∗(u) : Q(B)↔ Q(A) : Q∗(u)

the pair of derived functors (u∗L, uR
∗ ) in the covariant case.
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Remark: We shall see in A that the functor P∗(u) has a right adjoint P∗(u) for
any map u : A→ B.

Proposition 11.4. The class of smooth (resp. proper) maps is closed under compo-
sition and base change.

Proof: Obviously, a composite of smooth maps is smooth. Let q : Z ×Y X → Z be
the base change of a smooth map p : X → Y along a map Z → Y . Let us show
that q is smooth. For simplicity, let us put W = Z ×Y X. If a map u : A→ B in
S/Z is left anodyne, let us show that the map u ×Z W : A ×Z W → B ×Z W is
left anodyne. The three squares of the following diagram are cartesian by C.0.28.

A×Z W //

��

B ×Z W //

��

W //

q

��

X

p

��
A

u // B // Z // Y.

It follows that u×Z W = u×Y X. Hence the map u×Z W is the base change of
u along p. It is thus left anodyne, since p is smooth by assumption.

Corollary 11.5. A projection A×B → B is both proper and smooth.

Proof: By Proposition 11.4, it suffices to show that the map p : A→ 1 is smooth.
But if a map v : S → T is left anodyne, then so is the map p∗(v) = A×v : A×S →
A× T by Theorem 2.17.

Suppose that we have a cartesian square of simplicial sets

F
v //

q

��

E

p

��
A

u // B

Then the following squares of functors commutes,

P(F )

P!(q)

��

P!(v) // P(E)

P!(p)

��
P(A)

P!(u) // P(B).

From the equality P!(p)P!(v) = P!(u)P!(q) we deduce the equality

P∗(p)P!(p)P!(v)P∗(q) = P∗(p)P!(u)P!(q)P∗(q).
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By composing with the unit id→ P∗(p)P!(p) and the counit P!(q)P∗(q)→ id, we
obtain a canonical natural transformation

P!(v)P∗(q)→ P∗(p)P!(u)

called the Beck-Chevalley transformation. We shall say that the Beck-Chevalley
law holds if the Beck-Chevalley transformation is invertible.

Proposition 11.6. (Proper base change) If a map p : E → B is proper, then the
Beck-Chevalley law holds for every cartesian square of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

Hence the following squares of functors commute up to a Beck-Chevalley isomor-
phism,

P(F )
P!(v) // P(E)

P(A)
P!(u) //

P∗(q)

OO

P(B),

P∗(p)

OO
P(F )

P∗(q)
��

P(E)
P∗(v)oo

P∗(p)

��
P(A) P(B).

P∗(u)oo

Proof: If (X, f) ∈ S/A, then we have a diagram of cartesian squares,

q∗(X) //

��

F
v //

q

��

E

p

��
X

f // A
u // B.

The composite square is cartesian by Corollary C.0.28. Hence the Beck-Chevally
map v!(q∗(X))→ p∗(u!(X)) is invertible. Recall that we have P!(u) = Ho(u!) and
P!(v) = Ho(v!), since functors u! and v! preserve dexter equivalences by Theorem
10.2. The map q is proper by Proposition 11.4, since p is proper by assumption.
Hence the functors p∗ and q∗ preserve dexter equivalences by Proposition 11.4. It
follows that we have P∗(p) = Ho(p∗) and P∗(q) = Ho(q∗). From the isomorphism
v!q

∗ ' p∗u!, we obtain an isomorphism Ho(v!)Ho(q∗) ' Ho(p∗)Ho(u!). This
proves that the Beck-Chevalley map

P!(v)P∗(q)→ P∗(p)P!(u)

is invertible. It then follows by adjointness that its right transpose

P∗(u)P∗(p)→ P∗(q)P∗(v)

is invertible.
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Recall that a simplicial subset i : A ⊆ B is said to be coreflexive if there
exists a retraction r : B → A together with a homotopy α : ir → 1B such that
α ◦ i = 1i; we say that α is coreflecting B into A.

Lemma 11.7. The inverse image of a coreflexive simplicial subset A ⊆ B by a right
fibration p : E → B is coreflexive.

Proof: Let r : B → A be a retraction of the inclusion i : A ⊆ B and let α :
ir → 1B be a coreflecting homotopy. If j denotes the inclusion p−1(A) ⊆ E, we
shall construct a retraction ρ : E → p−1(A) together with a coreflecting homotopy
β : jρ→ 1E . Consider the square

(p−1(A)× I) ∪ (E × 1)

u

��

q // E

p

��
E × I

α◦p // B,

where u is the inclusion, where q is induced by the projection pr1 : E×I → E and
where α◦p = α(p×I). The square commutes since the arrow α(p(x),−) : irp(x)→
p(x) is a unit for x ∈ p−1(A) and since α(p(x), 1) = p(x) for every x ∈ E. The
inclusion u is right anodyne by theorem 2.17 since the inclusion {1} ⊂ I is right
anodyne. Hence the square has a diagonal filler β : E × I → E, since p is a right
fibration by hypothesis. Let us put k(x) = β(x, 0) for every x ∈ E. Then we have
pk(x) = α(p(x), 0) = irp(x) for every x ∈ E. Thus, k(E) ⊆ p−1(A). If x ∈ p−1(A),
then k(x) = β(x, 0) = q(x, 0) = x. Hence the map ρ : E → p−1(A) induced by
k is a retraction of the inclusion j : p−1(A) ⊆ E. We have β : k = jρ → 1E ,
since β(x, 1) = q(x, 1) = x for every x ∈ E. Moreover, if x ∈ p−1(A) and t ∈ I,
then β(x, t) = q(x, t) = x. This shows that β ◦ j = 1j . Thus, β : jρ → 1X is a
coreflecting homotopy

For every 0 ≤ k ≤ n, we have a natural inclusion ∆[k] ⊆ ∆[n]. If 0 ≤ k < n,
then ∆[k] ⊆ Λk[n], since ∆[n− 1] = ∂n∆[n] ⊆ Λk[n].

Lemma 11.8. The inclusions

∆[k] ⊂ ∆[n] and ∆[k] ⊆ Λk[n]

are coreflexive for every 0 ≤ k < n.

Proof: The inclusion i : [k, n] ⊆ [n] has a right adjoint r : [n] → [0, k] given by
r(x) = x ∧ k. This defines a retraction r : ∆[n] → D[k, n]. We have ir(x) ≤ x
for every x ∈ [n]. This defines a coreflecting homotopy α : ir → 1∆[n]. Hence
the inclusion ∆[k] ⊂ ∆[n] is coreflexive. In order to show that the inclusion
∆[k]subseteqΛk[n] is coeflexive, it suffices to show that α induces a homotopy
Λk[n] × I → Λk[n], or equivalently that we have α(Λk[n] × I) ⊆ Λk[n]. For this,
we must show that we have α(∂i∆[n]× I) ⊆ ∂i∆[n] for every i 6= k. But if x ∈ [n]
and x 6= i then then α(x, 1) = x 6= i and α(x, 0) = x ∧ k 6= i since k 6= i. The
inclusion α(∂i∆[n]× I) ⊆ ∂i∆[n] is proved.
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Theorem 11.9. A right fibration is smooth and a left fibration is proper.

Proof Let A be the class of left anodyne map whose base change along any right
fibration is left anodyne. The class A is saturated by Lemma D.2.17 in the ap-
pendix. We shall prove that every left anodyne map belongs to A. For this it
suffices to show that the inclusion Λk[n] ⊂ ∆[n] belongs to A for every 0 ≤ k < n,
since the class A is saturated. But it follows from Lemma 11.8, Lemma 11.7 and
Lemma 10.5 that the inclusions ∆[k] ⊂ ∆[n] and ∆[k] ⊆ Λk[n] belong to A for
every 0 ≤ k < n. It then follows from Lemma 8.15 that the inclusion Λk[n] ⊂ ∆[n]
belongs to A for every 0 ≤ k < n.

Remark 11.10. We shall see later that if u : A→ B is a left (resp right) fibration,
then the pair of adjoint functors

u∗ : S/B ↔ S/A : u∗

is a Quillen pair between the model categories (S/B,QCat) and (S/A,QCat).



Chapter 12

Higher quasi-categories

The goal of this chapter is to introduce the notion of n-cellular sets. We shall
introduce the model structure for n-quasi-categories at the course.

12.1

We begin by recalling the duality between the category ∆ and the category of
intervals. An interval I is a linearly ordered set with a first and last elements
respectively denoted ⊥ and >, or 0 and 1. If 0 6= 1, the interval is strict, otherwise it
is degenerate. A morphism of intervals I → J is an order preserving map f : I → J
such that f(0) = 0 and f(1) = 1. If I is a strict interval, we shall put ∂I = {0, 1}
and int(I) = I \ ∂I. We shall say that a morphism of strict intervals f : I → J
is proper if f(int(I)) ⊆ int(J). We shall say that f is a collapse if the map
f−1(int(J)) → int(J) induced by f is a bijection. A morphism of strict intervals
f : I → J is proper (resp. a collapse) iff the fiber f−1(x) has cardinality 1 for
every x ∈ ∂I (resp.x ∈ int(I)). Every collapse f : I → J has a unique section.
The category of intervals admits a factorisation system (A,B) in which A is the
class of collapses and B is the class of proper morphisms.

12.2

We shall denote by D1 the category of finite strict intervals (it is the category of
finite 1-disks). The categories D1 and ∆ are mutually dual. The duality functor
(−)∗ : ∆o → D1 associates to [n] the set [n]∗ = ∆([n], [1]) = [n+1] equipped with
the pointwise ordering. The inverse functor (D1)o → ∆ associates to I ∈ D1 the set
I∗ = D1(I, [1]) equipped with the pointwise ordering. A morphism f : I → J in D1

is surjective (resp. injective) iff the dual morphism f∗ : J∗ → I” is injective (resp.
surjective). A simplicial set can be defined to be a covariant functor D1 → Set.
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12.3

We say that a morphism u : [m] → [n] in ∆ is free if it is monic and u([m]) =
[u(0), u(m)]. A morphism u : [m] → [n] is free iff the dual morphism in D1 is a
collapse. We shall say that a morphism u : [m]→ [n] in ∆ is boundary preserving
if u(0) = 0 and u(m) = n. A morphism u : [m] → [n] is boundary preserving iff
the dual morphism in D1 is proper. The category ∆ admits a factorisation system
(A,B) in which A is the class of boundary preserving maps and B is the class of
free morphisms.

12.4

The boundary of the euclidian n-ball

Bn = {x ∈ Rn :|| x ||≤ 1}

is a sphere ∂Bn of dimension n − 1 which is the union the lower and upper
hemispheres. In order to describe this structrure, it is convenient to use the map
q : Bn → Bn−1 which projects Bn on the equatorial (n − 1)-plane by forgetting
the last coordinate of Rn. The fiber q−1(x) is a strict interval for every x ∈ Bn−1,
except when x ∈ ∂Bn−1, in which case it is reduced to a point. The projection
q has two sections s0, s1 : Bn−1 → Bn obtained by selecting the bottom and the
top elements in each fiber. The image of s0 is the lower hemisphere of ∂Bn and
the image of s1 the upper hemisphere; observe that s0(x) = s1(x) iff x ∈ ∂Bn−1.

12.5

A bundle of intervals over a set B is an interval object in the category Set/B. More
explicitly, a map p : E → B is a bundle of intervals if each fiber E(b) = p−1(b) is
equipped with an interval structure. By selecting the bottom and the top elements
in each fiber we obtain two canonical sections s0, s1 : B → E. The interval E(b) is
degenerated iff s0(b) = s1(b); in which case we shall say that b is in the singular
subset of the bundle. The projection q : Bn → Bn−1 is an example of bundle of
intervals. Its singular set is the boundary ∂Bn−1. We have a sequence of bundles
of intervals:

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

12.6

A n-disk D is defined to be a sequence of length n of bundles of intervals

1 = D0 ← D1 ← D2 ← · · ·Dn−1 ← Dn
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such that the singular set of the projection p : Dk+1 → Dk is equal to the boundary
∂Dk := s0(Dk−1)∪s1(Dk−1) for every 0 ≤ k < n. By convention ∂D0 = ∅. If k = 0,
the condition means that the interval D1 is strict. It follows from the definition
of a n-disk that we have s0s0 = s1s0 and s0s1 = s1s1. The interior of Dk is
defined to be int(Dk) = Dk\∂Dk. We have p(int(Dk)) ⊆ int(Dk−1) for every
1 ≤ k ≤ n, where p is the projection Dk → Dk−1. The boundary ∂Dn admits a
natural decomposition

∂Dn '
n−1⊔
k=0

2 · int(Dk).

We shall denote by Bn the n-disk defined by the sequence of projections

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

12.7

A morphism between two bundles of intervals E → B and E′ → B′ is a pair of
maps (f, g) in a commutative square

B

f

��

Eoo

g

��
B′ E′oo

such that the map E(b)→ E′(f(b)) induced by g for each b ∈ B. is a morphism of
intervals. A morphism f : D → D′ between n-disks is defined to be a commutative
diagram

1

��

D1
oo

f1

��

D2
oo

f2

��

· · ·oo Dn−1

fn−1

��

Dn
oo

fn

��
1 D′

1
oo D′

2
oo · · ·oo D′

n−1 D′
n

oo

and which each square is a morphisms of bundles of intervals. Every morphism
f : D → D′ can be factored as a surjection D → f(D) followed by an inclusion
f(D) ⊆ D′.

12.8

A planar tree T of height ≤ n, or a n-tree, is defined to be a sequence of maps

1 = T0 ← T1 ← T2 ← · · · ← Tn−1 ← Tn

with linearly ordered fibers. If D is a n-disk, the projection Dk → Dk−1 induces
a map int(Dk)→ int(Dk−1) for each 1 ≤ k ≤ n. The sequence of maps

1← int(D1)← int(D2)← · · · int(Dn−1)← int(Dn)
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has the structure of a planar tree called the interior of D and denoted int(D).
Every n-tree T is the interior of a n-disk T̄ . By construction, we have T̄k = Tkt∂T̄k

for every 1 ≤ k ≤ n, where

∂T̄k =
k−1⊔
i=0

2 · Ti.

We shall say that T̄ is the closure of T . Every disk D is the closure of its interior:
int(D) = D. A morphism of disks f : D → D′ is completely determined by its
values on the sub-tree int(D) ⊆ D. More precisely, a morphism of planar trees
g : S → T is defined to be a commutative diagram

1

��

S1
oo

g1

��

S2
oo

g2

��

· · ·oo Sn−1

gn−1

��

Sn
oo

gn

��
1 T1
oo T2

oo · · ·oo Tn−1 Tn
oo

in which fk preserves the linear order on the fibers of each projections for each
1 ≤ k ≤ n. If Disk(n) denotes the category of n-disks and Tree(n) the category of
n-trees, then the forgetful functor Disk(n) → Tree(n) has a left adjoint T 7→ T̄ .
If D ∈ Disk(n), then a morphism of trees T → D can be extended uniquely to a
morphism of disks T̄ → D. It follows that there a bijection between the morphisms
of disks D → D′ and the morphisms of trees int(D)→ D′.

12.9

A sub-tree of a n-tree T is a sequence of subsets Sk ⊆ Tk closed under the projection
Tk → Tk−1 for every 1 ≤ k ≤ n, where S0 = 1. If D is a n-disk and T = int(D),
then the map C 7→ C ∩ T induces a bijection between the sub-disks of D and the
sub-trees of T . The set of sub-disks of D is closed under non-empty unions and
arbitrary intersections.

12.10

We shall say that a morphism of disks f : D → D′ is proper if we have f(int(Dk)) ⊆
int(D′

k) for every 1 ≤ k ≤ n. A proper morphism f : D → D′ induces a morphism
of trees int(f) : int(D) → int(D′). The functor T 7→ T̄ induces an equivalence
between the category of trees Tree(n) and the sub-category of proper morphisms
of Disk(n). We shall say that a morphism of disks f : D → D′ is a collapse if
the map f−1(int(D′))→ int(D′) induced by f is an isomorphism. Every collapse
f : D → D′ has a unique section. The category Disk(n) admits a factorisation
system (A,B) in which A is the class of collapses and B is the class of proper
morphisms.
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12.11

We shall say that a n-disk D is finite if the set Dn is finite. The degree | D | of a
finite disk D is defined to be the number of edges of the tree int(D). By definition,
we have

| D |=
n∑

k=1

Card(int(Dk)).

It is easy to see that The set

D∨= hom(D,Bn)

has the structure of a compact convex set of dimension | D |. The following neat
description of D∨ is due to Clemens Berger. There is an obvious bijection between
the elements in the fibers of the planar tree T = int(D) and the edges of T . Let us
uses this bijection to transport the order relation on each fiber to the edges. Let
K(T ) the set of maps f : edges(T )→ [−1, 1] satisfying the following conditions:

• f(e) ≤ f(e′) for any two edges e ≤ e′ with the same target;

•
∑

e∈C f(e)2 ≤ 1 for every maximal chain C connecting the root to a leaf.

It is easy to see that K(T ) is a compact convex subset of [−1, 1]|D| of maximal
dimension. To every map f ∈ K(T ) we can associate a map of n-disks f ′ : D → Bn

by putting
f ′(x) = (f(e1), · · · , f(ek))

for every x ∈ int(D), where (e1, · · · , ek) is the chain of edges which connects
x ∈ Tk to the root of T . The map f 7→ f ′ induces a bijection K(T ) ' D∨. This
shows that D∨ has the structure of a compact convex set of dimension | D |. We
observe that the map f ′ : D → Bn is monic iff f belongs to the interior of the ball
D∨. It follows that D admits an embedding D → Bn, since K(T ) has a non-empty
interior.

12.12

We shall denote by Dn the category of finite n-disks and by Θn the category
opposite to Dn. We call an object of Θn a cell of height ≤ n. To every disk
D ∈ Dn corresponds a dual cell D∗ ∈ Θn and to every cell C ∈ Θn corresponds a
dual disk C∗ ∈ Dn. The dimension of cell C is defined to be the degree of C∗. If t
is a finite n-tree we shall denote by [t] the cell dual to the disk t. The dimension
of [t] is the number of edges of t. The realisation of a cell [t] is defined to be the
topological ball

R([t]) = K(t) = hom(t,Bn).

This defines a functor R : Θn → Top, where Top denotes the category of com-
pactly generated spaces.
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12.13

A Θn-set, or a n-cellular set is defined to be a functor

X : Dn → Set,

or equivalently a functor X : (Θn)o → Set. We shall denote the category of n-
cellular sets by Θ̂n If t is a finite n-tree, we shall denote by Θ[t] the image of the
cell [t] by the Yoneda functor Θn → Θ̂n. The left Kan extension

R! : Θ̂n → Top

of the realisation functor R : Θn → Top preserves finite limits. The topological
space R!(X) is the geometric realisation of a cellular set X.

12.14

We say that a map f : C → E in Θn is surjective (resp. injective) if the dual
map f∗ : E∗ → C∗ is injective (resp. surjective). Every surjection admits a section
and every injection admits a retraction. The category Θn admits a factorisation
system (A,B) in which A is the class of surjections and B is the class of injections.

12.15

(Eilenberg-Zilber lemma) If A and B are sub-disks of a disk D ∈ Dn, then the
intersection diagram

A ∩B //

��

B

��
A // D

is absolute, ie it is preserved by any functor with codomain Dn. Dually, for every
pair of surjections f : C → E and g : C → F in the category Θn, there is an
absolute pushout square,

C
g //

f

��

F

��
E // G,

where the cell G is dual to the intersection of the disks A = E∗ and B = F ∗. If X
is a n-cellular set, we say that a cell x : Θ[t]→ X of dimension n > 0 is degenerate
if it admits a factorisation Θ[t] → Θ[s] → X with dim([s]) < n; otherwise x is
said to be non-degenerate. Every cell x : Θ[t] → X admits a unique factorisation
x = yp : Θ[t]→ Θ[s]→ X with p a surjection and y a non-degenerate cell.
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12.16

We shall say that a map f : C → E in Θn is open (resp. is an inflation) if the dual
map f∗ : E∗ → C∗ is proper (resp. a collapse). Every inflation admits a unique
retraction. The category Θn admits a factorisation system (A,B) in which A is
the class of open maps and B is the class of inflations.

12.17

For each 0 ≤ k ≤ n, a chain of k edges is a planar n-tree tk. The inclusion tk−1 ⊂ tk
defines a surjection [tk]→ [tk−1]. The sequence of maps

1← Θ[t1]← Θ[t2]← · · · ← Θ[tn]

has the structure of a n-disk βn in the topos Θ̂n. It is the generic n-disk in the
sense of classifying topos. Its geometric realisation is the euclidian n-disk Bn.

12.18

The height of a n-tree T is defined to be the largest integer k ≥ 0 such that
Tk 6= ∅. The height of a n-disk D is defined to be the height of its interior int(D).
If m < n, the obvious restriction functor Disk(n) → Disk(m) has a left adjoint
Exn : Disk(m) → Disk(n). The extension functor Exn is fully faithful and its
essential image is the full subcategory of Disk(n) spanned by the disks of height
≤ n. We shall identify the category Disk(m) with a full subcategory of Disk(n) by
adoptiong the same notation for a disk D ∈ Disk(m) and its extension Exn(D) ∈
Disk(n). We thus obtain an increasing sequence of coreflexive subcategories,

Disk(1) ⊂ Disk(2) ⊂ · · · ⊂ Disk(n).

Hence also an increasing sequence of coreflexive subcategories,

D(1) ⊂ D(2) ⊂ · · · ⊂ D(n).

The coreflection functor ρk : D(n)→ D(k) takes a disk T to the sub-disk T k ⊂ T ,
where T k is the k-truncation of T . We shall denote by D(∞) the union of the
categories D(n),

D(∞) =
⋃
n

D(n)

An object of D(∞) is an infinite sequence of bundles of finite intervals

1 = D0 ← D1 ← D2 ←

such that
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• the singular set of the projection Dn+1 → Dn is the set ∂Dn := s0(Dn−1)∪
s1(Dn−1) for every n ≥ 0;

• the projection Dn+1 → Dn is bijective for n large enough.

We have increasing sequence of reflexive subcategories,

Θ(1) ⊂ Θ(2) ⊂ · · · ⊂ Θ(∞),

where Θ(k) is the full subcategory of Θ(∞) spanned by the cells of height ≤ k. By
12.1, we have Θ1 = ∆ A cell [t] belongs to ∆ iff the height of t is ≤ 1. If n ≥ 0 we
shall denote by n the unique planar tree height ≤ 1 with n edges. A cell [t] belongs
to ∆ iff we have t = n for some n ≥ 0. The reflection functor ρk : Θ(∞) → Θ(k)
takes a cell [t] to the cell [tk], where tk is the k-truncation of t.
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Appendix A

Accessible categories

The cardinality of a small category is the cardinality of its set of arrows. A diagram
in a category C is a functor D : K → C, where K is a small category; the
cardinality of D is the cardinality of K. We denote by K?1 the category obtained
by adjoining a terminal object 1 to K (see Chapter 6). A diagram K ? 1 → C is
called an inductive cone in C. A diagram K → C is said to be bounded above if it
can be extended to K ? 1. A small category C is said to be directed if every finite
diagram K → C is bounded above. A small category C is directed iff the colimit
functor

lim
−→
C

: SetC → Set

preserves finites limits by a classical result. A diagram is said to be directed if its
domain is directed. A colimit in a category is said to be directed if it is taken over
a directed diagram. We say that a category E is closed under directed colimits if
every directed diagram C → E has a colimit. If E is closed under directed colimits,
an object A ∈ E is said to be finitely presentable, if the functor E(A,−) : E → Set
preserves directed colimits. We shall say that E is ω-accessible if its full subcategory
of finitely presentable objects is essentially small (ie equivalent to a small category)
and every object in E is a colimit of a directed diagram of finitely presentable
objects.

Unless exception, we only consider small ordinals and small cardinals. Recall
that an ordinal α is said to be a cardinal if it is smallest among the ordinals with
the same cardinality. Recall that a cardinal α is said to be regular if the sum of
every family of cardinals < α indexed by a set of cardinality < α is < α. Let α be
a regular cardimal, A small category C is said to be α-directed if every diagram
K → C of cardinality < α is bounded above. A small category C is α-directed iff
the colimit functor

lim
−→
C

: SetC → Set

379
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preserves the limits of every diagram of cardinality < α, by a classical result. A
diagram is said to be α-directed if its domain is α-directed. A colimit in a category
is said to be α-directed if it is taken over an α-directed diagram. We say that a
category E is closed under α-directed colimits if every α-directed diagram C → E
has a colimit. If E is closed under α-directed colimits, we shall say that an object
A ∈ E is α-presentable, if the functor E(A,−) : E → Set preserves α-directed
colimits. We shall say that a category If E is α-accessible if its full subcategory of
α-presentable objects is essentially small (ie equivalent to a small category) and
every object in E is the colimit of an α-directed diagram of α-presentable objects.

Notation A.1. If α and β are two regular cardinals, we shall write α/β to indicate
that α < β and that every α-accessible category is β-accessible.

Theorem A.0.1. [MP] For any (small) set S of regular cardinals, there is a regular
cardinal β such that α / β for all α ∈ S.

Theorem A.0.2. [MP] If F : E → E ′ is an accessible functor, then there exists a
regular cardinal α such that

• F preserves α-directed colimits

• F takes α-presentable objects to α-presentable objects,

We shall say that a category E is closed under ∞-directed colimits if it closed
under α-directed colimits for some regular cardinal α (hence also for every regular
cardinal β ≥ α). If E and F are closed under ∞-directed colimits we shall say
that a functor F : E → F preserves ∞-directed colimits if it preserves α-directed
colimits for a regular cardinal α large enough. If E admits∞-directed colimits, we
shall say that an object A ∈ E is small if the functor E(A,−) : E → Set preserves
∞-directed colimits. We shall say that a category is accessible if it is α-accessible
for some regular cardinal α. We shall say that a functor F : E → F is accessible if
the categories E and F are accessible and F preserves ∞-directed colimits.

The following elementary results will be used in the book:

Proposition A.0.3. [MP] Let D : C → E be a diagram of α-presentable objects in
a category closed under α-directed colimits. If Card(C) < α, then the diagram is
α-presentable as an object of the category EC .

Proposition A.0.4. [MP] Let E be a category closed under α-directed colimits. If
an object A ∈ E is α-presentable then so is the object (A, f) in the category E/B
for any map f : A→ B.
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Simplicial sets

We fix some notations about simplicial sets. We denote the category of finite
non-empty ordinals and order preserving maps by ∆ and we denote the ordinal
n+1 = {0, . . . , n} by [n]. A map u : [m]→ [n] can be specified by listing its values
(u(0), . . . , u(m)). We denote the injection [n− 1] → [n] which omits i ∈ [n] by di

and the surjection [n]→ [n− 1] which repeats i ∈ [n− 1] by si.

A simplicial set is a presheaf on the category ∆. We shall denote the category
of simplicial sets by S. If X is a simplicial set, it is standard to denote the set
X([n]) by Xn. We often denote the map X(di) : Xn → Xn−1 by ∂i and the map
X(si) : Xn−1 → Xn by σi. An element of Xn is called a n-simplex; a 0-simplex
is called a vertex and a 1-simplex an arrow. For each n ≥ 0, the simplicial set
∆(−, [n]) is called the combinatorial simplex of dimension n and denoted by ∆[n].
The simplex ∆[1] is called the combinatorial interval and we shall denote it by
I.The simplex ∆[0] is the terminal object of the category S and we shall denote
it by 1. By the Yoneda lemma, for every X ∈ S the evaluation map x 7→ x(1[n])
defines a bijection between the maps ∆[n] → X and the elements of Xn for each
n ≥ 0; we shall identify these two sets by adopting the same notation for a map
x : ∆[n] → X and the simplex x(1[n]) ∈ Xn. If u : [m] → [n] we shall denote the
simplex X(u)(x) ∈ Xm as a composite xu : ∆[m] → X. If n > 0 and x ∈ Xn the
simplex ∂i(x) = xdi : ∆[n− 1]→ X is called the i-th face of x. If f ∈ X1 we shall
say that the vertex ∂1(f) = fd1 is the source of the arrow f and that the vertex
∂0(f) = fd0 is its target. We shall write f : a→ b to indicate that a = ∂1(f) and
that b = ∂0(f). If a ∈ X0, we shall denote the (degenerate) arrow as0 as a unit
1a : a→ a.

Let τ : ∆ → ∆ be the automorphism of the category ∆ which reverses the
order of each ordinal. If u : [m] → [n] is a map in ∆, then τ(u) is the map
uo : [m]→ [n] given by uo(i) = n− f(m− i). The opposite Xo of a simplicial set
X is obtained by composing the (contravariant) functor X : ∆ → Set with the
functor τ . We distinguish between the simplices of X and Xo by writing xo ∈ Xo
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for each x ∈ X, with the convention that xoo = x. If f : a → b is an arrow in X,
then fo : bo → ao is an arrow in Xo.

A simplicial subset of a simplicial set X is a sub-presheaf A ⊆ X. If n > 0
and i ∈ [n] the image of the map di : ∆[n− 1]→ ∆[n] is denoted ∂i∆[n] ⊂ ∆[n].
The simplicial sphere ∂∆[n] ⊂ ∆[n] is the union the faces ∂i∆[n] for i ∈ [n];
by convention ∂∆[0] = ∅. If n > 0, we shall say that a map x : ∂∆[n] → X is
a simplicial sphere in X; such a map is determined by the sequence of its faces
(x0, . . . , xn) = (xd0, . . . , xdn). A simplicial sphere ∂∆[2] → X is also called a
triangle. Every n-simplex y : ∆[n] → X has a boundary ∂y = (∂0y, . . . , ∂ny) =
(yd0, . . . , ydn) obtained by restricting y to ∂∆[n]. If ∂y = x we say that the simplex
y is a filler for x. We shall say that a simplicial sphere x : ∂∆[n] → X commutes
if it can be filled.

If n > 0 and k ∈ [n], the horn Λk[n] ⊂ ∆[n] is defined to be the union of
the faces ∂i∆[n] with i 6= k. A map x : Λk[n] → X is called a horn in X; it is
determined by a lacunary sequence of faces (x0, . . . , xk−1, ∗, xk+1, . . . , xn). A filler
for x is a simplex ∆[n]→ X which extends x.

Recall that a simplex x : ∆[n] → X is said to be degenerate if it admits a
factorisation x = yu : ∆[n] → ∆[m] → X with m < n. Otherwise, the simplex
is said to be non-degenerate. By the Eilenberg-Zilber lemma, every simplex x :
∆[n] → X admits a unique factorisation x = yp : ∆[n] → ∆[m] → X, with
p : [m]→ [n] a surjection and y a non-degenerate simplex. We give a proof below
based on the notion of absolute limit. Recall that a projective cone D : 1 ? C → E
in a category E is said to be absolutly exact if the cone FD : 1 ? C → F is exact
for any functor F : E → F . A limit diagram in a category E is said to be absolute
if the exact projective cone which defines the limit is absolutely exact. There is
dual notion of absolute colimit

Lemma B.0.5. [JT3] In a Karoubi complete category, suppose that we have four
maps s1 : A1 → B, r1 : B → A1, s2 : A2 → B and r2 : B → A2 such that
r1s1 = 1A1 and r2s2 = 1A2 . Let us put e1 = s1r1 and e2 = s2r2. If there existe an
integer n ≥ 1 such that (e1e2)n = e2(e1e2)n, then the pull back A1 ×B A2 exists
and is absolute.

Proof: Let us put e = (e1e2)n. Then we have e1e = e and e2e = e. It follows that
ee = e. Let us choose a splitting r : B → E and s : E → B of the idempotent e.
By definition, rs = 1E and e = sr. Let us put i1 = r1s and i2 = r2s. Then,

s1i1 = s1r1s = e1s = e1srs = e1es = es = srs = s.



383

Similarly, s2i2 = s. Hence the following square commutes,

E

i1

��

i2 // A2

s2

��
A1

s1 // B.

Let us show that it is an absolute pullback. For this, it suffices to show that its
image by an arbitrary set valued functor E → Set is a pullback square. Hence we
can suppose that E = Set. The maps i1 and i2 are moni, since the maps s1i1 = s
and s2i2 = s are monic. If we replace the sets A1, A2 and E by their image in B,
we can suppose that the maps s1, s2, i1, i2 and s are subset inclusions. We have
E ⊆ A1∩A2, since the square commutes. Conversely, let us show that A1∩A2 ⊆ E.
If x ∈ A1 ∩ A2, then e1(x) = x and e2(x) = x. Thus, e(x) = (e1e2)n(x) = x and
this proves that x ∈ E.

Lemma B.0.6. [JT3] Every pushout square of surjections in ∆ is absolute. Dually,
every pullback square of monomorphisms in ∆ is absolute.

Proof: Observe that in ∆ a surjection p : B → A in ∆ has a section s : A → B
which is smallest with respect to the pointwise ordering the set of maps A → B.
If e = sr, then we have e(x) ≤ x for every x ∈ B. Let p1 : B → A1 and p2 :
B → A1 be two surjections with smallest sections s1 : A1 → B and s2 : A2 → B
respectively. Let us put e1 = s1r1 and e2 = s2r2. Then we have e1(x) ≤ x and
e2(x) ≤ x for every x ∈ B. The following decreasing sequence

x ≥ e1(x) ≥ e2e1(x) ≥ e1e2e1(x) ≥ · · · .

must be stationary by finiteness. Hence we have e1(e2e1)n = (e2e1)n for n ≥ 1
large enough. The result then follows from B.0.5. Dually, let A1 ×B A2 be the
pullback of two monomorphisms i1 : A1 → B and i2 : A2 → B in the category ∆.
For simplicity, we shall suppose that i1 and i2 are subset inclusions, in which case
A1 ×B A2 = A1 ∩A2. The intersection A1 ∩A2 is non-empty, since the objects of
∆ are non-empty. We can then choose an element c ∈ A1 ∩ A2. For every x ∈ B,
let us put

ri(x) =
{

min{y ∈ Ai : x ≤ y} if x ≤ c
max{y ∈ Ai : y ≤ x} if c ≤ x.

This defines an preserving maps ri : E → A1 for i = 1, 2. Let us put e1 = i1r1
and e2 = i2r2. If x ∈ B and x ≤ c, then x ≤ e1(x) ≤ c and x ≤ e2(x) ≤ c.
Hence we have (e1e2)n(x) = e2(e1e2)(x) for n ≥ 1 large enough in this case.
Similarly, if c ≤ x, then c ≤ e1(x) ≤ x and c ≤ e2(x) ≤ x. Hence we have
e2(e1e2)n(x) = (e1e2)n(x) for n ≥ 1 large enough in this case. This shows that
we have e2(e1e2)n = (e1e2)n for n ≥ 1 large enough. The result then follows from
B.0.5.
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Lemma B.1. (Eilenberg-Zilber Lemma) Every simplex x : ∆[n]→ X of a simplicial
set X admits a unique factorisation x = ys : ∆[n]→ ∆[m]→ X, with s : [m]→ [n]
a surjection and y a non-degenerate simplex.

Proof: Let us choose a factorisation x = ys : ∆[n]→ ∆[m]→ X, with s : [m]→ [n]
a surjection and m minimal. The simplex y : ∆[m] → X is non-degenerate, since
m is minimal. The existence is proved. It remains to prove the uniqueness. Suppose
that we have two factorisations, x = yipi : ∆[n] → ∆[mi] → X (i = 1, 2) with
pi : [n]→ [mi] a surjection and yi a non-degenerate simplex. The two surjections
have a pushout in ∆,

[n]

p1

��

p2 // [m2]

q2

��
[m1]

q1 // [m].

The pushout is absolute by B.0.6. Its image by the Yoneda functor is thus a
pushout square of simplicial sets:

∆[n]

p1

��

p2 // ∆[m2]

q2

��
∆[m1]

q1 // ∆[m].

Hence there exists a unique simplex y : ∆[m] → Y such that yq1 = y1 and
yq2 = y2, since we have y1p1 = y2p2. But q1 must be the identity, since it is
surjective and y1 is non-degenerate. Similarly for q2 must be the identity. Thus,
m1 = m2 and y1 = y2.

A simplicial set X is said to be finite if it has only a finite number of non-
degenerate simplices. Let ∆(n) be the full sub-category of ∆ which is spanned by
the ordinals [k] for k ≤ n. A n-truncated simplicial set is a contravariant functor
∆(n) → Set. From the inclusion in : ∆(n) ⊂ ∆ we obtain a truncation functor
i∗n : S → S(n), where S(n) is the category of n-truncated simplicial sets. The
functor i∗n has a a left adjoint (in)! and a right adjoint (in)∗. Both adjoints are
fully faithful, since the functor in is fully faithful. The n-skeleton of a simplicial
set X is defined by putting SknX = (in)!i∗n(X), and the n-coskeleton by putting
CosknX = (in)∗i∗n(X). This defines a pair of adjoint functors,

Skn : S↔ S : Coskn.

Hence a simplex ∆[m]→ CosknX is the same thing as a map Skn∆[m]→ X. The
image of the canonical map SknX → X is the simplicial subset of X generated by
the simplices of dimension ≤ n. It follows from the Lemma B.1 that the canonical
map SknX → X is monic; the image of this map is the simplicial subset of X
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generated by the simplices of dimension ≤ n. We identify the simplicial set SknX
with this simplicial subset of X. A simplicial set X is said to be of dimension ≤ n if
SknX = X. A simplicial set of dimension ≤ 0 is discrete. The simplicial set SknX
can be constructed from the simplicial set Skn−1X by attaching non-degenerate
n-cells. The following result can be proved by using the Lemma B.1:

Proposition B.0.7. If Sn(X) ⊆ Xn is the set of non-degenerated n-simplicies of a
simplicial set X, then there is a canonical pushout square⊔

Sn(X) ∂∆[n]

��

// Skn−1X

��⊔
Sn(X) ∆[n] // SknX.

.
The following proposition uses the notion of a saturated class. See D.2.2 and

D.2.4 for the notion.

Proposition B.0.8. [GZ] The class of monomorphisms in the category S is gener-
ated as a saturated class by the set of inclusions

δn : ∂∆[n] ⊂ ∆[n], for n ≥ 0.

Proof: Let us denote by C the class of monomorphisms in S. The class C is satu-
rated, since the class of monomorphisms in any topos is saturated. Let us denote
by Σ be the set of maps δn for n ≥ 0 and let Σ be the saturated class generated by
Σ. We have Σ ⊆ C, since we have Σ ⊆ C and C. Conversely, let us show that every
monomorphism u : A → B belongs to Σ. We can suppose that u is defined by
an inclusion A ⊆ B, since a saturated class contains the isomorphisms. We have
B =

⋃
n Sk

nB. It follows that the inclusion A ⊆ B is the composite of the infinite
sequence of inclusions

A ⊆ A ∪ Sk0B ⊆ A ∪ Sk1B ⊆ A ∪ Sk2B → · · · .

Hence it suffices to show that each inclusion A∪ Skn−1B ⊆ A∪ SknB belongs to
Σ, where we put Sk−1B = ∅. But it follows from B.0.7 that we have a pushout
square ⊔

Sn(B\A) ∂∆[n]

��

// A ∪ Skn−1B

��⊔
Sn(B\A) ∆[n] // A ∪ SknB,

where Sn(B) is the set of non-degenerated n-simplicies of B, and Sn(B\A) =
Sn(B)\Sn(A). The vertical map on the left hand side of the square belongs to
Σ, since a saturated class is closed under coproducts by D.2.1. Hence the vertical
map on the right hand side belongs to Σ, since a saturated class is closed under
cobase change.
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Corollary B.0.9. [GZ] A map of of simplicial sets is a trivial fibration iff it has
the right lifting property with respect to the inclusion δn : ∂∆[n] ⊂ ∆[n] for every
n ≥ 0.

Proof: Let f : X → Y be a map having the right lifting property with respect to
the inclusion δn : ∂∆[n] ⊂ ∆[n] for every n ≥ 0. Let us show that f is a trivial
fibration. Let us denote by A the class of maps having the left lifting property with
respect to f . The class A is saturated by D.2.3. We have δn ∈ A for every n ≥ 0
by the assumption on f . Thus, every monomorphism belongs to A by proposition
B.0.8.

Definition B.0.10. We shall say that a simplicial set X is n-coskeletal if the canon-
ical map X → CosknX is an isomorphism.

A simplicial set X is n-coskeletal iff every simplicial sphere ∂∆[m]→ X with
m > n has a unique filler.

Definition B.0.11. We shall say that a map of simplicial sets f : X → Y is n-full
if the naturality square

X

��

// CosknX

��
Y // CosknY

is cartesian. We shall say that a simplicial subset S ⊆ X is n-full if the map
S → X defined by the inclusion is n-full.

Proposition B.0.12. A map f : X → Y is 0-full iff it is right orthogonal to the
inclusion ∂∆[m] ⊂ ∆[m] for every m > n.

Proposition B.0.13. [GZ] The nerve functor N : Cat → S is fully faithful. We
have τ1NC = C for every category C.

Proof: Let us show that the functor N is full and faithful. If u : C → D is a
functor in Cat, then then map (Nu)0 : (NC)0 → (ND)0 coincide with the map
Ob(u) : Ob(C) → Ob(D) and the map (Nu)1 : (NC)1 → (ND)1 with the map
Ar(u) : Ar(C) → Ar(D). This shows that N is faithful. It remains to show that
if v : N(C) → N(D) is a map of simplicial sets, that we have v = N(u) for some
functor u : C → D. The map Ob(u) : Ob(C) → Ob(D) is taken to be the map
v0 : (NC)0 → (ND)0 and the map Ar(u) : Ar(C) → Ar(D) is taken to be the
map v0 : (NC)1 → (ND)1. Let us show that the pair (u0, u1) defines a functor
u : C → D. If f : a → b is an arrow in C, then we have u(f) : u(a) → u(b), since
we have v1(f) : v0(a)→ v0(b). Similarly, if a ∈ Ob(C), then we have u(1a) = 1u(a).
Let us show that u preserves composition. If f : a → b and g : c → d are two
arrows in C, there is a unique simplex y : ∆[2] → C such that ∂y = (g, gf, f).
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We have ∂(v(y)) = (v(g), v(gf), v(f)), since v is a map of simplicial sets. This
proves that u(gf) = u(g)u(f). We have defined a functor u : C → D. Let us
show that v = N(u). By construction, we have v0 = u0 and v1 = u1, where
un = N(u)n. Let us show that we have vn = un for every n ≥ 2. But a simplex
y : ∆[n]→ D is determined by the family of arrows y(i, j) : ∆[2]→ D for i < j. If
x : ∆[n]→ C, let us show that we have vn(x)(i, j) = un(x)(i, j) for every i < j. We
have vn(x)(i, j) = v1(x(i, j)), since v is a map of simplicial sets. Similarly, we have
un(x)(i, j) = u1(x(i, j)). It follows that we have vn(x)(i, j) = un(x)(i, j), since we
have u1 = v1. This shows that vn = un. The first statement of the proposition is
proved. The second statement follows.

Let us denote by FX the category freely generated by the graph of non-
degenerate arrows in a simplicial set X. An arrow a → b in FX is a path of
non-degenerate arrows in X,

a = a0
f1 // a1

f2 // a2 · · · an−1
fn // an = b.

And let ≡ the congruence relation on FX which is generated by the relations
(td0)(td2) ≡ td1, one for each non-degenerate 2-simplex t ∈ X with boundary
∂t = (∂0t, ∂1t, ∂2t):

t(1)
∂0t

""D
DD

DD
DD

D

t(0)

∂2t
=={{{{{{{{
∂1t // t(2).

The degenerate arrows in X are interpreted as units in FX.

Proposition B.0.14. [GZ] Let FX be the category freely generated by the graph of
non-degenerate arrows in X. Then we have

τ1X = FX/ ≡,

where ≡ is the congruence described above. Moreover, the functor τ1Sk2X → τ1X
induced by the inclusion Sk2X ⊆ X is an isomorphism.

Proof: If we apply the functor τ1 to the pushout square of simplicial sets⊔
S1(X) ∂∆[1]

��

// Sk0X

��⊔
S1(X) ∆[1] // Sk1X,
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we obtain a pushout square of categories⊔
S1(X){0, 1}

��

// X0

��⊔
S1(X)[1] // τ1Sk1X.

This shows that τ1Sk1X = FX. If we apply the functor τ1 to the pushout square
of simplicial sets ⊔

S2(X) ∂∆[2]

��

// Sk1X

��⊔
S2(X) ∆[2] // Sk2X.

we then obtain a pushout square of categories⊔
S2(X) τ1∂∆[2]

��

// FX

��⊔
S2(X)[2] // τ1Sk2X.

This shows that τ1Sk2X = FX/ ≡. Hence the proposition will be proved if we
show that the canonical functor iX : τ1Sk2X → τ1X is an isomorphism. Observe
that iX is a natural transformation between two concontinuous functors. Hence
it suffices to show that iX is an isomorphism in the case where X = ∆[n], since
every simplicial set is a colimit of a diagram of simplices. This is obvious if n ≤ 2,
since Sk2∆[n] = ∆[n] in this case. Let us suppose n > 2. The category F∆[n] is
freely generated by a family of arrows

fji : i→ j,

one for each pair 0 ≤ i < j ≤ n. The congruence ≡ is generated by the relations

fkjfji ≡ fki,

one for each triple 0 ≤ i < j < k ≤ n. It is clear from this description that
τ1Sk

2∆[n] = [n].

Proposition B.0.15. [GZ] The functor τ1 : S→ Cat preserves finite products.

Proof: Obviously, we have τ11 = 1. Hence the functor τ1 : S → Cat/I preserves
terminal objects. Let us show that the canonical map

iXY : τ1(X × Y )→ τ1X × τ1Y
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is an isomorphism for every X,Y ∈ S. The functor τ1 is cocontinuous, since it is a
left adjoint. Hence the functor (X,Y ) 7→ τ1(X×Y ) is cocontinuous in each variable,
since the category S is cartesian closed. Similarly, the functor (X,Y ) 7→ τ1X×τ1Y
is cocontinuous in each variable, since the category Cat is cartesian closed. Every
simplicial set is a colimit of a diagram of simplices. Hence it suffices to prove that
the natural transformation iXY is invertible in the case where X = ∆[m] and
Y = ∆[n]. We have ∆[m] = N [m] and ∆[n] = N [n]. The functor N preserves
products, since it is a right adjoint. We have τ1NC = C for every category C. It
follows that we have

τ1(X × Y ) = τ1(N [m]×N [n]) = τ1N([m]× [n])
= [m]× [n] = τ1(∆[m])× τ1(∆[n])
= τ1X × τ1Y.

Proposition B.0.16. If A and B are small categories, then the canonical map

N(BA)→ N(B)N(A)

is an isomorphism. Moreover, if X ∈ S then the map N(B)Nτ1X → N(B)X

induced by the map X → Nτ1X is an isomorphism.

Proof: Let us show that the canonical map N(BA) → N(B)N(A) is an isomor-
phism. If we fix A ∈ Cat the map is a natural transformation between two
functors in B ∈ Cat. The functor B 7→ N(BA) is right adjoint to the functor
X 7→ τ1(X) × A and the functor B 7→ N(B)N(A) right adjoint to the functor
X 7→ τ1(X ×N(A)). Moreover, the natural transformation N(BA) → N(B)N(A)

is right adjoint to the natural transformation τ1(X ×N(A))→ τ1(X)×A. Hence
it suffices to show that canonical map

τ1(X ×N(A))→ τ1(X)×A

is an isomorphism. But this is clear, since the functor τ1 preserves products by
B.0.15 and we have τ1N(A) = A by B.0.13. The first statement of the lemma is
proved. Let us prove the second. Let h be the canonical map X → N(τ1X). It
follows from B.0.15 and B.0.13 that the map

τ1(h× Y ) : τ1(X × Y )→ τ1(N(τ1X)× Y ))

is an isomorphism for every X,Y ∈ S. Arguing as above, it follows by adjointness
that the map

N(B)h : N(B)N(τ1X) → N(B)X

is an isomorphism for every X ∈ S and B ∈ Cat. This proves the result, since we
have

N(B)N(τ1X) ' N(Bτ1X)

by the first part of the proof.
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Proposition B.0.17. [JT3] Let E be a topos and F : S → E be a cocontinuous
functor. If F takes the inclusion ∂I ⊂ I to a monomorphism, then it takes every
monomorphism to a monomorphism.

Proof: We only give the proof in the special case where E = Set. Let A be the class
of maps u such that F (u) is monic. The class A is saturated, since the functor F
is cocontinuous and the class of monomorphisms is saturated in Set. Let us show
that every monomorphism belongs to A. For this it suffices to show that the map
δn : ∂∆[n] ⊂ ∆[n] belongs to A for every n ≥ 0 by B.0.8. Hence it suffice to show
that the map F (δn) is monic for every n ≥ 0. We have F (∅) = ∅, since the functor
F is cocontinuous. This proves the result in the case n = 0. The result is obvious if
n = 1 by the hypothesis on F . Hence we can suppose n ≥ 2. We need to compute
the set F (∂∆[n]). For any simplicial set X we have

F (X) = lim
−→

∆[n]→X

F∆[n],

since the functor F is cocontinuous. The colimit is taken over the category of
elements ∆/X. The category ∆/∂∆[n] is isomorphic to the full subcategory Cn

of ∆/[n] spanned by the non-surjective maps [k]→ [n]. But the full sub-category
Mn of ∆/[n] spanned by the monomorphisms [k]→ [n] with k < n is final in Cn.
Thus,

F (∂∆[n]) = lim
−→

f:[k]�[n]
f∈Mn

F∆[k].

To each monomorphism f : [k] � [n] corresponds a canonical map u(f) : F∆[k]→
F (∂∆[n]) and we have F (δn)u(f) = F (f). Every monomorphism in ∆ has a re-
traction. Hence the map F (f) : F∆[k] → F∆[n] is monic for every monomor-
phism f : [k] � [n]. Let us show that F (δn) is monic. If a, b ∈ F (∂∆[n]) and
F (δn)(a) = F (δn)(b), let us show that a = b. The category Mn is isomorphic to
the poset of proper non-empty subsets on [n]. Every proper subset of [n] is included
in a maximal proper subset [n] \ {i} for some i ∈ [n]. If follows that every element
a ∈ F (∂∆[n]) is in the image of the map u(di) for some i ∈ [n]. Hence we have
a = u(di)(a′) and b = u(dj)j(b′) for some i, j ∈ [n] and some a′, b′ ∈ F∆[n− 1]. If
i = j, then

F (di)(a′) = F (δn)u(di)(a′) = F (δn)(a)
= F (δn)(b) = F (δn)u(di)(b′) = F (di)(b′).

Hence we have a′ = b′, since F (di) is monic. It follows that a = b. Let us now
suppose that i < j. It follows from B.0.6 that the image by F of the pullback
square

[n− 2]

dj−1

��

di // [n− 1]

dj

��
[n− 1]

di // [n]



391

is a pullback square

F∆[n− 2]

F (dj−1)

��

F (di) // F∆[n− 1]

F (dj)

��
F∆[n− 1]

F (di) // F∆[n].

Hence there exists an element c ∈ F∆[n − 2] such that a′ = F (dj−1)(c) and
b′ = F (di)(c). But then,

a = u(di)(a′) = u(di)F (dj−1)(c) = u(didj−1)(c)
= u(djdi)(c) = u(dj)F (di)(c) = u(dj)(b′) = b.

We have proved that the map F (δn) is monic. It follows that F takes a monomor-
phism to a monomorphism.

Proposition B.0.18. [JT3] Let E be a bicomplete model category and α : F → G :
S → E be a natural transformation between two cocontinuous functors. Suppose
that the functors F and G take a monomorphism to a cofibration and that the
map α(n) = α(∆[n]) is a weak equivalence for every n ≥ 0. Then the map α(X) :
F (X)→ G(X) is a weak equivalence for every simplicial set X.

Proof: The hypothesis on F and G implies that F (X) and G(X) are cofibrant
objects for every simplicial set X. Let us show by induction on n ≥ 0 that the
map α(SknX) is a weak equivalence. This is clear if n = 0 by G.0.14, since the
map α(Sk0X) is a coproduct of X0 copies of the map α(0) and α(0) is a weak
equivalence between cofibrant objects. Let us suppose n > 0. The image by α of
the pushout square

Sn(X)× ∂∆[n]

��

// Skn−1X

��
Sn(X)×∆[n] // SknX.

of B.0.7 is a cube,

Sn(X)× F∂∆[n] //

��

))SSSSSSSSSSSSSS FSkn−1X

&&NNNNNNNNNNN

��

Sn(X)×G∂∆[n]

��

// GSkn−1X

��

Sn(X)× F∆[n]

))SSSSSSSSSSSSSS
// FSknX

&&NNNNNNNNNNNN

Sn(X)×G∆[n] // GSknX.
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The front and the back faces of the cube are homotopy pushout squares of cofi-
brant objects by the assumption on F and G. The map α(∂∆[n]) is a weak equiv-
alence between cofibrant objects by the induction hypothesis, hence also the map
Sn(X) × α(∂∆[n]). Similarly for the map α(Skn−1X). It then follows from the
Cube Lemma F.4.6 that the map α(SknX) is a weak equivalence, since α(n) is a
weak equivalence. We have proved that α(SknX) is a weak equivalence for every
n ≥ 0. Let us now show that α(X) is a weak equvalence. But α(X) is a colimit over
n ≥ 0 of the map α(Skn(X)). The poset of natural numbers N is well-founded.
Hence the colimit functor EN → E is a left Quillen functor with respect to the
projective model structure on the category EN by G.0.13. The image by F of the
inclusion Skn−1X → SknX is a cofibration between cofibrant object. It follows
that the infinite sequences

F (Sk0X)→ F (Sk1X)→ F (Sk2X)→ · · ·

is a cofibrant object in the projective model category EN. Similarly for the infinite
sequences

G(Sk0X)→ G(Sk1X)→ G(Sk2X)→ · · · .

It then follows by Ken Brown’s lemma E.2.6 that the map α(X) is a weak equiv-
alence.
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Factorisation systems

In this appendix we study the notion of factorisation system. We give a few ex-
amples of factorisation systems in Cat.

Definition C.0.19. If E is a category, we shall say that a pair (A,B) of classes of
maps in E is a (strict) factorisation system if the following conditions are satisfied:

• the classes A and B are closed under composition and contain the isomor-
phisms;

• every map f : A → B admits a factorisation f = pu : A → E → B with
u ∈ A and p ∈ B, and the factorisation is unique up to unique isomorphism.

We say that A is the left class and B the right class of the weak factorisation
system.

In this definition, the uniqueness of the factorisation of a map f : A → B
means that for any other factorisation f = qv : A → F → B with v ∈ A and
q ∈ B, there exists a unique isomorphism i : E → F such that iu = v and qi = p,

A

u

��

v // F

q

��
E p

//

i

>>}
}

}
}

B.

Recall that a class M of maps in a category E is said to be invariant under
isomorphisms if for every commutative square

A //

u

��

A′

u′

��
B // B′

393
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in which the horizontal maps are isomorphisms we have u ∈ M ⇔ u′ ∈ M. It is
obvious from the definition that the classes of a factorisation system are invariant
under isomorphism.

Definition C.0.20. We shall say that a class of maps M in a category E has the
right cancellation property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A→ B and v : B → C. Dually, we shall say that
M has the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true.

Proposition C.0.21. The intersection of the classes of a factorisation system (A,B)
is the class of isomorphisms. Moreover,

• the class A has the right cancellation property;

• the class B has the left cancellation property.

Proof: If a map f : A→ B belongs to A∩B then we have the factorisation f = f1A

with 1A ∈ A and f ∈ B and the factorisation f = 1Bf with f ∈ A and 1B ∈ B.
Hence there exists an isomorphism i : B → A such that if = 1A and fi = 1B .
This shows that f is invertible. If u ∈ A and vu ∈ A, let us show that v ∈ A. For
this, let us choose a factorisation v = ps : B → E → C, with s ∈ A and p ∈ B.
Let us put w = vu. Then w admits the factorisation w = (p)(su) with su ∈ A and
p ∈ B and the factorisation w = (1C)(vu) with vu ∈ A and 1C ∈ B. Hence there
exists an isomorphism i : E → C such that i(su) = vu and 1Ci = p. Thus, p ∈ A
since p = i and every isomorphism is in A. It follows that v = ps ∈ A, since A is
closed under composition.

Definition C.0.22. We say that a map u : A→ B in a category E is left orthogonal
to a map f : X → Y , or that f is right orthogonal to u, if every commutative
square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a unique diagonal filler d : B → X (that is, du = x and fd = y). We shall
denote this relation by u⊥f .
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Notice that the condition u⊥f means that the square

Hom(B,X)

Hom(B,f)

��

Hom(u,X) // Hom(A,X)

Hom(A,f)

��
Hom(B, Y )

Hom(u,Y )
// Hom(A,X)

is cartesian. If A and B are two classes of maps in E , we shall write A⊥B to
indicate that we have a⊥b for every a ∈ A and b ∈ B.

IfM is a class of maps in a category E , we shall denote by ⊥M (resp.M⊥)
the class of maps which are left (resp. right) orthogonal to every map inM. Each
class ⊥M andM⊥ is closed under composition and contains the isomorphisms. The
class ⊥M has the right cancellation property and the classM⊥ the left cancellation
property. If A and B are two classes of maps in E , then

A ⊆ ⊥B ⇔ A⊥B ⇔ A⊥ ⊇ B.

Proposition C.0.23. If (A,B) is a factorisation system then

A = ⊥B and B = A⊥.

Proof Let us first show that we have A⊥B. If a : A → A′ is a map in A and
b : B → B′ is a map in B, let us show that every commutative square

A

a

��

u // B

b

��
A′

u′
// B′

has a unique diagonal filler. Let us choose a factorisation u = ps : A → E → B
with s ∈ A and p ∈ B and a factorisation u′ = p′s′ : A′ → E′ → B′ with s′ ∈ A
and p′ ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
// B′,

we can construct a square

A

s′a

��

s // E

bp

��
E′

p′
// B′.
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Observe that s ∈ A and bp ∈ B and also that s′a ∈ A and p′ ∈ B. By the
uniqueness of the factorisation of a map that there is a unique isomorphism i :
E′ → E such that is′a = s and bpi = p′:

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
//

i

OO

B′.

The composite d = pis′ is then a diagonal filler of the first square

A

a

��

u // B

b

��
A′

u′
//

d

=={
{

{
{

B′.

It remains to prove the uniqueness of d. Let d′ be an arrow A′ → B such that
d′a = u and bd′ = u′. Let us choose a factorisation d′ = qt : A′ → F → B with
t ∈ A and q ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��

F

q
=={{{{{{{{

A′
s′

//

t

>>||||||||
E′

p′
// B′.

we can construct two commutative squares

A

ta

��

s // E

p

��
F q

// B,

A′

s′

��

t // F

bq

��
E′

p′
// B′.

Observe that we have ta ∈ A and q ∈ B. Hence there exists a unique isomorphism
j : F → E such that jta = s and pj = q. Similarly, there exists a unique isomor-
phism j′ : E′ → F such that j′s′ = t and bqj′ = p′. The maps fits in the following
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commutative diagram,

A

a

��

s // E
p // B

b

��

F

j

OO
q

=={{{{{{{{

A′
s′

//

t

>>||||||||
E′

p′
//

j′

OO

B′.

Hence the diagram

A

s′a

��

s // E

bp

��
E′

p′
//

jj′
=={{{{{{{{
B′.

commutes. It follows that we have jj′ = i by the uniqueness of the isomorphism
between two factorisations. Thus, d′ = qt = (pj)(j′s′) = pis′ = d. The relation
A⊥B is proved. This shows that A ⊆ ⊥B. Let us show that ⊥B ⊆ A. If a map
f : A→ B is in ⊥B. let us choose a factorisation f = pu : A→ C → B with u ∈ A
and p ∈ B. Then the square

A

f

��

u // C

p

��
B

1B

// B

has a diagonal filler s : B → C, since f ∈ ⊥B. We have ps = 1B . Let us show that
sp = 1C . Observe that the maps sp and 1C are both diagonal fillers of the square

A

u

��

u // C

p

��
C p

// B.

This proves that sp = 1C by the uniqueness of a diagonal filler. Thus, p ∈ B, since
every isomorphism is in A. Thus, f = pu ∈ A.

Corollary C.0.24. Each class of a factorisation system determines the other.

Proposition C.0.25. The right class of a factorisation system is closed under limits.

Proof: If (A,B) is a factorisation system, let us denote by B′ be the full subcategory
of EI whose objects are the arrows in B. The result will be proved if we show that
B′ is a reflexive subcategory of EI . Every map u : A → B admits a factorisation
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u = pi : A → E → B with i ∈ A and p ∈ B. The pair (i, 1B) defines an arrow
u→ p in EI . Let us show that the arrow reflects u in the subcategory B′. For this,
it suffices to show that for every arrow f : X → Y in B and every commutative
square

A

u

��

x // X

f

��
B y

// Y,

there exists a unique arrow z : E → X such that fz = py and zi = x. But this is
clear, since the square

A

i

��

x // X

f

��
E yp

// Y.

has a unique diagonal filler by C.0.23.

Recall that a map u : A→ B in a category E is said to be a retract of another
map v : C → D, if u is a retract of v in the category of arrows EI . A class of maps
M in a category E is said to be closed under retracts if the retract of a map inM
belongs toM.

Corollary C.0.26. Each class of a factorisation system is closed under retracts.

Proof: This follolws from Proposition C.0.25

Recall that the base change of a map E → B along a map A→ B is defined
to be the projection A×B E → A in a pullback square

A×B E

��

// E

��
A // B.

A class of maps M in a category E is said to be closed under base changes if
the base change of a map in M along any map belongs to M when it exists.
Every class M⊥ is closed under base change. In particular, the right class of a
factorisation system is closed under base change. Recall that the cobase change of
a map A → E along a map u : A → B is the map B → E tA B in a pushout
square

A

��

// B

��
E // E tA B.
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A class of mapsM in a category E is said to be closed under cobase changes if the
cobase change of a map inM along any map belongs toM when it exists. Every
class ⊥M is closed under base change. In particular, the left class of a factorisation
system is closed under cobase changes.

Let us give some examples of factorisation systems.

Proposition C.0.27. Let p : E → C be a Grothendieck fibration. Then the cate-
gory E admits a factorisation system (A,B) in which B is the class of cartesian
morphisms. An arrow u ∈ E belongs to A iff the arrow p(u) is invertible.

Dually, if p : E → C is a a Grothendieck opfibration, then the category
E admits a factorisation system (A,B) in which A is the class of cocartesian
morphisms. A morphism u ∈ E belongs to B iff the morphism p(u) is invertible.

If E is a category with pullbacks, then the target functor t : EI → E is a
Grothendieck fibration. A morphism f : X → Y of the category EI is a commuta-
tive square in E ,

X0

x

��

f0 // Y0

y

��
X1

f1 // Y1.

The morphism f is cartesian iff the square is a pullback (also called a cartesian
square). Hence the category EI admits a factorisation system (A,B) in which B is
the class of cartesian square. A square f : X → Y belongs to A iff the morphism
f1 : X1 → Y1 is invertible.

Corollary C.0.28. Suppose that we have a commutative diagram

A0
//

��

B0
//

��

C0

��
A1

// B1
// C1

in which the right hand square is cartesian. Then the left hand square is cartesian
iff the composite square is cartesian.

Proof: This follows from the left cancellation property of the right class of a fac-
torisation system.
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Corollary C.0.29. Suppose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the left face, the right face and front face are cartesian. Then the back
face is cartesian.

We now give a few examples of factorisation systems in the category Cat.

Recall that a functor p : E → B is said to be a discrete fibration if for every
object e ∈ E and every arrow g ∈ B with target p(e), there exists a unique arrow
f ∈ E with target e such that p(f) = e. Recall that a functor between small
categories u : A → B is said to be final (but we shall say 0-final) if the category
b\A = (b\B)×B A defined by the pullback square

b\A

��

h // A

u

��
b\B // B.

is connected for every object b ∈ B.

Theorem C.0.30. [Street] The category Cat admits a factorisation system (A,B)
in which B is the class of discrete fibrations and A the class of 0-final functors.

There are a dual notions of discrete opfibration and of 0-initial functor. The
category Cat admits a factorisation system (A,B) in which A is the class of 0-
initial functors and B is the class of discrete opfibrations.

Recall that a functor u : A→ B is said to be conservative if the implication

u(f)invertible ⇒ f invertible

is true for every arrow f ∈ A. We say that an arrow f in a category A is inverted
by a functor u : A → B if the arrow u(f) has an inverse in the category B. For
every set of arrows S in a category A, there is a functor lS : A → S−1A which
inverts universally every arrow in S. The universality means that if a functor
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u : A→ B inverts the arrows in S, then there exists a unique functor v : S−1A→
B such that vlS = u. The functor iS is called a localisation. It is easy to see
that a localisation is left orthogonal to every conservative functor. Every functor
u : A → B admits a factorisation u = u1l1 : A → S−1A → B where u1 is a
localisation with respect to the set S of arrows inverted by u. Unfortunately, the
functor u1 may not be conservative. Let us put S0 = S and A1 = S−1A. The
functor u1 admits a factorisation u1 = u2l2 : A1 → S−1

1 A1 → B, where S1 is the
set of arrows inverted by u1. Let us put A2 = S−1

1 A1. By iterating this process,
we obtain an infinite sequence of categories and functors,

A = A0
l1 //

u=u0

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A1
l2 //

u1

##F
FFFFFFFFFFFFFFFFFFFFFFFFFFF A2

l3 //

u2

��:
::

::
::

::
::

::
::

::
::

::
: A3

l4 //

u4

��-
--

--
--

--
--

--
--

--
--

· · · E

v

����
��
��
��
��
��
��
��
��
�

B.

The category E is defined to be the colimit of the sequence (An) and the functor
v to be the extension of the functors un. It is easy to verify that the functor
v is conservative. The canonical functor l : A0 → E is an iterated localisation.
Formally, an iterated localisation can be defined to be a functor in the class ⊥B,
where B is the class of conservative functors.

Theorem C.0.31. The category Cat admits a factorisation system (A,B) in which
B is the class of conservative functors and A the class of iterated localisations.
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Appendix D

Weak factorisation systems

The theory of weak factorisation systems plays an important role in the theory
of quasi-categories and in homotopical algebra, Here we present the basic aspects
of the theory. For recent developements, see Casacuberta and al [CF], [CSS] and
[CC].

D.1 Basic notions

Definition D.1.1. A map u : A→ B in a category E is said to have the left lifting
property (LLP) with respect to a map f : X → Y , and f is said to have the right
lifting property (RLP) with respect to u, if every commutative square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a diagonal filler d : B → X (that is, du = x and fd = y). We denote this
relation by u t f .

If A and B are two classes of maps, we shall write A t B to indicate that we
have u t f for every u ∈ A and every f ∈ B.

If M is a class of maps in a category E , we shall denote by tM (resp. Mt)
the class of maps in E having the LLP (resp. RLP) with respect to every map in
M. Then

A ⊆ tB ⇐⇒ A t B ⇐⇒ B ⊆ At.

The operationsM 7→Mt andM 7→ tM on the classes of maps are contravariant
and mutually right adjoint. It follows that each operationM 7→ (tM)t andM 7→
t(Mt) is a closure operator. Each class tM and Mt contains the isomorphisms

403
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and is closed under composition. The intersection tM∩M (resp. M∩Mt) is a
class of isomorphisms by the following lemma.

Lemma D.1.2. If f t f , then f is invertible.

Proof: If f t f , then the square

A

f

��

1A // A

f

��
B

1B

//

>>~
~

~
~

B

has a diagonal filler g : B → A. But then, gf = 1A and fg = 1B .

We say that a class of mapsM in a category with coproducts is closed under
coproducts if the coproduct ⊔

i

ui :
⊔
i

Ai →
⊔
i

Bi

of any family of maps ui : Ai → Bi in M belongs to M. The class tM is closed
under coproducts for any class of mapsM in a category with coproducts. There is
a dual notion of a class of maps closed under products in a category with products.
The class Mt is closed under products for any class of maps M in a category
with products.

Proposition D.1.3. Each class tM and Mt is closed under composition and re-
tracts. The classMt is closed under base changes and products. Dually, the class
tM under cobase changes and coproducts.

We say that a class of mapsM in a category with coproducts is closed under
coproducts if the coproduct ⊔

i

ui :
⊔
i

Ai →
⊔
i

Bi

of any family of maps ui : Ai → Bi in M belongs to M. The class tM is closed
under coproducts for any class of mapsM in a category with coproducts. There is
a dual notion of a class of maps closed under products in a category with products.
The class Mt is closed under products for any class of maps M in a category
with products.

Definition D.1.4. A pair (A,B) of classes of maps in a category E is called a weak
factorisation system if the following two conditions are satisfied:

• every map f ∈ E admits a factorisation f = pu with u ∈ A and p ∈ B;

• A = tB and At = B.
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We say that A is the left class and B the right class of the weak factorisation
system.

Proposition D.1.5. A factorisation system is a weak factorisation system.

Proof : Left to the reader.

Each class of a weak factorisation system is closed under composition, re-
tracts, and contains the isomorphisms. The right class is closed under base changes
and products. Dually, the left class is closed under cobase changes and coproducts.
Each class of a weak factorisation system determines the other.

Proposition D.1.6. The intersection of the classes of a weak factorisation system
is the class of isomorphisms.

Proof: This follows from D.1.2.

Proposition D.1.7. Let (A,B) be a weak factorisation system in a category E. For
any object C ∈ E, let us denote by AC (resp. BC) the class of maps in E/C with
an underlying map in A (resp. B). Then the pair (AC ,BC) is a weak factorisation
system.

Proof : Left to the reader.

The following conditions on a Grothendieck fibrations p : E → B are equiv-
alent:

• every arrow in E is cartesian;

• the fibers of p are groupoids.

We call a Grothendieck fibration p : E → B a 1-fibration which satisfies these
conditions a 1-fibration.

Recall that the category Cat admits a factorisation system in which the
right class is the class of discrete fibrations by C.0.30. Let us see that it admits
a weak factorisation system in which the right class is the class of 1-fibrations.
We say that a category C is simply connected if the canonical functor π1C → 1
is an equivalence, where π1C is the groupoid freely generated by C. We say that
a functor u : A → B is 1-final if the category b\A = (b\B) ×B A defined by the
pullback square

b\A

��

h // A

u

��
b\B // B.

is simply connected for every object b ∈ B. Recall that a functor in Cat is a
cofibration for the natural model structure on Cat iff it is monic on objects.
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Theorem D.1.8. The model category Cat admits a weak factorisation system
(A,B) in which B is the class of 1-fibrations and A is the class of 1-final cofi-
brations.

Recall that a map u : A → B is said to be a domain retract of a map
v : C → B, if the object (A, u) of the category E/B is a retract of the object (C, v).
A class of mapsM in a category E is said to be closed under domain retracts. if the
domain retract of a map inM belongs toM. There is a dual notion of codomain
retract and a dual notion of a class of maps closed under codomain retracts

Proposition D.1.9. Let (A,B) be a pair of classes of maps in a category E. Suppose
that the following conditions are satisfied:

• every map f ∈ E admits a factorisation f = pi with i ∈ A and p ∈ B;

• A t B;

• the class A is closed under codomain retracts;

• the class B is closed under domain retracts.

Then the pair (A,B) is a weak factorisation system.

Proof: We have B ⊆ At since we have A t B. Let us show that At ⊆ B. If a map
f : X → Y belongs to At, let us choose a factorisation f = pi : X → Z → Y ,
with i ∈ A and p ∈ B. The square

X

i

��

1X // X

f

��
Z

p // Y.

has a diagonal filler r : Z → X since we have i t f . This shows that f is a domain
retract of p. Thus, f ∈ B since B is closed under domain retracts.

Corollary D.1.10. Let (A,B) be a pair of classes of maps in a category E. Suppose
that the following conditions are satisfied:

• every map f ∈ E admits a factorisation f = pi with i ∈ A and p ∈ B;

• B = At;

• the class A is closed under codomain retracts.

Then the pair (A,B) is a weak factorisation system.

Proof: We have A t B since we have B = At. Moreover, the class B is closed under
codomain retracts for the same reason. This proves the result by D.1.9.
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If A be the class of injections in Set and B is the class of surjections, then
the pair (A,B) is a weak factorisation system. We shall see below that the class
of monomorphisms in any topos is the left class of a weak factorisation system.

Definition D.1.11. We shall say that a map in a topos is a trivial fibration if it
has the right lifting property with respect to every monomorphism.

This terminology is non-standard but useful. The trivial fibrations often co-
incide with the acyclic fibrations, which can be defined in a model category. Recall
that a Grothendieck topos is a category of sheaves with respect to a Grothendieck
topology on a small category (we shall only consider toposes of presheaves). We
say that an object X in a topos is injective if the map X → 1 is a trivial fibra-
tion. An object X is injective iff every map A → X can be extended along every
monomorphism A→ B.

Theorem D.1.12. If A is the class of monomorphisms in a topos, and B is the
class of trivial fibrations, then the pair (A,B) is a weak factorisation system.

Proof : Let us denote the topos by E . We shall prove that the conditions of Propo-
sition D.1.10 are satisfied. We have B = At by definition. The class A is obviously
closed under (codomain) retracts. It remains to show that every map f : A→ B in
E admits a factorisation f = pi : A→ Z → B with i ∈ A and p ∈ B. We shall first
prove that every object can be embedded into an injective object. Let us first show
that the Lawvere object Ω ∈ E is injective. For every object A ∈ E , let us denote
by P(A) is the set of subobjects of A. The contravariant functor A 7→ P(A) is rep-
resented by Ω. In order to show that Ω is injective, we have to show that the map
E(u,Ω) : E(B,Ω) → E(A,Ω) is surjective for every monomorphism u : A → B.
But the map E(u,Ω) is isomorphic to the map u∗ : P(B) → P(A), since Ω is
representing the functor P. Hence it suffices to show that u∗ is surjective. But we
have S = u∗(u(S)) for every sub-object S ⊆ A, since u is monic. This shows that
u∗ is surjective. We have proved that the object Ω is injective. Let us now show
that every object can be embedded into an injective object. It is easy to verify that
if Z is an injective object, then so is the object ZA for any object A. In particular,
the object ΩA is injective for any object A. But the singleton map A→ ΩA (which
”classifies” the diagonal A→ A×A) is monic by a classical result [Jo]. This show
that A can be embedded into an injective object. We can now show that every
map f : A → B in E admits a factorisation f = pi : A → Z → B with i ∈ A and
p ∈ B. But the map p : Z → B is a trivial fibration iff the object (Z, p) of the
topos E/B is injective. Hence the factorisation can be obtained by embedding the
object (A, f) of the topos E/B into an injective object of this topos. The existence
of the factorisation is proved.

Proposition D.1.13. Let F : D ↔ E : G be a pair of adjoint functors. Then for
every pair of arrows u ∈ D and f ∈ E we have

F (u) t f ⇐⇒ u t G(f).
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Proof: The adjunction θ : F a G induces a bijection between the following com-
mutative squares and their diagonal fillers,

FA

Fu

��

x // X

f

��
FB y

//

d

=={
{

{
{

Y,

A

u

��

x′ // GX

Gf

��
B

y′
//

d′
=={

{
{

{
GY,

where x′ = θx, y′ = θy and d′ = θd.

Lemma D.1.14. Let F : D ↔ E : G be a pair of adjoint functors. If (A,B) is a
weak factorisation system in D and (A′,B′) is a weak factorisation system in E
then,

F (A) ⊆ A′ ⇐⇒ G(B′) ⊆ B.

Proof: If F (A) ⊆ A′, let us show that we have G(B′) ⊆ B. If g ∈ B′, then we
have F (f) t g for every f ∈ A, since F (A) ⊆ A′ and A′ t B′. But the condition
F (f) t g is equivalent to the condition f t G(g) by D.1.13. It follows that we
have f t G(g) for every f ∈ A. Thus, G(g) ∈ B since B = At.

Let D and E be two categories and α : F0 → F1 be a natural transformation
between two functors D → E . Let us suppose that E admits pushout. If u : A→ B
is a map in D, let us denote by α•(u) the map

F0B tF0A F1A→ F1B

obtained from the naturality square

F0A

F0u

��

αA // F1A

F1u

��
F0B

αB // F1B.

This defines a functor
α• : DI → EI

where DI (resp. EI) is the category of arrows of D (resp. E). Dually, let β : G1 →
G0 be a natural transformation between two functors E → D. Let us suppose that
D admits pullbacks. If f : X → Y is a map in E , let us denote by β•(f) then map

G1X → G1Y ×G0Y G0X
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obtained from the naturality square

G1X

G1f

��

βX // G0X

G0f

��
G1Y

βY // G0Y.

This defines a functor
β• : EI → DI .

Suppose now that the functor Fi is left adjoint to the functor Gi,

Fi : D ↔ E : Gi

for i = 0, 1, and that α : F0 → F1 is the left transpose of β : G1 → G0. This means
that α is the composite

F0
F0◦µ1 // F0 ◦ β ◦ F1

ε0◦F1 // F1,

where µ1 : Id → G1F1 is the unit of the adjunction F1 a G1 and where ε0 :
F0G0 → Id the counit of the adjunction F0 a G0. In which case β is the right
transpose of α. This means that β is the composite

G1
µ0◦G1 // G0 ◦ α ◦G1

G1◦ε1 // G0,

where µ0 : Id → G0F0 is the unit of the adjunction F0 a G0 and where ε1 :
F1G1 → Id is the counit of the adjunction F1 a G1.

Lemma D.1.15. With the hypothesis above, we have α• ` β•. Thus, for any pair of
maps u : A→ B in D and f : X → Y in E, there is bijective between the following
commutative squares,

F0B tF0A F1A

α•(u)

��

// X

f

��
F1B // Y,

A

u

��

// G0X

β•(f)

��
B // G1Y ×G0Y G0X.

If one of the square has a diagonal filler, so does the other. Thus,

α•(u) t f ⇐⇒ u t β•(f).

See D.1.1 for a definition of the relation ψ.
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Proof: We only sketch the proof. Let us show that α• ` β•. A map u→ β•(f) in
DI is a commutative square in D:

A

u

��

a // G1X

β•(f)

��
B

(b,c) // G1Y ×G0Y G0X.

The square is defined by three maps a : A→ G1X, b : B → G1Y and c : B → G0X
fitting in a commutative diagram

A

u

��

a // G1X

��

βX

##G
GG

GG
GG

GG

B

b

!!D
DD

DD
DD

D
c // G0X

G0f

��
G1Y

βX

// G0Y.

By adjointness, the map a : A → G1X corresponds to a map a′ : F1A → X, the
map b : B → G1Y to a map b′ : F1B → Y , and the map c : B → G0X to a
map c′ : F0B → X. It is easy to verify that the three maps a′, b′ and c′ fit in the
commutative diagram

F0A
αA //

F0u

��

F1A

��

a′

!!C
CC

CC
CC

C

F0B

αB ""F
FFFFFFF

c′ // X

f

��
F1B

b′ // Y.

From the diagram, we obtain a commutative square

F0B tF0A F1A
(c′,a′) //

α•(u)

��

X

f

��
F1B

b′ // Y,

and hence a map α•(u) → f . This defines the adjunction α• ` β•. A diagonal
filler of the square u → β•(f) is given by a map d : B → G1X such that du = a,
(G1f)d = b and βXd = c.. By adjointness, it corresponds to a map d′ : F1B → X
such that fd′ = b′, d′(F1f) = a′ and d′αB = c′. The map d′ is a diagonal filler of
the corresponding square α•(u)→ f . This defines a bijection between the diagonal
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fillers of a square u → β•(f) and the diagonal fillers of the corresponding square
α•(u)→ f .

Let � : E1 × E2 → E3 be a functor of two variables with values in a finitely
cocomplete category E3.

Notation D.1.16. If u : A → B is map in E1 and v : S → T is a map in E2, we
shall denote by u�′ v the map

A� T tA�S B � S −→ B � T

obtained from the commutative square

A� S

��

// B � S

��
A� T // B � T.

This defines a functor of two variables

�′ : EI
1 × EI

2 → EI
3 ,

where EI denotes the category of arrows of a category E . Recall that the functor
� is said to be divisible on the left if the functor A� (−) : E2 → E3 admits a right
adjoint A\(−) : E3 → E2 for every object A ∈ E1. Dually, the functor � is said to
be divisible on the right if the functor (−) � B : E1 → E3 admits a right adjoint
(−)/B : E3 → E1 for every object B ∈ E2.

Notation D.1.17. Suppose that the functor � : E1 × E2 → E3 is divisible on the
left and that the category E2 is finitely complete. If u : A → B is map in E1 and
f : X → Y is a map in E3, we denote by 〈u\ f〉 the map

B\X → B\Y ×A\Y A\X

obtained from the commutative square

B\X //

��

A\X

��
B\Y // A\Y.

Dually, suppose that the category E1 is finitely complete and that the functor �
is divisible on the right. If v : S → T is map in E2 and f : X → Y is a map in E3,
we denote by 〈f/v〉 the map

X/T → Y/T ×Y/S X/S
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obtained from the commutative square

X/T //

��

X/S

��
Y/T // Y/S.

Proposition D.1.18. If the functor � : E1×E2 → E3 is divisible on the left, then the
functor f 7→ 〈u\f〉 is right adjoint to the functor v 7→ u�′ v for every map u ∈ E1.
Dually, if the functor � is divisible on the right, then the functor f 7→ 〈f/v〉 is
right adjoint to the functor u 7→ u �′ v for every map v ∈ E2. If u ∈ E1, v ∈ E2
and f ∈ E3 are three maps, then

(u�′ v) t f ⇐⇒ u t 〈f/v〉 ⇐⇒ v t 〈u\f〉.

Proof We shall use D.1.15. Let v : S → T be a fixed map in E2. For every A ∈ E2,
let us put F0(A) = A⊗S, F1(A) = A⊗ T and αA = A⊗ v. This defines a natural
transformation α : F0 → F1 between two functors E1 → E3. If u : A → B, then
α•(u) = u ⊗′ v. The functor F0 has a right adjoint X 7→ X/S = G0(X) and the
functor F1 has a right adjoint X 7→ X/T = G1(X). The map X/v : X/T → X/S
defines a natural transformation β : G1 → G0 which is the right transpose of the
natural transformation α : F0 → F1. If f : X → Y , then β•(f) = 〈f/v〉. Hence the
functor f 7→ 〈f/v〉 is right adjoint to the functor u 7→ u⊗′ v by D.1.15. Moreover,
the condition (u⊗′ v) t f is equivalent to the condition u t 〈f/v〉.

Notation D.1.19. Let E = (E ,⊗, σ) be a symmetric monoidal closed category, with
symmetry σ : A⊗B ' B⊗A. Then the objects X/A and A\X are canonicaly iso-
morphic; we can identify them by adopting a common notation, for example [A,X].
Similarly, the maps 〈f/u〉 and 〈u\f〉 are canonicaly isomorphic. See D.1.17; we
can identify them by adopting a common notation, for example 〈u, f〉.

In the notation introduced above we have

(u⊗′ v) t f ⇐⇒ u t 〈v, f〉 ⇐⇒ v t 〈u, f〉

by D.1.18.
LetMi ⊆ Ei is a class of maps for i = 1, 2, 3. We shall denote byM1 ⊗′M2

the class of maps u1 ⊗′ u2 for u1 ∈ M1 and u2 ∈ M2, by 〈M1\M3〉 the class
of maps 〈u1\u3〉 for u1 ∈ M1 and u3 ∈ M3 and by 〈M3/M2〉 the class of maps
〈u3/u2〉 for u3 ∈M3 and u2 ∈M2.

Corollary D.1.20. . Let � : E1 × E2 → E3 be a functor divisible on both sides
between finitely biccomplete categories. If (Ai,Bi) be a weak factorisation systems
in Ei for i = 1, 2, 3, then

A1 �′ A2 ⊆ A3 ⇐⇒ 〈A1\B3〉 ⊆ B2 ⇐⇒ 〈B3/A2〉 ⊆ B1.
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Proof: Let us prove the first equivalence. The conditionA1�′A2 ⊆ A3 is equivalent
to the condition (A1�′A2) t B3, since A3 = tB3. But the condition (A1�′A2) t
B2 is equivalent to the condition A2 t 〈A1\B3〉 by D.1.18. Finally, the condition
A2 t 〈A1\B3〉 is equivalent to the condition 〈A1\B3〉 ⊆ B2, since we have B2 = At

2 .
The first equivalence is proved. The second equivalence follows by symmetry.

D.2 Existence of weak factorisation systems

Let E be a category closed under directed colimits. If α = {i : i < α} is a non-zero
limit ordinal, we shall say that a functor C : α → E is transfinite chain if the
canonical map

lim
−→
i<j

C(i)→ C(j)

is an isomorphism for every non-zero limit ordinal j < α. The composite of C is
the canonical map

C(0)→ lim
−→
i<α

C(i).

We shall say that a subcategory A ⊆ E is closed under transfinite composition if
the composite of any transfinite chain C : α → E with values in A belongs to A.
The class tM is closed under transfinite composition for any class of mapsM in
E .

Recall that an ordinal α is said to be a cardinal if it is smallest among the
ordinals with the same cardinality.

Proposition D.2.1. Let A be a class of maps in a cocomplete category E. Sup-
pose that A contains the isomorphisms. If A is closed under cobase change and
transfinite composition, then it is closed under coproducts.

Proof Let us call an object A ∈ E cofibrant, if the map ⊥ → A belongs to A, where
⊥ is the initial object of E . Let us first show that the coproduct of any family of
cofibrant objects is cofibrant. The identity map ⊥ → ⊥ belongs to A, since A
contains the isomorphisms. Thus, the initial object ⊥ is cofibrant. This shows
that the coproduct of an empty family is cofibrant. since the identity map ⊥ → ⊥
belongs to A. Let us now show that the coproduct of a finite non-empty family
of cofibrant objects is cofibrant. For this it suffices to show that the coproduct of
two cofibrant objects is cofibrant. If A and B are cofibrant, consider the pushout
square

⊥ //

��

B

i2

��
A

i1 // A tB.
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The map i2 is a cobase change of the map ⊥ → A. Thus, i2 ∈ A, since A is
cofibrant and since A is closed under cobase change. But the map ⊥ → B belongs
to A, since B is cofibrant. Hence the composite ⊥ → B → A t B belongs to
A, since A is closed under composition. This shows that the coproduct A t B is
cofibrant. Let us now show by induction on α = Card(I) that the coproduct

A =
⊔
i∈I

Ai

of an infinite family of cofibrant objects is cofibrant. The object Cj =
⊔

i<j Ai

is cofibrant for every j < α by the induction hypothesis. This defines a chain
C : α→ E since we have

lim
−→
i<j

Ci = Cj

for every j < α. Notice that C0 = ⊥ and that

lim
−→
i<α

Ci =
⊔
i<α

Ai = A.

We shall prove that A is cofibrant by showing that the composite of the chain C
belongs to A. For every j ≤ k < α, let us put Cj

k =
⊔

j≤i<k Ai. The object Cj
k is

cofibrant by the induction hypothesis, since Card{i : j ≤ i < k} < α. We have a
pushout square

⊥ //

��

Cj

��
Cj

k
// Ck.

Hence the map Cj → Ck belongs to A, since A is closed under cobase change. This
shows that the composite of the chain C belongs to A, since A is closed under
transfinite composition. This proves that A is cofibrant. Let us now show that the
class A is closed under coproducts. Let ui : Ai → Bi (i ∈ I) be a family of maps in
A and let u : A→ B be its coproduct. Let A′ be the class of maps in the category
A\E whose underlying map in E belongs to the class A. It is easy to verify that
the class A′ satisfies the hypothesis of the proposition. Let us put Ci = Bi tAi A
for each i ∈ I,

Ai
//

ui

��

A

vi

��
Bi

// Ci.

The map vi : A → Ci belongs to A, since ui ∈ A by assumption, and since A
is closed under cobase change. Hence the object (Ci, vi) of the category A\E is
cofibrant with respect to the class A′. The coproduct of the objects (Ci, vi) for
i ∈ I is the object (B, u). This shows that the object (B, u) is cofibrant with
respect to A′. by the first part of the proof. Thus, u ∈ A.
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Definition D.2.2. We shall say that a class of maps A in a cocomplete category is
saturated if it satisfies the following conditions:

• A contains the isomorphisms and is closed under composition ;

• A is closed under cobase change and retracts;

• A is closed under transfinite composition.

A saturated class is closed under coproducts by D.2.1. The following result
follows from the discussion above.

Proposition D.2.3. The class tM is saturated for any class of maps M in a
cocomplete category.

In particular, the left class of any weak factorisation system in a cocom-
plete category is saturated. For example, the class of monomorphisms in any
Grothendieck topos is saturated.

Every class of maps M in a cocomplete category is contained in a smallest
saturated class.

Definition D.2.4. If M is a class of maps in a cocomplete category E, we denote
by M the smallest saturated class which contains M. We shall say that M is the
saturated class generated by M.

Proposition D.2.5. Let F : U → V be a cocontinuous functor between cocomplete
categories. If a class of maps C ⊆ V is saturated, then so is the class

F−1(C) = {f ∈ U : F (f) ∈ (C}.

Proposition D.2.6. Let � : E1×E2 → E3 be a functor divisible on both sides between
finitely biccomplete categories. If A is the left class of a weak factorisation system
in E3 and Mi is a class of maps in Ei for i = 1, 2, then

M1 �′M2 ⊆ A =⇒ M1 �′M2 ⊆ A.

Proof: It suffices to prove the implication M1 �′M2 ⊆ A ⇒M1 �′M2 ⊆ A. If
B = At, then A = Bt, since A is the left class of a weak factorisation system.
Hence it suffices to prove the implication (M1 �′M2) t B ⇒ (M1 �′M2) t B.
But for this, it suffices to prove the implication M1 �′ v) t f ⇒ (M1 ×′ v) t f
for any pair of maps v : S → T and f : X → Y . Let C be the class of maps
u : A → B for which we have (u �′ v) t f . A map u : A → B belongs to C
iff we have u t 〈f/v〉 by D.1.18. Hence the class C is saturated by D.2.3. Thus,
M1 ⊆ C ⇒M1 ⊆ C. This shows that (M1�′ v) t f ⇒ (M1�′ v) t f . The result
follows.
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Proposition D.2.7. Let M be a class of maps in a cocomplete category E. If B
is an object of E, let us put MB = U−1(M), where U be the forgetful functor
E/B → E. Then the saturated class generated by MB is equal to U−1(M), where
M is the saturated class generated by M.

If Σ is a class of maps in a category E , we shall say that an object X ∈ E is
Σ-injective if the map

E(u,X) : E(B,X)→ E(A,X)

is surjective for every map u : A → B in Σ. When E has a terminal object 1, an
object X ∈ E is Σ-injective iff the map X → 1 belongs to Σt. Recall that an object
A in a cocomplete category E is said to be small if the functor E(A,−) : E → Set
preserves α-directed colimits for α a regular cardinal large enough.

Proposition D.2.8. (Small object argument) Let Σ be a set of maps in a cocomplete
category E and let Σ be the saturated class generated by Σ. If the domain of each
map in Σ is small, then there exists a functor R : E → E together with a natural
transformation ρ : Id→ R such that:

• the object R(X) is Σ-injective for every object X ∈ E;

• the map ρX : X → R(X) belongs to Σ for every X ∈ E.
Moreover, the functor R preserves α-directed colimits if the domain of each map
in Σ is α-presentable.

Proof: We first consider the case where the domain of each map in Σ is finitely
presentable. If S is a set and A is an object in E , we shall denote by S ⊗ A the
coproduct of S copies of A. For a fixed object A, the functor S 7→ S ⊗ A is left
adjoint to the functor X 7→ E(A,X). Let εAX : E(A,X)⊗ A→ X be the counit of
the adjunction. For every object X ∈ E let us put

S(X) =
⊔

σ∈Σ

E(s(σ), X)⊗ s(σ), T (X) =
⊔

σ∈Σ

E(s(σ), X)⊗ t(σ),

where s(σ) (resp. t(σ)) is the source (resp. the target) of map σ. The coproduct
over σ ∈ Σ of the maps

E(s(σ), X)⊗ σ : E(s(σ), X)⊗ s(σ)→ E(s(σ), X)⊗ t(σ)

is a map φX : S(X) → T (X). The counits εs(σ)
X : E(s(σ), X) ⊗ s(σ) → X induce

a map εX : S(X) → X. This defines two functors S, T : E → E and two natural
transformations φ : S → T and ε : S → Id, where Id denotes the identity functor.
For every object X ∈ E , let us denote by F (X) the object defined by the pushout
square

S(X)

φX

��

εX // X

θX

��
T (X) // F (X).



D.2. Existence of weak factorisation systems 417

This defines a functor F : E → E together with a natural transformation θ :
Id → F . Observe that every map x : A → X admits a canonical factorisation
x = εAX(x′ ⊗ A) : A → E(A,X) ⊗ A → X, where x′ : 1 → E(A,X) corresponds
to x : A → X. It follows that for every map σ : A → B in Σ and every map
x : A→ X we have a commutative diagram of canonical maps,

A
x′⊗A //

σ

��

E(A,X)⊗A //

��

S(X)
eX //

φX

��

X

θX

��
B

x′⊗B // E(B,X)⊗B. // T (X) // F (X),

in which the composite of the top maps is equal to x. If x̃ denotes the composite
of the bottom maps, then we have x̃σ = θXx. Let us denote by R(X) the colimit
of the infinite sequence

X
θ0

// F (X) θ1
// F 2(X) θ2

// F 3(X) // · · ·

where θn = θF n(X). This defines a functor R : E → E . Let vn : Fn(X) → R(X)
be the canonical map and let us put ρX = v0 : X → R(X). This defines a natural
transformation ρ : Id → R. Let us show that the object R(X) is Σ-injective for
every object X. If A ∈ E is a finitely presentable object, then the canonical map

lim
−→
n

E(A,Fn(X))→ E(A,R(X))

is an isomorphism. Thus, for every σ ∈ Σ and every map x : s(σ)→ R(X), there
exist an integer n ≥ 0 together with a map y : s(σ)→ Fn(X) such that x = vny,
since the codomain of σ is finitely presentable by the assumption. But there is
then a map ỹ : t(σ) → Fn+1(X) such that ỹσ = θny, by the observation made
above,

s(σ)
y //

σ

��

Fn(X)

θn

��

vn // R(X)

t(σ)
ỹ // Fn+1(X).

vn+1

66mmmmmmmmmmmmm

If z = vn+1ỹ, then zσ = vn+1ỹσ = vny = x. This shows that R(X) is Σ-injective.
Let us now show that the map ρX : X → R(X) belongs to Σ. The map φX belongs
to Σ, since a saturated class is closed under coproducts by D.2.1. Hence also the
map θX by cobase change. This shows that the map θn belongs to Σ for every
n ≥ 0. It follows that ρX : X → R(X) belongs to Σ, since a saturated class is
closed under transfinite composition. Let us show that the functor R preserves
directed colimits. The functor E(A,−) preserves directed colimits for any finitely
presentable object A. Hence, also the functor E(A,−)⊗B for any object B, since
the functor (−)⊗B is cocontinuous. The functor R is by construction a colimit of
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functors of the form E(A,−)⊗B, for small objects A. It follows that R preserves
directed colimits. This completes the proof of the proposition in the case where the
domain of each map in Σ is finitely presentable. Let us now consider the general
case. The chain X → F (X) → F 2(X) → · · · can be extended cocontinuously
through all the ordinals by putting Fα+1(X) = F (Fα(X)) and

θα = θF α(X) : Fα(X)→ Fα+1(X)

for every ordinal α. By construction, we have

Fα(X) = lim
−→
i<α

F i(X).

if α is a non-zero limit ordinal. If A ∈ E is a small object, then there exists a
regular cardinal α, such that the canonical map

lim
−→
i<α

E(A,F i(X))→ E(A,Fα(X))

is an isomorphism for every object X. If α is taken large enough, we can suppose
that the map is an isomorphism for the domain A of every map in Σ. Let us
then put R(X) = Fα(X) and let vi : F i(X) → R(X) be the canonical map for
i < α. This defines a functor R : E → E equipped with a natural transformation
ρX = v0 : X → R(X). Let us show that the object R(X) is Σ-injective. For every
σ ∈ Σ and every map x : s(σ) → R(X), there exist an ordinal i < α and a map
y : s(σ)→ F i(X) such that x = viy, by the hypothesis on α. But there is then a
map ỹ : t(σ)→ F i+1(X) such that ỹσ = θiy, by the observation made above,

s(σ)
y //

σ

��

F i(X)

θi

��

vi // R(X)

t(σ)
ỹ // F i+1(X).

vi+1

66mmmmmmmmmmmmm

If z = vi+1ỹ, then zσ = vi+1ỹσ = viy = x. This shows that R(X) is Σ-injective.
We leave to the reader the verification that ρX belongs to Σ and the verification
that the functor R preserves α-directed colimits if the domain of each map in Σ
is α-presentable.

A functor R : EI → EI together with a natural transformation ρ : Id → R
associates to a map f : X → Y a commutative square in E ,

X

f

��

ρ1(f) // R1(f)

R(f)

��
Y

ρ0(f) // R0(f).
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Corollary D.2.9. Let Σ be a set of maps in a cocomplete category E and let Σ
be the saturated class generated by Σ. If the domain of each map in Σ is small,
then there exists a functor R : SI → SI together with a natural transformation
ρ : Id→ R such that:

• we have ρ0(f) ∈ Σ and ρ1(f) ∈ Σ for every f ;

• we have R(f) ∈ Σt for every f ;

• the objects R0(f) and R1(f) are Σ-injective for every f ;

Moreover, the functor R preserves α-directed colimits if every the domain of each
map in Σ is α-presentable.

Proof: A map u : a→ b in EI is a commutative square in E ,

A1

a

��

u1 // B1

b

��
A0

u0 // B0.

Let Σ′ be the class of maps (u0, u1) : a→ b with u0 ∈ Σ and u1 ∈ Σ. It is easy to
verify that a map f : X → Y in E is Σ′-injective as an object of EI iff f ∈ Σt and
Y is Σ-injective (hence also X). The domain of a map in Σ′ is a map between two
small objects of E by the assumption on Σ. It is thus a small object of EI . It then
follows from Proposition D.2.8 that there exists a functor R : EI → EI together
with a natural transformation ρ : Id→ R such that:

• the object R(f) is Σ′-injective for every arrow f ∈ E ;

• the map ρ(f) : f → R(f) belongs to Σ
′
for every arrow f ∈ E .

Moreover, the functor R preserves α-directed colimits if the domain of each map
in Σ is α-presentable. Let us show that ρ0(f) ∈ Σ and ρ1(f) ∈ Σ. Let A be the
class of maps (u0, u1) : a → b in EI such that u0 ∈ Σ and u1 ∈ Σ. It is easy to
verify that A is saturated. Thus, Σ

′ ⊆ A since Σ′ ⊆ A. This shows that ρ0(f) ∈ Σ
and ρ1(f) ∈ Σ.

An object of the category E [2] is a chain of maps A0 → A1 → A2 in the
category E . Consider the composition functor σ1 : E [2] → E [1] which associates
to a chain A0 → A1 → A2 its composite A0 → A2. Let ∂0 and ∂1 : E [1] → E
be respectively the target and source functors. We shall say that a section of the
functor σ1 is a functorial factorisation of the maps in E . A functorial factorisation
associates to every map u : A→ B in E a factorisation

A
φ1(u)// F (u)

φ0(u) // B.
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It is determined by a triple (F, φ0, φ1), where F is a functor E [1] → E , where φ0 is a
natural transformation F → ∂0 and where φ1 is a natural transformation ∂1 → F .

Proposition D.2.10. (Small object argument 2) Let Σ be a set of maps in a co-
complete category E and let Σ be the saturated class generated by Σ. If every map
in Σ has a small domain and a small codomain, then there exists a functorial
factorisation (F, φ0, φ1) : E [1] → E [2] such that:

• the map φ0(u) : F (u)→ ∂0(u) belongs to Σt for every map u ∈ E;

• the map φ1(u) : ∂1(u)→ F (u) belongs to Σ for every u ∈ E; .

Moreover, the functor F preserves α-directed colimits if every map in Σ is α-
presentable.

Proof: If u : A → B is a map in E , let us denote by u′ the map (u, 1B) : u → 1B

in EI defined by the commutative square

A

u

��

u // B

1B

��
B

1B // B.

Let us put Σ′ = {u′ : u ∈ Σ}. The assumption on Σ implies that the maps in Σ′

have a small domain. It is easy to verify that a map f : X → Y belongs to Σt iff f
is Σ′-injective as an object of EI . It follows from D.2.8 that there exists a functor
R : EI → EI together with a natural transformation ρ : Id→ R such that:

• R(u) is Σ′-injective object of EI for every arrow u ∈ E ;

• the map ρ(u) : X → R(u) belongs to Σ
′
for every arrow u ∈ E ;

Moreover, the functor R preserves α-directed colimits if the domain of each map
in Σ′ is α-presentable. The pair (R, ρ) associates to a map u : A → B in E a
commutative square

A

u

��

ρ1(u) // R1(u)

R(u)

��
B

ρ0(u) // R0(u).

The map R(u) belongs to Σt since R(u) Σ′-injective as an object of EI . Let us show
that the map ρ0(u) is invertible and that the map ρ1(u) belongs to Σ. Let A be
the class of maps f = (f1, f0) in EI such that f0 is invertible and such that f1 ∈ Σ.
It is easy to verify that A is saturated. Thus, Σ

′ ⊆ A since Σ′ ⊆ A. This shows
that ρ0(u) is invertible and that ρ1(u) ∈ Σ. Let us put φ0(u) = ρ0(u)

−1
R(u),

φ1(u) = ρ1(u) and F (u) = R1(u). The map φ0(u) : F (u) → B belongs to Σt



D.2. Existence of weak factorisation systems 421

since R(u) ∈ Σt. The map φ1(u) : A → F (u) belongs to Σ since ρ1(u) ∈ Σ.
Moreover, the the functor F preserves α-directed colimits if the functor R preserves
α-directed colimits.

Theorem D.2.11. [] Let Σ be a set of maps in a cocomplete category E. Suppose that
the domain of each map in Σ is small, then the pair (Σ,Σt) is a weak factorisation
system.

Proof: Let us show that the pair (Σ,Σt) is a weak factorisation system. We shall
use Corollary D.1.10. The class Σ is closed under domain retracts. We have Σt =
(Σ)t, since the class t(Σt) is saturated. Hence it remains to show that every map
u : A → B admits a factorisation u = pi : A → E → B with i ∈ Σ and p ∈ Σt.
This is clear if B = 1 by D.2.8 Let us show that the problem can be reduced
to this case if we replace the category E by the category E/B. Let us denote by
Σ′ the set of maps in E/B whose underlying map belongs to Σ. The domain of
each map in Σ′ is small, since the domain of each map in Σ is small. It is easy to
verify that an object (E, p) of E/B is Σ′-injective iff the map p : E → B belongs
to Σt. It then follows by D.2.8 that for every object (A, u) of E/B there exists a
factorisation u = pi : A → E → B with i ∈ Σ

′
and (E, p) a Σ′-injective object.

We have p ∈ Σt since (E, p) is Σ′-injective. Let us show that i ∈ Σ. Let A be the
class of maps in E/B whose underlying map in E belongs to Σ. It is easy to verify
that the class A is saturated. Hence we have Σ

′ ⊆ A since we have Σ′ ⊆ A. This
shows that i ∈ Σ. The existence of the factorisation is proved.

Definition D.2.12. Let E be a category, T be a functor EI → Set and S ⊆ T be a
subfunctor. We shall say that a class of maps A ⊆ E is defined by the equation
S = T if we have

A = {f ∈ E : S(f) = T (f)}.
We shall say that the equation is accessible if the category E is accessible and the
functors S and T are accessible.

Let Ti : SI → Set (i ∈ I) be a family of functors and Si ⊆ Ti (i ∈ I) be a
family of sub-functors. For each i ∈ I, let us put

Ai = {f ∈ S : Si(f) = Ti(f)}.

Then we have ⋂
i

Ai = {f ∈ S : S(f) = T (f)},

where
S(f) =

⊔
i∈I

Si(f) and T (f) =
⊔
i∈I

Ti(f).

If the equation Si = Ti is accessible for each i ∈ I and then so is the equation
S = T . This proves the following result:
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Proposition D.2.13. If the class Ai is defined by an accessible equation for each
i ∈ I, then so is the intersection

⋂
iAi.

Lemma D.1. The class of monomorphisms in a presheaf category can be defined
by an acessible equation. This is true also of the class of epimorphisms and of the
class of isomorphisms.

Proof: Let us prove the first statement. Let E = [Co,Set] be a presheaf category.
For every X ∈ E , let us put

Total(X) =
⊔
c∈C

X(c).

This defines a functor Total : E → Set. A map f : X → Y in E is an isomorphism
iff the map Total(f) : Total(X) → Total(Y ) is bijective. But a map f : X → Y
in E is monic iff the diagonal δ(f) : X → X ×Y X is an isomorphism. Let us
put T (f) = Total(X ×Y X) and let S(f) ⊆ T (f) be the image of Total(δ(f)).
This defines a functor T : EI → Set together with a subfunctor S ⊆ T . A map
f : X → Y in E is monic iff we have S = T . It is easy to see from the construction
that the functors S and T are acessible. The first statement is proved. The other
statements are proved similarly.

Proposition D.2.14. Let Σ be a set of maps in a presheaf category E, Then the
class Σt can be defined by an accessible equations S = T . The functor S and T
preserve α-directed colimits if Σ is a set of maps between between α-presentable
objects.

Proof: If u : A→ B and f : X → Y are two maps in E , we shall denote by 〈u, f〉
the map

E(B,X)→ E(B, Y )×E(A,Y ) E(A,X)

obtained from the square

E(B,X)

E(B,f)

��

E(v,X) // E(A,X)

E(A,f)

��
E(B, Y )

E(v,Y ) // E(A, Y ).

A map f ∈ E belongs to Σt iff the map 〈u, f〉 is surjective for every map u ∈ Σ. Let
us denote by T (u, f) the codomain of 〈u, f〉 and by S(u, f) ⊆ T (u, f) its image. A
map f ∈ E belongs to Σt iff we have S(u, f) = T (u, f) for every map u ∈ Σ. Let
us put

T (f) =
⊔

u∈Σ

T (u, f) and S(f) =
⊔

u∈Σ

S(u, f).

This defines a functor T : EI → Set together with a subfunctor S ⊆ T . A map
f ∈ E belongs to Σt iff we have S(f) = T (f). The construction shows that functor
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S and T preserve α-directed colimits if Σ is a set of maps between between α-
presentable objects.

Let C be a small category. The cardinality of a presheaf X on C is defined
to be the cardinality of its category of elements el(X) = C/X.

Lemma D.2.15. Let C be a category of cardinality ≤ α, where α is an infinite
cardinal. Then every presheaf on C is the union of its sub presheaves of cardinality
≤ α.

Proof: Let X be a presheaf on C. If x ∈ el(X), let us denote by I(x) the sub
presheaf of X. generated by x. Clearly, X is the union of the presheaves I(x)
for x ∈ el(X). Hence it suffices to show that we have Card(I(x)) ≤ α for every
x ∈ el(X). Let us first show that for every object c ∈ C, the representable presheaf
C(−, c) has a cardinality ≤ α. We have Card(C/c) ≤ Card(C)3, since an arrow
in C/c is a triple of arrows in C. But α3 = α, since α is an infinite cardinal.
Thus, Card(C/c) ≤ α. If x ∈ X(c) then by Yoneda lemma, there is a natural
transformation u : C(−, c) → X such that u(1c) = x. The image of u is equal to
I(x). There is then a surjection C(−, c)→ I(x). This shows that Card(I(x)) ≤ α,
since the presheaf C(−.c) has cardinality ≤ α.

The cardinality of a map presheaves f : X → Y is defined to be the sum

Card(f) = Card(X) + Card(Y ).

Theorem D.2.16. If a saturated class of monomorphisms in a presheaf category is
defined by an accessible equation, then it is generated by a set of maps.

Proof: Let C be a small category, and let A ⊂ [Co,Set] be a saturated class of
monomorphisms defined by an accessible equation S = T , where T : EI → Set
and S ⊆ T . By A.0.1 and A.0.2, there exists a regular cardinal α such that

• α ≥ Card(C);

• S and T are α-accessible;

• F takes α-presentable objects to α-presentable sets.

Hence the functor T takes a map of cardinality ≤ α to a set of cardinality ≤ α.
Let us denote by Σ the class of maps of cardinality ≤ α in the class A. The propo-
sition will be proved if we show that Σ = A, where Σ denotes the saturated class
generated by Σ. Obviously, Σ ⊆ A, since the class A is saturated by hypothesis.
Conversely, if a map i : X → Y belongs to A, let us show that it belongs to Σ.
The map i is monic, since every map in A is monic. There is no loss of generality
in supposing that i is an inclusion X ⊆ Y , since a saturated class contains the
isomorphisms. Let Θ be the set of presheaves S ⊆ Y which contains X and for
which the inclusion X ⊆ S belongs to Σ. If S, T ∈ Θ, let us write S 2 T to indi-
cate that we have S ⊆ T and that the inclusion S ⊆ T belongs to Σ. This defines



424 Appendix D. Weak factorisation systems

a partial order relation on Θ. The resulting poset is inductive, since a saturated
class is closed under transfinite composition. It follows that Θ contains a maximal
element M . We shall prove that M = Y . Let P(Y ) be the set of presheaves of
S ⊆ Y and let Pα(Y ) ⊆ P(Y ) be the set of presheaves S ⊆ Y of cardinality ≤ α.
The presheaf Y is the union of the presheaves in Pα(Y ) by D.2.15. Let us denote
by P ′

α(Y ) the set of presheaves S ∈ Pα(Y ) for which the inclusion S ∩M ⊆ S
belongs to A. We claim that every A ∈ Pα(Y ) is contained in a B ∈ P ′

α(Y ). For
every U ∈ P(Y ), let us put T0(U) = T (iU ) and S0(U) = S(iU ), where iU denotes
the inclusion U ∩M ⊆ U . This defines a functor T0 : P(Y )→ Set and a subfunc-
tor S0 ⊆ T0. Observe that iU ∈ A iff we have S0(U) = T0(U), since the class A is
defined by the equation S = T . We shall prove that every A ∈ Pα(Y ) is contained
in a B ∈ Pα(Y ) for which S0(B) = T0(B). Before proving this, we shall prove a
weaker property: every A ∈ Pα(Y ) is contained in a A′ ∈ Pα(Y ) such that the
image of the map T0(A)→ T0(A′) is included in S0(A′),

S0(A)

��

� _

��

// S0(A′)

��

� _

��
T0(A)

::uuuuuuuuu
// T0(A′).

The functors S0 and T0 preserve α-directed colimits, since the functors S and
T preserve α-directed colimits. The presheaf Y is the α-directed colimit of its
sub-presheaves U ∈ Pα(Y ). Hence the set T0(Y ) is the α-directed colimit of the
sets T0(U) with U ∈ Pα(Y ) by D.2.15. Similarly for the set S0(Y ). But we have
S0(Y ) = T0(Y ), since the inclusion X ⊆ Y belongs to A by hypothesis. It follows
that for every element x ∈ T0(A) there exists an element Ax ∈ Pα(Y ) which
contains A and such that the image of x by the map T0(A)→ T0(Ax) belongs to
S0(Ax),

1

x

��

// S0(Ax)� _

��
T0(A) // T0(Ax).

Let us put
A′ =

⋃
x∈T0(A)

Ax.

Notice that we have A′ ∈ Pα(Y ), since the cardinality of T0(A) is ≤ α. Moreover,
for every x ∈ T0(A), we have a commutative diagram

1

x

��

// S0(Ax)� _

��

// S0(A′)� _

��
T0(A) // T0(Ax) // T0(A′).
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Hence the image of the map T0(A) → T0(A′) is included in S0(A′). This proves
the weaker property. By using this result, we can construct an increasing sequence
of elements of Pα(Y ),

A = A0 ⊆ A1 ⊆ A2 ⊆ · · ·

such that the image of the map T0(An) → T0(An+1) is included in S0(An+1) for
each n ≥ 0,

S0(A1)� _

��

// S0(A2)� _

��

// S0(A3)� _

��

// · · ·

T0(A)

::uuuuuuuuu
// T0(A1)

::ttttttttt
// T0(A2)

::ttttttttt
// T0(A3)

;;wwwwwwwwww
// · · · .

If α > ω, the sequence can be extended as a cocontinuous chain A? : α→ Pα(Y )
such that the image of the map T0(Ai) → T0(Ai+1) is included in S0(Ai+1) for
each i < α. If B is the union of the chain A?, then we have S0(B) = T0(B), since
the functors S0 and T0 preserve α-directed colimits. Thus, B ∈ P ′

α(Y ) and this
proves the stronger property. We can now prove that M = Y . For every element
x ∈ Y , there exists A ∈ Pα(Y ) such that x ∈ A. Then there exists a B ∈ Pα(Y )
which contains A and for which the inclusion B ∩M ⊆ B belongs to A by what
we just proved. The inclusion B ∩M ⊆ B belongs to Σ, since the cardinality of B
is ≤ α. Hence the inclusion M ⊆ B ∪M belongs to Σ, since the square

B ∩M

��

// M

��
B // B ∪M

is a pushout. Thus, B∪M = M by the maximality of M . This proves that x ∈M ,
since x ∈ B. This proves that M = Y . We have proved that the inclusion X ⊆ Y
belongs to Σ. Thus, Σ = A.

Recall that a class of maps M in a category E is said to have the right
cancellation property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A→ B and v : B → C.

Lemma D.2.17. let A be a saturated class of maps in a topos E and let F ⊆ E
be a class of maps which contains the isomorphisms and which is closed under
base change. Then the class A′ of maps A → B in A having their base change
A×B X → X in A for every map X → B in F is saturated. Moreover, if A has
the right cancellation property, then so does A′.
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Proof: Let us verify that that A′ is closed under cobase change. Consider a pushout
square

A //

u

��

S

v

��
B // T

with u ∈ A′, and let us prove that v ∈ A′. For this we have to show that the base
change of v along any map p : Y → T in F is in A. By pulling back the square
along p we obtain a cube

U

  @
@@

@@
@@

��

// X

��

  @
@@

@@
@@

V

��

// Y

p

��

A

u
  @

@@
@@

@@
// S

v

  @
@@

@@
@@

@

B // T

in which the vertical faces are cartesian. The vertical maps belongs to F since
they are base change of p. The map U → V belongs to A, since it is a base change
of u along a map in F . The top face of the cube is a pushout since the functor
p∗ : E/T → E/X is cocontinuous. It follows that the map X → Y belongs to A,
since A is closed under cobase change. This proves that the map S → T belongs to
A′. The verification that A′ is closed under retract, composition, and transfinite
composition is left to the reader. The last statement about the right cancellation
property is also left to the reader.



Appendix E

Model categories

In this appendix we recall some basic notions of homotopical algebra from [Q] and
[Ho].

E.1 Model structures

Definition E.1.1. We shall say that a class W of maps in a category E has the
“three-for-two” property if the following condition is satisfied:

• If two of three maps u : A → B, v : B → C and vu : A → C belongs to W,
then so does the third.

Definition E.1.2. A Quillen model structure on a finitely bicomplete category E is
a triple (C,W,F) of classes of maps in E such that :

• W has the “three-for-two” property;

• Each pair (C ∩W,F) and (C,W ∩F) is a weak factorisation system.

A Quillen model category is a category E equipped with a model structure (C,W,F).

Each class of a model structure contains the isomorphisms. The class W is
closed under retracts by E.1.3.

A map in the class W is said to be acyclic or to be a weak equivalence . A
map in C is called a cofibration and a map in F a fibration . A map in C ∩ W is
called an acyclic cofibration and a map in F ∩W an acyclic fibration. An object
X ∈ E is fibrant if the map X → > is a fibration, where > is the terminal object
of E . Dually, an object A ∈ E is cofibrant if the map ⊥ → A is a cofibration,
where ⊥ is the initial object of E .

427
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A model structure is said to be left proper if the cobase change of a weak
equivalence along a cofibration is a weak equivalence. Dually, a model structure is
said to be right proper if the base change of a weak equivalence along a fibration is
a weak equivalence. A model structure is proper if it is both left and right proper.

Any two of the classes C,W and F of a model structure determines the third.
For example, a map f ∈ E belongs to W iff it admits a factorisation f = pi with
i ∈ tF and p ∈ Ct.

If (C,W,F) is a model structure in a category E , then the triple (Fo,Wo, Co)
is a model structure on the opposite category Eo. Hence the opposite of a model
category is a model category.

If E is a model category, then so are the categories E/B and B\E for any
object B ∈ E . By definition, a map in E/B is a weak equivalence (resp. a cofibration
, a fibration) iff its underlying map in E is a weak equivalence (resp. a cofibration
, resp. a fibration). And similarly for the model structure on B\E .

Proposition E.1.3. [JT3]The class W of a model structure is closed under retracts.

Proof: Observe first that the class F ∩W is closed under retracts since the pair
(C,F ∩W) is a weak factorisation Suppose now that a map f : A→ B is a retract
of a map g : X → Y in W. Let us show that f ∈ W. By definition, we have a
commutative diagram,

A

f

��

s // X
t //

g

��

A

f

��
B u

// Y
v // B

where gf = 1X and vu = 1B . Let us first consider the case where f is a fibration.
In this case, let us choose a factorisation g = qj : X → Z → Y with j ∈ C ∩ W
and q ∈ F . We have q ∈ F ∩W by three-for-two, since g ∈ W. The square

X

j

��

t // A

f

��
Z

vq // B

has a diagonal filller d : Z → A, since f is a fibration. We then have a commutative
diagram,

A

f

��

js // Z
d //

q

��

A

f

��
B

u // Y
v // B.



E.1. Model structures 429

Thus, f is a retract of q, since d(js) = ts = 1A. This shows that f ∈ W since
q ∈ F ∩W. In the general case, let us choose a factorisation f = pi : A→ E → B
with i ∈ C∩W and p ∈ F By taking a pushout, we obtain a commutative diagram

A

i

��

s // X
t //

i2

��

A

i

��
E

p

��

i1 // E tA X
r //

k

��

E

p

��
B

u // Y
v // B,

where ki2 = g and ri1 = 1E . The map i2 is a cobase change of the map i. Thus,
i2 ∈ C ∩W since i ∈ C ∩W. Thus, k ∈ W by three-for-two since g = ki2 ∈ W by
hypothesis. Thus, p ∈ W by the first part since p ∈ F . Thus f = pi ∈ W since
i ∈ W.

The homotopy category Ho(E) of a model category E is the category of frac-
tions W−1E . We shall denote by [u] the image of a map u ∈ E by the canonical
functor E → Ho(E).

Proposition E.1.4. [Q] In a model category E, a map u : A→ B is a weak equiva-
lence iff the arrow [u] : A→ B is invertible in the homotopy category Ho(E).

Definition E.1.5. ”Six-for-two” [DHKS] We shall say that a class W of maps in
a category has the ”six-for-two” property, if for any commutative diagram

A

u

��

x // X

f

��
B y

//

d

>>~
~

~
~

Y

with x ∈ W and y ∈ W, the six maps x, y, u, f, d, fdu belongs to W.

It is easy to verify that the six-for-two property implies the three-for-two
property.

Corollary E.1.6. The class W of weak equivalences of a model structure has the
”six-for-two” property. .

We shall denote by Ef (resp. Ec) the full sub-category of fibrant (resp. cofi-
brant) objects of a model category E . We shall put Efc = Ef ∩ Ec. A fibrant
replacement of an object X ∈ E is a weak equivalence X → RX with codomain a
fibrant object. Dually, a cofibrant replacement of X is a weak equivalence LX → X
with domain a cofibrant object.
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Let us put Ho(Ef ) = W−1
f Ef where Wf = W ∩ Ef and similarly for Ho(Ec)

and Ho(Efc). Then the diagram of inclusions

Efc

��

// Ef

��
Ec // E

induces a diagram of equivalences of categories

Ho(Efc)

��

// Ho(Ef )

��
Ho(Ec) // Ho(E).

A path object for an object X in a model category is obtained by factoring
the diagonal map X → X × X as weak equivalence δ : X → PX followed by a
fibration (p0, p1) : PX → X ×X. A right homotopy h : f ∼r g between two maps
u, v : A → X is a map h : A → PX such that u = p0h and v = p1h. Two maps
u, v : A → X are right homotopic if there exists a right homotopy h : f ∼r g
with codomain a path object for X. The right homotopy relation on the set of
maps A → X is an equivalence if X is fibrant. There is a dual notion of cylinder
object for A obtained by factoring the codiagonal A t A → A as a cofibration
(i0, i1) : AtA→ IA followed by a weak equivalence p : IA→ A. A left homotopy
h : u ∼l v between two maps u, v : A→ X is a map h : IA→ X such that u = hi0
and v = hi1. Two maps u, v : A → X are left homotopic if there exists a left
homotopy h : u ∼l v with domain some cylinder object for A. The left homotopy
relation on the set of maps A → X is an equivalence if A is cofibrant. The left
homotopy relation coincides with the right homotopy relation if A is cofibrant and
X is fibrant; in which case two maps u, v : A → X are said to be homotopic if
they are left (or right) homotopic; we shall denote this relation by u ∼ v.

Proposition E.1.7. [Q] (Covering Homotopy theorem). Let A be cofibrant with
cylinder object (1A, 1A) = p(i0, i1) : A t A → IA → A and let f : X → Y be a
fibration. If x : A → X and h : IA → Y is a left homotopy with fx = hi0, then
there exists a left homotopy H : IA→ X, with Hi0 = x and fH = h.

Proposition E.1.8. [Q]. If A is cofibrant and X is fibrant, then the canonical map
u 7→ [u],

E(A,X)→ Ho(E)(A,X),

is surjective. Moreover, if u, v : A→ X, then [u] = [v]⇔ u ∼ v,

A map X → Y in Ecf is called a homotopy equivalence if there exists a map
g : Y → X such that gf ∼ 1X and fg ' 1Y .
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Corollary E.1.9. [Q]. A map X → Y in Ecf is a homotopy equivalence iff it is a
weak equivalence.

Proposition E.1.10. A model structure M = (C,W,F) in a category E is deter-
mined by its class of cofibrations C together with its class of fibrant objects F (M).
If M ′ = (C,W ′,F ′) is another model structure with the same cofibrations, then
the relation W ⊆W ′ is equivalent to the relation F (M ′) ⊆ F (M).

Proof: Let us prove the first statement. It suffices to show that the class W is
determined by C and F (M). The class of acyclic cofibrations is determined by C,
since the right class of a weak factorisations system is determined by its left class.
For any map u : A→ B, there exists a commutative square

A′

u′

��

// A

u

��
B′ // B

in which the horizontal maps are acyclic fibrations and the objects A′ and B′ are
cofibrants. The map u is acyclic iff the map u′ is acyclic. Hence it suffices to show
that the class W∩Ec is is determined by C and F (M). If A and B are two objects
of E , let us denote by h(A,B) the set of maps A → B between in the homotopy
category W−1E . A map between two cofibrant objects u : A → B belongs to W,
iff the map h(u,X) : h(B,X)→ h(A,X) is bijective for every object X ∈ F (W).
If A ∈ Ec and X ∈ F (W), then the set h(A,X) is a quotient of the set E(A,X) by
the left homotopy relation. Let us factor the codiagonal AtA→ A as a cofibration
(i0, i1) : A t A → IA followed by an acyclic fibration IA → A. The construction
of the cylinder IA only depends on C. It follows that the left homotopy relation
on the set E(A,X) only depends on C. Hence also the set h(A,X). It follows that
W is determined by C and F (M). The first statement is proved. The proof of the
second statement is left to the reader.

Let f : X → Y be a map between fibrant objects. If (p0, p1)δ : Y → PY →
Y × Y is a path object for Y , the mapping path space of f is the object P (f)
defined by the pullback square

P (f)

pr1

��

pr2 // X

f

��
P (Y )

p1 // Y.

There is a unique map iX : X → P (f) such that pr1iX = δY f and pr2iX = 1X .
Let us put qX = pr2 and qY = p0pr1 : P (f)→ P (Y )→ Y . The map iX is acyclic,
the map qY is a fibration and we have

f = qY iX : X → P (f)→ Y.
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Moreover, pX : P (f) → A an acyclic fibration and we have pX iX = 1X . This is
called the mapping path factorisation of the map f . Dually, let u : A → B be a
map between cofibrant objects. If p(i0, i1) : A t A → IA → A is a cylinder for
A, followed by a weak equivalence p : IA → A. the mapping cylinder of u is the
object C(u) defined by the pushout square

A

i1
��

u // B

in2

��
C(A)

in1 // C(u)

There is a unique map qB : C(u) → B such that qBin1 = upA and qBin2 = 1B .
Let us put iB = in2 and iA = in1i0 : A → C(A) → C(u). The map iA is a
cofibration, the map qB is a weak equivalence and we have

u = qBiA : A→ C(u)→ B.

Moreover, iB : B → C(u) an acyclic cofibration and we have qBiB = 1A. This is
called the mapping cylinder factorisation of the map u.

The following proposition is useful for verifying that a triple (C,W,F) is a
model structure:

Proposition E.1.11. Let E be a finitely bicomplete category equipped a class of maps
W having the “three-for-two” property and two factorisation systems (CW ,F) and
(C,FW ). Suppose that the following two conditions are satisfied:

• CW ⊆ C ∩W and FW ⊆ F ∩W;

• C ∩W ⊆ CW or F ∩W ⊆ FW .

Then we have CW = C ∩W, FW = F ∩W and (C,W,F) is a model structure.

Proof: We have CW ⊆ C ∩ W and FW ⊆ F ∩W by hypothesis. If C ∩ W ⊆ CW ,
let us show that F ∩ W ⊆ FW . If f : X → Y belongs to F ∩ W, let us choose
a factorisation f = pi : X → Z → Y with i ∈ C and p ∈ FW . We have p ∈ W
since FW ⊆ W. Thus, i ∈ W by three-for-two since f ∈ W. Thus, i ∈ CW , since
C ∩ W ⊆ CW . Hence we have i t f , since f ∈ F and the pair (CW ,F) is a weak
factorisation system. It follows that the square

X

i

��

1X // X

f

��
Z

p // Y.

has a diagonal filler r : Z → X. This shows that f is a domain retract of p.
The class FW is closed under domain retracts since the pair (C,FW ) is a weak
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factorisation system. Thus, f ∈ FW since p ∈ FW . We have proved that F ∩W ⊆
FW . Thus, (C,F ∩W) = (C,FW ). This shows that the triple (C,W,F) is a model
structure since we have (C ∩W,F) = (CW ,F) by hypothesis.

Recall that a class of objects K in a category E is said to be replete or if every
object isomorphic to an object of K belongs to K.

Definition E.1.12. Let E be a model category. We say that a class of objects K ⊆ E
is homotopy replete if for every weak equivalence A→ A′, we have A ∈ K ⇔ A′ ∈
K. Similarly for a class of objects in one of the subcategories Ec, Ef and Ecf .

If K is a class of objects in a model category E , let us put

Kc = K ∩ Ec, Kf = K ∩ Ef and Kcf = K ∩ Ecf .

Lemma E.1.13. Let E be a model category and let π : E → Ho(E) is the canonical
functor. Then the map K 7→ π−1(K) induces a bijection between the replete classes
of objects in Ho(E) and the homotopy replete classes of objects in E. Moreover, the
map K 7→ Kc induces a bijection between the homotopy replete classes of objects
in in E and in Ec. Similarly for the maps K 7→ Kf and K 7→ Kcf .

Proof: Two objects A and X are isomorphic in Ho(E) iff there exists a chain of
weak equivalences

A A′poo u // X ′ X
ioo

with A′ cofibrant and X ′ fibrant. The first statement of the lemma follows from
this observation. The second statement follows from the fact that every object has
a cofibrant replacement together with the fact that two cofibrant objects A and
B are isomorphic Ho(Ec) iff there exists a chain of weak equivalences

A
u // B′ B

ioo

in the subcategory Ec. Similarly for the other statements.

E.2 Quillen functors

Definition E.2.1. [Ho] We shall say that a cocontinuous functor F : U → V between
two model categories is a left Quillen functor if it takes a cofibration to a cofibration
and an acyclic cofibration to an acyclic cofibration. Dually, we shall say that a
continuous functor G : V → U between two model categories is a right Quillen
functor if it takes a fibration to a fibration and an acyclic fibration to an acyclic
fibration.

Proposition E.2.2. [Q] Let F : U ↔ V : G be an adjoint pair of functors between
two model categories. Then F is a left Quillen functor iff G is a right Quillen
functor.
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Definition E.2.3. [Ho] We shall say that an adjoint pair of functors between two
model categories, F : U ↔ V : G is a Quillen pair if the conditions of Proposition
E.2.2 are satisfied.

Let u : A → B be a map in a model category E . The pullback functor
u∗ : E/B → E/A has a left adjoint u! obtained by composing a map X → A with
u : A → B. The model structure on E induces a model structure on each of the
category E/A and E/B,

Proposition E.2.4. Let u : A→ B be a map in a model category E. Then the pair
of adjoint functors

u! : E/B → E/A : u∗

is a Quillen pair.

The following lemma is due to Ken Brown:

Lemma E.2.5. [Ho] Let E be a model category and F : E → D be a functor with
values in a category equipped with a class of maps W having the “three-for-two”
property. If F takes an acyclic cofibration between cofibrant objects to an element
of W, then it takes a weak equivalence between cofibrant objects to an element of
W.

Proof: If f : A → B is a weak equivalence between cofibrant objects, consider a
mapping cylinder factorisation (f, 1B) = p(uA, uB) : A t B → C → B. We have
f = puA and puB = 1B . The map uB is an acyclic cofibration. The cofibration uA

is acyclic by three-for-two since f and p are acyclic. Hence the maps F (uA) and
F (uB) belong toW. Hence also the map F (p) by three-for-two since F (p)F (uB) =
1FB . It follows that the composite F (p)F (uA) = F (f) belongs to W.

Corollary E.2.6. A left Quillen functor takes a weak equivalence between cofibrant
objects to a weak equivalence.

The proof of the following result is taken from [JT3].

Proposition E.2.7. The cobase change along a cofibration of a weak equivalence
between cofibrant objects is a weak equivalence.

Proof: Consider a pushout square

A

f

��

k // A′

f ′

��
B

r // B′,

where f is a weak equivalence between cofibrant objects and k is a cofibration. Let
us show that f ′ is a weak equivalence. This is clear if f is an acyclic cofibration.



E.2. Quillen functors 435

If we factor f with the mapping cylinder factorisation, the problem can reduced
to the case where f has a section s : B → A The cobase change along f is a left
Quillen functor F : A\E → B\E by E.2.4. Consider the diagram

B

ks

��

s // A

i2
��

f // B

ks

��
A′

1A ##H
HH

HH
HH

HH
H

i1 // A′ tB A

g

��

h // A′

f ′

��
A′ f ′ // B′

where gi1 = 1A′ , gi2 = k, hi1 = 1A′ and hi2 = ksf . The top square on the right
is pushout since the composite of the top squares is a pushout. It follows that f ′

is the image of g by the cobase change functor F : A\E → B\E . But g is a map
between cofibrant objects of the model category A\E . Hence it suffice to show that
g is a weak equivalence by Lemma E.2.6. But i1 is acyclic since s is an acyclic
cofibration. It follows by three-for-two that g is a weak equivalence since gi1 = 1A′ .

Corollary E.2.8. If every object of a model category is cofibrant, then the model
structure is left proper.

A left Quillen functor F : U → V induces a functor Fc : Uc → Vc hence also
a functor Ho(Fc) : Ho(Uc)→ Ho(Vc) by Lemma E.2.6. Its left derived functor is
a functor

FL : Ho(U)→ Ho(V)

for which the following diagram of functors commutes up to isomorphism,

Ho(Uc)

��

Ho(Fc)// Ho(Vc)

��
Ho(U) F L

// Ho(V),

It can be computed as follows. For each object A ∈ U , we can choose a cofibrant
replacement λA : LA → A, with λA an acyclic fibration. We can then choose for
each arrow u : A→ B an arrow L(u) : LA→ LB such that uλA = λBL(u),

LA

L(u)

��

λA // A

u

��
LB

λB // B.
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Then
FL([u]) = [F (L(u))] : FLA→ FLB.

From the map LA→ A we obtain a map F (LA)→ F (A) which is well defined in
Ho(V). This defines a a natural transformation α : FLP1 → P2F , where P1 and
P2 are the canonical functors.

U

P1

��

F // V

P2

��
Ho(U) F L

// Ho(V).

Proposition E.2.9. [Q] The natural transformation α : FLP1 → P2F exibits the
functor FL as the right Kan extension of the functor P2H along the functor P1.

It follows from this result that the functor FL depends only on F and on the
classes of weak equivalences in the model categories U and V. We observe that the
left Kan extension is absolute, ie it remains a left Kan extension when composed
with any functor with domain Ho(U).

Dually, a right Quillen functor G : V → U induces a functor Gf : Vf → Uf

hence also a functor Ho(Gf ) : Ho(Vf ) → Ho(Uf ) by Lemma E.2.6. Its right
derived functor is a functor

GR : Ho(V)→ Ho(U)

for which the following diagram of functors commutes up to a canonical isomor-
phism,

Ho(Vf )

��

Ho(Gf )// Ho(Uf )

��
Ho(V) GR

// Ho(U).

The functor GR is unique up to a canonical isomorphism. It can be computed as
follows. For each object X ∈ V let us choose a fibrant replacement ρX : X → RX,
with ρX an acyclic cofibration. We can then choose for each arrow u : X → Y an
arrow R(u) : RX → RY such that R(u)ρX = ρY u,

X

u

��

ρX // RX

R(u)

��
Y

ρY // RY.

Then
GR([u]) = [G(R(u))] : GRX → GRY.
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From the map X → RX we obtain a map G(X)→ G(RX) which is well defined
in Ho(V). This defines a a natural transformation α : P1G → GRP2, where P1

and P2 are the canonical functors.

V

P2

��

G // U

P1

��
Ho(V) GR

// Ho(U).

The natural transformation α exibits the functor GR as the left Kan extension
of the functor P1G along the functor P2. We observe that the Kan extension is
absolute, ie it remains a Kan extension when composed with any functor with
domain Ho(U).

Proposition E.2.10. [Q] A Quillen pair of adjoint functors between two model
categories F : U ↔ V : G induces a pair of adjoint derived functors between the
homotopy categories:

FL : Ho(U)↔ Ho(V) : GR.

If A ∈ U is cofibrant, the adjunction unit A → GRFL(A) is obtained by
composing the maps A → GFA → GRFA, where FA → RFA is a fibrant
replacement of FA. If X ∈ V is fibrant, the adjunction counit FLGR(X)→ X is
obtained by composing the maps FLGX → FGX → X, where LGX → GX is a
cofibrant replacement of GX.

A Quillen pair (F,G) is called a Quillen equivalence if the adjoint pair
(FL, GR) is an equivalence of categories.

The composite of two adjoint pairs

F1 : E1 ↔ E2 : G1 and F2 : E2 ↔ E3 : G2

is an adjoint pair F2F1 : E1 ↔ E3 : G1G2.

Proposition E.2.11. [Ho] (Three-for-two) The composite of two Quillen pairs (F1, G1)
and (F2, G2) is a Quillen pair (F2F1, G1G2). Moreover, there are canonical iso-
morphisms

(F2F1)L ' FL
2 F

L
1 and (G1G2)R ' GR

1 G
R
2 .

If two of the pairs (F1, G1), (F2, G2) and (F2F1, G1G2) are Quillen equivalences,
then so is the third.

Lemma E.2.12. Let Fi : U ↔ V : Gi (i = 0, 1) be two Quillen pairs of adjoint
functors between model categories and let u : F0 → F1 and v : G1 → G0 be a pair
mutually transpose natural transformations. If the map uA : F0(A) → F1(A) is
a weak equivalence for every cofibrant A ∈ U then so is the map vX : G1(X) →
G0(X) for every fibrant X ∈ V.
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Proof: The natural transformation u : F0 → F1 induces a natural transformation
between left derived functors uL : FL

0 → FL
1 . The derived natural transformation

vR : UR
0 → UR

1 is the right transpose of the transformation uL. Thus, uL is an
isomorphism iff vR is an isomorphism. The result follows.

Lemma E.2.13. A cofibration is acyclic iff it has the left lifting property with respect
to every fibration between fibrant objects.

Proof: The necessity is clear. Conversely, let us suppose that a cofibration u :
A→ B has the left lifting property with respect to every fibration between fibrant
objects. We shall prove that u is acyclic. For this, let us choose a fibrant replace-
ment j : B → B′ of the object B together with a factorisation of the composite
ju : A→ B′ as a weak equivalence i : A→ A′ followed by a fibration p : A′ → B.
The square

A

u

��

i // A′

p

��
B

j // B′

has a diagonal filler d : B → A′, since p is a fibration between fibrant objects.
The arrows i and j are invertible in the homotopy category since they are acyclic.
The relations pd = j and du = i then implies that d is invertible in the homotopy
category. It thus acyclic by E.1.4. It follows by three-for-two that u is acyclic.

Proposition E.2.14. An adjoint pair of functors F : U ↔ V : G between two model
categories is a Quillen pair iff the following two conditions are satisfied:

• F takes a cofibration to a cofibration;

• G takes a fibration between fibrant objects to a fibration.

Proof: The necessity is obvious. Let us prove the sufficiency. For this it suffices
to show that F is a left Quillen functor by E.2.2. Thus we show that F takes an
acyclic cofibration u : A→ B to an acyclic cofibration F (u) : F (A)→ F (B). But
F (u) is acyclic iff it has the left lifting property with respect to every fibration
between fibrant objects f : X → Y by lemma E.2.13. But the condition F (u) t f is
equivalent to the condition u t G(f) by the adjointness F ` G. We have u t G(f),
since G(f) is a fibration by assumption. This proves that we have F (u) t f . Thus,
F (u) is acyclic.
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Definition E.2.15. We call a Quillen pair F : U ↔ V : G a homotopy reflection
U → V if the right derived functor GR is full and faithful. Dually, we call the pair
a homotopy reflection V → U if the left derived functor FL is full and faithful.

Proposition E.2.16. Let

F1 : T ↔ U : G1 and F2 : U ↔ V : G2

be two Quillen pairs of adjoint functors. If the pair (F1, G1) is a homotopy reflec-
tion, then the pair (F2, G2) is a homotopy reflection iff the pair (F2F1, G1G2) is
a homotopy reflection.

Proposition E.2.17. The following conditions on a Quillen pair F : U ↔ V : G are
equivalent:

• The pair (F,G) is a homotopy reflection U → V;

• The map FLGX → X is a weak equivalence for every fibrant object X ∈ V,
where LGX → GX denotes a cofibrant replacement of GX;

• The map FLGX → X is a weak equivalence for every fibrant-cofibrant object
X ∈ V, where LGX → GX denotes a cofibrant replacement of GX.

Proof: The functor GR is full and faithful iff the counit of the adjunction FL a GR

is an isomorphism. But if X ∈ V is fibrant, this counit is obtained by composing
the maps FLGX → FGX → X, where LGX → GX is a cofibrant replacement of
GX. This proves the equivalence (i)⇔(ii). The implication (ii)⇒(iii) is obvious. Let
us prove the implication (iii)⇒(ii). For every fibrant objet X, there is a an acyclic
fibration p : Y → X with domain a cofibrant object Y . The map Gp : GY → GX
is an acyclic fibration, since G is a right Quillen functor. Let q : LGY → GY
be a cofibrant replacement of GY . Then the map FLGY → FGY → Y is a
weak equivalence by assumption, since Y is fibrant-cofibrant. But the composite
G(p)q : LGY → GY → GX is a cofibrant replacement of GX, since G(p) is a weak
equivalence. Moreover, the composite FLGY → FGX → X is a weak equivalence,
since p is a weak equivalence and the following diagram commutes

FLGY

%%KKKKKKKKK
// FGY

��

// Y

p

��
FGX // X.

This proves that condition (ii) is satisfied for a cofibrant replacement of GX.

Proposition E.2.18. If F : U ↔ V : G is a homotopy reflection, then the right
adjoint G preserves and reflects weak equivalences between fibrant objects.

Proof: The functor GR is equivalent to the functor Ho(Gf ) : Ho(Vf ) → Ho(Uf )
induced by the functor G. Thus, Ho(Gf ) is full and faithful since GR is full and
faithful. This proves the result since a full and faithful functor is conservative.
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Definition E.2.19. Let F : U ↔ V : G be a homotopy reflection beween two model
categories. We shall say that an object X ∈ U is local (with respect to the the
pair (F,G)) if it belongs to the essential image of the right derived functor GR :
Ho(V)→ Ho(U).

Proposition E.2.20. Let F : U ↔ V : G be a homotopy reflection beween two model
categories. If η : I → GF is the unit of the adjunction F ` G, then a cofibrant
object A ∈ U is local iff the composite G(u)ηA : A → GFA → GRFA is a weak
equivalence, where u : FA → RFA denotes a fibrant replacement of FA. The
image by G of a fibrant object of V is local. The class of local objects is invariant
under weak equivalences.

Proof: Let us prove the first statement. An object A ∈ U is local iff the unit
A→ GLFRA of the adjunction FL ` GR is invertible in Ho(U), since the functor
GR is full and faithful. If A is cofibrant, this unit is represented by the compos-
ite G(u)ηA : A → GFA → GRFA, where u : FA → RFA denotes a fibrant
replacement of FA. But a map is invertible in Ho(U) iff it is a weak equivalence
by E.1.4. The first statement is proved. If X ∈ V is fibrant, then we can take
GR(X) = G(X). Thus, the object G(X) is local, since the object GR(X) is local.
The essential image of the functor GR is invariant under isomorphisms. It follows
from E.1.13 that the class of local objects is invariant under weak equivalences.

Proposition E.2.21. Let (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category
E and let us denote byMi the corresponding model category. Suppose that C1 ⊆ C2
and W1 ⊆ W2. Then the identity functor E → E is a homotopy reflection M1 →
M2. The following conditions on an object A are equivalent:

• (i) A is local;

• (ii) there exists aM1-equivalence A→ A′ with codomain aM2-fibrant object
A′;

• (iii) every M2-fibrant replacement A→ A′ is a M1-fibrant replacement.

In particular, every M2-fibrant object is local. A map between local objects is a
M1-equivalence iff it is a M2-equivalence.

Proof: By hypothesis, we have C1 ⊆ C2 andW1 ⊆ W2. It follows that we have F2∩
W2 ⊆ F1∩W1 and F2 ⊆ F1. Let us prove the first statement. The identity functor
E → E is obviously a left Quillen functor M1 → M2. Moreover, the conditions
of proposition E.2.17 are trivially satisfied, since W1 ⊆ W2. Thus, the identity
functor is a homotopy reflectionM1 →M2. It follows by Proposition E.2.20 that
every M2-fibrant object is local. Moreover, a M1-cofibrant object A is local iff
the map i : A→ A′ is a M1-equivalence, where i : A→ A′ denotes a M2-fibrant
replacement of A. Let us prove the second statement. The implication (ii)⇒(i)
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is clear, since every M2-fibrant object is local and the class of local objects is
invariant underM1-equivalences by Proposition E.2.20. The implication (iii)⇒(ii)
is obvious. Let us prove the implication (i)⇒(iii). Let i : A→ A′ be aM2-fibrant
replacement of A. The object A′ is M1-fibrant, since it is M2-fibrant. Let us
show that i ∈ W1. Let us choose a M1-cofibrant replacement q : L1A → A.
The object L1A is local, since A is local and q ∈ W1. We have q ∈ W2, since
W1 ⊆ W2. Thus, iq ∈ W2, since i ∈ W2. Hence there exists a factorisation of
iq = pv : L1A→ R2L1A→ A′, with v ∈ C2 ∩W2 and p ∈ F2 ∩W2,

L1A

q

��

v // R2L1A

p

��
A

i // A′.

The object R2L1A isM2-fibrant, since A′ isM2-fibrant and p is aM2-fibration.
Hence the map v : L1A → R2L1A is a M2-fibrant replacement of L1A. Thus,
v ∈ W1, since L1A isM1-cofibrant and local. But we have p ∈ W1, since we have
F2 ∩ W2 ⊆ F1 ∩ W1. Hence we have i ∈ W1 by three-for-two. Let us prove the
last statement. If f : X → Y is a map between local objects, let us show that
f ∈ W1 ⇔ g ∈ W2. The implication (⇒) is obvious, sinceW1 ⊆ W2. Conversely, if
f ∈ W2, let us show that f ∈ W1. It is easy to see that there exists a commutative
diagram

X

f

��

L1X
qXoo iX //

g

��

R2L1X

h

��
Y L1Y

qXoo iY // R2L1Y

where qX and qY belongs to W1, where L1X and L1Y are M1-cofibrant, where
iX and iY belongs to W2 and where R2L1X and R2L1Y are M2-fibrant. The
horizontal maps of the diagram belongs to W2 since W1 ⊆ W2. Thus, h ∈ W2

by three-for-two since we have f ∈ W2 by assumption. Thus, h ∈ W1 by E.2.18,
since h is a map between M2-fibrant objects. The object L1X is local since X
is local and qX ∈ W1. Hence the maps iX and iY belongs to W1 by Proposition
E.2.20. Hence the horizontal maps of the diagram belongs to W1. Thus, f ∈ W1

by three-for-two, since h ∈ W1.

Definition E.2.22. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a
category E. If C1 = C2 and W1 ⊆ W2, we shall say that the model structureM2 is
a Bousfield localisation of the model structure M1.

Proposition E.2.23. Let M2 = (C2,W2,F2) be a Bousfield localisation of a model
structure M1 = (C1,W1,F1) on a category E. Then a map between M2-fibrant
objects is a M2-fibration iff it is a M1-fibration. A local object is M1-fibrant iff
it is M2-fibrant. An object A is local iff every M1-fibrant replacement i : A→ A′

is a M2-fibrant replacement.
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Proof: By hypothesis, we have C1 = C2 and W1 ⊆ W2. It follows that we have
F2 ∩W2 = F1 ∩W1 and F2 ⊆ F1. Let us prove the first statement. Let us show
that a map f : X → Y between twoM2-fibrant objects is aM2-fibration iff it is a
M1-fibration. The implication (⇒) is clear, since F2 ⊆ F1. Conversely, if f ∈ F1,
let us show that f ∈ F2. Let us choose a factorisation f = pi : X → Z → Y with
i ∈ C2 ∩W2 and p ∈ F2. Then i ∈ W1 by Lemma E.2.6, since the identity functor
is a right Quillen functor M2 → M1 and since i is a map between M2-fibrant
objects. Thus, i ∈ W1 ∩ C1, since C1 = C2. Hence the square

X

i

��

id // X

f

��
E p

// Y

has a diagonal filler, making f a retract of p and therefore f ∈ F2. Let us prove
the second statement. Every M2-fibrant object is local by E.2.21. Conversely, let
X by a M1-fibrant local object. Let us choose a fibrant replacement u : X → R2X
with respect to the model structure M2. We can suppose that u ∈ C2 ∩W2. We
have u ∈ W1 by E.2.21 since X is local. Thus, u ∈ C1 ∩W1, since C1 = C2. Hence
the square

X

u

��

1X // X

��
R2X // 1

has a diagonal filler, since X is M1-fibrant by assumption. Thus, X a retract
of R2X and therefore X is M2-fibrant. Let us prove the last statement. (⇒)
Let i : A → A′ be a M1-fibrant replacement of A. The object A′ is local, since
i ∈ W1 and A is local. Thus, A is M2-fibrant by what we have proved above,
since A is M1-fibrant. We have i ∈ W2, since W1 ⊆ W2. This shows that the
map i : A → A′ be a M2-fibrant replacement. (⇐) Let us choose a M1-fibrant
replacement i : A → L1A. The object L1A is M2-fibrant, since the map i is a
M2-fibrant replacement by assumption. This shows that A is local, since i ∈ W1.

Proposition E.2.24. A Quillen pair F : U ↔ V : G is a Quillen equivalence iff the
following equivalent conditions are satisfied:

• The pair (F,G) is a both a homotopy reflection and coreflection;

• The pair (F,G) is a homotopy reflection and the functor F reflects weak
equivalences between cofibrant objects;

• The pair (F,G) is a homotopy coreflection and the functor G reflects weak
equivalences between fibrant objects;
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E.3 Monoidal model categories

Let � : E1×E2 → E3 be a functor of two variables between three model categories.
Recall that if u : A → B is map in E1 and v : S → T is a map in E2, then u �′ v
denotes the map

A� T tA�S B � S −→ B � T

obtained from the commutative square

A� S

��

// B � S

��
A� T // B � T.

Definition E.3.1. [Ho] We shall say that a functor of two variables

� : E1 × E2 → E3

between three model categories is a left Quillen functor if it is concontinuous in
each variable and the following conditions are satisfied:

• u�′ v is a cofibration if u and v are cofibrations;

• u �′ v is an acyclic cofibration if u and v are cofibrations and if u or v is
acyclic.

Dually, we shall say that � is a right Quillen functor if the opposite functor �o :
Eo
1 × Eo

2 → Eo
3 is a left Quillen functor.

Proposition E.3.2. Let � : E1 × E2 → E3 be a left Quillen functor of two variables
between three model categories. If A ∈ E1 is cofibrant, then the functor B 7→ A�B
is a left Quillen functor E2 → E3.

Proof: If A ∈ E1 is cofibrant, then the map iA : ⊥ → A is a cofibration, where ⊥
is the initial object. If v : S → T is a map in E2, then we have A � v = iA �′ v.
Thus, A� v is a cofibration if v is a cofibration and A� v is acyclic if moreover v
is acyclic.

Recall that a functor of two variables

� : E1 × E2 → E3

is said to be divisible on the left if the functor A � (−) : E2 → E3 admits a right
adjoint A\(−) : E3 → E2 for every object A ∈ E1. In this case we obtain a functor
of two variables (A,X) 7→ A\X,

Eo
1 × E3 → E2,
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called the left division functor. There is a dual notion of a right division functor.
If u : A→ B is map in E1 and f : X → Y is a map in E3, we denote by 〈u\ f〉 the
map

B\X → B\Y ×A\Y A\X

obtained from the commutative square

B\X //

��

A\X

��
B\Y // A\Y.

Proposition E.3.3. Let � : E1×E2 → E3 be a functor of two variables between three
model categories. If the functor � is divisible on the left, then it is a left Quillen
functor iff the corresponding left division functor Eo

1 × E3 → E2 is a right Quillen
functor. Dually, if the functor � is divisible on the right, then it is a left Quillen
functor iff the corresponding right division functor E3×Eo

2 → E1 is a right Quillen
functor.

Proposition E.3.4. Let � : E1×E2 → E3 be a functor of two variables, cocontinuous
in each, between three model categories. Suppose that the following three conditions
are satisfied:

• If u ∈ E1 and v ∈ E2 are cofibrations, then so u⊗′ v;

• the functor (−)�B preserves acyclic cofibrations for every object B ∈ E2;

• the functor A� (−) preserves acyclic cofibrations for every object A ∈ E1.

Then � is a left Quillen functor.

Proof: Let u : A→ B be a cofibration in E1 and v : S → T be a cofibration in E2.
Let us show that u �′ v is acyclic if u or v is acyclic. We only consider the case
where v is acyclic. Consider the commutative diagram

A� S

A�v

��

u�S // B � S

i2

��

B�v

$$JJJJJJJJJ

A� T
i1 // Z

u�′v // B � T

where Z = A� T tA�S B�S and where (u�′ v)i1 = u� T . The map A� v is an
acyclic cofibration since v is an acyclic cofibration. Similarly for the map B� v. It
follows that i2 is an acyclic cofibration by cobase change. Thus, u �′ v is acyclic
by three-for-two since (u�′ v)i2 = B � v is acyclic.
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Definition E.1. [Ho] A model structure (C,W,F) on monoidal closed category E =
(E ,⊗) is said to be monoidal if the tensor product ⊗ : E × E → E is a left Quillen
functor of two variables and the unit object of the tensor product is cofibrant.

Proposition E.3.5. Let E be a monoidal closed category with unit object U . Then
a model structure on E for which U is cofibrant is monoidal iff the left division
functor is a right Quillen functor of two variables iff the right division functor is
a right Quillen functor of two variables.

Definition E.3.6. If V is a monoidal closed model category we shall say that a
model structure on a V-category E is V-enriched if the hom functor

hom : Eo × E → V

is a right Quillen functor of two variables.

A V-category equipped with a V-enriched model structure is called a V-
enriched model category.

Let E be a symmetric monoidal closed category. Then the objects X/A and
A\X are canonicaly isomorphic; hence we can use a common notation, for example
[A,X]. Similarly, the maps 〈f/u〉 and 〈u\f〉 are canonicaly isomorphic; hence we
can use a common notation, for example 〈u, f〉.

Recall that a simplicial category is a category enriched over S.

Definition E.3.7. [Q] Let E be a simplicial category. We shall say that a model
structure on E is simplicial if the it is enriched with respect to the classical model
structure (S,Who).

A simplicial category equipped with a simplicial model structure is called a
simplicial model category

Definition E.3.8. We shall say that a model structure (C,W,F) on a category E is
cartesian if the cartesian product × : E × E → E is a left Quillen functor of two
variables and if the terminal object 1 is cofibrant.

If E is a cartesian closed, then the category E/B is enriched over E .

Proposition E.3.9. If E be a cartesian closed model category, then the model cate-
gory E/B is enriched over E for any object B ∈ E. Similarly, the model category
A\E is enriched over E for any object A ∈ E.

Proof: Let us prove the first statement. Let us denote by S⊗X the tensor product
of an object X = (X, f) in A\E by an object S ∈ E . It suffices to show that the
tensor product functor E × E/B → E/B is a left Quillen functor of two variables.
But this is clear since we have S⊗X = (S×X, p(S×f)), where p is the projection
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S×B → B. Let us prove the second statement. Let us denote by X [S] the cotensor
product of an object X = (X,u) in A\E by an object S ∈ E . It suffices to show
that the cotensor product functor Eo × A\E → A\E is a right Quillen functor of
two variables. But this is clear since X [S] = (XS , uSδ), where δ is the diagonal
A→ AS .



Appendix F

Homotopy factorisation systems

The goal of this appendix is to introduce the notion of homotopy factorisation sys-
tem and establish their basic properties. Factorisation systems where introduced
in homotopy theory by Bousfield [Bous]. The appendix has four sections.

F.1 Homotopy factorisation systems and Bousfield sys-

tems

We say that two maps of a category E are isomorphic if they are isomorphic as
objects of the category EI . We say that a classM of maps in E is replete if every
map isomorphic to a map inM belongs toM.

Definition F.1.1. Let E be a model category. We say that a class of morphisms
K ⊆ E is homotopy replete if for every commutative square in E ′

A

u

��

// A′

u′

��
B // B′

for which the horizontal maps are weak equivalences, we have u ∈M⇔ u′ ∈M.

Proposition F.1.2. Let E be a model category and let π : E → Ho(E) is the canonical
functor. Then the map M 7→ π−1(M) induces a bijection between the replete
classes of maps in Ho(E) and the homotopy replete classes of maps in E.

We denote the full subcategory of fibrant (resp. cofibrant) objects of a model
category E by Ef (resp. Ec). We say that the intersection Efc = Ef ∩ Ec is the core
of E . For any class M of maps in E , we put

Mc =M∩ Ec, Mf =M∩ Ef and Mfc =M∩ Efc.

447
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Definition F.1.3. Let E be a model category with model structure (C,W,F). We
say that a pair (A,B) of classes of maps in E is a homotopy factorisation system
if the following conditions are satisfied:

• the classes A and B are homotopy replete;

• the pair (A ∩ Cfc,B ∩ Ffc) is a weak factorisation system in Efc;

• the class A has the right cancellation property;

• the class B has the left cancellation property.

The class A is called the left class of the system, and the class B the right class.
The weak factorisation system (A ∩ Cfc,B ∩ Ffc) is the center of the homotopy
factorisation system.

The pairs (E ,W) and (W, E) are examples of homotopy factorisation systems.

Let us say that a model structure (C,W,F) on a category E is discrete if
W is the class of isomorphisms. In this case we have C = E = F . The notions of
homotopy factorisation systems and of factorisation systems coincide if the model
structure is discrete.

Theorem F.1.4. Suppose that a pair (A,B) of classes of maps in a model category
E satisfies the first two conditions of Definition F.2.1. Then the last two conditions
are equivalent.

The Theorem will be proved in F.3.1.

Definition F.1.5. We say that a homotopy factorisation system (A,B) in a model
category E with model structure (C,W,F) is strong if the pair (A∩ C,B ∩F) is a
weak factorisation system in E.

Definition F.1.6. Let E be a model category and let E ′ be one of the classes Ec, Ef
or Efc. We say that a class M of fibrations (resp. cofibrations) in E ′ is homotopy
replete in fibrations (resp. in cofibrations) if for every commutative square in E ′

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are weak equivalences and the vertical maps are
fibrations (resp. cofibrations), we have u ∈M⇔ u′ ∈M.
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Definition F.1.7. Let E be a model category with model structure (C,W,F). We
say that a class M of fibrations has the left cancellation property in fibrations, if
it has the left cancellation property as a subcategory of F . Dually, we say that a
classM of cofibrations has the right cancellation property in cofibrations. if it has
the right cancellation property as a subcategory of C.

Definition F.1.8. We call a weak factorisation system (A,B) in a model category
E a Bousfield factorisation system if the following conditions are satisfied:

• A is a class of cofibrations homotopy replete in cofibrations;

• B is a class of fibrations homotopy replete in fibrations;

• A has the right cancellation property in cofibrations;

• B has the left cancellation property in fibrations.

Theorem F.1.9. Suppose that a pair (A,B) of classes of maps in a model category
E satisfies the first two conditions of Definition F.1.8. Then the last two conditions
are equivalent.

Theorem F.1.10. Let E be a model category with model structure (C,W,F). If
(A,B) is a strong homotopy factorisation system in E, then the pair (A′,B′) =
(A∩C,B∩F) is a Bousfield factorisation system. This defines a bijection between
the strong homotopy factorisations systems in E and the Bousfield systems. The
inverse bijection takes a Bousfield system (A′,B′) to a pair (A,B), where A is the
class of maps u : A → B which admits a factorisation u = eu′ : A → B′ → B
where e is a weak equivalence and u′ ∈ A′, and where B is the class of maps
f : X → Y which admits a factorisation f = f ′e : X → X ′ → Y where e is a weak
equivalence and f ′ ∈ B′.

F.2 Weak homotopy factorisation systems

Many properties of homotopy factorisation systems are also valid for the weaker
notion. For example, the intersection of the classes of a weak homotopy factorisa-
tion system is the class of weak equivalences.

Definition F.2.1. Let E be a model category with model structure (C,W,F). We
say that a pair (A,B) of classes of maps in E is a weak homotopy factorisation
system if the following conditions are satisfied:

• the classes A and B are homotopy replete;

• the pair (A ∩ Cfc,B ∩ Ffc) is a weak factorisation system in Efc;

The class A is the left class of the system, and the class B the right class. The
weak factorisation system (A ∩ Cfc,B ∩ Ffc) is the center of the system.
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Corollary F.2.2. LetM⊆ E and N ⊆ E be two homotopy replete classes of maps.
Then

M⊆ N ⇐⇒ Mc ⊆ Nc ⇐⇒ Mf ⊆ Nf ⇐⇒ Mfc ⊆ Nfc.

Proof: Let us prove the first equivalence. Obviously, (M ∩ N )c = Mc ∩ Nc. It
follows from Lemma F.1.2 that

M =M∩N ⇐⇒ Mc =Mc ∩Nc.

Thus, M ⊆ N ⇔Mc ⊆ Nc. This proves the first equivalence. The other equiva-
lences are proved similarly.

Recall from C.0.20 that a class of maps M in a category E is said to have
the right cancellation property if for any pair of maps u : A→ B and v : B → C,
the implication

vu ∈M and u ∈M ⇒ v ∈M
is true. Dually, M is said to have the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true.

Lemma F.2.3. Let M be a homotopy replete class of maps in a model category E.
Then

• (i) If Mfc is closed under composition, then so is M;

• (ii) If Mfc has the left (resp. right) cancellation property, then so does M;

• (iii) If Mfc contains the isomorphisms in Efc, then M⊇W.

Proof: Let us prove (i) and (ii). We shall use the category EI2 , where I2 is the
category generated by two arrows 0 → 1 → 2. An object of EI2 is a pair of
maps a0 : A0 → A1 and a1 : A1 → A2 in E . Let us give the category EI2 the
injective model structure of G.0.12. The cofibrations and the weak equivalences of
this model structure are defined level-wise. Every fibration is a level-wise fibration
(but the converse is not true). For every object (a0, a1) ∈ EI2 , we can choose an
acyclic cofibration i : (a0, a1) → (b0, b1) with codomain a fibrant object, together
with an acyclic fibration p : (c0, c1) → (b0, b1) with domain a cofibrant object .
This gives a commutative diagram

A0
//

a0

��

B0

b0

��

C0
oo

c0

��
A1

//

a1

��

B1

b1
��

C1
oo

c1

��
A2

// B′
2 C2
oo
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in which the horizontal maps are weak equivalences and in which the objects C0,
C1 and C2 belongs to Efc. IfM is closed under composition, then

a0, a1 ∈M⇒ c0, c1 ∈Mfc ⇒ c1c0 ∈Mfc ⇒ a1a0 ∈M,

since the classM is homotopy replete. This shows that the classM is closed under
composition. IfM has the left cancellation property, then

a1a0, a1 ∈M⇒ c1c0, c1 ∈Mfc ⇒ c0 ∈Mfc ⇒ a0 ∈M,

since the class M is homotopy replete. This shows that the class M has the left
cancellation property. It remains to prove (iii). By F.2.2, it suffices to show that
Wfc ⊆ Mfc. Let u : A → B be a map in Wfc. We have 1A ∈ Mfc by the
assumption on Mfc. It follows that u ∈ Mfc, since the horizontal maps of the
square

A
1A //

1A

��

A

u

��
A

u // B.

are weak equivalences and since the class M is homotopy replete .

Proposition F.2.4. A weak homotopy factorisation system on a model category E
is determined by its center. Each class of a weak homotopy factorisation system
determines the other.

Proof: Let (A,B) be a weak homotopy factorisation system and let us put (A0,B0) =
(A ∩ Cfc,B ∩ Ffc). The class A is determined by the class Afc by F.2.2. Let us
show that Afc is determined by the class Afc∩C = A∩Cfc = A0. If u : A→ B is a
map in Efc, let us choose a factorisation u = qi : A→ B′ → B with i a cofibration
and q an acyclic fibration. We have B′ ∈ Efc, since A is cofibrant and B is fibrant.
Thus, i ∈ Cfc. We have u ∈ Afc ⇔ i ∈ A0, since the class A is homotopy replete.
This shows that the class Afc is determined by the class A0. Hence the class A
is determined by the class A0. Dually, the class B is determined by the class B0.
Hence the pair (A,B) is determined by the pair (A0,B0). But each class of the
pair (A0,B0) determines the other since the pair (A0,B0) is a weak factorisation
system in Efc.

Proposition F.2.5. Let (A,B) be a weak homotopy factoorisation system on a model
category E. Then we have

• (i) W = A ∩ B;

• (ii) the classes A and B are closed under composition;

• (iii) (A ∩ Cc) t (B ∩ Ff );
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• (iv) if A ∈ Ec and X ∈ Ef , then every map f : A→ X admits a factorisation
f = pi with i ∈ A ∩ Cc and p ∈ B ∩ Ff .

Proof: Let us put (A0,B0) = (A∩Cfc,B∩Ffc). Let us prove (i). Every isomorphism
in Efc belongs to A0, since A0 is the left class of a weak factorisation system on
Efc. Hence we have W ⊆ A by F.2.3. Dually, we have W ⊆ B. Thus, W ⊆ A∩ B.
Conversely, let us show that A ∩ B ⊆ W. By lemma F.2.3, it suffices to show
that Afc ∩ Bfc ⊆ Wfc. Let g : X → Y be a map in Afc ∩ Bfc. Let us choose
a factorisation g = pu, with u : X → Y ′ a cofibration and p : Y ′ → Y an
acyclic fibration, together with a factorisation g = qv, with v : X → X ′ an acyclic
cofibration and q : X ′ → Y a fibration. We have u ∈ A ∩ Cfc and q ∈ B ∩ Ffc,
since the classes A and B are homotopy replete. Hence the square

X
v //

u

��

X ′

q

��
Y ′ p // Y.

has a diagonal filler w : Y ′ → X ′. The relations qd = p and dv = u implies that d is
invertible in the homotopy category Ho(Efc), since the maps p and u are invertible
in this category. Thus, d is a weak equivalence by ”six-for-two” E.1.5. Hence also
v and u by three-for-two. This shows that g = pv is a weak equivalence. Let us
prove (ii). By F.2.3, it suffices to show that class Afc is closed under composition.
Let u : A→ B and v : B → C be two maps in Afc. Let us choose a factorisation
u = pu′ : A → B′ → B, with u′ a cofibration and p an acyclic fibration, together
with a factorisation of the composite vp : B′ → C as a cofibration v′ : B′ → C ′

followed by an acyclic fibration q : C ′ → C,

B′ v′ //

p

��

C ′

q

��
A

u′
>>}}}}}}} u // B

v // C.

We have B′ ∈ Efc, since A ∈ Ec and B ∈ Ef . Thus, u′ ∈ Cfc. Similarly, v′ ∈ Cfc.
Moreover, we have u′ ∈ A and v′ ∈ A, since p and q are weak equivalences.
Thus, u′ ∈ A0 and v′ ∈ A0. It follows that v′u′ ∈ A0, since the left class of
a weak factorisation system is closed under composition. Thus, vu ∈ Afc, since
q(v′u′) = vu and q is a weak equivalence. Let us prove (iii). Let u : A → B be
a map in A ∩ Cc and f : X → Y be a map in B ∩ Ff . Let us show that every
commutative square

A

u

��

x // X

f

��
B

y // Y
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has a diagonal filler. Let us first consider the case where A ∈ Efc and Y ∈ Efc.
In this case let us choose a factorisation x = pi : A → X ′ → X, with i : A → X ′

a cofibration and p : X ′ → X an acyclic fibration, together with a factorisation
y = qj, with j : B → B′ an acyclic cofibration and q : B′ → Y a fibration,

A
i //

u

��   A
AA

AA
AA

A X ′

  A
AA

AA
AA

A
p // X

f

��
B

j
// B′

q
// Y.

The result will be proved in this case if we show that the middle square of this
diagram has a diagonal filler. We have X ′ ∈ Efc and B′ ∈ Efc. Thus, ju ∈ Cfc

and fp ∈ Ffc. Moreover, ju ∈ A and fp ∈ B, since the classes A and B are
homotopy replete. Thus, ju ∈ A ∩ Cfc and fp ∈ A ∩ Ffc. It follows that the
middle square has a diagonal filler. In the general case, let us choose a factorisation
x = pi : A → A′ → X, with i : A → A′ an acyclic cofibration and p : A′ → X a
fibration, together with with a factorisation y = qj, with j : B → Y ′ a cofibration
and q : Y ′ → Y an acyclic fibration. By taking a pullback and a pushout, we can
construct the following commutative diagram

A
i //

u

��

A′ //

i2

��

Y ′ ×Y X
p2 //

p1

��

X

f

��
B

i1 // B tA A′ // Y ′ q // Y.

It suffices to show that the middle square of the diagram has a diagonal filler.
Observe that we have A′ ∈ Efc and Y ′ ∈ Efc. Hence it suffices to show that we
have i2 ∈ A∩C and p1 ∈ B∩F by the first part of the proof. But i2 ∈ C by cobase
change since u ∈ C. We have also i1 ∈ C ∩W by cobase change since i ∈ C ∩W.
Hence the maps i and i1 are acyclic. Thus, i2 ∈ A, since u ∈ A and the class A
is homotopy replete. This proves that i2 ∈ A ∩ C. Dually, p1 ∈ B ∩ F . The result
is proved. Let us prove (iv). Let us choose an acyclic cofibration i : A → A′ with
A′ ∈ Ef together with an acyclic fibration p : X ′ → X with X ′ ∈ Ec. Then there
exists a map g : A′ → X ′ fitting in the commutative square,

A

i

��

f // X

A′ g // X ′.

p

OO

We have A′ ∈ Efc andX ′ ∈ Efc by construction. We can then choose a factorisation
g = qv : A′ → E → X ′ with v ∈ A0 and q ∈ B0. This yields a factorisation
f = (pq)(vi), with vi ∈ C and pq ∈ F . But we have vi ∈ A ∩ C, since v ∈ A and
the class A is homotopy replete. Similarly, pq ∈ B ∩ F .
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Let π : E → Ho(E) be the canonical functor. If (A,B) be a weak homotopy
factorisation system in E then there exists a unique replete class of maps A′ ⊆
Ho(E) such that π−1A′ = A by F.1.2, since the class A is homotopy replete.
Similarly, there exists a unique replete class of maps B′ ⊆ Ho(E) such that π−1B′ =
B.

Proposition F.2.6. Let (A,B) be a weak homotopy factorisation system in a model
category E. Then the pair (A′,B′) is a weak factorisation system in the category
Ho(E).
Proof: Let us put (A0,B0) = (A ∩ Cfc,B ∩ Ffc), A′′ = Ho(Efc) ∩ A′ and B′′ =
Ho(Efc) ∩ B′. It suffices to show that the pair (A′′,B′′) is a weak factorisation
system in Ho(Efc), since the inclusion Ho(Efc) ⊆ Ho(E) is an equivalence of
categories. For this, it suffices to show that the conditions of D.1.9 are satisfied by
the pair the (A′′,B′′). We denote by ū the homotopy class of a map u : A → B
in the category Efc. Every map A → B in Ho(Efc) is of the form π(u) = ū for a
map u : A → B by E.1.8. Every map f : X → Y in Efc admits a factorisation
f = pu : X → E → Y with u ∈ A0 and p ∈ B0 since the pair (A0,B0) is a
weak homotopy factorisation system. This shows that the map f̄ : X → Y admits
the factorisation f̄ = p̄ū, with ū ∈ A′′ and p̄ ∈ B′′. Let us prove that we have
A′′ t B′′. Observe first that every factorisation f̄ = q̄v̄ : A→ F → B in Ho(Efc),
is isomorphic to a factorisation f̄ = p̄ū : A → E → B for which we have f = pu,
where p is a fibration and u is a cofibration. To see this, let us choose a factorisation
q = p1w : F → F ′ → B, with w a weak equivalence and p1 a fibration. Let us put
x = wv.

A
v̄ //

ū

�� x̄   A
AA

AA
AA

F
q̄ //

w̄

��

B

E
p̄2

// F ′
p̄1

>>}}}}}}}

The factorisation f̄ = q̄v̄ is isomorphic to the factorisation f̄ = p̄1x̄, since w̄ is
invertible. The maps f and p1x are homotopic, since f̄ = p̄1x̄. It follows by the
Covering Homotopy Theorem E.1.7, that there exists a map y : A→ F ′ such that
ȳ = x̄ and p1y = f . Let us then choose a factorisation y = p2u : A→ U → V , with
u a cofibration and p2 an acyclic fibration. Then we have f = pu, where p = p2p1 is
a fibration. Moreover, the factorisation f̄ = p̄1x̄ is isomorphic to the factorisation
f̄ = p̄ū, since p̄2 is invertible. Hence the factorisation f̄ = q̄v̄ is isomorphic to the
factorisation f̄ = p̄ū. Let us now show that any commutative square

A

ū

��

v̄ // X

q̄

��
B

p̄ // Y

with ū ∈ A′′ and q̄ ∈ B′′ has a diagonal filler. We have p̄ū = q̄v̄. By using the
procedure above we can replace the square by an isomorphic square for which we
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have pu = qv and for which u ∈ C, p ∈ F , v ∈ C and q ∈ F . In this case we have
B ∈ Efc and X ∈ Efc. Moreover, u ∈ A and q ∈ B, since ū ∈ A′′ and q̄ ∈ B′′.
Thus, u ∈ A0 and q ∈ B0, since u ∈ C and q ∈ F . It follows that the square

A

u

��

v̄ // X

q

��
B

p // Y

has a diagonal filler d : B → X, since A0 t B0. The map d̄ : B → X is then
a diagonal filler of the original square. This completes the proof of the relation
A′′ t B′′. Let us now show that the class B′′ is closed under domain retracts. Let
f : X → Y and g : E → Y be two maps in Efc with f̄ ∈ B′′. If g is a domain retract
of f in the category Ho(Efc), then there are maps s : E → X and r : X → E such
that f̄ s̄ = ḡ, ḡr̄ = f̄ , r̄s̄ = 1̄E . If we factor g as an acyclic cofibration followed by a
fibration, we can suppose that g is a fibration (this amount to replace the object
(E, g) of the category Ho(Efc)/Y by an isomorphic object). If we factor r as an
acyclic cofibration followed by a fibration, we can suppose that r is a fibration and
that f = gr (this amount to replace the object (X, f) of the category Ho(Efc)/Y
by an isomorphic object). The map f is a fibration since f = gr. By the Covering
Homotopy Theorem E.1.7, there exists a map u : E → X homotopic to s such
that ru = 1E , since rs is homotopic to 1E . Then, fu = gru = g1E = g. Hence
the map g : E → X is a domain retract of the map f : X → Y . If f̄ ∈ B′′, let us
show that ḡ ∈ B′′. We have f ∈ B, since f̄ ∈ B′′. Thus, f ∈ B0, since f ∈ Ffc. It
follows that g ∈ B0, since B0 is closed under domain retracts. Thus, ḡ ∈ B′′. We
have proved that the class B′′ is closed under domain retracts. Dualy, the class A′′

is closed under codomain retracts.

Corollary F.2.7. Each class of a weak homotopy factorisation system is closed
under retracts.

Proof: Let π : E → Ho(E) be the canonical functor. By Proposition F.2.6 we have
A = π−1A′ and B = π−1B′, where (A′,B′) is a weak factorisation system in the
homotopy category Ho(E). If a map u ∈ E is a retract of a map v ∈ A, then the
map π(u) ∈ Ho(E) is a retract of the map π(v) ∈ A′. Hence we have π(u) ∈ A′,
since the class A′ is closed under retracts by Proposition D.1.3. It follows that we
have u ∈ A.

Proposition F.2.8. Let E be a model category. Then a weak factorisation system
(A0,B0) on the subcategory Efc is the center of a weak homotopy factorisation
system on E iff we have A0 ⊆ C and B0 ⊆ F .

Proof: The necessity is obvious. Conversely, let us suppose that we have A0 ⊆ C
and B0 ⊆ F . Let us show that there is a unique homotopy replete class of maps
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A ⊆ E such that A ∩ Cfc = A0. Let EI be the category of arrows of the category
E . An object of EI is a map u : A → B in E . Let us give the category EI the
(injective) model structure G.0.12. A map u : A→ B in E is a cofibrant object of
EI iff A and B are cofibrant in E . A map f : X → Y in E is a fibrant object of
EI iff f is a fibration between fibrant objects in E . Thus, f ∈ (EI)fc iff f ∈ Ffc.
Let us show the subclass B0 ⊆ Ffc is homotopy replete in the category (EI)fc.
Consider a commutative square

X ′

f ′

��

x // X

f

��
Y ′ y // Y,

in which the horizontal maps are weak equivalences and the vertical maps are in
Ffc. We shall first prove that f ∈ B0 ⇔ f ′ ∈ B0. Let us first suppose that f ∈ B0.
Consider the commutative diagram

X ′

f ′ $$I
IIIIIIIII

(f ′,x) // Y ′ ×Y X

p1

��

p2 // X

f

��
Y ′

y
// Y.

The projection p1 is a fibration, since f is a fibration. The projection p2 is a weak
equivalence, since the base change along a fibration of a weak equivalence between
fibrant objects is a weak equivalence by E.2.7. Hence the map (f ′, x) is acyclic
by three-for-two, since the composite p2(f ′, x) = x is acyclic. Let us choose a
factorisation (f ′, x) = (g, u)i : X ′ → Z → Y ′ ×Y X, with i an acyclic cofibration
and (g, u) an acyclic fibration. The map u : Z → X is acyclic, since u = p2(g, u).
The map g : Z → Y ′ is a fibration, since g = p1(g, u). Thus, Z is fibrant, since
Y ′ is fibrant. Moreover, Z is cofibrant, since X ′ is cofibrant and i is a cofibration.
Thus, g ∈ Ffc. Let us show that g ∈ B0. For this, it suffices to show that g has the
right lifting property with respect to every map v ∈ A0. But for this, it suffices to
show that we have v t (g, u) and v t p1, since g = p1(g, u). We have v t (g, u),
since v is a cofibration and (g, u) is an acyclic fibration. We have v t f , since
v ∈ A0 and f ∈ B0. Hence we have v t p1, since the projection p1 is a base change
of f . This completes the proof that g ∈ B0. Let us now show that f ′ ∈ B0. The
square

X ′

i

��

1′X // X ′

f ′

��
Z

g // Y ′

has a diagonal filler r : B′ → P , since i is an acyclic cofibration and f ′ is a fibration.
This shows that f ′ is a domain retract of g. Thus, f ′ ∈ B0 since B0 is closed under
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codomain retracts. Let us now prove the implication f ′ ∈ B0 ⇒ f ∈ B0. The
pair (x, y) defines a weak equivalence f ′ → f between cofibrant-fibrant objects of
the model category EI . It is thus a homotopy equivalence by E.1.9. Hence there
exists a homotopy equivalence in the opposite direction f → f ′. Thus, f ∈ B0 by
what we just proved. We have proved that the subclass B0 ⊆ (EI)fc is homotopy
replete. It then follows from E.1.13 that there is a unique homotopy replete class
(of objects) B ⊆ EI such that B ∩ (EI)fc = B0. This defines a homotopy replete
class of maps B ⊆ E such that B ∩ Cfc = B0. Dually, there is a unique homotopy
replete class of maps A ⊆ E such that A ∩ Ffc = A0. The pair (A,B) is then a
weak homotopy factorisation systeml, since the pair (A∩Cfc,B ∩Ffc) = (A0,B0)
is a weak factorisation system in Efc.

Lemma F.2.9. Let (A,B) be a weak homotopy factorisation system in a model
category E. Let us put (A0,B0) = (A ∩ Cfc,B ∩ Ffc). Then

• (i) a map u ∈ Cc belongs to A iff it is has the left lifting property with respect
to the maps in B0;

• (ii) a map f ∈ Ff belongs to B iff it is has the right lifting property with
respect to the maps in A0.

Proof: Let us prove (i). It follows from F.2.5 that we haveA∩Cc ⊆ tB0. Conversely,
if a map u : A→ B in Cc belongs to tB0, let us show that u ∈ A. Let us first prove
the result in the case where A ∈ Efc. In this case let us choose an acyclic cofibration
i : B → B′ with B′ ∈ Ef . The object B′ is cofibrant, since B is cofibrant. Thus,
B′ ∈ Efc. We have i t B0, since B0 ⊆ F and i t F . Thus, iu t B0, since u t B0

by assumption. But iu ∈ Efc, since A,B′ ∈ Efc. It follows that iu ∈ A0, since the
pair (A0,B0) is a factorisation system in Efc. Thus u ∈ A, since i ∈ W and the
class A is homotopy replete. This proves the result in the case where A ∈ Efc. Let
us now consider the general where A ∈ Ec. Let us choose an acyclic cofibration
i : A→ A′ with A′ ∈ Ef . Consider the pushout square

A
i //

u

��

A′

i2

��
B

i1 // B tA A′.

The maps i1 is an acyclic cofibration, since i is an acyclic cofibration. The maps
i1 is cofibration, since u is a cofibration. We have i2 ∈ tB0, since the class tB0 is
closed under cobase change and we have u ∈ tB0 by assumption. Thus, i2 ∈ A by
what we have proved above, since i2 ∈ Cc and A′ ∈ Efc. It follows that u ∈ A, since
the class A is homotopy replete and the maps i and i1 are acyclic. This completes
the proof of (i). Property (ii) follows by duality.
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F.3 Homotopy factorisation systems

Recall that the diagonal of a map f : X → Y is the map

δf = (1X , 1X) : X → X ×Y X.

Dually, the codiagonal of a map u : A→ B is defined to be the map

δu = (1B , 1B) : B tA B → B.

Theorem F.3.1. . Let (A,B) be a weak homotopy factorisation system on a model
category E, with center (A0,B0) = (A∩Cfc,B∩Ffc). Then the following conditions
are equivalent:

• (i) the class A has the right cancellation property;

• (ii) the class B has the left cancellation property;

• (iii) the codiagonal of a map in A ∩ Cc belongs to A:

• (iv) the diagonal of a map in B ∩ Ff belongs to B;

• (v) vu ∈ A0, u ∈ A0 and v ∈ C ⇒ v ∈ A0;

• (vi) gf ∈ B0, g ∈ B0 and f ∈ F ⇒ f ∈ B0.

Proof: (i)⇒(iii). Let u : A→ B be a map in A∩ Cc. Consider the pushout square

A

u

��

u // B

u2

��
B

u1 // B tA B

It follows from F.2.9 that the class A ∩ Cc is closed under cobase change along a
map in Ec. Thus, u1 ∈ A∩Cc since u ∈ A∩Cc. The relation δuu1 = 1B then implies
that δu ∈ A by (i), since we have 1B ∈ A by F.2.5. The implication (i)⇒(iii) is
proved. Let us prove the implication (iii)⇒(vi). Let f : X → Y and g : Y → Z
be two maps in Ffc. If gf ∈ B0 and g ∈ B0, let us show that f ∈ B0. For this, it
suffices to show that f has the right lifting property with respect to the maps in
A0. If u : A→ B belongs to A0, let us show that every commutative square

A

u

��

x // X

f

��
B

y // Y
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has a diagonal filler. But the square

A

u

��

x // X

gf

��
B

gy // Z

has a diagonal filler d : B → X since gf ∈ B0 by the assumption on gf . We have
fdu = fx = yu. We thus obtain a map (fd, y) : B tA B → Y . Let us choose a
factorisation δu = p(i0, i1) : BtAB → C → B, with (i0, i1) a cofibration and p an
acyclic fibration. The map (i0, i1) belongs to A, since δu ∈ A by assumption and
since the class A is homotopy replete. Thus, (i0, i1) ∈ A ∩ Cc. Hence the square

B tA B

(i0,i1)

��

(fd,y) // Y

g

��
C

gyp // Z

has a diagonal filler h : C → Y by F.2.5, since (i0, i1) ∈ A ∩ Cc and g ∈ B0. The
map i0 = (i0, i1)u1 is a cofibration, since (i0, i1) and u1 are cofibrations. Moreover,
i0 is acyclic by three-for-two, since pi0 = 1B and p is acyclic. Hence the square

B

i0

��

d // X

f

��
C

h // Y

has a diagonal filler k : C → Y , since f is a fibration. The map t = ki1 is
then a diagonal filler of the original square, since ft = fki1 = hi1 = y and
tu = ki1u = k(i0, i1)u2u = k(i0, i1)u1u = ki0u = du = x. We have proved
that f ∈ B0. The implication (iii)⇒(vi) is proved. Let us prove the implication
(vi)⇒(ii). By F.2.3, it suffices to show that the class Bfc has the left concellation
property. Let f : X → Y and g : Y → Z be two maps in Efc. If gf ∈ B and
g ∈ B, let us show that f ∈ B. Let us choose a factorisation g = ki : Y → Y ′ → Z,
with i an acyclic cofibration and k a fibration, together with a factorisation of the
composite if = rj : X → X ′ → Y ′, with j an acyclic cofibration and r a fibration,

Y
i // Y ′ k // Z

X

f

OO

j // X ′.

r

OO

The maps k and r belongs to Ffc. Moreover, k and kr belongs to B0, since ki =
f ∈ B, krj = gf ∈ B and the class B is homotopy replete. Thus, r ∈ B0 by
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the assumption on B0 . It follows that f ∈ B, since B is homotopy replete. The
implications (i)⇒(iii)⇒(vi)⇒(ii) are proved. The implications (ii)⇒(iv)⇒(v)⇒(i)
follow by duality.

Proposition F.3.2. Let E be a model category, A weak factorisation system (A0,B0)
on the subcategory Efc is the center of a homotopy factorisation system on E iff
we have A0 ⊆ C and B0 ⊆ F and one of the following two conditions are satisfied:

• vu ∈ A0, u ∈ A0 and v ∈ C ⇒ v ∈ A0;

• gf ∈ B0, g ∈ B0 and f ∈ F ⇒ f ∈ B0.

Proof: This follows from F.2.4 and Theorem F.3.1.

F.4 Homotopy cartesian squares

Recall that a commutative square of fibrant objects in a model category

A

��

// C

v

��
B

u // D

is said to be homotopy cartesian if v admits a factorisation v = v′w : C → C ′ → D
with w a weak equivalence and v′ a fibration, such that the induced map A →
B×DC

′ is a weak equivalence. If the square is cartesian, then the mapA→ B×DC
′

is a weak equivalence for any factorisation v = v′w : C → C ′ → D as above, and
also the map A → B′ ×D C for any factorisation u = u′w : B → B′ → B with
w a weak equivalence and v′ a fibration. The class of homotopy cartesian square
of fibrant objects is homotopy replete in the subcategory of commutative squares
of fibrant objects. It can thus be extended as an homotopy replete class in the
category of all commutative squares.

Let I = [1] be the category generated by one arrow 0 → 1. An object X of
EI is a map x : X0 → X1 in E . A map f : X → Y in EI is a commutative square
in E ,

X0

x

��

f0 // Y0

y

��
X1

f1 // Y1.

From the square, we obtain map 〈f〉 : X0 → Y0 ×Y0 Y1. If E is model category,
then the category EI admits a model structure called the injective model structure
by G.0.12. Recall that the cofibrations and the weak equivalences of this model
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structure are defined level-wise. A map f : X → Y is a fibration for the injective
model structure G.0.12 on EI iff the map f1 : X1 → Y1 and the map 〈f〉 are fibra-
tions . We shall say that an arrow in EI is homotopy cartesian if the corresponding
square in E is homotopy cartesian.

Theorem F.4.1. The model category EI (with the injective model structure) admits
a homotopy factorisation system (A,B) in which B is the class of homotopy carte-
sian squares. A map u : A→ B in EI belongs to A iff the map u1 : A1 → B1 is a
weak equivalence.

Corollary F.4.2. Suppose that we have a commutative square in a model category

A0
u0 //

��

B0

��
A1

u1 // B1

in which the map u1 is a weak equivalence. Then the map u0 is a weak equivalence
iff the square is homotopy cartesian.

Proof: We shall use the homotopy factorisation system (A,B) of Theorem F.4.1.
The square is a map u : A→ B in EI . We have u ∈ A by hypothesis. Thus, u ∈ A
iff u ∈ W since we have W = A ∩ B by F.2.5.

We say that a commutative square C in a category E is a retract of another
commutative square D, if C is a retract of D as an object of the the category
EI×I .

Corollary F.4.3. A retract of a homotopy cartesian square is homotopy cartesian.

Proof: This follows from Theorem F.4.1 and Corollary F.2.7.

Proposition F.4.4. Suppose that we have a commutative diagram in a model cate-
gory

A0
//

��

B0
//

��

C0

��
A1

// B1
// C1

in which the right hand square is a homotopy pullback. Then the left hand square
is a homotopy pullback iff the composite square is a homotopy pullback.

Proof: Let us denote the model category by E . We shall use the homotopy factori-
sation system (A,B) of theorem F.4.1. The diagram is a pair of arrows u : A→ B
and v : B → C in EI . We have v ∈ B by assumption. Thus, vu ∈ B ⇔ u ∈ B, since
the class B is closed under composition and has the left concellation property.
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Corollary F.4.5. Suppose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the left face, the right face and front face are homotopy cartesian. Then
the back face is homotopy cartesian.

Lemma F.4.6. (Cube Lemma) Suppose that we have a commutative cube as above
in which the left face and the right face are homotopy cartesian. If the maps A1 →
C1, B1 → D1 and B0 → D0 are weak equivalences, then so is the map A0 → C0.

Definition F.4.7. We shall say that a class of maps M in a model category E is
closed under homotopy base change if for any homotopy cartesian square

X ′ //

f ′

��

X

f

��
Y ′ // Y,

we have f ∈ M ⇒ f ′ ∈ M. There is a dual notion a class of maps closed under
homotopy cobase change.

Theorem F.4.8. The right class of a homotopy factorisation system is closed un-
der homotopy base change. Dually, the left class is closed under homotopy cobase
change.
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Reedy theory

We describe Reedy theory of direct categories.
We say that a category C is artinian if every infinite decreasing sequence of

arrows
c0 ← c1 ← c2 ← · · ·

is stationnary. There a dual notion of noetherian category. If C is a category and
λ is an ordinal, then a functor d : C → λ is called a linear extension if it takes
a non-identity to a non-identity. A category C is said to be direct if it admits a
linear extension d : C → λ for some ordinal λ. There is a dual notion of inverse
category. A category C is direct (resp. inverse) iff it is artinian (resp. noetherian).

Lemma G.0.9. Let C be a category. For every object a ∈ ObC, the representable
presheaf a = C(−, a) contains a maximum proper subobject ∂a ⊂ a.

.
Proof: The presheaf F = C(−, a) is generated by the element 1a ∈ F (a). Thus,
a sub presheaf U ⊆ F is proper iff 1A 6∈ U(a). It follows from this observation
that the union of all the proper sub presheaves of F is proper. This shows that F
contains a maximum proper subobject.

If C is a direct category, then the sub-object ∂a ⊂ a is generated by the maps
b→ a with b 6= a.

Let C be a small category and E be a bicomplete category. The box product
of a presheaf A ∈ Ĉ by an object B ∈ E is the functor (A�B) : Co → E defined
by putting

(A�B)(c) = A(c)×B
for every object c ∈ C, where A(c) × B is the coproduct of A(c) copies of the
object B. The functor � : Ĉ×E → [Co, E ] is divisible on both sides. If X ∈ [Co, E ]
and A ∈ Ĉ, then

A\X =
∫

c∈C

X(c)A(c).

463
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To a map u : A → B in Ĉ and a map v : S → T in E , we can associate the
map

u�′v : A�T tA�S B�S −→ B�T

in [Co, E ]. If f : X → Y is a map in [Co, E ] we have a map

〈u\f〉 : B\X −→ B\Y ×A\Y A\X

in E . In particular, for every object a ∈ ObC we have a map

〈δa\f〉 : X(a) −→ Y (a)×∂a\Y ∂a\X,

where δa denotes the inclusion ∂a ⊂ a.

It follows from D.1.18 that we have

(u�′v) t f ⇐⇒ v t 〈u\f〉.

Let M be a class of maps in a category E . If C is a small category, we shall
say that a map f : X → Y in the category [Co, E ] is level-wise in M if the map
f(a) : X(a)→ Y (a) belongs toM for every object a ∈ C.

Proposition G.0.10. Let E be a bicomplete category equipped with a weak factori-
sation system (A,B) and let C be a direct category. Let A′ ⊆ [Co, E ] be the class
of maps level-wise in A and let B′ ⊆ [Co, E ] be the class of maps f : X → Y for
which we have 〈δa\f〉 ∈ B for every object a ∈ C. Then the pair (A′,B′) is a weak
factorisation system.

.
Proof: We shall use proposition D.1.9. The classes A′ and B′ are closed under
retracts since the classes A and B are closed under retracts. Let us show that we
have A′ t B′ Let S be a commutative square

A //

u

��

X

f

��
B // Y

with u ∈ A′ and f ∈ B′. Let us show that it has a diagonal filler. Let d : C → λ
be a linear extension. For every α ≤ λ, let Cα the full subcategory of C spanned
by the objects i with d(i) < α. If we restrict the square S to the subcategory Cα,
we obtain a square Sα:

Aα
//

uα

��

Xα

fα

��
Bα

// Yα.
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LetDα be the set of diagonal fillers of Sα. There is a canonical projectionDβ → Dα

for every α ≤ β. We shall prove that Dλ 6= ∅ by showing that the projection
Dα+1 → Dα is surjective for every α < λ. Let k ∈ Dα. If d(a) = α, we have a
commutative diagram,

A(a) //

u(a)

��

X(a) //

��

∂a\X

∂a\f

��
B(a) //

55kkkkkkkkkkkkkkkkk
Y (a) // ∂a\Y,

where the diagonal is obtained by composing the map B(a)→ ∂a\B with the map
∂a\k : ∂a\B → ∂a\X which is induced by k : Bα → Xα since ∂a\B = ∂a\Bα

and ∂a\X = ∂a\Xα. From the diagram, we obtain a commutative square

A(a) //

u(a)

��

X(a)

〈δa\f〉
��

B(a) // Y (a)×∂a\Y ∂a\X.

The square which has a diagonal filler k(a) since the map u(a) ∈ A and 〈δa\f〉 ∈ B.
The maps k(a) for d(a) = α are defining an extension of k toDα+1. This proves the
result. Let us now show that every map f : X → Y in [Co, E ] admits a factorisation
f = pu with u ∈ A′ and p ∈ B′. We can argue by induction on α < λ. Let A′

α and
B′α be the corresponding classes of maps in the category [Co

α, E ]. Let us suppose
that we have factorisation of the restricted map fα = pu : Xα → P → Yα with
u ∈ A′

α and p ∈ B′
α. If d(a) = α we have a commutative diagram

X(a)

��

// Y (a)

��
∂a\X // ∂a\P // ∂a\Y

and hence a map X(a) → ∂a\P ×∂a\Y Y (a). By factoring this map as a map
X(a) → P (a) in A followed by a map P (a) → ∂a\P ×∂a\Y Y (a) in B, we can
extend the given factorisation fα = pu : Xα → P → Yα to a factorisation of fα+1.
The existence of the factorisation of the map f : X → Y is proved. The conditions
of D.1.9 are thus satisfied. Hence the pair (A′,B′) is a weak factorisation system.

Proposition G.0.11. Let E be a bicomplete category equipped with a weak factori-
sation system (A,B) and let C be a direct category. Let f : X → Y be a map in
[Co, E ]. If the map 〈δa\f〉 belongs to B for every object a ∈ C, then so is the map

〈u\f〉 : B\X −→ B\Y ×A\Y A\X

for any monomorphism u : A→ B in Ĉ.
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Proof: It suffices to show that we have v t 〈u\f〉 for any map v : S → T in A.
But the condition v t 〈u\f〉 is equivalent to the condition (u�′v) t f . Hence it
suffices to show that u�′v ∈ A′. For this we have to show that the map

u(a)×′ v : B(a)× S tA(a)×S A(a)× T → B(a)× T

obtained from the square

A(a)× S

��

// A(a)× T

��
B(a)× S // B(a)× T

belongs to A for every object a ∈ C. We can suppose that u is an inclusion A ⊆ B.
Let us denote by Ã(a) the complement of A(a) in the set B(a). Then we have a
decomposition u(a) = i ∪A(a), where i is the inclusion ∅ ⊂ Ã(a). Thus,

u(a)×′ v = (i×′ v) t (A(a)×′ v) = (Ã(a)× v) t (A(a)× T ).

Hence the map u(a)×′ v is a base change of the map Ã(a)× v. The map Ã(a)× v
belongs to A, since A is closed under a coproducts. This proves that u�′v ∈ A′

and hence that 〈u\f〉 ∈ B.

Proposition G.0.12. (Injective model structure) Let E be a bicomplete model cat-
egory and let C be a direct category. Then the category [Co, E ] admits a model
structure in which the cofibrations and the weak equivalences are level-wise. A
map f : X → Y is a fibration iff the map 〈δa\f〉 is a fibration for every object
a ∈ C.

The model structure of proposition G.0.12 the injective model structure on
[Co, E ]. In C is an inverse category, there is a dual projective model structure on
[Co, E ].

Proposition G.0.13. Let E be a bicomplete model category and let C be a direct
category. Then the limit functor

lim
←−
C

: [Co, E ]→ E .

is a right Quillen functor with respect to the injective model structure on [Co, E ].

Proof The limit functor is right adjoint to the constant diagram functor c : E →
[Co, E ]. It is obvious that the constant diagram functor is a left Quillen functor.

Corollary G.0.14. The cartesian product of a family of weak equivalences between
fibrant objects is a weak equivalence.
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Open boxes and prisms

The cartesian product of two simplices ∆[m] and ∆[n] is a prism of dimension
m+ n,

∆[m,n] := ∆[m]×∆[n].

Its boundary can be calculated by using Leibnitz formula:

∂∆[m,n] =
(
∂∆[m]×∆[n]

)
∪

(
∆[m]× ∂∆[n]

)
.

If we remove the face ∂k∆[m]×∆[n] from this boundary, we obtain the open box,

Λk[m,n] :=
(
Λk[m]×∆[n]

)
∪

(
∆[m]× ∂∆[n]

)
.

And if we remove the face ∆[m]× ∂k∆[n] we obtain the open box,

Λm+1+k[m,n] :=
(
∂∆[m]×∆[n]

)
∪

(
∆[m]× Λk[n]

)
.

The main result of the appendix is the following theorem:

Theorem If 0 ≤ k ≤ m (resp. 0 < k < m, 0 ≤ k < m, 0 < k ≤ m), then the
inclusion

Λk[m,n] ⊂ ∆[m,n]

is anodyne (resp. mid anodyne, left anodyne, right anodyne) for any n ≥ 0.
The theorem is proved in H.0.20. We need a series of intermediate combina-

torial results.

Definition H.0.15. Let P(X) be the poset of simplicial subsets of a simplicial set
X. We shall say that a partial order relation v on P(X) is stable if it satisfies
the following two conditions:

467
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• A v B ⇒ A ⊆ B;

• A ∩B v A ⇒ B v A ∪B.

The following two lemmas will be used repeatedly in the paper.

Lemma H.0.16. Let A ⊆ S be a saturated class of maps. If X is a simplicial set
and E ⊆ X is a simplicial subset, consider the relation A v B on P(X) which is
defined by the following two conditions:

• A ⊆ B;

• the inclusion A ∪ E ⊆ B ∪ E belongs to A.

The relation A v B is stable.

Proof: If A,B ⊆ X and A ∩ B v A, then the inclusion (A ∩ B) ∪ E ⊆ A ∪ E
belongs to A. But the square

(A ∩B) ∪ E //

��

B ∪ E

��
A ∪ E // A ∪B ∪ E

is a pushout. It follows that the inclusion B∪E ⊆ A∪B∪E belongs to A, since a
saturated class is closed under cobase change. This proves that B v A∪B.

Recall that a poset L is called an inf-lattice if every finite subset S ⊆ L has
an infimum,

inf(S) =
∧
a∈S

a.

The infimum of the empty set is a largest element of L. A finite inf-lattice is also
a sup-lattice by a classical elementary result, but we shall not use this fact.

Lemma H.0.17. Let X be a simplicial set, L be a finite inf-lattice and let ε : L →
P(X) be a map preserving infima. For any a ∈ L, let us put

ε̇(a) =
⋃
b<a

ε(b).

Suppose that we have ε̇(a) v ε(a) for every a ∈ L, where v is a stable partial order
on P(X). Then we have ∅ v X.

Proof: Notice first that if µ denotes the largest element of L, then we have ε(µ) = X
since ε preserves the infimum of the empty set. Let L′ be the poset of lower sections
of L (a subset S ⊆ L is a lower section if a ≤ b ∈ S ⇒ a ∈ S). If S ∈ L′, let us put

ε̄(S) =
⋃
s∈S

ε(s).
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This defines a map ε̄ : L′ → P(X) which preserves (finite) unions. Let us show that
it preserves (finite) intersections. We have ε(µ) = X, where µ denotes the largest
element of L. It follows that we have ε̄(L) = X. This shows that ε̄ preserves the
infimum of the empty set in L′ Let us verify that ε̄ preserves binary intersections.
If A,B ∈ L′, it is easy to see that we have

A ∩B = A ∧B = {a ∧ b : a ∈ A, b ∈ B}.

Therefore,

ε̄(A) ∩ ε̄(B) =
( ⋃

a∈A

ε(a)
)
∩

( ⋃
b∈B

ε(b)
)

=
⋃
a∈A

⋃
b∈B

ε(a) ∩ ε(b)

=
⋃
a∈A

⋃
b∈B

ε(a ∧ b) = ε̄(A ∩B)

This shows that ε̄ preserves finite intersections. Let Σ be the set of lower sections
A ∈ L′ such that we have ε̄(S) v ε̄(A) for every lower section S ⊆ A. We wish to
prove that Σ is closed under finite unions. Clearly, ∅ ∈ Σ. If A,B ∈ Σ, let us show
that A∪B ∈ Σ. For this, we have to show that for every lower section S ⊆ A∪B
we have ε̄(S) v ε̄(A ∪ B) But we have ε̄(S ∩ A) v ε̄(A) since A ∈ Σ. Hence we
have ε̄(S) ∩ ε̄(A) v ε̄(A), since ε̄ preserves intersection. It follows that we have
ε̄(S) v ε̄(S) ∪ ε̄(A), since the relation v is stable by hypothesis. This shows that
we have ε̄(S) v ε̄(S∪A), since ε̄ preserves union. Similarly, if T ⊆ A∪B is a lower
section, then ε̄(T ) v ε̄(T ∪ B). In particular, if S ⊆ A ∪ B is a lower section and
we take T = S ∪A, we obtain that ε̄(S ∪A) v ε̄(A∪B), since S ∪A∪B = A∪B.
But we saw that ε̄(S) v ε̄(S ∪A). It follows by transitivity that ε̄(S) v ε̄(A ∪B).
We have proved that A ∪ B ∈ Σ. For the rest of the proof we shall use the maps
i, j : L → L′ defined by putting

i(a) = {x ∈ L : x ≤ a} and j(a) = {x ∈ L : x < a}.

The section j(a) is the largest section properly included in i(a). Observe that
ε̄(i(a)) = ε(a) and that ε̄(j(a)) = ε̇(a). We shall prove by induction on a ∈ L
that i(a) ∈ Σ. The induction hypothesis is that we have i(b) ∈ Σ for every b < a.
Let us then prove that i(a) ∈ Σ. For this, we have to show that for every lower
section S ⊆ i(a) we have ε̄(S) v ε̄(i(a)). This is clear if S = i(a). Otherwise we
have S ⊆ j(a), since j(a) is the largest section properly included in i(a). But we
have i(b) ∈ Σ for every b < a, by the induction hypothesis on a. Hence we have
j(a) ∈ Σ since

j(a) =
⋃
b<a

i(b)

and since Σ is closed under finite unions. This shows that ε̄(S) v ε̄(j(a)). But we
have ε̄(j(a)) v ε̄(i(a)) by the hypothesis of the lemma since ε̄(j(a)) = ε̇(a) and
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ε̄(i(a)) = ε(a). Hence we have ε̄(S) v ε̄(i(a)) by transitivity, We have proved that
i(a) ∈ Σ. In particular, X = i(µ) ∈ Σ, where µ is the largest element of L. Thus,
∅ = ε̄(∅) v ε̄(X) = X.

Recall that a simplicial complex is a pair (S,Σ), where S is a set and Σ is
a set of non-empty finite subsets of S satisfying the following two conditions: (i)
for every s ∈ S we have {s} ∈ Σ; (ii) every non-empty subset of an element of
Σ belongs to Σ. An element σ ∈ Σ is called a simplex of the simplicial complex;
the dimension of σ is its cardinality minus one. A subset Σ′ ⊆ Σ is called a
subcomplex of (S,Σ) if every non-empty subset of an element of Σ′ belongs to Σ′;
the pair (S′,Σ′) is then a simplicial complex, where S′ = {s ∈ S : {s} ∈ Σ′}.
The set of subcomplexes of (S,Σ) is closed under union and intersection. We shall
denote by ∅ the empty subcomplex. If (S,Σ) is a simplicial complex and A ∈ Σ, we
shall denote by ∆[A] the subcomplex of non-empty subsets of A. If dim(A) > 0,
we shall denote by ∂∆[A] the union of the subcomplexes ∆[A\{a}] for a ∈ A; if
dim(A) = 0 we shall put ∂∆[A] = ∅. If B ⊆ A and dim(A) > 0, we shall denote
by ΛB [A] the union of the subcomplexes ∆[A\{a}] for a ∈ A\B. If B ⊆ C ⊆ A,
then ΛC [A] ⊆ ΛB [A].

We shall say that simplicial set X is regular if the vertices of every non-
degenerate simplex of X are distinct. For example, the nerve of a poset is regular.
If X is regular and x : ∆[n] → X, let us denote by |x| the image of the map
x0 : [n] → X0. If ΣX = {|x| : x ∈ X}, then the pair C(X) = (X0,ΣX) is
a simplicial complex. If S ⊆ X is a simplicial subset, then C(S) = (S0,ΣS) is
a subcomplex of C(X). The map S 7→ C(S) induces a bijection between the
simplicial subset of X and the subcomplexes of C(X). If P is a poset, then a
simplex A ∈ ΣP is a finite non-empty chain of P . The pair C(P ) = (P,ΣP ) is
called the complex of chains of P .

The simplicial set ∆[m,n] = ∆[m]×∆[n] is the nerve of the poset [m]× [n]
equipped with the product ordering ( (x1, x2) ≤ (y1, y2) iff x1 ≤ y1 and x2 ≤ y2).
We shall often identify the simplicial set ∆[m,n] with the complex C([m] × [n]).
We have

∆[m,n] =
⋃

A∈Max(m,n)

∆[A],

where Max(m,n) is the set of maximal chains of the poset [m] × [n], since every
chain is contained in a maximal chain. We shall denote by � the partial order on
[m]× [n] defined by putting (i, j) � (r, s) iff i ≥ r and j ≤ s. We call the relation
� the transverse partial order. The minimum element for this partial order is the
south-east corner (m, 0) of the rectangle [m]× [n], and its maximum element is the
north-west corner (0, n). If A ∈ Max(m,n), we shall say that an element (i, j) ∈ A
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is an upper corner of A if the chain

(i, j) // (i+ 1, j)

(i, j − 1)

OO

is included in A. The upper corners of A are exactly the maximal elements of the
set A \ {(0, 0), (m,n)} for the transverse partial order. We shall denote by uc(A)
the set of upper corners of A. Similarly, we shall say that an element (i, j) ∈ A is
a lower corner of A if the chain

(i, j + 1)

(i− 1, j) // (i, j)

OO

is included in A. The lower corners of A are the minimal elements of the set
A \ {(0, 0), (m,n)} for the transverse partial order. We shall denote by lc(A) the
set of lower corners of A. We shall say that a subset S ⊆ [m]× [n] is a transverse
section if it is a lower section for the partial ordering � and if it contains the
elements (0, 0) and (m,n). Notice that the second condition is equivalent to the
requirement that a transverse section contains the border chain

(0, 0) < (1, 0) < (2, 0) < · · · < (m, 0) < (m, 1) < · · · < (m,n)

Every subset A ⊆ [n] × [m] is contained in a smallest transverse section of [m] ×
[n], called its shadow and denoted sh(A). Let us denote by Tr(m,n) the set of
transverse sections of [m]× [n]. The map A 7→ sh(A) induces a bijection between
Max(m,n) and Tr(m,n). If A ∈ Max(m,n), then sh(A) = sh(uc(A)). If S ∈
Tr(m,n), let us denote by C(S) the subcomplex of C([m]× [n]) = ∆[m,n] whose
simplicies are the chains of [m] × [n] included in S. Observe that every maximal
simplex of C(S) is also maximal in C([m]× [n]). Thus,

C(S) =
⋃

A∈Max(m,n),A⊆S

∆[A].

Let us put
Ċ(S) =

⋃
T∈Tr(m,n),T⊂S

C(T ).

If S = Sh(B) and T ∈ Tr(m,n), then we have T ⊂ S iff we have T ⊆ sh(B\{b})
for some b ∈ uc(B). It follows that

Ċ(S) =
⋃

b∈uc(B)

C(sh(B \ {b})).
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Lemma H.0.18. If B ∈ Max(m,n) and S = sh(B), then we have

C(S) = Ċ(S) ∪∆[B] and Ċ(S) ∩∆[B] = ΛB\uc(B)[B].

Proof: If A ∈ Max(m,n), then we have sh(A) ⊂ Sh(B) iff we have A ⊆ Sh(B)
and A 6= B. It follows that we have

Ċ(S) =
⋃

A∈Max(m,n),A⊆S,A 6=B

∆[A].

Thus, C(S) = Ċ(S)∪∆[B]. Let us prove the second formula. A non-empty subset
E ⊆ B is a simplex of Ċ(S) iff we have E ⊆ B\{b} for some b ∈ up(B). This
proves the second formula.

Lemma H.0.19. If m,n > 0, B ∈ Max(m,n) and S = sh(B), then

∆[B] ∩ (Ċ(S) ∪ ∂∆[m,n]) = Λlc(B)[B].

Moreover, if 0 < k ≤ m and t is the lowest element of B on the column {k}× [n],
then

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) = Λlc(B)∪{t}[B].

Proof: Let us prove the first formula. For this, we have to establish the following
two inclusions:

I0 : ∆[B] ∩ (Ċ(S) ∪ ∂∆[m,n]) ⊆ Λlc(B)[B],
I1 : Λlc(B)[B] ⊆ ∆[B] ∩ (Ċ(S) ∪ ∂∆[m,n]).
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Let us start with I0. We shall consider various cases organised in a tree:

I0

��























��4
44

44
44

44
44

44

I00 I01

��























��4
44

44
44

44
44

44

I010

��

I011

��
I ′010 I ′011

Obviously, we have

∆[B] ∩ (Ċ(S) ∪ ∂∆[m,n]) = (∆[B] ∩ Ċ(S)) ∪ (∆[B] ∩ ∂∆[m,n]).

Hence the inclusion I0 is equivalent to the conjunction of the following two inclu-
sions:

I00 : ∆[B] ∩ Ċ(S) ⊆ Λlc(B)[B],
I01 : ∆[B] ∩ ∂∆[m,n] ⊆ Λlc(B)[B].

Let us prove the inclusion I00. By H.0.18 we have

∆[B] ∩ Ċ(S) = ΛB\uc(B)[B].

But we have also ΛB\uc(B)[B] ⊆ Λlc(B)[B] since we have lc(B) ⊆ B\uc(B). The
inclusion I00 is proved. Let us prove the inclusion I01. We have

∂∆[m,n] = (∂∆[m]×∆[n]) ∪ (∆[m]× ∂∆[n]).

Hence the inclusion I01 is equivalent to the conjunction of the following two in-
clusions:

I010 : ∆[B] ∩ (∂∆[m]×∆[n]) ⊆ Λlc(B)[B],
I011 : ∆[B] ∩ (∆[m]× ∂∆[n]) ⊆ Λlc(B)[B].
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Let us first prove the inclusion I010. For this, we need to show that we have

I ′010 : ∆[B] ∩ (∂i∆[m]×∆[n]) ⊆ Λlc(B)[B]

for every i ∈ [m]. We have

∆[B] ∩ (∂i∆[m]×∆[n]) ⊆ ∆[B \ ({i} × [n])]

since ([m] \ {i}) × [n] = ([m] × [n]) \ ({i} × [n]). The intersection B ∩ ({i} × [n])
is non-empty since B is a maximal chain. If b ∈ B ∩ ({i} × [n]), then

∆[B \ ({i} × [n])] ⊆ ∆[B\{b}].

If b is the maximum element of B on the column {i}×[n], then we have ∆[B\{b}] ⊆
Λlc(B)[B], since b 6∈ lc(B). The inclusion I ′010 is proved, hence also the inclusion
I010. Let us now prove the inclusion I011. For this, we need to show that we have

I ′011 : ∆[B] ∩ (∆[m]× ∂j∆[n]) ⊆ Λlc(B)[B].

for every j ∈ [n]. As above, we have

∆[B] ∩ (∆[m]× ∂∆[n]) ⊆ ∆[B \ ([m]× {j})] ⊆ ∆[B\{b}] ⊆ Λlc(B)[B],

where b is the minimum element of B on the line [m]× {j}. The inclusion I ′011 is
proved. The proof of the inclusion I0 is complete. Let us now prove the inclusion
I1. Obviously, Λlc(B)[B] ⊆ ∆[B]. Hence it suffices to show that we have

Λlc(B)[B] ⊆ Ċ(S) ∪ ∂∆[m,n].

For this, we need to show that for every b ∈ B\lc(B) we have

∆[B\{b}] ⊆ Ċ(S) ∪ ∂∆[m,n].

This is clear if b ∈ uc(B) since we have ∆[B\{b}] ⊆ C(sh(B \ {b})) ⊆ Ċ(S) in
this case. It remains to consider the cas where b ∈ B\(lc(B) ∪ uc(B)), in which
case we shall prove that ∆[B\{b}] ⊆ ∂∆[m,n]. If b = (i, j), then we have either
B ∩ ([m]×{j}) = {b} or B ∩ ({i}× [n]) = {b} since b 6∈ uc(B)∪ lc(B). In the first
case we have

∆[B\{b}] ⊆ ∆[m]× ∂j∆[n] ⊆ ∆[m]× ∂∆[n] ⊆ ∂Λk[m,n].

In the second case we have

∆[B\{b}] ⊆ ∂i∆[m]×∆[n] ⊆ ∆[m]× ∂∆[n] ⊆ ∂∆[m,n].

The inclusion I1 is proved. Hence the first formula of the lemma is proved. Let us
prove the second formula. For this, we have to prove the following two inclusions:

J0 : ∆[B] ∩ (Ċ(S) ∪ ∂Λk[m,n]) ⊆ Λlc(B)∪{t}[B],
J1 : Λlc(B)∪{t}[B] ⊆ ∆[B] ∩ (Ċ(S) ∪ Λk∆[m,n]).
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Let us start with J0. We shall consider various cases organised in a tree:
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��
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Obviously,

∆[B] ∩ (Ċ(S) ∪ Λk∆[m,n]) = (∆[B] ∩ Ċ(S)) ∪ (∆[B] ∩ Λk∆[m,n]).

Hence the inclusion J0 is equivalent to the conjunction of the following two inclu-
sions:

J00 : ∆[B] ∩ Ċ(S) ⊆ Λlc(B)∪{t}[B],
J01 : ∆[B] ∩ Λk∆[m,n] ⊆ Λlc(B)∪{t}[B].

We start with the inclusion J00. By H.0.18 we have ∆[B] ∩ Ċ(S) = ΛB\uc(B)[B].
Observe that t 6∈ uc(B) since t is the lowest element of B on the column {k}× [n].
Thus, lc(B) ∪ {t} ⊆ B\uc(B) since lc(B) ∩ uc(B) = ∅. It follows that

ΛB\uc(B)[B] ⊆ Λlc(B)∪{t}[B].

The inclusion J00 is proved. Let us first consider the inclusion J01. By definition,
we have

Λk∆[m,n] = (Λk[m]×∆[n]) ∪ (∆[m]× ∂∆[n]).

Hence the inclusion J01 is equivalent to the conjunction of the following two in-
clusions:

J010 : ∆[B] ∩ (Λk[m]×∆[n]) ⊆ Λlc(B)∪{t}[B],
J011 : ∆[B] ∩ (∆[m]× ∂∆[n]) ⊆ Λlc(B)∪{t}[B].
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We first consider the inclusion J010. For this, we need to show that if i ∈ [m] and
i 6= k, then we have

J ′
010 : ∆[B] ∩ (∂i∆[m]×∆[n]) ⊆ Λlc(B)∪{t}[B].

If b be the maximum element of B on the column {i}× [n], then we have b 6∈ lc(B).
Moreover, b 6= t since i 6= t. Thus,

∆[B] ∩ (∂i∆[m]×∆[n]) ⊆ ∆[B \ ({i} × [n])] ⊆ ∆[B \ {b}] ⊆ Λlc(B)∪{t}[B].

The inclusion J ′
010 is proved. Let us now prove the inclusion J011. For this, we

need to show that for every j ∈ [n] we have

J ′
011 : ∆[B] ∩ (∆[m]× ∂j∆[n]) ⊆ Λlc(B)∪{t}[B].

If b be the the minimum element of B on the line [m]×{j} then we have b 6∈ lc(B).
Let us show that b 6= t. Otherwise, the element b = t is the minimum element of
B on the line [m] × {j} and on the column {i} × [n]. Thus, t = (0, 0) since
B is a maximal chain. But this contradict the hypothesis that k > 0. Thus,
b 6∈ lc(B) ∪ ∪{t} and this shows that we have ∆[B\{b}] ⊆ Λlc(B)∪{t}[B]. Thus,

∆[B] ∩ (∆[m]× ∂∆[n]) ⊆ ∆[B \ ([m]× {j})] ⊆ ∆[B\{b}] ⊆ Λlc(B)∪{t}[B].

The inclusion J ′
011 is proved, hence also the inclusion J011. The proof of the inclu-

sion J0 is complete. Let us now prove the inclusion J1. Obviously,

Λlc(B)∪{t}[B] ⊆ ∆[B].

Hence it suffices to show that we have

J11 : Λlc(B)∪{t}[B] ⊆ Ċ(S) ∪ Λk[m,n].

For this, we need to show that for every b ∈ B\(lc(B) ∪ {t}) we have

J ′
11 : ∆[B\{b}] ⊆ Ċ(S) ∪ Λk[m,n].

This is clear if b ∈ uc(B), since in this case we have C(sh(B \ {b})) ⊆ Ċ(S)
and since we have ∆[B\{b}] ⊆ C(sh(B \ {b})) for every b ∈ B. It remains to
consider the cas where b 6∈ lc(B) ∪ uc(B) ∪ {t}, in which case we shall prove that
∆[B\{b}] ⊆ Λk[m,n]. But if b = (i, j), we have either B ∩ ([m] × {j}) = {b} or
B ∩ ({i} × [n]) = {b}, since b 6∈ uc(B) ∪ lc(B). In the first case we have

∆[B\{b}] ⊆ ∆[m]× ∂j∆[n] ⊆ Λk[m,n].

It remains to consider the second case. Let us show that i 6= k. Otherwise

t ∈ B ∩ ({k} × [n]) = B ∩ ({i} × [n]) = {b}

and this contradicts the hypothesis that b 6= t. Thus, i 6= k. It follows that

∆[B\{b}] ⊆ ∂i∆[m]×∆[n] ⊆ ∂Λk[m,n].

The inclusion J ′
11 is proved, hence also the inclusions J11 and J1. The two inclusions

J0 and J1 are proved. Hence the second formula is proved.
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If P is a poset, we shall say that an inclusion U ⊆ V between two subcom-
plexes of C(P ) is anodyne (resp. left anodyne, mid anodyne, right anodyne) if this
is true of the corresponding inclusion of simplicial subsets of NP .

Theorem H.0.20. If 0 ≤ k ≤ m (resp. 0 < k < m, 0 ≤ k < m, 0 < k ≤ m), then
the inclusion

Λk[m,n] ⊂ ∆[m,n]

is anodyne (resp. mid anodyne, left anodyne, right anodyne).

Proof: We can suppose that n > 0 since the result is trivial otherwise. If 0 < k < m,
let us prove that the inclusion Λk[m,n] ⊂ ∆[m,n] is mid anodyne. We shall use
lemma H.0.17 with X = ∆[m,n] and with L the poset Tr(m,n) of transversal
sections of [m]× [n]. The map

ε : L → P(X)

is defined by putting ε(S) = C(S) for each S ∈ Tr(m,n). Obviously, C(S ∩ T ) =
C(S)∩C(T ) and C([m]× [n]) = X. This means that ε preserves finite intersection.
The map ε̇ : L → P(X) is given by

ε̇(S) =
⋃

T∈L,T⊂S

C(T )

= Ċ(S)

We shall define a stable relation U v V between the subsets of X by using lemma
H.0.16 with E = Λk[m,n] and with A the class of mid anodyne maps. Let us see
that we have Ċ(S) v C(S) for every S ∈ Tr(m,n). For this we have to show that
the inclusion

Ċ(S) ∪ Λk[m,n] v C(S) ∪ Λk[m,n]

is mid anodyne. But we have S = Sh(B) for some maximal chain B ∈ Max(m,n).
By lemma H.0.18 we have C(S) = ∆[B] ∪ Ċ(S). Hence the square

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) //

��

Ċ(S) ∪ Λk[m,n]

��
∆[B] // C(S) ∪ Λk[m,n]

is a pushout. It thus suffices to show that the inclusion

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) ⊆ ∆[B]

is mid anodyne. But we have

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) = Λlc(B)∪{t}[B]
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by lemma H.0.19. Hence it suffices to show that the inclusion

Λlc(B)∪{t}[B] ⊆ ∆[B]

is mid anodyne. For this, it suffices to show by 2.12 that (0, 0) 6∈ lc(B) ∪ {t}) and
that (m,n) 6∈ lc(B) ∪ {t}). We have (0, 0) 6∈ lc(B) and (m,n) 6∈ lc(B) since the
verticies (0, 0) and (m,n) are never a lower corner. Moreover, we have (0, 0) 6= t
and (m,n) 6= t since 0 < k < m. The relation Ċ(S) v C(S) is proved. It then
follows by lemma H.0.17 that we have ∅ v X This proves that the inclusion
Λk[m,n] ⊂ ∆[m,n] is mid anodyne. Let us now show that if 0 < k ≤ m, then the
inclusion Λk[m,n] ⊂ ∆[m,n] is right anodyne. The result is true if 0 < k < m by
what we just proved, since a mid anodyne map is right anodyne. Hence it suffices to
consider the case k = m. We can suppose n > 0 since the result is trivial otherwise.
As above, we shall use lemma H.0.17 but with the relation U v V defined by using
the class A of right anodyne maps. As above, the problem is reduced to proving
that the inclusion Λlc(B)∪{t}[B] ⊆ ∆[B] is right anodyne for any maximal chain
B ∈ Max(m,n). For this, it suffices to show by 2.12 that (0, 0) 6∈ lc(B) ∪ {t}.
We have (0, 0) 6∈ lc(B) since (0, 0) is never a lower corner. Moreover, (0, 0) 6= t
since k > 0. This proves that the inclusion Λk[m,n] ⊂ ∆[m,n] is right anodyne.
Dually, if 0 ≤ k < m, then the inclusion Λk[m,n] ⊂ ∆[m,n] is left anodyne. Taken
together, the results imply that the inclusion Λk[m,n] ⊂ ∆[m,n] is anodyne for
every 0 ≤ k ≤ m. Of course, this last result is classical.

Let us denote by P ′ the sub-poset of the poset P = [m] × [n] obtained by
removing the element (0, n), and let C(P ′) be the complex of chains of P ′. We
shall identify C(P ′) with a simplicial subset of C(P ) = ∆[m,n].

Proposition H.0.21. If m,n > 0, then the inclusion

Λm[m,n] ⊂ C(P ′) ∪ Λm[m,n]

is mid anodyne.

Proof: The proof is similar to the proof of lemma H.0.20. Notice that P ′ is a
transversal section of P . We shall use lemma H.0.17 with X = C(P ′) and with
L the poset of transversal sections S ⊆ P ′. The map ε : L → P(X) is defined
by putting ε(S) = C(S). The map ε preserves finite intersection. We have ε̇(S) =
Ċ(S). The relation U v V on P(X) is defined by using lemma H.0.16 with E =
Λm[m,n] and with A the class mid anodyne maps. Let us show that we have
Ċ(S) v C(S) for every S ∈ L. For this we need to show that the inclusion

Ċ(S) ∪ Λm[m,n] ⊆ C(S) ∪ Λm[m,n]

is mid anodyne for every S ∈ L. But S = Sh(B) for a unique maximal chain
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B ⊆ P ′ and we have C(S) = Ċ(S) ∪∆[B] by H.0.18. Hence the square

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) //

��

Ċ(S) ∪ Λk[m,n]

��
∆[B] // C(S) ∪ Λk[m,n]

is a pushout. It thus suffices to show that the inclusion

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) ⊆ ∆[B]

is mid anodyne. Il lc(B) is the set of lower corners of B and t is the lowest element
of B on the vertical line {m} × [n], then we have

∆[B] ∩ (Ċ(S) ∪ Λk[m,n]) = Λlc(B)∪{t}[B]

by lemma H.0.19 since m > 0. Hence it suffices to show that the inclusion

Λlc(B)∪{t}[B] ⊆ ∆[B]

is mid anodyne. For this, we shall use lemma 2.12(iii) and proposition 3.18. We
have (0, 0) 6∈ lc(B) since (0, 0) cannot be a lower corner. We have (0, 0) 6= t
since m > 0. Thus, (0, 0) 6∈ lc(B) ∪ {t}. We now distinguish two cases: we have
either (m,n − 1) ∈ B or (m − 1, n) ∈ B since B is a maximal chain. In the
first case we have t 6= (m,n) since t is the lowest element of B on the vertical
line {m} × [n]. Moreover, we have (m,n) 6∈ lc(B) since (m,n) cannot be a lower
corner. Thus, (m,n) 6∈ lc(B) ∪ {t}. It then follows from lemma 2.12 that the
inclusion Λlc(B)∪{t}[B] ⊆ ∆[B] is mid anodyne. It remains to consider the case
where (m − 1, n) ∈ B. Notice that we have t = (m,n) since B ∩ ({m} × [n]) =
{(m,n)} in this case. Let us put B′ = B \ {(m,n)}. The element (m − 1, n) is
maximal in B′ and we have (m− 1, n) 6∈ lc(B) since (m− 1, n) cannot be a lower
corner. The set lc(B) is non-empty since we have B ⊆ P ′. It then follows from
lemma 2.12(iii) that the inclusion Λlc(B)[B′] ⊆ ∆[B′] is mid anodyne. But we have
∆[B] = ∆[B′] ? 1 and Λlc(B)∪{t}[B] = Λlc(B)[B′] ? 1 by 3.8 since t = (m,n). This
shows by 3.18 that the inclusion Λlc(B)∪{t}[B] ⊆ ∆[B] is mid anodyne. Hence we
have Ċ(S) v C(S) for every S ∈ L. The hypothesis of Lemma H.0.17 are satisfied.
Thus, ∅ v X. This means that the inclusion Λm[m,n] ⊂ C(P ′) ∪ Λm[m,n] is mid
anodyne.
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Index of terminology

∞-connected, 197
k-cells, 204
n-category object, 204
n-chain, 157, 231
n-coskeletal, 210
n-cover, 181
n-disk, 364
n-factorisations, 181
n-object, 181
n-tree, 365
t-complete quasi-category, 197
0-cover, 180
0-final, 394
0-initial functor, 394
0-object, 180
0-sifted category, 192
1-fibration, 224
1-final functor, 399
2-category object, 204

cancellation property
left, right, 388

accessible
category, 374
functor, 374

accessible equation, 415
acyclic, 421
additive map, 198
additive quasi-category, 198
adjoint map

left, right, 218
adjunction

unit, counit, 218
adjunction identities, 218
algebra

homotopy, discrete, 190
algebraic theory, 190
algebraic theory of braided monoids,

191
anodyne

left, mid, right, 228
apex of a cone, 249
arrow, 375

cartesian, cocartesian, 174
augmented simplicial sets, 243

base change, 392
base change map, 194
base of a cone, 242, 244, 249
base, cobase of a cylinder, 305, 306
based model, 187
bireflection, 307
bisimplicial set, 164
bivalence, 183
Boardman

condition, complex, 157
boundary of a simplex, 376
Bousfield

factorisation system, 443
localisation, 435

braided monoid, 191
bundle of intervals, 364

cardinal, 373
cardinality

of a category, 373
of a diagram, 373
of a map presheaves, 417
of a presheaf, 417

cartesian
model category, 439
square, 393

cartesian quasi-category, 159
cartesian theory, 184
categorical cylinder, 305
category

α-accessible, 374
α-directed, 373
accessible, 374
artinian, noetherian, 457
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closed under α-directed colimits,
374

closed under ∞-directed colim-
its, 374

closed under directed colimits, 373
direct,inverse, 457
directed, 373

category object, 186
center of a weak homotopy factorisa-

tion system, 442, 443
Cisinski model structure, 161
class

closed under coproducts, 398
closed under products, 398
closed under transfinite compo-

sition, 407
left, right, 387, 398
saturated, 409
saturated class generated, 409

class of maps
closed under base changes, 392
closed under cobase changes, 393
closed under codomain retracts,

400
closed under domain retracts, 400
closed under retracts, 392

classifying space of a groupoid, 196
closure of a tree, 366
coarse groupoid, 193
cocartesian quasi-category, 159
cofibrant, 421
cofibration, 421
coherent nerve, 164
colimit

α-directed, 374
absolute, 376
directed, 190, 373

colimit sketch, 187
collapse of intervals, 363, 366
combinatorial interval, 375
combinatorial simplex, 375
compact, 190
complementary

sieve, cosieve, 305, 306

complete Segal space, 167
complex of chains of a poset, 464
cone

exact, coexact, 159
inductive, projective, 242, 244,

249, 306
conservative functor, 394
contractible, weakly contractible, 330
contravariant model structure, 321
core of a model category, 441
corner, upper, lower, 464
cosieve, sieve, 305, 306
coskeleton, 378
covariant model structure, 322
cube lemma, 456
cylinder, 182, 306
cylinder object, 424

dense map, 177
derived functor

left, 429
right, 430

descent morphism, 194
diagonal filler, 397
diagram

α-directed, 374
bounded above, 373
cardinality of, 373
directed, 190, 373

direct image of a geometric morphism,
200

direct image part, 199
directed simplicial sets, quasi-category,

189
discrete fibration, 394
discrete object in a quasi-category,

180
discrete opfibration, 394
discrete theory, 190
distributor, 182, 305
divisible on the left, right, 405
double category, 204

Eilenberg-MacLane n-cover, 181
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Eilenberg-Zilber Lemma, 378
equivalence

(combinatorial) homotopy, 215
of categories, 162
categorical, 215
dexter, sinister, 320
Dwyer-Kan, 163
fibrewise homotopy, 320
of quasi-categories, 215
Quillen, 431
weak, 421
weak categorical, 215
weak homotopy, 215

equivalence groupoid, 193
equivalence of n-categories, 205
essentially algebraic structure, 183
essentially constant, 204
essentially surjective functor, 196
euclidian n-ball, 364
exact map, 195
exact quasi-category, 195

face of a simplex, 375
factorisation system

Bousfield, 443
homotopy, 442
strict, 387
weak, 398
weak homotopy, 443

factorisation system closed under (fi-
nite) products, 179

factorisation system in a quasi-category,
178

factorisation system stable under base
changes, 179

fibrant, 421
fibration, 421

1-fibration, 399
covariant, contravariant, 222
dexter, sinister, 321
discrete, 394
Dwyer-Kan, 163
Grothendieck, 174
Kan, 221

left, mid, right, 222
pseudo-, 259, 260, 292
trivial, 401

fibrewise homotopy equivalence, 320
filler, 376
finitary presentable quasi-category, 188
functor

left derived, 429
preserve α-directed colimits, 374
right derived, 430

fundamental category, 209
fundamental groupoid, 209

generic model, 184
geometric morphism, 199, 200
Giraud condition, 167
Grothendieck

fibration, opfibration, 174
Grothendieck bifibration, 307
groupoid object, 186

homomorphism
of topoi, 199
of utopoi, 200

homotopic, 213
fibrewise, 320
left, right, 212, 424

homotopy
base change, cobase change, 456
left, right, 212, 424
localisation, 168
reflection, coreflection, 432

homotopy cartesian, 455
homotopy cartesian squares, 454
homotopy category

of a model category, 423
of a quasi-category, 212
of a simplicial category, 163

homotopy equivalence
in a model category, 424

homotopy relation
in a model category, 424

homotopy replete class of maps, 441
homotopy replete class of objects, 427
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homotopy replete in fibrations, cofi-
brations, 442

horn, 376
inner, 210

interior of a disk, 366
interpretation of cartesian theory, 184
interval, strict, degenerate, 363
invariant

under isomorphisms, 387
inverse image of a geometric morphism,

200
inverse image part, 199
invertible

arrow in a simplicial set, 214
isomorphism, 214

join
of categories, 241
of simplicial sets, 244

Kan
condition, complex, 157
fibration, 221
model structure, 291

Ken Brown’s Lemma, 428

lattice, inf-, sup-, 462
left cancellation property in fibrations,

443
left fibration, 194
lifted base change map, 194
limit

absolute, 376
limit sketch, 183
limit, colimit, 159
local object, 178
localisation, 395
localizer, 161
locally presentable quasi-category, 187
long fiber sequence, 198
loop group, 194
loop space, 160

map

n-full, 380
of quasi-categories, 211
proper, smooth, 175

mapping
cylinder, 426
cylinder factorisation, 426
path space, 425
path space factorisation, 426

meta-stable quasi-categories, 202
model

generic, 190
of an algebraic theory, 190

model category/structure
V -enriched, 439
cartesian, 439
for quasi-categories, 292
monoidal, 439
simplicial, 439

model of a sketch, 183, 187
model structure

Bergner, 163
classical, Kan, 291
covariant, contravariant, 321
discrete, 442
for left fibrations with target B,

322
for quasi-categories, 162
for Rezk categories, 167
for right fibrations with target

B, 321
for Segal categories, 166
for Segal spaces, 167
Hirschowitz-Simpson, 166
injective, projective, 460
Reedy, 166

model, homotopy, discrete, 184
monomorphism in a quasi-category,

180
Morita equivalence, 195
morphism of disks, 365
morphism of intervals, 363
morphism of trees, 366
multiplicatively generated, 181
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natural model structure, 162, 292
nerve, 209
null arrow, 197
null object, 160, 197

object
Σ-injective, 410
α-presentable, 374
cofibrant, 421
fibrant, 421
finitely presentable, 373
injective, 401
small, 374

open box, 461
opposite

of a quasi-category, 211
ordinal sum, 241
orthogonal

left, right, 388
orthogonal, left, right, 178

para-variety, 193
parameter space, 187
parametrized model, 187
path object, 424
pointed quasi-category, 197
pointwise homotopy equivalence, 320,

330
Postnikov tower, 181
precategory, 165
prism, 461
projective cone

absolutely exact, 376
projective cone, inductive cone, 241
proper, 422

left, right, 422
pseudo-fibration

between quasi-categories, 260

quasi-category, 157, 210
of homotopy types, 164
of small quasi-categories, 164

quasi-groupoid, see Kan complex
quasi-monoid, 211

Quillen
equivalence, 431
functor

left, right, 427
functor of two variables

left, right, 437
model category/structure, 421
pair of adjoint functors, 428

reduced n-category, 205
reduced category, 187
reduction of a n-category, 205
reflexive graph, 163
regular cardinal, 373
regular quasi-category, 180
regular simplicial set, 464
replacement

fibrant, cofibrant, 423
replete class of maps, 441
replete class of objects, 427
representable prestack, 177
restriction, 205
retract

domain, codomain, 400
retract of a map, 392
Rezk

condition, category, 167
Rezk condition, 187
right cancellation property in cofibra-

tions, 443
RLP, LLP, 397

Segal
category, 165
condition, 165, 167
space, 167

Segal condition, 186
semi-additive quasi-category, 198
shadow, 465
sieve, cosieve, 305, 306
sifted diagram, colimit, 193
sifted simplicial set, 192
simplex

degenerate, non-degenerate, 376
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simplext, 375
simplicial category, 163
simplicial complex, 464
simplicial cylinder, 306
simplicial object, 186
simplicial set, 375

n-coskeletal, 380
n-truncated, 378
opposite, 375

simplicial space, 164
simplicial sphere, 376
simplicial subset, 376

n-full, 380
simply connected category, 399
singular set, 364
six-for-two property, 423
skeleton, 378
slice

lower, upper, 242, 249
source, 375
span, 183
spans, 183
spindle, 306
spine, 162
stable partial order, 462
stable quasi-category, 199
sub-utopos, 200
subcomplex, 464
surjection in a quasi-category, 180
surjection-mono factorisations, 180
suspension , 160

tensor, cotensor, 319
theory

of n-objects, 185
of categories, 186
of spectra, 185

three-for-two property, 421
transfinite chain, 407

composite of a, 407
transverse partial order, 464
transverse section, 465
triangle, 376
trivial fibration, 160, 401

unit arrow, 375
utopos, upper topos, 199

variety of homotopy algebras, 192
vertex, 375

weak adjoint, 218
weak equivalence, 196, 421
weak factorisation system, 398
weak homotopy equivalence, 217, 291
weak Kan complex, 157, 211

Yoneda Lemma, 177
Yoneda map, 177
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Index of notation

∂i, σi, 375
(α, β) : u ` v, 218
(Cat, Eq), 162
(S,Kan), (S,Who), 161, 292
(S,QCat), (S,Wcat), 162, 298
(S/B)π0 , 320
A�B, 165
A\X, X/B, 405
A⊥B, 178
A v B, 462
A ? B, 241
A⊥, ⊥A, 178
Bn, ∂Bn, 364
C(P ), 464
C(S), Ċ(S), 466
C !, C!, 164
C∗(A), 163
Cat, Cat(X), 186
Catn, 204
Catn, 204
Catn(X), 204
CosknX, 378
Gpd, Gpd(X), 186
Grp, 192
Ho(E), 423
I, J , 158
I[n], 157, 231
J ′(u, f), 277
J(A,X), 274
J(C), 186
J(X), 158
L(X,Σ), 168
L(E), 168
Mod(A/P,X), 184
Mod(Q\A,X), 187
Mod(T ), Mod(T,X), T (X), 184
Mod×(T ), Mod×(T,X), T (X), 190
Mon, 191
OB(n), 185
PSpec, PSpec′, 202
R(C), 205

RCat, RCat(X), 187
RCatn, 205
RCatn, 205
S � T , 184
SknX, 378
Span(A,B), 183
Spec, Spec(X), 185
Spec′, 202
WR(B), WL(B), 320
Wcat, 292
Who, 292, 329
X(a, b), 213
X ? Y , 243
Xo, ao, fo, 376
X(S), 275
X [A], 320
[X,Y ], [X,Y ]B , 319
[f/v], [u\f ], 323
[f ], 213
∆[m,n], ∂∆[m,n], Λk[m,n], 461
∆, 375
∆[A], 464
∆[n], 375
∆+, 242
ΛA[n], 229
ΛB [A], 464
Λk[n], 376
Λm[m,n], 279
Ωu(x), 160
δn, 160
〈u, f〉, 406
〈(v), f〉, 277
〈s, t, f〉, 251
〈u\ f〉, 〈f/v〉, 405
∂∆[n], 376
∂i∆[n], 376
π0(A,B), 215
τ0A, 210
τ0(A,B), 215
τ1X, 158
a\X, X/b, 249
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di, si, 375
f ∼ g, gf ∼ h, 213
f !, 177
hk

n, 221, 236
hoX, 212
hoX, 163
int(D), 366
k!, k!, 300
lc(A), uc(A), 465
res(C), 205
sh(A), 465
u t f , 397
u⊥f , 178, 388
u⊗′ v, u�′ v, 405
u ?′ v, 246
u×′ v, 233, 323
u ` v, 218
v : f ⇒L g, 212
v : f ⇒R g, 212
AT, 190
CT, 184
Cat, 158, 209
C(A,B), 182
Gpd, 209
Kan, 158
LP, 188
PCat, 165
QCat, 157, 211
R(B), L(B), 172, 320
SCat, 163
S, 209, 375
S+, 243
S(2), 164
Sπ0 , 215
Sτ0 , 215
Sτ1 , 158
UTop, 200
U, 164
U1, 164
Un, 205
A t B, 397
A⊥B, 389
D1, 363
Ef , Ec, Efc, 441

Mf ,Mc,Mfc, 442
W(S), 161
⊥M,M⊥, 389
tM,Mt, 397


