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Basic setup I

X ⊂ Z finite subset, Z a metric space. D(Z ) = poset of finite
subsets of Z . s ≥ 0.

• Ps(X ) = poset of subsets σ ⊂ X such that d(x , y) ≤ s for all
x , y ∈ σ.

Ps(X ) is the poset of non-degenerate simplices of the Vietoris-Rips
complex Vs(X ). BPs(X ) is barycentric subdivision of Vs(X ).

We have poset inclusions

σ : Ps(X ) ⊂ Pt(X ), s ≤ t,

P0(X ) = X , and Pt(X ) = P(X ) (all subsets of X ) for t suff large.

• k ≥ 0: Ps,k(X ) ⊂ Ps(X ) subposet of simplices σ such that each
element x ∈ σ has at least k neighbours y such that d(x , y) ≤ s.

Ps,k(X ) is the poset of non-degenerate simplices of the degree Rips
complex Ls,k(X ).
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Basic setup II

The usual inclusions: s ≤ t

Ps(X )
σ // Pt(X )

Ps,k(X )

OO

σ // Pt,k(X )

OO

Ps.k+1(X ) σ
//

OO

Pt.k+1(X )

OO

Also

• Ps,0(X ) = Ps(X ) for all s,

• Ps,k(X ) = ∅ for k suff. large.

Initial impression: BPs(X ) is a huge model for Vs(X ), because all
simplices of Vs(X ) are vertices of BPs(X ).
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Fundamental groupoid

x0, . . . , xk : list of elements of X such that d(xi , xj) ≤ s (may have
repeats).

[x0, . . . , xk ] = {x0} ∪ · · · ∪ {xk}.

Graph Grs(X ): vertices are elements of X , there is an edge x → y
if [x , y ] ∈ Ps(X ).

There is an edge [x , y ] : x → y if and only if there is an edge
[y , x ] : y → x . There is an edge [x , x ] : x → x .

Γs(X ) is category generated by Grs(X ), subject to relations
defined by simplices [x0, x1, x2].

Lemma 1.

Γs(X ) is a groupoid, and Γs(X ) ' G (Ps(X )) ' πVs(X ).

πVs(X ) is the fundamental groupoid of Vs(X ), G (Ps(X )) is the
free groupoid on the poset Ps(X ).
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Stability: setup

D(Z ) is the poset of finite subsets of Z (all data sets in Z ), with
Hausdorff metric dH .

Hausdorff metric:

r > 0: Given X ⊂ Y in D(Z ), dH(X ,Y ) < r if for all y ∈ Y there
is an x ∈ X such that d(y , x) < r .

For arbitrary X ,Y ∈ D(Z ): dH(X ,Y ) < r if and only if
(equivalently)

1) dH(X ,X ∪ Y ) < r and dH(Y ,X ∪ Y ) < r .

2) for all x ∈ X there is a y ∈ Y such that d(x , y) < r , and for
all y ∈ Y there is an x ∈ X such that d(y , x) < r .
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Stability

X ⊂ Y , dH(X ,Y ) < r : Construct a function θ : Y → X such that

θ(y) =

{
y if y ∈ X

xy for some xy ∈ X with d(y , xy ) < r .

If τ ∈ Ps(Y ) then θ(τ) ∈ Ps+2r (X ). Have a diagram of poset
morphisms

Ps(X )
σ //

i ��

Ps+2r (X )

i��
Ps(Y ) σ

//

θ
88

Ps+2r (Y )

y1
s

r

y2
r

θ(y1)
s+2r

θ(y2)

such that upper triangle commutes, and lower triangle commutes
up to homotopy:

σ(τ)→ σ(τ) ∪ i(θ(τ))← i(θ(τ)).
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Stability results

Theorem 2 (Rips stability).

Suppose X ⊂ Y in D(Z ) such that dH(X ,Y ) < r . There is a
homotopy commutative diagram (homotopy interleaving)

Ps(X )
σ //

i ��

Ps+2r (X )
i��

Ps(Y ) σ
//

θ
77

Ps+2r (Y )

Theorem 3.

Suppose X ⊂ Y in D(Z ) such that dH(X k+1
dis ,Y k+1

dis ) < r . There is
a homotopy commutative diagram

Ps,k(X )
σ //

i ��

Ps+2r ,k(X )
i��

Ps,k(Y ) σ
//

θ
66

Ps+2r ,k(Y )
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Blumberg-Lesnick Theorem

Theorem 4.

Suppose given X ,Y ⊂ Z are data sets with dH(X ,Y ) < r .

Then there are maps φ : Ps(X )→ Ps+2r (Y ) and
ψ : Ps(Y )→ Ps+2r (X ) such that

ψ · φ ' σ : Ps(X )→ Ps+4r (X ) and

φ · ψ ' σ : Ps(Y )→ Ps+4r (Y ).
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Proof

Set
U = {(x , y) | x ∈ X , y ∈ Y , d(x , y) < r }.

Ps,X (U) ⊂ P(U): all subsets σ such that d(x , x ′) ≤ s for all
(x , y), (x ′, y ′) ∈ σ. Define poset Ps,Y (U) similarly.

1) The maps Ps,X (U)→ Ps(X ), Ps,Y (U)→ Ps(Y ) are weak
equivalences (Quillen Theorem A).

2) There are inclusions

Ps,X (U) ⊂ Ps+2r ,Y (U), Ps,Y (U) ⊂ Ps+2r ,X (U),

(triangle inequality) and

Ps,X (U) ⊂ Ps+2r ,Y (U) ⊂ Ps+4r ,X (U)

Ps,Y (U) ⊂ Ps+2r ,X (U) ⊂ Ps+4r ,Y (U)
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Weak equivalences up to shift

Suppose that X ⊂ Y in D(Z ) and we have a homotopy interleaving

Vs(X )
σ //

i ��

Vs+r (X )
i��

Vs(Y ) σ
//

θ
88

Vs+r (Y )

(as in stability theorem), where upper triangle commutes and lower
triangle commutes up to homotopy fixing σ : Vs(X )→ Vs+r (X ).

1) i : π0V∗(X )→ π0V∗(Y ) is an r-monomorphism: if
i([x ]) = i([y ]) in π0Vs(Y ) then σ[x ] = σ[y ] in π0Vs+r (X )

2) i : π0V∗(X )→ π0V∗(Y ) is an r-epimorphism: given
[y ] ∈ π0Vs(Y ), σ[y ] = i [x ] for some [x ] ∈ π0Vs+r (X ).

3) All i : πn(V∗(X ), x)→ πn(V∗(Y ), i(x)) are r-isomorphisms.
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Systems

A system of spaces is a functor X : [0,∞)→ sSet, aka. a diagram
of simplicial sets with index category [0,∞).

A map of systems X → Y is a natural transformation of functors
defined on [0,∞).

Examples

1) The functors V∗(X ),BP∗(X ), s 7→ Vs(X ),BPs(X ) are systems
of spaces, for a data set X ⊂ Z .

2) If X ⊂ Y ⊂ Z are data sets, the induced maps
Ps(X )→ Ps(Y ), Vs(X )→ Vs(Y ) define maps of systems
P∗(X )→ P∗(Y ) and V∗(X )→ V∗(Y ).
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Homotopy types

There are many ways to discuss homotopy types of systems. The
oldest is the projective structure (Bousfield-Kan):

A map f : X → Y is a weak equivalence (resp. fibration) if each
map Xs → Ys is a weak equiv. (resp. fibration) of simplicial sets.

A map A→ B is a projective cofibration if it has the left lifting
property with respect all maps which are trivial fibrations.

Example: Ls(A) is the system with Ls(A)t = ∅ for t < s and
Lt(A) = A for t ≥ s. If A ⊂ B is an inclusion of simplicial sets,
then Ls(A)→ Ls(B) is a projective cofibration.

Lemma 5.

Suppose that X ⊂ Y ⊂ Z are data sets. Then V∗(X )→ V∗(Y ) is
a projective cofibration.
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r -equivalences

Suppose that f : X → Y is a map of systems. Say that f is an
r-equivalence if

1) the map f : π0(X )→ π0(Y ) is an r -isomorphism of systems
of sets

2) the maps f : πk(Xs , x)→ πk(Ys .f (x)) are r -isomorphisms of
systems of groups, for all s ≥ 0, x ∈ Xs .

Observation: Suppose given a diagram of systems

X1
f1 //

' ��

Y1

'��
X2

f2
// Y2

Then f1 is an r -equivalence iff f2 is an r -equivalence.

Example (stability): Suppose that X
i
⊂ Y ⊂ Z are data sets, and

that dH(X ,Y ) < r . Then the maps i : V∗(X )→ V∗(Y ) and
i : BP∗(X )→ BP∗(Y ) are 2r -equivalences.
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Triangle axiom

Lemma 6.

Suppose given a commutative triangle

X
f //

h   

Y
g��

Z

If one of the maps is an r-equivalence, a second is an
s-equivalence, then the third map is a (r + s)-equivalence.

Proof.

Suppose X ,Y ,Z are systems of sets, h is an r -isomorphism and g
is an s-isomorphism. Given z ∈ Yt , g(z) = h(w) for some
w ∈ Xt+s . Then g(z) = g(f (w)) in Zt+s so z = f (w) in
Yt+s+r .
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Fibrations I

Lemma 7.

Suppose that p : X → Y is a sectionwise fibration of systems of
Kan complexes and that p is an r-equivalence.
Then each lifting problem

∂∆n α //

��

Xs

��

σ // Xs+2r

p

��
∆n

β
//

θ

66

Ys σ
// Ys+2r

can be solved up to shift 2r .
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Proof of Lemma 7

The original diagram can be replaced up to homotopy by a diagram

∂∆n (α0,∗,...,∗) //

��

Xs
p��

σ // Xs+r
p��

∆n
β

// Ys σ
// Ys+r

(1)

p∗([α0]) = 0 in πn−1(Ys , ∗), so σ∗([α0]) = 0 in πn−1(Xs+r , ∗).

The trivializing homotopy for σ(α0) in Xs+r defines a homotopy
from (1) (outer) to the diagram

∂∆n ∗ //

��

Xs+r
p��

∆n
ω
// Ys+r

(2)

σ∗([ω]) ∈ πn(Ys+2r , ∗) lifts to an element of πn(Xs+2r , ∗) up to
homotopy, giving the desired lifting.
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Fibrations II

Lemma 8.

Suppose that p : X → Y is a sectionwise fibration of systems of
Kan complexes, and that all lifting problems

∂∆n //

��

Xs

��

σ // Xs+r
p��

∆n //
θ

33

Ys σ
// Ys+r

have solutions up to shift r , in the sense that the dotted arrow
exists making the diagram commute. Then the map p : X → Y is
an r-equivalence.

Proof.

If p∗([α]) = 0 for [α] ∈ πn−1(Xs , ∗), then there is a diagram on the
left above. The existence of θ gives σ∗([α]) = 0 in πn−1(Xs+r , ∗).
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Fibrations III

Corollary 9.

Suppose given a pullback diagram

X ′ //

p′

��

X

p

��
Y ′ // Y

where p is a sectionwise fibration and an r-equivalence.
Then the map p′ is a sectionwise fibration and a 2r -equivalence.

Question: Is there a dual statement? Do maps which are
cofibrations and r equivalences push out to 2r -equivalences?
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Homology

A map f : A→ B of systems of simplicial abelian groups (chain
complexes) is an r -equivalence if the induced maps
Hk(A)→ Hk(B) are r -isomorphisms for k ≥ 0.

Example: Suppose that X ⊂ Y ⊂ Z are data sets and that
dH(X ,Y ) < r . Then Z(X )→ Z(Y ) is a 2r -equivalence (by the
interleaving), so that Hk(X )→ Hk(Y ) is a 2r -isomorphism for
k ≥ 0 (all coefficients).

Lemma 10.

1) Suppose that f : A→ B is an r-equivalence with homotopy
cofibre p : B → C . Then the map C → 0 is a 2r -equivalence.

2) Suppose that C → 0 is an r-equivalence. Then f : A→ B is
an r-equivalence.

Warning: There is no Hurewicz theorem. We can’t say that if
X → ∗ is an r -equivalence then H∗(X ) is r -equvalent to H∗(∗).
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Groupoids

Question: What does it mean for X → ∗ to be an r -equivalence?

Facts: 1) If X → ∗ is an r -equivalence, then all Postnikov sections
PnX and n-connected covers X (n) are r -equivalent to a point.

2) If X → ∗ is an r -equivalence, then

σ∗ = 0 : πk(Xs , ∗)→ πk(Xs+r , ∗)

for k ≥ 1. All [x ] ∈ π0Xs map to the same element of π0Xs+r .

Example: P1X = Bπ(X ), so fundamental groupoid π(X ) is
r -equivalent to a point. We can discuss systems of groupoids G
such that G → ∗ are r -equivalences.

P0G has same objects as G , and exactly one morphism x → y if
homG (x , y) 6= ∅. There is a natural functor π : G → P0G .
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Lemma 11.

Suppose that G → ∗ is an r-equivalence. Then there is an
interleaving

Gs
σ //

π

��

Gs+r

π

��
P0Gs σ

//

θ
::

P0Gs+r

and all elements of π0Gs map to the same element of π0Gs+r .

Proof.

Any two morphisms α, β : x → y of Gs map to the same morphism
of Gs+r , so θ exists.

In effect, β−1 · α ∈ Gs(x , x) = π1(BGs , x).
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2-groupoids

A 2-groupoid H is a groupoid enriched in simplicial sets, such that
each simplicial set H(x , y) is the nerve of a groupoid.

Each H has a bisimplicial nerve BH which defines a homotopy
type.

Every 2-groupoid H has an associated groupoid P1H with a
functorial map π : H → P1H, such that P1H(x , y) = P0(H(x , y)).

Fact: Every space X has a fundamental 2-groupoid π2X such that
Bπ2(X ) ' P2(X ).

Lemma 12 (slightly conjectural).

Suppose that H is a system of 2-groupoids such that BH → ∗ is
an r-equivalence. Then P1H → ∗ is an r-equivalence, and there is
an interleaving

Hs
σ //

π ��

Hs+r

π��
P1Hs σ

//

θ 88

P1Hs+r
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Homology

H a system of 2-groupoids s.t. BH → ∗ is an r -equivalence.

0) P0H → ∗ is an r -isomorphism. P0H is a system of disjoint
unions of trivial groupoids (contractible spaces). H0(BP0H)→ Z
is an r -isomorphism, and there are no non-trivial higher homology
groups.

H0(BH) ∼= H0(BP0H)→ Z is an r -isomorphism.

1) P1H → ∗ is an r -equivalence. The interleaving

P1Hs
σ //

π ��

P1Hs+r

π��
P0Hs σ

//

θ 99

P0Hs+r

forces Hk(BP1Hs)→ 0 to be an r -isomorphism for k ≥ 1, because
all higher homology groups of BP0Hs are trivial.

H1(BH) ∼= H1(BP1H)→ 0 is an r -isomorphism.
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Homology II

2) P2H → ∗ is an r -equivalence. The interleaving

P2Hs
σ //

π ��

P2Hs+r

π��
P1Hs σ

//

θ 99

P1Hs+r

forces Hk(BP2H)→ 0 to be a 2r-isomorphism for k ≥ 1:

π · σ(α) = σ · π(α) = 0 for α ∈ Hk(BP2Hs) since Hk(BP1Hs)→ 0
is an r -isomorphism.

Then σ · σ(α) = θ · π · σ(α) = 0 in Hk(BP2Hs+2r ).

H2(BH) ∼= H2(BP2H)→ 0 is a 2r -isomorphism.
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Spaces of data sets

We construct spaces from the poset of data sets D(Z ). There are
two choices:

1) Ds(Z ) ⊂ BD(Z ) consists of strings of simplices

σ : σ0 ⊂ σ1 ⊂ · · · ⊂ σn

such that dH(σ0, σn) ≤ s.

2) Ps(Z ) ⊂ P(D(Z )) is poset consisting of finite subsets σ such
that dH(X ,Y ) ≤ s for all X ,Y ∈ σ.

Theorem 13.

There are weak equivalences

Ds(Z )
γ←−
'

BNDs(Z )
φ−→ BPs(Z ),

where φ(σ) = {σ0, . . . , σn}.
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Proof I

• There is a functor f : Ps(Z )→ D(Z ) with
σ = {X0, . . . ,Xk} 7→ X0 ∪ · · · ∪ Xk .

f : BPs(Z )→ BD(Z ) takes simplices of BPs(Z ) to simplices of
Ds(Z ) and induces f : BPs(Z )→ Ds(Z ).

The following diagram commutes:

BNDs(Z )
φ //

γ
'
''

BPs(Z )

fxx
Ds(Z )

• Show that f is a weak equivalence. Suppose that
τ : Y0 ⊂ · · · ⊂ Yk is a non-degenerate simplex of BDs(Z ). Show
that f : f −1(τ)→ ∆k is a weak equivalence.
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Proof II

• f −1(τ) is the nerve of a poset, with objects {Z0, . . . ,Zm} such
that ∪i Zi is some Yj , with morphisms covering inclusions
Yj ⊂ Yk .

• Given τ = {Z0, . . . ,Zm} with ∪i Zi = Yj , there are poset
morphisms

{Z0, . . . ,Zm} → {Z0, . . . ,Zm} ∪ {Y0, . . . ,Yj} ← {Y0, . . . ,Yj}.

• There is a simplicial set map σ : ∆k → f −1(τ) defined by the
string of inclusions

{Y0} ⊂ {Y0,Y1} ⊂ · · · ⊂ {Y0, . . . ,Yk}

The map f : f −1(τ)→ ∆k is a homotopy equivalence.

Rick Jardine Persistent homotopy theory



References

Andrew J. Blumberg and Michael Lesnick.
Universality of the homotopy interleaving distance.
CoRR, abs/1705.01690, 2017.

P. G. Goerss and J. F. Jardine.
Simplicial Homotopy Theory, volume 174 of Progress in
Mathematics.
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