ON THE PERIODS OF INTEGRALS ON ALGEBRAIC
MANIFOLDS*

by Phillip A. Griffiths

This is a summary of some results in the transcendental theory of algebraic
varieties. The problem is to analyze the periods, as functions of the para-
meters, in an algebraic family of algebraic manifolds. The following is a
brief outline of this work.

Given an algebraic manifold V in a projective space Py, we construct
the period matrix space D =D, of all possible period matrices for the prim-
itive harmonic g-forms on manifolds homeomorphic to V. It turns out
that D is an open homogeneous complex manifold, which is sometimes a
Cartan domain, and on which there is a p-convex polarization giving rise
to automorphic cohomology but, in general, not automorphic forms. In
case g = 2m + 1 is odd, D,, . is a parameter space for complex tori with
a certain r-convex polarization (r = h®™'4 h?""2% 4 ...). The torus
H*" " YV, R)H>"*(V,Z) = T,(V)is naturally a complex torus with r-convex
polarization and the period matrix of V gives the same point in Dy,
as T,(V). (T,(V) is generally not Weil’s higher Jacobian.) Finally, there
is naturally defined a properly discontinuous group [' of analytic auto-
morphisms of D such that M = D/T is an analytic space and then V defines
a unique point ®(V)e M.

Now let {V}}, . be an algebraic family of varieties ¥, = Py such that V
belongs to the family. The period matrix mapping ®:B— M is defined by
d(t) = @®(V,), provided V, is non-singular. It is proved that, even though
periods of (p, g) forms are involved, ® is holomorphic. In partcular, T,(V;)
varies analytically with . The rank of the Jacobian matrix of @ is computed
cohomologically and it is shown, e.g., that the periods give local moduli
for a wide class of varieties.

To study the global nature of @, it is shown that the periods on ¥, may
be given by periods of algebraic integrals This involves a generalized
residue calculus.

Once we have shown that the periods are represented by algebraic integrals,

* This work was supported in part by ONR Contract 3656(14).
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we introduce the differential equations of the periods. Having discussed
the formal properties of these differential equations, we show that the
periods satisfy an equation with regular singular points. This gives an
asymptotic estimate on the periods of V, as ¥, — ¥, where V, is singular.
It is shown that the group of the differential equation is generated by (es-
sentially) unipotent matrices.

Applying these results to the period mapping ®(f), we find that, as
V,— V,, ®(f) tends to a unique point ®(0) in D modulo I'. Furthermore,
®(0) is a fixed point of a rational unipotent element in the automorphism
group of D.

Asan application of the continuity theorem above, we see that, in certain
cases, ® gives either a holomorphic or rational mapping into a compacti-
fication M* of M. This gives then information on moduli of curves, K3
surfaces, cubic threefolds, etc.

Other applications (not discussed below) are to mapping problems in
several complex variables (generalizing Picard’s theorem), differentials of
the second kind, and the cohomology of affine varieties.

1. Construction of the Period Matrix and Modular Varieties

- Let V,, be a differentiable 2n-manifold and we H%(V,,,Z) a cohomology
class. We suppose that there is a polarized algebraic manifold V whose
underlying C” manifold is V., and whose polarizing cycle is w; that is to
say, over V there is a positive ho!omorphicrlfne bundle L — V and the char-
acteristic class of Lis w.

For 0 < g < n the primitive cohomology H¥ V), = {¢ € H(V,C) such
that @""9%'¢ = 0} is a vector space defined over the rationals Q
and H(V,C) = w* H""*(V), (Lefschetz decomposition), so that we can
recoverH*(V, C) from the HY(V),. On HYV), there is a non-singular bilinear
form: Q(¢,y¥) = ¢, [y " PpY, where ¢, is a suitable constant.

The complex structure on V gives the Hodge decomposition:

H'(V)o = ZH™(V)o,  (Hi=r(V)o = H™7'(V)o),

where H7™"(V), = H{™"" are the primitive classes of type (g —r,7). We
have that Q(HE™"", H5"™%) = 0 for s 5 r and Q(H{ ™", H3~"") is either posi-
tive or negative definite, written Q(HZ™"", H§~"") > 0, depending on g and r.

Let now S"=HI+..+HI™™ so S°cS'c..c8'cH(V),

(tz [q%l]) Then we have defined a point Q = [S°,5",---,S'] in a

flag manifold # = Z#(V,,, w) and each polarized algebraic structure (V, L)
on (V,,, w) defines a (non-unique) point Q(¥) in & .
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The flags Q(V) are subject to two bilinear relations:

H oE,8)=0 (r+#q/2);

(i) QSIS LS55 Y 0.
In (ii), for example, S?/S' is the subspace of S? defined by S?/S' =
{¢ € S* such that Q(¢,S") = 0}.

Welet X be the flags Q satisfying (i) and D the flags satisfying (i) and (ii).

Theorem. Let G be the group of real linear iransformations of
H%V)o which preserve Q. Then G acts transitively on D with compact
isotropy group so that D = G/H where G is a real simple Lie group and
H is the centralizer of a torus in G.

Remarks. It is also shown that the complex group G of all linear trans-
formations on HYV), which preserve Q acts transitively on X, and thus
Dis an open G-orbit on a homogeneous algebraic manifold.

It may be seen that D is a coordinate free manner of describing all possible
period matrices for the primitive g-forms on polarized algebraic manifolds
(V,L) with underlying (V, ®).

There is naturally defined an arithmetic subgroup I' = G, where I" con-
tains all automorphisms of H%¥), induced by homeomorphisms of ¥V
which preserve w. The complex manifold D is called the period matrix
space and the analytic variety M = D/I" is the modular variety. The po-
larized algebraic manifold (¥, L) with underlying (V,,, w) defines a unique
point ®(V)eM.

Theorem. Given (V,L) and (V',L) with the same underlying
(Vs @), ®(V) = O(V") if, and only if, there is a polarization preserving
homeomorphism f:V — V' such that the graph Goe H, (V x V',Z) is of
type (n,n).

For g = 1, D is a Siegel upper half space and ®(¥) is the point deter-
mined by the Jacobian variety Ty(V). This generalizes as follows: Let D,
be the period matrix space for H%(V), and D, = D; X -+ X D;,,,;. We
introduce the notion of a p-convex polarization to bea complex manifold
W together with a line bundle E — W whose characteristic class  is locally

-1 . . -

w= ——2—2”1!:“ ,dz* A\ dz* where H = (h,,) is a non-singular Hermitian
l’ 1 O

matrix with p negative eigenvalues; thus AHA = _1

Lo p\i'—l
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for suitable A. Concerning the real torus H*""'(V,,R)/H*"*Y(V,,Z)
=T,.(V,), we have:

Theorem. Given(V, L) with underlying (V,w), there exists a complex
structure T, (V) on T,(V,,) such that: (1) T,(V) has a translation-invariant
p-convex polarization for some p (in fact, p = h*™' + B*"723 4 ...);
(ii) T,(V) with its polarizationis functorial; (iii) T,(V) varies analytically
with V.

Remarks. T,(V) is generally not Weil’s higher Jacobian J,(V); J,(V)
does not vary analytically with V. Forexample, if m=1, T, (V)=J,V)
if, and only if, H*® = 0 or H*' = 0.

Theorem. D, is naturally a parameter space for complex tori with
p-convex polarization, and Q(V) = (Q,(V),--,Q5,,+:(V)) is the point in
D,y corresponding to T, (V).

Remarks. A zero-convex polarization on T,(V) is an ordinary polari-
zation; in this case we have theta-functions (sections of L), modular forms
derived from theta nullwerte, etc. For a p-convex polarization, we have
theta cohomology H"(T,(V),L) and modular cohomology.

For g =2, D =D, is the space of period matrices for the holomorphic
2-forms on V. If h = h*®and k = h}'* (= h''' — 1), then:

D = SOQh, k)|U(h) x O(k) = G/H,

where SO(2h, k) is the real group of Q = ( ) We observe that

0 —I
D is bounded symmetric domain if, and only if, h = h*%=1.

Theorem. D has a natural G-invariant p-convex polarization where L
is the canonical bundle (canonical factor of automorphy) and p = (h* — h)/2.

Remarks. Thus, instead of automorphic forms for D under I', we find,
at least when D/T" is compact, automorphic cohomology in dimension p.
It seems quite likely, although it is not proved yet, that there will be auto-
morphic cohomology on D/I" in general.

In fact, this brings up one of the central questions our study has raised:
In two instances above, we have started with an algebraic object (polarized
algebraic manifold), performed natural constructions, and ended up with
p-convex polarized complex manifolds which have cohomology in dimension
p instead of sections. Now what is the meaning of this cohomology to the
geometric problems which gave rise to it? -
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For example, M = D/I" can be compactified to a Hausdorff topological
space M*, and there is some evidence that M* is an analytic space (but
not an algebraic variety) in which M is Zariski open. However, it will cer-
tainly be necessaryto understand the modular cohomology in order to make
sense out of this.

To bespecific for a moment, let H, be the Siegel upper space in genus n
and I', the modular group. Then M, = H,/T, is the modular variety for
the periods of the holomorphic 1-forms on normally polarized abelian
varieties, The modular variety for the periods of the holomorphic 2-forms
is:

M, = ['\SO(n(n —1),n* = 1)/ U(n(n — 1)) x O(n? — 1);

M, has a p-convex polarization where p>0if n =3. Now there is an
embedding M,— M, (since the periods of the 2-forms determine the periods
of the 1-forms); we may ask what is the relation of the modular cohomology
on M, to the modular forms on M, .

2. Local Study of the Period Mapping

Suppose now that we have an algebraic family {V,},.5 of polarized
algebraic manifolds; to be precise, suppose that we are given irreducible,
complete projective varieties V, Band a regular mapping V- B such that
V, = - (t)is a non-singular algebraic manifold for t a general point on B.
For our purposes, we may assume that V, B are non-singular and we let
S < B be those te B such that n does not have maximal rank along ¥,.
Then {V,},.s_s is an algebraic family, which is topologically a fibre bundle.
We let (V, L) be the polarized algebraic manifold which is a fixed general
member of {V,},.5_s.

Let M = D[ be the modular variety associated to the periods of the
primitive g-forms on V. There is the period mapping:

®: B-—S—-M,

given by: ®(r) = O(V,) is the period matrix of the primitive g-forms on V.
Now ®(1) involves the periods of the general (¢ —r,r) forms on V;; these
periods themselves are not analytic functions of ¢, but we can show:

Theorem. The period mapping ® is holomorphic.

Remarks. More precisely, let {V,},..(A=polycylinder) be a differentiable
family of algebraic manifolds in the sense of Kodaira-Spencer. If oA
and ¢!, ---,t" are local holomorphic coordinates around t,, there is de-
fined the Kodaira-Spencer mapping:
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p: Ti(8) = H'(V,,,0%,).

Then, if "(ef_a) = 0 for all t4, it follows that @ is holomorphic.
The Kodaira-Spencer mapping p measures to what extent the family
{V,}iea contains analytically distinct varieties; e.g., if p is injective, then
the family is effectively parametrized.
Suppose now that ¥ = ¥, as above. The contraction @ @ Q""" - Q™" !
induces a cup product:

H(V,0) @ H'(V,Q"™ -» H" (v, ).
Using the Dolbeault isomorphism, we get:
H\(V,0)@ HY™"" = ga~r-1ril
and, because we have a polarized family, we have
(#) HY(V,©)@ H§ ™ — HE "~ 1r+t,
Theorem. There is a natural isomorphism

TU?(V)(M) = 2 HOm(H‘é"-"’ H%—‘l’-'l,r+l).

0sr=lle—1)/2]
For te T, (A) and Yy e H™ ™",
D.(D)(W) = p(xype HG 1",
where the latter symbol is the cup product (#).

Remark. This theorem gives a cohomological way of telling to what
extent the periods give local moduli for the variety V (assuming p is in-
jective).

Corollary. If the cup product p given by
(}5’5) E Hrl—r—](V’Qxl—q-{-r-l-l)@ Hr(-l/;gq-r)

O=r=liqg—1)/2]

1_1"— l(V, Ql ® Q"}
is onto, then the periods of the g-forms give local moduli for V.

Examples. (i) In case n = dimV =1, the cup product (#) reduces to
HYQ) @ HYQ") —» HYQ' ® Q'); this is the Theorem of Rauch that the
periods give local coordinates in the Teichmiiller space if the quadratic
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differentials are generated by abelian differentials (which happens when V
is non-hyperelliptic).

(i) If the canonical bundle of V is trivial, then the periods give local
moduli.

(iii) The periods give local moduli in the following cases: V< Pj is a non-
singular surface of degree d =4; V< P5 is a non-singular threefold of
degree d = 3; V is a hypersurface of degree d = 3 on a three-dimensional
abelian variety; VV = P, is a complete intersection of surfaces of sufficiently
high degree; V is a multiple plane with sufficiently general branch curve.

We are led to conjecture that, if V is a surface whose canonical series
is sufficiently ample, then the periods give local moduli.

(iv) The periods fail to give local moduli in the following cases: Vis a
surface having biregular, but not birational, moduli (e.g., cubic surface in
P.); Vis the Enriques surface.

A final local result on the period mapping @ is of a geometric nature and
describes the position of the image ®(B — S) in M. We recall that the period
matrix space D is a a homogeneous complex manifold G/H where G is a
real, non-compact Lie group and H c G is a compact subgroup. If K <« G
is the maximal compact subgroup, then the K-orbits of maximal dimension
give a family {Y;} of compact, complex analytic submanifolds of D.

Example. Suppose we are looking at the Hodge decompositions of
H*(V,, C)o = HX(V)o. Let @ = [H*SH*? + H}''] be one such point in
D and let Y, be the flags [S°, S'] in D with S® + 5° = H*®+ H%% Then
Yo = D is a compact analytic subvariety which is the K-orbit of Q.

Observe that Y, = SO (2h)[U(h) where h = h*°.

Theorem. Theimage ®(B—S) is transverse to the compact subvarieties Y; .

h? —h

h &
. In fact, the canonical

Remarks. In the example just above, we observe that dim ¥, =

2 —
while D has a p-convex polarization with p = L 3

bundle L — D, which gives this p-convex polarization, is negative on Yg.

Concerning the geometry of these period matrix domains D, we have
several results, many of which are due to W. Schmid or H. Wu. We list
these as:

Geometric results on D. (i) There exists an exhaustion function ¥ on D
whose E. E. Levi form L(})) = 80y has everywhere m — p positive eigen-
values (m = dim D).

Using the vanishing theorem of Andreotti-Grauert, we get from (i) that:
(ii) HY(D,S) =0 for ¢ > p and S any coherent sheaf on D,
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Let Y = D be the compact submanifold which is the K-orbit of the origin.
If <0, is the ideal sheaf of Y, N—Y the normal bundle, and
N#* - Y the pth symmetric power of the dual bundle, then we have exact
sheaf sequences 0— I"*'Lf— ["[F— O (N*"I¥) - 0. From the exact co-
homology sequences and H?*Y(D,I*-I¥) =0, we find, for all u=0,
HP(D, I***I¥) - H?(D, I"I¥)— H?(Y, O(N**¥)) - 0. This gives: (iii) H"(D, L)
has a decreasing filtration whose associated grading is E,;go H"(Y, O(N*"I¥)).

From the Borel-Weil theorem on Y, we find: (iv) dim H?(D, ) = o
for k> 0. In fact, for k >0, H?(D,I¥) is sufficiently ample, and H*(D, L¥)
can be expanded in a formal power series around Y.

Now D = G/H is an open complex manifold and the fibering G/H — G/K
gives a fibering of D by a family {Y,;} of compact, complex submanifolds.
We have: (v) There exists a unique G-invariant splitting of the complex
tangent bundle T(D) = V @ H where, for Qe D, To(D) = Vo @ Hq and Vg
is the tangent space to the unique compact submanifold Y, passing through Q.

It can be shown then that D is hyperbolic in the following sense: (vi) Let
A be a complex manifold and {¢,} a sequence of holomorphic mappings
¢, A — D such that (¢,),.T.(A) = Hy, (.,. Then, either {¢,} diverges or else
there exists a subsequence {¢,} of {¢,} which is uniformly convergent
on compact sets.

That this result is applicable to moduli follows from the following gener-
alization of the transversality theorem above:

Theorem. ®:B — S — M is transverse to the compact subvarieties and,
in fact, ®,To(B — S) < Hyq,-
As a corollary we find using (i) and (vi) above:

Corollary. Let {V,},.5 be a family of non-singular varieties where either
B is compact and simply connected or B = C'. Then the periods of {V}iep
are all constant.

The algebraic-geometric meaning of the transversality theorem is that
there are additional period relations to Riemann bilinear relations. For
example, if Q is the period matrix of the holomorphic 2 forms on a (generic)
algebraic surface V, then 'QQQ =0, '00Q > 0 (Riemann relations), and
'dQOQ = 0 (transversality relation).

Proposition. The canonical bundle of M is positive on ®(B — S).

3. Representation of the Periods by Algebraic Integrals
Our central problem is to study the period mapping ®:B—S— M. We
would like to prove theorems of the following sort:
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(i) There exists an analytic compactification M* of M such that @ extends
to meromorphic (or holomorphic) mapping ®: B— M*;

(ii) There exists a subfield # of the field #(B) of rational functions such
that & determines the same equivalence relation on B as ® (the level sets
of # are the fibres of @).

This involves first giving an asymptotic analysis of the periods on V,
as V, becomes singular, and then constructing M*. We are able to give
the asymptotic behavior of the periods and this involves representing the
periods of (g — r,r) forms as periods of rational integrals, to which we
now turn.

The idea is to use a generalized residue calculus. Let V be an algebraic
n-manifold and S < V a non-singular subvariety. Denote by A%kS) the
vector space of closed, rational g-forms on V with poles of order less than
or equal to k along S. Each ¢ e A?(kS) defines a cohomology class
R(¢)e HT™'(S) by integration over the fibre in the normal bundle: If
6eH,_(S,Z) is a (g — 1)-cycle on S, we let 7(5) be a tube in V — S lying
over &; w(8)e H(V—S). Then (R($),5) = 2_}: [' é

T 1 Jey

For ¢ = n, k =1, R(¢) is a holomorphic (n — 1)-form on S given ex-
plicitly by the Poincaré residue operator. For general g and k=1, we get
the residue operator of Leray (who uses C* forms).

Generalizing this, we let A7 !(S) be the vector space of rational (g — 1)-
forms on S and prove:

Theorem. There s a linear o perator (residue operator): R: AY(kS)— A" '(S)
with the following properties:

(1) R is well-defined if k = 1 and defined modulo exact forms if k> 1;

(ii) R takes closed (exact) forms into closed (exact) forms;

(iii) For g =n, k=1, R is the Poincaré residue operator;

(iv) If ¢pe AUS), R(¢p) is holomorphic on S;

(v) If ¢eAkS), R($p) is of 2nd kind on S;

(vi) If 6eH,_(X,Z) lies outside a suitable subvariety S'< S, then

i
[0 5= [ 6

Concerning the operator R, we have:

Theorem. (i) R:A%(kS)— H* “°(S) + - + HT**1(S) so that, in par-
ticular,

R: A(kS)[A%(k — 1)S) —» HI™**1(8);
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(i) If ScVis a positive subvariety, then
HIHL(S) = HRR1(0) + R{AYKS)/A'(k — 1)S)};
(iii) If 6e H,_,(S,Z) lies outside S' = S, then (R(¢),6)> = [;R(¢).

Remarks. Part (i) of the second theorem tells us that the type of R(¢)
in the Hodge decomposition of H?™'(S,C) can be read off from the order
of the pole which ¢ has on S; part (ii) tells us that, if S = Vis positive, then
all of the cohomology of S comes by restriction or by residues. In particular,
if S lies in an algebraic family {S,} of hypersurfaces, then the periods of
the forms restricted from V are constant while the periods of the cohomology
classes R(¢) (¢ € A'(kS)) are obviously holomorphic. Thus part (i) of this
theorem explains the motivation for using flags in the construction of period
matrix varieties while (ii) makes plausible the fact that the period mapping
is holomorphic. Finally, because of the first theorem and (iii) of the second
theorem, the possibility of representing the periods of H? ®¥*!(S) by
periods of algebraic integrals on S is certainly raised.

To carry through the representation of the cohomology of V by algebraic
integrals, we take a fixed projective embedding ¥V <« Py and let H = V be
a general hyperplane section. Denote by AY(K) = 4}(kH) the vector space
of closed, rational g-forms on V, having poles of order k+ 1 on H, and
reduced modulo exact forms.

Theorem. There exists subspaces (k) c Ajy(kH) and linear isomor-
phisms {H*°(V) + --- + HY % 1)} LW"’(I{) such that:

(1) #%k —1) = k) and the forms in #*(k) have no residues on H;

(ii) If e HY(V,Z), is a rational primitive cycle, then & is homologous
to a cycle o in V — H and, for any

b e HY (V) + - + HYH¥ (W), J; ¢ = Ja r($).

Remarks. The mapping r is constructed as follows: Let O be the sheaf
of closed, holomorphic s-forms on V. Then we prove:
(«) There is a natural isomorphism:

I-f*(V,Q‘i_k) - Hq,U(V) s -}-Hq_k'k(V)_

(#) Next, by generalizing Weil’s proof of the deRham theorem, we show
that there is a natural mapping

HY(V,Q17%) B A% k).
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(y) Then we show that, under the isomorphism in («), the kernel of 0 is
{o A H™3(V, O} n {HY (V) + -+ + HT* ()},

where we H*(V,C) is dual to H.
It follows that O{H*(V,Q¢7%)} = #"(k) is our desired subspace.

Example. Let V < P, be the non-singular surface given in affine coor-

dinates by x* + y* + z* = 1. Then #2(0) is generated by — dxdy 1 ) is
-@ with 2£a+ﬁ+}:44
2.2 b:dy
23
Observe that dim 2#%(1)/5£2(0) = 19 so that dim H*(V,C), = 21, which
checks with the fact that Vis a K3 surface.
We observe that s#%(k) = o4k + 1) = -+ = H#*) for k> q.

generated by #%(0) plus the forms x*y’z
and «, B,y < 3; and J#%(2) is generated by #°%(1) plus the form x*y?z

4. Differential Equations of the Periods
Suppose now that we consider, as in the beginning of §3, an algebraic

family {V,},.s given by vEB. We take a sufficiently general projective
embedding V < Py and choose a generic hyperplane section H of V such
that:

(i) The hyperplane section H, = H 'V, is a general plane section of ¥,
for teB—-S;

(i) The polarization induced by H, on ¥, is the given polarization; and

(iiiy If we let C(k) = C}(kH) be the vector space of rational g-forms
iy such that \ has a pole of order k + 1 on H and l,bl V, is closed for a general
point f, then the mappings C'(k)— A} (kH,)— 0 are onto for te B—S§,
k>0,

Remarks, In general, a form e AL(kH) = A"(k) (V is a general ¥,
H = H,) will not be the restriction to V of a closed form i on V; in partic-
ular, if  is holomorphic, it will not be the restriction of a holomorphic
form on V.

Let &(B) be the algebra of rational differential operators on B and let
H(k) = A} (kH,) be the subspace representing the primitive cohomology
as given in the theorem of §4. We set #7(k) = 2°}(kH) where Vis a general
Vi, #U(*) = #(kH) for k > q, etc.

Theorem, (i) (B) is an algebra of operators on J#%x). If &(B) < &(B)
is the subspace of operators of degree 1, then
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&(B) - #°(k) = Kk + ) (k > 0)
&(B) - #%0) = A + 2)

(i) If ¥, is a rational family of sections of K (%), if 6,e H(V,— H,) is
a family of primitive cycles, and if D e &(B), then

D(L,“") - L,(D""")’

provided both sides make sense.

Remarks. This result forms the algebraic basis for studying the differential
equations of the periods.

To get an idea of how &(B) acts on (=), we suppose that B = P; with
coordinate t. Let i, be a rational family of g-forms such that i, is in
A} (#); i.e., Y, is a closed g-form on ¥, with poles on H,. By (iii) we can
choose a rational g-form ¥ on V such that i has poles on H and gbl V,=1,.
Now dl,b| V, = 0 since ¥, is closed, and so we can write: diy = ¢ A dt, where
¢ is a g-form with poles on H. We set 3/dt(y,) = ¢, = qS] V. If we had
another ¢ with dy = ¢ A dt, then ¢, — P, will be exact, so that 9/dt(,)
is defined modulo exact forms. Also, if W, = d¢&,, then we would find that
d/dt(y,) is exact, so that d/dt operates on Y (..

The proof of Ea? ( Ll;‘/,) = l; (ag:l) is done by Stokes’s Theorem.

To define the diﬁereiltial equa;tions, we let W, -, be a family of
rational forms giving a basis for 7 (k). A differential equation (of level k)
is given by (Dy,--,D,,) where D,e&(B) and X! D, b, =0 in ) ().
We let &, < &(B) + -+ + &(B) be the &(B)-module of differential equations

Sl —

m
of level k.

Theorem. (i) %, is a finitely generated &(B)-module.
(i) Ifdim B = 1(i.e., Bis a curve), and if £,(1), -+, E,(1) are local analytic
functions on B such that X"_,D,E()=0 for every (Dy,-,D,)e Ly,

then there exists a primitive cycle 8, H(V, — H,) such that

£t = Law..

Remarks. To prove (ii), one writes down explicitly generators for .Z,.
In doing this, the following numbers appear naturally:

m, = dim{&(B) - #%k)} where &(B)- #Y(k) = #(k+1).
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By the results in §2, these numbers have a cohomological interpretation,
and by pursuing this, we can prove (ii).

For dim ¥, =1, (ii) was the key result in Manin’s treatment of rational
points on curves defined over function fields.

These results are formal algebraic results on the nature of the module
of differential equations. To obtain our main analytic theorem, we restrict
{Vi}iep to a disk {V,},.s such that V, is non-singular for ts0. We let
{V/:}ren be a family of differentials in A% (+) such that y, is a closed, rational
g-form on V, for t £ 0. We set * = 8", /ar* and let m be the least integer
such that we have X' ,r (0@ =0 (exact forms), r,()=1.

Theorem. (i) r(t) is a single-valued analytic function with a pole of
order m —o at t =0.
(ii) If e H(V, — H)) is a primitive g-cycle, then the period n(f) = [5,¥,
satisfies the differential equation,
Y ) rn(t) _ 0,

a=0 afa

which is an ordinary D.E. having a regular singular point at t = 0.

Remarks. This is the main analytic result on the asymptotic behavior
of the period n(f). For example, having chosen a branch of the multiple-
valued analytic function =(r), it follows that:

-N
(0] < ee]",
so that n(r) does not have an essential singularity at t = 0.

Corollary. The generators of Ly, the module of differential equations
of level I, are each Fuchsian differential equations on B.

Remarks. A Fuchsian D.E. on B is a rational differential operator 0 on
B which has the local form

m

00 = £ 00 (rz) o 000,
a=0

where the 0,(f) are holomorphic functions of ¢. This is a purely algebraic
statement for which T know of no algebraic proof.

Example. Let ¥, = P; be the surface with equation x*+ y*+z*+1
= 4txyz. This is a family of K3 suifaces and V, is non-singular for 1* # 1,
t# 0. We let , = % be the holomorphic 2-form on ¥,. Then the

D.E. of the periods of i, is:
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@Jr B A (2:3+( T a_n+( t )n=0
or3 (:4 - 1) or? B = 1) ot 14— 1 '
5. Global Study of the Period Mapping

We consider an algebraic family {V,},.5, as in §2, and we suppose that
{Vi}iep-s is a fibre space where S < B is a non-singular subvariety. We
want to discuss the global nature of the period mapping ®:(B— S)— M.

To describe ® explicitly, we recall that M = D/I" where the period matrix
space D is an open set on an algebraic variety X . Now X is a submanifold
of a flag manifold &, the points Q[S°S',---,S] in & being sub-
spaces S°c S' < ... = S' < HY(V,C), where V =V, is a general member
of {V,};s. There is a natural embedding of &# into a product of Grassmann
manifolds which sends Q into (8% S, .-, 5"), the subspace S* giving a point
£, in a Grassmann manifold %, of linear subspaces through the origin in
HY(V,C), .

Thus the mapping ®(¢) is given by a multiple-valued mapping Q(1) of
B — S into &, and Q(r) is in turn given by multiple-valued mappings ,(t)
into Grassmann manifolds %,.

To give (1) explicitly, we choose forms !, ---,* in Ci(kH) such
that ! I K,---,l;‘/j'] V, give a basis for s} (k) (te B— S). We then choose
cycles 6,(1), -++,8,(t) which give a basis for H(V;,Q),, the primitive rational
g-cycles. Then we form the period matrix:

Q1) = (m,(1)),
where m,,(1) = fél_(,)vj;". The matrix Q,(¢) is of rank h and the space spanned
by the rows of Q,(f) gives the linear subspace Q,(¢) in %,. In other words,
Q.(t) is given the Pliicker coordinates of Qut).

Now Q,(1) is not single-valued on B — S because the fundamental group
n(B — S) acts on H(V,Q),; given a closed loop 4 in B — S, continuation
of 8,(1),-+,8,(f) around 1 leads to a substitution §,()— X2, 2,,6,(1).
Letting T = (4,,), analytic continuation sends Q,(f) into Q,(¢)T.

We are interested in the behavior of ®(¢) as t approaches S, and for this
we let 4 be a loop surrounding a branch of S. In fact, there is no essential
loss of generality if we restrict {V,},.5 to a family {V,},.o over the disk A
and where BN A = {0}. Then A is a loop around zero in the t-disk, and
we may symbolically write: Q (2™ -11) = Q(1)T.

The question of finding T'is a purely topological problem; in the simplest
case when the singular variety ¥, has an ordinary double point, T is given
by the Picard-Lefschetz theorem. We can show in general that:

Theorem. All eigenvalues of T are roots of one.
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Actually, much stronger results have been found by Landman in his
Berkeley thesis. Using the explicit methods of Lefschetz explained in the
Borel tract, Landman proves:

Theorem. There exists an integer N such that (T¥—1)"*'=0 where
T:H(V)— H(V) is the Picard-Lefschetz transformation.

More precisely even, suppose we resolve the singularities of ¥V, so that
Vo = m Vi + - +mV, where the Vg are hypersurfaces in general posi-
tion with respect to each other. Then,

Theorem. T:H,(V)— H,(V) has the property that each eigenvalue of
T is an m;"™ root of one, and (T™ —I)" = 0 where m = lL.c.m(m,, -+, m))
and r is the largest number such that Vi'n - NV #£0.

Theorem. By replacing t by t*, we have,
Q1) = Q. o(1) + (log ) 1(1) + ==+ + (log ) (D),

where each Q, (1) is a single-valued meromorphic matrix.
This asymptotic formula for the periods allows us to analyze the mapping
®:B—S—M and to prove,

Theorem. Let ty€S and consider ®(t) as a mapping of B— S into D
modulo I'. Then

(i) lim,,,, ®(t) = ®(t,) exists and is a unique point in D modulo I';

(ii) ®(to) depends holomorphically on tyeS; and

(iii) the point ®(ty)eD is a fixed point of yeT', where y is a rational
element of G such that y" is unipotent.

Remarks. This is our main result on the asymptotic nature of the period
mapping ®. It is not as strong as we desire because we should like to show:

(i) ®(t,) belongs to a rational boundary component of D;

(i) @(r) converges to ®(,) in the sense of Satake and Borel-Baily.

We know of no example where (i) and (ii) fail, but we are unable to prove
these statements except in several special cases. If (i) and (ii) hold, then it
follows that, if a compactification M* of M exists (with the properties
found by Borel and Baily where D is a Cartan domain), then ® extends
to a holomorphic mapping ®: B — M*,

By explicit computation, we can show:

Theorem. Suppose that V,_ is irreducible and has ordinary singularities
without multiple components. Then ®(t,) lies in a rational boundary
component D, =D. This boundary component corresponds to the period
matrix space for the normalization ¥,  of V.
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Examples. (i) There exists a family {V,},.5 of curves with ordinary double
points where B is irreducible and such that every non-singular curve of
genus p is in the family (Severi). The modular variety M has a compacti-
fication to a normal algebraic variety M* (Satake, Baily), and ®(B) =« M*
is an algebraic subvariety. In particular, this implies that the set of Jacobian
varieties among normally polarized abelian varicties is an algebraic sub-
variety (Baily).

(ii) Let {V}},.5 be a family of polarized K3 surfaces (e.g., double planes
with a non-singular sextic branch curve). The modular variety M has a
compactification to a normal algebraic variety M* (Borel-Baily) and, at
least for the classical families of K3 surfaces, we have that ®:B— M* is
a rational map. In particular, ® is surjective so that all points on M* are
periods of (possibly degenerated) K3 surfaces. The points on the boundary
M¥ — M can be identified as periods of K3 surfaces having acquired a
double curve.

(iii) Let {V,},.5 be the family of cubic threefolds in P,. Then D is a Siegel
upper half-space and M has a compactification M* as above. The period
mapping ®: B — M* is rational, so that the intermediate Jacobians of cubic
threefolds form an algebraic family. In this case also, the general boundary
point can be identified as corresponding to certain non-singular threefolds
whose “‘genus’’ has dropped by one.

Numerous other examples along these lines can be given.

6. Complex Tori, Algebraic Cycles, and Holomorphic Vector Bundles

We return to the tori of §1 and, with a slight shift in notation, set
T(V) = H* Y (V,R)/H**~'(V,Z). We may identify the invariant complex-
valued 1-forms on T(V) with H*" 29 (V,C); letting S = H>"~#4* 10 4
o+ H'ORINT e have S+ 8 = H* 2 (1,C), SN S = 0. This gives
a complex structure, with p-convex polarization, to T,(V), the holomorphic
I-forms on T,(V) simply being S. The torus T,(V) with this complex structure
is the one given in §1.

We may give S intrinsically as follows (cf. remark (z) in §3): For a
C? form ¢ of degree r on V, write ¢ = X, ,_, ¢, where ¢, is the (s,1)
part of ¢. Let A™* be the C” forms ¢ of degree r and with ¢, , = 0 for
t <s (i.e., ¢ has at least s dz’s), and A" the closed forms. Then we have
that:

Proposition. There is a natural isomorphism

AE"_Zq.I. In—g+1

S

I

dA—2qn-gq+1 °
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Let now Z,(V) be the algebraic cycles of codimension g on V which are
homologous to zero. If ZeX(V), Z = oC for some 2n — 2q + 1 chain C
on V. Let o',---,w™ be a basis for S and define ¢:Z (V)= T (V) by

d(Z) = f“f (modulo periods). If n =g = 1, this is the classical
C

[ i
mapping in the theory of curves.

Theorem. ¢ is well-defined and is holomorphic.

Remarks. Using the isomorphism in the proposition above, we may
replace o* by o + dy* where n*e A*7?*"79* ! Then [cdn*=[,n*=0,
which proves that ¢ is well-defined. The fact that ¢ is holomorphic means
holomorphic in the weak sense: if {Z,},., is an analytic family of g-codi-
mensional algebraic cycles, then ¢(Z, — Z, ) is holomorphic in A.

The analogue of the transversality theorem in §2 is:

Theorem. }f)*:TZ(E‘I(V))AH‘*_I"’(V),‘,,(Z}. In particular, the polarizing
line bundle on TY(V) is positive on G(Z,(V)).

Remarks. In this case we can show how, by an integration over the
fibre, the theta cohomology H"(T(V),L) gives holomorphic sections of
L[ $(ZLV).

To compute ¢, we select a point ZeZ (V) such that Z = k imZ,
with the Z, submanifolds. Let N—Z be the normal bundle; then
T2,(V)) = H%Z,N) (Kodaira). Thus ¢,:H%Z,N)—~H'" (V).

Theorem. The adjoint of ¢, is the Poincaré residue operator
R:H"™ 117 9(Y) » H' """ %(Z, N*¥).

Remarks. To give R, we let we H" ¥ " 9(V) and let f, = 0,-,f,=0
be local defining equations for Z. Then w = X%.,w; Adf; and

R(w) = (coj)lz

Let now E—V be a holomorphic vector bundle with fibre C* and
Z(E), -+, Z(E) the Chern cycles of E— V. Thus Z(E) is an algebraic
cycle of codimension g, defined up to rational equivalence. For example,
if E—V has a holomorphic cross-section ¢, then Z(E) = {o = 0}.

Suppose now that E,— ¥V is a fixed holomorphic vector bundle and let
Z(E,) be the set of holomorphic vector bundles E— V which are topo-
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logically isomorphic to E,— V. For EeX(E,), define ¢ (E)e T(V) by
¢(E) = ¢(Z(E) — Z,(Ey)). The images ¢, (X(E,)) as E, runs over all
bundles generate ¢(Z,(V)); thus, we want to calculate ¢ (Z(E,)). We will
do this infinitesimally. Since Ty(X(E,)) = H®'(V,Hom(E, E)) (Kuranishi),
we must have (¢,),: H*'(V, Hom(E, E)) » H*™14(V). For a k x k matrix
A, write Xh_o P(A)t*™? = det((i[2n)A + tI), and let P(A,,--,4,) be the
symmetric multilinear form obtained by polarizing Py(A4). Let
©eH' Y(V,Hom(E, E)) be a curvature in E (Atiyah).

Theorem. (qbq)*(’?) = qPq(Gs =y ®) 7?) (’? € Ho‘i(V! Hom(E:r E))) X
1
q —_—

Remarks. For g = 1, this formula is equivalent to Abel’s Theorem. The
general proof requires the development of a residue calculus along g-co-
dimensional subvarieties which are not complete intersections; it is in the
development of this residue calculus that the Chern polynomials Py(4)

appear,

To close, we want to give two functional properties of the tori T(V) and
maps ¢:Z(V)—=>Ty(V). Let W=W,_, be a non-singular subvariety of
codimension r in ¥ = V,. Then the inclusion i: W — V induces:

{s*:n(V)qTq(W) from i*:H?**" ' (V) —» H*\(W);
iy T}~ Tq, from the Gysin homomorphism
i HM* YW) > H>*" 2~ Y(y),

On the other hand, we have Z (W) - £, (V) (inclusion) and Z (V) — Z(W)
(intersection with W). Relating these, we have:

Theorem. The following diagrams commute:

T (V) 2 (V)  IW)  —> TW)

S |-

W) —= TW)  IuV) —> TuV)

Remark. Several interesting and similar properties of the Weil Jacobians
have been found by D. Lieberman.
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