

Jean-Yves Girard

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise. - For instance many isomorphic (standard !) versions of \mathbb{N}.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise. - For instance many isomorphic (standard !) versions of \mathbb{N}.
- Non internally isomorphic.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
- For instance many isomorphic (standard !) versions of \mathbb{N}.
- Non internally isomorphic.
- Possibility of subjective truth.

1-FOREWORD

- Up to 2000 : Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
- For instance many isomorphic (standard !) versions of \mathbb{N}.
- Non internally isomorphic.
- Possibility of subjective truth.
- Got beyond the essential(ist) circularity of logic, the blind spot.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ...

2-Existence vs. EsSence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinus (Aristotle), not Platon.

2-Existence vs. EsSence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ..
- The real reference is Thomas Aquinus (Aristotle), not Platon.
- God is perfect in its perfect perfection.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinus (Aristotle), not Platon.
- God is perfect in its perfect perfection.
- The universe is infinite in its infinite infinity.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ..
- The real reference is Thomas Aquinus (Aristotle), not Platon.
- God is perfect in its perfect perfection.
- The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinus (Aristotle), not Platon.
- God is perfect in its perfect perfection.
- The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid : infinity, modalities, integers.

Everything is true or false, including meaningless formulas.

2-Existence vs. essence

- Jurassic foundations speak of Platonism.
- But there are things beyond our experience.
- Real question is that of morphology : laws etc.
- 2001 : intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinus (Aristotle), not Platon.
- God is perfect in its perfect perfection.
- The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid : infinity, modalities, integers.

Everything is true or false, including meaningless formulas.

- «God created integers, everything else is the deed of man ».

3-Perfect vs. imperfect

- Linear logic split connectives into :

3-Perfect vs. imperfect

- Linear logic split connectives into :

Perfect : $\otimes, \mathcal{X}, \oplus, \&, \forall, \exists$.

3-Perfect vs. Imperfect

- Linear logic split connectives into :

Perfect : $\otimes, \mathcal{P}, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \mathcal{P}, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no << meta-intelligence».

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \ngtr, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no <<meta-intelligence ».
- Satisfactory explanations, e.g., ludics.

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \ngtr, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no <<meta-intelligence ».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \ngtr, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no <<meta-intelligence ».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
- Put enough exponentials to perennialise.

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \ngtr, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no << meta-intelligence».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
- Put enough exponentials to perennialise.
- Long ago : double negations (Gödel).

3-Perfect vs. imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \mathcal{P}, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no <<meta-intelligence ».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
- Put enough exponentials to perennialise.
- Long ago : double negations (Gödel).
- Schizophrenia between :

3-Perfect vs. Imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \mathcal{P}, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no << meta-intelligence».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
- Put enough exponentials to perennialise.
- Long ago : double negations (Gödel).
- Schizophrenia between :
- Perfect world unsufficiently expressive.

3-Perfect vs. Imperfect

- Linear logic split connectives into:

Perfect : $\otimes, \mathcal{P}, \oplus, \&, \forall, \exists$. Imperfect : !, ?, the exponentials.

- The perfect part is not essentialist : no <<meta-intelligence ».
- Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
- Put enough exponentials to perennialise.
- Long ago : double negations (Gödel).
- Schizophrenia between :
- Perfect world unsufficiently expressive.
- Imperfect world allowing towers of exponentials.

4-Jurassic Park

- The peak of scientism, 1900.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, <<hygienic ».

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, < hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, < hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.
- Very convenient, compare with natural scale :

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, <<hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.
- Very convenient, compare with natural scale :
$9 / 8,10 / 9,16 / 15,9 / 8,10 / 9,9 / 8,16 / 15$.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, << hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.
- Very convenient, compare with natural scale : $9 / 8,10 / 9,16 / 15,9 / 8,10 / 9,9 / 8,16 / 15$.
- But slightly out of tune.

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, << hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.
- Very convenient, compare with natural scale :

$$
9 / 8,10 / 9,16 / 15,9 / 8,10 / 9,9 / 8,16 / 15
$$

- But slightly out of tune.
- Problematic when pushed to extremities (dodecaphonism).

4-Jurassic Park

- The peak of scientism, 1900.
- Various final solutions : societal, musical, logical...
- None of them very... subtle.
- What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, <<hygienic ».
- To be compared with equal temperament : $2^{N / 12}$.
- Very convenient, compare with natural scale :

$$
9 / 8,10 / 9,16 / 15,9 / 8,10 / 9,9 / 8,16 / 15
$$

- But slightly out of tune.
- Problematic when pushed to extremities (dodecaphonism).
- Set theory problematic in extreme situations (foundations).

5-ICONOCLASM

- Destruction of (mental) images.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast.
* For no real reason, but logical maintenance.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.
- But eventually ends with transfinite metaturtles.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.
- But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.
- But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
- But too late; happens at meaningless stages.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.
- But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
- But too late; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.

5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
- Gödel's theorem : finitism is not finitistic.
- Complexity : mathematical (logical) functions too fast. * For no real reason, but logical maintenance.
- Foundations internalise everything.
- But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
- But too late; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.
- Accept foundations with most of operations external.

6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL,).
- Alternative definition producing complexity effects.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL,).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL,).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.
- The Murray-von Neumann factor \mathcal{R}.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.
- The Murray-von Neumann factor \mathcal{R}.
- Finite and hyperfinite, both notions of finiteness having noting to do with Hilbertian finitism.

6-The iconoclast programme

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.
- The Murray-von Neumann factor \mathcal{R}.
- Finite and hyperfinite, both notions of finiteness having noting to do with Hilbertian finitism.
- Forget the idea of creation in 7 days, from simple to complicated (sets, algebra, reals, function spaces) since it does not work anyway (Incompleteness theorem).

II-The CATEGORICAL LAYER

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.

7-The Three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.
- Scott domains.

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.
- Scott domains.
- Coherent spaces.

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.
- Scott domains.
- Coherent spaces.
- Quantum coherent spaces.

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.
- Scott domains.
- Coherent spaces.
- Quantum coherent spaces.
-3 : Actions : Geometry of interaction, but also ludics, games...

7-The three Layers

- Foundations can be operated at three layers (undergrounds) :
-1 : Truth : consistency, models : bleak.
-2 : Functions : categories, formulas as objects, proofs as morphisms.
- Scott domains.
- Coherent spaces.
- Quantum coherent spaces.
-3 : Actions : Geometry of interaction, but also ludics, games...
- Level -2 not fit to go beyond the blind spot.

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.

8-SCOTT DOMAINS

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

- Category theoretic analogue :

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

- Category theoretic analogue :

Objects : Saturated sets.

8-Scott domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

- Category theoretic analogue :

Objects : Saturated sets. Morphisms : Inclusion maps (hence : degenerated category).

8-SCOTT DOMAINS

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space ; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

- Category theoretic analogue :

Objects : Saturated sets. Morphisms : Inclusion maps (hence : degenerated category). Directed unions : Direct limits.

8-SCOTT DOMAINS

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta, \Gamma, \Delta \subset|X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$
\begin{equation*}
F\left(\uparrow \bigcup_{i} a_{i}\right)=\uparrow \bigcup_{i} F\left(a_{i}\right) \tag{1}
\end{equation*}
$$

- Category theoretic analogue :

Objects : Saturated sets.
Morphisms : Inclusion maps (hence : degenerated category). Directed unions : Direct limits.
Continuous map : Functor preserving direct limits.

9-StabiLity

- Pull-backs are the natural companion of direct limits.

9-StabiLity

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent », notation $x \smile y$.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent $»$, notation $x \smile y$.
- No saturation, only consistency.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent », notation $x \smile y$.
- No saturation, only consistency.
- Coherent space : $(|X|, \bigcirc x)$, web, coherence ; $\bigcirc=\smile^{c}$.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent $»$, notation $x \smile y$.
- No saturation, only consistency.
- Coherent space : $\left(|X|, \bigcirc_{x}\right)$, web, coherence $; \bigcirc=\smile^{c}$.
- Clique $a \sqsubset X: x, y \in a \Rightarrow x \bigcirc y$.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent $»$, notation $x \smile y$.
- No saturation, only consistency.
- Coherent space : $\left(|X|, \bigcirc_{x}\right)$, web, coherence ; $\bigcirc=\smile^{c}$.
- Clique $a \sqsubset X: x, y \in a \Rightarrow x \bigcirc y$.
- Stable map : F from X to Y monotonous, preserves directed sups and compatible meets.

9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

$$
\begin{equation*}
F(a \cap b)=F(a) \cap F(b) \quad(a \cup b \text { consistent }) \tag{2}
\end{equation*}
$$

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \quad<x, y$ incoherent $»$, notation $x \smile y$.
- No saturation, only consistency.
- Coherent space : $\left(|X|, \bigcirc_{x}\right)$, web, coherence ; $\bigcirc=\smile^{c}$.
- Clique $a \sqsubset X: x, y \in a \Rightarrow x \bigcirc y$.
- Stable map : F from X to Y monotonous, preserves directed sups and compatible meets.
- Form a CCC.

10-LINEARITY

- Additional requirement :

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

- The basis of perfect linear logic.

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

- The basis of perfect linear logic.
- Skeleton of a linear map :

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

- The basis of perfect linear logic.
- Skeleton of a linear map :

$$
\begin{equation*}
\operatorname{Sq}(\boldsymbol{F}):=\{x, y ; x \in|X|, y \in|\boldsymbol{Y}| \text { and } y \in \boldsymbol{F}(\{x\}\} \tag{4}
\end{equation*}
$$

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

- The basis of perfect linear logic.
- Skeleton of a linear map :

$$
\begin{equation*}
\operatorname{Sq}(F):=\{x, y ; x \in|X|, y \in|Y| \text { and } y \in F(\{x\}\} \tag{4}
\end{equation*}
$$

- F can be recovered from its skeleton :

10-LINEARITY

- Additional requirement :

$$
\begin{equation*}
F(a \cup b)=F(a) \cup F(b) \quad F(\emptyset)=\emptyset \tag{3}
\end{equation*}
$$

- The basis of perfect linear logic.
- Skeleton of a linear map :

$$
\begin{equation*}
\mathrm{Sq}(F):=\{x, y ; x \in|X|, y \in|Y| \text { and } y \in \boldsymbol{F}(\{x\}\} \tag{4}
\end{equation*}
$$

- F can be recovered from its skeleton :

$$
\begin{equation*}
F(a)=\{y ; \exists x \in a(x, y) \in \operatorname{Sq}(F)\} \tag{5}
\end{equation*}
$$

11-DESESSENTIALISATION

- Remove the laws.

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\begin{equation*}
\sharp(a \cap b) \leq 1 \tag{6}
\end{equation*}
$$

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\sharp(a \cap b) \leq 1
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\sharp(a \cap b) \leq 1
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\sharp(a \cap b) \leq 1
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

$$
\begin{equation*}
\sharp(F(a) \cap b)=\sharp(F \cap a \times b) \quad(a \sqsubset X, b \sqsubset \sim Y) \tag{7}
\end{equation*}
$$

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\begin{equation*}
\sharp(a \cap b) \leq 1 \tag{6}
\end{equation*}
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

$$
\begin{equation*}
\sharp(F(a) \cap b)=\sharp(F \cap a \times b) \quad(a \sqsubset X, b \sqsubset \sim Y) \tag{7}
\end{equation*}
$$

- This definition can be generalised to various vector spaces:

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\begin{equation*}
\sharp(a \cap b) \leq 1 \tag{6}
\end{equation*}
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

$$
\begin{equation*}
\sharp(F(a) \cap b)=\sharp(F \cap a \times b) \quad(a \sqsubset X, b \sqsubset \sim Y) \tag{7}
\end{equation*}
$$

- This definition can be generalised to various vector spaces: Stability : handles negative coeffs : $F(a+b)=F(a)+F(b)$.

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\sharp(a \cap b) \leq 1
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

$$
\begin{equation*}
\sharp(F(a) \cap b)=\sharp(F \cap a \times b) \quad(a \sqsubset X, b \sqsubset \sim Y) \tag{7}
\end{equation*}
$$

- This definition can be generalised to various vector spaces: Stability : handles negative coeffs : $F(a+b)=F(a)+F(b)$. Multiplicities: Takes care of cardinal when greater than 1.

11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X:=(|X|, \asymp)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:

$$
\begin{equation*}
\sharp(a \cap b) \leq 1 \tag{6}
\end{equation*}
$$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

$$
\begin{equation*}
\sharp(F(a) \cap b)=\sharp(F \cap a \times b) \quad(a \sqsubset X, b \sqsubset \sim Y) \tag{7}
\end{equation*}
$$

- This definition can be generalised to various vector spaces: Stability : handles negative coeffs : $F(a+b)=F(a)+F(b)$. Multiplicities: Takes care of cardinal when greater than 1. Cardinal : Replaced by bilinear form, or better, trace.

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\left.\mathcal{M}_{n}(\mathbb{C})\right)$ equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The $\operatorname{trace} \operatorname{tr}(u)$ defined as the sum of diagonal coefficients :

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The $\operatorname{trace} \operatorname{tr}(u)$ defined as the sum of diagonal coefficients :

$$
\begin{equation*}
\operatorname{tr}(u)=\sum_{i}\left\langle u\left(e_{i}\right) \mid e_{i}\right\rangle \tag{10}
\end{equation*}
$$

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The $\operatorname{trace} \operatorname{tr}(u)$ defined as the sum of diagonal coefficients :
- Cyclicity :

$$
\begin{equation*}
\operatorname{tr}(u)=\sum_{i}\left\langle u\left(e_{i}\right) \mid e_{i}\right\rangle \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr}(u \cdot v)=\operatorname{tr}(v \cdot u) \tag{11}
\end{equation*}
$$

12-FINITE DIMENSIONAL HERMITIAN GEOMETRY

- Hilbert space \mathbb{C}^{n} equipped with sesquilinear form :

$$
\begin{equation*}
\left\langle\left(x_{i}\right) \mid\left(y_{i}\right)\right\rangle:=\sum_{i} x_{i} \cdot \overline{y_{i}} \tag{8}
\end{equation*}
$$

- Operators on \mathbb{C}^{n} (matrices in $\mathcal{M}_{n}(\mathbb{C})$) equipped with adjunction :

$$
\begin{equation*}
\left\langle u^{*}(\vec{x}) \mid \vec{y}\right\rangle:=\langle\vec{x} \mid u(\vec{y})\rangle \tag{9}
\end{equation*}
$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The $\operatorname{trace} \operatorname{tr}(u)$ defined as the sum of diagonal coefficients :
- Cyclicity :

$$
\begin{equation*}
\operatorname{tr}(u)=\sum_{i}\left\langle u\left(e_{i}\right) \mid e_{i}\right\rangle \tag{10}
\end{equation*}
$$

- If h, k hermitian, then $\operatorname{tr}(h \cdot k) \in \mathbb{R}$.

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis :

13-Quantum coherent spaces

- The desessentialised version adapts mutatis mutandis: Web : Finite dimensional Hilbert space \mathbb{X}.

13-Quantum coherent spaces

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}. Subsets : Hermitians operating on \mathbb{X}.

13-Quantum coherent spaces

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}.
Subsets: Hermitians operating on \mathbb{X}.
Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}. Subsets: Hermitians operating on \mathbb{X}. Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}. Subsets: Hermitians operating on \mathbb{X}. Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.

13-Quantum coherent spaces

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}. Subsets: Hermitians operating on \mathbb{X}. Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.
Subsets: Subspace \mathbb{C}^{a}; induces projection π_{a}.

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space \mathbb{X}. Subsets: Hermitians operating on \mathbb{X}. Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.
Subsets: Subspace \mathbb{C}^{a}; induces projection π_{a}.
Duality: If h, k are commuting projections $\operatorname{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis: Web : Finite dimensional Hilbert space \mathbb{X}.
Subsets: Hermitians operating on \mathbb{X}.
Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.
Subsets: Subspace \mathbb{C}^{a}; induces projection π_{a}.
Duality: If h, k are commuting projections $\operatorname{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$
\begin{equation*}
\operatorname{tr}\left(\pi_{a} \cdot \pi_{b}\right)=\sharp(a \cap b) \tag{12}
\end{equation*}
$$

13-QuANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis: Web : Finite dimensional Hilbert space \mathbb{X}.
Subsets: Hermitians operating on \mathbb{X}.
Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.
- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.
Subsets: Subspace \mathbb{C}^{a}; induces projection π_{a}.
Duality : If h, k are commuting projections $\operatorname{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$
\begin{equation*}
\operatorname{tr}\left(\pi_{a} \cdot \pi_{b}\right)=\sharp(a \cap b) \tag{12}
\end{equation*}
$$

- Functional application (involves $\mathbb{X} \otimes \mathbb{Y}$) :

13-QuANTUM COherent spaces

- The desessentialised version adapts mutatis mutandis:

Web : Finite dimensional Hilbert space \mathbb{X}.
Subsets: Hermitians operating on \mathbb{X}.
Duality : $0 \leq \operatorname{tr}(h \cdot k) \leq 1$.

- Coherent spaces :

Web: Space $\mathbb{C}^{|X|}$.
Subsets: Subspace \mathbb{C}^{a}; induces projection π_{a}.
Duality: If h, k are commuting projections $\operatorname{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$
\begin{equation*}
\operatorname{tr}\left(\pi_{a} \cdot \pi_{b}\right)=\sharp(a \cap b) \tag{12}
\end{equation*}
$$

- Functional application (involves $\mathbb{X} \otimes \mathbb{Y}$) :

$$
\begin{equation*}
\operatorname{tr}(F(a) \cdot b))=\operatorname{tr}(\operatorname{Sq}(F) \cdot(a \otimes b)) \tag{13}
\end{equation*}
$$

14-SUBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).

14-SUBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.

14-SUBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.

14-SuBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.

14-SuBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity

14-SuBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.

14-SuBJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion :

14-SubJECT AND OBJECT

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion :

$$
\sigma:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{14}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \eta:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Tilting the gyros : quantum booleans :

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Tilting the gyros : quantum booleans :

$$
1 /(1+z \bar{z})\left[\begin{array}{cc}
1 & \bar{z} \tag{16}\\
z & z \bar{z}
\end{array}\right] \quad z \in \mathbb{C} \cup\{+\infty\}
$$

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Tilting the gyros : quantum booleans :

$$
1 /(1+z \bar{z})\left[\begin{array}{cc}
1 & \bar{z} \tag{16}\\
z & z \bar{z}
\end{array}\right] \quad z \in \mathbb{C} \cup\{+\infty\}
$$

- Measurement is operated by η-expansion :

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Tilting the gyros : quantum booleans :

$$
1 /(1+z \bar{z})\left[\begin{array}{cc}
1 & \bar{z} \tag{16}\\
z & z \bar{z}
\end{array}\right] \quad z \in \mathbb{C} \cup\{+\infty\}
$$

- Measurement is operated by η-expansion :

$$
\eta\left(\left[\begin{array}{ll}
a & \bar{b} \tag{17}\\
b & c
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]
$$

15-Quantum booleans

- Spin, a two-state system, represented by 2×2 matrices :

$$
\text { true }:=\left[\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 0
\end{array}\right] \quad \text { false }:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

- Tilting the gyros : quantum booleans :

$$
1 /(1+z \bar{z})\left[\begin{array}{cc}
1 & \bar{z} \tag{16}\\
z & z \bar{z}
\end{array}\right] \quad z \in \mathbb{C} \cup\{+\infty\}
$$

- Measurement is operated by η-expansion :

$$
\eta\left(\left[\begin{array}{ll}
a & \bar{b} \tag{17}\\
b & c
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]
$$

- Chops off the antidiagonal coefficients; yields probabilistic boolean : $\lambda \cdot$ true $+(1-\lambda) \cdot$ false, with $\lambda:=1 /(1+z \bar{z})$.

III-PASSAGE TO INFINITY

16-THE UNFINISHED

- Infinite $=$ perennial $=$ duplicable $\boldsymbol{=}$ imperfect (unfinished).

16-THE UNFINISHED

- Infinite $=$ perennial $=$ duplicable $=$ imperfect (unfinished).
- Dedekind integers (system F version) :

16-THE UNFINISHED

- Infinite $=$ perennial $=$ duplicable $=$ imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

16-THE UNFINISHED

- Infinite $=$ perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

16-The UNFINISHED

- Infinite $=$ perennial $=$ duplicable $=$ imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.

16-The UNFINISHED

- Infinite $=$ perennial $=$ duplicable $=$ imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening: ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.

16-The UNFINISHED

- Infinite $=$ perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.
Dereliction : ! $A \vdash A$.

16-The UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.
Dereliction : ! $A \vdash A$.
Promotion : From $!\Gamma \vdash A$, get $!\Gamma \vdash!A$.

16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.
Dereliction : ! $A \vdash A$.
Promotion : From $!\Gamma \vdash A$, get $!\Gamma \vdash!A$.

- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).

16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.
Dereliction : ! $A \vdash A$.
Promotion : From $!\Gamma \vdash A$, get $!\Gamma \vdash!A$.

- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- Just as opaque as integers. At least this is logic.

16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

$$
\begin{equation*}
\text { nat }:=\forall X(!(X \multimap X) \multimap(X \multimap X)) \tag{18}
\end{equation*}
$$

- Heavily rely on exponentials. Four laws :

Weakening : ! $A \vdash 1$.
Contraction : ! $A \vdash!A \otimes!A$.
Dereliction : ! $A \vdash A$.
Promotion : From $!\Gamma \vdash A$, get $!\Gamma \vdash!A$.

- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- Just as opaque as integers. At least this is logic.
- Light logics (LLL, ELL...) ; not grounded. But some hope!

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

$$
\begin{equation*}
\operatorname{tr}\left(\sqrt{u u^{*}}\right)<+\infty \tag{21}
\end{equation*}
$$

17-Quantum coherent spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

$$
\begin{equation*}
\operatorname{tr}\left(\sqrt{u u^{*}}\right)<+\infty \tag{21}
\end{equation*}
$$

- Not suited for logic : the twist is not trace-class.

17-Quantum coherent spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

$$
\begin{equation*}
\operatorname{tr}\left(\sqrt{u u^{*}}\right)<+\infty \tag{21}
\end{equation*}
$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

$$
\begin{equation*}
\operatorname{tr}\left(\sqrt{u u^{*}}\right)<+\infty \tag{21}
\end{equation*}
$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type II_{1} algebras have a trace. But the twist gets a null trace.

17-QuANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example : space ℓ^{2} of square-summable sequences :

$$
\begin{equation*}
\left\langle\left(x_{n}\right) \mid\left(y_{n}\right)\right\rangle:=\sum_{n} x_{n} \cdot \overline{y_{n}} \tag{19}
\end{equation*}
$$

- Trace defined for positive hermitians (value in $\mathbb{R} \cup\{+\infty\}$) :

$$
\begin{equation*}
\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \tag{20}
\end{equation*}
$$

- More generally, for trace-class operators (value in \mathbb{C}) :

$$
\begin{equation*}
\operatorname{tr}\left(\sqrt{u u^{*}}\right)<+\infty \tag{21}
\end{equation*}
$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type II_{1} algebras have a trace. But the twist gets a null trace.
- Something wrong with the methodology.

18-Immanent Justice

- When God created the universe, he first defined the actual, then the potential.

18-Immanent Justice

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.

18-Immanent Justice

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.

18-Immanent Justice

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories : composition costs nothing.

18-Immanent Justice

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.

18-ImmANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.
- This actualisation of potentialities is possible in finite dimension; in infinite dimension, it diverges, yielding useless values, zero or infinite.

18-ImmANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.
- This actualisation of potentialities is possible in finite dimension ; in infinite dimension, it diverges, yielding useless values, zero or infinite.
- Gol : a potential interpretation which remains potential.

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):

19-The Determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
- The determinant $\operatorname{det}(I-h \cdot k)$.

19-The DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.

19-The DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$) :
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.

19-The Determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k))$:
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that :

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k))$:
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that :

$$
\begin{equation*}
\operatorname{det}(I+u)=\operatorname{tr}(\Lambda u) \tag{22}
\end{equation*}
$$

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k))$:
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that : $\quad \operatorname{det}(I+u)=\operatorname{tr}(\Lambda u)$
- Actualisation is the functor $\Lambda i h$: it lists all cycles, all possibilities:

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that : $\quad \operatorname{det}(I+u)=\operatorname{tr}(\Lambda u)$
- Actualisation is the functor $\Lambda i h$: it lists all cycles, all possibilities: $\operatorname{det}(I-h k)=\operatorname{tr}((\Lambda i h)(\Lambda i k))$

19-The determinant

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k))$:
- The determinant $\operatorname{det}(I-h \cdot k)$.
- The invariant of Geometry of Interaction.
- Equalities, up to scalars.
- Reflects the introspection.
- Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that : $\quad \operatorname{det}(I+u)=\operatorname{tr}(\Lambda u)$
- Actualisation is the functor $\Lambda i h$: it lists all cycles, all possibilities: $\operatorname{det}(I-h k)=\operatorname{tr}((\Lambda i h)(\Lambda i k))$
- Equation (22) does not pass infinite limits. Remains the determinant, i.e., Gol. One should remain potential.

20-The FLUSH

- Infinity is based upon the idea of flushing.

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems ?

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$
\begin{equation*}
p^{*} \cdot p=q^{*} \cdot q=p \cdot p^{*}+q \cdot q^{*}=I \tag{24}
\end{equation*}
$$

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$
\begin{equation*}
p^{*} \cdot p=q^{*} \cdot q=p \cdot p^{*}+q \cdot q^{*}=I \tag{24}
\end{equation*}
$$

- Wrong in finite (e.g., II_{1}) algebras.

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$
\begin{equation*}
p^{*} \cdot p=q^{*} \cdot q=p \cdot p^{*}+q \cdot q^{*}=I \tag{24}
\end{equation*}
$$

- Wrong in finite (e.g., II_{1}) algebras.

$$
\begin{equation*}
\operatorname{tr}\left(p^{*} \cdot p\right)=1 \neq \operatorname{tr}\left(p \cdot p^{*}\right) \tag{25}
\end{equation*}
$$

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$
\begin{equation*}
p^{*} \cdot p=q^{*} \cdot q=p \cdot p^{*}+q \cdot q^{*}=I \tag{24}
\end{equation*}
$$

- Wrong in finite (e.g., II_{1}) algebras.

$$
\begin{equation*}
\operatorname{tr}\left(p^{*} \cdot p\right)=1 \neq \operatorname{tr}\left(p \cdot p^{*}\right) \tag{25}
\end{equation*}
$$

- No Hilbert Hotel, since rooms have a size (trace, dimension).

20-The FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$
\begin{equation*}
p^{*} \cdot p=q^{*} \cdot q=p \cdot p^{*}+q \cdot q^{*}=I \tag{24}
\end{equation*}
$$

- Wrong in finite (e.g., II_{1}) algebras.

$$
\begin{equation*}
\operatorname{tr}\left(p^{*} \cdot p\right)=1 \neq \operatorname{tr}\left(p \cdot p^{*}\right) \tag{25}
\end{equation*}
$$

- No Hilbert Hotel, since rooms have a size (trace, dimension).
- Responsible for dereliction.

21-The fLUSH (CONTINUED)

- Another flush : fresh variables.

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

$$
\mathbb{X} \otimes(\mathbb{X} \otimes \mathbb{X}) \sim(\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X}
$$

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

$$
\begin{equation*}
\mathbb{X} \otimes(\mathbb{X} \otimes \mathbb{X}) \sim(\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X} \tag{26}
\end{equation*}
$$

- Starting with $u \otimes I=u \otimes(I \otimes I)$, one gets $(u \otimes I) \otimes I$.

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

$$
\begin{equation*}
\mathbb{X} \otimes(\mathbb{X} \otimes \mathbb{X}) \sim(\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X} \tag{26}
\end{equation*}
$$

- Starting with $u \otimes I=u \otimes(I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- u has been flushed to the left.

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

$$
\begin{equation*}
\mathbb{X} \otimes(\mathbb{X} \otimes \mathbb{X}) \sim(\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X} \tag{26}
\end{equation*}
$$

- Starting with $u \otimes I=u \otimes(I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- u has been flushed to the left.
- Not possible in the hyperfinite factor.

21-The FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

$$
\mathbb{X} \otimes(\mathbb{X} \otimes \mathbb{X}) \sim(\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X}
$$

- Starting with $u \otimes I=u \otimes(I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- u has been flushed to the left.
- Not possible in the hyperfinite factor.
- The Murray-von Neumann factor (finite and hyperfinite) seems the appropriate space for true finitism.

IV-C*-ALGEBRAS

22-DEFINITION AND EXAMPLES

- Complex involutive Banach algebra such that :

22-DEFINITION AND EXAMPLES

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

22-DEfinition And EXAMPLES

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.

22-Definition And EXAMPLES

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X. - Indeed the generic commutative example.

22-Definition And EXAMPLES

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.
- States of $\mathbb{C}(X)=$ probability measures on X.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.
- States of $\mathbb{C}(X)=$ probability measures on X.
- Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H}.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.
- States of $\mathbb{C}(X)=$ probability measures on X.
- Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H}.
- Involution defined by $\left\langle u^{*}(x) \mid y\right\rangle:=\langle x \mid u(y)\rangle$.

22-Definition And examples

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.
- States of $\mathbb{C}(X)=$ probability measures on X.
- Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H}.
- Involution defined by $\left\langle u^{*}(x) \mid y\right\rangle:=\langle x \mid u(y)\rangle$.
- Subalgebras of $\mathcal{B}(\mathbb{H})$ are generic \mathbf{C}^{*}-algebras.

22-Definition And EXAMPLES

- Complex involutive Banach algebra such that :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\|u\|^{2} \tag{27}
\end{equation*}
$$

- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ρ such that $\rho\left(u u^{*}\right) \geqslant 0, \rho(I)=1$.
- States of $\mathbb{C}(X)=$ probability measures on X.
- Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H}.
- Involution defined by $\left\langle u^{*}(x) \mid y\right\rangle:=\langle x \mid u(y)\rangle$.
- Subalgebras of $\mathcal{B}(\mathbb{H})$ are generic C^{*}-algebras.
- Non equivalent faithful representations on \mathbb{H}.

23-Simplicity

- Morphisms of C*-algebras defined algebraically.

23-SIMPLICITY

- Morphisms of C^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:

23-SIMPLICITY

- Morphisms of C^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.

23-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

23-SIMPLICITY

- Morphisms of \mathbf{C}^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

23-SIMPLICITY

- Morphisms of \mathbf{C}^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:

23-SIMPLICITY

- Morphisms of \mathbf{C}^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:
- Norm shrinks \Rightarrow spectrum shrinks.

23-SIMPLICITY

- Morphisms of \mathbf{C}^{*}-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:
- Norm shrinks \Rightarrow spectrum shrinks.
- Norm shrinks $\Rightarrow \varphi$ not injective.

23-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:
- Norm shrinks \Rightarrow spectrum shrinks.
- Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one «C* semi-norm» (i.e., s.t. (27)) ; all states faithful.

23-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:
- Norm shrinks \Rightarrow spectrum shrinks.
- Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one < C*semi-norm » (i.e., s.t. (27)) ; all states faithful.
- Typical example : matrix algebras $\mathcal{M}_{n}(\mathbb{C})$.

23-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leqslant\|u\|$:
- Use $\left\|u u^{*}\right\|=\|u\|^{2}$ to reduce to positive hermitians $u u^{*}$.
- Use $\left\|u u^{*}\right\|=r\left(\operatorname{Sp}\left(u u^{*}\right)\right)$ to define the norm algebraically :

$$
\begin{equation*}
\left\|u u^{*}\right\|=\sup \left\{\lambda ; u u^{*}-\lambda I \quad \text { not invertible }\right\} \tag{28}
\end{equation*}
$$

- Injective morphisms are isometric, $\|\varphi(u)\|=\|u\|$:
- Norm shrinks \Rightarrow spectrum shrinks.
- Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one < C*semi-norm » (i.e., s.t. (27)) ; all states faithful.
- Typical example : matrix algebras $\mathcal{M}_{n}(\mathbb{C})$.
- $\mathcal{B}(\mathbb{H})$ not simple (infinite dimension) : compact operators.

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{equation*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}
\end{equation*}
$$

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.

24-The CAR ALgebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.
- By simplicity, unique \mathbf{C}^{*}-norm on $\operatorname{Car}(A)$ for A finite.

24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.
- By simplicity, unique C^{*}-norm on $\operatorname{Car}(A)$ for A finite.
- The same holds in general : use inductive limits.

24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.
- By simplicity, unique C^{*}-norm on $\operatorname{Car}(A)$ for A finite.
- The same holds in general : use inductive limits.
- Related topics :

24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.
- By simplicity, unique \mathbf{C}^{*}-norm on $\operatorname{Car}(A)$ for A finite.
- The same holds in general : use inductive limits.
- Related topics :
- The Clifford algebra : use $\kappa(a)+\zeta(a)$.

24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$
\begin{gather*}
\kappa(a) \zeta(b)+\kappa(b) \zeta(a)=\delta_{a b} \cdot I \tag{29}\\
\kappa(a) \kappa(b)+\kappa(b) \kappa(a)=0 \tag{30}
\end{gather*}
$$

- a, b range over a set A (or a Hilbert space $\delta_{a b} \rightsquigarrow\langle a \mid b\rangle$).
- If A is finite, $\operatorname{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n:=2^{\sharp(A)}$.
- By simplicity, unique \mathbf{C}^{*}-norm on $\operatorname{Car}(A)$ for A finite.
- The same holds in general : use inductive limits.
- Related topics :
- The Clifford algebra : use $\kappa(a)+\zeta(a)$.
- The (exterior) Fock space : represent $\kappa(a)(x):=a \wedge x$.

V-vN ALGEbras

25-The DEFINITION

- Positive hermitians induce order : $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.

25-The definition

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.

25-The DEfinition

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented \mathbf{C}^{*} algebras :

25-The definition

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.

25-The definition

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.

25-The definition

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$.

25-The DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. * Intrinsic approach (W^{*}-algebras) not quite successful.

25-The DEFINITION

- Positive hermitians induce order : $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

25-The DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. * Intrinsic approach (W^{*}-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_{i} \rightarrow 0$ iff $\left\|u_{i}(x)\right\| \rightarrow 0(x \in \mathbb{H})$.

25-The DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. * Intrinsic approach (W^{*}-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_{i} \rightarrow 0$ iff $\left\|u_{i}(x)\right\| \rightarrow 0(x \in \mathbb{H})$.
Weak limits : $u_{i} \rightarrow 0$ iff $\left\langle u_{i}(x) \mid x\right\rangle \rightarrow 0(x \in \mathbb{H})$.

25-The DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. * Intrinsic approach (W^{*}-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_{i} \rightarrow 0$ iff $\left\|u_{i}(x)\right\| \rightarrow 0(x \in \mathbb{H})$.
Weak limits : $u_{i} \rightarrow 0$ iff $\left\langle u_{i}(x) \mid x\right\rangle \rightarrow 0(x \in \mathbb{H})$.

- Equivalently : subalgebra equal to its bicommutant.

25-The DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x\rangle \leq\langle k(x) \mid x\rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
- No way to decide equality between suprema.
- Commutative case : no way to tell null sets.
- As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty}=\left(\ell^{1}\right)^{\sharp}$. Intrinsic approach (\mathbf{W}^{*}-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_{i} \rightarrow 0$ iff $\left\|u_{i}(x)\right\| \rightarrow 0(x \in \mathbb{H})$.
Weak limits : $u_{i} \rightarrow 0$ iff $\left\langle u_{i}(x) \mid x\right\rangle \rightarrow 0(x \in \mathbb{H})$.

- Equivalently : subalgebra equal to its bicommutant.
- Also : the commutant of a self-adjoint subset of $\mathcal{B}(\mathbb{H})$.

26-Commutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.

26-Commutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected:

26-Commutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected:
- The closure of an open set is still open.

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected:
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected :
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

- Commutative vN : space $L^{\infty}(X, \mu)$.

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected :
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

- Commutative vN : space $L^{\infty}(X, \mu)$.
- Measure μ is up to absolute continuity.

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected :
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

- Commutative vN : space $L^{\infty}(X, \mu)$.
- Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on $[0,1]$.

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected :
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

- Commutative vN : space $L^{\infty}(X, \mu)$.
- Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on $[0,1]$.
- In general : C*-algebra + faithful state ρ (i.e., $\rho\left(u u^{*}\right)=0$ implies $u=0$.) yields a vN completion.

26-Сомmutative vN algebras

- As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- X extremely disconnected :
- The closure of an open set is still open.
- Clopen sets form a σ-algebra :

$$
\begin{equation*}
\bigsqcup \mathcal{O}_{i}:=\overline{\bigcup \mathcal{O}_{i}} \tag{31}
\end{equation*}
$$

- Commutative vN : space $L^{\infty}(X, \mu)$.
- Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on $[0,1]$.
- In general : C*-algebra + faithful state ρ (i.e., $\rho\left(u u^{*}\right)=0$ implies $u=0$.) yields a vN completion.
- The CAR-algebra admits completions of all types I, II, III.

27-The GNS construction

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.

27-The GNS construction

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.
- Define $\langle u \mid v\rangle:=\rho\left(v^{*} u\right)$; induces a pre-Hilbert space.

27-The GNS CONStruction

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.
- Define $\langle u \mid v\rangle:=\rho\left(v^{*} u\right)$; induces a pre-Hilbert space.
- \mathcal{C} acts by left multiplication on the separation/completion of the latter.

27-The GNS CONStruction

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.
- Define $\langle u \mid v\rangle:=\rho\left(v^{*} u\right)$; induces a pre-Hilbert space.
- \mathcal{C} acts by left multiplication on the separation/completion of the latter.
- In case ρ is faithful, this representation is isometric.

27-The GNS CONSTRUCTION

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.
- Define $\langle u \mid v\rangle:=\rho\left(v^{*} u\right)$; induces a pre-Hilbert space.
- \mathcal{C} acts by left multiplication on the separation/completion of the latter.
- In case ρ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of \mathcal{C}.

27-The GNS CONSTRUCTION

- From a C*-algebra \mathcal{C} and a state ρ construct a representation.
- Define $\langle u \mid v\rangle:=\rho\left(v^{*} u\right)$; induces a pre-Hilbert space.
- \mathcal{C} acts by left multiplication on the separation/completion of the latter.
- In case ρ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of \mathcal{C}.
- Typical case : simple algebras.

28-The CAR ALgebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.

28-The CAR ALgebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace :

$$
\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)
$$

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

$$
\begin{equation*}
\rho(u v)=\rho(v u) \tag{32}
\end{equation*}
$$

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

$$
\begin{equation*}
\rho(u v)=\rho(v u) \tag{32}
\end{equation*}
$$

- The vN algebra thus obtained is :

Factor: Trivial center.

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

$$
\begin{equation*}
\rho(u v)=\rho(v u) \tag{32}
\end{equation*}
$$

- The vN algebra thus obtained is :

Factor: Trivial center.
Finite : It has a trace.

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

$$
\begin{equation*}
\rho(u v)=\rho(v u) \tag{32}
\end{equation*}
$$

- The vN algebra thus obtained is : Factor: Trivial center.
Finite : It has a trace.
Hyperfinite : Finite matrices are weakly dense.

28-The CAR algebra

- Indeed inductive limit of matrices $2^{n} \times 2^{n}$.
- Each of them equipped with normalised trace : $\operatorname{tr}(u):=2^{-n} \operatorname{Tr}(u)$.
- The trace on the inductive limit is a tracial state :

$$
\begin{equation*}
\rho(u v)=\rho(v u) \tag{32}
\end{equation*}
$$

- The vN algebra thus obtained is : Factor: Trivial center.
Finite : It has a trace.
Hyperfinite: Finite matrices are weakly dense.
- Up to isomorphism, only one such vN algebra, the Murray-von Neumann factor \mathcal{R}.

VI-The

 FINITE/HYPERFINITE FACTOR
29-FACTORS

- Connected vN algebras.

29-FACTORS

- Connected vN algebras.
- $Z(\mathcal{A})=\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)^{\prime}$ is a vN algebra.

29-FACTORS

- Connected vN algebras.
- $Z(\mathcal{A})=\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)^{\prime}$ is a $\mathbf{v N}$ algebra.
- $\mathcal{A}=\int \mathcal{A}(x) d \mu(x)$.

29-FACTORS

- Connected vN algebras.
- $Z(\mathcal{A})=\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)^{\prime}$ is a vN algebra.
- $\mathcal{A}=\int \mathcal{A}(x) d \mu(x)$.
- Each $\mathcal{A}(x)$ is a factor, i.e., a vN algebra with trivial center.

29-FACtORS

- Connected vN algebras.
- $Z(\mathcal{A})=\left(\mathcal{A} \cup \mathcal{A}^{\prime}\right)^{\prime}$ is a $\mathbf{v N}$ algebra.
- $\mathcal{A}=\int \mathcal{A}(x) d \mu(x)$.
- Each $\mathcal{A}(x)$ is a factor, i.e., a vN algebra with trivial center.
- Classification of vN algebras thus reduces to classification of factors.

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{34}
\end{equation*}
$$

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{3}
\end{equation*}
$$

- \mathcal{A} is finite when $I \nsubseteq I$ is wrong.

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{3}
\end{equation*}
$$

- \mathcal{A} is finite when $I \nsubseteq I$ is wrong.

$$
\begin{equation*}
u u^{*}=I \Rightarrow u^{*} u=I \tag{35}
\end{equation*}
$$

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{3}
\end{equation*}
$$

- \mathcal{A} is finite when $I \npreceq I$ is wrong.

$$
\begin{equation*}
u u^{*}=I \Rightarrow u^{*} u=I \tag{35}
\end{equation*}
$$

- For factors, \lesssim is total :

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{34}
\end{equation*}
$$

- \mathcal{A} is finite when $I \nsubseteq I$ is wrong.

$$
\begin{equation*}
u u^{*}=I \Rightarrow u^{*} u=I \tag{35}
\end{equation*}
$$

- For factors, \lesssim is total :

Type I: Order type $\{0, \ldots, n\}\left(\mathrm{I}_{\mathrm{n}}\right)$ or $\{0, \ldots, n, \ldots, \infty\}\left(\mathrm{I}_{\infty}\right)$.

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{34}
\end{equation*}
$$

- \mathcal{A} is finite when $I \nsubseteq I$ is wrong.

$$
\begin{equation*}
u u^{*}=I \Rightarrow u^{*} u=I \tag{35}
\end{equation*}
$$

- For factors, \lesssim is total :

Type I: Order type $\{0, \ldots, n\}\left(\mathrm{I}_{\mathrm{n}}\right)$ or $\{0, \ldots, n, \ldots, \infty\}\left(\mathrm{I}_{\infty}\right)$. Type II: Order type $[0,1]\left(\mathrm{II}_{1}\right)$ or $[0,+\infty]\left(\mathrm{II}_{\infty}\right)$.

30-COMPARISON OF PROJECTIONS

- Equivalence of projections :

$$
\begin{equation*}
\pi \simeq \pi^{\prime} \quad \Leftrightarrow \quad \exists u\left(u^{*} u=\pi \text { and } u u^{*}=\pi^{\prime}\right) \tag{33}
\end{equation*}
$$

- Ordering of projections (inclusion + equivalence) :

$$
\begin{equation*}
\pi \lesssim \pi^{\prime} \quad \Leftrightarrow \quad \exists \pi^{\prime \prime}\left(\pi=\pi \pi^{\prime \prime} \text { and } \pi^{\prime \prime} \simeq \pi^{\prime}\right) \tag{34}
\end{equation*}
$$

- \mathcal{A} is finite when $I \nsubseteq I$ is wrong.

$$
\begin{equation*}
u u^{*}=I \Rightarrow u^{*} u=I \tag{35}
\end{equation*}
$$

- For factors, \lesssim is total :

Type I: Order type $\{0, \ldots, n\}\left(\mathrm{I}_{\mathrm{n}}\right)$ or $\{0, \ldots, n, \ldots, \infty\}\left(\mathrm{I}_{\infty}\right)$.
Type II: Order type $[0,1]\left(\mathrm{II}_{1}\right)$ or $[0,+\infty]\left(\mathrm{II}_{\infty}\right)$.
Type III: Order type $\{0,+\infty\}$.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
- E, F have same dimension iff there is a partial isometry u s.t. $\operatorname{Dom}(u)=E, \operatorname{Im}(u)=F$.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
- E, F have same dimension iff there is a partial isometry u s.t. $\operatorname{Dom}(u)=E, \operatorname{Im}(u)=F$.
- E has dimension $1 / 2$ when $\operatorname{dim}(E)=\operatorname{dim}\left(E^{\perp}\right)$.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
- E, F have same dimension iff there is a partial isometry u s.t. $\operatorname{Dom}(u)=E, \operatorname{Im}(u)=F$.
- E has dimension $1 / 2$ when $\operatorname{dim}(E)=\operatorname{dim}\left(E^{\perp}\right)$.
- The completion of the CAR-algebra is finite and infinite-dimensional :

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
- E, F have same dimension iff there is a partial isometry u s.t. $\operatorname{Dom}(u)=E, \operatorname{Im}(u)=F$.
- E has dimension $1 / 2$ when $\operatorname{dim}(E)=\operatorname{dim}\left(E^{\perp}\right)$.
- The completion of the CAR-algebra is finite and infinite-dimensional :
- Factor of type II_{1}.

31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
- E, F have same dimension iff there is a partial isometry u s.t. $\operatorname{Dom}(u)=E, \operatorname{Im}(u)=F$.
- E has dimension $1 / 2$ when $\operatorname{dim}(E)=\operatorname{dim}\left(E^{\perp}\right)$.
- The completion of the CAR-algebra is finite and infinite-dimensional :
- Factor of type II_{1}.
- On a finite factor, the trace is unique.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

is a bilinear map $\ell^{2}(G) \times \ell^{2}(G) \rightsquigarrow \ell^{\infty}(G)$.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

is a bilinear map $\ell^{2}(G) \times \ell^{2}(G) \rightsquigarrow \ell^{\infty}(G)$.

- Define $\mathcal{A}(G):=\left\{\left(x_{g}\right) ;\left(x_{g}\right) *: \ell^{2}(G) \rightsquigarrow \ell^{2}(G)\right\}$.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

is a bilinear map $\ell^{2}(G) \times \ell^{2}(G) \rightsquigarrow \ell^{\infty}(G)$.

- Define $\mathcal{A}(G):=\left\{\left(x_{g}\right) ;\left(x_{g}\right) *: \ell^{2}(G) \rightsquigarrow \ell^{2}(G)\right\}$.
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*\left(y_{g}\right)$.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

is a bilinear map $\ell^{2}(G) \times \ell^{2}(G) \rightsquigarrow \ell^{\infty}(G)$.

- Define $\mathcal{A}(G):=\left\{\left(x_{g}\right) ;\left(x_{g}\right) *: \ell^{2}(G) \rightsquigarrow \ell^{2}(G)\right\}$.
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*\left(y_{g}\right)$.
- If G has infinite conjugacy classes (i.c.c.), then $\mathcal{A}(G)$ is a factor.

32-DISCRETE GROUPS

- G denumerable induces a convolution algebra, obtained by linearisation.
- The convolution :

$$
\begin{equation*}
\left(x_{g}\right) *\left(y_{g}\right):=\left(\sum_{g=g^{\prime} \cdot g^{\prime \prime}} x_{g^{\prime}} \cdot y_{g^{\prime \prime}}\right) \tag{36}
\end{equation*}
$$

is a bilinear map $\ell^{2}(G) \times \ell^{2}(G) \rightsquigarrow \ell^{\infty}(G)$.

- Define $\mathcal{A}(G):=\left\{\left(x_{g}\right) ;\left(x_{g}\right) *: \ell^{2}(G) \rightsquigarrow \ell^{2}(G)\right\}$.
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*\left(y_{g}\right)$.
- If G has infinite conjugacy classes (i.c.c.), then $\mathcal{A}(G)$ is a factor.
- B.t.w., $\operatorname{tr}\left(\left(x_{g}\right)\right)=x_{1}$.

33-HYPERFINITISM

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.

33-HYPERFINITISM

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.

33-HYPERFINITISM

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.
- Every finite subset of G generates a finite subgroup.

33-HYPERFINITISM

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.
- Every finite subset of G generates a finite subgroup.
- Any operator can be weakly approximated by matrices.

33-HYPERFINITISM

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.
- Every finite subset of G generates a finite subgroup.
- Any operator can be weakly approximated by matrices.
- Hyperfinite algebra : an increasing union $\cup_{n} \mathcal{A}_{n}$ of finite dimensional algebras is weakly dense in \mathcal{A}.

33-Hyperfinitism

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.
- Every finite subset of G generates a finite subgroup.
- Any operator can be weakly approximated by matrices.
- Hyperfinite algebra : an increasing union $\bigcup_{n} \mathcal{A}_{n}$ of finite dimensional algebras is weakly dense in \mathcal{A}.
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).

33-Hyperfinitism

- If $G \subset G^{\prime}$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}\left(G^{\prime}\right)$.
- If G is locally finite, the union $\bigcup_{n} \mathcal{A}\left(G_{n}\right)$ is weakly dense.
- Every finite subset of G generates a finite subgroup.
- Any operator can be weakly approximated by matrices.
- Hyperfinite algebra : an increasing union $\bigcup_{n} \mathcal{A}_{n}$ of finite dimensional algebras is weakly dense in \mathcal{A}.
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).
- But only one hyperfinite factor of type II_{1}. Murray-von Neumann factor \mathcal{R}.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
- Some of them can be internalised : crossed products.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
- Some of them can be internalised : crossed products.
- Typically, the twist σ of $\mathcal{R} \otimes \mathcal{R}$ can be added.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
- Some of them can be internalised : crossed products.
- Typically, the twist σ of $\mathcal{R} \otimes \mathcal{R}$ can be added.
- Since $\sigma^{2}=I$, the result still isomorphic to \mathcal{R}.

34-THE HYPERFINITE FACTOR

- The factor \mathcal{R} is remarkably stable :
- Matrices with entries in $\mathcal{R}: \mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$.
- Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
- Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
- Some of them can be internalised : crossed products.
- Typically, the twist σ of $\mathcal{R} \otimes \mathcal{R}$ can be added.
- Since $\sigma^{2}=I$, the result still isomorphic to \mathcal{R}.
- But adding $\mathcal{M}_{2}(\mathcal{R}) \sim \mathcal{R}$ leads to a type III factor.

VII-Gol

35-The FEEDBACK EQUATION

- Basic paradigm :

35-The FEEDBACK EQUATION

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

35-The FEEDBACK EQUATION

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

35-The FEEDBACK EQUATION

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}
\end{equation*}
$$

35-The FEEDBACK EQUATION

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

35-The feedback equation

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

- Chiasmi : matrices $\chi_{u}:=\left[\begin{array}{cc}0 & u \\ u^{*} & 0\end{array}\right]$.

35-The feedback equation

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

- Chiasmi : matrices $\chi_{u}:=\left[\begin{array}{cc}0 & u \\ u^{*} & 0\end{array}\right]$.
- Feedback between χ_{u} and χ_{v} yields $\chi_{u v}$.

35-The Feedback equation

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

- Chiasmi : matrices $\chi_{u}:=\left[\begin{array}{cc}0 & u \\ u^{*} & 0\end{array}\right]$.
- Feedback between χ_{u} and χ_{v} yields $\chi_{u v}$.
- The feedback equation (37) «solved » in full generality :

35-The feedback equation

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

- Chiasmi : matrices $\chi_{u}:=\left[\begin{array}{cc}0 & u \\ u^{*} & 0\end{array}\right]$.
- Feedback between χ_{u} and χ_{v} yields $\chi_{u v}$.
- The feedback equation (37) «solved » in full generality :
- Sole hypothesis : $\|h\| \leq 1$.

35-The feedback equation

- Basic paradigm :

$$
\begin{equation*}
h(x \oplus y)=x^{\prime} \oplus \sigma(y) \tag{37}
\end{equation*}
$$

- Usually the partial symmetry σ swaps I/O of two operators :

$$
\begin{align*}
& h(x \oplus y)=x^{\prime} \oplus y^{\prime} \tag{38}\\
& k\left(y^{\prime} \oplus z\right)=y \oplus z^{\prime} \tag{39}
\end{align*}
$$

- Chiasmi : matrices $\chi_{u}:=\left[\begin{array}{cc}0 & u \\ u^{*} & 0\end{array}\right]$.
- Feedback between χ_{u} and χ_{v} yields $\chi_{u v}$.
- The feedback equation (37) «solved » in full generality :
- Sole hypothesis : $\|h\| \leq 1$.
- Associativity : $(\sigma+\tau) \llbracket h \rrbracket=\sigma \llbracket \tau \llbracket h \rrbracket \rrbracket$.

36-THE DETERMINANT

- In finite dimension :

36-The determinant

- In finite dimension :

$$
\operatorname{det}\left[\begin{array}{cc}
I-a & b \tag{40}\\
b^{*} & c
\end{array}\right]=\operatorname{det}(I-a) \cdot \operatorname{det}\left(I-\left(c+b^{*}(I-a)^{-1} b\right)\right)
$$

36-The determinant

- In finite dimension :

$$
\operatorname{det}\left[\begin{array}{cc}
I-a & b \tag{40}\\
b^{*} & c
\end{array}\right]=\operatorname{det}(I-a) \cdot \operatorname{det}\left(I-\left(c+b^{*}(I-a)^{-1} b\right)\right)
$$

- In logical situations, nilpotency : $\operatorname{det}(I-a)=1$.

36-The determinant

- In finite dimension :

$$
\operatorname{det}\left[\begin{array}{cc}
I-a & b \tag{40}\\
b^{*} & c
\end{array}\right]=\operatorname{det}(I-a) \cdot \operatorname{det}\left(I-\left(c+b^{*}(I-a)^{-1} b\right)\right)
$$

- In logical situations, nilpotency : $\operatorname{det}(I-a)=1$.
- In type II_{1} factor, nilpotency will be replaced by weaker condition $\mathrm{r}(u)<1$.

36-The determinant

- In finite dimension :

$$
\operatorname{det}\left[\begin{array}{cc}
I-a & b \tag{40}\\
b^{*} & c
\end{array}\right]=\operatorname{det}(I-a) \cdot \operatorname{det}\left(I-\left(c+b^{*}(I-a)^{-1} b\right)\right)
$$

- In logical situations, nilpotency : $\operatorname{det}(I-a)=1$.
- In type II_{1} factor, nilpotency will be replaced by weaker condition $\mathrm{r}(u)<1$.
- Then determinant accessible through a power series expansion : $\operatorname{det}(I-u):=e^{\operatorname{tr}(\log (I-u))}$

36-THE DETERMINANT

- In finite dimension :

$$
\operatorname{det}\left[\begin{array}{cc}
I-a & b \tag{40}\\
b^{*} & c
\end{array}\right]=\operatorname{det}(I-a) \cdot \operatorname{det}\left(I-\left(c+b^{*}(I-a)^{-1} b\right)\right)
$$

- In logical situations, nilpotency : $\operatorname{det}(I-a)=1$.
- In type II_{1} factor, nilpotency will be replaced by weaker condition $\mathrm{r}(u)<1$.
- Then determinant accessible through a power series expansion : $\operatorname{det}(I-u):=e^{\operatorname{tr}(\log (I-u))}$
- Familiar manipulations on determinants accessible through (converging) power series.

37-Gol in A vN ALgEbra

- Old style : interprets proofs by operators.

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?

37-Gol in A vN ALgEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.

37-Gol In A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers $1,2,3$) indeed use type I. «The stable form of commutativity » (dixit Connes).

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers 1,2,3) indeed use type I. < The stable form of commutativity » (dixit Connes).
- Type I : minimal projections \sim points (sets, graphs).

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers 1,2,3) indeed use type I. < The stable form of commutativity » (dixit Connes).
- Type I : minimal projections ~ points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers 1,2,3) indeed use type I. < The stable form of commutativity » (dixit Connes).
- Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
- Finiteness forbids the primitives p, q, d.

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers 1,2,3) indeed use type I. < The stable form of commutativity » (dixit Connes).
- Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
- Finiteness forbids the primitives p, q, d.
* In a finite algebra, $p p^{*}=I \Rightarrow p^{*} p=I$.

37-Gol in A vN ALGEbra

- Old style : interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
* Foundations always proceed in seven days.
* This eventually leads to the FOM discussion list.
- Old Gol (papers $1,2,3$) indeed use type I. «The stable form of commutativity » (dixit Connes).
- Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
- Finiteness forbids the primitives p, q, d.
* In a finite algebra, $p p^{*}=I \Rightarrow p^{*} p=I$.
- Hyperfiniteness forbids $t(u \otimes(v \otimes w)) t^{*}=(u \otimes v) \otimes w$.

VIII-Finite Gol

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:
* $\cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:
* $\cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$
$* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:
* $\cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$
$* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$
- $(\delta, h),(\epsilon, k)$ are polar, notation $(\delta, h) \stackrel{\perp}{\sim}(\epsilon, k)$ iff :

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:
* $\cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$
$* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$
- $(\delta, h),(\epsilon, k)$ are polar, notation $(\delta, h) \stackrel{\perp}{\sim}(\epsilon, k)$ iff :

$$
\begin{equation*}
\mathrm{r}\left(h^{\prime} k^{\prime \prime}\right)<1 \quad \delta \cdot \epsilon \cdot \operatorname{det}\left(I-h^{\prime} k^{\prime \prime}\right) \neq 1 \tag{41}
\end{equation*}
$$

38-Finite Gol

- A base is the pair $\left(\xi, \xi^{\prime}\right)$ of two orthogonal projections of the same dimension $\neq 0$ (default $1 / 2$).
- Design of base $\left(\xi, \xi^{\prime}\right):(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
- h hermitian of support $\subset \xi \otimes I$ of norm ≤ 1.
- Second tensor component \mathcal{R} is the dialect.
- $\delta \in \mathbb{R}$ s.t. $0 \leq \delta<2^{1-\operatorname{dim} \xi}$ is the daimon.
- Duality on the same base : given h, k :
- Tensorise h, k with I, swap the two \mathcal{R}, to get $h^{\prime}, k^{\prime \prime}$:
$* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$
$* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$
- $(\delta, h),(\epsilon, k)$ are polar, notation $(\delta, h) \underset{\sim}{\sim}(\epsilon, k)$ iff :

$$
\begin{equation*}
\mathrm{r}\left(h^{\prime} k^{\prime \prime}\right)<1 \quad \delta \cdot \epsilon \cdot \operatorname{det}\left(I-h^{\prime} k^{\prime \prime}\right) \neq 1 \tag{41}
\end{equation*}
$$

- Behaviour : set B of designs of given base s.t. $\mathrm{B}=\sim \sim \mathrm{B}$.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases $\left(\xi, \xi^{\prime}\right)$ replace :

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases $\left(\xi, \xi^{\prime}\right)$ replace :
\cdot In $h, \cdot \otimes \cdot$ with $\cdot \otimes \eta^{\prime} \otimes \cdot \otimes I$: yields h^{\prime}

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases $\left(\xi, \xi^{\prime}\right)$ replace :
$\cdot \operatorname{In} h, \cdot \otimes \cdot$ with $\cdot \otimes \eta^{\prime} \otimes \cdot \otimes I$: yields h^{\prime}
$\cdot \operatorname{In} k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot:$ yields $k^{\prime \prime}$

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases $\left(\xi, \xi^{\prime}\right)$ replace :
$\cdot \operatorname{In} h, \cdot \otimes \cdot$ with $\cdot \otimes \eta^{\prime} \otimes \cdot \otimes I$: yields h^{\prime}
$\cdot \operatorname{In} k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot:$ yields $k^{\prime \prime}$
- Apply Gol, which yields l.

39-SEQUENTS

- Heavy use of the cobase ξ^{\prime}.
- Binary example $\left(\xi, \xi^{\prime}\right) \vdash\left(\eta, \eta^{\prime}\right)$:
- 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
- Supports $\xi \otimes \eta^{\prime} \otimes I, \eta \otimes \xi^{\prime} \otimes I$.
- All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases $\left(\xi, \xi^{\prime}\right)$ replace :
$\cdot \operatorname{In} h, \cdot \otimes \cdot$ with $\cdot \otimes \eta^{\prime} \otimes \cdot \otimes I$: yields h^{\prime}
$\cdot \operatorname{In} k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot:$ yields $k^{\prime \prime}$
- Apply Gol, which yields l.
- Output : $\left(\gamma^{\operatorname{dim}(\eta)} \cdot \delta \cdot \operatorname{det}\left(I-h^{\prime} \cdot k^{\prime \prime}\right), l\right)$

40-Multiplicatives

- The fax (identity axiom) :

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.
- If $\operatorname{dim}(\xi)$ rational, finite matrix with entries $=0,1$.

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.
- If $\operatorname{dim}(\xi)$ rational, finite matrix with entries $=0,1$.
- Tensor (cotensor) product replaces $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi \otimes \eta^{\prime}+\xi^{\prime} \otimes \eta, \xi \otimes \eta+\xi^{\prime} \otimes \eta^{\prime}\right)$.

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.
- If $\operatorname{dim}(\xi)$ rational, finite matrix with entries $=0,1$.
- Tensor (cotensor) product replaces $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi \otimes \eta^{\prime}+\xi^{\prime} \otimes \eta, \xi \otimes \eta+\xi^{\prime} \otimes \eta^{\prime}\right)$.
- Basically use an isometry φ between $\xi^{\prime} \otimes \eta$ and $\eta \otimes \xi^{\prime}$.

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.
- If $\operatorname{dim}(\xi)$ rational, finite matrix with entries $=0,1$.
- Tensor (cotensor) product replaces $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi \otimes \eta^{\prime}+\xi^{\prime} \otimes \eta, \xi \otimes \eta+\xi^{\prime} \otimes \eta^{\prime}\right)$.
- Basically use an isometry φ between $\xi^{\prime} \otimes \eta$ and $\eta \otimes \xi^{\prime}$.
- φ is part of the data.

40-Multiplicatives

- The fax (identity axiom) :

$$
\left[\begin{array}{cc}
0 & \xi \otimes \xi^{\prime} \otimes I \tag{42}\\
\xi \otimes \xi^{\prime} \otimes I & 0
\end{array}\right]
$$

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi^{\prime} \otimes \cdot \otimes I$
- Not an etaspansion.
- If $\operatorname{dim}(\xi)$ rational, finite matrix with entries $=0,1$.
- Tensor (cotensor) product replaces $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi \otimes \eta^{\prime}+\xi^{\prime} \otimes \eta, \xi \otimes \eta+\xi^{\prime} \otimes \eta^{\prime}\right)$.
- Basically use an isometry φ between $\xi^{\prime} \otimes \eta$ and $\eta \otimes \xi^{\prime}$.
- φ is part of the data.
- $A \multimap A$ based on $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi, \xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right)$.

41-The ADDITIVE MIRACLE

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.

41-The ADDItIVE MIRACLE

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.

41-The ADDItive miracle

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :

41-The ADDItIVE MIRACLE

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :
- Premises are 2×2 matrices :

41-The additive miracle

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :
- Premises are 2×2 matrices:
- Their supports are $\xi \otimes v^{\prime} \otimes I, v \otimes \xi^{\prime} \otimes I$ and $\boldsymbol{\eta} \otimes \boldsymbol{v}^{\prime} \otimes \boldsymbol{I}, \boldsymbol{v} \otimes \eta^{\prime} \otimes \boldsymbol{I}$.

41-The additive miracle

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :
- Premises are 2×2 matrices:
- Their supports are $\xi \otimes v^{\prime} \otimes I, v \otimes \xi^{\prime} \otimes I$ and $\eta \otimes v^{\prime} \otimes I, v \otimes \eta^{\prime} \otimes I$.
- Just sum them : disjoint supports.

41-The additive miracle

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :
- Premises are 2×2 matrices:
- Their supports are $\xi \otimes v^{\prime} \otimes I, v \otimes \xi^{\prime} \otimes I$ and

$$
\eta \otimes v^{\prime} \otimes I, v \otimes \eta^{\prime} \otimes I
$$

- Just sum them : disjoint supports.
- Violently anti- η, like Quantum coherent spaces.

41-The additive miracle

- Additive situation : $\xi, \xi^{\prime}, \eta, \eta^{\prime}$ pairwise orthogonal.
- Replace $\left(\xi, \xi^{\prime}\right),\left(\eta, \eta^{\prime}\right)$ with $\left(\xi+\eta, \xi^{\prime}+\eta^{\prime}\right)$.
- The with rule (how to share contexts) :
- Premises are 2×2 matrices:
- Their supports are $\xi \otimes v^{\prime} \otimes I, v \otimes \xi^{\prime} \otimes I$ and

$$
\eta \otimes v^{\prime} \otimes I, v \otimes \eta^{\prime} \otimes I
$$

- Just sum them : disjoint supports.
- Violently anti- η, like Quantum coherent spaces.
- Summing up, perfect logic (in the linguistic sense) can be interpreted in the hyperfinite factor.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps A $\otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps A $\otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

42-NoVELTIES

$-\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .

- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.

42-Novelties

- $\mathrm{A} \vdash \mathrm{B}$ no longer maps A into B .
- Maps $\mathrm{A} \otimes \eta^{\prime}$ into $\mathrm{B} \otimes \xi^{\prime}$.
- $\mathbf{A} \otimes \eta^{\prime}:=\left\{\left(\gamma^{\operatorname{dim}(\eta)}, h \otimes \eta^{\prime}\right) ;(\gamma, h) \in \mathbf{A}\right\}$ (modulo some twisting). Basic fact :

$$
\begin{equation*}
(\sim \mathbf{A}) \otimes \eta^{\prime}=\sim\left(\mathbf{A} \otimes \eta^{\prime}\right) \tag{43}
\end{equation*}
$$

- Which relies upon :

$$
\begin{equation*}
\operatorname{det}\left(I-h \otimes \eta^{\prime}\right)=\operatorname{det}(I-h)^{\operatorname{dim}\left(\eta^{\prime}\right)} \tag{44}
\end{equation*}
$$

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.
- Truth (winning) not preserved by logical consequence.

43-SubJECTIVE TRUTH

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.

43-Subjective truth

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
- A subjective winner is a pair $(1, h)$, with $h^{3}=h(h$ is a partial symmetry), such that :

43-Subjective truth

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
- A subjective winner is a pair $(1, h)$, with $h^{3}=h(h$ is a partial symmetry), such that :

$$
\begin{equation*}
\forall \pi \in \mathcal{B} \exists \pi^{\prime} \in \mathcal{B} \quad h \pi=\pi^{\prime} h \tag{45}
\end{equation*}
$$

43-Subjective truth

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
- A subjective winner is a pair $(1, h)$, with $h^{3}=h$ (h is a partial symmetry), such that :

$$
\begin{equation*}
\forall \pi \in \mathcal{B} \exists \pi^{\prime} \in \mathcal{B} \quad h \pi=\pi^{\prime} h \tag{45}
\end{equation*}
$$

- Subjectivity is the closest approximation to $<\boldsymbol{h}$ is graph-like».

43-Subjective truth

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
- A subjective winner is a pair $(1, h)$, with $h^{3}=h$ (h is a partial symmetry), such that :

$$
\begin{equation*}
\forall \pi \in \mathcal{B} \exists \pi^{\prime} \in \mathcal{B} \quad h \pi=\pi^{\prime} h \tag{45}
\end{equation*}
$$

- Subjectivity is the closest approximation to $<\boldsymbol{h}$ is graph-like ».
- Subjective winners are closed under logical consequence; indeed the feedback equation is of the nilpotent type and no daimon can be created.

IX-AN ICONOCLAST LOGIC

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
- Alternative definition producing complexity effects.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL,).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.
- Use the geometrical constraints of factor \mathcal{R}.

44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
- Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
- Alternative definition producing complexity effects.
- Cannot be semantically grounded : the blind spot.
- Use the geometrical constraints of factor \mathcal{R}.
- B.t.w., logic in a factor of type II_{1} should correspond to ELL.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \boldsymbol{\xi} \otimes \boldsymbol{I} \otimes \boldsymbol{I}$.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \xi \otimes I \otimes I$.
- Works because there is no dialectal component \otimes.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \xi \otimes I \otimes I$.
- Works because there is no dialectal component \otimes.
- Exponentials perennialise :

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \boldsymbol{\xi} \otimes \boldsymbol{I} \otimes \boldsymbol{I}$.
- Works because there is no dialectal component \otimes.
- Exponentials perennialise :
- Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \xi \otimes I \otimes I$.
- Works because there is no dialectal component \otimes.
- Exponentials perennialise :
- Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
- Takes place in $\mathcal{R} \otimes((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \xi \otimes I \otimes I$.
- Works because there is no dialectal component \otimes.
- Exponentials perennialise :
- Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
- Takes place in $\mathcal{R} \otimes((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
- Denumerable tensor product $\mathcal{R} \ldots \otimes \ldots \mathcal{R}$ crossed by a locally finite group G.

45-Perennial behaviours

- B is perennial when $\mathrm{B}=\sim \sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
- $\mathbf{B} \vdash \mathrm{B} \otimes \mathrm{B}$ inhabited by a sort of fax :
- Bases $\xi \otimes\left(\xi \otimes \xi+\xi^{\prime} \otimes \xi^{\prime}\right) \otimes I \otimes I$, $\left(\xi \otimes \xi^{\prime}+\xi^{\prime} \otimes \xi\right) \otimes \xi \otimes I \otimes I$.
- Works because there is no dialectal component \otimes.
- Exponentials perennialise :
- Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
- Takes place in $\mathcal{R} \otimes((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
- Denumerable tensor product $\mathcal{R} \ldots \otimes \ldots \mathcal{R}$ crossed by a locally finite group G.
- G acts on integers by swapping bits in hereditary base 2.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite ; $!_{X} \mathrm{~B}$ stronger when X smaller.
- $!_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite ; $!_{X}$ B stronger when X smaller.
- $!_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : ! $X_{X} \Gamma \vdash!_{X \sqcup Y}$ B.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite ; $!_{X}$ B stronger when X smaller.
- $!_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : ! $X_{X} \Gamma \vdash!_{X \sqcup Y}$ B.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite ; $!_{X}$ B stronger when X smaller.
- $!_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : $!_{X} \Gamma \vdash!_{X \sqcup Y}$ B.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : $!_{X} \Gamma \vdash!_{X \sqcup Y}$ B.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \sqcup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output $:!_{X} \Gamma \vdash!_{X \sqcup Y} B$.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \cup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2Y $_{2 Y}$ and nat $_{2 Y+1}$.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : ! $X_{X} \Gamma \vdash!_{X \sqcup Y} B$.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \cup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2 $_{2 Y}$ and nat $_{2 Y+1}$.
- In which case, logical equivalence.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : $!_{X} \Gamma \vdash!_{X \sqcup Y} \mathrm{~B}$.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \cup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2 $_{2 Y}$ and nat $_{2 Y+1}$.
- In which case, logical equivalence.
- Basic functions :

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : ! $X_{X} \Gamma \vdash!_{X \sqcup Y} B$.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \cup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2 $_{2 Y}$ and nat $_{2 Y+1}$.
- In which case, logical equivalence.
- Basic functions :

Sum : Type nat $Y_{Y} \otimes$ nat $_{Y} \multimap \operatorname{nat}_{Y \sqcup Y^{\prime}}$.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_{X}$ B stronger when X smaller.
- ! ${ }_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : $!_{X} \Gamma \vdash!_{X \sqcup Y} \mathrm{~B}$.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \cup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2 $_{2 Y}$ and nat $_{2 Y+1}$.
- In which case, logical equivalence.
- Basic functions :

Sum : Type nat $Y_{Y} \otimes$ nat $_{Y} \multimap$ nat $_{Y \sqcup Y^{\prime}}$.
Product: Type nat $Y_{Y} \otimes$ nat $_{Y^{\prime}} \multimap$ nat $_{Y \sqcup Y^{\prime}}$.

46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite ; $!_{X} B$ stronger when X smaller.
- $!_{X}$ perennialises with $\otimes I$ on components of indices not in 2^{X}.
- Multipromotion available with output : $!_{X} \Gamma \vdash!_{X \sqcup Y}$ B.
- Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes$.
- Various definitions of integers, all externally isomorphic.

$$
\begin{equation*}
\operatorname{nat}_{Y}:=\bigcap_{X, \mathrm{~B}}\left(!_{X}(\mathrm{~B} \multimap \mathrm{~B}) \multimap!_{X \sqcup Y}(\mathrm{~B} \multimap \mathrm{~B})\right) \tag{46}
\end{equation*}
$$

- Some are internally isomorphic, e.g. nat 2Y $_{Y}$ and nat $_{2 Y+1}$.
- In which case, logical equivalence.
- Basic functions :

Sum : Type nat $Y_{Y} \otimes \operatorname{nat}_{Y} \rightarrow \operatorname{nat}_{Y \sqcup Y^{\prime}}$.
Product : Type nat $Y_{Y} \otimes$ nat $_{Y^{\prime}} \multimap$ nat $_{Y \sqcup Y^{\prime}}$.
Square : Type ! X_{X} nat $_{2 Y} \longrightarrow!_{X \sqcup X^{\prime}}$ nat $_{2 Y \sqcup 2 Y+1}$.

47-À suivre

- Observe that there is no need for syntax/semantics.

47-À SUIVre

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :

47-À SUIVre

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
- Finite combinations in G will do everything.

47-À suivre

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
- Finite combinations in G will do everything.
- Dynamics of G : a tower of exponentials.

47-À suivre

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
- Finite combinations in G will do everything.
- Dynamics of G : a tower of exponentials.
- Height = depth of hereditary bits.

47-À suivre

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
- Finite combinations in G will do everything.
- Dynamics of G : a tower of exponentials.
- Height = depth of hereditary bits.
- Which complexity classes can be expressed?

