

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- ► Moving to von Neumann algebra induced a divine surprise.

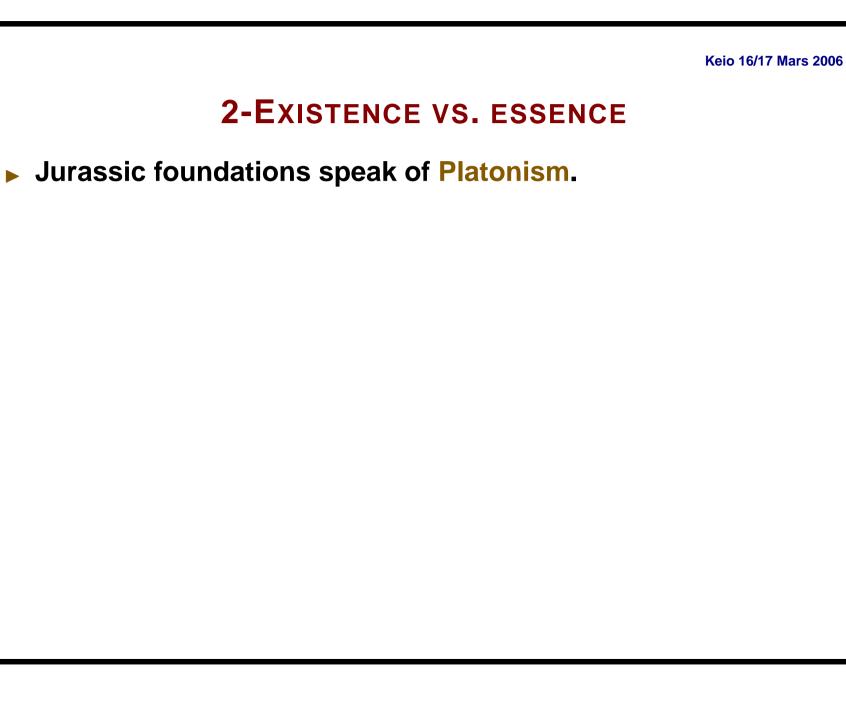
- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- ► Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of $\mathbb N.$

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- ► Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of N.
 - Non internally isomorphic.

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- ► Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of N.
 - Non internally isomorphic.
 - Possibility of subjective truth.

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- ► The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- ► Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of N.
 - Non internally isomorphic.
 - Possibility of subjective truth.
- Got beyond the essential(ist) circularity of logic, the blind spot.

I-THE BLIND SPOT



- ► Jurassic foundations speak of **Platonism**.
 - But there are things beyond our experience.

- ► Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.

- ► Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...

- ► Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.

- ► Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.

- ► Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...

- ► Jurassic foundations speak of **Platonism**.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid : infinity, modalities, integers. Everything is true or false, including meaningless formulas.

- ► Jurassic foundations speak of **Platonism**.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ▶ The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid : infinity, modalities, integers. Everything is true or false, including meaningless formulas.
- God created integers, everything else is the deed of man ».

3-PERFECT VS. IMPERFECT

► Linear logic split connectives into :

3-PERFECT VS. IMPERFECT

► Linear logic split connectives into :

Perfect : \otimes , \mathfrak{P} , \oplus , &, \forall , \exists .

3-PERFECT VS. IMPERFECT

► Linear logic split connectives into :

Perfect : $\otimes, \mathcal{R}, \oplus, \&, \forall, \exists$. **Imperfect** : !, ?, the exponentials.

3-PERFECT VS. IMPERFECT

Linear logic split connectives into :

Perfect : \otimes , \mathcal{P} , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.

► The perfect part is not essentialist : no < meta-intelligence >>.

3-PERFECT VS. IMPERFECT

Linear logic split connectives into :

Perfect : \otimes , \Im , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.

- ► The perfect part is not essentialist : no < meta-intelligence >>.
 - Satisfactory explanations, e.g., ludics.

3-PERFECT VS. IMPERFECT

Linear logic split connectives into :

Perfect : \otimes , \Im , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.

- ► The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.

Linear logic split connectives into :

Perfect : \otimes , \mathcal{P} , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.

- ► The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.

Linear logic split connectives into :

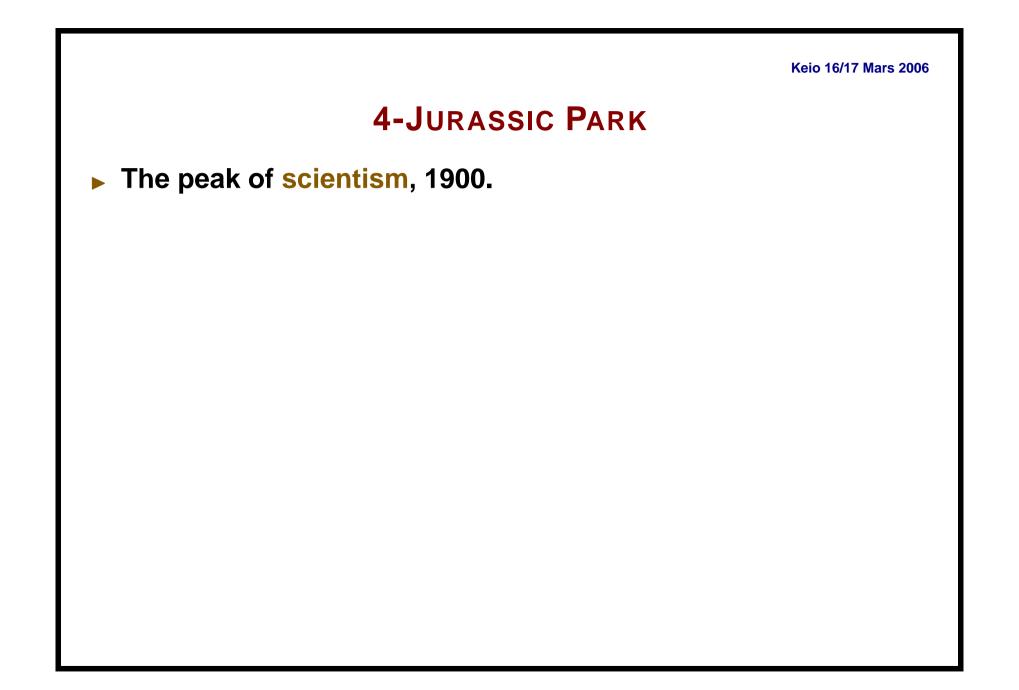
Perfect : \otimes , \mathcal{P} , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.

- ► The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago : double negations (Gödel).

- Linear logic split connectives into :
 - **Perfect** : \otimes , \Im , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.
- The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago : double negations (Gödel).
- Schizophrenia between :

- Linear logic split connectives into :
 - **Perfect** : \otimes , \Im , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.
- The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago : double negations (Gödel).
- Schizophrenia between :
 - Perfect world unsufficiently expressive.

- Linear logic split connectives into :
 - **Perfect** : \otimes , \Im , \oplus , &, \forall , \exists . **Imperfect** : !, ?, the exponentials.
- The perfect part is not essentialist : no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago : double negations (Gödel).
- Schizophrenia between :
 - Perfect world unsufficiently expressive.
 - Imperfect world allowing towers of exponentials.



- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- ▶ What remains of foundations is set theory.

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- ▶ To be compared with equal temperament : $2^{N/12}$.

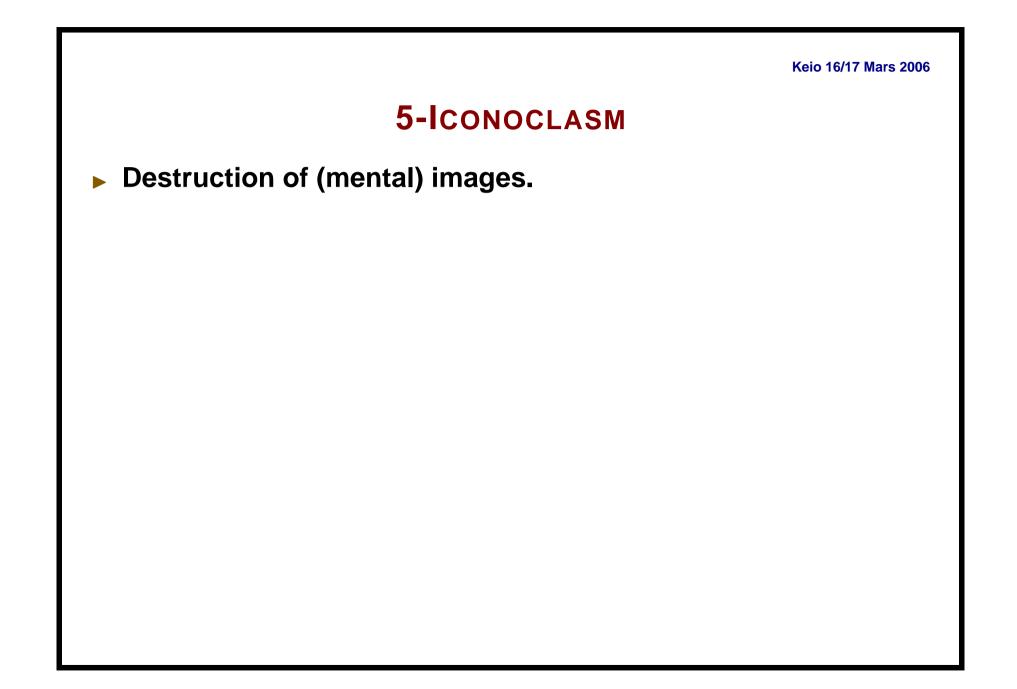
- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- ▶ To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale :

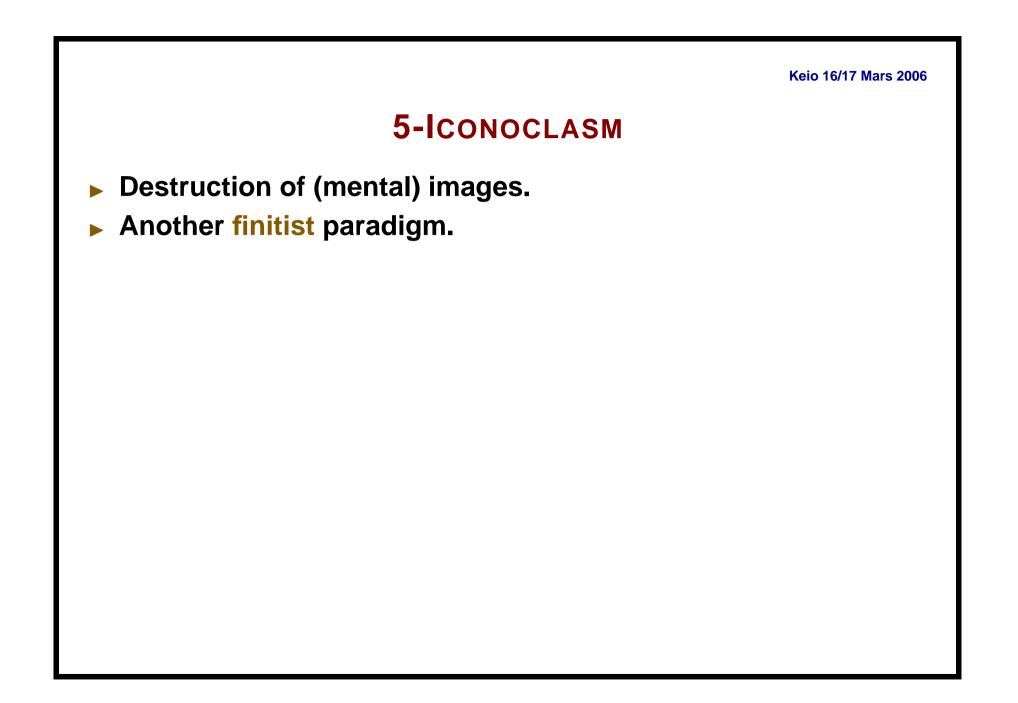
- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- **•** To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale : 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.

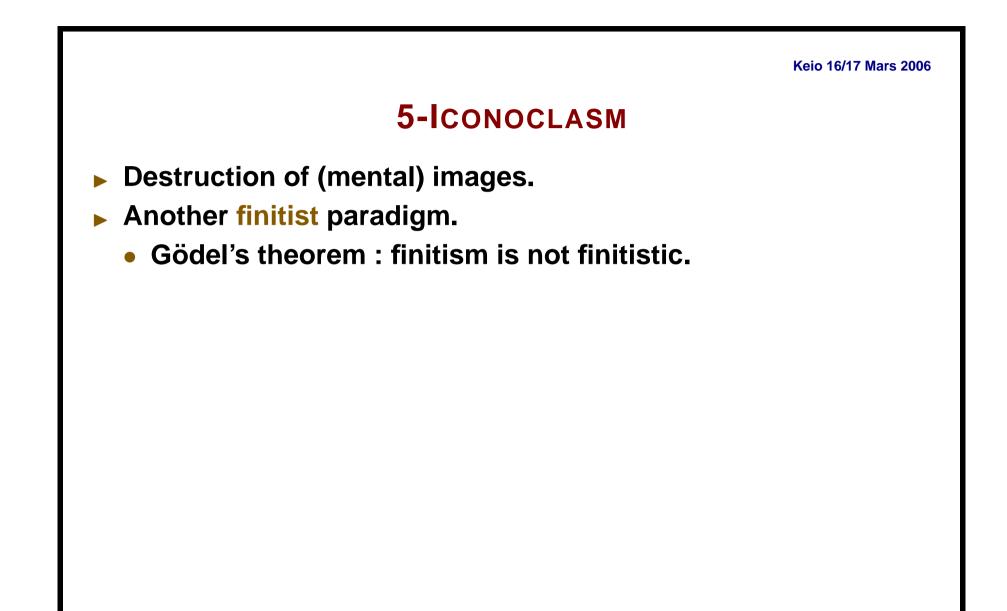
- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- **•** To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale : 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- **•** To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale : 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.
 - Problematic when pushed to extremities (dodecaphonism).

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- ▶ To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale : 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.
 - Problematic when pushed to extremities (dodecaphonism).
- Set theory problematic in extreme situations (foundations).







- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- Foundations internalise everything.

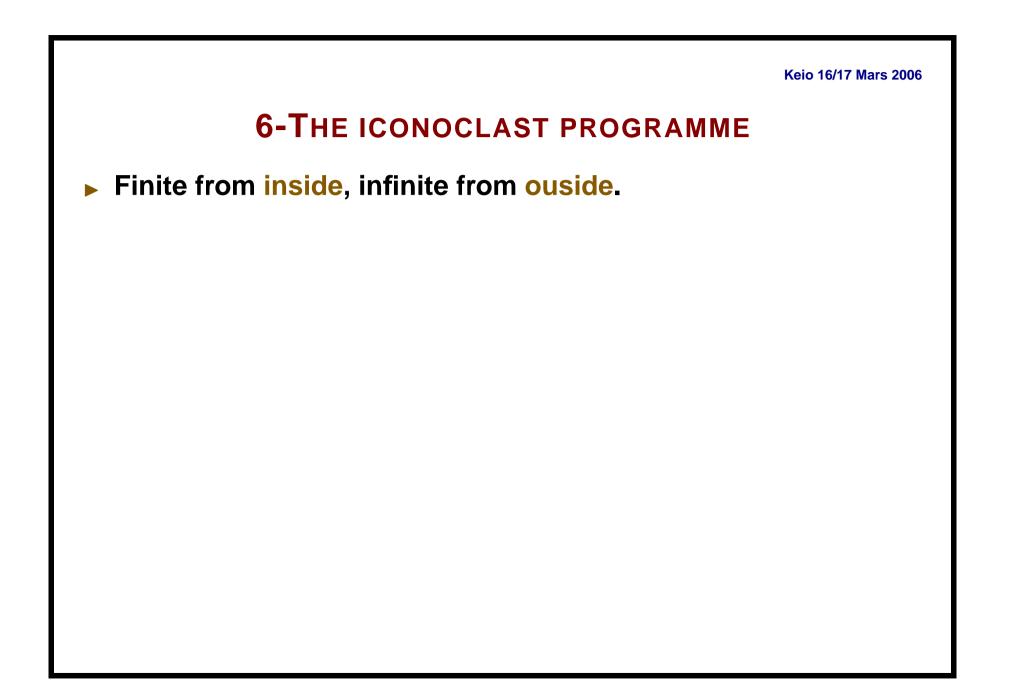
- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- ► The meta is the impossibility of internalising everything.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- ► Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- ► The meta is the impossibility of internalising everything.
 - But too late ; happens at meaningless stages.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- ▶ The meta is the impossibility of internalising everything.
 - But too late ; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- ► Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- ▶ The meta is the impossibility of internalising everything.
 - But too late ; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.
- Accept foundations with most of operations external.



Keio 16/17 Mars 2006

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.

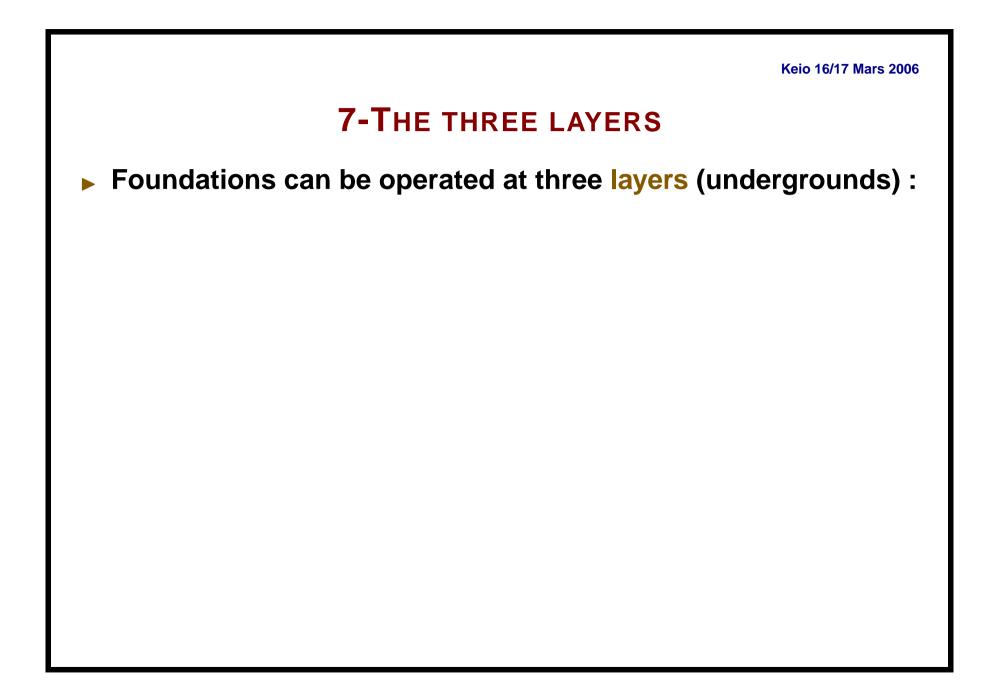
- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
- ► The Murray-von Neumann factor *R*.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
- ► The Murray-von Neumann factor *R*.
 - Finite and hyperfinite, both notions of finiteness having noting to do with Hilbertian finitism.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
- ► The Murray-von Neumann factor *R*.
 - Finite and hyperfinite, both notions of finiteness having noting to do with Hilbertian finitism.
- Forget the idea of creation in 7 days, from simple to complicated (sets, algebra, reals, function spaces) since it does not work anyway (Incompleteness theorem).

Keio 16/17 Mars 2006

II-THE CATEGORICAL LAYER



- **Foundations can be operated at three layers (undergrounds) :**
 - -1 : Truth : consistency, models : bleak.

- ► Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.

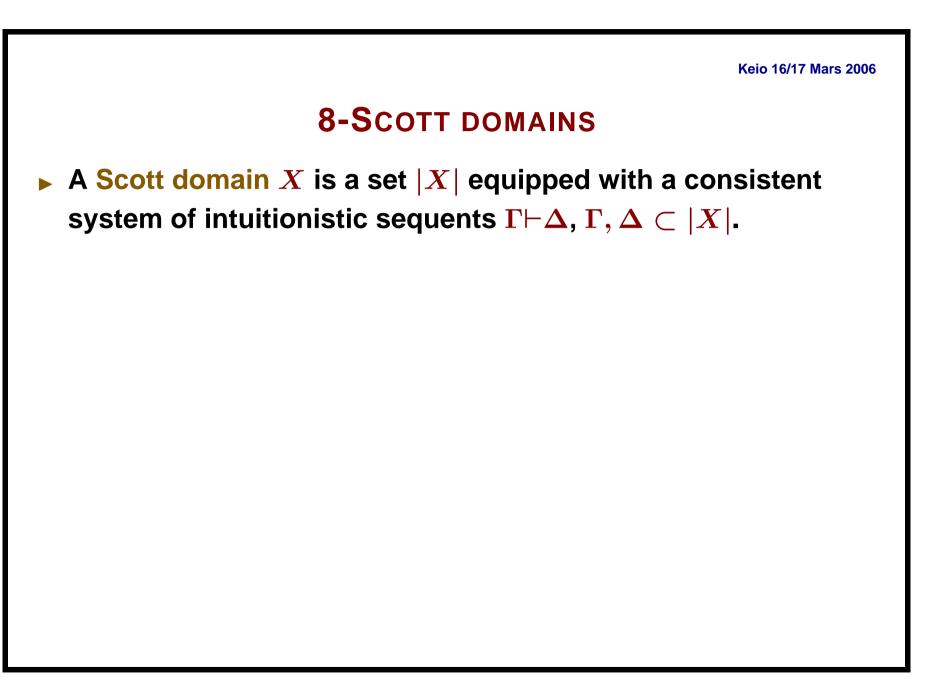
- ► Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.
 - Scott domains.

- ► Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.

- ► Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.

- ► Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.
 - -3 : Actions : Geometry of interaction, but also ludics, games...

- Foundations can be operated at three layers (undergrounds) :
 - -1 : Truth : consistency, models : bleak.
 - -2 : Functions : categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.
 - -3 : Actions : Geometry of interaction, but also ludics, games...
- Level -2 not fit to go beyond the blind spot.



- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).

- ► A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i}) \tag{1}$$

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i})$$
(1)

Category theoretic analogue :

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i})$$
(1)

Category theoretic analogue :

Objects : Saturated sets.

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i})$$
(1)

Category theoretic analogue :

Objects : Saturated sets.

Morphisms : Inclusion maps (hence : degenerated category).

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i})$$
(1)

Category theoretic analogue :

Objects : Saturated sets.

Morphisms : Inclusion maps (hence : degenerated category). **Directed unions :** Direct limits.

- A Scott domain X is a set |X| equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, Γ , $\Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity : preservation of directed sups.

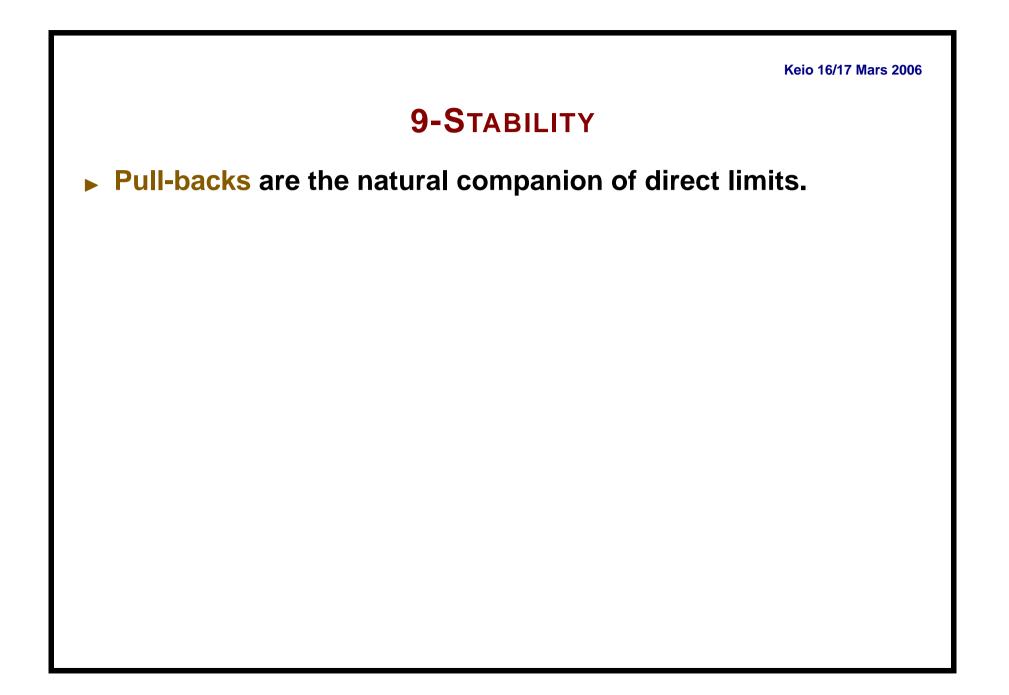
$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i})$$
(1)

Category theoretic analogue :

Objects : Saturated sets.

Morphisms : Inclusion maps (hence : degenerated category). **Directed unions :** Direct limits.

Continuous map : Functor preserving direct limits.



9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b)$ $(a \cup b \text{ consistent})$

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b)$ ($a \cup b$ consistent)

▶ Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle x, y |$ incoherent », notation $x \smile y$.

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b)$ ($a \cup b$ consistent)

- Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle \langle x, y | ncoherent \rangle$, notation $x \smile y$.
- No saturation, only consistency.

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b)$ ($a \cup b$ consistent)

- ▶ Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle \langle x, y |$ incoherent >, notation $x \smile y$.
- No saturation, only consistency.
- ▶ Coherent space : $(|X|, \bigcirc_X)$, web, coherence ; $\bigcirc = \smile^c$.

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b)$ $(a \cup b \text{ consistent})$

- ▶ Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle x, y |$ incoherent >, notation $x \smile y$.
- No saturation, only consistency.
- ▶ Coherent space : $(|X|, \bigcirc_X)$, web, coherence ; $\bigcirc = \smile^c$.

$$\blacktriangleright \ \mathsf{Clique} \ a \sqsubset X : x, y \in a \Rightarrow x \bigcirc y.$$

9-STABILITY

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

 $F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent})$

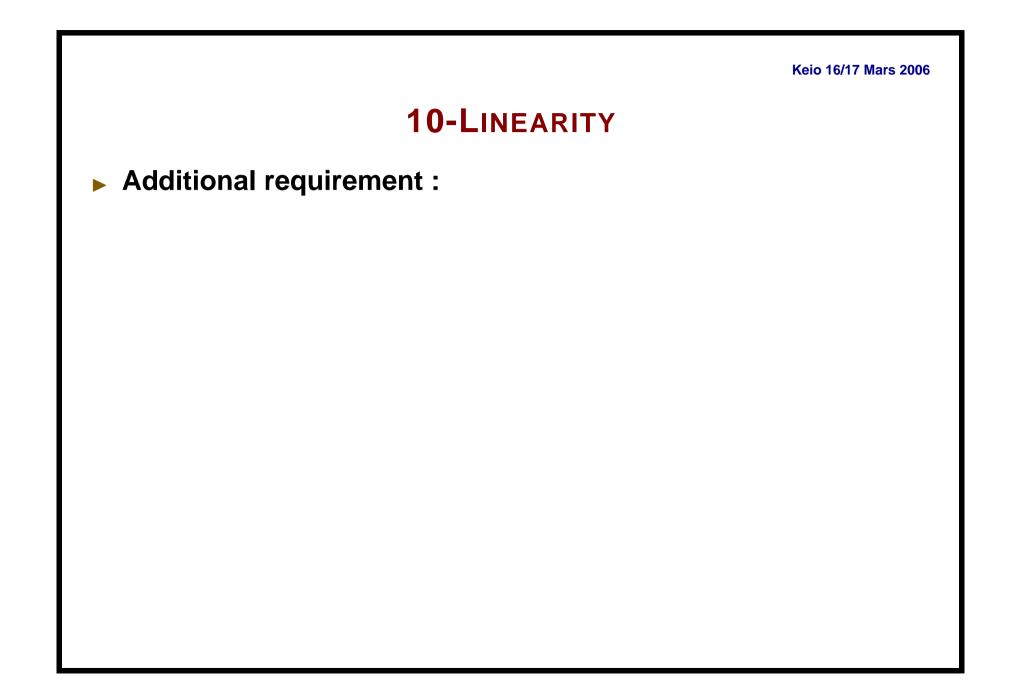
- ▶ Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle \langle x, y \rangle$ incoherent >>, notation $x \smile y$.
- ▶ No saturation, only consistency.
- ▶ Coherent space : $(|X|, \bigcirc_X)$, web, coherence ; $\bigcirc = \smile^c$.
- $\blacktriangleright \ \mathsf{Clique} \ a \sqsubset X : x, y \in a \Rightarrow x \bigcirc y.$
- Stable map : F from X to Y monotonous, preserves directed sups and compatible meets.

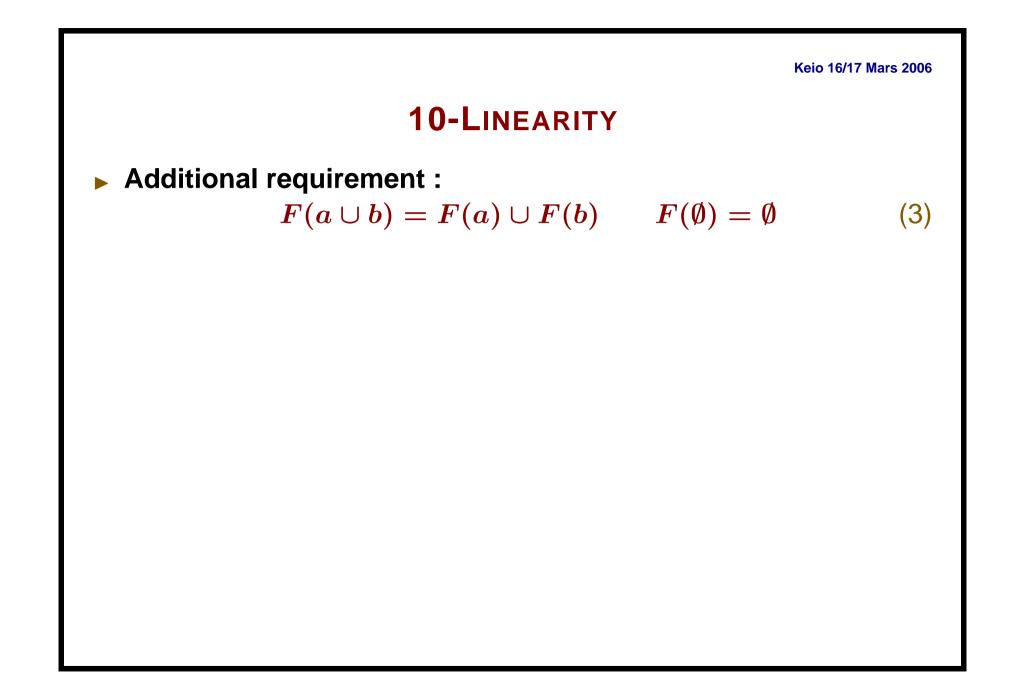
9-STABILITY

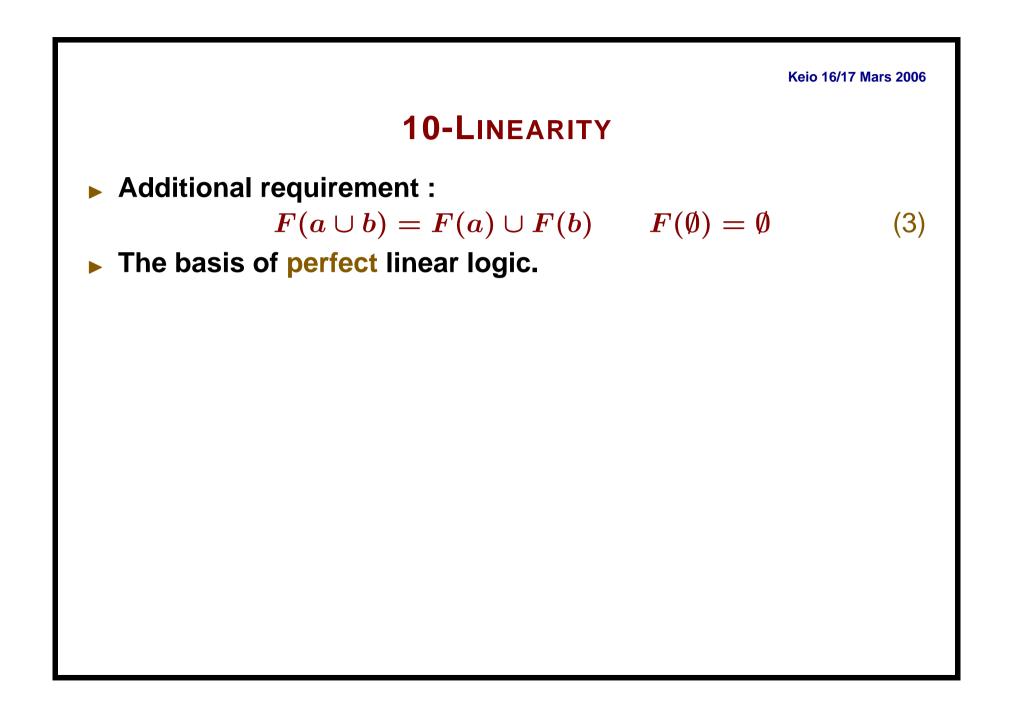
- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry) :

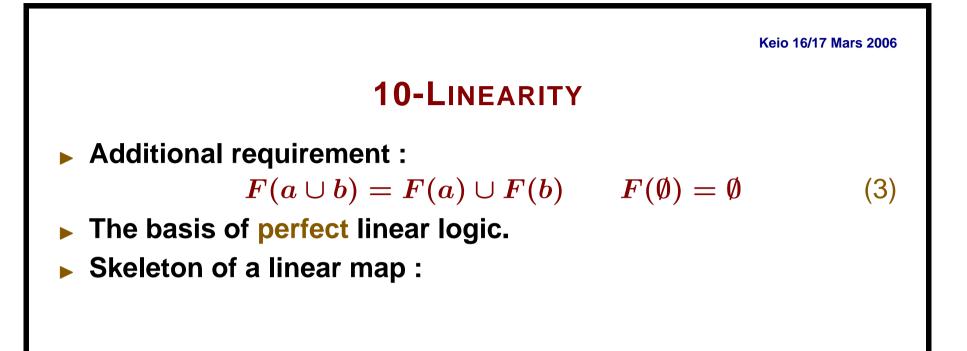
 $F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent})$

- ▶ Induce simplification : reduce to axiomatics made of sequents $x, y \vdash \langle \langle x, y \rangle$ incoherent >>, notation $x \smile y$.
- ▶ No saturation, only consistency.
- ▶ Coherent space : $(|X|, \bigcirc_X)$, web, coherence ; $\bigcirc = \smile^c$.
- Clique $a \sqsubset X : x, y \in a \Rightarrow x \bigcirc y$.
- Stable map : F from X to Y monotonous, preserves directed sups and compatible meets.
- ► Form a CCC.









10-LINEARITY

Additional requirement :

 $F(a \cup b) = F(a) \cup F(b)$ $F(\emptyset) = \emptyset$ (3)

- ► The basis of perfect linear logic.
- Skeleton of a linear map :

 $Sq(F) := \{x, y; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\}\})$ (4)

10-LINEARITY

Additional requirement :

 $F(a \cup b) = F(a) \cup F(b)$ $F(\emptyset) = \emptyset$ (3)

- ► The basis of perfect linear logic.
- Skeleton of a linear map :

 $Sq(F) := \{x, y; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\}\})$ (4)

F can be recovered from its skeleton :

10-LINEARITY

Additional requirement :

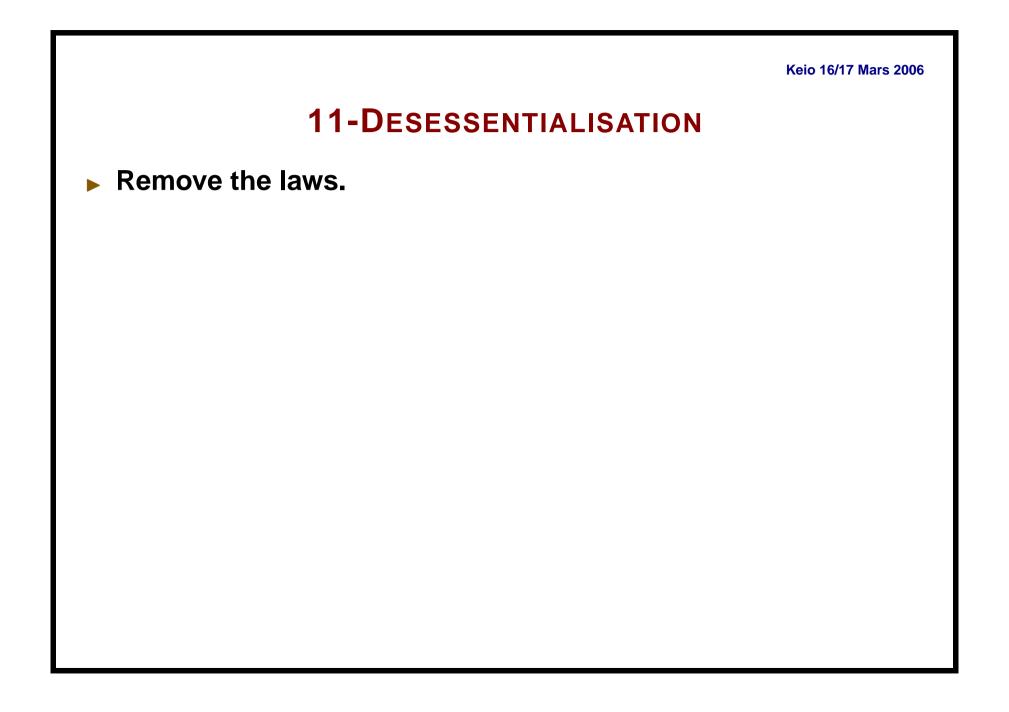
 $F(a \cup b) = F(a) \cup F(b)$ $F(\emptyset) = \emptyset$ (3)

- ► The basis of perfect linear logic.
- Skeleton of a linear map :

 $Sq(F) := \{x, y; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\}\})$ (4)

F can be recovered from its skeleton :

 $F(a) = \{y; \exists x \in a \ (x, y) \in \operatorname{Sq}(F)\}$ (5)

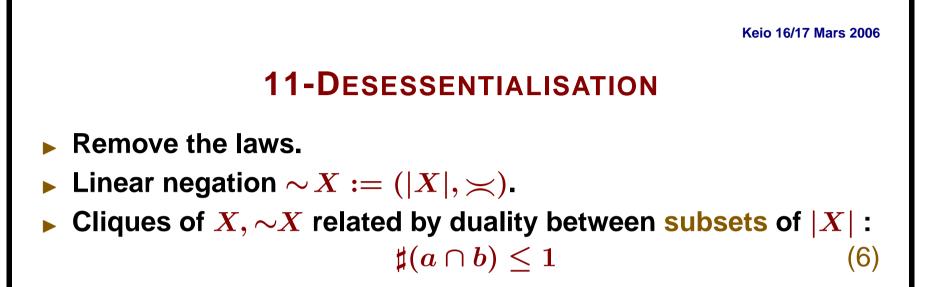


11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:



(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:

$\sharp(a \cap b) \leq 1$

• Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).

(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:

 $\sharp(a \cap b) \leq 1$

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:

$$\sharp(a\cap b)\leq 1$$

- ► Alternative definition : a coherent space is a subset of ℘(|X|) equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :

 $\sharp(F(a) \cap b) = \sharp(F \cap a \times b) \quad (a \sqsubset X, b \sqsubset \sim Y)$ (7)

(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:

 $\sharp(a \cap b) \leq 1$ efinition : a coherent space is a subset c

- Alternative definition : a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined trough adjunction :
- $\sharp(F(a) \cap b) = \sharp(F \cap a \times b) \quad (a \sqsubset X, b \sqsubset \sim Y)$ (7) This definition can be generalised to various vector spaces :

(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|:

 $\sharp(a \cap b) < 1$

Alternative definition : a coherent space is a subset of
$$\wp(|X|)$$
 equal to its bipolar w.r.t. (6).

Functions defined trough adjunction :

 $\sharp(F(a) \cap b) = \sharp(F \cap a \times b) \quad (a \sqsubset X, b \sqsubset \sim Y)$ (7) This definition can be generalised to various vector spaces : Stability : handles negative coeffs : F(a + b) = F(a) + F(b).

(6)

11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|: $\sharp(a \cap b) < 1$

Alternative definition : a coherent space is a subset of
$$\wp(|X|)$$
 equal to its bipolar w.r.t. (6).

Functions defined trough adjunction :

 $\sharp(F(a) \cap b) = \sharp(F \cap a \times b) \quad (a \sqsubset X, b \sqsubset \sim Y)$ (7)This definition can be generalised to various vector spaces : Stability : handles negative coeffs : F(a + b) = F(a) + F(b). **Multiplicities :** Takes care of cardinal when greater than 1.

(6)

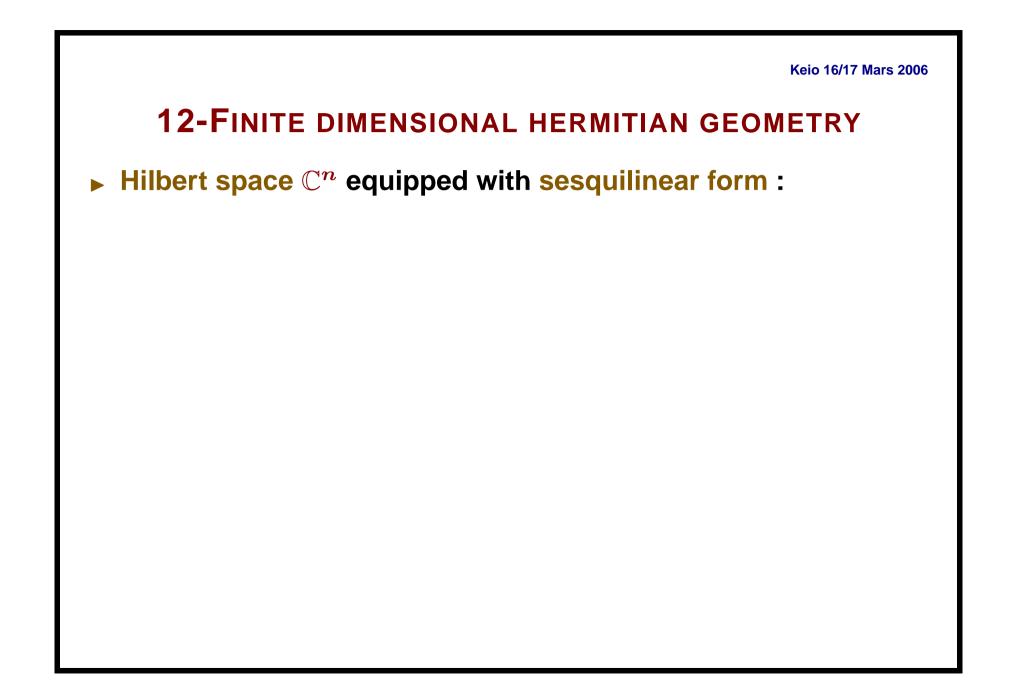
11-DESESSENTIALISATION

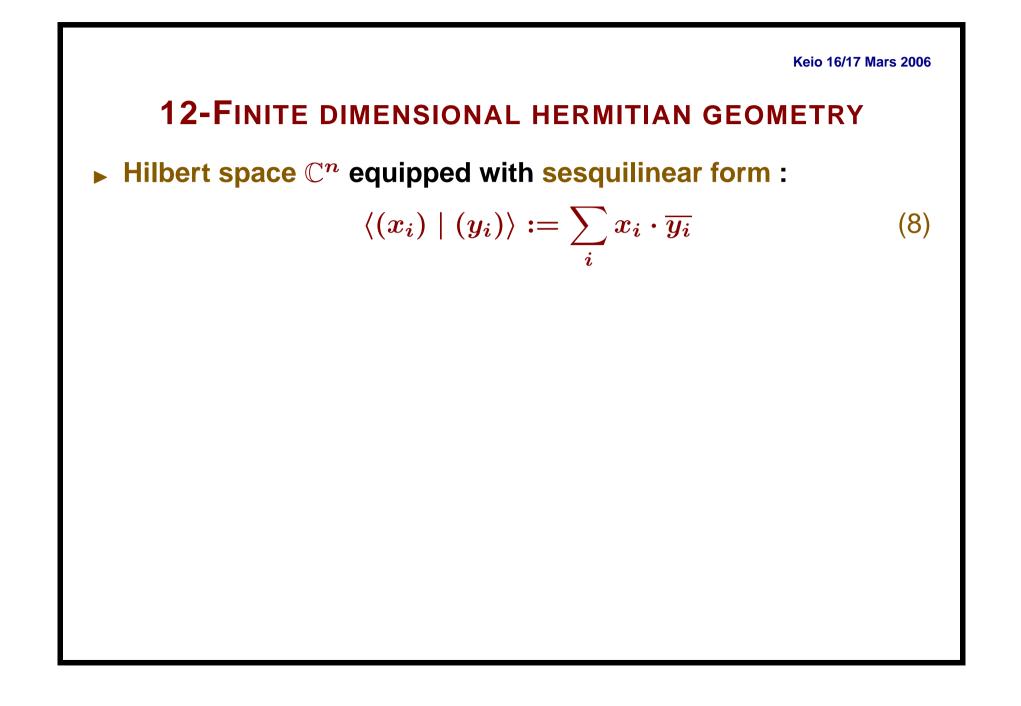
- Remove the laws.
- Linear negation $\sim X := (|X|, \succeq)$.
- Cliques of $X, \sim X$ related by duality between subsets of |X|: $\sharp(a \cap b) < 1$

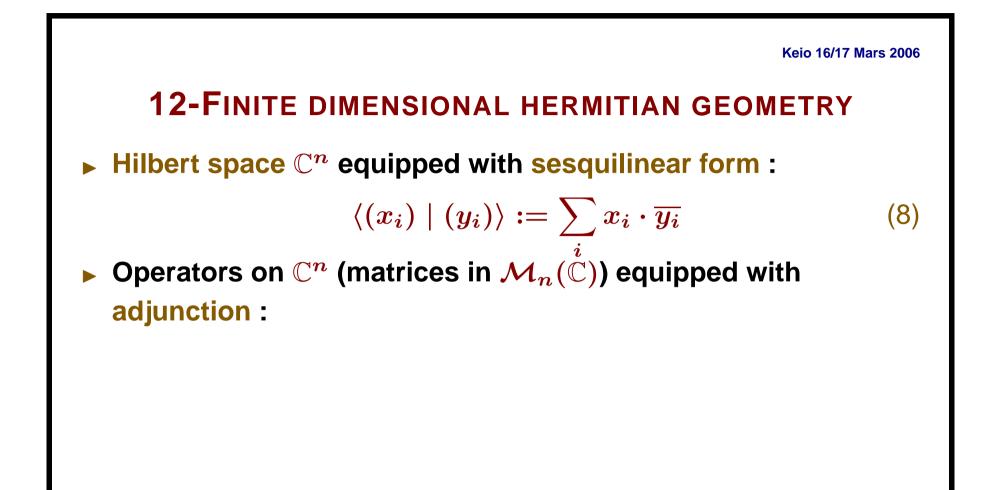
Alternative definition : a coherent space is a subset of
$$\wp(|X|)$$
 equal to its bipolar w.r.t. (6).

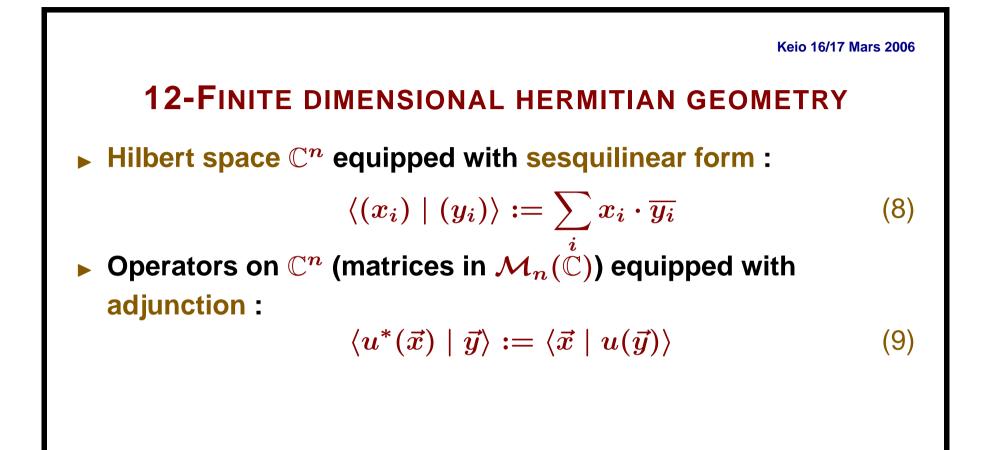
Functions defined trough adjunction :

 $\sharp(F(a) \cap b) = \sharp(F \cap a \times b) \quad (a \sqsubset X, b \sqsubset \sim Y)$ (7) This definition can be generalised to various vector spaces : Stability : handles negative coeffs : F(a + b) = F(a) + F(b). **Multiplicities :** Takes care of cardinal when greater than 1. **Cardinal** : Replaced by bilinear form, or better, trace.









Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

• Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\overset{\imath}{\mathbb{C}})$) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle$$
 (9)

Adjunction corresponds to transconjugation of matrices.

Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

• Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\overset{\imath}{\mathbb{C}})$) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle$$
 (9)

Adjunction corresponds to transconjugation of matrices.

Hermitians are self adjoint operators (matrices).

Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

Operators on Cⁿ (matrices in M_n(C)) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle$$
 (9)

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- For the trace tr(u) defined as the sum of diagonal coefficients :

Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

Operators on Cⁿ (matrices in M_n(C)) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle \tag{9}$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The trace tr(u) defined as the sum of diagonal coefficients :

$$\operatorname{tr}(u) = \sum_{i} \langle u(e_i) \mid e_i \rangle \tag{10}$$

Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

Operators on Cⁿ (matrices in M_n(C)) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle \tag{9}$$

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The trace tr(u) defined as the sum of diagonal coefficients :

$$\operatorname{tr}(u) = \sum_{i} \langle u(e_i) \mid e_i \rangle \tag{10}$$

Cyclicity :

$$\operatorname{tr}(u \cdot v) = \operatorname{tr}(v \cdot u)$$
 (11)

Hilbert space \mathbb{C}^n equipped with sesquilinear form :

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$
 (8)

Operators on Cⁿ (matrices in M_n(C)) equipped with adjunction :

$$\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle$$
 (9)

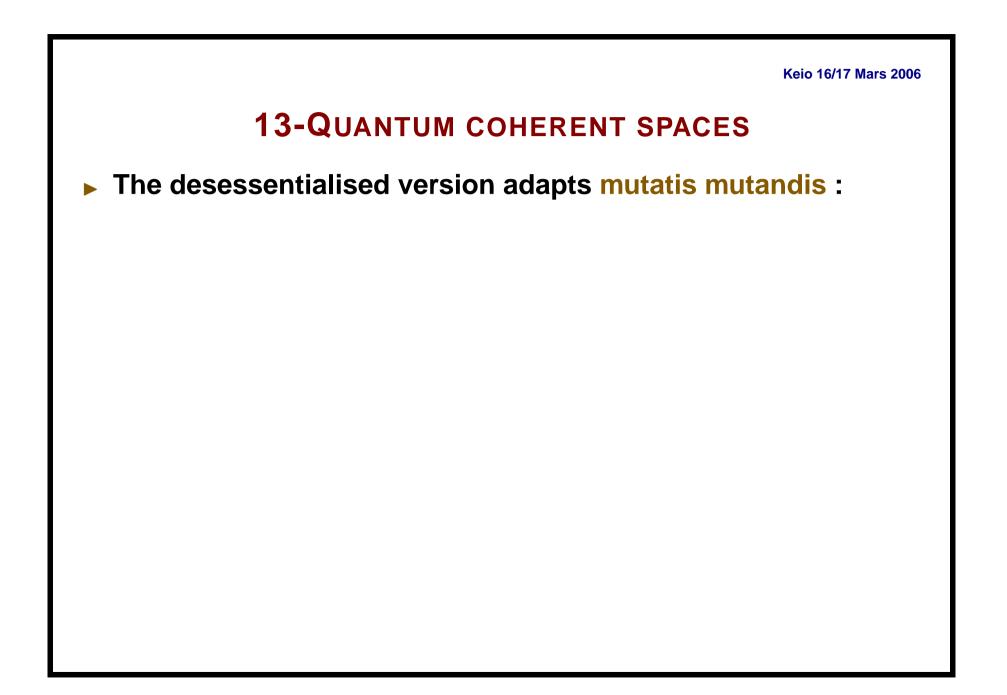
- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- For the trace tr(u) defined as the sum of diagonal coefficients :

$$\operatorname{tr}(u) = \sum_{i} \langle u(e_i) \mid e_i \rangle \tag{10}$$

Cyclicity :

$$\operatorname{tr}(u \cdot v) = \operatorname{tr}(v \cdot u) \tag{11}$$

▶ If h, k hermitian, then $tr(h \cdot k) \in \mathbb{R}$.



The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space X.

The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space X. Subsets : Hermitians operating on X.

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

```
Web : Space \mathbb{C}^{|X|}.
```

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

```
Web : Space \mathbb{C}^{|X|}.
```

Subsets : Subspace \mathbb{C}^a ; induces projection π_a .

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

```
Web : Space \mathbb{C}^{|X|}.
```

Subsets : Subspace \mathbb{C}^a ; induces projection π_a .

```
Duality : If h, k are commuting projections tr(h \cdot k) is the dimension of the intersection, i.e., a cardinal :
```

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

```
Web : Space \mathbb{C}^{|X|}.
```

Subsets : Subspace \mathbb{C}^a ; induces projection π_a .

Duality : If h, k are commuting projections $tr(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$\operatorname{tr}(\pi_a \cdot \pi_b) = \sharp(a \cap b) \tag{12}$$

► The desessentialised version adapts mutatis mutandis :
 Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

Web : Space $\mathbb{C}^{|X|}$.

Subsets : Subspace \mathbb{C}^a ; induces projection π_a .

Duality : If h, k are commuting projections $tr(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$\operatorname{tr}(\pi_a \cdot \pi_b) = \sharp(a \cap b) \tag{12}$$

Functional application (involves $X \otimes Y$):

 ► The desessentialised version adapts mutatis mutandis : Web : Finite dimensional Hilbert space X.
 Subsets : Hermitians operating on X.
 Duality : 0 ≤ tr(h ⋅ k) ≤ 1.

Coherent spaces :

Web : Space $\mathbb{C}^{|X|}$.

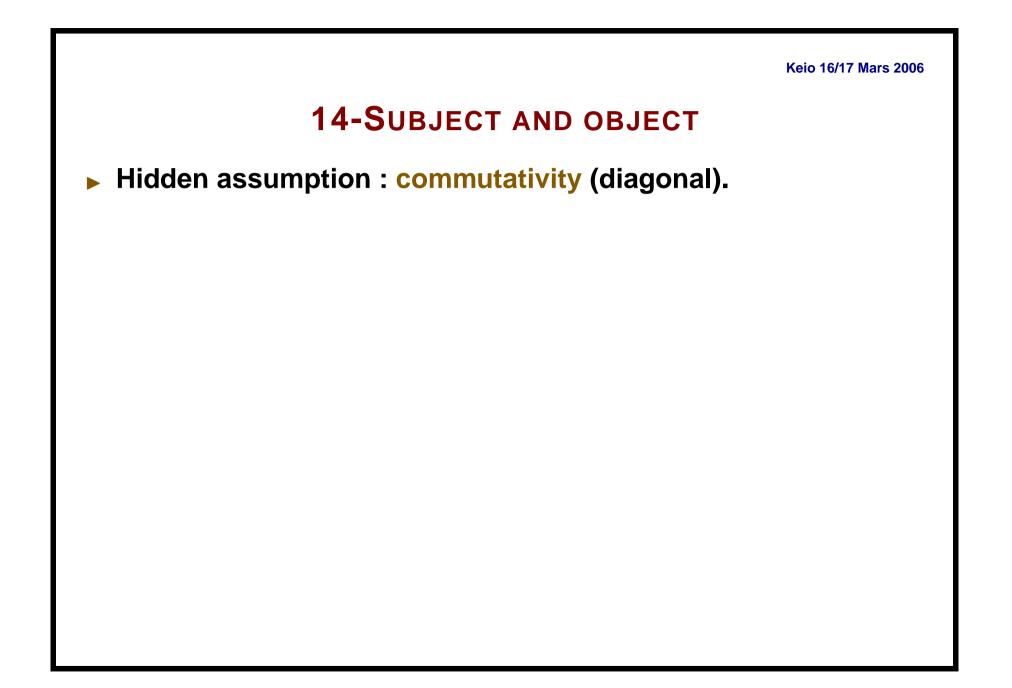
Subsets : Subspace \mathbb{C}^a ; induces projection π_a .

Duality : If h, k are commuting projections $tr(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal :

$$\operatorname{tr}(\pi_a \cdot \pi_b) = \sharp(a \cap b) \tag{12}$$

Functional application (involves $X \otimes Y$):

 $\operatorname{tr}(F(a) \cdot b)) = \operatorname{tr}(\operatorname{Sq}(F) \cdot (a \otimes b)) \tag{13}$



Keio 16/17 Mars 2006

- ► Hidden assumption : commutativity (diagonal).
- ▶ The points of the diagonal correspond to atoms.

- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.

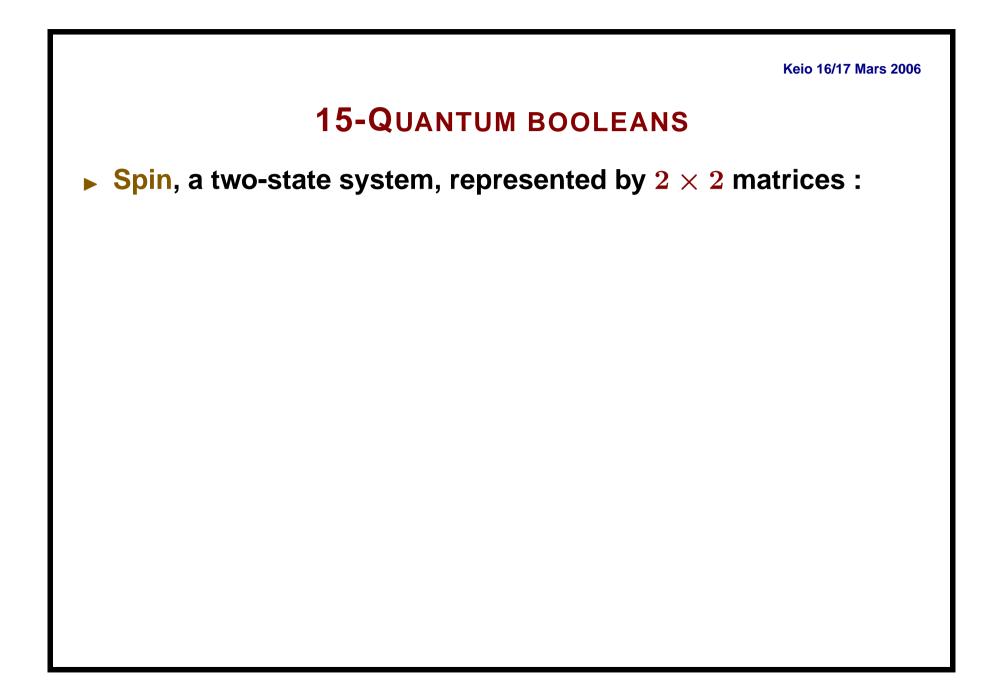
- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.

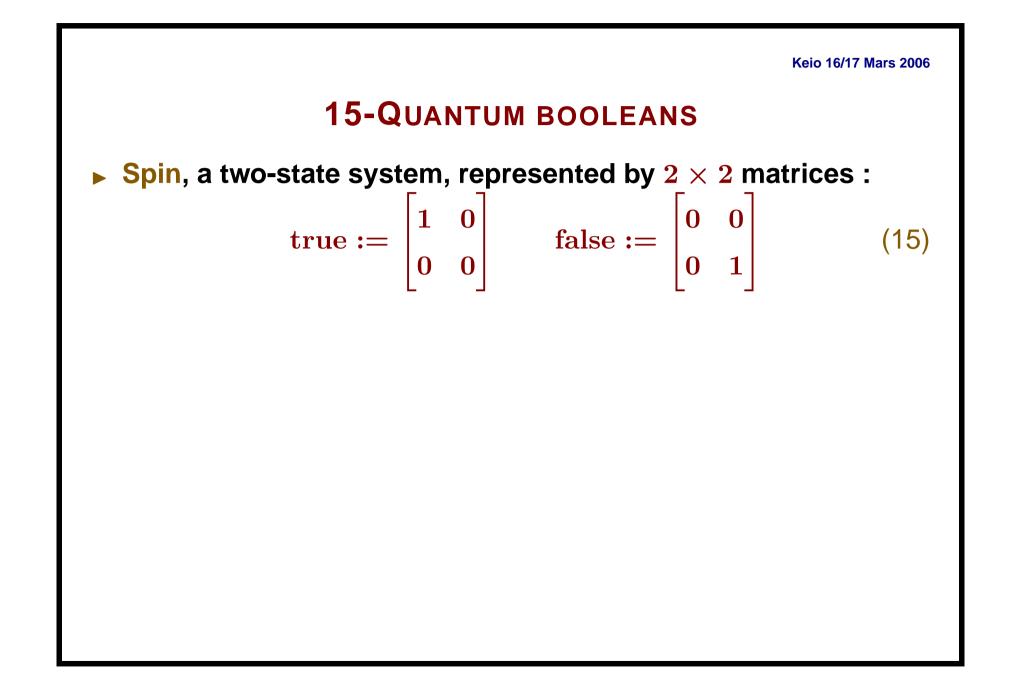
- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- ► Base = Subject = Commutativity

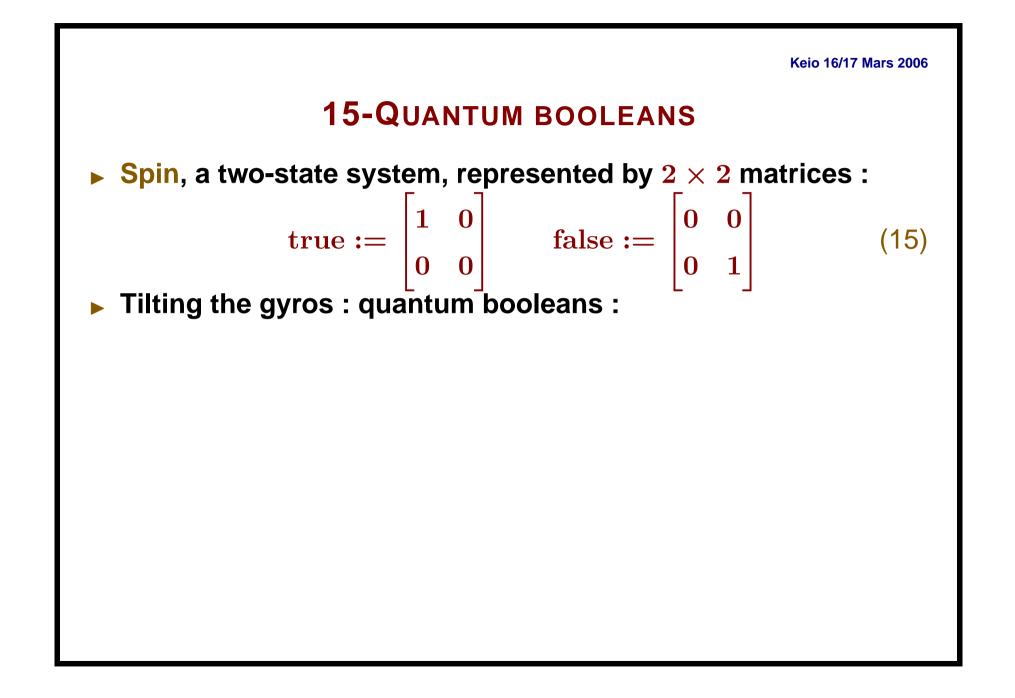
- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- ► Tilt the gyroscopes and everything looks different.
- ► Base = Subject = Commutativity
- Subject becomes part of the theory.

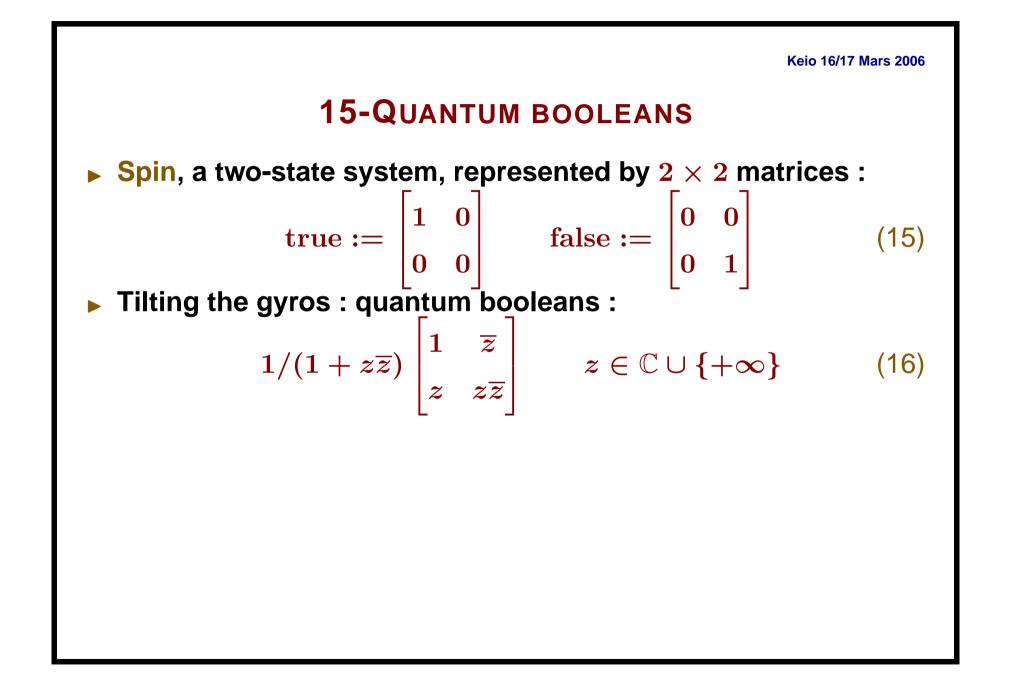
- Hidden assumption : commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion :

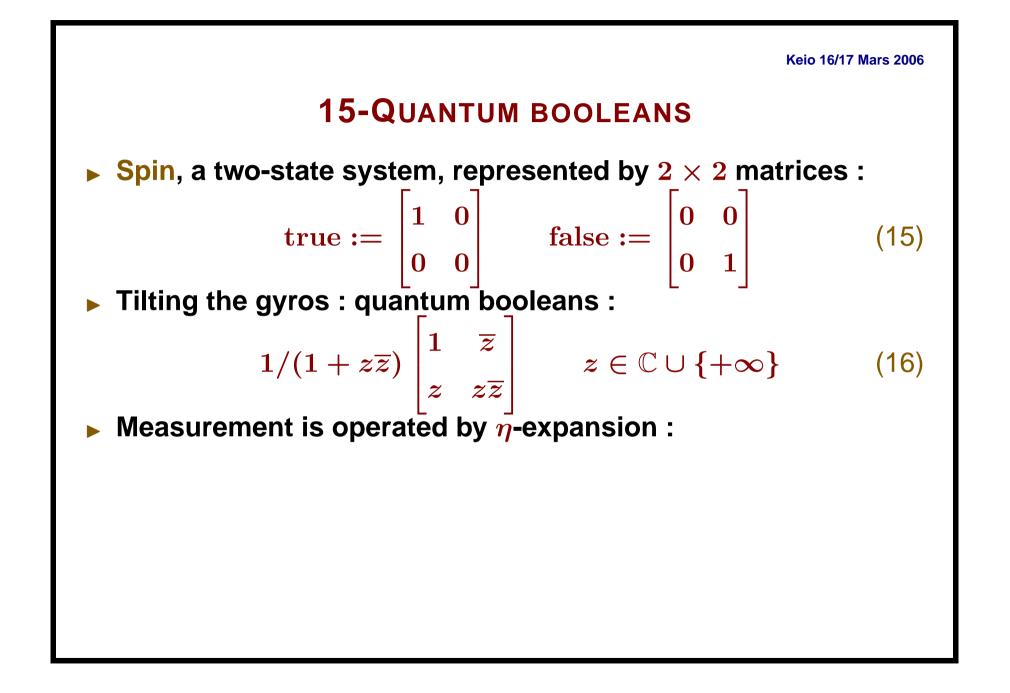
- Hidden assumption : commutativity (diagonal).
- ▶ The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion :

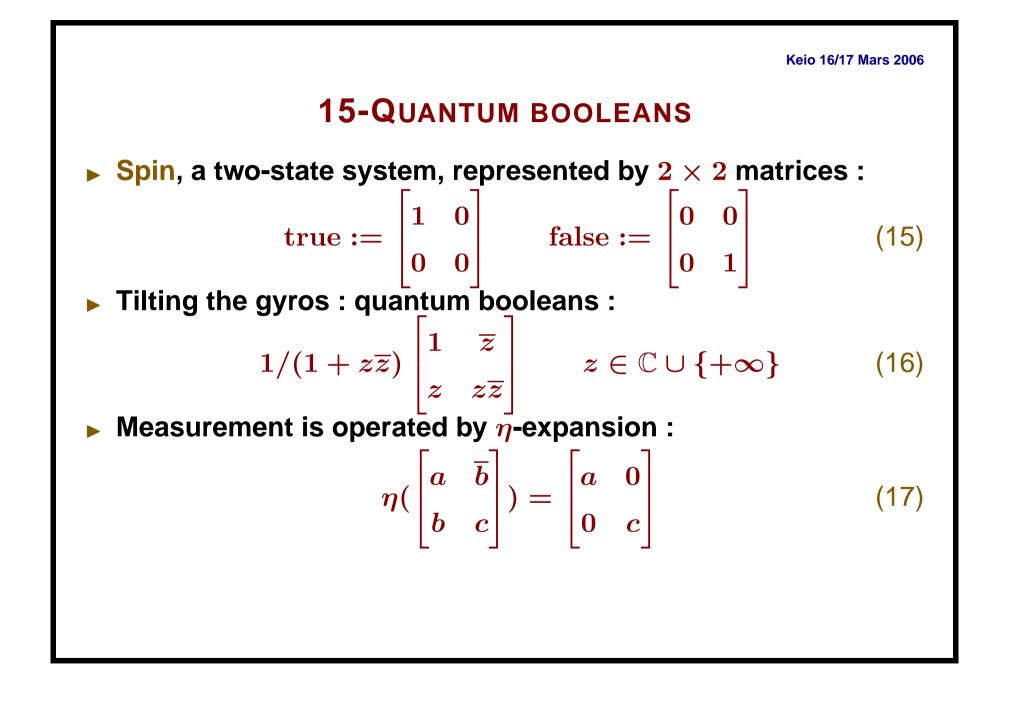


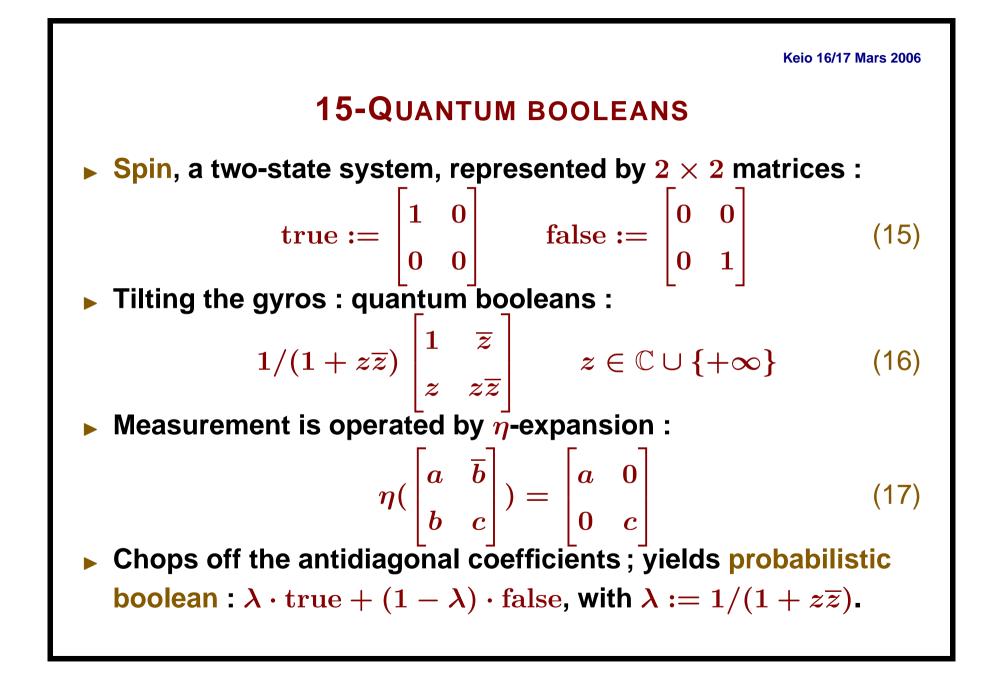






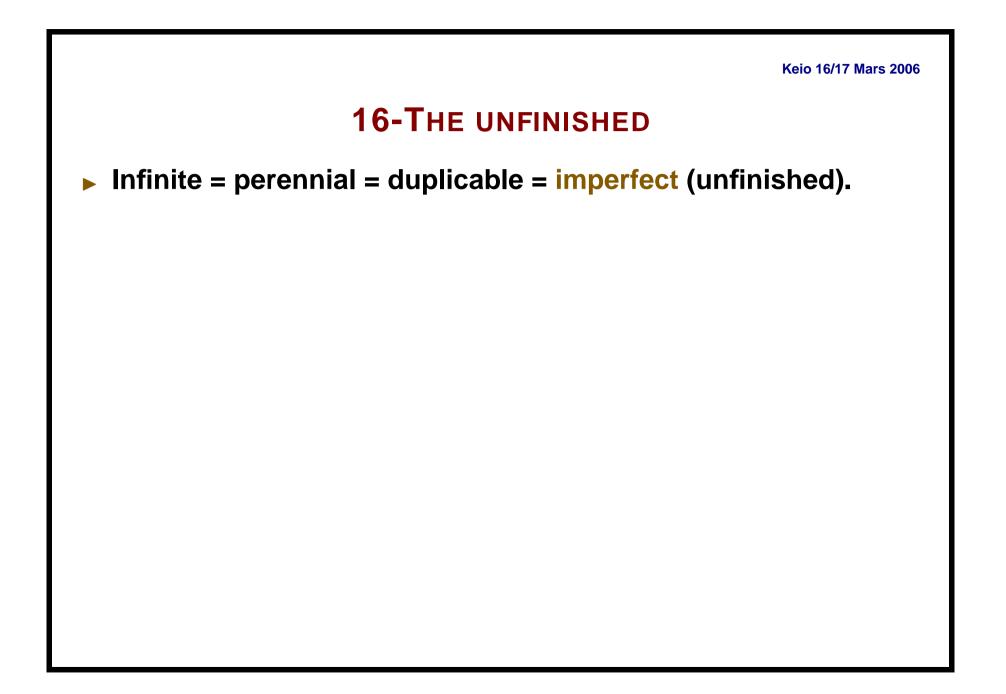






Keio 16/17 Mars 2006

III-PASSAGE TO INFINITY



- Infinite = perennial = duplicable = imperfect (unfinished).
- **Dedekind integers (system F version) :**

- Infinite = perennial = duplicable = imperfect (unfinished).
- **Dedekind integers (system F version) :**

$$nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$$
(18)

- Infinite = perennial = duplicable = imperfect (unfinished).
- **Dedekind integers (system F version) :**

 $nat := \forall X (!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

- Infinite = perennial = duplicable = imperfect (unfinished).
- **Dedekind integers (system F version) :**

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

```
Weakening : !A \vdash 1.
```

- Infinite = perennial = duplicable = imperfect (unfinished).
- **Dedekind integers (system F version) :**

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

Weakening : $!A \vdash 1$. Contraction : $!A \vdash !A \otimes !A$.

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

Weakening : $!A \vdash 1$. Contraction : $!A \vdash !A \otimes !A$. Dereliction : $!A \vdash A$.

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

```
Weakening : !A \vdash 1.
Contraction : !A \vdash !A \otimes !A.
Dereliction : !A \vdash A.
Promotion : From !\Gamma \vdash A, get !\Gamma \vdash !A.
```

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

```
Weakening : !A \vdash 1.
Contraction : !A \vdash !A \otimes !A.
```

```
Dereliction : !A \vdash A.
```

```
Promotion : From !\Gamma \vdash A, get !\Gamma \vdash !A.
```

These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

```
Weakening : !A \vdash 1.
Contraction : !A \vdash !A \otimes !A.
Dereliction : !A \vdash A.
```

- **Promotion :** From $!\Gamma \vdash A$, get $!\Gamma \vdash !A$.
- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- ▶ Just as opaque as integers. At least this is logic.

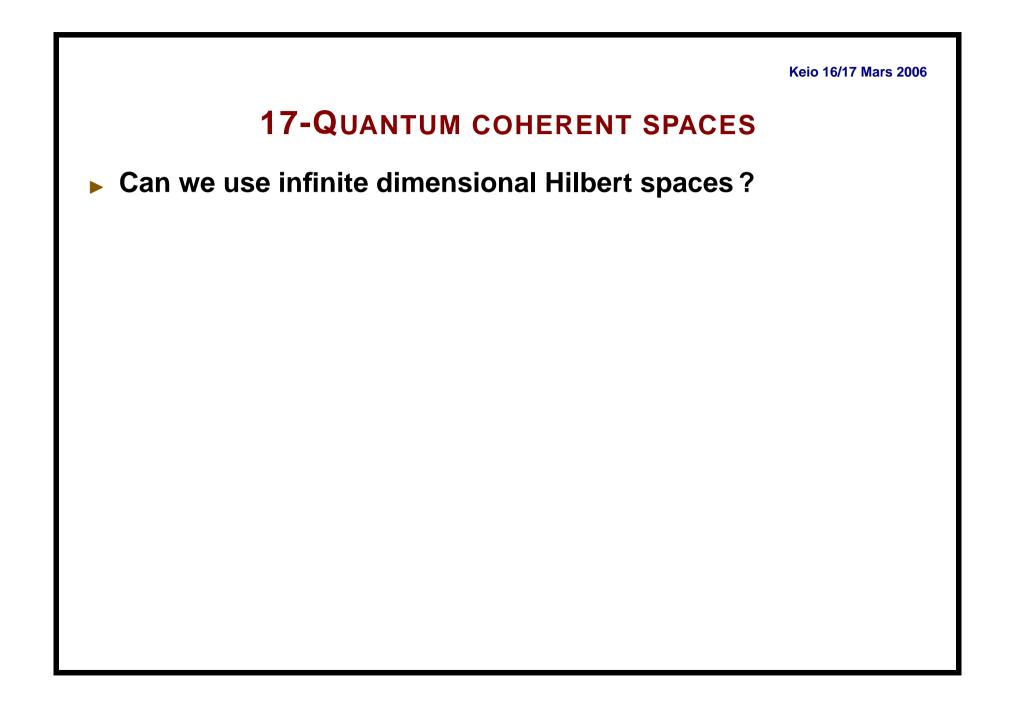
- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

 $nat := \forall X(!(X \multimap X) \multimap (X \multimap X))$ (18)

► Heavily rely on exponentials. Four laws :

```
Weakening : !A \vdash 1.
Contraction : !A \vdash !A \otimes !A.
Dereliction : !A \vdash A.
```

- **Promotion :** From $!\Gamma \vdash A$, get $!\Gamma \vdash !A$.
- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- ▶ Just as opaque as integers. At least this is logic.
- Light logics (LLL, ELL...); not grounded. But some hope!



- Can we use infinite dimensional Hilbert spaces?
- **•** Typical example : space ℓ^2 of square-summable sequences :

- Can we use infinite dimensional Hilbert spaces?
- **•** Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

- Can we use infinite dimensional Hilbert spaces?
- **•** Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum x_n \cdot \overline{y_n}$$
 (19)

For the two terms of the terms of terms

- Can we use infinite dimensional Hilbert spaces ?
- ▶ Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

For the termitian of termitian

$$\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \tag{20}$$

- Can we use infinite dimensional Hilbert spaces ?
- Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum x_n \cdot \overline{y_n}$$
 (19)

▶ Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \tag{20}$$

▶ More generally, for trace-class operators (value in C) :

- Can we use infinite dimensional Hilbert spaces ?
- ▶ Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

For the termination of the termitian of termitian of

$$\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \tag{20}$$

▶ More generally, for trace-class operators (value in C) :

$$\operatorname{tr}(\sqrt{uu^*}) < +\infty \tag{21}$$

- Can we use infinite dimensional Hilbert spaces ?
- For Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

▶ Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \tag{20}$$

▶ More generally, for trace-class operators (value in C) :

$$\operatorname{tr}(\sqrt{uu^*}) < +\infty \tag{21}$$

Not suited for logic : the twist is not trace-class.

- Can we use infinite dimensional Hilbert spaces ?
- For Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

► Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\operatorname{tr}(uu^{*}) = \operatorname{tr}(u^{*}u) \tag{2}$$

► More generally, for trace-class operators (value in C) :

$$\operatorname{tr}(\sqrt{uu^*}) < +\infty \tag{21}$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.

- Can we use infinite dimensional Hilbert spaces?
- For Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

► Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$): $\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u)$ (20)

• More generally, for trace-class operators (value in
$$\mathbb{C}$$
) :

$$\operatorname{tr}(\sqrt{uu^*}) < +\infty \tag{21}$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type II₁ algebras have a trace. But the twist gets a null trace.

- Can we use infinite dimensional Hilbert spaces ?
- For Typical example : space ℓ^2 of square-summable sequences :

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$
 (19)

▶ Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \tag{20}$$

► More generally, for trace-class operators (value in C) :

$$\operatorname{tr}(\sqrt{uu^*}) < +\infty \tag{21}$$

- Not suited for logic : the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type II₁ algebras have a trace. But the twist gets a null trace.
- Something wrong with the methodology.

When God created the universe, he first defined the actual, then the potential.

- When God created the universe, he first defined the actual, then the potential.
- ► Reflected in Kripke models : parallel universes like butterflies.

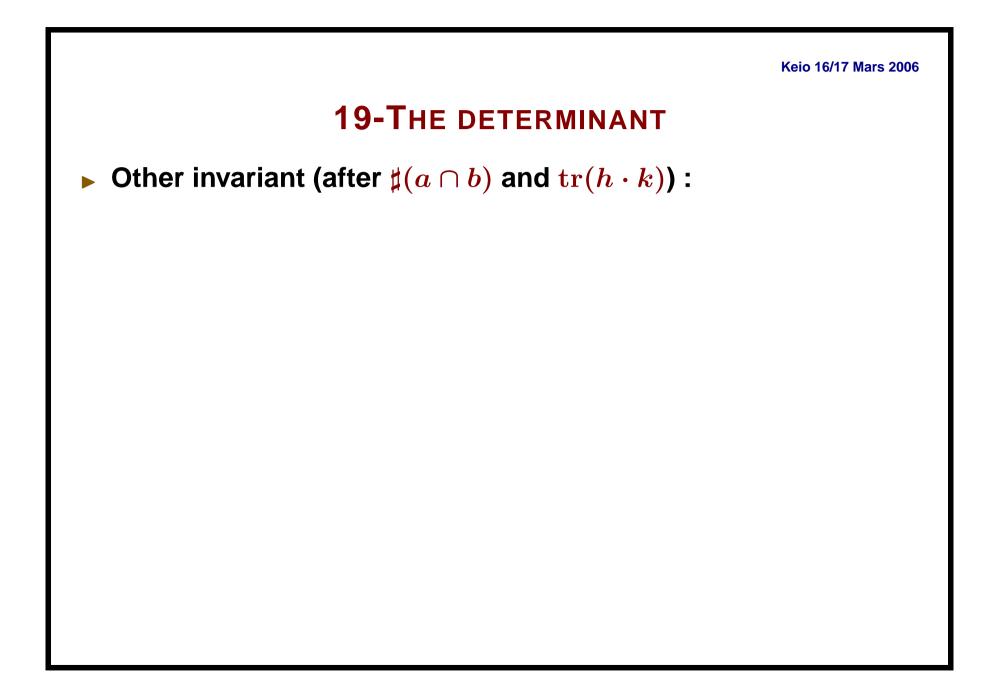
- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- ► The same is true of categories : composition costs nothing.

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- ► The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- ► The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.
- This actualisation of potentialities is possible in finite dimension; in infinite dimension, it diverges, yielding useless values, zero or infinite.

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- ► The same is true of categories : composition costs nothing.
- Because operations have been performed in advance.
- This actualisation of potentialities is possible in finite dimension; in infinite dimension, it diverges, yielding useless values, zero or infinite.
- **Gol** : a potential interpretation which remains potential.



- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $\det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.

19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that :

19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.
- ► In finite dimension, use exterior algebra (Fock space), and observe that : $det(I + u) = tr(\Lambda u)$ (22)

19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.
- ► In finite dimension, use exterior algebra (Fock space), and observe that : $det(I + u) = tr(\Lambda u)$ (22)
- Actualisation is the functor Λ*ih* : it lists all cycles, all possibilities :

(23)

19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.
- ► In finite dimension, use exterior algebra (Fock space), and observe that : $det(I + u) = tr(\Lambda u)$ (22)

► Actualisation is the functor Λih : it lists all cycles, all possibilities : $det(I - hk) = tr((\Lambda ih)(\Lambda ik))$

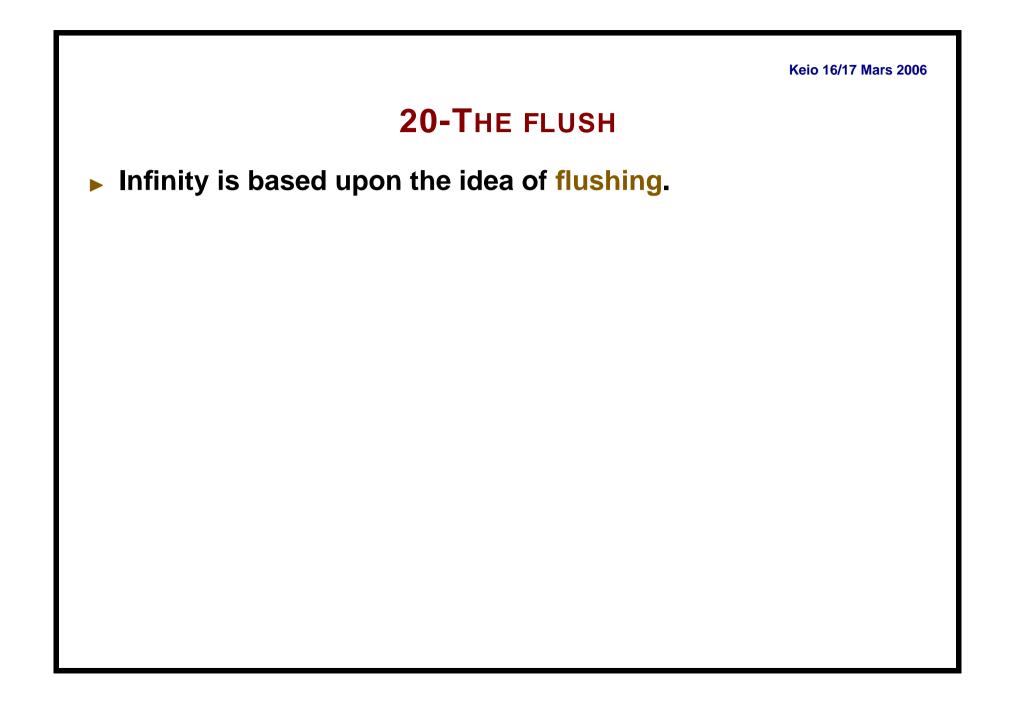
(23)

19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\operatorname{tr}(h \cdot k)$):
 - The determinant $det(I h \cdot k)$.
- ► The invariant of Geometry of Interaction.
 - Equalities, up to scalars.
 - Reflects the introspection.
 - Memory of computation, usually obtained by cheating.
- ► In finite dimension, use exterior algebra (Fock space), and observe that : $det(I + u) = tr(\Lambda u)$ (22)

► Actualisation is the functor Λih : it lists all cycles, all possibilities : $\det(I - hk) = \operatorname{tr}((\Lambda ih)(\Lambda ik))$

Equation (22) does not pass infinite limits. Remains the determinant, i.e., Gol. One should remain potential.



- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems ?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I$$
 (24)

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I$$
 (24)

• Wrong in finite (e.g., II_1) algebras.

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I$$
 (24)

• Wrong in finite (e.g., II_1) algebras.

$$\operatorname{tr}(p^* \cdot p) = 1 \neq \operatorname{tr}(p \cdot p^*) \tag{25}$$

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I$$
 (24)

• Wrong in finite (e.g., II_1) algebras.

$$\operatorname{tr}(p^* \cdot p) = 1 \neq \operatorname{tr}(p \cdot p^*) \tag{25}$$

No Hilbert Hotel, since rooms have a size (trace, dimension).

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology : we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel : make new rooms. In Gol it is expressed by the equations :

$$p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I$$
 (24)

• Wrong in finite (e.g., II_1) algebras.

$$\operatorname{tr}(p^* \cdot p) = 1 \neq \operatorname{tr}(p \cdot p^*) \tag{25}$$

- No Hilbert Hotel, since rooms have a size (trace, dimension).
- Responsible for dereliction.

Another flush : fresh variables.

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

(26)

21-THE FLUSH (CONTINUED)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :

 $\mathbb{X} \otimes (\mathbb{X} \otimes \mathbb{X}) \sim (\mathbb{X} \otimes \mathbb{X}) \otimes \mathbb{X}$

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :
 - $\mathbb{X}\otimes(\mathbb{X}\otimes\mathbb{X})\sim(\mathbb{X}\otimes\mathbb{X})\otimes\mathbb{X}$

- (26)
- ▶ Starting with $u \otimes I = u \otimes (I \otimes I)$, one gets $(u \otimes I) \otimes I$.

(26)

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :
 - $\mathbb{X}\otimes(\mathbb{X}\otimes\mathbb{X})\thicksim(\mathbb{X}\otimes\mathbb{X})\otimes\mathbb{X}$
- Starting with $u \otimes I = u \otimes (I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- ▶ *u* has been flushed to the left.

- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :
 - $\mathbb{X}\otimes(\mathbb{X}\otimes\mathbb{X})\thicksim(\mathbb{X}\otimes\mathbb{X})\otimes\mathbb{X}$

- (26)
- ▶ Starting with $u \otimes I = u \otimes (I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- u has been flushed to the left.
- ► Not possible in the hyperfinite factor.

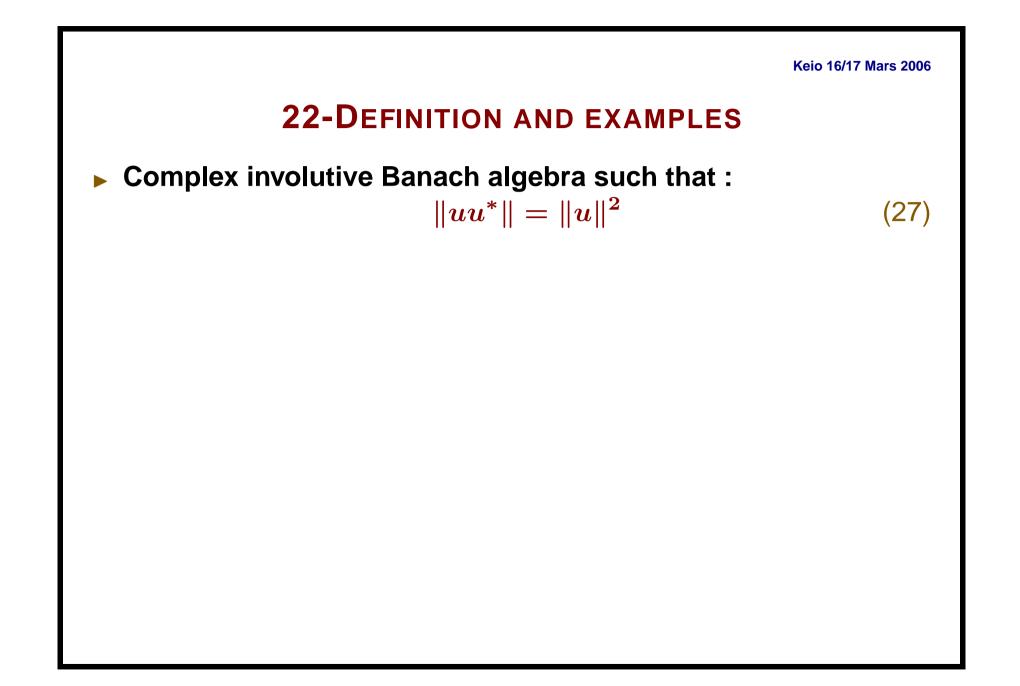
- Another flush : fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry :
 - $\mathbb{X}\otimes(\mathbb{X}\otimes\mathbb{X})\sim(\mathbb{X}\otimes\mathbb{X})\otimes\mathbb{X}$

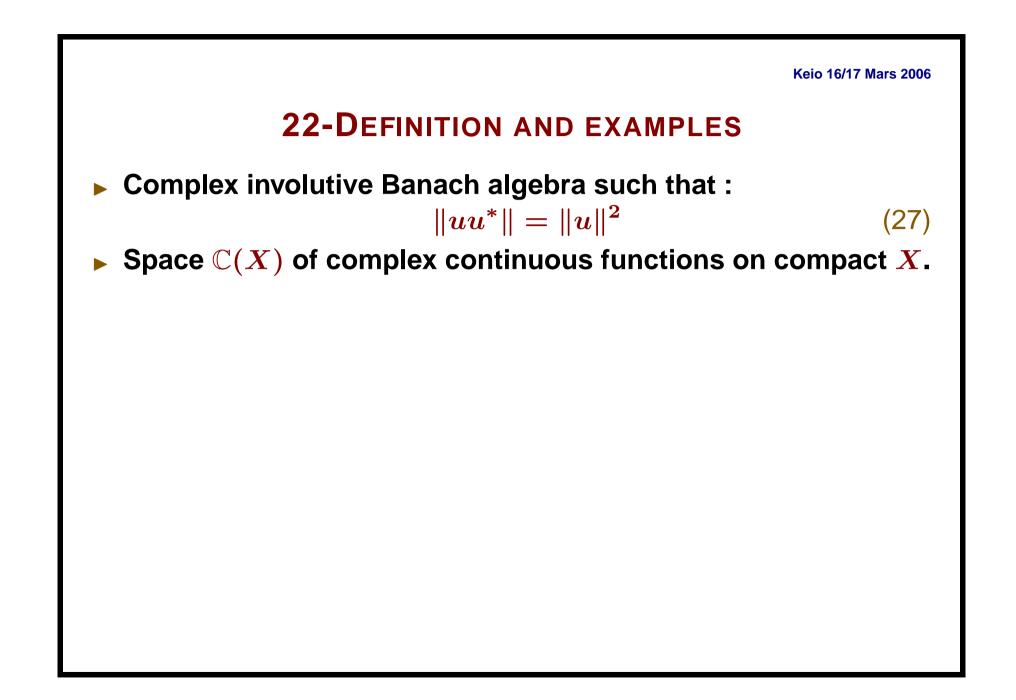
- (26)
- ▶ Starting with $u \otimes I = u \otimes (I \otimes I)$, one gets $(u \otimes I) \otimes I$.
- u has been flushed to the left.
- ► Not possible in the hyperfinite factor.
- The Murray-von Neumann factor (finite and hyperfinite) seems the appropriate space for true finitism.

Keio 16/17 Mars 2006

IV-C*-ALGEBRAS

Complex involutive Banach algebra such that :





Complex involutive Banach algebra such that :

 $\|uu^*\| = \|u\|^2 \tag{27}$

• Space $\mathbb{C}(X)$ of complex continuous functions on compact X.

• Indeed the generic commutative example.

Complex involutive Banach algebra such that :

 $\|uu^*\| = \|u\|^2 \tag{27}$

Space $\mathbb{C}(X)$ of complex continuous functions on compact X.

- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.

Complex involutive Banach algebra such that :

- $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.

Complex involutive Banach algebra such that :

- $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.

- Complex involutive Banach algebra such that :
 - $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
 - States of $\mathbb{C}(X)$ = probability measures on X.

Complex involutive Banach algebra such that :

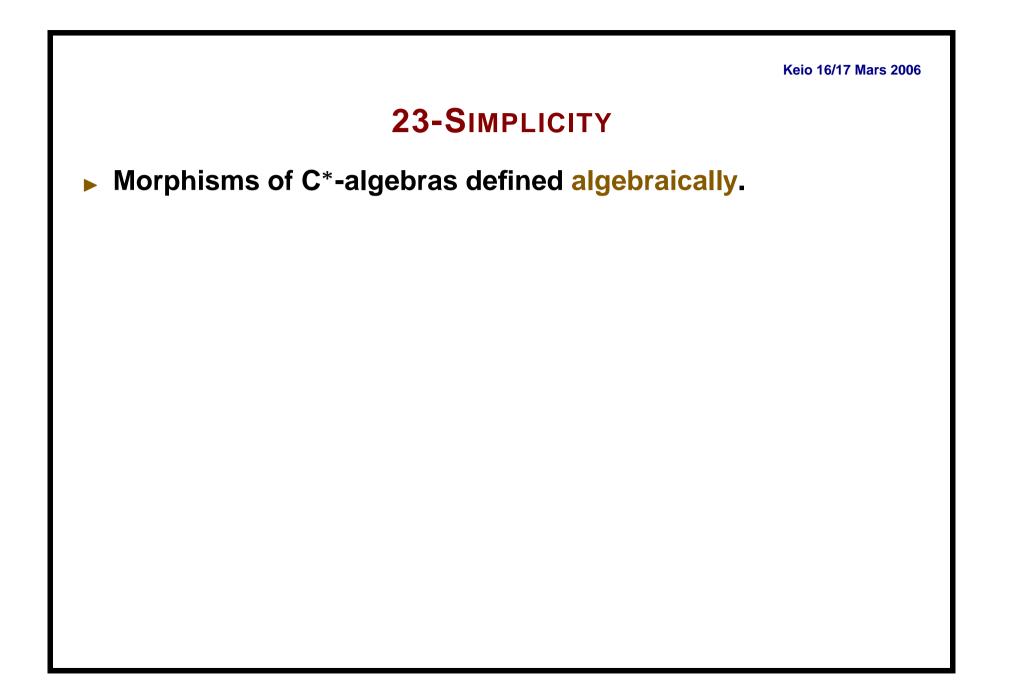
- $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
 - States of $\mathbb{C}(X)$ = probability measures on X.
- Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H} .

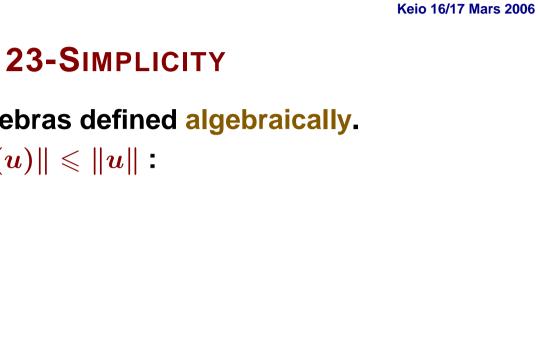
Complex involutive Banach algebra such that :

- $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
 - States of $\mathbb{C}(X)$ = probability measures on X.
- ▶ Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H} .
 - Involution defined by $\langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle$.

- Complex involutive Banach algebra such that :
 - $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
 - States of $\mathbb{C}(X)$ = probability measures on X.
- ▶ Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H} .
 - Involution defined by $\langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle$.
 - Subalgebras of $\mathcal{B}(\mathbb{H})$ are generic C*-algebras.

- Complex involutive Banach algebra such that :
 - $\|uu^*\| = \|u\|^2 \tag{27}$
- Space $\mathbb{C}(X)$ of complex continuous functions on compact X.
 - Indeed the generic commutative example.
 - If \mathcal{C} commutative, take for X the space of characters.
 - B.t.w., character = pure (extremal) state.
 - State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
 - States of $\mathbb{C}(X)$ = probability measures on X.
- ▶ Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H} .
 - Involution defined by $\langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle$.
 - Subalgebras of $\mathcal{B}(\mathbb{H})$ are generic C*-algebras.
 - Non equivalent faithful representations on Ⅲ.





- ► Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\|\varphi(u)\| \leq \|u\|$:

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(Sp(uu^*))$ to define the norm algebraically :

- ► Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(Sp(uu^*))$ to define the norm algebraically :

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(Sp(uu^*))$ to define the norm algebraically :

 $||uu^*|| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\}$ (28)

▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(Sp(uu^*))$ to define the norm algebraically :

- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(\operatorname{Sp}(uu^*))$ to define the norm algebraically :

- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.
 - Norm shrinks $\Rightarrow \varphi$ not injective.

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(Sp(uu^*))$ to define the norm algebraically :

- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.
 - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one « C*semi-norm » (i.e., s.t. (27)); all states faithful.

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(\operatorname{Sp}(uu^*))$ to define the norm algebraically :

- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.
 - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one « C*semi-norm » (i.e., s.t. (27)); all states faithful.
- For Typical example : matrix algebras $\mathcal{M}_n(\mathbb{C})$.

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(\operatorname{Sp}(uu^*))$ to define the norm algebraically :

- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.
 - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one « C*semi-norm » (i.e., s.t. (27)); all states faithful.
- For Typical example : matrix algebras $\mathcal{M}_n(\mathbb{C})$.
- $\mathcal{B}(\mathbb{H})$ not simple (infinite dimension) : compact operators.

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

• Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

▶ a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ► a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ► a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*-norm on Car(A) for A finite.

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ► a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*-norm on Car(A) for A finite.
 - The same holds in general : use inductive limits.

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ► a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*-norm on Car(A) for A finite.
 - The same holds in general : use inductive limits.
- Related topics :

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ▶ a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*-norm on Car(A) for A finite.
 - The same holds in general : use inductive limits.
- Related topics :
 - The Clifford algebra : use $\kappa(a) + \zeta(a)$.

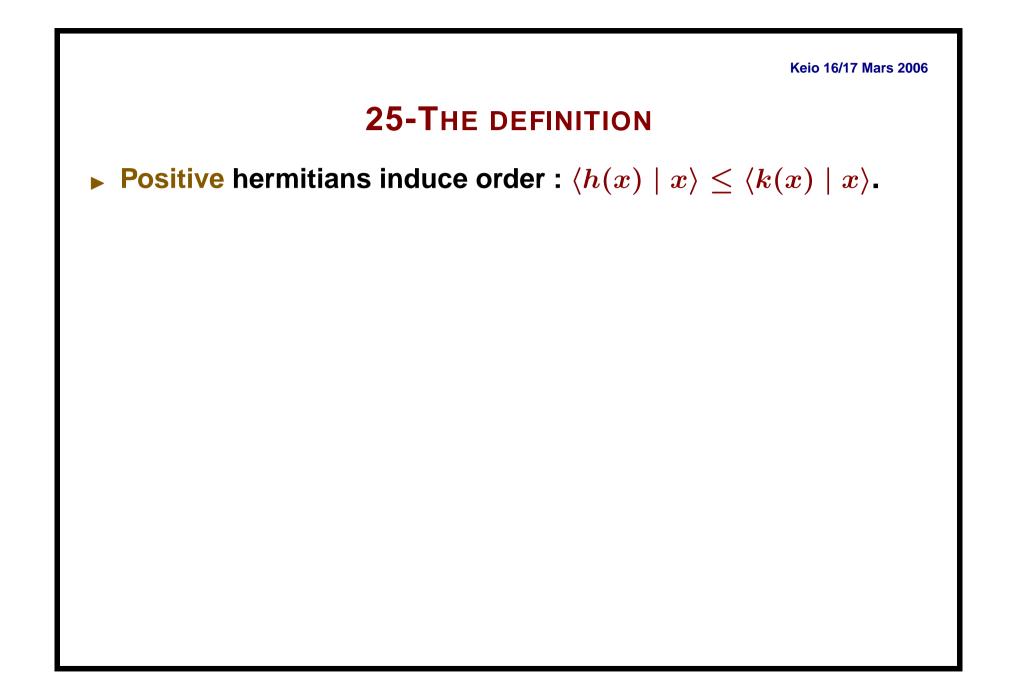
$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}$$

- ▶ a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*-norm on Car(A) for A finite.
 - The same holds in general : use inductive limits.
- Related topics :
 - The Clifford algebra : use $\kappa(a) + \zeta(a)$.
 - The (exterior) Fock space : represent $\kappa(a)(x) := a \wedge x$.

Keio 16/17 Mars 2006

V-vN ALGEBRAS



- ▶ Positive hermitians induce order : $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.

- ▶ Positive hermitians induce order : $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- ► The solution works only for represented C*algebras :

- ▶ Positive hermitians induce order : $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- ► The solution works only for represented C*algebras :
 - No way to decide equality between suprema.

- ▶ Positive hermitians induce order : $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- ► The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.

- ▶ Positive hermitians induce order : $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_i
ightarrow 0$ iff $\|u_i(x)\|
ightarrow 0$ ($x \in \mathbb{H}$).

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_i \to 0$ iff $||u_i(x)|| \to 0$ ($x \in \mathbb{H}$). Weak limits : $u_i \to 0$ iff $\langle u_i(x) | x \rangle \to 0$ ($x \in \mathbb{H}$).

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

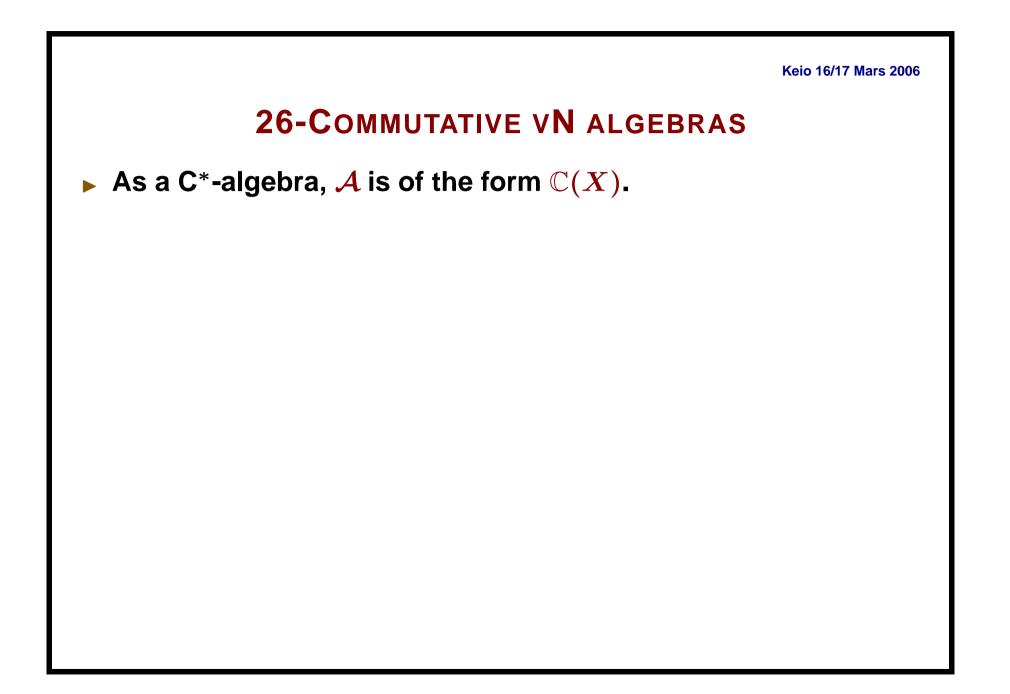
Strong limits : $u_i \to 0$ iff $||u_i(x)|| \to 0$ ($x \in \mathbb{H}$). Weak limits : $u_i \to 0$ iff $\langle u_i(x) | x \rangle \to 0$ ($x \in \mathbb{H}$).

Equivalently : subalgebra equal to its bicommutant.

- Positive hermitians induce order : $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under :

Strong limits : $u_i \to 0$ iff $||u_i(x)|| \to 0$ ($x \in \mathbb{H}$). Weak limits : $u_i \to 0$ iff $\langle u_i(x) | x \rangle \to 0$ ($x \in \mathbb{H}$).

- Equivalently : subalgebra equal to its bicommutant.
- Also : the commutant of a self-adjoint subset of $\mathcal{B}(\mathbb{H})$.



Keio 16/17 Mars 2006

26-COMMUTATIVE VN ALGEBRAS

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :

26-COMMUTATIVE VN ALGEBRAS

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- Clopen sets form a σ -algebra :

$$\bigsqcup \mathcal{O}_i := \bigcup \mathcal{O}_i \tag{31}$$

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- Clopen sets form a σ -algebra :

• Commutative vN : space $L^{\infty}(X, \mu)$.

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- Clopen sets form a σ -algebra :

- Commutative vN : space $L^{\infty}(X, \mu)$.
 - Measure μ is up to absolute continuity.

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- Clopen sets form a σ -algebra :

- Commutative vN : space $L^{\infty}(X, \mu)$.
 - Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on [0,1].

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- **Clopen sets form a** σ **-algebra** :

- Commutative vN : space $L^{\infty}(X, \mu)$.
 - Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on [0,1].
- ▶ In general : C*-algebra + faithful state ρ (i.e., $\rho(uu^*) = 0$ implies u = 0.) yields a vN completion.

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- **Clopen sets form a** σ **-algebra** :

- Commutative vN : space $L^{\infty}(X, \mu)$.
 - Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on [0,1].
- ▶ In general : C*-algebra + faithful state ρ (i.e., $\rho(uu^*) = 0$ implies u = 0.) yields a vN completion.
- ▶ The CAR-algebra admits completions of all types I, II, III.

From a C*-algebra C and a state ρ construct a representation.

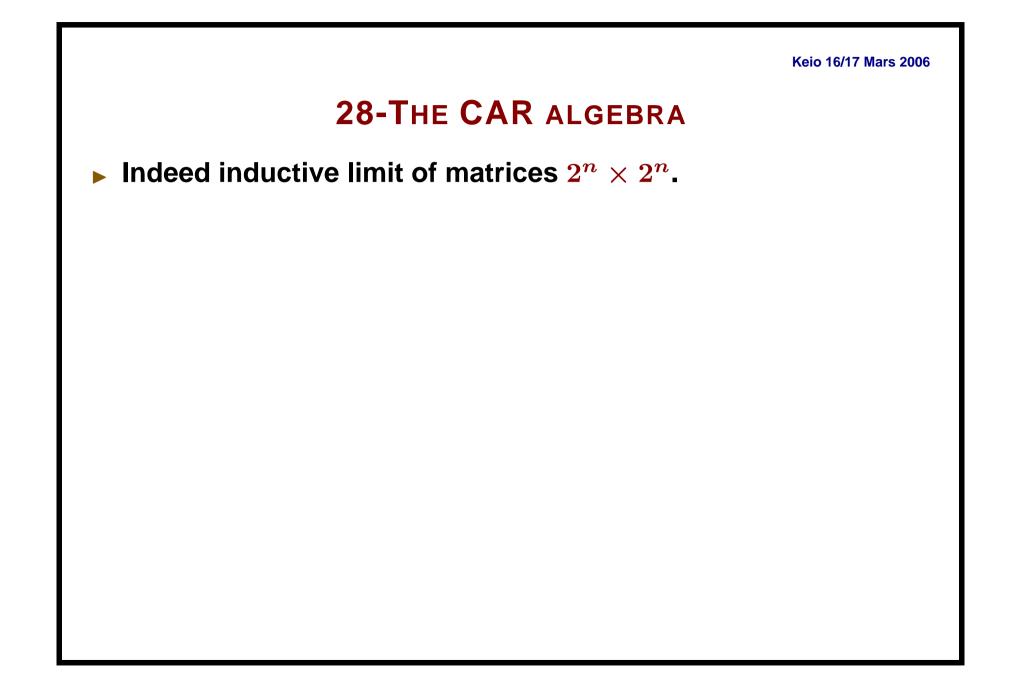
- From a C*-algebra C and a state ρ construct a representation.
- ▶ Define $\langle u | v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.

- From a C*-algebra C and a state ρ construct a representation.
- ▶ Define $\langle u | v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- C acts by left multiplication on the separation/completion of the latter.

- From a C*-algebra C and a state ρ construct a representation.
- ▶ Define $\langle u | v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- C acts by left multiplication on the separation/completion of the latter.
- ▶ In case ρ is faithful, this representation is isometric.

- From a C*-algebra C and a state ρ construct a representation.
- ▶ Define $\langle u | v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- C acts by left multiplication on the separation/completion of the latter.
- ▶ In case ρ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of C.

- From a C*-algebra C and a state ρ construct a representation.
- ▶ Define $\langle u | v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- C acts by left multiplication on the separation/completion of the latter.
- ▶ In case ρ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of C.
- ► Typical case : simple algebras.



- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- **Each of them equipped with normalised trace :**

 $\operatorname{tr}(u) := 2^{-n} \operatorname{Tr}(u).$

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

$$\rho(uv) = \rho(vu) \tag{32}$$

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

$$\rho(uv) = \rho(vu) \tag{32}$$

- The vN algebra thus obtained is :
 - Factor : Trivial center.

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

$$\rho(uv) = \rho(vu) \tag{32}$$

The vN algebra thus obtained is : Factor : Trivial center. Finite : It has a trace.

(32)

28-THE CAR ALGEBRA

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

ho(uv)=
ho(vu)

The vN algebra thus obtained is : Factor : Trivial center.

Finite : It has a trace.

Hyperfinite : Finite matrices are weakly dense.

(32)

28-THE CAR ALGEBRA

- ▶ Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

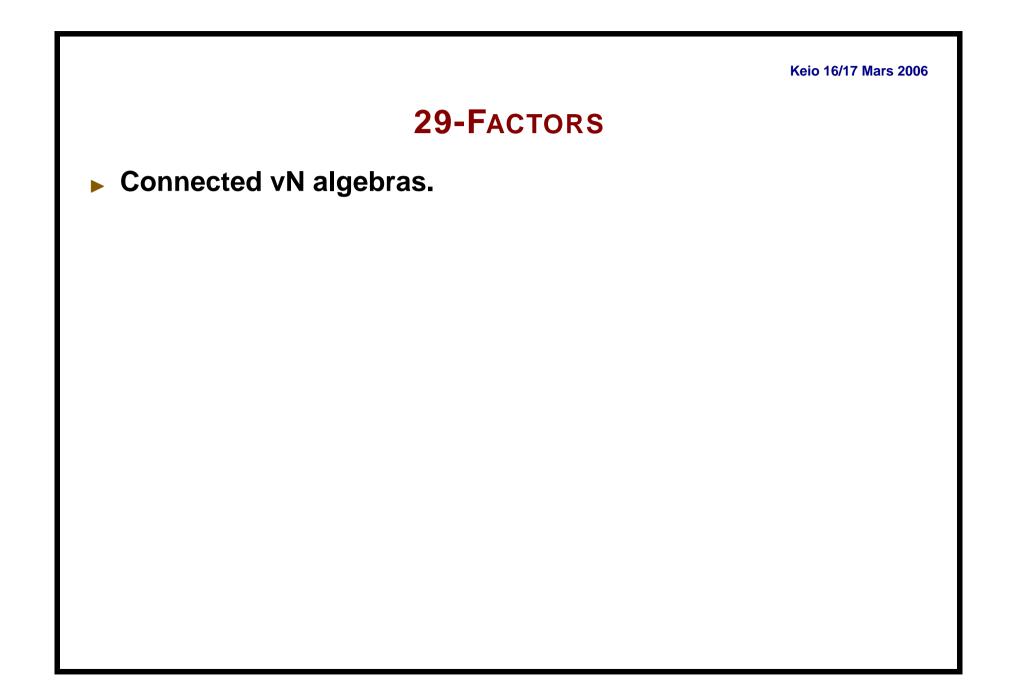
ho(uv)=
ho(vu)

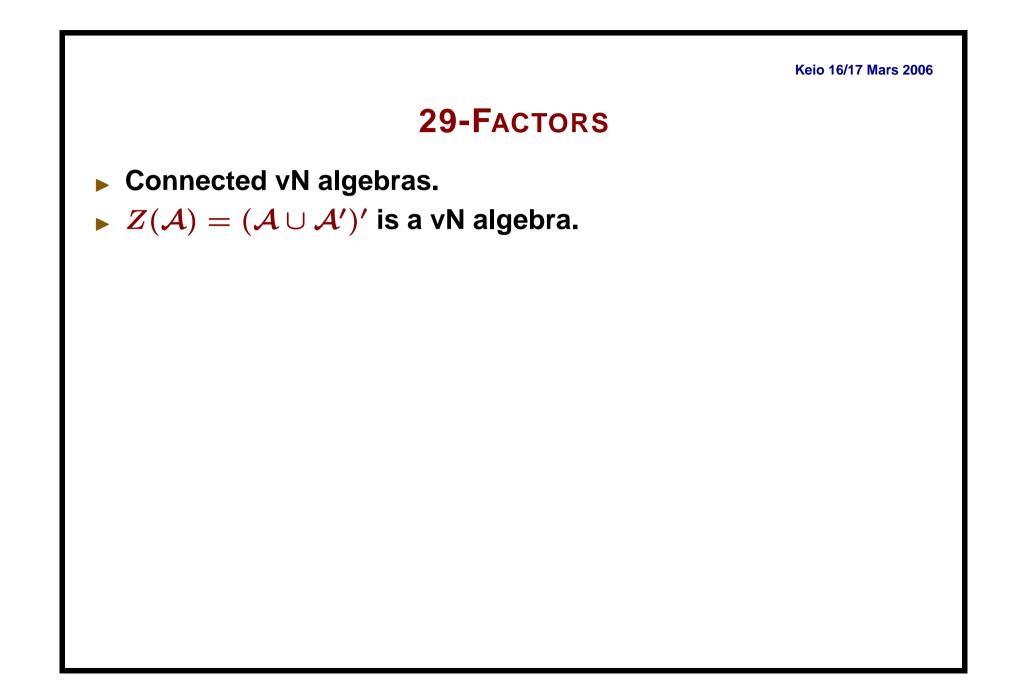
- The vN algebra thus obtained is :
 - Factor : Trivial center.
 - Finite : It has a trace.

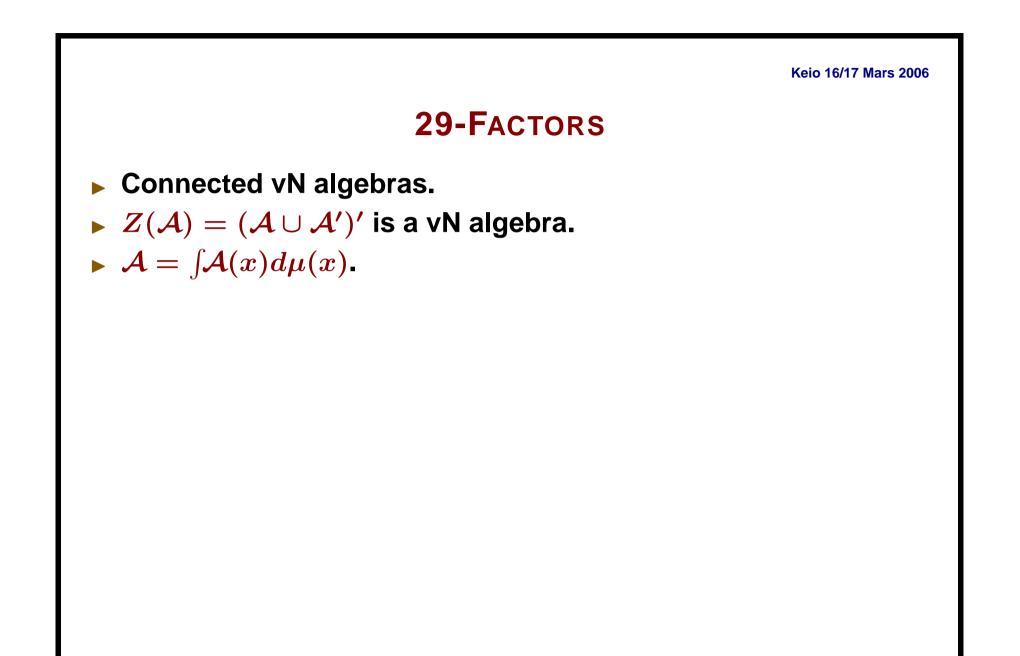
Hyperfinite : Finite matrices are weakly dense.

Up to isomorphism, only one such vN algebra, the Murray-von Neumann factor *R*.

VI-THE FINITE/HYPERFINITE FACTOR





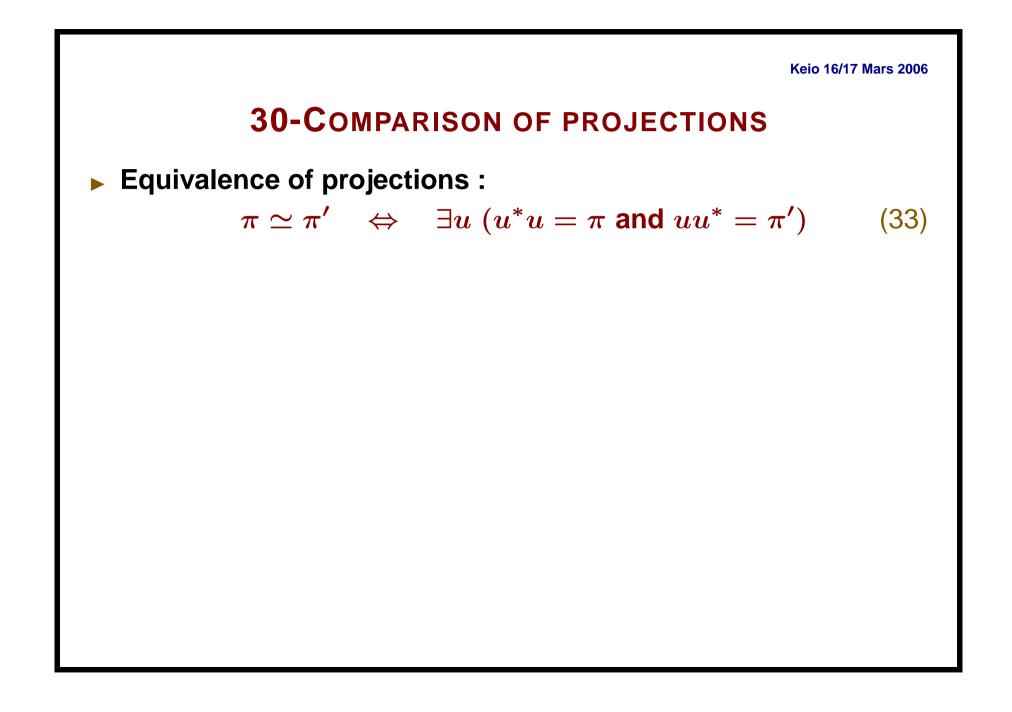


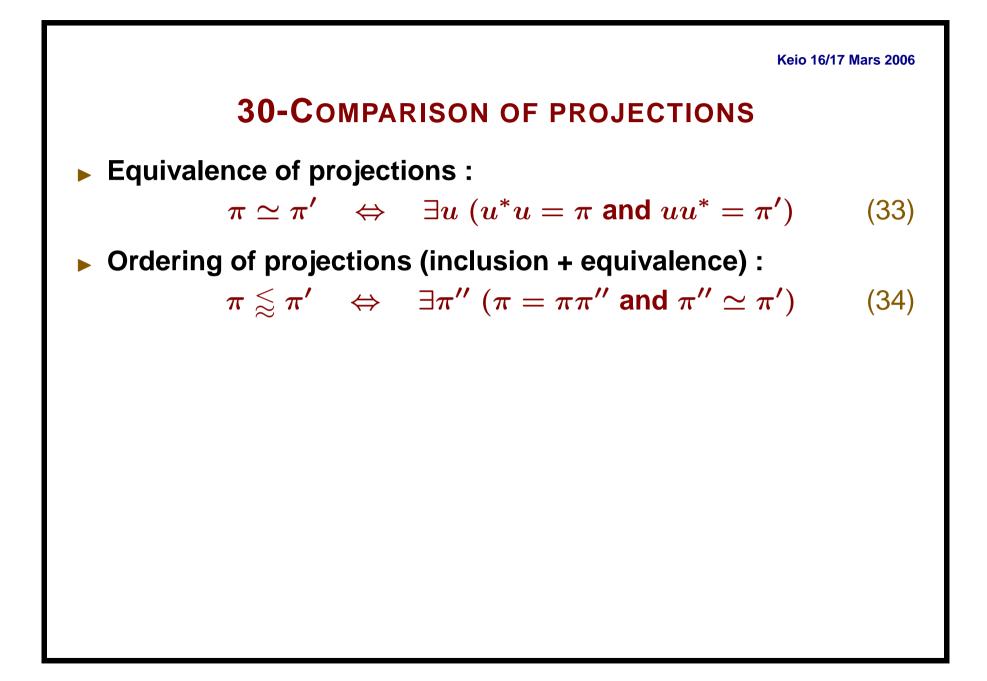
29-FACTORS

- Connected vN algebras.
- ▶ $Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')'$ is a vN algebra.
- ▶ $\mathcal{A} = \int \mathcal{A}(x) d\mu(x).$
- **Each** $\mathcal{A}(x)$ is a factor, i.e., a vN algebra with trivial center.

29-FACTORS

- Connected vN algebras.
- ▶ $Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')'$ is a vN algebra.
- ▶ $\mathcal{A} = \int \mathcal{A}(x) d\mu(x)$.
- **Each** $\mathcal{A}(x)$ is a factor, i.e., a vN algebra with trivial center.
- Classification of vN algebras thus reduces to classification of factors.





30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \lessapprox I$ is wrong.

30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \lessapprox I$ is wrong.

$$uu^* = I \Rightarrow u^*u = I \tag{35}$$

30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \gtrsim I$ is wrong.

$$uu^* = I \Rightarrow u^*u = I \tag{35}$$

For factors, \lesssim is total :

30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \lessapprox I$ is wrong.

$$uu^* = I \Rightarrow u^*u = I \tag{35}$$

For factors, \lesssim is total :

Type I : Order type $\{0,\ldots,n\}$ (I_n) or $\{0,\ldots,n,\ldots,\infty\}$ (I_{∞}).

30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \; (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \lessapprox I$ is wrong.

$$uu^* = I \Rightarrow u^*u = I \tag{35}$$

For factors, \leq is total :

Type I: Order type $\{0, \ldots, n\}$ (I_n) or $\{0, \ldots, n, \ldots, \infty\}$ (I_{∞}). Type II: Order type [0, 1] (II₁) or $[0, +\infty]$ (II_{∞}).

30-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \ (u^*u = \pi \text{ and } uu^* = \pi')$$
 (33)

Ordering of projections (inclusion + equivalence) :

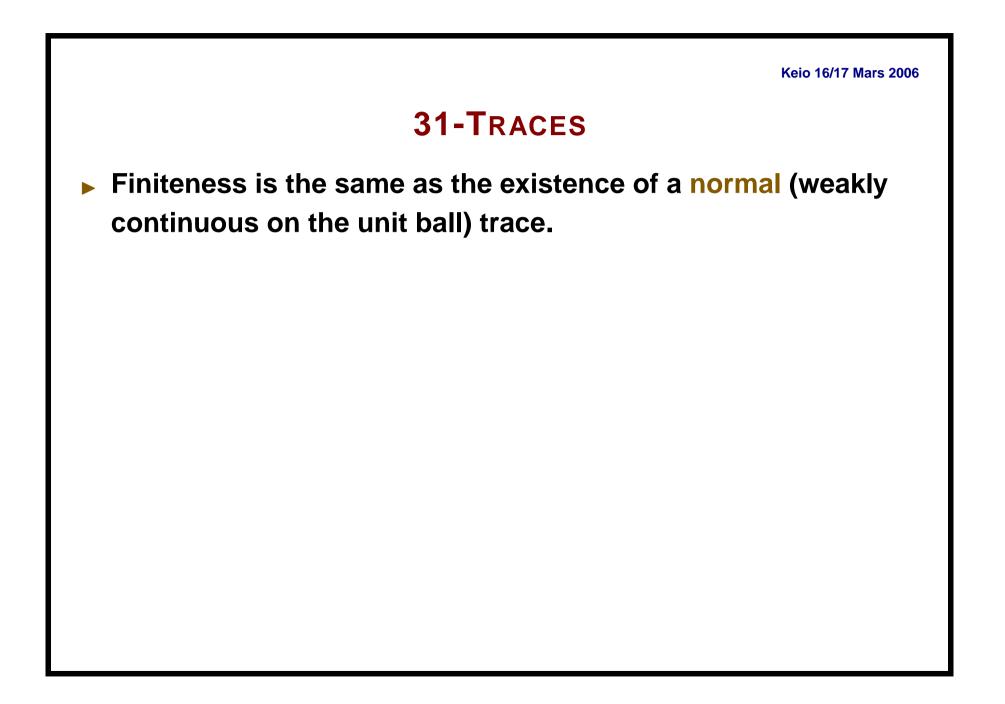
$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \; (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (34)

• \mathcal{A} is finite when $I \lessapprox I$ is wrong.

$$uu^* = I \Rightarrow u^*u = I \tag{35}$$

For factors, \leq is total :

Type I : Order type $\{0, \ldots, n\}$ (In) or $\{0, \ldots, n, \ldots, \infty\}$ (In).Type II : Order type [0, 1] (II1) or $[0, +\infty]$ (IIn).Type III : Order type $\{0, +\infty\}$.



31-TRACES

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ► Can be seen as a dimension.

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ► Can be seen as a dimension.
 - E, F have same dimension iff there is a partial isometry us.t. Dom(u) = E, Im(u) = F.

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ► Can be seen as a dimension.
 - E, F have same dimension iff there is a partial isometry us.t. Dom(u) = E, Im(u) = F.
 - *E* has dimension 1/2 when $\dim(E) = \dim(E^{\perp})$.

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ► Can be seen as a dimension.
 - E, F have same dimension iff there is a partial isometry us.t. Dom(u) = E, Im(u) = F.
 - *E* has dimension 1/2 when $\dim(E) = \dim(E^{\perp})$.
- The completion of the CAR-algebra is finite and infinite-dimensional :

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ▶ Can be seen as a dimension.
 - E, F have same dimension iff there is a partial isometry us.t. Dom(u) = E, Im(u) = F.
 - *E* has dimension 1/2 when $\dim(E) = \dim(E^{\perp})$.
- The completion of the CAR-algebra is finite and infinite-dimensional :
 - Factor of type II_1 .

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ▶ Can be seen as a dimension.
 - E, F have same dimension iff there is a partial isometry us.t. Dom(u) = E, Im(u) = F.
 - *E* has dimension 1/2 when $\dim(E) = \dim(E^{\perp})$.
- The completion of the CAR-algebra is finite and infinite-dimensional :
 - Factor of type II₁.
- On a finite factor, the trace is unique.

► *G* denumerable induces a convolution algebra, obtained by linearisation.

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

is a bilinear map $\ell^2(G) imes \ell^2(G) \rightsquigarrow \ell^\infty(G)$.

▶ Define $\mathcal{A}(G) := \{(x_g); (x_g)* : \ell^2(G) \rightsquigarrow \ell^2(G)\}.$

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

- ▶ Define $\mathcal{A}(G) := \{(x_g); (x_g)* : \ell^2(G) \rightsquigarrow \ell^2(G)\}.$
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*(y_g)$.

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

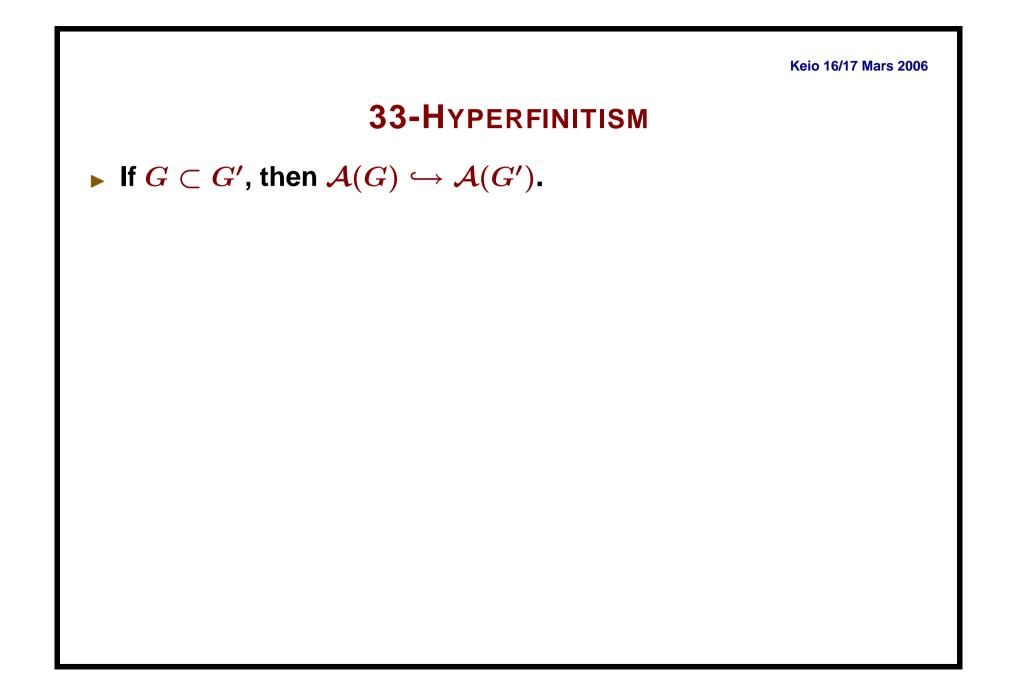
- ▶ Define $\mathcal{A}(G) := \{(x_g); (x_g)* : \ell^2(G) \rightsquigarrow \ell^2(G)\}.$
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*(y_g)$.
- ► If G has infinite conjugacy classes (i.c.c.), then A(G) is a factor.

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})$$
(36)

- ▶ Define $\mathcal{A}(G) := \{(x_g); (x_g)* : \ell^2(G) \rightsquigarrow \ell^2(G)\}.$
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*(y_g)$.
- ► If G has infinite conjugacy classes (i.c.c.), then A(G) is a factor.

▶ B.t.w.,
$$\operatorname{tr}((x_g)) = x_1$$
.



- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.
 - Any operator can be weakly approximated by matrices.

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.
 - Any operator can be weakly approximated by matrices.
- ▶ Hyperfinite algebra : an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in \mathcal{A} .

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.
 - Any operator can be weakly approximated by matrices.
- ▶ Hyperfinite algebra : an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in \mathcal{A} .
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.
 - Any operator can be weakly approximated by matrices.
- ▶ Hyperfinite algebra : an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in \mathcal{A} .
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).
- ► But only one hyperfinite factor of type II₁. Murray-von Neumann factor *R*.

The factor \mathcal{R} is remarkably stable :

- **The factor** \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.

- **The factor** \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.

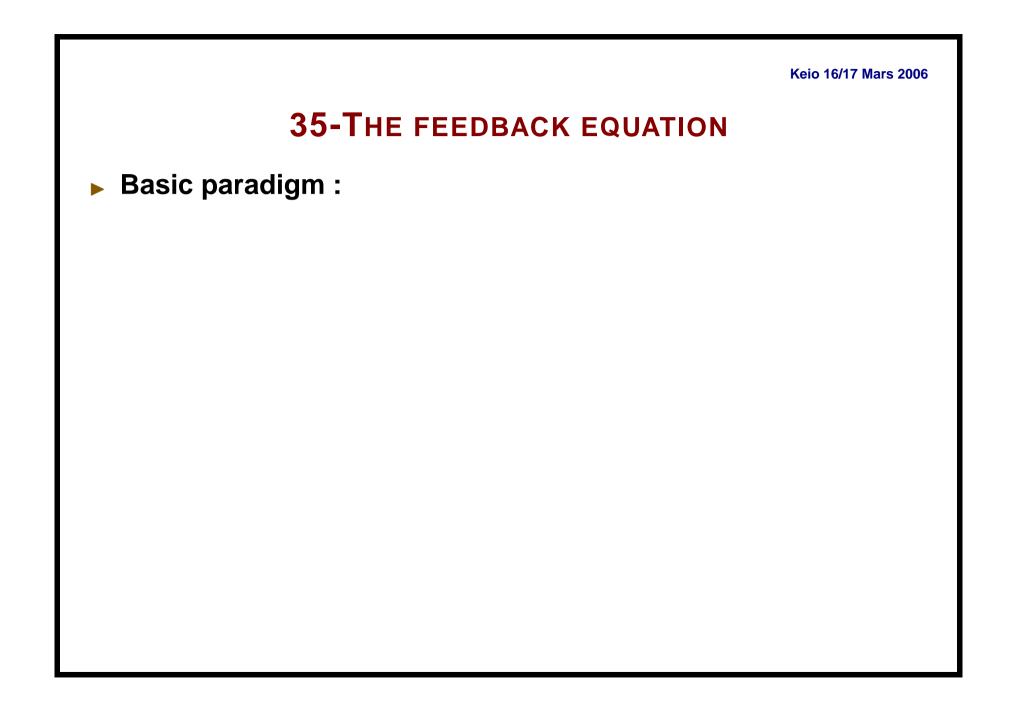
- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
 - Some of them can be internalised : crossed products.

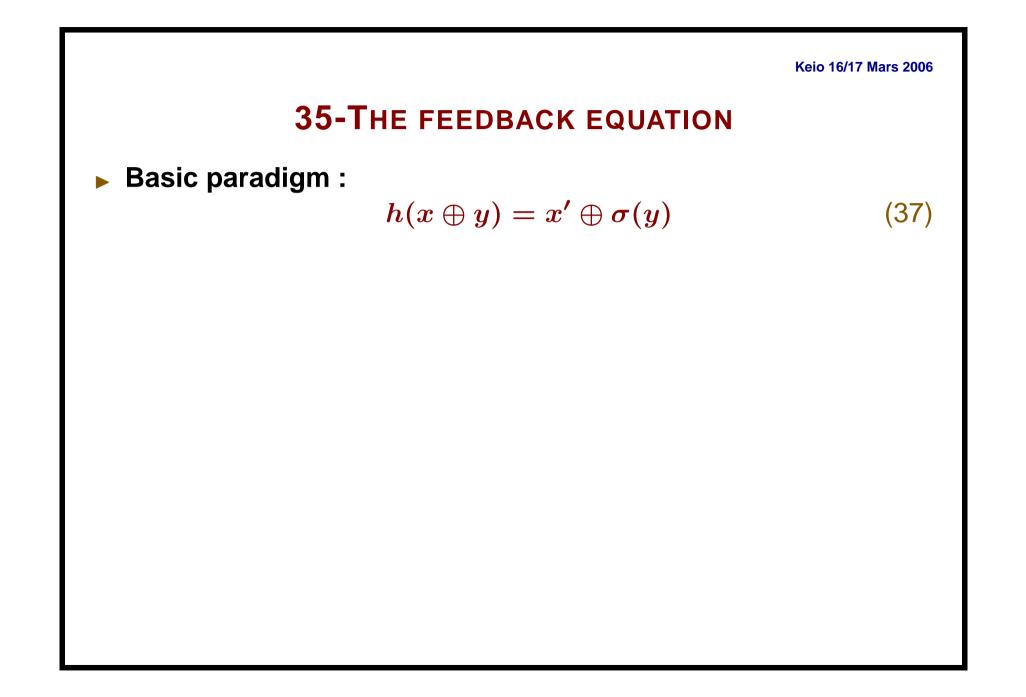
- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
 - Some of them can be internalised : crossed products.
 - Typically, the twist σ of $\mathcal{R} \otimes \mathcal{R}$ can be added.

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
 - Some of them can be internalised : crossed products.
 - Typically, the twist σ of $\mathcal{R}\otimes \mathcal{R}$ can be added.
 - Since $\sigma^2 = I$, the result still isomorphic to \mathcal{R} .

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
 - Some of them can be internalised : crossed products.
 - Typically, the twist σ of $\mathcal{R}\otimes \mathcal{R}$ can be added.
 - Since $\sigma^2 = I$, the result still isomorphic to \mathcal{R} .
 - But adding $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$ leads to a type III factor.

VII-Gol





35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

$$k(y' \oplus z) = y \oplus z' \tag{39}$$

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

• Chiasmi : matrices $\chi_u :=$

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

b Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

$$k(y' \oplus z) = y \oplus z' \tag{39}$$

- Chiasmi : matrices $\chi_u := \begin{vmatrix} 0 & u \\ u^* & 0 \end{vmatrix}$.
 - Feedback between χ_u and χ_v yields χ_{uv} .

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

$$k(y' \oplus z) = y \oplus z' \tag{39}$$

- Chiasmi : matrices $\chi_u := \begin{vmatrix} 0 & u \\ u^* & 0 \end{vmatrix}$.
 - Feedback between χ_u and χ_v yields χ_{uv} .
- ► The feedback equation (37) << solved >> in full generality :

35-THE FEEDBACK EQUATION

Basic paradigm :

$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

$$k(y' \oplus z) = y \oplus z' \tag{39}$$

- Chiasmi : matrices $\chi_u := \begin{vmatrix} 0 & u \\ u^* & 0 \end{vmatrix}$.
 - Feedback between χ_u and χ_v yields χ_{uv} .
- ► The feedback equation (37) << solved >> in full generality :
 - Sole hypothesis : $||h|| \leq 1$.

35-THE FEEDBACK EQUATION

Basic paradigm :

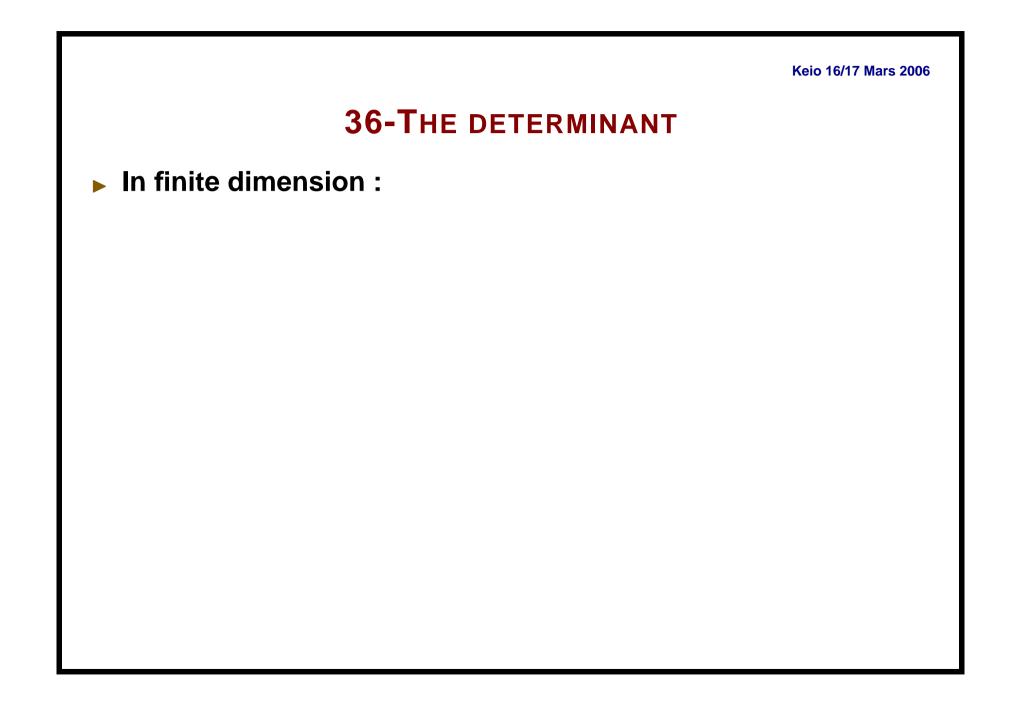
$$h(x \oplus y) = x' \oplus \sigma(y) \tag{37}$$

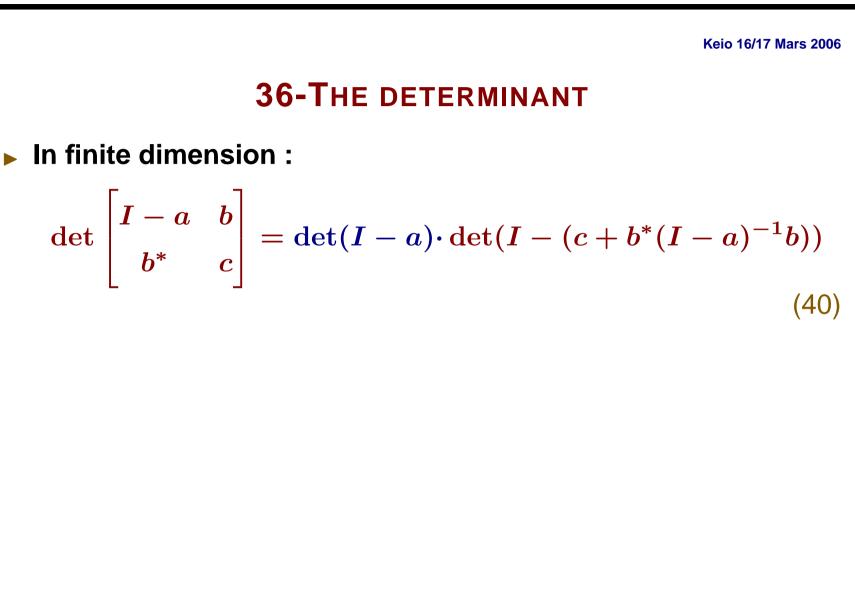
• Usually the partial symmetry σ swaps I/O of two operators :

$$h(x \oplus y) = x' \oplus y' \tag{38}$$

$$k(y' \oplus z) = y \oplus z' \tag{39}$$

- Chiasmi : matrices $\chi_u := \begin{bmatrix} 0 & u \\ u^* & 0 \end{bmatrix}$.
 - Feedback between χ_u and χ_v yields χ_{uv} .
- ► The feedback equation (37) << solved >> in full generality :
 - Sole hypothesis : $||h|| \leq 1$.
 - Associativity : $(\sigma + \tau) \llbracket h \rrbracket = \sigma \llbracket \tau \llbracket h \rrbracket \rrbracket$.





36-THE DETERMINANT

▶ In finite dimension :

$$\det \begin{bmatrix} I-a & b \\ b^* & c \end{bmatrix} = \det(I-a) \cdot \det(I-(c+b^*(I-a)^{-1}b))$$
(40)

▶ In logical situations, nilpotency : det(I - a) = 1.

36-THE DETERMINANT

In finite dimension :

$$\det \begin{bmatrix} I-a & b \\ b^* & c \end{bmatrix} = \det(I-a) \cdot \det(I-(c+b^*(I-a)^{-1}b))$$
(40)

- ▶ In logical situations, nilpotency : det(I a) = 1.
- ▶ In type II₁ factor, nilpotency will be replaced by weaker condition r(u) < 1.

36-THE DETERMINANT

In finite dimension :

$$\det \begin{bmatrix} I-a & b \\ b^* & c \end{bmatrix} = \det(I-a) \cdot \det(I-(c+b^*(I-a)^{-1}b))$$
(40)

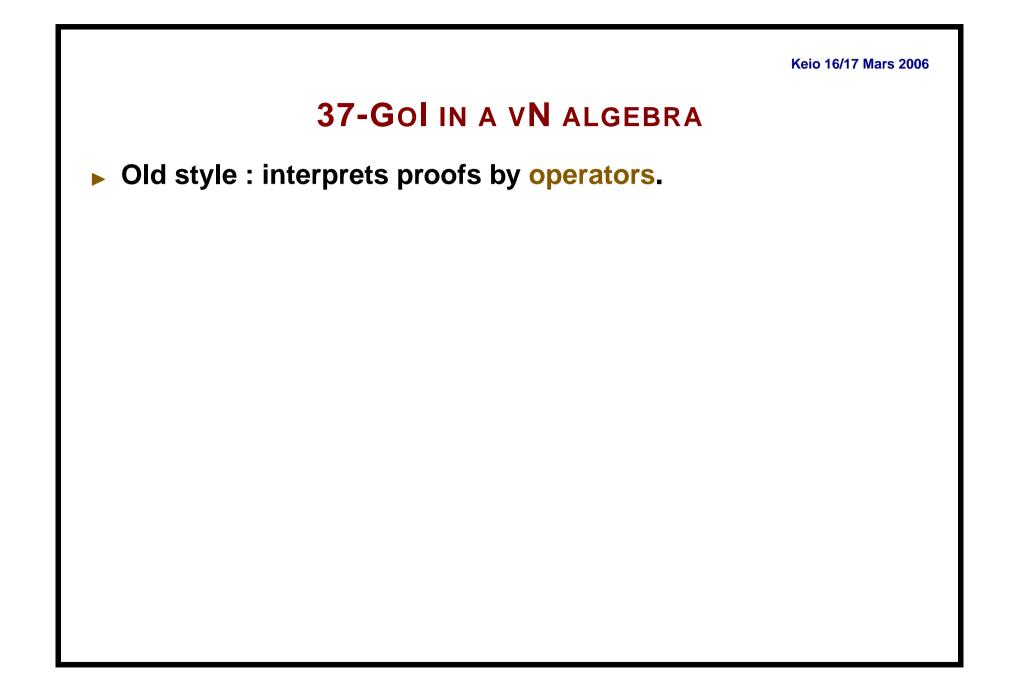
- ▶ In logical situations, nilpotency : det(I a) = 1.
- ▶ In type II₁ factor, nilpotency will be replaced by weaker condition r(u) < 1.
- ► Then determinant accessible through a power series expansion : $det(I u) := e^{tr(log(I u))}$

36-THE DETERMINANT

In finite dimension :

$$\det \begin{bmatrix} I-a & b \\ b^* & c \end{bmatrix} = \det(I-a) \cdot \det(I-(c+b^*(I-a)^{-1}b))$$
(40)

- ▶ In logical situations, nilpotency : det(I a) = 1.
- In type II₁ factor, nilpotency will be replaced by weaker condition r(u) < 1.
- ► Then determinant accessible through a power series expansion : $det(I u) := e^{tr(log(I u))}$
- Familiar manipulations on determinants accessible through (converging) power series.



- ► Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
 - Finiteness forbids the primitives p, q, d.

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
 - Finiteness forbids the primitives p, q, d.
 - * In a finite algebra, $pp^* = I \Rightarrow p^*p = I$.

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed in seven days.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
 - Finiteness forbids the primitives p, q, d.
 - * In a finite algebra, $pp^* = I \Rightarrow p^*p = I$.
 - Hyperfiniteness forbids $t(u\otimes (v\otimes w))t^*=(u\otimes v)\otimes w.$

VIII-FINITE GOI

► A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two \mathcal{R} , to get h', k'':

- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two R, to get h', k'':
 ∗ ·⊗··→ ·⊗ · ⊗I

- ► A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two \mathcal{R} , to get h', k'':
 - $* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes \cdot \otimes I$
 - $* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$

- ► A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two \mathcal{R} , to get h', k'': * $\cdot \otimes \cdot \Rightarrow \cdot \otimes \cdot \otimes I$
 - $* \cdot \otimes \cdot \cdots \cdot \otimes I \otimes \cdot$
 - $(\delta, h), (\epsilon, k)$ are polar, notation $(\delta, h) \stackrel{|}{\sim} (\epsilon, k)$ iff :

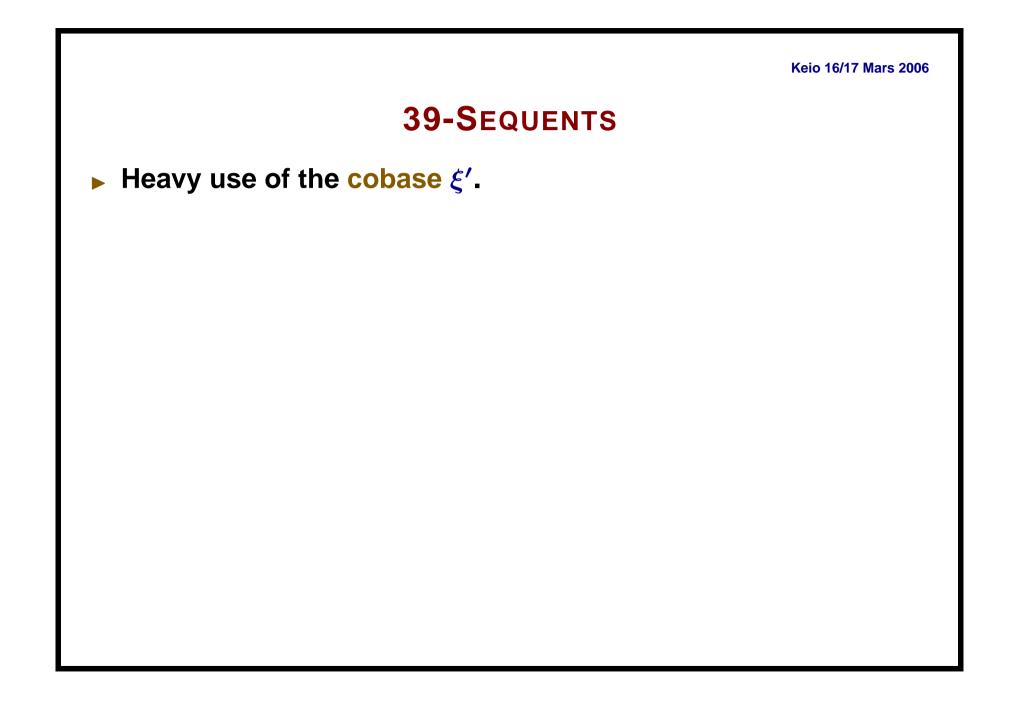
- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two \mathcal{R} , to get h', k'': * $\cdot \otimes \cdot \Rightarrow \cdot \otimes \cdot \otimes I$
 - $* \cdot \otimes \cdot \cdots \cdot \otimes I \otimes \cdot$
 - $(\delta, h), (\epsilon, k)$ are polar, notation $(\delta, h) \stackrel{|}{\sim} (\epsilon, k)$ iff :

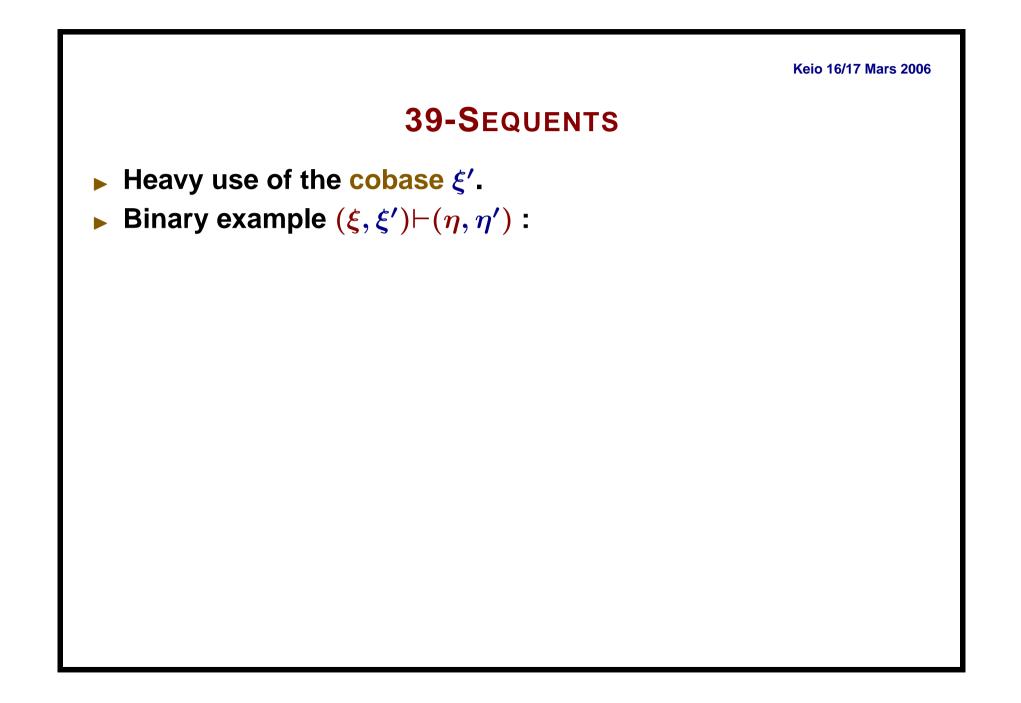
r(h'k'') < 1 $\delta \cdot \epsilon \cdot \det(I - h'k'') \neq 1$ (41)

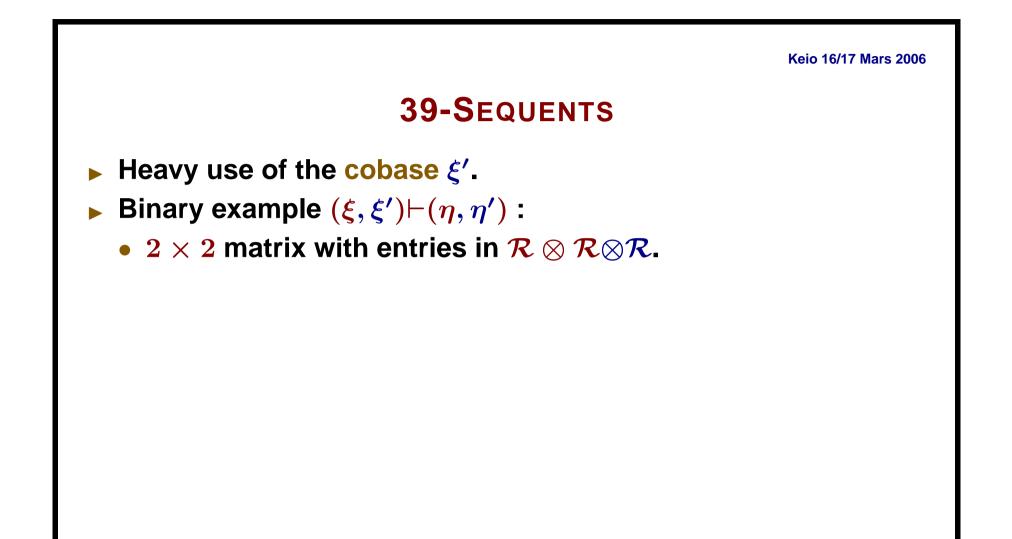
- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $(\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$ of norm ≤ 1 .
 - Second tensor component \mathcal{R} is the dialect.
 - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1 \dim \xi}$ is the daimon.
- Duality on the same base : given h, k :
 - Tensorise h, k with I, swap the two \mathcal{R} , to get h', k'': * $\cdot \otimes \cdots \otimes \cdot \otimes I$
 - $* \cdot \otimes \cdot \cdots \cdot \otimes I \otimes \cdot$
 - $(\delta, h), (\epsilon, k)$ are polar, notation $(\delta, h) \stackrel{|}{\sim} (\epsilon, k)$ iff :

r(h'k'') < 1 $\delta \cdot \epsilon \cdot \det(I - h'k'') \neq 1$ (41)

• Behaviour : set B of designs of given base s.t. $B = \sim \sim B$.







- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.

• Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.

- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
 - All supports have same dimension : no need for p, q.

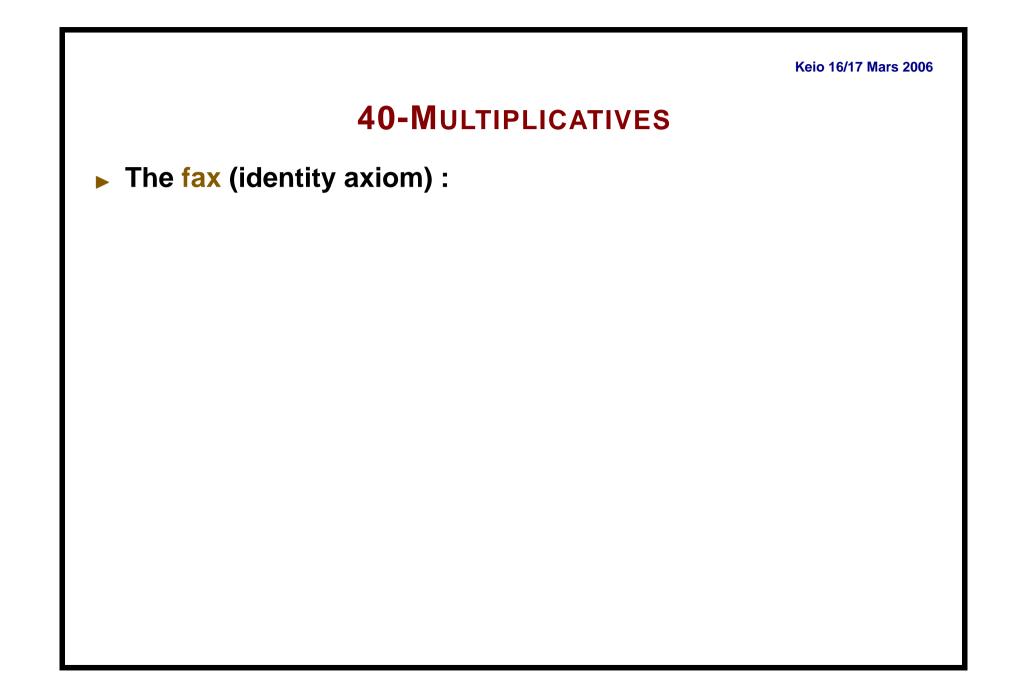
- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
 - All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases (ξ, ξ') replace :

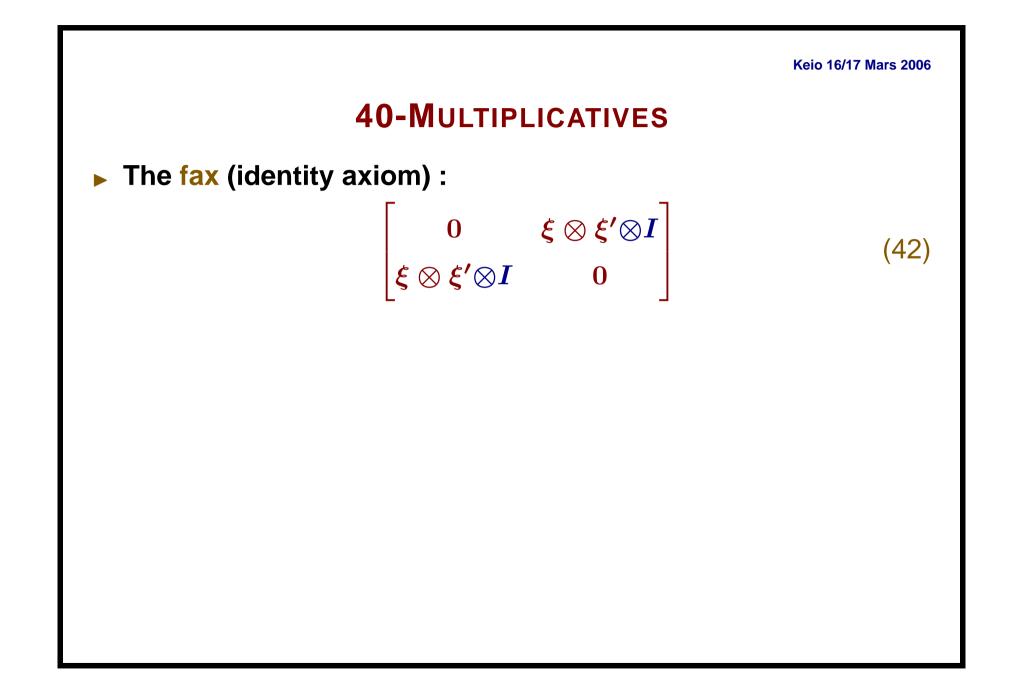
- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
 - All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases (ξ, ξ') replace :
 - In $h,\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields h'

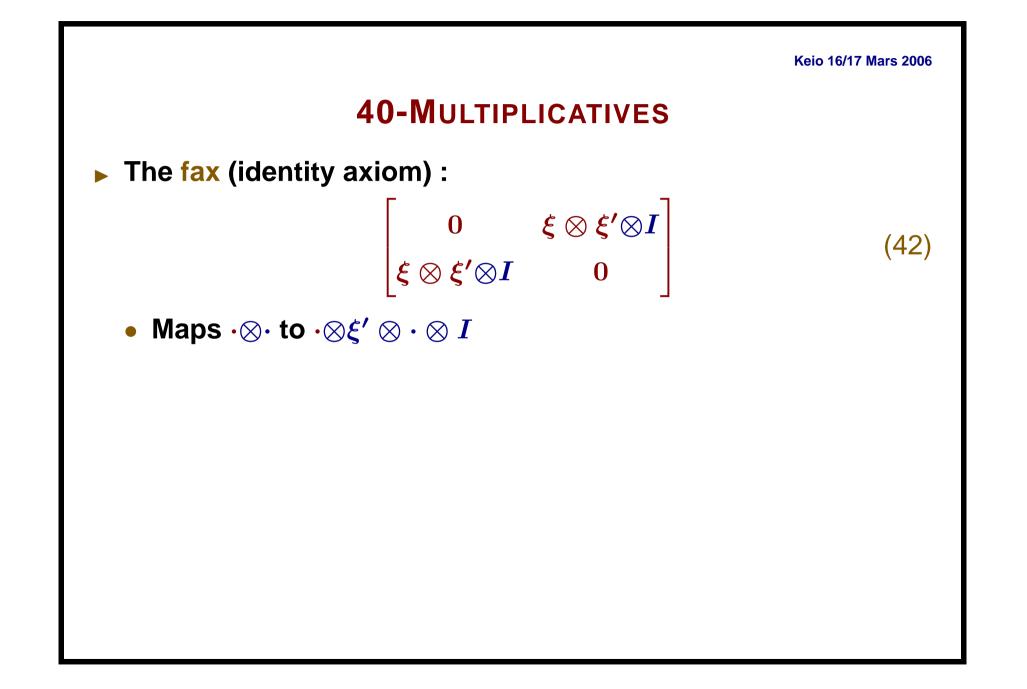
- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
 - All supports have same dimension : no need for *p*, *q*.
- Let (γ, h) and (δ, k) of respective bases (ξ, ξ') replace :
 - In $h,\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields h'
 - In $k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot$: yields k''

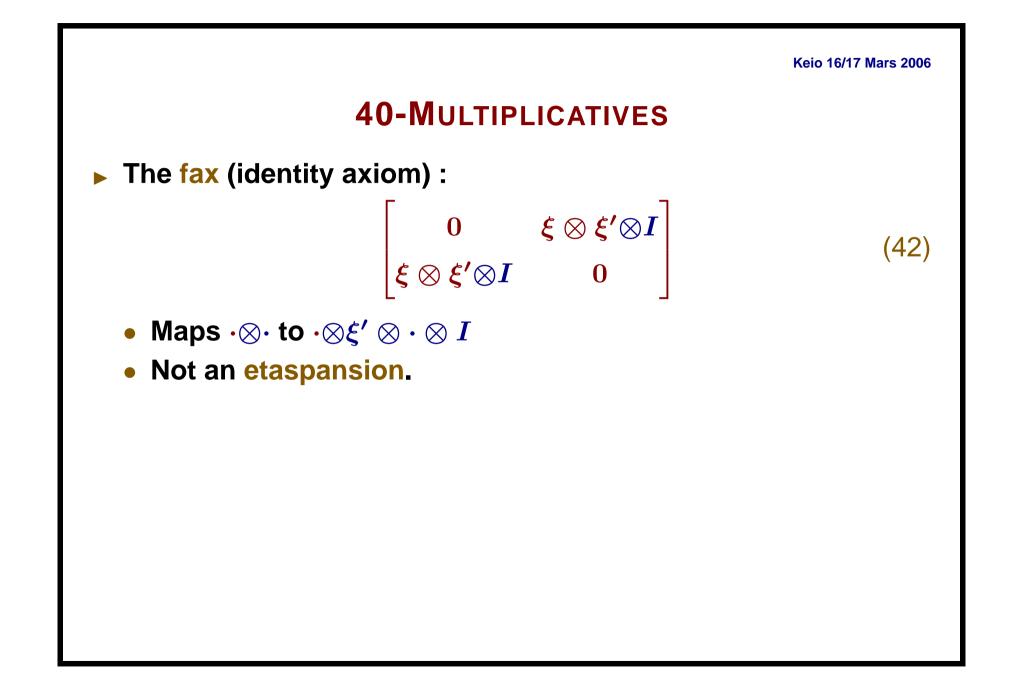
- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
 - All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases (ξ, ξ') replace :
 - In $h,\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields h'
 - In $k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot$: yields k''
- Apply Gol, which yields *l*.

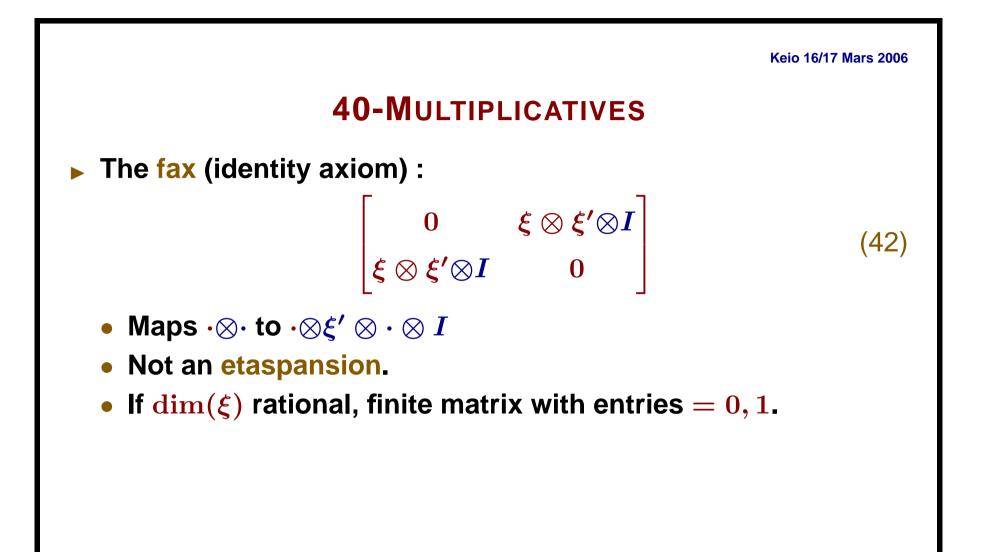
- Heavy use of the cobase ξ' .
- ▶ Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
 - 2×2 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\boldsymbol{\xi}\otimes \eta'\otimes \boldsymbol{I},\eta\otimes \boldsymbol{\xi}'\otimes \boldsymbol{I}.$
 - All supports have same dimension : no need for p, q.
- Let (γ, h) and (δ, k) of respective bases (ξ, ξ') replace :
 - In $h,\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields h'
 - In $k, \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot$: yields k''
- Apply Gol, which yields *l*.
- Output : $(\gamma^{\dim(\eta)} \cdot \delta \cdot \det(I h' \cdot k''), l)$

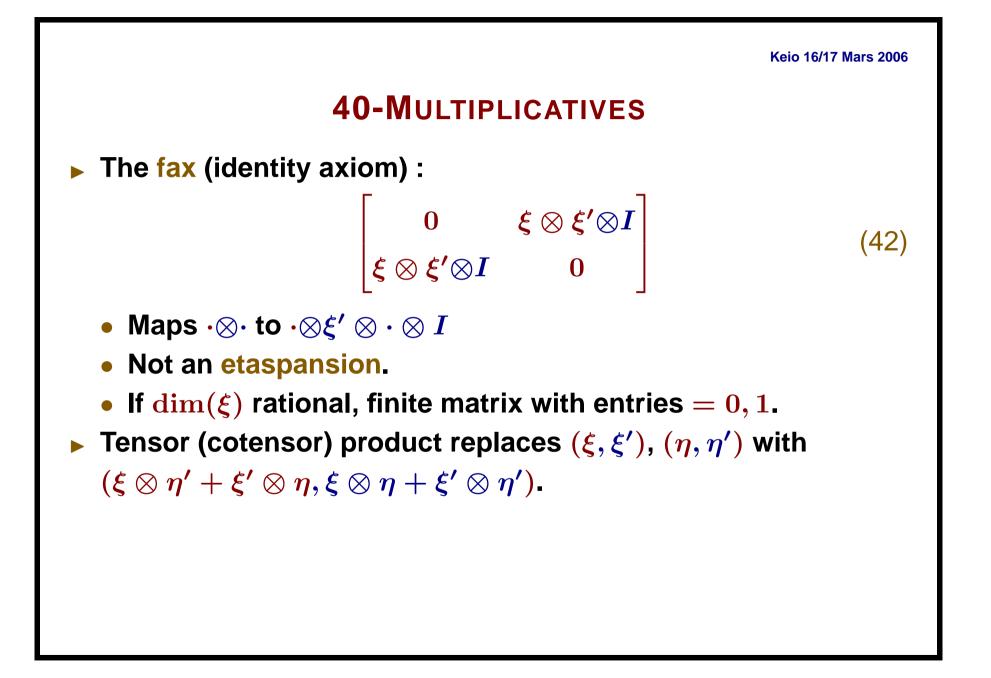












The fax (identity axiom) :

$$\begin{bmatrix} 0 & \xi \otimes \xi' \otimes I \\ \xi \otimes \xi' \otimes I & 0 \end{bmatrix}$$
(42)

Keio 16/17 Mars 2006

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi' \otimes \cdot \otimes I$
- Not an etaspansion.
- If $dim(\xi)$ rational, finite matrix with entries = 0, 1.
- ► Tensor (cotensor) product replaces (ξ, ξ') , (η, η') with $(\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta')$.
- **Basically use an isometry** φ between $\xi' \otimes \eta$ and $\eta \otimes \xi'$.

The fax (identity axiom) :

$$\begin{bmatrix} 0 & \boldsymbol{\xi} \otimes \boldsymbol{\xi}' \otimes \boldsymbol{I} \\ \boldsymbol{\xi} \otimes \boldsymbol{\xi}' \otimes \boldsymbol{I} & 0 \end{bmatrix}$$
(42)

Keio 16/17 Mars 2006

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi' \otimes \cdot \otimes I$
- Not an etaspansion.
- If $dim(\xi)$ rational, finite matrix with entries = 0, 1.
- ► Tensor (cotensor) product replaces (ξ, ξ') , (η, η') with $(\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta')$.
- **Basically use an isometry** φ between $\xi' \otimes \eta$ and $\eta \otimes \xi'$.
- φ is part of the data.

The fax (identity axiom) :

$$\begin{bmatrix} 0 & \xi \otimes \xi' \otimes I \\ \xi \otimes \xi' \otimes I & 0 \end{bmatrix}$$
(42)

- Maps $\cdot \otimes \cdot$ to $\cdot \otimes \xi' \otimes \cdot \otimes I$
- Not an etaspansion.
- If $dim(\xi)$ rational, finite matrix with entries = 0, 1.
- ► Tensor (cotensor) product replaces (ξ, ξ') , (η, η') with $(\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta')$.
- **Basically use an isometry** φ between $\xi' \otimes \eta$ and $\eta \otimes \xi'$.
- $\blacktriangleright \varphi$ is part of the data.
- ▶ $A \multimap A$ based on $(\xi \otimes \xi' + \xi' \otimes \xi, \xi \otimes \xi + \xi' \otimes \xi')$.

Keio 16/17 Mars 2006

41-THE ADDITIVE MIRACLE

• Additive situation : ξ, ξ', η, η' pairwise orthogonal.

Keio 16/17 Mars 2006

- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ► Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.

- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- ► The with rule (how to share contexts) :

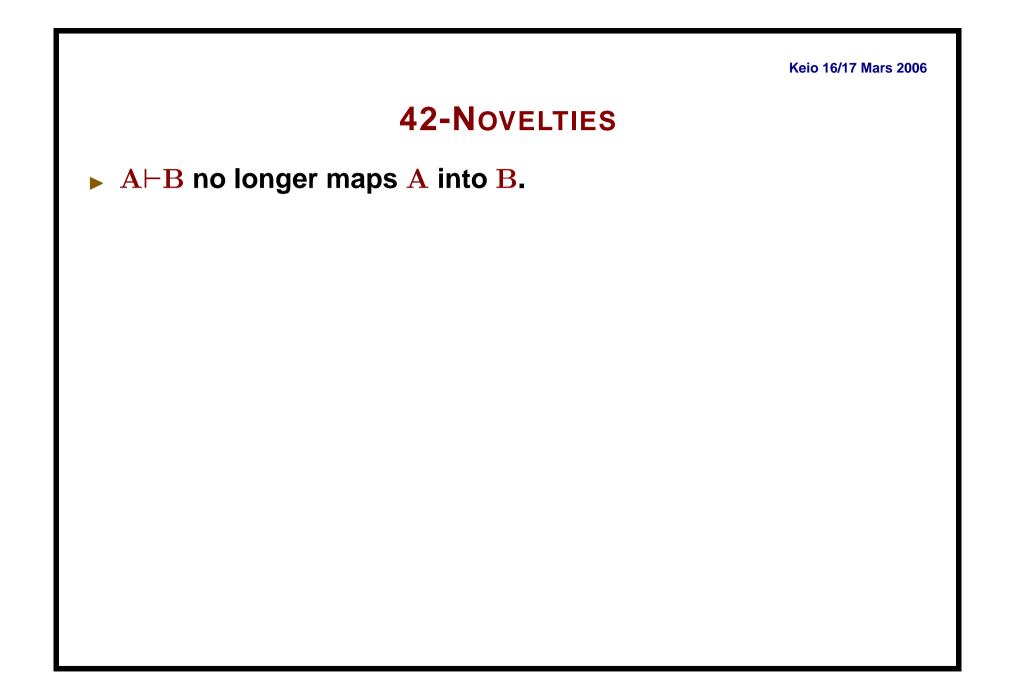
- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- ► The with rule (how to share contexts) :
 - Premises are 2×2 matrices :

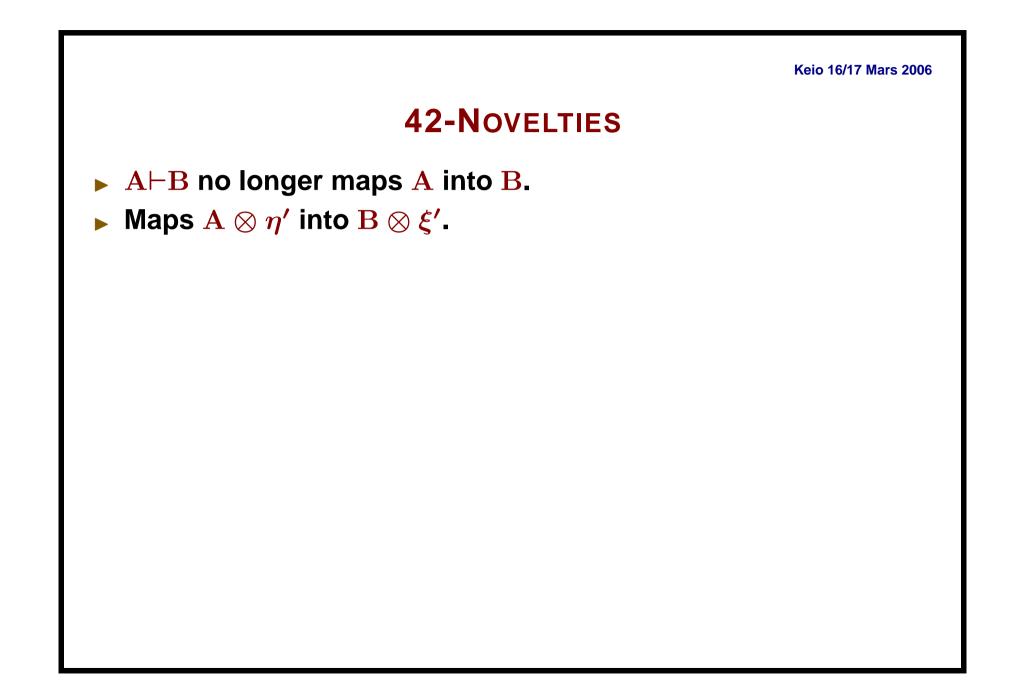
- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- ▶ The with rule (how to share contexts) :
 - Premises are 2×2 matrices :
 - Their supports are $\xi \otimes v' \otimes I, v \otimes \xi' \otimes I$ and $\eta \otimes v' \otimes I, v \otimes \eta' \otimes I$.

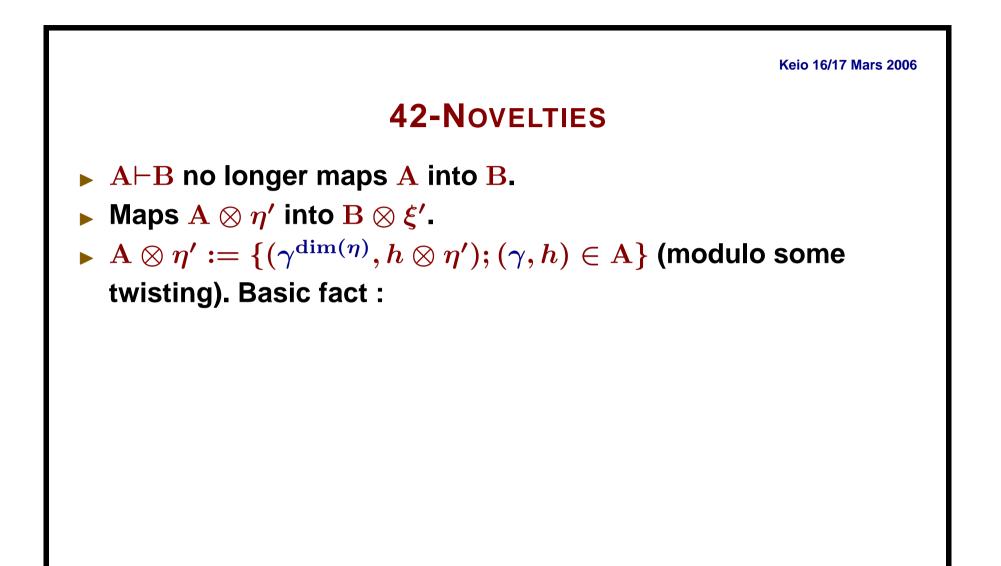
- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts) :
 - Premises are 2×2 matrices :
 - Their supports are $\xi \otimes v' \otimes I, v \otimes \xi' \otimes I$ and $\eta \otimes v' \otimes I, v \otimes \eta' \otimes I$.
 - Just sum them : disjoint supports.

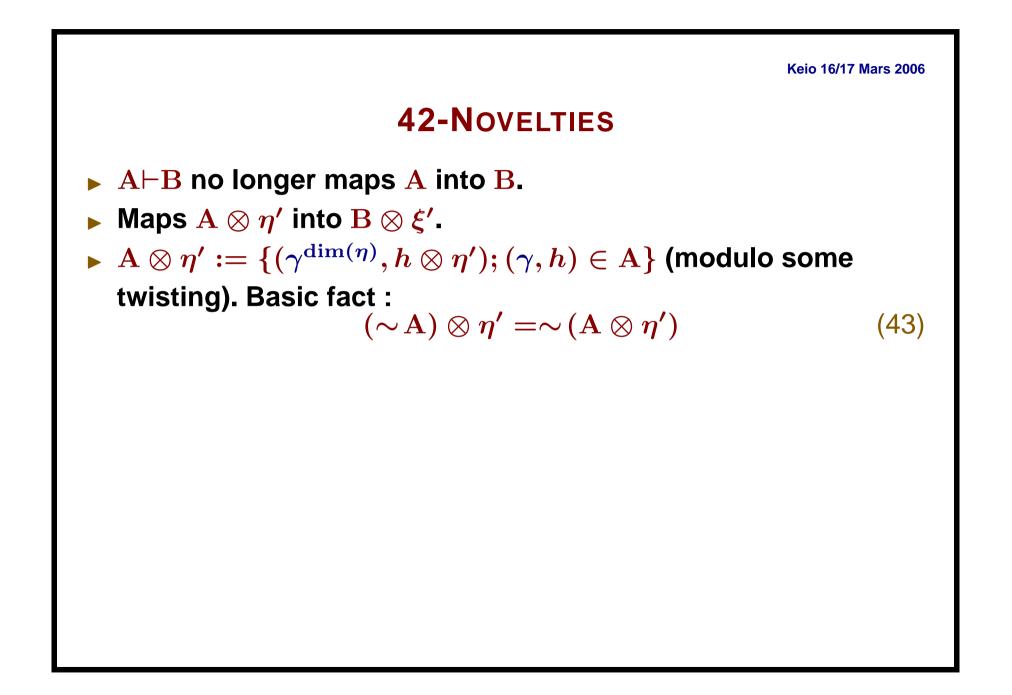
- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts) :
 - Premises are 2×2 matrices :
 - Their supports are $\xi \otimes v' \otimes I, v \otimes \xi' \otimes I$ and $\eta \otimes v' \otimes I, v \otimes \eta' \otimes I$.
 - Just sum them : disjoint supports.
- ▶ Violently anti- η , like Quantum coherent spaces.

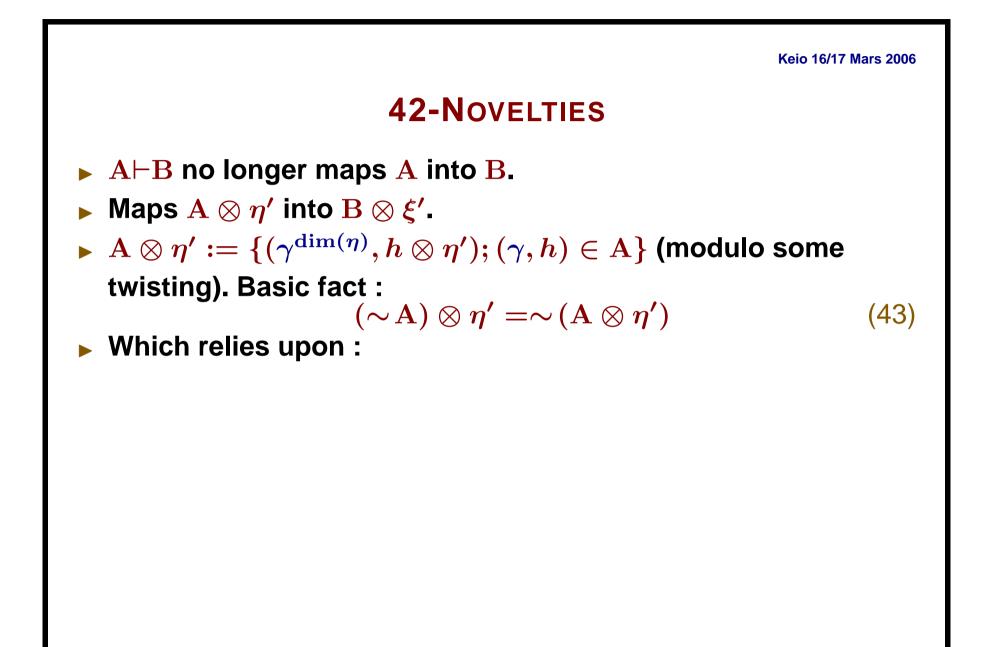
- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts) :
 - Premises are 2×2 matrices :
 - Their supports are $\xi \otimes v' \otimes I, v \otimes \xi' \otimes I$ and $\eta \otimes v' \otimes I, v \otimes \eta' \otimes I$.
 - Just sum them : disjoint supports.
- Violently anti- η , like Quantum coherent spaces.
- Summing up, perfect logic (in the linguistic sense) can be interpreted in the hyperfinite factor.

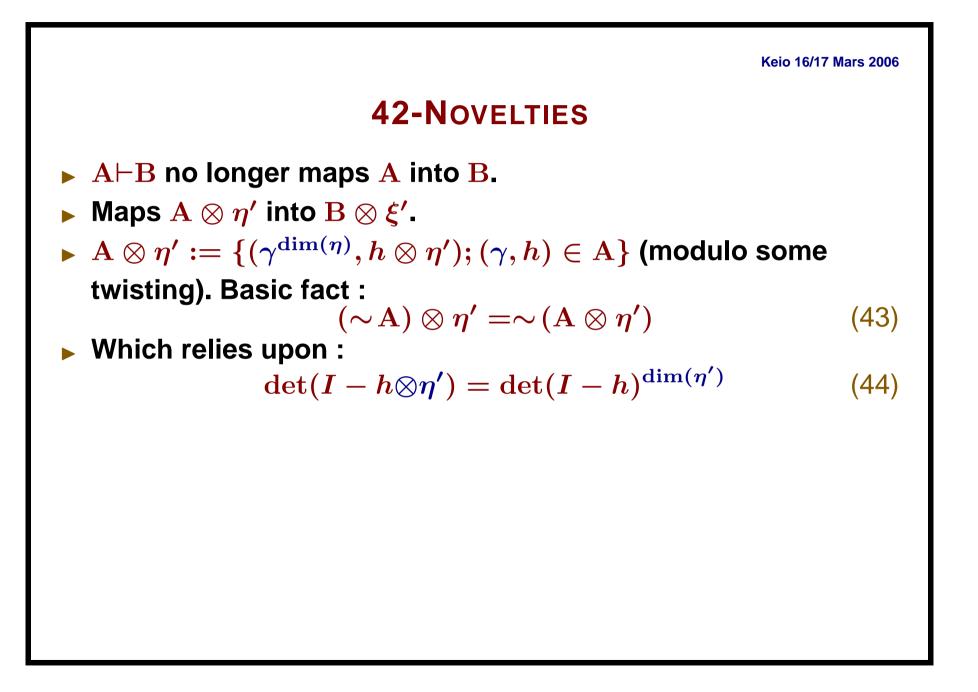


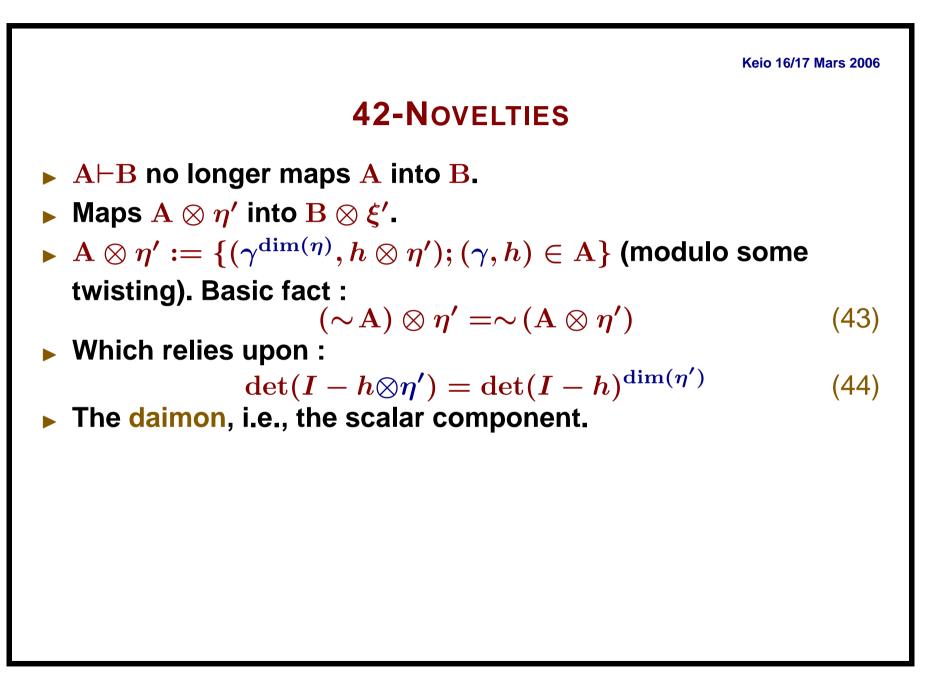












- ▶ $A \vdash B$ no longer maps A into B.
- Maps $\mathbf{A}\otimes \eta'$ into $\mathbf{B}\otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact :

$$(\sim \mathbf{A}) \otimes \eta' = \sim (\mathbf{A} \otimes \eta')$$
 (43)

$$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
(44)

- ▶ The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.

- ▶ $A \vdash B$ no longer maps A into B.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact :

$$(\sim \mathbf{A}) \otimes \eta' = \sim (\mathbf{A} \otimes \eta')$$
 (43)

$$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
(44)

- ▶ The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.

- ▶ $A \vdash B$ no longer maps A into B.
- Maps $\mathbf{A}\otimes \eta'$ into $\mathbf{B}\otimes \boldsymbol{\xi}'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact :

$$(\sim \mathbf{A}) \otimes \eta' = \sim (\mathbf{A} \otimes \eta')$$
 (43)

$$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
(44)

- ▶ The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.

- ▶ $A \vdash B$ no longer maps A into B.
- Maps $\mathbf{A}\otimes \eta'$ into $\mathbf{B}\otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact :

$$(\sim \mathbf{A}) \otimes \eta' = \sim (\mathbf{A} \otimes \eta')$$
 (43)

$$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
(44)

- ▶ The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.

- ▶ $A \vdash B$ no longer maps A into B.
- Maps $\mathbf{A}\otimes \eta'$ into $\mathbf{B}\otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact :

$$(\sim \mathbf{A}) \otimes \eta' = \sim (\mathbf{A} \otimes \eta')$$
 (43)

$$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
(44)

- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.
- Truth (winning) not preserved by logical consequence.

Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) B ⊂ R.

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) B ⊂ R.
- A subjective winner is a pair (1, h), with h³ = h (h is a partial symmetry), such that :

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) B ⊂ R.
- ► A subjective winner is a pair (1, h), with $h^3 = h$ (*h* is a partial symmetry), such that :

$$\forall \pi \in \mathcal{B} \; \exists \pi' \in \mathcal{B} \quad h\pi = \pi' h \tag{45}$$

- ► Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
- ► A subjective winner is a pair (1, h), with $h^3 = h$ (*h* is a partial symmetry), such that :

$$\forall \pi \in \mathcal{B} \; \exists \pi' \in \mathcal{B} \quad h\pi = \pi' h \tag{45}$$

Subjectivity is the closest approximation to « h is graph-like ».

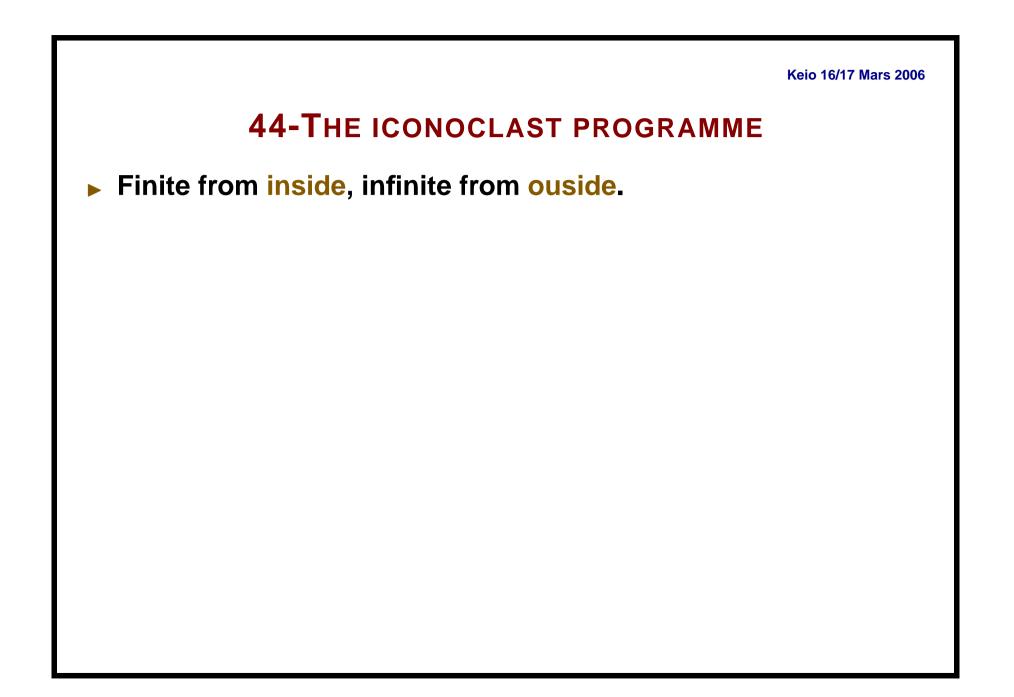
- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) B ⊂ R.
- ► A subjective winner is a pair (1, h), with $h^3 = h$ (*h* is a partial symmetry), such that :

$$\forall \pi \in \mathcal{B} \; \exists \pi' \in \mathcal{B} \quad h\pi = \pi' h \tag{45}$$

- Subjectivity is the closest approximation to « h is graph-like ».
- Subjective winners are closed under logical consequence; indeed the feedback equation is of the nilpotent type and no daimon can be created.

Keio 16/17 Mars 2006

IX-AN ICONOCLAST LOGIC



- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.

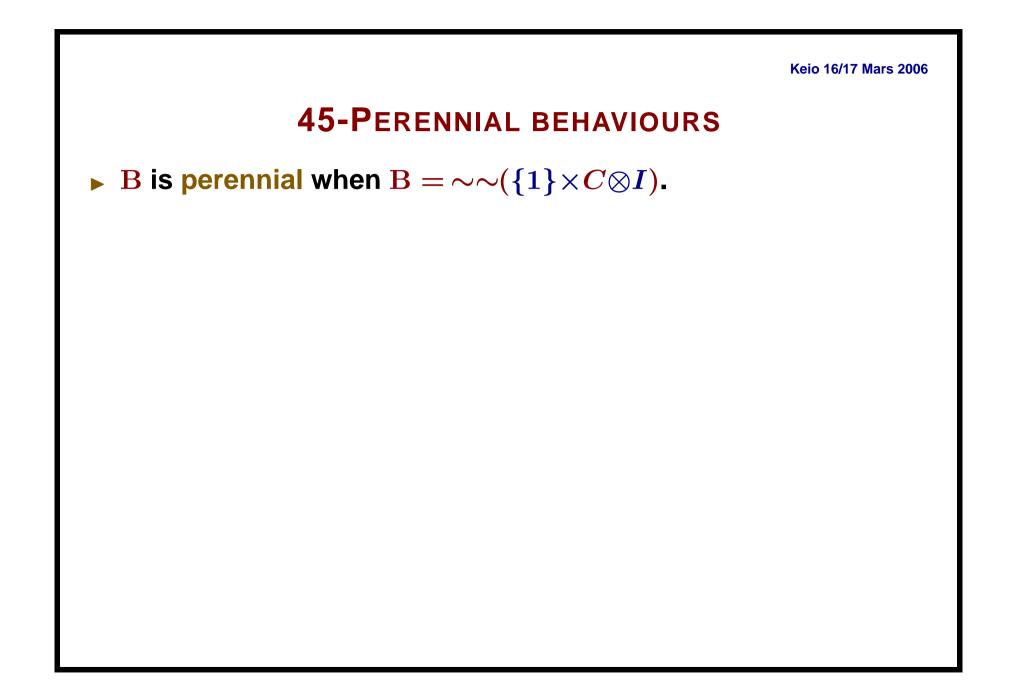
- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
 - Use the geometrical constraints of factor \mathcal{R} .

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
 - Use the geometrical constraints of factor \mathcal{R} .
- **B.t.w.**, logic in a factor of type II_1 should correspond to ELL.



Keio 16/17 Mars 2006

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.

Keio 16/17 Mars 2006

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes \boldsymbol{I} \otimes \boldsymbol{I},$ $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes \boldsymbol{I} \otimes \boldsymbol{I}.$

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.

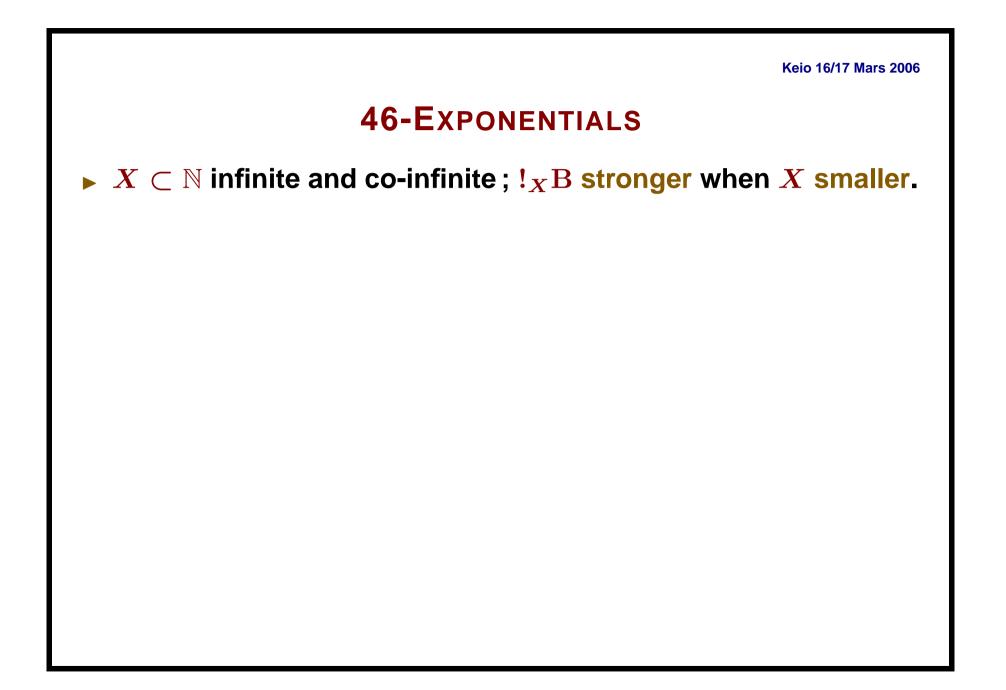
- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :
 - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :
 - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
 - Takes place in $\mathcal{R} \otimes ((\mathcal{R} \dots \otimes \dots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :
 - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
 - Takes place in $\mathcal{R} \otimes ((\mathcal{R} \dots \otimes \dots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
 - Denumerable tensor product $\mathcal{R} \dots \otimes \dots \mathcal{R}$ crossed by a locally finite group G.

- ▶ B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :
 - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
 - Takes place in $\mathcal{R} \otimes ((\mathcal{R} \dots \otimes \dots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
 - Denumerable tensor product $\mathcal{R} \dots \otimes \dots \mathcal{R}$ crossed by a locally finite group *G*.
 - *G* acts on integers by swapping bits in hereditary base 2.



- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- ▶ $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- ▶ $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- ▶ $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- ► Various definitions of integers, all externally isomorphic.

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- ► Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X,B} (!_{X}(B \multimap B) \multimap !_{X \sqcup Y}(B \multimap B))$ (46)

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X,B} (!_{X}(B \multimap B) \multimap !_{X \sqcup Y}(B \multimap B))$ (46)

• Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

$$\operatorname{mat}_{Y} := \bigcap_{X,B} (!_{X}(B \multimap B) \multimap !_{X \sqcup Y}(B \multimap B))$$
(46)

- Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .
- In which case, logical equivalence.

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X, \mathcal{B}} (!_{X}(\mathcal{B} \multimap \mathcal{B}) \multimap !_{X \sqcup Y}(\mathcal{B} \multimap \mathcal{B}))$ (46)

• Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .

- In which case, logical equivalence.
- Basic functions :

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X, \mathcal{B}} (!_{X}(\mathcal{B} \multimap \mathcal{B}) \multimap !_{X \sqcup Y}(\mathcal{B} \multimap \mathcal{B}))$ (46)

• Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .

In which case, logical equivalence.

Basic functions :

Sum : Type $\operatorname{nat}_Y \otimes \operatorname{nat}_Y - \circ \operatorname{nat}_{Y \sqcup Y'}$.

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X, \mathcal{B}} (!_{X}(\mathcal{B} \multimap \mathcal{B}) \multimap !_{X \sqcup Y}(\mathcal{B} \multimap \mathcal{B}))$ (46)

• Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .

In which case, logical equivalence.

Basic functions :

Sum : Type $\operatorname{nat}_Y \otimes \operatorname{nat}_Y - \circ \operatorname{nat}_{Y \sqcup Y'}$. Product : Type $\operatorname{nat}_Y \otimes \operatorname{nat}_{Y'} - \circ \operatorname{nat}_{Y \sqcup Y'}$.

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- Various definitions of integers, all externally isomorphic.

 $\operatorname{nat}_{Y} := \bigcap_{X,B} (!_{X}(B \multimap B) \multimap !_{X \sqcup Y}(B \multimap B))$ (46)

• Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .

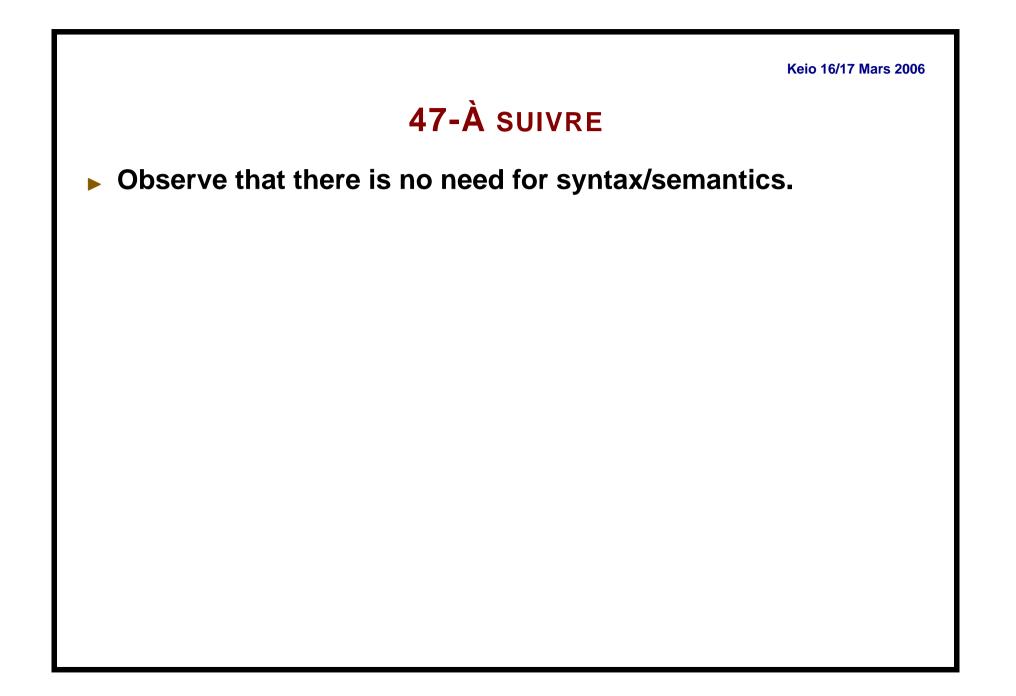
In which case, logical equivalence.

Basic functions :

```
Sum : Type \operatorname{nat}_Y \otimes \operatorname{nat}_Y - \circ \operatorname{nat}_{Y \sqcup Y'}.

Product : Type \operatorname{nat}_Y \otimes \operatorname{nat}_{Y'} - \circ \operatorname{nat}_{Y \sqcup Y'}.

Square : Type !_X \operatorname{nat}_{2Y} - \circ !_{X \sqcup X'} \operatorname{nat}_{2Y \sqcup 2Y + 1}.
```



- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
 - Finite combinations in *G* will do everything.

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
 - Finite combinations in *G* will do everything.
- **b** Dynamics of G: a tower of exponentials.

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
 - Finite combinations in *G* will do everything.
- **b** Dynamics of G: a tower of exponentials.
 - Height = depth of hereditary bits.

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
 - Finite combinations in *G* will do everything.
- **b** Dynamics of G: a tower of exponentials.
 - Height = depth of hereditary bits.
- Which complexity classes can be expressed?