(May 7, 2015)
Sporadic isogenies to orthogonal groups

Paul Garrett  garrett@math.umn.edu  http;/www.math.umn.edu/ garrett/
[This document is http://www.math.umn.edu/ garrett/m/v/sporadic_isogenies.pdf]

1. Over C
2. Over R
3. Appendix: isomorphism classes of quadratic forms over C and R

We will describe well-known 2-to-1 homomorphisms

SLy(C) — 50(3,C)

SLy(C) x SLy(C) — SO(4,C)
—

Sp2(C) SO(5,C)

SL4(C) — S0(6,C)

and well-known 2-to-1 homomorphisms to real special orthogonal groups SO(p, ¢) with signatures (p, q):

S0(.0) = {96 5Lywy(®) : 700 =Q) (e Q= (7 ) ))
SU(2) s S0(3)
SLo(R) s S0(2,1)

SU@) x SU(2) —  SO(4)
SLs(C) — 50(3,1)
SLy(R) x SLa(R) —s SO(2,2)
Sp*(2,0) . 50(5)
Sp*(1,1) s SO(,1)
Sp2(R) — S50(3,2)
SU(4) —  S0(6)
SLy(H) —  80(5,1)
SU(2,2) . 50(4,2)
SL.(R) . 50(3,3)

Thus, these are small examples of spin groups, two-fold covers of special orthogonal groups.

All these constructions are standard, in principle well-known, but often obscured or left as exercises in larger,
systematic treatments of Lie theory or quadratic forms or Clifford algebras or Spin groups. (1]

(1] Thanks to Shaul Zemel for some corrections and suggestions, belatedly implemented.
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1. Over C

[1.1] SLy(C) — SO(3,C) The space V of 2-by-2 complex matrices with trace 0, has symmetric bilinear
form (x,y) = tr(zy). The action of SLy(C) on V by g-x = grg~! preserves (,):

(g-z.g-y) = tr(gzg™" - gyg™") = tr(g-ay-g7") = tr(zy) = (z,y)

b)) () (B

with (,) values 2, 2, —2, demonstrating non-degeneracy. Thus, SLy(C) maps to a copy of SO(3,C). The
kernel is just {£1}.

An orthogonal basis is

[1.2] SLy(C) x SLy(C) — SO(4,C) Let V.= My(C) be 2-by-2 complex matrices, with (g,h) €
SLy(C) x SLy(C) acting by (g, h) - x = grh~1. Give V the bilinear form

(x,y) = tr(z-wy w?) (where w = ((1) (1)>)
It is symmetric because trace is invariant under transpose, and because w—! = —w. For g € SLy(C),
¢~ =wg w™!, and the pairing is invariant under the group action:

tr(gzh ™t - w(gyh ) Tw™Y) = tr(gzh 7w ) Tw T wy Tw T wg Tw ™)

= tr(gzh ™ howy w g7l = tr(gzwy w7 = tr(zwy Tw™h)
Computing

a b a v _ a b 7 - B ad — be N - / / /
<<C d)v(c/ d/>> = tr((c d) (_c/ a/)) = tI‘( ” da’—cb’) = ad —bc —cb +da

an orthogonal basis is readily found: for example, 2]

O R O B ) A )

with (,) values 2,—2,2, —2, demonstrating non-degeneracy. Thus, SLy(C) x SL2(C) maps to a copy of
SO(4,C).

[1.3] Spg(@) — 50(5, C) The symplectic group Bl is

0 0 -1 0
T . 0 0 -1

Sp2(C) = {g € GLA(C) : ¢ Tg=J} with J=17 5 o o
0 1 0 0

[21 One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving
signature (2,2) without further computation.

B 1n some conventions, the subscript is made to be the size, so what we call Sp here might be called Spy elsewhere.
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Write ¢ = Jg"J ™1, so the condition can be rewritten as g°¢g = 1. The C-vectorspace V will be a subspace
of the space My(C) of 4-by-4 complex matrices. Let (z,y) = tr(ay) on M4(C). Let Spa(C) act on My(C) by
g+« = gxg’. This action respects (,):

(g-2,9-y) = tr(gzg” - gyg”) = tr(g-azy-g7') = tr(zy) = (z,y)
Since 14 = g%g = g - 14 - g7, the action has fixed-point 14, and the subspace
V = {z € My(C) : 2° =z and (x,14) = 0}

is stable under the action. In 2-by-2 blocks, the condition z7 = z is

a b\ (0 =1\ (a b\ [ 0 1\ (0 —1)\[aT ' 0 1\ _ [(d" b7

c d) \1 0)\c d -1 0/~ \1 o)\be" d")J\-1 0) = \—-¢" af
Thus, d = a' and b, ¢ are skew-symmetric. The condition (z,14) = 0 requires tr(a) = 0. Thus, dim¢ V = 5.
To check that (,) is non-degenerate on V, identify an orthogonal basis, such as

1 0 0
1

0 0
0 -1 -1 -1

|
— O
O =

1 1 1
0 0 0
1 0
0 -1

0 -1
1 0

0 -1
1 0

i)
O =
\

= O
O =

where empty positions are 0.

[1.4] SL4(C) — SO(6,C) Let SL4(C) act in the natural way on the six-dimensional vectorspace
V= /\2((:4, namely, g- (v Aw) = gv A gw. Let ey, e, €3, e4 be the standard basis of C*, and define 4] (,) on
V by

x Ay = (z,y)-e1 Nea Aeg Ney (with z,y € A*CY)

This form is symmetric because an even number of transpositions reverses the arguments:
(AYANEZAW) = =2 AzAyAw = TAZAWAY = —2ATAWAY

= —zAzAwAy = (zAW)A(zAYy) (for z,y,2,y € C)

The form is invariant under the action because
<g~(x/\y),g~(z/\w)>~el/\eg/\e3/\e4 = grAgyNgzAgw = detg-z AyAzAw

= detg-<x/\y,z/\w>~61/\eg/\63/\64

To check non-degeneracy, observe
<€1/\62,63/\64> =1 <61 /\63,62/\64> = —1 <61/\64,62/\€3> =1
while (e; Aej, e Aeg) =0 when {i,j} N {k, £} # ¢. Thus, an orthogonal basis is
(e1 Nea) £ (e Aeq) (e1 Ne3) £ (e2 Neq) (e1 Neq) £ (e2 Nes)

with (,) values +2, F2, +2.

(4] 1t is not necessary to choose a basis for (C4, only to choose a basis for /\4(C4.
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2. Over R

Each homomorphism of complex groups gives rise to several homomorphisms of real groups.

[2.1] SU(2) — SO(3) The standard special unitary group SU(2) is
SU((2) = {g€ SL2(C) : g*g =12} (where g* is g-conjugate-transpose)

The space V' of 2-by-2 skew-hermitian complex matrices with trace 0 has symmetric real-valued real-bilinear
form (z,y) = Re(tr(zy)). An orthogonal basis is
0 1 0 4
-1 0 i 0

? 0
0 —i
Each has value —2 for (,), so the signature of (,) on V is (0,3). The action of SU(2) on V by g -x = gzg*
preserves (, ), because
tr(gzg™ - gyg*) = tr(g-zy-g~') = tr(zy)

Thus, SU(2) maps to a copy of SO(3). The kernel is just {£1}.

[2.2] SLy(R) — SO(2,1) The space V of 2-by-2 real matrices with trace 0, with symmetric bilinear
form (x,y) = tr(zy), has orthogonal basis

1 0 0 1 0 1

0 -1 10 -1 0
The values of (,) are respectively 2, 2, —2, giving signature (2,1). The action of SLy(R) on V by g-x = gzg~
preserves (, ):

1

(9-2,9-y) = trlgng™" -gyg™") = tr(g-2y-g7") = wr(wy) = (z,9)
Thus, SLz(R) maps to a copy of SO(2,1). The kernel is just {+1}.

[2.3] SU(2) x SU(2) — SO(4) Let!s!

V = {complex 2-by-2 matrices z : z* = wz w1} (with w = ((1) _é>)

= {2-by-2 complex matrices of the form <_g g) with o, 8 € C}

Let (g,h) € SU(2) x SU(2) act by (g,h) - © = gxh*. Give V the bilinear form

(z,y) = Re(tr(zy"))

5] 1t is not a coincidence that the vectorspace is a standard model of the Hamiltonian quaternions:

a+bi+cj+dk — (”“Lbz C’LdZ)

c—di a—bi
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For g € SU(2) C SL2(R), g~ = wgTw™!, giving the stabilization of V by the group action:
w(geh) Tw™! = wr)Tw - weTw ™ - wgTwt = (B 'z*g~! = ha*g* = (gah*)*
The pairing is invariant under the group action:
tr(gzh ' - w(gyh ) Tw™l) = tr(gzh - wh ) Tw T wy Tw T wg Tw )

= tr(geh ™ - howy'w g7l = tr(g-azwy w97 = tr(zwy w™Y)

Computing

(5 o) (5 e =el(5 )G D= (" i)

an orthogonal basis is readily found: for example,

RV RO

with (,) values 2,2,2,2.

[2.4] SL,(C) — SO(3,1) With

V = {complex 2-by-2 matrices z : z* = waw '} (with w = ((1) _(1)>)

= {2-by-2 complex matrices of the form (Zoé zol:) with o € C, b,c € R}

use the R-bilinear R-valued form (z,y) = Re(tr(zy)), where the overline denotes entry-wise complex

conjugation. An orthogonal basis is
1 0 i 0 0 = 0 1
0 1 0 —i i 0 -t 0

with (,) values 2,2,2, —2. Thus, the signature of (,) is 3,1. The action g -z = grg ' preserves the bilinear
form (x,y) = Re(tr(z7)) on the larger R-vectorspace of all complex 2-by-2 matrices, since

YogygTt) = tr(gag”

1

tr(gzg~ gyg~") = tr(g-ay-g7t) = tr(ay)

To check that SLo(C) stabilizes V, recall that g=! = wg w™! for g € SLy(C). For y € V, by design,

(gyg )" = (@ )'y'g" = (¢") " rwyw™ g = w(y
= wgw™ ! wyw ™t w(g et = wgyg Hw

so SLy(C) stabilizes V', and maps to a copy of SO(3,1). The kernel is just {£1}.

-1

[2.5] SLy(R) x SLy(R) — SO(2,2) Let V be 2-by-2 real matrices, with (g,h) € SLa(R) x SLy(R)
acting by (g, h) - = gzh~!. Give V the bilinear form

) = ewyTo™)  (eherew=(§ 7))
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It is symmetric because trace is invariant under transpose, and because w~—! = —w. For g € SLs(R),

¢ ' =wg "w™!, and the pairing is invariant under the group action:

tr(geh™ - w(gyh ™) Tw™) = tr(geh™  w(h ™) Tw ™ wy Tw T wg Tw )

= tr(geh ™t - h-wy'w g7l = tr(g-azwy w97t = tr(zwy wY)
Computing

a b a b B a b d -v _ ad — bc * o / / /
<<c d)’<c’ d’>> tr(<c d> <c’ a’>) tr( . da'cb’) = ad —bcd —cb' +da

an orthogonal basis is readily found: for example, (6l
0 1 0 1
-1 0 10

b1 ()

with (,) values 2, —2,2, —2, giving the desired signature.

[2.6] Sp*(2,0) — SO(5) Let H be the Hamiltonian quaternions. One model of G' = Sps = Sp*(2,0) is
Sp*(2,0) = {g € GLy(H) : g*g =12}

where g* =g with entry-wise quaternion conjugation. The R-vectorspace V will be a subspace of the space
M5(H) of 2-by-2 matrices with entries in H. Let A be the reduced trace

)\(3 g) =l (a+a+ds+9)
and on My (H) let (z,4) = A(zy). Let G act on My(H) by g -2 = gag*. This action respects {, ):
(9-2,9-y) = Mgzg™-gyg*) = Mg-zy-g~") = Aay)
Thus,
V= e MalED) s g —yand (1) =0) = {(§ D7) iacr sem

is stable under this action, and dimg V' = 5. An orthogonal basis is

L) e (G (59)

with values 2, 2,2, 2,2, giving the desired signature.

[2.7] Sp*(1,1) — SO(4,1) One model of G = Sp*(1,1) is

Sp*(1,1) = {g € GLy(H) : g*Sg =S} (with 5 = <(1) é))

[] One can also observe from this expression that the bilinear form is a sum of two hyperbolic planes, thus giving
signature (2,2) without further computation.
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where ¢* = §' with entry-wise quaternion conjugation. Let ¢g° = Sg*S~!, so the defining condition is
g°g = 15. The R-vectorspace V will be a subspace of the space My(H) of 2-by-2 matrices with entries in H.
Let (z,y) = May). Let G act on My(H) by g - = = gzg?. This action respects (, ):

(g-2,9-y) = Mgzg” -gy9”) = Mg-xy-97) = Ng-zy-g7") = Mzy) = (2,9)
The R-vectorspace is

a b

V = {xeMyH) : 2° =z and (z,5) =0} = {(—b a) cacH, beR}

(4 0)

and is stable under the action, and dimg V' = 5. An orthogonal basis is

O B O B () I ()

with values 2, —2, —2, —2, —2, giving the desired signature.

[2.8] Sp2(R) — SO(3,2) The symplectic group is

00 -1 0
T . 0 0 0 -1

Sp2(R) = {g € GL4(R) : g Jg=J} (with J = L0 0 0 )
0 1 0 0

Write g% = Jg T J ™!, so the condition can be rewritten as g”g = 1. The R-vectorspace V will be a subspace
of the space My(R) of 4-by-4 real matrices. Let (z,y) = tr(zy). Let Spa(R) act on My(R) by g -z = gag®.
This action respects (, ):

(g a.9-y) = tr(gzg” gyg”) = tr(g -2y g7") = tr(wy) = (v,y)
Since 14 = g%g = g 14 g7, the action has fixed-point 14, and the subspace
V = {z e My(R) : 2° =z and (z,14) = 0}

is stable under the action. In 2-by-2 blocks, the condition x7 = x is

a b\ _ (0 =1\ (a b\'[ 0 1\ _ [0 —1\[aT T 01\ _ [d  —b"
c d) \1 0)\c d -1 0) ~\1 o0o)\b" d")\-1 0)  \ =" af
Thus, d = a' and b,c are skew-symmetric. The condition (z,14) = 0 requires that tr(a) = 0. Thus,

dimy V' = 5. The easily observed orthogonal basis

1 0 0 1 01 0
0 -1 1 0 -1 0 -1
1 0 0

1

1
0 -1 0 1 0 -1 0 1 0

has (,) values 4,4, —4, —4, 4, giving signature 3, 2.

[2.9] SU(4) — SO(6) Let ey, eq,e3,eq be the standard basis for C*. Give A’C* the C-valued SL4(C)-
invariant symmetric form

<x/\y,z/\w>~el/\eg/\63/\e4 =xzAyAzAw (for z,y,z,w € C*)

7
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A six-dimensional R-subspace of /\2(C4 stable under SU(4) will be identified as the fixed vectors of an
C-conjugate-linear isomorphism J : C* — C* commuting with SU(4), on which (,) takes real values.

To make such J, use the positive-definite hermitian form (z,y) = y*z on C* invariant under SU(4),
giving a C-conjugate-linear isomorphism C* — (C*)* by # — (y — (y,)), which induces /\2<C4 —
A2 (C*) =~ (A’C*)*. At the same time, the non-degenerate form (,) on A>C* gives a C-linear isomorphism
N’C* = A’C* by v — (w — (w,v)). Combining these,

A2C4 () (/\2((:4)* ~ /\2((:4*)(’)/\(») /\2(:4

with the right-to-left arrow a C-conjugate-linear isomorphism, gives a C-conjugate-linear isomorphism J of
A’C* to itself. Since SU(4) respects both (,) and (,), the map J commutes with SU(4). This is noted
element-wise below.

We can track basis elements ey A ey under J. Since functionals (—, e; Aeg) and (—, e3) A(—, e4) both compute
the e3 A eq component of ), _, creer A eg, we have J(ep Aez) = ez Aey. That J commutes with the action
of g € SU(4) can be made explicit:

g-(erhe) = (= glerAeg)) = (g7 (=), e1hea) = g lo(—ernes) = g o(— e3) A(—,eq)

= (97" (=), es) Ag (=) ea) = (—.ges) A(—,ges) — gesAges = g-(esNes) = g-J(er Aes)

A similar computation gives J(e3 A eq) = €1 Aes. Since (,) A (,) is conjugate-linear,

iey Neg — i(—,e1 Nea) — i(—,e3) AN(—,eq) = (=, (—i)es) N(—,eq) = —ie3Ney

and J(ies A eq) = —ieq A ea. Thus, on the real four-dimensional space with basis
e1 N ey es N\ ey e1 A es 1e3 N\ ey
the map J is
(1 0)= (4 70)
Thus, J? = 1 on this subspace, and this subspace has +1 eigenspaces of equal dimension. Similarly,

functionals (—1)(—,e; Aes) and (—, e2) A (—, e4) both compute the es A eg component, and (—1)(—, ez A e4)
and (—,e1) A (—, e3) both compute the e; A e3 component, so, noting the signs,

J(el A 63) = —ea2 Ney J(iel AN 63) = 1ea Ney J(eg A 64) = —ej1 Nes J(ieg AN 64) = te1 Nesg

Thus, J2 = 1 on this subspace, and this subspace has 41 eigenspaces of equal dimension. Functionals
(—,e1 Neq) and (—,e2) A (—,e3) both compute the e; A es component, and symmetrically, so

J(el/\€4) = 62/\63 J(iel/\e4) = —iez/\€3 J(@g/\eg) = 61/\64 J(i@z/\€3) = —iel/\e4

Again, J? = 1 on this subspace, and this subspace has +1 eigenspaces of equal dimension. An orthogonal
basis for the +1-eigenspace for J is

61/\€2+63/\64 iel/\egfieg/\ezl 61/\63762/\63 i@l/\63+i62/\63 61/\64+62/\€3 7;61/\6477;62/\63

with (,) values 2,2,2,2,2,2.
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[2.10] SLy(H) — SO(5,1) Imbed H C M(C) by

(with a,b,c,d € R)

) . a+bi c+dj
a+bi+cj+dk — (—c+di a—bz’)

Note the characterization

H = {z€M(C) : T = waw ™'} (with w = <(1) _(1)))
Thus, identify
0 -1
SLy(H) = {g € SL4(C) : g=WgW™'} (where W = | 1" 0o -1
1 0

where g — g is entry-wise conjugation. Let ej,es,es,eq be the standard basis for C*, and give /\2(C4 the
C-valued SL4(C)-invariant symmetric form

(xAy,zAw)-e1ANeaNesNey = s AyAzAw (for z,y,z,w € C*)

A six-dimensional R-subspace of /\2(C4 stable under SU(4) will be identified as the fixed vectors of an
C-conjugate-linear isomorphism J : C* — C* commuting with SLy(H), on which (,) takes real values.

Define conjugate-linear J : /\2((:4 — /\Q(C4 by
JxNy) = Wz AWy

By design, J commutes with the action of g € SLo(H):

g-J@Ay) = GWTAgWY = WW-IgWa AWW-1gWy = Wgz AWgy = J(g-zAy)

The effect of J on e; A ep and iex A e; is readily computed, since We; = ey, Wey = —eq, Wesz = e4, and
Wey = —e3:
J(61A62)2—62A61261A62 J(€3/\€4)=—€4/\€3:63/\64
while
J(e1 ANes) =ea Ney J(ea Ney) =—e; AN—e3 =€ Aes
and
J(er Neg) =ea A —e3 = —ea Aes J(ea Neg) = —e1 Aey

Visibly, J2 = 1 on these vectors. Since J is conjugate-linear, we have J? = 1. An orthogonal basis for 41
eigenvectors is

61/\62+63/\64 61/\62763/\64 61/\€3+62/\€4 2.61/\6371'62/\64 61/\64762/\63 i@l/\64+i62/\€3

with (,) values 2, -2, -2, -2, —2 —2.

)

[2.11] SU(2,2) — SO(4,2) One model of SU(2,2) is

SU(2,2) = {ge SLy(C) : g"Sg =5} (where S =



Paul Garrett: Sporadic isogenies to orthogonal groups (May 7, 2015)
Again, with e, es, e3, e4 the standard basis for C*, give /\2(C4 the C-valued symmetric form
<;1c/\y7z/\w> cepNeagNesNeg = TAYyAzAw (for z,y,z,w € C*)
A six-dimensional R-subspace of /\2(C4 stable under SU(2,2) will be identified as the fixed vectors of an
C-conjugate-linear isomorphism J : C* — C* commuting with SU(2,2), and on which (,) takes real values.

Use the non-degenerate hermitian form
(z,y) = y" Sz

on C* invariant under SU(2,2), giving C-conjugate-linear isomorphism C* — (C*)* by 2 — (y — (y, 7)),
which induces A’C* — A*(C*) ~ (A’C*)*. At the same time, the non-degenerate form (,) on A*C* gives
a C-linear isomorphism A*C* — A’C* by v — (w — (w,v)). Combining these,

J

A2t b (AZCt) s APt L A%

with the right-to-left arrow a C-conjugate-linear isomorphism, gives a C-conjugate-linear isomorphism J of
A’C* to itself. Since SU(2) respects both (,) and (,), the map J commutes with SU(2). This is noted
element-wise below. It is important to check that J? = 1.

Tracking e A e, and ieg A e under J is nearly identical to that for SU(4), with important sign flips.

Functionals (—, e; Aea) and (—, e3) A(—, e4) both compute the ez Aes component of ), _, creer Aeg. The two
sign flips from (e3,e3) = —1 and (e4, e4) = —1 cancel. Thus, J(e;Aes) = ezAey. A similar computation gives
J(esNeq) = e1 Aeg. Since (,)A(,) is conjugate-linear, J(ie; Aes) = —iezAeq and and J(iegAey) = —ieg Aes.
Thus, on the real four-dimensional space with basis

e1 N\eg e3 N\ ey ie1 N e ie3 N\ ey

(¥ o)e ()

Thus, J? = 1 on this subspace, and this subspace has +1 eigenspaces of equal dimension. This part is
identical to that for SU(2).

the map J is

Functionals (—1)(—, e; Aes) and (—1)(—, e2) A(—, e4) both compute the es A ey component, with sign flip due
to (e4,e4) = —1. Similarly, (—1)(—,e2 Aeq) and (=1)(—,e1) A (—, e3) both compute the e; A e3 component,
with (e3,e3) = —1. Noting the signs,

J(Gl N 63) = €2 A\ €4 J(iel A\ 63) = 7’L'€2 A\ €4 J(eg A\ 64) = e A\ €3 J(ieg A\ 64) = 7’L'€1 A\ €3
Thus, J? = 1 on this subspace, with +1 eigenspaces of equal dimension. Functionals (—, e; A e4) and
(-1 )(— e2) A (—, e3) both compute the es A e3 component, so

J(€1 A\ 64) = —eg Nes J(i61 AN 64) = —teg Aes
Functionals (—, ez A es) and (—1)(—,e1) A (—, e4) both compute the e; A e4 component, so
J(eg /\63) = —ei1Ney J(ieg /\63) = 1e1\ey

Again, J?> = 1 on this subspace, with +1 eigenspaces of equal dimension. An orthogonal basis for the
+1-eigenspace for J is

61/\€2+63/\64 iel/\eg—ieg/\e4 61/\63+62/\63 i@l/\eg—ieg/\eg 61/\84—62/\63 iel/\€4+i€2/\€3

10
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The last four have sign flips in comparison to the analogous basis for SU(4), giving (,) values
2,2,-2,-2 -2 2.

[2.12] SL4(R) — SO(3,3) This is just the obvious real form of the isogeny for SL,(C) above. Let
SL4(R) act in the natural way on the six-dimensional vectorspace V = A’R*, namely, g - (v Aw) = gv A guw.
Let e, e, €3, e4 be the standard basis of R*, and define (,) on V by

x Ay = (z,y)-e1 Nea Aeg Aey (with z,y € A’R%)
This form is symmetric because an even number of transpositions reverses the arguments:
(AYAN(ZAW) = =z AzAYyAw = TAZAWAY = —2ATAWAY

= —zAzAwAy = (zAwW)A(zA\Yy) (for ,y, 2,y € R*)

The form is invariant under the action because
(g-(@Ny),g-(zAw))-exNesNeshes = gt AgyhgzAgw = detg -z AyAzAw

= detg~<x/\y,z/\w>-61/\62/\63/\64

To check non-degeneracy, observe
<61/\€2,€3/\€4> =1 <€1/\€3,62/\64> = -1 <€1/\€4,€2/\€3> =1
while (e; Aej,er Aeg) =0 when {i,5} N{k,£} # ¢. Thus, an orthogonal basis is
(e1 Nea) £ (e Aey) (e1 Nes) £ (ea Aey) (e1 Neq) £ (e2 Aes)

with (,) values +£2, F2, +2.

[2.13] Why not SU(3,1)?[7l One model of SU(3,1) is
1
SU(3,1) = {g€ SL4(C) : g*Sg= S} (where S = 1 )
-1
We could attempt the same procedure for SU(3,1) as for SU(4), SLy(H), and SU(2,2), by arranging a
conjugate-linear map J on /\2((:4 and commuting with SU(3,1), and hoping that the SL4(C)-invariant C-

valued form (,) on A2C4 is real-valued on J-eigenspaces. Indeed, the same diagrammatic description of J
produces a conjugate-linear map J commuting with SU(3, 1), so SU(3, 1) stabilizes eigenspaces of J.

However, J2 = —1, not +1, on C*:

The functionals (—, e; A ez) and (—1)(—, e3) A (—, eq) both compute the es A e4 component, so

J(Gl /\62) = —€3 /\64

7] Also, as S. Zemel notes, the maximal compact S(U(3) x U(1)) of SU(3,1) has dimension 9, which is not the

p(p—1 | q(q—1)
T T

dimension of the maximal compact O(p) x O(q) of O(p, q) for any p+ g = 6.
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while (— e3 Aes) and (—,e1) A (—, e2) both compute the e; A e; component, so
J(es Ney) = e1 Aeg

Similarly, (—1)(—,e1 A eg) and (—1)(—,e2) A (—, e4) both compute the ez A e4 component, so
J(e1 Nes) = ea Aey

while (—1)(—,e2 Aeyq) and (—, e1) A (—, e3) both compute the e; A e3 component, giving
J(ea Neg) = —ej Aes

Functionals (—,e; Aeyq) and (—, ea2) A (—, e3) both compute the es A e3 component, so
J(e1 Ney) = ez Aes

while (— es Ae3) and (—1)(—,e1) A (—, eq) both compute the e; A e4 component, so
J(ea Ne3g) = —ep Ney

Thus, J? = —1, not +1, on /\2(C4. Thus, the only possible eigenvalues are =+i.

Nevertheless, any J-eigenspace inside the R-vectorspace /\2(C4 is stabilized by SU(3,1). But the conjugate-
linearity of J shows that there cannot be +i-eigenvalues in /\2(C4: if Ju = dv, then

—v = J = J(iv) = —iJv = (—i)iv = v

Thus, this device has failed to produce SU(3, 1)-stable proper R-subspaces of /\2(C4.
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3. Appendix: isomorphism classes of forms over C and R
For convenience, we recall a classification over C and over R: as elaborated below, dimension is the only
invariant of non-degenerate symmetric bilinear forms over C, and signature is the only invariant over R.

A vector space V with a symmetric bilinear form over a field is non-degenerate when, for every v # 0 in V,
there is w € V such that (v,w) # 0.

The corresponding orthogonal group is the isometry group

{g € Auty(V) : (gv, gw) = (v,w), for all v,w € V'}
A basis {v;} is orthogonal when (v;,v;) = 0 for i # j.

[3.1] Non-degenerate forms over C classified by dimension We claim that for a non-degenerate
symmetric bilinear C-valued form (,) on a finite-dimensional C-vectorspace V', there is an orthogonal basis
v1, ..., U, such that (v;,v;) = 1 for all 4.

Given v # 0 in V, when (v,v) # 0. Replace v by v; = v/y/(v,v) with either square root, to arrange
(v1,v1) = 1. When (v,v) = 0, use non-degeneracy to obtain w such that (v, w) # 0. In case (w,w) # 0, we
are in the first case, and if (w, w) = 0, then (v + w,v + w) = 2 # 0, and again we are back to the first case.

That is, there is a vector with (v,v) = 1.
To complete the induction argument, show that for (v,v) =1 the orthogonal complement
vt = {weV : (v,w) =0}

is non-degenerate. Indeed, given 0 # v’ € v, let w € V such that (v/,w) # 0. Retain this property while
adjusting w to be in v+ by replacing it by w — (w, v). ///

Thus, dimension is the only isomorphism-class invariant of non-degenerate symmetric bilinear forms over C,
or over any algebraically closed field of characteristic not 2. The standard model is

O(n,C) = {g € GL,(C) : g'g=1,}

[3.2] Non-degenerate forms over R classified by signature We claim that for non-degenerate R-valued
symmetric bilinear form (,) on a finite-dimensional C-vectorspace V, there are non-negative integers p, ¢ and
an orthogonal basis v1,...,vp, w1, ... wy such that that (v;,v;) =1 for 1 <4 < p and (w;,w;) = —1 for
1<j<q

This is Sylvester’s law of inertia. The pair (p, q) is the signature. The standard model is

Op.q) = {9 € CLyy(B) : g7 Qo= Q) (where Q = (16’ —3))

Given v # 0, when (v,v) # 0, replacing v by v/+/|(v, v)| gives (v,v) = 1. When (v, v) = 0, there is w such
that (v,w) # 0. In case (w,w) # 0, we are back to the first case. When (w,w) =0, (v + w,v+w) =2 # 0,
and again we are back to the first case.

Thus, there is v with (v,v) = £1.

An argument nearly identical to the complex case shows that v* is non-degenerate, so and induction gives
existence of a signature.

13



Paul Garrett: Sporadic isogenies to orthogonal groups (May 7, 2015)

For uniqueness, let a totally isotropic subspace W of V be a subspace on which (,) = 0, that is, (w,w') =0
for all w,w’ € W. A mazimal totally isotropic subspace is also called Lagrangian.

We claim that all Lagrangian subspaces W have the same dimension. Uniqueness of signature will follow
from showing this common dimension is min (p, q).

A reformulation of the definition of mazimal totally isotropic is that W is just W itself. Thus, for W’ another
maximal totally isotropic subspace, the non-degenerate (,) gives a non-degenerate pairing of W/(W N W)
and W/ /(W NW'). A non-degenerate pairing between finite-dimensional vectorspaces gives an isomorphism
of each to the dual of the other, so the dimensions are equal.

Next, given a totally isotropic subspace W, there is another totally isotropic subspace W’ such that (,)
is non-degenerate on W 4+ W’. Indeed, given wy € W, find w] such that (wy,w}) # 0. Without loss of
generality, (w},w}) = 0, since otherwise replace w} by w} — {w},w}) - wy. As above, (Rw; + Rwj)* is
non-degenerate, and W N (Rw; + Rw})* is codimension 1 inside W. Thus, an induction chooses a basis
wi, ..., wy, for another totally isotropic subspace W, with (w;,w;) =1 for all i, and (w;, w) = 0 for i # j.

Thus, given a Lagrangian subspace W, there are corresponding wy, w}, ... wp, w),, and the collection w; £ w;
gives an orthogonal basis for the span of W+W’ with m positive and m negative values. Thus, min (p, q) > m.

On the other hand, taking p > ¢ and orthogonal basis v1,...,vp, w1,...,we as above, vi +wi,...,vq + Wy
spans a totally isotropic subspace. This gives the opposite inequality, proving that min (p, ¢) is the (common)
dimension of Lagrangian subspaces. ///
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