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These notes are based on lectures I gave at the University of Chicago in the fall of 1987. The
reader should be warned that these notes are still fairly rough in a few places (particularly in §6
and §7, which are incomplete). This is the preliminary version of a book, which I will probably not
finish for at least another year. The book will go on to develop the theory of superconnections, de-
terminant line bundles, and η-invariants associated to families of Dirac operators. (That optimistic
assessment was written a long time ago! )

I have endeavored to keep the prerequisites to a minimum. A course in basic differential and
Riemannian geometry as well as some background in Hilbert space theory should suffice. In par-
ticular, I use little or no topology (aside from de Rham cohomology) and develop the necessary
analysis from scratch. There are many exercises scattered throughout these notes. Some of these
do make more demands on the reader’s background. While it is perhaps the author’s laziness which
breeds exercises, only the reader’s laziness can defeat their intent.

There are two excellent books covering similar material. John Roe [R] treats the index theorem
for a single operator (we have particularly profited from his work), and then goes on to discuss the
Lefschetz theorem, Morse inequalities, and index theorem for covering spaces. The second book, by
Berline, Getzler, and Vergne [BGV] takes a different approach to the analysis. They also include
material on families of Dirac operators. We hope the student of the index theorem will profit by
having available three complete accounts from varying viewpoints.

I have benefited greatly from my collaboration with Jean-Michel Bismut, as well as from dis-
cussions with Ezra Getzler, Richard Melrose, Duang Phong, and John Roe. I thank those who
attended my lectures and offered valuable insights and comments. Of course, this material also
reflects the influence of many teachers and colleagues.

The author is partially supported by an NSF Postdoctoral Research Fellowship
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I welcome any comments, suggestions, corrections, criticisms, . . . .
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§1 Overview

The circle of ideas surrounding the Atiyah-Singer index theorem is so large that a comprehensive
account could be the subject of a book in itself. The historical survey in this chapter is selective and
incomplete. Our goal is to place the new developments in the theory, which are the major subject
of these notes, into a larger context. We also take the opportunity to introduce some basic notions
and results. Unfortunately, greater demands will be made on the reader in this chapter than in any
subsequent chapter. Thus while here we treat characteristic classes abstractly, in later chapters
they appear as differential forms via Chern-Weil theory. Some concepts that we mention here—for
example, from algebraic geometry, topology, and probability theory—will never recur. Others will
be explained at length later. With this in mind the reader may wish to skim this chapter now,
referring back at his leisure.

The commentaries in [A6] (cf. [A6,Vol. 3,p.475]) provide a firsthand historical account of the
development of the index theorem.

§1.1 The Riemann-Roch Theorem

Let X be a smooth connected projective curve over C, i.e., a one dimensional compact connected
complex submanifold of some complex projective space. A divisor D is a finite set of points on X,
with an integer ordx(D) attached to each point x ∈ D, and a divisor determines a holomorphic
line bundle on X. Let L(D) denote the space of holomorphic sections of this bundle. We can
describe L(D) as the space of meromorphic functions on X which have a pole of order ≤ ordx(D)
at each x ∈ X. A basic problem in the theory of curves is: Compute the dimension of L(D). While
this is quite difficult in general, there is a topological formula for dimL(D)− dimL(K −D), where
K is a canonical divisor of X. This is the classical Riemann-Roch1 formula:

(1.1.1) dimL(D)− dimL(K −D) = deg(D)− g + 1.

Here g is the genus of the curveX, its basic topological invariant, which is defined to be 1
2 rankH1(X).

Also, deg(D) =
∑

ordx(D) is the sum of the integers used in the definition of D. In the special
case deg(D) > 2g − 2, it can be shown that L(K − D) = 0, so that (1.1.1) provides a complete
solution to the problem stated above.

Let us immediately note one consequence of the Riemann-Roch formula. Take D = O to be the
trivial divisor consisting of no points. Then L(O) is the space of constant functions and L(K) is
the space of holomorphic differentials. We deduce that the latter has dimension g. It follows that

1Roch was Riemann’s student. Riemann [Ri] proved the inequality dimL(D) ≥ deg(D)−g+1 and then Roch [Ro]
proved the more precise (1.1.1).
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g is an integer, a fact which is not at all apparent from the definition of g. Therefore, one-half the
Euler characteristic of X is an integer, our first example of an integrality theorem.

More generally, let X be a nonsingular projective variety of complex dimension n and V a
holomorphic vector bundle over X. Then the cohomology groups Hi(X,V ) can be defined by sheaf
theory, or alternatively as the cohomology of the Dolbeault complex

(1.1.2) Ω0,0(X,V ) ∂̄−→ Ω0,1(X,V ) ∂̄−→ Ω0,2(X,V ) −→ · · · −→ Ω0,n(X,V ).

Here ∂̄ is the Cauchy-Riemann operator. The cohomology groups are finite dimensional and the
Euler characteristic or index of (1.1.2) is defined by

(1.1.3) χ(X,V ) =
n∑

i=0

(−1)i dimHi(X,V ).

As before one wants to compute dimH0(X,V ), which in general depends on more than simply
topological data. But the index χ(X,V ) does have a topological formula in terms of the Chern
classes ci(X) and ci(V ). The case dimX = rankV = 1 is covered by (1.1.1). For X a projective
algebraic surface (n = 2) and V the trivial bundle of rank one, the result is commonly known as
Noether’s formula:

(1.1.4) χ(X) =
1
12

(
c21(X) + c2(X)

)
[X].

In (1.1.4) the Chern classes are evaluated on the fundamental class of X given by the natural
orientation. Notice that the denominator of 1/12 gives an integrality theorem for the Chern numbers
of a projective surface.

The formula in higher dimensions (and for arbitrary vector bundles) was first proved by Hirze-
bruch [H1] in 1954, though there are earlier partial results of Todd and others. Hirzebruch’s formula
is expressed in terms of the Todd polynomials and the Chern character. Suppose that the tangent
bundle TX = L1 ⊕ · · · ⊕ Ln splits as a sum of line bundles, and set yi = c1(Li) ∈ H2(X). Then
the Todd class is

(1.1.5) Todd(X) =
n∏

i=1

yi

1− e−yi
.

This is a cohomology class of (mixed) even degree. Similarly, if V = K1 ⊕ · · · ⊕Kr is a sum of line
bundles, with xi = c1(Ki), then the Chern character is

(1.1.6) ch(V ) =
n∑

i=1

exi .
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The theory of characteristic classes allows us to extend these definitions to arbitrary TX and V .
Finally, Hirzebruch’s formula states

(1.1.7) χ(X,V ) = Todd(X) ch(V )[X].

We emphasize that Hirzebruch proved (1.1.7) only for algebraic manifolds.
The first step in Hirzebruch’s proof is the derivation of his signature theorem. Recall that

on a compact oriented real differentiable manifold X of dimension 4k there is a nondegenerate
symmetric bilinear pairing on the middle cohomology H2k(X;R) given by the cup product followed
by evaluation on the fundamental class:

(1.1.8)
H2k(X;R)⊗H2k(X;R) −→ R

α ⊗ β 7−→ (α ` β)[X]

The signature Sign(X) of this pairing is called the signature ofX. Now the L-class is the polynomial
in the Pontrjagin classes of X determined by the formal expression

(1.1.9) L(X) =
2k∏

i=1

yi

tanh yi
,

where yi,−yi are the Chern roots of the complexified tangent bundle. Then Hirzebruch proves

(1.1.10) Sign(X) = L(X)[X].

His proof uses Thom’s cobordism theory [T] in an essential way. Both sides of (1.1.10) are invariant
under oriented bordism and are multiplicative. Therefore, it suffices to verify (1.1.10) on a set of
generators of the (rational) oriented bordism ring. The even projective spaces CP2n provide a
convenient set of generators, and the proof concludes with the observation that the L-class is
characterized as evaluating to 1 on these generators. The Todd class enters (1.1.7) in a similar
manner—its value on all projective spaces CPn is 1 and it is characterized by this property.

Exercise 1.1.11. Derive (1.1.1) and (1.1.4) from (1.1.7).

Exercise 1.1.12. In the context of the classical Riemann-Roch formula prove that if deg(D) >
2g − 2, then L(K −D) = 0 (cf. (2.2.33) and EXERCISE ON KODAIRA VANISHING).

One consequence of the Riemann-Roch-Hirzebruch theorem is that the characteristic number
on the right hand side of (1.1.7), which a priori is a rational number, is actually an integer. This
integer is identified as a combination of dimensions of cohomology groups by the left hand side. On
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the other hand, the right hand side is defined for any almost complex manifold. Hirzebruch was
led to ask (as early as 1953) whether the Todd genus Todd(X)[X] of an almost complex manifold
(much less a non-algebraic complex manifold) is an integer [H2]. He also asked analogous questions
for real manifolds. Define the Â-class2 of a real manifold X4k by the formal expression

(1.1.13) Â(X) =
2k∏

i=1

yi/2
sinh yi/2

.

Then the Todd class of an almost complex manifold can be expressed as

(1.1.14) Todd(X) = ec1(X)/2Â(X).

In particular, Todd(X) depends only on the Pontrjagin classes and the first Chern class. Recalling
that the mod 2 reduction of c1 is the second Stiefel-Whitney class, it is reasonable to ask: If a real
manifold X4k has w2(X) = 0, then is Â(X)[X] an integer?3 This was later proved true (initially
up to a power of 2) by Borel and Hirzebruch [BH] in the late 50’s using results of Milnor [Mi]. Still
the question remained: What is the integer Â(X)[X]?

While these topological questions were being formulated and attacked, the Riemann-Roch-
Hirzebruch theorem was extended in a new direction by Grothendieck [BS] in 1957. A decisive
step was Grothendieck’s introduction of K-theory. Let X be a smooth algebraic variety. Then
K(X) is the free abelian group generated by coherent algebraic sheaves on X modulo the equiva-
lence F ∼ F ′ + F ′′ if there is a short exact sequence 0 −→ F ′ −→ F −→ F ′′ −→ 0. One can replace
‘coherent algebraic sheaves’ by ‘holomorphic vector bundles’ in this definition, and one fundamen-
tal result is that the group K(X) is unchanged. Thus Chern classes and the Chern character are
defined for elements of K(X). (Grothendieck refines these to take values in the Chow ring of X.) If
f : X −→ X ′ is a morphism of varieties, and F a sheaf over X, then the direct image sheaf Rif∗(F)
is the sheaf on X ′ associated to the presheaf U ′ 7−→ Hi(f−1(U ′),F). The map

(1.1.15) f! : F 7−→
∑

(−1)iRif∗(F) ∈ K(X ′)

extends to f! : K(X) −→ K(X ′), as can be seen from the long exact sequence in cohomology.
Now let f : Z −→ Y be a proper morphism between nonsingular irreducible quasiprojective

varieties. There is a pushforward f∗ in cohomology (or on the Chow rings). Grothendieck’s theorem
states that for z ∈ K(Z),

(1.1.16) ch
(
f!(z)

)
Todd(Y ) = f∗

(
ch(z)Todd(Z)

)
.

2Hirzebruch had previously defined an A-class which differs from the Â-class by a power of 2, whence the

notation Â.
3Or, more generally, if a real manifold X admits an element c ∈ H2(X) whose reduction mod 2 is w2(X), and

Todd(X) is defined by (1.1.14) (where c replaces c1(X)), then is Todd(X)[X] an integer?
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This reduces to Hirzebruch’s theorem (1.1.7) upon taking Y to be a point and z the K-theory class
of a holomorphic vector bundle.

The Todd class enters the proof via the special case where f : Z −→ Y is the inclusion of a
divisor and z is the class of the structure sheaf OZ . Now Rif∗(OZ) = 0 for i ≥ 1 and R0f∗(OZ) is
OZ extended trivially to Y . Let L be the line bundle defined by the divisor Z. Then the exact
sequence

(1.1.17) 0 −→ L−1 −→ OY −→ OZ −→ 0

shows that

(1.1.18) OZ = OY − L−1

in K(Y ). Notice here that f∗(L) is the normal bundle to Z in Y . Set x = c1(L). Then from (1.1.18)

ch
(
f!(OZ)

)
= 1− e−x.

On the other hand
f∗

(
ch(OZ)

)
= f∗(1) = x.

Thus f∗ ◦ ch = ch ◦f! up to the Todd class of L.
It is instructive at this stage to consider the inclusion of the zero section f : Z −→ E in a rank k

vector bundle π : E −→ Z. Then the sheaf R0f∗OZ = OZ fits into the exact sequence

(1.1.19) 0 −→ π∗
∧k

E∗ −→ π∗
∧k−1

E∗ −→ · · · −→ π∗E∗ −→ OE −→ OZ −→ 0

of sheaves over E. (Compare (1.1.17)). Here E∗ is the (sheaf of sections of the) dual bundle
to π : E −→ Z, and the arrows in (1.1.19) at e ∈ E are contraction by e. Thus in K(E) we have

(1.1.20) f!(OZ) =
∧∗(E∗).

Note that π : E −→ Z is the normal bundle to Z in E.
When Atiyah and Hirzebruch learned about Grothendieck’s work, they immediately set out to

investigate possible ramifications in topology. The first step was to define K-theory for arbitrary
CW complexes X [AH1]. The definition is as for algebraic varieties, but with ‘topological vector
bundles’ replacing ‘coherent algebraic sheaves.’ The basic building blocks of topology are the
spheres, and the calculation of K(Sn) quickly reduces to that of the stable homotopy groups of
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the unitary group. By a fortunate coincidence Bott had just computed (in 1957) these homotopy
groups [B1], [B2]. His periodicity theorem became the cornerstone of the new topological K-theory.
What results is a cohomology theory which satisfies all of the Eilenberg-MacLane axioms save one,
the dimension axiom. Thus was born “extraordinary cohomology.” Its efficacy as a tool for solving
topology problems was immediate [A1], [Ad1], [Ad2] and lasting.

Returning to the Grothendieck program, Atiyah and Hirzebruch formulated a version of Riemann-
Roch for smooth manifolds [AH2], [H3]. Let f : Z −→ Y be a smooth map between differentiable
manifolds, and suppose f is ‘oriented’ in the sense that there exists an element c1 ∈ H2(Z) with

(1.1.21) c1 ≡ w2(Z)− f∗w2(Y ) (mod 2).

Recall that Grothendieck’s theorem (1.1.16) is stated in terms of a map f! : K(Z)→ K(Y ). In the
topological category we cannot push forward vector bundles, as we could sheaves in the algebraic
category, so we need a new construction.4 Here we restrict our attention to immersions of complex
manifolds to simplify the presentation.5 Then (1.1.18) and (1.1.20) indicate the appropriate defi-
nition. Let π : E → Z be the normal bundle of Z in Y . By the tubular neighborhood theorem we
can identify E with a neighborhood N of Z in Y . The Thom complex

∧∗
E∗ is defined on the total

space of E by contraction (compare (1.1.19)):

(1.1.22) 0 −→ π∗
∧k

E∗
ι(e)−−→ π∗

∧k−1
E∗ −→ · · · −→ π∗E∗

ι(e)−−→ E × C −→ 0.

Notice that (1.1.22) is exact for e 6= 0, so the resulting K-theory element is supported on Z. By
the tubular neighborhood theorem it is also defined on N , and extension by zero yields the desired
element f!(1) ∈ K(Y ). If V → Z is a vector bundle, then f!(V ) is defined by tensoring (1.1.22)
with π∗V .

Exercise 1.1.23. Compare the algebraic f! to the topological f!. Can the topological definition
be imitated in the algebraic setting? If not, where does the construction break down? What is the
relationship between (1.1.2) and the dual complex to (1.1.22) (defined by exterior multiplication)?

The differentiable Riemann-Roch theorem states

(1.1.24) ch
(
f!(z)

)
Todd(Y ) = f∗

(
ch(z)Todd(Z)

)
, z ∈ K(Z).

4The definition of f! was not given in the original paper [AH2], but at least for the case of immersions all of the
essential points appear in [AH2,§4].

5By embedding Z in a sphere, we can factor an arbitrary map f : Z → Y into an immersion followed by a
projection: Z → SN × Y → Y . Bott Periodicity is used to calculate the “shriek map” K(SN × Y ) → K(Y ).
For immersions of real manifolds (with an orientation of the normal bundle) Clifford multiplication on spinors
replaces (1.1.22).
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Given the definition of f!, the proof is a routine exercise in topology, comparing the Thom iso-
morphisms in K-theory and cohomology. (See [AS1], [Ad3,§4–§5] for example.) Specialize now
to the case where Y is a point, and suppose w2(Z) = 0. Then we can choose the orientation
class c1 ∈ H2(Z) to be zero, so taking z = 0 in (1.1.24) we deduce, in view of (1.1.14), that
Â(Z)[Z] = f!(1) ∈ K(pt) = Z is an integer. This argument provided a new proof of the integrality
theorem discussed earlier, now with a topological interpretation of the integer Â(Z)[Z].

One more point deserves mention here. We have used the Thom complex (1.1.22) and Todd
class (1.1.5) to stress the analogy with Grothendieck’s picture. But the spin representation of the
orthogonal group and the Â-class will prove more fundamental to our considerations. In fact, the
original version of the differentiable Riemann-Roch theorem [AH2] is stated in terms of the Â-class.
A complete treatment of the spin group and Clifford algebras, and the relationship to periodicity
and K-theory was given later by Atiyah, Bott, and Shapiro [ABS].

§1.2 The Atiyah-Singer index

The de Rham theorem is a precursor of the index theorem. Let X be an n-manifold, and consider
the complex of differential forms

(1.2.1) Ω0(X) d−→ Ω1(X) d−→ · · · d−→ Ωn(X),

where d is the exterior derivative of Elie Cartan. The de Rham cohomology vector spaces are
defined by

(1.2.2) Hp
DR(X) =

ker[d : Ωp(X)→ Ωp+1(X)]
im[d : Ωp−1(X)→ Ωp(X)]

.

The theorem de Rham proved in his 1931 thesis [deR] states that there is a natural isomorphism
Hp

DR(X) ∼= Hp(X;R) of the de Rham cohomology with the usual real cohomology defined via
singular cochains. (This is modern language; de Rham proved that there is a closed form with
specified periods, unique modulo exact forms.) Notice that Hp

DR(X) relates to a differential oper-
ator and Hp(X;R) comes from topology. Hodge,6 motivated by questions in algebraic geometry,
proved that on a closed Riemannian manifold there is a unique “best” form in each cohomology
class. Namely, Hodge defined a duality operation ∗ : Ωp(X) → Ωn−p(X), which depends on the
Riemannian metric, and for compact manifolds asserted [Hod] that in each de Rham cohomology
class there is a unique form ω satisfying

(1.2.3) dω = 0, d(∗ω) = 0.

6For a review of Hodge’s life and work, see [A5].

11



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

Such forms are termed harmonic.
Of course, analysts were developing techniques to handle more general differential equations

than the system (1.2.3). By the late 50’s there was much effort devoted to the study of elliptic
boundary value problems in the plane. (For a historical review of these developments, see [Se2].)
These workers derived formulæ for the index of such elliptic systems. (The first example of such
a formula dates back to work of F. Noether in 1921.) The index is defined to be the dimension
of the space of solutions to the equations minus the dimension of the space of solutions to the
adjoint equations. Also at this time the nature of the symbol of a singular integral operator was
clarified in work of Calderón-Zygmund, Horvath, Kohn, Mikhlin, and Seeley. These developments
led I. M. Gel’fand [G] to conjecture (in 1960) that many important properties of the solutions are
invariant under certain homotopies of the equations. In particular, he conjectured that the index
is a topological invariant.

We set up the index problem on a closed manifold X. Let E+, E− be vector bundles over X,
and suppose P : C∞(E+)→ C∞(E−) is a differential operator of order k. In local coordinates we
have

(1.2.4) Pu = ai1i2...ik
∂ku

∂xi1∂xi2 . . . ∂xik
+ lower order terms,

where ai1i2...ik is a bundle map E+ → E− depending symmetrically on the ij , and we sum over
the indices ij . This top order piece transforms as a symmetric tensor under coordinate changes, so
defines the symbol

(1.2.5) σ(P ) : Sk(T ∗X)⊗ E+ −→ E−.

View σ(P ) as a homogeneous polynomial of degree k in T ∗(X) with values in Hom(E+, E−). The
differential operator P is elliptic if its symbol is invertible; that is, if for each nonzero θ ∈ T ∗X the
bundle map σ(P )(θ, . . . , θ) is invertible. It follows from elliptic theory that P has finite dimensional
kernel and cokernel. The index of P is

(1.2.6) indP = dim kerP − dim cokerP.

The primary geometric example is the Dirac operator on an even dimensional compact spin
manifold; other geometric operators (the ∂̄ operator on a Kähler manifold, the signature operator
on an oriented Riemannian manifold) are simple modifications of this basic operator. Dirac is a
first order operator acting on sections of the spinor bundles S±, and its symbol

(1.2.7) c : T ∗X ⊗ S+ −→ S−
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is Clifford multiplication on spinors. The Dirac equation first entered physics to provide a rela-
tivistic equation for electrons [D]. In mathematics the Dirac operator has immediate topological
significance—its symbol (1.2.7) defines an element of K(T ∗X) (which is roughly S+ − S− over the
zero section and trivial elsewhere). This is exactly the K-theory element Atiyah and Hirzebruch
used in their Riemann-Roch theorem.

While the Dirac operator is natural from the viewpoint of K-theory, in view of Gel’fand’s asser-
tion that homotopies of elliptic operators should provide a key to the index problem, it was natural
to consider more general operators. Their symbols (1.2.5) also determine elements of K(T ∗X) [A1].
In fact, to fully realize the “topology of elliptic operators” the newly developed pseudodifferential
operators of Kohn, Nirenberg [KN] and Hörmander [Ho] were used.7 The index (1.2.6) is then a
homomorphism

(1.2.8) ind: K(T ∗X) −→ Z,

i.e., it depends only on the symbol.
On the topological side another homomorphism K(T ∗X) → Z, the topological index, is easily

defined. We already saw that for manifolds with an integral lift of w2 (cf. (1.1.21)) there is a direct
image map f! : K(X) → Z. This is analogous to the integration map H∗(X) → Z determined by
an orientation class [X] ∈ H∗(X) in ordinary homology. Now without an orientation on X there
is still an integration H∗(T ∗X) → Z, since the cotangent bundle carries a natural orientation.8

Similarly, the cotangent bundle has a natural orientation in K-theory, and the topological index
map

(1.2.9) t-ind: K(T ∗X) −→ Z

is the resulting shriek map. The Riemann-Roch formula (1.1.24) translates (1.2.9) into cohomolog-
ical terms.

We can now state the Atiyah-Singer index theorem.

Theorem 1.2.10 [AS2]. The analytic index (1.2.8) equals the topological index (1.2.9).

This theorem realizes Gel’fand’s goal as it expresses the index in terms of homotopy theoretic data.
For the Dirac operator D the index formula reads

(1.2.11) indD = Â(X)[X].

7The algebra of pseudodifferential operators was developed from the singular integral operators of Calderón and
Zygmund [CZ] and Mikhlin [M] (cf. [Se2]). We do not describe these in any detail here; indeed, one of the main
points of these lectures is to illustrate that for Dirac operators the analysis is much simpler and more classical.

8We take cohomology with compact supports.
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Finally, we have an analytic realization of the integer Â(X)[X]—it is the index of the Dirac operator.
The index theorem (1.2.10) also proves the Riemann-Roch formula (1.1.7) for nonalgebraic complex
manifolds. Many more applications of the index theorem can be found in [Pa] and [AS1].

The original proof (announced in [AS2] and carried out in detail in [Pa]) was based on Hirze-
bruch’s bordism argument. There is a set of axioms which uniquely characterizes the index homo-
morphism, and both (1.2.8) and (1.2.9) were shown to verify the axioms. The trickiest part of the
proof comes in the verification that the analytic index is a bordism invariant. As in Hirzebruch the
actual index formula is essentially derived by checking enough examples.

A proof modeled on Grothendieck’s work appeared in [AS3]. Thus the construction of the
topological index—which is carried out by embedding the manifold X in a sphere, multiplying
the symbol by the Thom class of the normal bundle, extending the result to the whole sphere,
and applying Bott periodicity—is mimicked with pseudodifferential operators. The Thom class is
represented by a standard operator (roughly half the de Rham complex), and the multiplicative
and excisive properties of pseudodifferential operators give an operator on the sphere. In this way
one is reduced to checking the index formula on spheres (it is enough to check S2).

The advantage of this second proof is that it generalizes easily. In particular there is an index
theorem for fibrations π : Z → Y . The map π defines a family of manifolds, parametrized by Y ,
and a family of elliptic operators P = {Py} determines an element in K(T (Z/Y )), the K-theory
of the tangent bundle along the fibers. The topological index

(1.2.12) t-ind: K(T (Z/Y )) −→ K(Y )

is defined as before. Now the analytic index is

(1.2.13) indP = kerPy − cokerPy,

a formal difference of parametrized families of vector spaces. If dim kerPy is constant in y, then
each term in (1.2.13) determines a vector bundle, and so indP makes sense as an element of K(Y ).
In general one makes sense of (1.2.13) as an element of K-theory, but this requires more argu-
ment [A2,Appendix].

Theorem 1.2.14 [AS4]. The analytic index (1.2.13) equals the topological index (1.2.12).

The Riemann-Roch formula (1.1.24) then gives an explicit formula for the Chern character of the
index in the rational cohomology of Y . For families of Dirac operators it asserts (compare (1.2.11))

(1.2.15) ch indP = π∗(Â(Z/Y )).

Exercise 1.2.16. Go through Hirzebruch’s problem list [H2] to see which problems can be solved
using the index theorem. What is the current status of his other problems?
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§1.3 The heat equation method

As an offshoot of their work on the Lefschetz fixed point theorem, Atiyah and Bott [AB1], [A3]
realized a new formula for the index of an elliptic operator P : C∞(E+) → C∞(E−). By elliptic
theory the operators ∆+ = P ∗P and ∆− = P P ∗ have discrete spectrum, with the eigenvalues
tending to infinity at a controlled rate. Furthermore, the nonzero spectra of ∆+ and ∆− coincide.
It follows that the heat operators e−t∆± are defined for t > 0, are smoothing operators, and have
finite traces

(1.3.1) Tr e−t∆± =
∑

λ∈spec(∆±)

e−tλ.

Since the nonzero spectra coincide we have the formula of Atiyah and Bott:9

(1.3.2) indP = Tr e−t∆+ − Tr e−t∆−

for any t > 0. As an aside, we note that as t → ∞ the operators e−t∆± tend to projection onto
the kernel, whence the right hand side of (1.3.2) approaches the left hand side. On the other hand,
differentiation in t shows that the right hand side of (1.3.2) is independent of t. Thus we obtain
another proof of the Atiyah-Bott formula.

The heat operators e−t∆± have Schwartz kernels e−t∆±(x, y) which are maps E±y → E±x , and
the trace can be reexpressed as

(1.3.3) Tr e−t∆± =
∫

X

tr e−t∆±(x, x) dx.

Here e−t∆±(x, x) is an endomorphism of E±x at each x ∈ X, and tr denotes its (finite dimensional)
trace. For differential operators P , Seeley [Se1] (generalizing earlier work of Minakshisundarum
and Pleijel [MP]) proved10 that as t→ 0 there is an asymptotic expansion

(1.3.4) tr e−t∆±(x, x) ∼ 1
(4πt)n/2

∞∑
ν=0

a±ν (x)tν as t→∞,

where the functions a±ν depend only on the coefficients of P at x together with their derivatives
at x. (See also [Gre], [P1].) Combining (1.3.2)–(1.3.4) and taking note of the fact that the right
hand side of (1.3.2) is independent of t, we let t→ 0 to deduce

(1.3.5) indP =
∫

X

(
a+

n/2(x)− a−n/2(x)
)
dx.

9They first state an equivalent formula in terms of ζ-functions.
10Seeley works with the ζ-functions of ∆±, which are holomorphic functions of s ∈ C for Re s >> 0. Seeley

proved the existence of a meromorphic continuation of these ζ-functions to s ∈ C, which is equivalent to (1.3.4).
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This local formula for the index has immediate consequences. For example, it proves that the index
is multiplicative in finite covers. But to recover the full index theorem it remains to determine(
a+

n/2(x)− a−n/2(x)
)
dx explicitly.

McKean and Singer [MS] carried this out for the classical Gauss-Bonnet theorem on a 2-manifold.
Then Patodi generalized their work to the de Rham complex in arbitrary dimensions [P1] and to the
Dolbeault complex on Kähler manifolds [P2]. In these cases Patodi executed a virtuoso calculation
to exhibit the cancelation (1.3.7) and prove the formulæ analogous to (1.3.8). (The Â polynomial
in the curvature is replaced by the Chern form for the Gauss-Bonnet-Chern theorem and the Todd
form for the Dolbeault complex.) Notice that in Patodi’s work the index polynomial comes by
direct, albeit hard, computation. Gilkey [Gi1] studied local invariants of metrics and connections,
and proved that those of sufficiently small order vanish, while the first nonvanishing ones are
polynomials in Pontrjagin and Chern classes. Atiyah, Bott, and Patodi [ABP] then added a new
ingredient—Weyl’s theory of invariants of the orthogonal group—to simplify Gilkey’s argument.
The final results apply to any operator of Dirac type. We state the basic theorem for the Dirac
operator on a spin manifold X.

Theorem 1.3.6. Let D be the Dirac operator on X. Then in the notation of (1.3.4) we have

a+
ν (x)− a−ν (x) ≡ 0 for ν < n/2;(1.3.7)

(
a+

n/2(x)− a−n/2(x)
)
dx =

√
det

(
Ω/4πi

sinh Ω/4πi

)
,(1.3.8)

where Ω is the Riemannian curvature form on X.

The differential form in (1.3.8) is the Chern-Weil representative for Â(X), so (1.3.8) and (1.3.5)
combine to prove the index formula (1.2.11) for the Dirac operator. It is important to note that
(1.3.7) implies that the difference of the local traces

(1.3.9) tr e−t∆+
(x, x)− tr e−t∆−(x, x)

converges as t → 0. This local convergence is special to Dirac operators, and is crucial in what
follows.

The Gilkey-Atiyah-Bott-Patodi proof of Theorem 1.3.6 is by invariance theory. They note that(
a+

ν (x) − a−ν (x)
)
dx depends functorially on the metric, so is a combination of Pontrjagin forms.

The vanishing in (1.3.7) is evident from the conformal weights under scaling. The actual formula
in (1.3.8) comes by computing enough examples, as in Hirzebruch’s work.

§1.4 New Techniques
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Recently (since 1982) there have been many new developments related to the index theorem.
They are the basis of this book. Although we pursue a purely mathematical approach, it is im-
portant to bear in mind that many of the ideas come directly from physics. We believe that the
physical intuition to which these ideas owe their birth—i) supersymmetry and ii) the equivalence
of the Hamiltonian and path integral representations of quantum theory—will continue to be an
effective tool on a wide variety of mathematical fronts.

We now survey some new proofs of the index theorem for Dirac operators. These proofs start
with the heat equation formula (1.3.2) for the index. As in Patodi’s work, Theorem 1.3.6 is proved
by direct analysis, and the Â-genus appears by explicit computation. But the new computations
are simpler and more conceptual. Furthermore, the appearance of the Â-genus in index theory is
directly related to its occurrence in other contexts.

In the physics literature it is the concept of supersymmetry [W1], [W2], applied to a particular
quantum mechanical system, which leads to the index theorem [Ag], [Ge2], [FW]. We describe this
briefly in a mathematical exposition of Witten’s ideas due to Atiyah [A4]. The key mathematical
idea in Atiyah’s treatment is the localization theorem in equivariant cohomology [AB3], or more
specifically a formula of Duistermaat and Heckman [DH]. Let M be a compact symplectic manifold
with symplectic form ω, and suppose that the circle group acts on M preserving ω. Assume that the
circle action is generated by a Hamiltonian function H. Then the formula of Duistermaat-Heckman
is

(1.4.1)
∫

M

e−tHeω =
∫

Fix M

e−tHeω

∏
j

(tmj − iyj)
.

Here eω is essentially the symplectic volume form; FixM is the submanifold of M fixed by the
circle action; the normal bundle to FixM is ⊕jz

mjLj , where Lj is a complex line bundle on which
the circle acts by z 7→ zmj , and c1(Lj) = yj ; and t is an arbitrary complex number. This formula
is called “exactness of stationary phase,” since when t = −i it evaluates the oscillatory integral on
the left exactly by its stationary phase approximation on the right. The right hand side of (1.4.1)
also has a natural representation in terms of differential forms [BV1], [Bi1].

The basic idea is to apply (1.4.1) to the free loop space M of a spin manifold X. There is
a natural degenerate closed 2-form on M . In finite dimensions the degeneracy cycle represents
the first Stiefel-Whitney class, and so is nonessential if the manifold is oriented. One can define
the notion of orientability for loop space similarly, using the degeneracy cycle of its symplectic
form. Then Witten shows that the loop space M is orientable if the manifold X is spin. Now the
left hand side of (1.4.1) can be interpreted as the path integral representation of (1.3.2) via the
Feynman-Kac formula. Here one must be careful to distinguish the symplectic volume from the
Riemannian volume, the latter being what formally enters into the Feynman-Kac formula. The
spin representation, and so the Dirac operator, appears in reconciling the two volumes. The right
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hand side is computed as follows. FixM is the manifold of constant loops sitting inside the loop
space, and the normal bundle decomposes as ⊕n≥1z

n(TX ⊗ C). Thus if ±yj are the Chern roots
of TX ⊗ C, and dimX = 2m, then the right hand side of (1.4.1) is

∫

X

1
∏
j

∞∏
n=1

(tn− iyj)(tn+ iyj)
=

∫

X

(∏
n

n2

)−m ∏

j

∏
n

1
1 + (yj/n)2

=

(∏
n

n2

)−m ∫

X

(2π)m
∏

j

2πyj/2
sinh(2πyy/2)

.

(1.4.2)

CHECK WHY t = 1 IN THIS FORMULA ON THE RHS. The infinite constant in front is thrown
out, and the resulting integral is the Â-genus (1.1.13).

These arguments are interpreted by Bismut [Bi2], [Bi1] in terms of Wiener measure on loop space.
In this way he deals with integrals over loop space rigorously, thus avoiding infinite constants. The
heat kernel is represented in terms of Wiener measure with the aid of Lichnerowicz’s formula,
which expresses the Dirac Laplacian in terms of the covariant Laplacian. The localization to
point loops as t → 0 is natural in this picture. The variable t represents the total time during
which a Brownian path exists, and as the time tends to zero, only constant loops have a significant
probability of occurring. The evaluation of the integral over these point loops is accomplished using
a formula of Paul Lévy [Lé]. He considers a Brownian curve in the plane which is conditioned to
close after time 2π. Then the characteristic function (expectation value of eiz) of the area enclosed
by the random curve is πz/ sinhπz. This same calculation appears in Bismut’s work, only there
the curvature of X replaces z, and once again the Â-genus is obtained.

The Â-genus arises quite differently in a proof of the index theorem due to Berline and Vergne [BV2].
Let G be a Lie group with Lie algebra g. Then a standard formula asserts that the differential of
the exponential map exp: g→ G at a ∈ g is

(1.4.3) d expa =
1− e− ad a

ad a
= Todd−1(ad a).

It was always a mystery whether the occurrence of the Todd genus in (1.4.3) is related to the index
theorem. Berline and Vergne noticed that if X is a Riemannian manifold, and O(X) the principal
bundle of orthonormal frames, then the differential of the Riemannian exponential map on O(X) is
given by a similar formula. Precisely, there is a natural isomorphism TpO(X) ∼= En ⊕ o(n) via the
Levi-Civita connection. The exponential map at p is exp: En ⊕ o(n) → O(X), and its differential
at a ∈ o(n) is

(1.4.4)
d expa

∣∣
En= exp(−a)Todd−1

(
(
1
2
Ωp, a)

)
.

d expa

∣∣
o(n)

= Todd−1(ad a);
18
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In this formula the Riemann curvature Ω, which takes values in o(n), is contracted with a using the
Killing form. The result is a 2-form, which can be identified as an element of o(n). To prove the
index theorem Berline and Vergne rewrite (1.3.2), (1.3.3) on the frame bundle. To compensate for
the introduction of extra degrees of freedom in the fiber direction, they must study the behavior of
the heat kernel along the fiber. It is at this stage, in the small time limit, where (1.4.4) appears.
Ultimately, that is how the Â-class enters their proof.

Our approach to the index theorem is based largely on a paper of Ezra Getzler [Ge1]. This
paper reformulates Getzler’s earlier treatment of the rescaling which used pseudodifferential symobl
calculus [Ge2]. The main idea is to compute the coefficient (1.3.8) in the asymptotic expansion by
localizing at a point. Thus, fix x0 ∈ X and choose normal coordinates xk in which x0 is the origin.
The natural scaling around x0,

(1.4.5)
x −→ εx

t −→ ε2t,

induces a family of Dirac Laplacians whose limit as ε → 0 is the standard constant coefficient
Laplacian on Tx0X. One crucial step is the introduction of a scaling on spinors, which already
appears in [FW]. Then the limiting Laplacian can be written

(1.4.6) −
∑

k

(
∂

∂xk
− 1

4
Rk`x

`

)2

,

where Rk` is the curvature of X at x0. This operator has the general shape of the harmonic
oscillator

(1.4.7) P = − d2

dx2
+ a2x2

on R, whose heat kernel is given by Mehler’s formula

(1.4.8) e−tP (0, x) =
1√
4πt

(
2at

sinh 2at

)1/2

exp
[−x2

4t

(
2at

tanh 2at

)]
.

We are only interested in the heat kernel along the diagonal (cf. (1.3.4)), which is

(1.4.9) e−tP (0, 0) =
1

4πt

(
2at

sinh 2at

)1/2

for the harmonic oscillator. By general principles the heat kernel varies smoothly with the operator,
so that (1.4.9) (with the curvature term in (1.4.6) replacing the parameter a) approximates the
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heat kernel of the Dirac Laplacian as t → 0. The detailed calculation yields the Â-genus (1.3.8)
directly from (1.4.9).

In Getzler’s approach the index theorem for Dirac operators is quite elementary. Analytically,
we need only the asymptotic expansion for the heat kernel together with its smooth dependence on
parameters. Then some basic facts about Clifford algebras and the explicit formula (1.4.9) finish
the proof. In its broad outline this is very similar to Patodi’s method. But Patodi did not use
the symmetry of the Clifford algebra to see the cancellation (1.3.7) and prove (1.3.8), so that his
computations are more complicated than Getzler’s.

So far we have only discussed new insights into old results. But these techniques also give new
results for parametrized families of Dirac operators. Whereas the topological version of the index
theorem starts with homotopy information (cf. (1.2.12)), the geometric version requires precise
rigid geometric data. Thus let π : Z → Y be a smooth fibration of manifolds with a spin structure
along the fibers. The extra geometric information we require is a metric along the fibers, i.e., a
metric on T (Z/Y ), and a smoothly varying family of “horizontal subspaces” transverse to kerπ∗.
Then the geometric family of Dirac operators is defined.11 We then desire a differential geometric
version of the analytic index (1.2.13).

The essential idea is due to Quillen [Q1], inspired by ideas from physics. Just as a connection
on a smooth vector bundle is the differential geometric refinement of an equivalence class of topo-
logical vector bundles, so too is Quillen’s superconnection the differential geometric refinement of
an element of K-theory. Let V = V +⊕V − be a smooth Z/2Z-graded vector bundle over a smooth
manifold X. A superconnection on V consists of an ordinary connection ∇ = ∇+ ⊕ ∇− and a
linear endomorphism L : V → V which anticommutes with the grading, i.e., L(V ±) ⊆ V ∓. The
superconnection is the operator ∇+L on the space Ω∗(X,V ) of differential forms on X with values
in V . The K-theory element corresponding to ∇+L is V + L−→ V − in K(X).12 Quillen defines the
curvature (∇+L)2 and the Chern character form trs exp(∇+L)2, and proves that this differential
form represents the topological Chern character of the associated K-theory element. The supertrace
is the map

(1.4.10)
trs : Ω∗(X,EndV ) −→ Ω∗(X)(

α β
γ δ

)
7−→ trα− tr δ

A small, but important generalization of Quillen’s construction obtains by permitting L to be any
odd element of the Z/2Z-graded algebra Ω∗(X,EndV ).

Bismut [Bi3] applied Quillen’s ideas to a geometric family of Dirac operators π : Z → Y with
even dimensional fibers. Bismut constructs an infinite dimensional superconnection over Y . The

11The horizontal subspaces are not required to simply define Dirac; they enter in the Bismut superconnection
below.

12TheK-theory element is obtained using the “difference construction.” It actually lives inK(X,X0), whereX0 ⊆
X is the subspace on which L is invertible.
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fiber of the vector bundle at y ∈ Y is the space of spinor fields on Zy, the fiber of π at y. It
carries an L2 inner product, coming from the metric on Zy, and a unitary connection ∇ from the
horizontal subspaces. The operator L is the Dirac operator D modified by a degree 2 term which
is essentially the curvature T of the field of horizontal planes. Precisely, Bismut’s superconnection
with parameter t is

(1.4.11) ∇+
√
tD − c(T )

4
√
t
.

The c denotes Clifford multiplication (1.2.7). We consider the superconnection (1.4.11) to represent
the differential geometric shriek map π!. Because D is Fredholm there is an element of K(Y )
associated to (1.4.11). Bismut proves that this element is precisely indD as defined in (1.2.13).
This assertion is a direct generalization of (1.3.2). Then Bismut considers the behavior as t → 0,
deriving a differential geometric Riemann-Roch formula.

Theorem 1.4.12 [Bi3]. The Chern character of the Bismut superconnection approaches

(1.4.13)
∫

Z/Y

Â(Ω(Z/Y ))

as t→ 0.

Here Ω(Z/Y ) is the curvature of the connection on T (Z/Y ) determined by the geometric data. The
differential form in (1.4.13), which of course represents in de Rham theory the cohomology class
in (1.2.15), plays an important role in many applications. Bismut’s approach to Theorem 1.4.12
was through the probabilistic representation of the heat kernel. Recently, Donnelly [Do] gave a
proof following Getzler’s ideas.

§1.5 Summary of Contents

Here follows a rough outline of Part I. (Part II will contain more about superconnections and
will treat η-invariants and determinant line bundles, but it is not yet written!)

In Chapter 2 we introduce the basic material on Clifford algebras, spinors, and the Dirac operator.
We more or less follow [ABS,Part I] in §2.1. The reader who does the exercises here will be rewarded
in the later chapters. Our treatment of spinors on manifolds in §2.2 emphasizes the role of the frame
bundle, as there the spin group is most clearly exhibited. We prove the important Weitzenböck
formula. The generalization to vector bundle coefficients in §2.3 is straightforward. Here (in exercise
form) is the spinor form of the classical geometric operators: the de Rham complex, the Dolbeault
complex on a Kähler manifold, the signature operator, and the self-dual complex. It is important
to realize that the results in Part I hold for all these operators of Dirac type.
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Chapter 3 develops from scratch the basic results of elliptic theory for the Dirac operator. The
treatment is more elementary than usual since we make good use of the Weitzenböck formula. The
Sobolev spaces are introduced and their basic properties proved. Then we prove that the Dirac
operator has discrete spectrum with smooth eigenfunctions, and that Dirac is Fredholm.

Our main analytic tool is the heat operator (Chapter 4). After writing the explicit solution
on flat space in §4.1, we prove the basic existence of heat flow on compact manifolds. The basic
estimate (4.2.19) is useful in estimating approximate solutions. Distributions are used in §4.3 to
discuss the heat kernel. We also introduce the wave operator and prove that waves propagate with
finite speed. Using this we can control the heat flow and prove, for example, that the amount
of heat that flows a finite distance decreases exponentially in time for small time. In §4.4 we
discuss more precise behavior of the heat kernel for small time. This is encoded in the asymptotic
expansion (Theorem 4.4.1). Here one must come to grips with the fact that a small ball in a
Riemannian manifold is not isometric to a ball in Euclidean space, so the heat kernel in Euclidean
space is not an accurate approximation to the heat kernel in a manifold X. The usual technique
(following Minakshisundaram and Pleijel) consists in altering the flat heat kernel to compensate for
the curved geometry. We take the opposite tack, blowing up the geometry of the ball to approximate
Euclidean space (cf. (1.4.5)). Then the asymptotic expansion (on the diagonal) amounts to the
smooth dependence on parameters of the heat kernel. We need this in the limit where the ball in X
expands to infinity, i.e., where X deforms to its tangent space at one point. As the tangent space
is noncompact, some extra work is required to make the argument. This deformation argument is
a differential geometric analog of the “deformation to the normal cone” construction in algebraic
geometry. It is also a simpler version of the scaling used in Getzler’s proof of the index theorem
(§5.4).

We prove the Atiyah-Singer index theorem (for Dirac operators) in Chapter 5. In §5.1 we review
the decomposition of the spin representation in even dimensions. The existence of different types of
spinor fields gives the possibility of a nontrivial index problem—the index measures the difference
in dimension of the two spaces of harmonic spinor fields. Intuitively, this is also the difference in
dimension of the two spaces of all spinor fields. Of course, the space of spinor fields is infinite
dimensional, so its dimension must be “renormalized.” This is accomplished with the heat kernel,
and the Atiyah-Bott formula is obtained (§5.2). In §5.3 we treat the harmonic oscillator in flat
space and derive Mehler’s formula for its heat kernel. The Â-class makes its appearance at this
stage. The proof of the index theorem is now reduced to Getzler’s scaling argument, which we
present in §5.4.

The geometric treatment of a family of Dirac operators is based on Quillen’s concept of a
superconnection, which we introduce in Chapter 6. We begin with a review of connections on
vector bundles and Chern-Weil theory, mostly in exercise form. This is presented as a warm-up
to superconnections. It also allows us to give a brief introduction to characteristic classes, and so
indicate the topological significance of the Â-class in the index formula. (Connections are treated
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in §2.2 from a different point of view.) Our exposition of superconnections in §6.2 and §6.3 is simply
an expanded version of Quillen’s original paper [Q1]. We give a novel viewpoint of the relationship
between K-theory and superconnections in §6.4.

In Chapter 7 we return to Dirac operators, now in parametrized families. Our first task is to
derive the basic equations of Riemannian geometry over a parameter space. This is carried out
in §7.1. The Bismut superconnection (§7.2) is constructed out of this geometry.

An appendix contains some basic facts about exponential coordinates which we use in Chapter 5.
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§2 The Dirac Operator

Consider the Laplace operator on R4:

(2.1) 4 = − ∂2

(∂x1)2
− ∂2

(∂x2)2
− ∂2

(∂x3)2
− ∂2

(∂x4)2
.

Our sign conventions render 4 a nonnegative operator. Motivated by the quantum mechanics of
the electron, Dirac asked13 whether there is a first order operator D such that D2 = 4. Suppose

(2.2) D = γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3
+ γ4 ∂

∂x4
.

Then the equation D2 = 4 is equivalent to

(2.3)
(γ1)2 = (γ2)2 = (γ3)2 = (γ4)2 = −1

γ1γ2 + γ2γ1 = γ1γ3 + γ3γ1 = · · · = 0.

It is easy to see that (2.3) has no scalar solutions. Dirac’s great insight is that (2.3) has matrix
solutions.

Exercise 2.4. Without reading further, construct 4×4 matrices γi satisfying (2.3). Try the lower
dimensional cases first. What size matrices do you need? Do you need real or complex matrices?
What about quaternionic solutions?

Atiyah and Singer rediscovered the Dirac operator (2.2) from the relationship of the Â-genus and
K-theory to the representation theory of the spin group. We develop the algebra of equations (2.3)
in §2.1, culminating in the spin representation. There is an abundance of material here, much
of it in exercise form, and the reader is well-advised to absorb it in small doses. Further details
can be found in [ABS], [Ch], [Gr], while a more sophisticated treatment of the spin representation
is given in [PS,§12]. After reviewing some basic Riemannian geometry, we construct the Dirac
operator in §2.2. There is a global topological obstruction to the existence of spinors on an oriented
manifold X, the second Stiefel-Whitney class w2(X). When this obstruction vanishes the Dirac
operator exists. Other geometric operators—the de Rham complex, signature operator, Dolbeault
complex on a Kähler manifold—can be expressed in terms of the Dirac operator on spinors. Hence
we term them operators of Dirac type. They sometimes exist even if w2(X) 6= 0. (For example, the
de Rham complex is defined on any manifold, and the signature operator on any oriented manifold.)
All of our subsequent analysis applies to all operators of Dirac type.

13Dirac worked in Minkowski space, which changes one of the minus signs in (2.1) to a plus sign.
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§2.1 Clifford algebras and spinors

Let En denote Euclidean n-space with its usual inner product (·, ·). The linear isometries of En

comprise the group O(n) of orthogonal transformations. It is an old theorem of Cartan (later
refined by Dieudonné) that every element of O(n) can be written as a product of at most n reflec-
tions [J,p.352]. We encode this theorem into an algebra as follows. For any unit vector v ∈ En

denote by v reflection in the hyperplane perpendicular to v. Notice that v = −v, so that the map
from the unit sphere to reflections is 2:1. (Of course, the set of reflections coincides with the set of
hyperplanes, the real projective (n− 1)-space.)

We mean the following to be heuristic motivation for the introduction of the Clifford algebra.
Namely, in order to multiply reflections we consider the algebra generated (over R) by the v.
Identify v + w with v + w and av with av for any a ∈ R. There are some relations in this algebra.
First, since a reflection has order 2, for unit vectors v

(2.1.1) v2 = ±1.

The ambiguity in the choice of sign arises from v = −v, but by continuity considerations we choose
the same sign for all v. Since reflections in perpendicular planes commute, for orthogonal unit
vectors v and w

(2.1.2) vw = ±wv.

Here, however, we must choose the minus sign. For (v + w)/
√

2 is a unit vector, and

(
v + w√

2

)2

=
v2 + vw + wv + w2

2
,

so using (2.1.1) we obtain (2.1.2) with a minus sign. The algebra generated (with either sign in
(2.1.1)) is called the Clifford algebra.

For reasons which will become clearer later we choose the minus sign in (2.1.1). Also, from now
on we omit the bars from the notation, but use ‘·’ to denote multiplication in the Clifford algebra.
Let v and w be arbitrary elements of En. Then since the vector v − (v,w)

(w,w)w is perpendicular to w,
by (2.1.2)

(
v − (v, w)

(w,w)
w

)
· w + w ·

(
v − (v, w)

(w,w)
w

)
= 0,

v · w + w · v = 2(v, w)
w · w
(w,w)

,
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and from (2.1.1) we obtain

(2.1.3) v · w + w · v = −2(v, w).

The single relation (2.1.3) describes the Clifford algebra completely. In terms of an orthonormal
basis e1, . . . , en of En, we have

(2.1.4) ei · ej + ej · ei = −2δij .

Here δij has its usual meaning δii = 1 and δij = 0 for i 6= j. We denote the Clifford algebra
by Cliff(En); it is the algebra generated by e1, . . . , en subject to the relation (2.1.4).

Exercise 2.1.5. Determine Cliff(E1), Cliff(E2), and Cliff(E3). What are their complexifications?

More formally, Cliff(En) is the full tensor algebra of Rn modulo the ideal generated by the rela-
tion (2.1.3). Since (2.1.3) is homogeneous of degree 2, the Z grading of the tensor algebra passes to a
Z/2Z grading of the Clifford algebra. The elements of even degree form a subalgebra Cliff(En)+. It
is easy to see that the set {ei1 ·ei2 · · · eik

: 1 ≤ k ≤ n, i1 < i2 < · · · < ik} forms a basis for Cliff(En),
and the subset of elements with k even forms a basis for Cliff(En)+. Hence dim Cliff(En) = 2n

and dim Cliff(En)+ = 2n−1. Finally, we observe that En is embedded in the Clifford algebra in the
obvious way.

Exercise 2.1.6. Define the Clifford algebra associated to vector space endowed with a bilinear
form. (Hint: (2.1.3).) What is the Clifford algebra if this form is zero?

Exercise 2.1.7. Construct an isomorphism Cliff(En−1) ∼= Cliff(En)+.

Exercise 2.1.8. Show that there is a canonical isomorphism of vector spaces Cliff(En) ∼= ∧
(Rn),

where
∧

(Rn) is the full exterior algebra. This isomorphism does not preserve the algebra structure.
In particular, Cliff(En) has a canonical Z grading as a vector space. What is the grading in terms
of a basis?

Exercise 2.1.9. Show that under the isomorphism Cliff(En) ∼= ∧
(Rn) of Exercise 2.1.8, left

Clifford multiplication e· by e ∈ En is

(2.1.10) e· = ε(e)− ι(e),

where ε(·) is exterior multiplication and ι(·) is interior multiplication (relative to the inner product
in En). What is right Clifford multiplication by e?

Exercise 2.1.11. The tensor algebra
⊗
Rn has a filtration F 0 ⊂ F 1 ⊂ . . . with F p =

⊕
q≤p(

⊗q Rn).
Show that there is an induced filtration in the Clifford algebra. What is the associated graded al-
gebra?
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Recall that unit vectors in En, viewed in the Clifford algebra, represent reflections. Thus to
recover the action of reflections on En (with En still embedded in Cliff(En)) we expect to use
conjugation. However, the ambiguity in sign necessitates a small computation:

ei · ei · e−1
i = ei,

ei · ej · e−1
i = −ej · ei · e−1

i = −ej , j 6= i.

Thus we see that the action of a unit vector r by reflection on v ∈ En is represented in the Clifford
algebra by −r · v · r−1.

Exercise 2.1.12. Do explicit computations in Cliff(E2). In particular, write rotation through
angle θ as the product of two reflections and compute the corresponding element in the Clifford
algebra. Characterize the elements in Cliff(E2) which represent rotations. Prove that they form a
group, and determine the homomorphism to the rotation group.

An arbitrary element g ∈ O(n) is represented by a product of reflections, so inside Cliff(En) we
write

(2.1.13) g = r1 · · · rk

for some unit vectors ri. (This representation is not unique.) Let us characterize such elements in
the Clifford algebra. First we define the transpose antiautomorphism of Cliff(En) by

(2.1.14) t(v1 · · · vk) = vk · · · v1

for vi ∈ En. To account for the grading we set

(2.1.15) β(v1 · · · vk) = (−1)kvk · · · v1

Then it is easy to see that (2.1.13) satisfies

(2.1.16)
g · β(g) = 1,

g · En · tg j En.

Notice that the first equation implies that g is invertible; indeed its inverse is β(g). Also, the
action of g in the second equation generalizes the action of reflections on En. Finally, the set of
g ∈ Cliff(En) which satisfy (2.1.16) forms a group G. Now there is a homomorphism G → O(n)
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(the action of g ∈ G on v ∈ En is g · v · tg), and by Cartan’s theorem it is surjective. We proceed
to determine the kernel.

Suppose g ∈ G maps to the identity element in O(n). Write g = g+ + g− as a sum of even and
odd elements. Then for any v ∈ En we have

(2.1.17) g+ · v = v · g+ g− · v = −v · g−.

Choose v = ei a basis vector, and write g± = a± + b± · ei where a±, b± do not involve ei. Plugging
into (2.1.17) we find

a+ · ei − b+ = ei · a+ + ei · b+ · ei

= a+ · ei + b+

a− · ei − b− = −ei · a− − ei · b− · ei

= a− · ei + b−

from which b+ = b− = 0. Repeating for all i we conclude that g+, g− are constants. Thus g− is
zero, since it is an odd element. From the first equation in (2.1.16) we have g2 = g2

+ = 1, and
so g = ±1. Therefore, there is an exact sequence

(2.1.18) 1 −→ Z/2Z −→ G −→ O(n) −→ 1.

In fact, for n ≥ 2 the group G is a nontrivial double cover of O(n). (Consider the loop θ 7→
cos θ + sin θ e1 · e2.) It is customary to refer to G as Pin(n). In our attempt to embed O(n) inside
an algebra, we succeeded in constructing a nontrivial double cover.

Endow En with its usual orientation, so that {e1, . . . , en} is an oriented basis. Then the identity
component SO(n) of O(n) preserves the orientation. The identity component of the double cover
is called Spin(n), and it sits inside Cliff(En) as the elements g which satisfy (2.1.16) and

(2.1.19) g ∈ Cliff(En)+.

Finally, corresponding to (2.1.18) is the extension

(2.1.20) 1 −→ Z/2Z −→ Spin(n) −→ SO(n) −→ 1.

Since π1(SO(n)) = Z/2Z for n ≥ 3, we see that Spin(n) is simply connected for n ≥ 3, while
Spin(2) is diffeomorphic to the circle.

Exercise 2.1.21. Construct the embedding of the Lie algebra o(n) in Cliff(En) induced by the
inclusion Spin(n) ↪→ Cliff(En). How does it act on En ⊂ Cliff(En)? (Hint: Differentiate the
Spin(n) action.)
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Exercise 2.1.22. What is the group Spin(1)? What is its Lie algebra? What about Spin(2)?

Exercise 2.1.60. Repeat the preceding analysis for the Clifford algebra defined by using a plus
sign on the right hand side of (2.1.4). Is the Pin group obtained different? What about the
Spin group? At least check this for n = 1 and n = 2.

Exercise 2.1.23. Construct an isomorphism Spin(3) ∼= SU(2). (Hint: The adjoint action of SU(2)
is a homomorphism SU(2)→ SO(3) with kernel {±1}.)
Exercise 2.1.24. Prove that Spin(4) ∼= Spin(3)×Spin(3) as follows. On

∧2E4 the Hodge ∗ operator
is characterized by

α ∧ ∗β = (α, β) vol, α, β ∈ ∧2E4,

where (·, ·) is the inner product on
∧2E4 and vol ∈ ∧4E4 is the volume form. Then ∗2 = 1, so∧2E4 =

∧2
+ ⊕

∧2
− splits into the ±1-eigenspaces of ∗. Clearly dim

∧2
± = 3. The action of SO(4)

on
∧2E4 preserves the splitting, so produces a homomorphism SO(4) → SO(3) × SO(3). Show

that this is surjective with kernel {±1}. Now lift to the spin groups.

Let CliffC(En) = Cliff(En) ⊗R C be the complexification of the Clifford algebra. Denote the
algebra of k × k matrices over C by Mk(C).

Theorem 2.1.25. There is a noncanonical isomorphism of algebras

(2.1.26) CliffC(En) ∼=
{
M2n/2(C), n even,
M2(n−1)/2(C)⊕M2(n−1)/2(C), n odd.

Two proofs are indicated in the following exercises.

Exercise 2.1.27. Prove Theorem 2.1.25 by induction. (Hint: Calculate the Clifford algebra ex-
plicitly for n = 1, 2. Then construct an isomorphism CliffC(En) ∼= CliffC(En−2) ⊗ CliffC(E2) by
mapping the standard basis of En into the right hand side and checking the defining relation (2.1.4).
Your formulas should involve

√−1.)

Exercise 2.1.28. Define ε ∈ CliffC(En) by

(2.1.29) ε = in(n+1)/2e1 · e2 · · · · · en.

Show that ε2 = 1. If n is odd then ε is in the center of CliffC(En), whereas if n is even ε commutes
with CliffC(En)+ and anticommutes with the elements CliffC(En)− of odd degree. Show that if n is
even the endomorphism x 7→ ε · x · ε of CliffC(En) is +1 on CliffC(En)+ and −1 on CliffC(En)−.

Exercise 2.1.30 [Ch]. For n even prove that CliffC(En) is a simple algebra. (Hint: Suppose i is a
nontrivial two-sided ideal. Show how to multiply a nonzero element of i on the left and the right by
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elements in the Clifford algebra to obtain an arbitrary element of CliffC(En). Hence i = CliffC(En).)
Conclude from the Wedderburn theorem that CliffC(En) is a matrix algebra. For n odd CliffC(En) is
semisimple.

Exercise 2.1.31. Write down the isomorphism (2.1.26) explicitly for n = 4. What are the 4 ×
4 matrices which represent the basis elements? (Hint: Try n = 2 first.)

Exercise 2.1.32. Determine the structure of the real Clifford algebras. (Hint: You may also want
to consider indefinite inner products. Compute the low dimensional cases explicitly. Then try to
find an induction argument as in Exercise 2.1.27. You will find a periodicity property, as in (2.1.26),
but the period is not 2 as in the complex case. If you get stuck, consult [ABS], [Gr].)

Now Exercise 2.1.7 extends to the complexified Clifford algebras. Thus we have isomorphisms

(2.1.33) CliffC(En) ∼=
{

End(S), n even,
End(S+)⊕ End(S−), n odd;

(2.1.34) CliffC(En)+ ∼=
{

End(S+)⊕ End(S−), n even,
End(S), n odd.

Here we have rewritten the matrix algebras in (2.1.26) as endomorphisms of a vector space.
Although the isomorphisms (2.1.26) are not canonical,14 we make a fixed choice of spin spaces
in (2.1.33) and (2.1.34) once and for all. Note that in even dimensions the total spin space S splits
into the sum of a “positive” piece S+ and a “negative” piece S−. Since the spin group Spin(n) sits
inside the invertible elements of the even Clifford algebra, we obtain the spin representation

(2.1.35) γ : Spin(n) −→ Aut(S).

For n odd the spin representation is irreducible, while for n even it splits into the sum of the
two half-spin representations. We denote the action of x ∈ CliffC(En) on S by c(x); thus γ is the
restriction of c to Spin(n) ⊂ CliffC(En).

Exercise 2.1.36. Show that if n is even then c(ε) (cf. (2.1.29)) distinguishes the two half-spin
representations.

The following two exercises indicate other constructions of the spin representation.

Exercise 2.1.37. For n = 2` construct the spin representation as follows. Choose an identification
R2` ∼= C`, for example so that f1 = e1 +

√−1 e2, f2 = e3 +
√−1 e4, . . . forms a complex basis.

14But the projectivization P(S) is canonical.
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Set S =
∧
C`, and let ε denote exterior multiplication and ι interior multiplication (defined by the

standard hermitian metric on C`). Define a map

(2.1.38)
R2` −→ End(S)

v 7−→ ε(v)− ι(v)

Show that this map extends to Cliff(En), and gives another proof of the isomorphism (2.1.26) (for
n even). Now restrict to Spin(n). How does the representation split into two irreducible pieces?

Exercise 2.1.39 [AB2,p.482]. Consider the complexified left regular representation of Cliff(En),
that is the action of Cliff(En) on CliffC(En) by left Clifford multiplication. This representation is
highly reducible. In fact, the transformations of CliffC(En) determined by right Clifford multiplica-
tion by e1 · e2, e3 · e4, . . . have square −1 and mutually commute. So we can decompose CliffC(En)
into the simultaneous eigenspaces of these transformations. Prove that the resulting representations
of CliffC(En) are isomorphic. How can we decompose them into the half-spin representations if n is
odd?

Exercise 2.1.40. In any dimension the isomorphism (2.1.33) determines a map

(2.1.41) CliffC(En) −→ End(S) ∼= S∗ ⊗ S.

This is an isomorphism for n even and for n odd an isomorphism onto the elements preserving the
splitting S = S+ ⊕ S−. Show that for any x ∈ CliffC(En), there are correspondences between the
transformations

(2.1.42)
x· ←→ c(x)∗ ⊗ 1

·x←→ 1⊗ c(x)

on CliffC(En) and S∗ ⊗ S. Here x· (resp. ·x) denote left (resp. right) Clifford multiplication by x.
(Hint: Use the fact that (2.1.41) is an algebra homomorphism and the composition law for matrix
algebras.)

Since Spin(n) is a compact group, we can average an arbitrary inner product on S so that the
spin representation (2.1.35) is unitary.

Exercise 2.1.43. Show that the natural inner products which arise in the constructions of Exer-
cise 2.1.37 and Exercise 2.1.39 are preserved by the action of Spin(n).

Exercise 2.1.44. Prove that the spin representation is self-conjugate: S ∼= S∗. One way to do
this is with characters using Exercise 2.1.48. A more direct approach is the following. Extend β

in (2.1.15) to a complex linear antiautomorphism of CliffC(En). Define

(2.1.45)
θ : End(S) −→ End(S∗)

c(x) 7−→ c
(
β(x)

)∗
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for x ∈ CliffC(En). Note that for n even this defines θ on all of End(S), whereas for n odd it defines θ
only on the subalgebra of endomorphisms preserving the splitting S = S+ ⊕ S−. Show that θ is
an isomorphism where it is defined. In general, if θ : EndV → EndW is an isomorphism of endo-
morphisms of vector spaces, prove that θ determines an isomorphism θ̂ : V →W (defined uniquely
up to a scalar) which intertwines θ. Extend this statement to cover the case where n is odd. Now
restrict (2.1.45) to Spin(n) ⊂ CliffC(En) to obtain the isomorphism of the spin representation with
its contragradient. (Hint: (2.1.16).) How does the grading element ε (2.1.29) behave in (2.1.45)?
Use this to show that the half-spin representations are self-conjugate in dimensions n ≡ 0 (mod 4)
and that (S±)∗ ∼= S∓ in dimensions n ≡ 2 (mod 4).

The spin representation (2.1.35) extends to a unitary representation of the slightly larger group Pin(n).
In particular, the transformation γi = γ(ei) is unitary. But since γ2

i = −1 we conclude that γi is
also skew-Hermitian. The transformation γi represents Clifford multiplication by the element ei.
More generally, the restriction of (2.1.33) to En gives a map

(2.1.46) c : En ⊗ S −→ S

which we call Clifford multiplication. When n is even it is easy to check that Clifford multipli-
cation interchanges S+ and S−. Of great importance is the fact the (2.1.46) commutes with the
Spin(n) action, i.e., is a map of Spin(n)-modules. This is most easily checked using Exercise 2.1.39.

Exercise 2.1.47. Prove that the spin representation is irreducible if n is odd, and that the half-
spin representations are irreducible if n is even. One way to do this is to restrict to the “extra
special 2-group” generated by the elements e1 · e2, e3 · e4, . . . . Work out the representation theory
of this finite group, and so give an alternative construction of the spin representation (cf. [R,§2]).

Exercise 2.1.48. Consider the matrix Ω ∈ so(n), n = 2`, defined by

(2.1.49) Ω =




0 −y1
y1 0

0 −y2
y2 0

. . .



.

According to Exercise 2.1.21 this corresponds to an element in Cliff(En). Show that this element
is

(2.1.50) x =
1
2
(y1e1 · e2 + y2e3 · e4 + · · ·+ y`e2`−1 · e2`).
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Then g = ex is an element of Spin(n). Compute it explicitly. For any representation ρ of Spin(n),
define the character χρ(g) = Tr ρ(g). Prove

χS(g) =
∏̀

j=1

2 cos yj/2,(2.1.51)

χS+−S−(g) =
∏̀

j=1

(−2i sin yj/2).(2.1.52)

(Hint: Try the case n = 2 first. For S+ − S− you will need to use Exercise 2.1.36. If you get stuck,
read §5.1.)

Exercise 2.1.53. The antiautomorphisms (2.1.14) and (2.1.15) extend to the complex Clifford
algebra. (Be careful to conjugate the complex coefficient.) Now define groups Pinc(n) and Spinc(n)
using (2.1.16) and (2.1.19) Define a map of Spinc(n) to SO(n) and determine the kernel. Determine
a homomorphism U(`)→ Spinc(2`) which lifts the natural homomorphism U(`)→ SO(2`). Define
the spin representation for Spinc(n). What is Spinc(3)? Spinc(4)? (Hint: [ABS,§3].)

Exercise 2.1.54. Although Exercise 2.1.37 constructs the spin representation from the complex
exterior algebra, it is a little misleading, as we explain in this exercise. Construct a nontrivial double
cover Ũ(`) of the unitary group U(`), and show that the natural homomorphism i : U(`)→ SO(2`)
lifts to a homomorphism ĩ : Ũ(`) → Spin(2`). (Hint: Consider pairs (A, u) ∈ U(`) × U(1) such
that detA = u2.) Construct a homomorphism det 1/2 : Ũ(`) → U(1) whose square is the usual
determinant det : U(`)→ U(1). Now show that the pullback of the spin representation γ to Ũ(`) is

(2.1.55) i∗γ =
∧⊗ det−1/2,

where
∧

is the exterior algebra representation of U(`). (Hint: Try ` = 1 first. You may want to
compute with characters using Exercise 2.1.48.) Thus we identify the underlying representation
spaces

(2.1.56) S ∼= ∧
C` ⊗ (detC`)−1/2.

Also, we identify E2` ∼= C` via e2k−1 +
√−1 e2k = fk. Show that under these correspondences

Clifford multiplication is

(2.1.57)
c(e2k−1)←→ [ε(fk)− ι(fk)]⊗ 1

c(e2k)←→ √−1 [ε(fk) + ι(fk)]⊗ 1,
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where the interior product is taken relative to the Hermitian form on C`. (Compare (2.1.38).) How
is all of this related to Exercise 2.1.53?

The next exercises are crucial to our proof of the index theorem in Chapter 5.

Exercise 2.1.58. For ε 6= 0 let En
ε denote the inner product space 〈Rn, ε2(·, ·)〉, where (·, ·) is the

standard inner product on Rn. Thus ε−1e1, . . . , ε
−1en is an orthonormal basis of En

ε . Construct a
canonical algebra isomorphism Cliff(En) ∼= Cliff(En

ε ).

Exercise 2.1.59. Continuing the previous exercise, show that “lim
ε→0

Cliff(En
ε ) =

∧
(Rn)” in the fol-

lowing sense. We change our point of view and identify the Cliff(En
ε ) by vector space isomorphisms

which are not algebra isomorphisms. These are specified by requiring them to be the identity map
on the underlying vector space Rn. Then we consider this fixed vector space to have a family of
algebra structures parametrized by ε, the basis elements satisfying the relation

eiej + ejei = −2δijε2

in the ε algebra structure. Fix a basis element eI = ei1 ·ei2 · · · eik
, and set |I| = k. Let cε(eI) denote

left Clifford multiplication by eI in the ε algebra structure. Then show

lim
ε→0

cε(eI) = ε(eI)

under the canonical identification of vector spaces Cliff(En) ∼= ∧
(Rn), where ε(·) denotes exterior

multiplication.15 More formally, consider the algebra (over R) generated by e1, . . . , en, εεε subject to
the relation

eiej + ejei = −2δijεεε2.

Show that specializing εεε = ε for ε ∈ R yields Cliff(En
ε ) for ε 6= 0 and

∧
(Rn) for ε = 0.

§2.2 Spinors on manifolds

First consider flat space Rn. A differential form on Rn is a smooth map Rn → ∧
Rn∗ Here we

make the standard identification of T ∗xRn with Rn∗ at all x ∈ Rn. In standard coordinates x1, . . . , xn

the differentials dxk form a basis for the covectors at each point. The exterior derivative on
differential forms is the operator

(2.2.1) d = ε(dxk)
∂

∂xk
,

15A rather unfortunate clash of notation!

32



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

where summation over k is implicit in the notation, and ε(·) denotes exterior multiplication. The
Dirac operator on Euclidean space En is defined similarly. (A metric is needed to define the Dirac
operator, which explains why we use En instead of Rn.) A spinor field on En is a smooth map
En → S, where S is the spin space on the dual En∗. Again we make the natural identification
of T ∗xEn with En∗. The Dirac operator

(2.2.2) D = c(dxk)
∂

∂xk

is defined by replacing exterior multiplication in (2.2.1) with Clifford multiplication (2.1.46); it
operates on spinor fields. In even dimensions the spin space decomposes as S = S+⊕ S−, and since
c(·) interchanges S+ and S− we see that D maps positive spinor fields into negative spinor fields
and vise versa. Finally, we compute

D2 = c(dxk)
∂

∂xk
c(dx`)

∂

∂x`

=
∑

k

c(dxk)2
∂2

(∂xk)2
+

∑

k<`

c(dxk)c(dx`)
[
∂

∂xk
,
∂

∂x`

]

= −
∑

k

∂2

(∂xk)2
.

(2.2.3)

The second term in the second line vanishes since mixed partial derivatives commute while c(dxk)
and c(dx`) anticommute for k 6= `. Hence D2 is the (nonnegative) Laplace operator acting on
spinor fields.

To define spinors and the Dirac operator on curved spaces we need to review some basic Rie-
mannian geometry. We introduce the frame bundle so that we can write tensor fields as functions
and differential operators as vector fields. It is also the natural framework to describe spin struc-
tures. A Riemannian manifold is a smooth manifold X together with a smoothly varying inner
product on the tangent spaces. We will assume that X is oriented. Then at each x ∈ X we
consider the set SO(X)x of oriented orthonormal bases of the tangent space TxX. These are
orientation-preserving isometries p : En → TxX; the basis corresponding to p is p(e1), . . . , p(en).
The group SO(n) acts on SO(X)x on the right by changing basis, i.e., by right composition
of p with g : En → En, and so the SO(X)x glue together to form a principal SO(n) bundle
π : SO(X) → X. The fundamental theorem of Riemannian geometry asserts that this frame bun-
dle carries a unique torsionfree connection, the Levi-Civita connection. It is a field H of n-planes
on SO(X), complementary to the vertical (kernel of π∗), and invariant under the action of SO(n).
We call the n-plane Hp at p ∈ SO(X) the horizontal space at p. Now p is a basis of Tπ(p)X, and
Hp maps isomorphically to Tπ(p)X via π. Let ∂1(p), . . . , ∂n(p) be the basis of Hp corresponding
to p. The ∂k are smooth vector fields on SO(X). More invariantly, ∂ = ek∂k is an En∗-valued
vector field on SO(X). Here {ek} is the standard basis of En∗ dual to the basis {ek} of En.
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Exercise 2.2.4. What is the action of SO(n) on the ∂k? (Hint: Consider ∂.)

Let ξ ∈ TxX be a tangent vector. Then given a basis p ∈ SO(X)x we can specify ξ by its
n coordinates. Thus a tangent vector is a map ξ : SO(X)x → En. Of course, the coordinates
change in a specified fashion under SO(n)—for g ∈ SO(n) we have

(2.2.5) ξ(p · g) = g−1 · ξ(p),

where g−1 acts on En by the standard action. A vector field on X is then an SO(n)-equivariant
function ξ : SO(X) → En.16 We can differentiate ξ = ξiei along the En∗-valued vector field ∂ =
ek∂k to obtain

(2.2.6) ∂ξ = (∂kξ
i) ek ⊗ ei : SO(X) −→ En∗ ⊗ En.

This is the covariant derivative of ξ.

Exercise 2.2.7. How does ∂ξ transform under SO(n)? Show that ∂ξ is a section of T ∗X ⊗ TX.
Represent other tensor fields as functions on the frame bundle, and extend the covariant derivative
to act on them.

We can write the exterior derivative in terms of ∂. A differential form is an SO(n)-equivariant
map SO(X)→ ∧

En∗, and (compare (2.2.1))

(2.2.8) d = ε(∂) = ε(ek)∂k.

Exercise 2.2.9. Verify d2 = 0. You will need to use the fact that the Levi-Civita connection is
torsionfree. Write d∗ in this language. What about ∂̄ on a complex manifold?

Now [∂k, ∂`] is a vertical vector field on SO(X); this is equivalent to the fact that the Levi-Civita
connection is torsionfree. Since SO(n) acts simply transitively on the fibers of π : SO(X) → X,
we can identify the vertical tangent spaces with the Lie algebra o(n). Let {Ej

i }i<j be the standard
basis of o(n). The skew-symmetric map Ej

i is defined on the basis elements by

(2.2.10)

Ej
i : ej 7−→ ei

ei 7−→ −ej

ek 7−→ 0, k 6= i, j.

16The reader should recognize that this is essentially the classical point of view—a tensor field is a collection
of functions transforming in a specified manner under change of basis. The classical writers (before Cartan) used
coordinates instead of orthonormal bases.
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Then we write

(2.2.11) [ek∂k, e
`∂`] = [∂k, ∂`]ek ⊗ e` = −Ri

jk` e
k ⊗ e` ⊗ Ej

i .

Ri
jk` = Rijk` is the Riemann curvature tensor. It transforms as a 2-form on X with values in

skew-symmetric endomorphisms of the tangent bundle. Hence it is skew in i, j and k, `. We denote
this 2-form by

(2.2.12) Ω(X) = Ri
jk` e

k ∧ e` ⊗ Ej
i .

What is not immediately apparent is the Bianchi identity

(2.2.13) Rijk` +Ri`jk +Rik`j = 0.

The contracted tensor

(2.2.14) Rj` =
∑

k

Rkjk`

is the Ricci curvature; it is symmetric in j, `. After one more contraction we obtain the function

(2.2.15) R =
∑

`

R``.

It is appropriately termed the scalar curvature.
Next we introduce spinors on X. These are tensors which transform under Spin(n). Since the

frame bundle SO(X) only transforms under SO(n), we must lift to a bundle on which Spin(n) acts.

Definition 2.2.16. A spin structure on X is a principal Spin(n) bundle Spin(X) which double
covers SO(X), and for which the diagram

Spin(X)× Spin(n) −−−−→ Spin(X)
y2:1

y2:1

y2:1

SO(X) ×SO(n) −−−−→ SO(X)

commutes.

The last statement simply asserts that the action of Spin(n) on Spin(X) is compatible with the
action of SO(n) on SO(X). Spin structures may not exist, and even if they do exist there is
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not in general a unique isomorphism class. The obstruction to existence is the second Stiefel-
Whitney class w2(X) ∈ H2(X;Z/2Z), and if this obstruction vanishes then H1(X;Z/2Z) acts
simply transitively on the set of isomorphism classes of spin structures.

Exercise 2.2.17. Prove these topological assertions (cf. [AB2,p.480]).

Exercise 2.2.37. Suppose that X is an oriented Riemannian manifold with boundary which is
endowed with a spin structure. Construct an induced spin structure on ∂X. Does the Cartesian
product of two spin manifolds carry a natural spin structure? What about the quotient by a free
group action? What about an oriented submanifold of a spin manifold?

Exercise 2.2.18. Describe explicitly the spin structures on S1. Prove that if X is a spin manifold
with boundary, then ∂X inherits a natural spin structure. Which spin structure on the circle is the
boundary of the spin structure on the disk? Describe the spin structures on a Riemann surface X
of genus g. There are 22g of them. Describe geometrically the action of H1(X;Z/2Z) on the set of
spin structures in this case. (Hint: Consider the restriction of a spin structure to circles in X.)

Exercise 2.2.19. Find an oriented closed 4-manifold which does not admit a spin structure. Are
there any such examples in dimension 2 or 3?

Exercise 2.2.38. Investigate the notion of a pin structure on a Riemannian manifold (with no
orientation or orientability hypothesis).

Let X be a spin manifold. For us this means that X is oriented and carries a Riemannian metric.
A spinor field ψ is then a function ψ : Spin(X)→ S which satisfies

(2.2.20) ψ(p · g) = γ(g−1)ψ(p), g ∈ Spin(n), p ∈ Spin(X).

Recall that γ denotes the spin representation (2.1.35) (associated to the dual space En∗). Alterna-
tively, the spin representation determines a vector bundle S → X associated to Spin(X); a spinor
field is a section of S. (An element of Sx is a map ψ : Spin(X)x → S satisfying (2.2.20).) This spin
bundle decomposes in even dimensions as S = S+ ⊕ S−. The Dirac operator is (cf. (2.2.2))

(2.2.21) D = c(∂) = c(ek)∂k = γk∂k.

As on Rn it maps spinor fields to spinor fields, interchanging sections of S+ and sections of S− in
even dimensions. Formally speaking, since γk = c(ek) and ∂k are skew-adjoint and commute, the
Dirac operator D is (formally) self-adjoint. The following two exercises make this idea rigorous.

Exercise 2.2.22. Let E,F be unitary representations of Spin(n) and σ ∈ Hom(En∗,Hom(E,F ))
an invariant element. Show that σ(∂) defines a first order differential operator. What is σ for the
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Dirac operator? For the exterior derivative d? For the adjoint d∗ of the exterior derivative? For
the covariant derivative?

Exercise 2.2.23. The formal adjoint D∗ of a differential operator D is characterized by the
equation

(2.2.24) 〈Dψ,χ〉 = 〈ψ,D∗χ〉,

where the L2 inner product is defined using the metrics on E,F and integration against the volume
form onX (cf. (3.1.1)). SinceD∗ is also a differential operator, it suffices to verify (2.2.24) for (local)
compactly supported sections. For σ as in Exercise 2.2.22, define σ∗ ∈ Hom(En∗,Hom(F,E)) by
σ∗(e) = −σ(e)∗. (Note the minus sign!) Prove that σ∗(∂) = σ(∂)∗. Check this for the exterior
derivative d and its adjoint d∗. Verify that the Dirac operator (2.2.21) is formally self-adjoint.

Exercise 2.2.25. What is the Dirac operator on S1? Compute it for both spin structures. What
is the Dirac operator on a Riemann surface? How is it related to the Cauchy-Riemann operator ∂̄?
(Hint: Try this on R2 ∼= C first.)

Exercise 2.2.26. Let ψ be a spinor field and f a function. Use the Leibnitz rule to show

(2.2.27) D(fψ) = c(df)ψ + fDψ.

What is the corresponding formula for D(
c(α)ψ

)
, where α is a 1-form? (Your answer will involve

Clifford multiplication of higher degree forms on spinor fields.)

Finally, as in (2.2.3), we compute

D2 = γk∂k γ
`∂`

=
∑

k

(γk)2 ∂k
2 +

∑

k<`

γkγ` [∂k, ∂`]

= −
∑

k

∂k
2 +

∑

i<j
k<`

Ri
jk` γ

kγ`γ̇(Ej
i ).

(2.2.28)

In the last line we used the basic Clifford identity (γk)2 = −1, the definition of curvature (2.2.11),
and the fact that vertical vector fields act on associated bundles by minus the differential of the
defining representation.17 The skew matrix Ej

i ∈ o(n) acts on spinors by the differential γ̇ of the

17More explicitly, let P → X be an arbitrary principal G bundle, Z ∈ g an element of the Lie algebra of G, Z̃ the
vertical vector field on P determined by Z, γ a representation of G, and ψ a section of the vector bundle associated
to ρ. Note that ψ satisfies equation (2.2.20). Thus if gt is the 1-parameter group generated by Z, then

Z̃ψ(p) =
d

dt

∣∣
t=0

ψ(p · gt) =
d

dt

∣∣
t=0

γ(g−1
t )ψ(p) = −γ̇(Z)ψ(p)
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spin representation. This should have been computed in Exercise 2.1.21 as

(2.2.29) γ̇(Ej
i ) =

1
2
γjγi.

(Try Exercise 2.1.25 first! Note here that we have taken the dual action on En∗, which is by minus
the transpose.) Hence the last term in (2.2.28) is

(2.2.30)
∑

i<j
k<`

Ri
jk` γ

kγ`γ̇(Ej
i ) =

1
8

∑

i 6=j
k 6=`

Rijk` γ
kγ`γjγi.

Now if k 6= ` 6= j then the summand vanishes, by the Bianchi identity (2.2.13). When k = j we
obtain

(2.2.31)
1
8

∑

k

Rikk`γ
`γi = −1

8
Ri`γ

`γi =
1
8

∑

`

R`` =
1
8
R.

Here we have used the definitions of the Ricci curvature (2.2.14) and the scalar curvature (2.2.15).
Similarly, when ` = j in (2.2.30) we have

(2.2.32) −1
8

∑

`

Ri`k`γ
kγi = −1

8
Rikγ

kγi =
1
8
R.

Combining (2.2.28)–(2.2.31) we deduce the Weitzenböck formula

(2.2.33) D2 = −
∑

k

∂k
2 +

R

4
.

This formula is important in the sequel. The operator −∑
k

∂k
2 is the (flat, covariant) Laplacian

on spinor fields. Since the formal adjoint (Exercise 2.2.23) of the covariant derivative ∂ = ek∂k is

(2.2.34) ∂∗ = −ι(ek)∂k,

where ι(ek) is the inner product with ek, we can rewrite this operator as ∂∗∂. It is a nonnegative
(formally) self-adjoint operator.18

Exercise 2.2.35. Prove that if R ≥ 0 on X, and R > 0 at one point, then there are no harmonic
spinors on X, i.e., the Dirac operator has no kernel. This is Lichnerowicz’s vanishing theorem [L].

Exercise 2.2.36. Give an example of a nontrivial harmonic spinor.

Exercise 2.2.39. Suppose {ξk} is a local oriented orthonormal frame, i.e., a local section of SO(X).
Write D, D2, ∇∗, and ∇∗∇ in terms of the covariant derivatives ∇ξk

.

18The covariant derivative is often denoted ∇, in which case the covariant Laplacian is ∇∗∇.
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§2.3 Generalized Dirac operators

Let V → X be a Hermitian vector bundle endowed with a unitary connection ∇. The connection
is a first order differential operator ∇ : C∞(V ) → C∞(T ∗X ⊗ V ); it satisfies Leibnitz’s rule and
preserves the metric. (See Chapter 6 for more about connections on vector bundles.) If X is a spin
manifold, and D its Dirac operator, we can construct the coupled Dirac operator

(2.3.1) DV : C∞(S ⊗ V ) −→ C∞(S ⊗ V )

as the composition

C∞(S ⊗ V ) ∂⊗1+1⊗∇−−−−−−−→ C∞(T ∗X ⊗ S ⊗ V )
c(·)−−→ C∞(S ⊗ V ).

The operator ∂ ⊗ 1 + 1⊗∇ is a connection on S ⊗ V . If ψ is a spinor field, ϕ a section of V , and
ξk a local orthonormal frame field, with θk the dual coframe field, then

(2.3.2) DV (ψ ⊗ ϕ) = c(θk)∂ξk
ψ ⊗ ϕ+ c(θk)ψ ⊗∇ξk

ϕ.

Exercise 2.3.3. Prove that the operator DV is formally self-adjoint (cf. Exercise 2.2.23).

We can also describe the generalized Dirac operator in terms of the frame bundle. Suppose
Q → X is a principal bundle with connection to which (V,∇) is associated. Form the product
SO(X)×X Q→ X; it is a principal bundle over X with connection. The vector fields ∂k lift to this
bundle, and ∂ = ek∂k is the connection on P ×X Q to which the connection ∂⊗ 1+1⊗∇ on S⊗V
is associated. Now the coupled Dirac operator is DV = γk∂k as in (2.2.21), only now the ∂k live
on P ×X Q and act on functions P ×X Q→ S⊗ V which transform appropriately.

Notice that we might have Q = SO(X). In other words, the auxiliary vector bundle V may be
intrinsic (associated to the tangent bundle). Then we can replace SO(X) ×X SO(X) by SO(X).
The Dirac operator is DV = γk∂k as before, operating on spinor fields coupled to some tensor fields.

Important examples appear in the following exercises. The analysis that we carry out in the
sequel applies to all of these generalized Dirac operators.

Exercise 2.3.41. As in Exercise 2.2.39 write the coupled Dirac operator in terms of a local
orthonormal frame field.

Exercise 2.3.4. Set ∇ = ∂ ⊗ 1 + 1 ⊗ ∇, the connection on S ⊗ V . Deduce the generalized
Weitzenböck formula

(2.3.5) D2
V = ∇∗∇+

R

4
+ c(Ω(V )),
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where Ω(V ) ∈ Ω2(X,EndV ) is the curvature of ∇, and Clifford multiplication by a 2-form is defined
using Exercise 2.1.8.

In the next several exercises, we develop the important examples of generalized Dirac operators.
This amounts to rewriting some of the usual operators on differential forms in terms of spinors and
Clifford algebras. Notice that the coupling bundle V in these examples is intrinsic, i.e., associated
to the tangent bundle.

Exercise 2.3.6. For V = S show that in even dimensions DV is the complexification of the
operator

(2.3.7) d+ d∗ : Ω∗(X) −→ Ω∗(X)

on differential forms. (Hint: Exercise 2.1.8, (2.1.42).) Show that the kernel consists of harmonic
forms (cf. (1.2.3)). What happens in odd dimensions? Investigate carefully the situation in 3 di-
mensions. Notice that (2.3.7) is defined on any manifold X.

In even dimensions the chiral Dirac operator D is the restriction of D to S+. Thus given V as
above we form

(2.3.8) DV : C∞(S+ ⊗ V ) −→ C∞(S− ⊗ V ).

For the rest of this section we work in even dimensions.

Exercise 2.3.9. Suppose Ei are vector bundles over X, and

(2.3.10) 0 −→ C∞(E0)
d0−→ C∞(E1)

d1−→ · · · dn−1−−−→ C∞(En) −→ 0

a sequence of first order differential operators with di ◦ di−1 = 0. The ith cohomology of the
complex (2.3.10) is then

Hi = ker di/ im di−1.

Assume Ei are Hermitian and d∗i is the adjoint of di. Make sense of

(2.3.11) d+ d∗ :
⊕

i

C∞(E2i) −→
⊕

i

C∞(E2i+1).

What is the kernel of (2.3.11)? What is the kernel of its adjoint? If the Hi are finite dimensional,
prove that the index of (2.3.11) is finite and equal to

∑
i

(−1)i dimHi, the Euler characteristic

of (2.3.10).
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Exercise 2.3.12. Recall the grading operator ε introduced in Exercise 2.1.28. Show that ±c(ε)⊗
c(ε) induces the grading on S ⊗ S corresponding to the Z/2Z grading on CliffC(En), where we
use the + sign if n is divisible by 4 and the − sign if n ≡ 2 (mod 4). (Hint: Exercise 2.1.40,
Exercise 2.1.44.) Hence

(2.3.13)
CliffC(En)± ∼= S+ ⊗ S+ ⊕ S− ⊗ S−,
CliffC(En)∓ ∼= S+ ⊗ S− ⊕ S− ⊗ S+.

(Hint: Exercise 2.1.36.) Again the signs depend on the value of n (mod 4). Also, we can identify
CliffC(En)± ∼= ∧±(Rn) ⊗ C, the even and odd parts of the exterior algebra. Under these isomor-
phisms the action of c(·)⊗ 1 on S⊗ S corresponds to the action of ε(·)− ι(·) on

∧
(Rn)⊗C. (Hint:

(2.1.10), (2.1.42).) Conclude that for V = ±S+∓S− we can identify DV with the complexification
of the real operator

(2.3.14) d+ d∗ : Ω+(X) −→ Ω−(X).

(What do we mean by the difference of two bundles?) (2.3.14) is a collapsed version of the de
Rham complex (1.2.1). Show that the index of (2.3.14) is χ(X), the Euler characteristic of X.
(The index is the dimension of the kernel minus the dimension of the kernel of the adjoint.) Notice
that (2.3.14) is defined on any manifold X, though the identification of the index with the Euler
characteristic is valid only if X is compact.

Exercise 2.3.15. The Hodge ∗ operator is defined on
∧

(En) by the formula

(2.3.16) α ∧ ∗β = (α, β) vol, α, β ∈ ∧
(En),

where vol ∈ ∧nEn is the volume form. Notice that we require an orientation on En. Show that
under the isomorphism CliffC(En) ∼= ∧

(En)⊗ C, left Clifford multiplication by ε (2.1.29) is

(2.3.17) ε· = ip(p−1)+n/2 ∗ .

What is right Clifford multiplication by ε? The involution

(2.3.18) τ(α) = ip(p−1)+n/2 ∗ α

induces a decomposition
∧

(En) ⊗ C ∼= ∧
+(En) ⊕∧

−(En). Notice that if n is divisible by 4, then
τ is defined on the real exterior algebra

∧
(En). Prove

(2.3.19)

∧
+(En) ∼= S+ ⊗ S,

∧
−(En) ∼= S− ⊗ S.
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(CHECK THE SIGNS CAREFULLY!)

Exercise 2.3.20. Continuing the previous exercise, on any oriented even dimensional Riemannian
manifold X we decompose the complexified differential forms into Ω+(X) ⊕ Ω−(X), according to
the involution (2.3.18). Prove that for V = S we can identify DV with

(2.3.21) d+ d∗ : Ω+(X) −→ Ω−(X).

This is called the signature operator . If n is divisible by 4, then (2.3.21) is the complexification of
a real operator. Identify the kernel (and the kernel of the adjoint) when X is compact.

Exercise 2.3.22. Let X4k be a compact oriented manifold of dimension 4k. Then there is a
symmetric pairing on Ω2k(X) defined by

(2.3.23) α⊗ β 7−→
∫

X

α ∧ β.

By Stokes’ theorem this passes to a symmetric pairing on the de Rham cohomology H2k(X), and
by Poincaré duality it is nondegenerate. Now a nondegenerate symmetric bilinear form on a real
vector space has a signature, which is the dimension of the maximal subspace on which the form
is positive definite minus the dimension of the maximal subspace on which the form is negative
definite. The signature of (2.3.23) is called the signature of X, denoted Sign(X). Compute the
signature of some familiar manifolds (CPn, tori). How does the signature behave under products?

Exercise 2.3.24. Prove that the index of (2.3.21) on X4k compact, oriented is Sign(X).

Exercise 2.3.25. Identify DV in terms of differential forms for V = S+ and V = S−. Is DV de-
fined over the reals? On what sorts of manifolds is DV defined? Express DV as the collapsed
version of an elliptic complex. It is called the (anti-)self-dual complex. On X4 the ∗ operator
is an involution on 2-forms, which leads to the decomposition Ω2(X) ∼= Ω2

+(X) ⊕ Ω2
−(X). The

self-dual-complex is

(2.3.26) 0 −→ Ω0(X) d−→ Ω1(X)
d+−→ Ω2

+(X) −→ 0.

Assuming X compact, compute the index of (2.3.26) in terms of χ(X) and Sign(X). Define the
anti-self-dual complex in 4 dimensions and compute its index. This complex is fundamental in the
work of Simon Donaldson on the topology of 4-manifolds. (See [FU] for an introduction.)

Exercise 2.3.27. An almost complex structure on a differentiable manifold X of dimension 2m is
a smoothly varying complex structure Jx on the tangent spaces TxX, i.e., an endomorphism of TxX
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whose square is −1. If X also carries a Riemannian metric g, then we ask that J be skew-symmetric
(and hence orthogonal). There is then an exterior 2-form

(2.3.28) ω(X,Y ) = g(X, JY )

defined. (Note that g +
√−1ω is a Hermitian metric.) We call X Kähler if ω is closed. Reconcile

this definition with any other definition of ‘Kähler’ with which you are familiar. On any almost
complex manifoldX define a subbundle U(X) of the orthogonal frame bundle SO(X) which consists
of isometries p : E2m → TxX which carry the standard complex structure on E2m to the complex
structure Jx on TxX. (Fix the standard complex structure on E2m to be J(e2k−1) = e2k, J(e2k) =
−e2k−1.) Then U(X) is a principal U(2m) bundle. Show that X is Kähler if and only if the vector
fields ∂k on SO(X) are tangent to U(X) along U(X). This is a nice geometric interpretation of
the Kähler condition.

Exercise 2.3.29. Recall that on any complex m-manifold X the complex differential forms de-
compose into Ω∗(X) = ⊕Ωp,q(X), and that the exterior differential also decomposes into d = ∂+ ∂̄,
with ∂2 = ∂̄2 = 0. The Dolbeault complex is then

(2.3.30) 0 −→ Ω0,0(X) ∂̄−→ Ω0,1(X) ∂̄−→ · · · ∂̄−→ Ω0,m(X) −→ 0.

Now suppose that X is Kähler with unitary frame bundle U(X) as in Exercise 2.3.27. Define
complex vector fields

(2.3.31) ∂̄k =
1
2
(∂2k−1 +

√−1 ∂2k), k = 1, . . . ,m,

and a Cm
∗
-valued vector field

(2.3.32) ∂̄ = f̄k∂̄k,

where f1, . . . , fm is the standard unitary basis of Cm,

(2.3.33) fk = e2k−1 +
√−1 e2k,

and f̄1, . . . , f̄m the corresponding basis of Cm
∗
. Show that (2.3.32) represents the ∂̄ operator

in (2.3.30). (Hint: Act on U(m) equivariant functions U(X)→ ∧
Cm

∗
. Try first to understand the

equation d = ∂ + ∂̄ in this language, rewriting (2.2.8) in terms of fk and f̄k using (2.3.33).) Show
that the adjoint is

(2.3.34) ∂̄∗ = −ι(f̄k)[
1
2
(∂2k−1 −

√−1 ∂2k)].
43



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

Exercise 2.3.35. Let X be a Kähler manifold with unitary frame bundle U(X). Recall from Exer-
cise 2.1.54 that its structure group U(n) has a nontrivial double cover Ũ(n). Define a Ũ(n) structure
by analogy with Definition 2.2.16. Show that X has a Ũ(n) structure if and only if w2(X) = 0. (Re-
call that sinceX is complex, w2(X) is the mod 2 reduction of c1(X).) Describe a 1:1 correspondence
between Ũ(n) structures and spin structures.

Exercise 2.3.36. SupposeX is a Kähler manifold with Ũ(n) structure Ũ(X), which is a subbundle
of a spin structure Spin(X). Since the vector fields ∂k are tangent to Ũ(X), we can restrict
the Dirac operator (2.2.21) to Ũ(X). Now use Exercise 2.1.54 to rewrite the result in terms of
differential forms. Use the Hermitian metric to identify Cm ∼= Cm

∗
. Also, the bundle associated

to Ũ(X) via the representation det−1/2 of Exercise 2.1.54 is a square root K1/2 of the canonical
bundle K = detT ∗X. (The inverse is accounted for since we use the cotangent bundle.) Finally,
then, using (2.3.32) and (2.3.34) you should find that the chiral Dirac operator restricts to

(2.3.37) D =
1
2
(∂̄ + ∂̄∗) : Ω0,even(X,K1/2) −→ Ω0,odd(X,K1/2).

Here, for any vector bundle E we let Ωp,q(X,E) denote the (p, q)-forms with values in E. Show
that up to a factor of 2 the operator in (2.3.37) is the collapse of the complex

(2.3.38) 0 −→ Ω0,0(X,K1/2) ∂̄−→ Ω0,1(X,K1/2) ∂̄−→ · · · ∂̄−→ Ω0,m(X,K1/2) −→ 0.

Note that ∂̄ in (2.3.38) is defined purely from the holomorphic structure of K1/2. Show that on a
Riemann surface (m = 1) the chiral Dirac operator is complex skew-adjoint.

Exercise 2.3.39. Finally, if X is Kähler with a Ũ(n) structure (or equivalently a spin structure),
identify the coupled chiral Dirac operator DK−1/2 with

(2.3.40) DK−1/2 =
1
2
(∂̄ + ∂̄∗) : Ω0,even(X) −→ Ω0,odd(X),

the collapse19 of the Dolbeault complex (2.3.30). Hence this operator is of Dirac type. Its index is
called the arithmetic genus of X. What is the arithmetic genus of a Riemann surface of genus g?

Exercise 2.3.42. Work out the Weitzenböck formula for the ∂̄ complex (cf. Exercise 2.3.4). Use
it to deduce a vanishing theorem (cf. Exercise 2.2.35).

19up to a factor of 2
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§3 Ellipticity

The methods of functional analysis will aid our study of the Dirac operator, once we settle
on appropriate function spaces. Consider the simplest Dirac operator i d

dx on the real line R.
The smooth functions form a linear space C∞(R) on which i d

dx acts, but in the natural topology
C∞(R) is a Fréchet space. Analysis on Fréchet spaces is far too tricky for our needs, so we try
instead the space Ck(R) of functions with k bounded continuous derivatives. This is a Banach
space, but still not best for our purposes. Hilbert spaces are the nicest among topological vector
spaces, and the basic example here is the space L2(R) of square integrable functions.

Exercise 3.1. Show that i d
dx defines an unbounded operator on L2(R). Prove that it is self-

adjoint [St,§X.2]. Prove that the Dirac operator on any compact manifold X defines an unbounded
self-adjoint operator on L2(X). (This will follow from our work later, but if you try it now you will
appreciate the difficulties.)

Exercise 3.1 is a powerful result. For self-adjoint operators one has available the spectral theorem.
However, we prefer another tack, restricting ourselves to bounded operators and simpler Hilbert
space theory. The price we pay is small—we must define more complicated Hilbert spaces. As
the Dirac operator involves differentiation, in §3.1 we introduce Hilbert spaces of functions with
derivatives, the Sobolev spaces. Rather than develop the theory of general elliptic differential (or
pseudodifferential) operators, in §3.2 we specialize to generalized Dirac operators. This simplifies
the theory tremendously. The main result is the existence of a basis of smooth eigenfunctions.

§3.1 Sobolev Spaces

We begin with a somewhat general setting. Let X be a compact Riemannian manifold. The
metric on X determines a volume form dx. Suppose E → X is a vector bundle with a smooth
hermitian metric (·, ·) and a smooth unitary connection ∇. The metric is conjugate linear in the
second variable. For ϕ,ψ ∈ C∞(E) smooth sections of E, we define the L2 inner product

(3.1.1) 〈ϕ,ψ〉L2 =
∫

X

(
ϕ(x), ψ(x)

)
dx.

Then L2(E) is the completion

(3.1.2) L2(E) = {ψ ∈ C∞(E) : ‖ψ‖L2 <∞}.

We denote the L2 inner product by 〈·, ·〉 and the L2 norm by ‖ · ‖. Similarly, for a nonnegative
integer ` we define the Sobolev H` inner product

(3.1.3) 〈ϕ,ψ〉H`
=

∫

X

[
(ϕ,ψ) + (∇ϕ,∇ψ) + · · ·+ (∇`ϕ,∇`ψ)

]
dx.
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In (3.1.3) the Riemannian metric and the inner product on E combine to produce an inner product
on sections of (T ∗X)k ⊗ E, 0 ≤ k ≤ `. The Sobolev space H`(E) is then the completion

(3.1.4) H`(E) = {ψ ∈ C∞(E) : ‖ψ‖H`
<∞}.

H`(E) is a Hilbert space. Notice that H0(E) = L2(E); we use the notations interchangeably. The
inequality

(3.1.5) ‖ψ‖H`
≤ ‖ψ‖H`′ , `′ > `

is trivial.

Exercise 3.1.6. Write smooth complex-valued functions on the circle as Fourier series f =∑
ane

inθ, an ∈ C. When is f ∈ H`(S1)? What is ‖f‖H`
? Extend to functions on the n-torus.

Exercise 3.1.7. Define H`(R) and H`(Rn). Compare with the Sobolev spaces on compact mani-
folds. (Hint: Consider constant functions.) Guess the definition of H loc

` (Rn), the space of functions
locally in H`().

Exercise 3.1.24. The space Hk(E) is sometimes denoted ‘L2
k(E)’. Guess the definition of the

space Lp
k(E) for 1 ≤ p ≤ ∞. We do not need these Lp spaces for the linear analysis, but they do

enter into nonlinear elliptic theory.

Exercise 3.1.8. Prove that i d
dx : H1(R) → H0(R) is bounded. How does H1(R) enter into the

considerations of Exercise 3.1?

The Sobolev norms depend on the choice of metric on X, metric on E, and connection on E.
The next result asserts that different choices lead to equivalent norms.

Proposition 3.1.9. If ‖ · ‖′H`
is the Sobolev norm for different choices of metric on X, metric

on E, and connection on E, then ‖ · ‖H`
and ‖ · ‖′H`

are equivalent. In other words, there exist
constants c, C (depending on `) such that for all ψ ∈ C∞(E)

(3.1.10) c‖ψ‖H`
≤ ‖ψ‖′H`

≤ C ‖ψ‖H`
.

Throughout we use symbols like c, C to denote generic constants. Their meaning may vary from
line to line, as well as within the same equation.

Proof. We only treat a change of connection and ` = 1, the general case being similar. Hence
suppose ∇′ = ∇+A for some matrix valued 1-form A. Since X is compact we have the bound |A| ≤
C, where |A| is the pointwise operator norm. From the Cauchy-Schwarz inequality we conclude

〈∇′ψ,∇′ψ〉 = 〈∇ψ,∇ψ〉 + 2Re〈∇ψ,Aψ〉 + 〈Aψ,Aψ〉
≤ ‖∇ψ‖2 + C ‖∇ψ‖ ‖ψ‖ + C ‖ψ‖2.

(3.1.11)
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Taking note of (3.1.5) we obtain

‖ψ‖′2H1
= ‖ψ‖2 + ‖∇′ψ‖2

≤ ‖ψ‖2 + ‖∇ψ‖2 + C ‖ψ‖2H1
+ C ‖ψ‖2

≤ C ‖ψ‖2H1
.

Take the square root to obtain the desired inequality; the reverse inequality is obtained by switch-
ing ∇ and ∇′.

Exercise 3.1.12. Write out the proof of Proposition 3.1.9 for the general case.

Some elementary properties of the Sobolev spaces are summarized in

Proposition 3.1.13.

(1) There is a bounded inclusion H`′(E) ↪→ H`(E) for `′ > `.
(2) The covariant derivative is a bounded map ∇ : H`(E)→ H`−1(E).
(3) A vector bundle map L : E → F extends to a bounded map H`(E)→ H`(F ) for all `.
(4) Any kth order differential operator P : C∞(E)→ C∞(F ) extends to a bounded map H`(E)→

H`−k(F ) for all `.

Proof. Assertion (1) is the inequality (3.1.5), and (2) is trivial from the definitions. To prove (3)
we show that for any ψ ∈ C∞(E) we have

(3.1.14) ‖Lψ‖H`
≤ C ‖ψ‖H`

.

Our proof is by induction on `, and at the same time we show that for ` ≥ 1

(3.1.15) ‖[L,∇`]ψ‖ ≤ C ‖ψ‖H`−1 .

Now (3.1.14) is easy for ` = 0. Similarly, [L,∇] = −∇L is a bundle map, so that (3.1.15) follows
easily for ` = 1. Assuming (3.1.14) and (3.1.15) for k < `, we write

(3.1.16) [L,∇`] = [L,∇]∇`−1 +∇[L,∇]∇`−2 +∇2[L,∇]∇`−3 + · · ·+∇`−1[L,∇].

Since [L,∇] is a bundle map, our induction hypothesis implies that [L,∇] : Hk(E) → Hk(F ) is
bounded for k ≤ ` − 1. Then (2) and (3.1.16) show that [L,∇`] : H`−1(E) → H0(F ) is bounded,
which is (3.1.15). Thus

‖∇`Lψ‖ ≤ ‖L∇`ψ‖ + ‖[L,∇`]ψ‖
≤ C (‖∇`ψ‖ + ‖ψ‖H`−1

)

≤ C ‖ψ‖H`
,

(3.1.17)
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and now by the induction hypothesis,

‖Lψ‖H`
≤ C (‖∇`Lψ‖ + ‖Lψ‖H`−1

)

≤ C (‖ψ‖H`
+ ‖ψ‖H`−1

)

≤ C ‖ψ‖H`
,

which completes the proof of (3). Assertion (4) follows from (2) and (3), since a general kth order
differential operator has the form

(3.1.18) Lk ◦ ∇k + Lk−1 ◦ ∇k−1 + · · ·+ L0

for some bundle maps Lj .

There are two basic lemmas about Sobolev spaces which we need in the next section.

Lemma 3.1.19 (Rellich). The inclusion H1(E) ↪→ H0(E) is compact.

Proof. For any sequence {ϕi} ⊂ H1(E) with ‖ϕi‖H1 ≤ 1, we must find a subsequence which
converges in H0(E). Cover X by a finite number of coordinate charts Uα with trivializations of E
over Uα, and let ρα be a partition of unity subordinate to {Uα}. Then it suffices to prove that a
subsequence of vector-valued functions {ραϕi} converges. Take the coordinate charts to live on the
n-torus Tn. We are thus reduced to proving that ι : H1(Tn) ↪→ H0(Tn) is compact. Since H0(Tn) is
complete, it suffices to show that given ε > 0 we can find cover the image ι(B) ⊂ H0(Tn) of the
closed unit ball B ⊂ H1(Tn) by finitely many balls of radius ε.

For any function f on Tn we write its Fourier expansion f(x) =
∑
ν
f̂νe

iν·x as a sum over

multiindices ν = 〈ν1, . . . , νn〉 ∈ Zn. Then ‖f‖2H1
=

∑
ν

(1+ |ν|2)|f̂ν |2, where |ν|2 = ν2
1 + · · ·+ν2

n. Set

ZN = {f ∈ H1(Tn) : f̂ν = 0 for |ν| ≤ N}.

Then for N sufficiently large any f ∈ B ∩ ZN satisfies ‖f‖H0 < ε/
√

2, since

∑

|ν|>N

|f̂ν |2 ≤
∑

|ν|>N

1 + |ν|2
1 +N2

|f̂ν |2 ≤
‖f‖2H1

1 +N2
≤ 1

1 +N2
,

which tends to zero as N → ∞. The orthogonal complement Z⊥N consists of smooth functions
whose Fourier coefficients f̂ν vanish for |ν| > N ; it is finite dimensional and orthogonal to ZN in
both the H1 and H0 inner products. The intersection B ∩ Z⊥N is compact in both the H1 and
H0 topologies, so can be covered by a finite set of balls of H0-radius ε/

√
2 with centers f1, . . . , fM

in Z⊥N . Then the balls of radius ε with those centers cover ι(B) ⊂ H0.

Exercise 3.1.20. Prove that the inclusion H`′(E) ↪→ H`(E) is compact for `′ > `.

The Sobolev embedding theorem bounds pointwise norms by integral norms.
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Lemma 3.1.21 (Sobolev). If `− n
2 > k then H`(E) ↪→ Ck(E).

Proof. We give a proof due to Louis Nirenberg [N]. Consider first the case k = 0. We must estimate
the sup norm of a smooth section ψ in terms of the H`(E) norm. Since this is a local estimate, we
may as well work with functions on Rn with support contained in the ball of radius R about the
origin. Then repeated integration by parts in a fixed radial direction gives

(3.1.22) ψ(0) = −
∫ R

0

∂ψ

∂r
dr = · · · = C

∫ R

0

r`−1 ∂
`ψ

∂r`
.

The volume form in polar coordinates is vol = rn−1dr dθ. Integrate (3.1.22) over the unit sphere
to obtain

|ψ(0)| = C

∣∣∣∣∣
∫

BR(0)

∂`ψ

∂r`
r`−n vol

∣∣∣∣∣

≤ C
(∫

BR(0)

∣∣∣∣
∂`ψ

∂r`

∣∣∣∣
2

vol

)1/2 (∫

BR(0)

r2(`−n) vol

)1/2

.

(3.1.23)

The first factor is bounded by the H` norm of ψ, and the second factor is finite for ` > n/2. This
is the desired statement for k = 0. For k > 0 apply (3.1.23) to the derivatives of ψ.

§3.2 Elliptic Theory for Dirac Operators

Let X be a compact n dimensional spin manifold, with spin bundle S, and V → X a Hermitian
bundle with connection. Then we have a coupled Dirac operator D acting on sections of S ⊗ V
(cf. (2.3.1)). It is formally self-adjoint (Exercise 2.3.3). For convenience we denote the Sobolev
space H`(S ⊗ V ) by H`. Then(3.1.13(4)) implies that

D : H` −→ H`−1

D2 : H` −→ H`−2

are bounded operators. We determine their structure.
Our treatment requires only a simple estimate and elementary Hilbert space theory. To simplify

matters we introduce the antidual space H−1 to H1. For a smooth function f define the H−1 norm
of f to be the least constant C such that

(3.2.1) 〈f, ψ〉 ≤ C ‖ψ‖H1 for ψ ∈ H1.
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Let H−1 be the completion of C∞ with respect to the norm (3.2.1). By definition there is a
pairing H−1 ⊗H1 → C, and both H1 and H−1 are complete. This pairing is also nondegenerate
(Exercise 3.2.2). It follows that H−1 is the antidual space to H1. Notice that elements of H−1 are
distributions which are not generally functions.

Exercise 3.2.2. Prove that (3.2.1) extends to a nondegenerate pairing H−1 ⊗ H1 → C. (Hint:
C∞ functions are dense in both H1 and H−1.)

Exercise 3.2.3. Show that L2 ↪→ H−1 is bounded. Prove that D2 : H1 → H−1 is bounded.

Our basic estimate is known as G̊arding’s inequality.

Proposition 3.2.4. There exists κ > 0 such that for any ψ ∈ H1,

(3.2.5) 〈D2ψ,ψ〉 + κ〈ψ,ψ〉 ≥ ‖ψ‖2H1
.

Proof. It suffices to verify (3.2.5) for smooth ψ. Recall the generalized Weitzenböck formula (2.3.5),
which implies

ψ +∇∗∇ψ = D2ψ −
(
R

4
+ Ω(V ) − 1

)
ψ.

Then since the curvatures are bounded on X,

〈ψ,ψ〉 + 〈∇ψ,∇ψ〉 ≤ 〈D2ψ,ψ〉 + κ〈ψ,ψ〉,

which is (3.2.5).

Corollary 3.2.6. The inner product 〈〈ψ,ϕ〉〉 = 〈D2ψ,ϕ〉 + κ〈ψ,ϕ〉 is equivalent to the H1 inner
product.

Theorem 3.2.7. D2 + κ : H1 → H−1 is an isomorphism.

Proof. Using (3.2.5) and the definition of the H−1 norm we easily deduce

(3.2.8) ‖(D2 + κ)ψ‖H−1 ≥ ‖ψ‖H1 .

This implies that D2 + κ is injective and has closed range. We must prove that it is also onto.
For any f ∈ H−1 consider the antilinear functional ϕ 7→ 〈f, ϕ〉 on H1. This is bounded, by the
definition of H−1. Corollary 3.2.6 implies that any bounded functional on H1 is represented by the
inner product 〈〈·, ·〉〉, whence we can find ψ ∈ H1 such that

〈f, ϕ〉 = 〈(D2 + κ)ψ,ϕ〉
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for all ϕ ∈ H1. This implies (D2 + κ)ψ = f . So D2 + κ is onto. Now (3.2.8) shows that the inverse
is bounded.

Let T denote the composition

(3.2.9) T : H0 ↪→ H−1
(D2+κ)−1

−−−−−−→ H1 ↪→ H0.

By Theorem 3.2.7 and Lemma 3.1.19 we see that T is compact. Since for ψ,ϕ ∈ H1 we have

(3.2.10) 〈(D2 + κ)ψ,ϕ〉 = 〈ψ, (D2 + κ)ϕ〉,

it follows easily that T is self-adjoint. It is clear that T is a positive operator. We now apply a
result from Hilbert space theory, the spectral theorem for positive self-adjoint compact operators.
It asserts the existence of a complete orthonormal basis {ψn} of H0 and positive numbers µ1 ≥
µ2 ≥ . . . such that

(3.2.11)

(i) Tψn = µnψn;

(ii) For any c > 0 there is a finite number of µn > c;

(iii) lim
n→∞

µn = 0.

This is quite an elementary theorem in Hilbert space theory, as we remind the reader in the following
exercise.

Exercise 3.2.12. Prove the previous assertion as follows. Consider the quadratic form ψ 7→
〈Tψ, ψ〉 on the unit ball in H0. Since T is compact it achieves its maximum, say at ψ1. Show that
T preserves the orthogonal complement to C · ψ1, and iterate the argument.

Exercise 3.2.13. Make these conclusions explicit for the circle. What is D2? What are the ψn?
The µn? Have you previously seen a proof of this theorem (on the circle)? If so, compare to our
approach.

Our goal is to prove that the “eigenspinor fields” ψn are in H` for all `, and hence by the Sobolev
Lemma 3.1.21 all ψn are smooth. This result is called elliptic regularity , as it asserts that solutions
to an elliptic equation with smooth coefficients ((D2−λn)ψ = 0) are smooth. As a first step, notice
that the definition of T and equation (3.2.11(i)) imply ψn ∈ H1. Then setting λn = 1/µn − κ we
conclude

(i) D2ψn = λnψn;

(ii) For any a > 0 there is a finite number of λn < a;(3.2.14)

(iii) lim
n→∞

λn =∞.
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Also, since λn = λn〈ψn, ψn〉 = 〈D2ψn, ψn〉 = 〈Dψn,Dψn〉 we have

(iv) λn ≥ 0.

The main step in the regularity argument is the following basic elliptic estimate.

Proposition 3.2.15. For any ψ ∈ H`+1, ` ≥ 0,

(3.2.16) ‖ψ‖H`+1 ≤ C (‖Dψ‖H`
+ ‖ψ‖H`

) .

Proof. The case ` = 0 follows immediately from G̊arding’s inequality (3.2.5). Assume that (3.2.16) holds
for smaller values of `. As usual, it suffices to consider smooth ψ. We claim that [D,∇] is a tensor
(zeroth order differential operator). To see this we compute on the frame bundle of S ⊗ V (cf. the
discussion following (2.3.2)). Thus we write ∇ = t(ek)∂k and D = c(ek)∂k, where t(ek) denotes
tensor product by ek and c(ek) denotes Clifford multiplication. Then since c(ek) and t(e`) commute,

[D,∇] = c(ek)t(e`)∂k∂` − t(e`)c(ek)∂`∂k

=
∑

k<`

t(e`)c(ek)[∂k, ∂`].

Since −[∂k, ∂`] = γ̇(Rk`) ⊗ 1 + 1 ⊗ Ω(V )
k` acting on sections of S ⊗ V is the curvature tensor, the

claim is proved. Hence the induction hypothesis yields (for ψ ∈ H`+1)

‖∇ψ‖H`
≤ C (‖D∇ψ‖H`−1 + ‖∇ψ‖H`−1

)

≤ C (‖∇Dψ‖H`−1 + ‖[D,∇]ψ‖H`−1 + ‖∇ψ‖H`−1

)

≤ C (‖Dψ‖H`
+ ‖ψ‖H`−1 + ‖ψ‖H`

)

≤ C (‖Dψ‖H`
+ ‖ψ‖H`

) .

(3.2.17)

The desired inequality (3.2.16) follows by adding ‖ψ‖H`
to both sides of (3.2.17).

Corollary 3.2.18. For any ψ ∈ H`+2, ` ≥ 0,

(3.2.19) ‖ψ‖H`+2 ≤ C
(‖D2ψ‖H`

+ ‖ψ‖H`

)
.

Proof. Applying (3.2.16) four times, and using ‖Dψ‖H`−1 ≤ ‖ψ‖H`
, we have

‖ψ‖H`+2 ≤ C
(‖Dψ‖H`+1 + ‖ψ‖H`+1

)

≤ C (‖D2ψ‖H`
+ ‖Dψ‖H`

+ ‖ψ‖H`

)

≤ C (‖D2ψ‖H`
+ ‖D2ψ‖H`−1 + ‖Dψ‖H`−1 + ‖ψ‖H`

)

≤ C (‖D2ψ‖H`
+ ‖ψ‖H`

)
.

52



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

Exercise 3.2.20. Prove that for any k ≥ 0, ψ ∈ H`+k,

(3.2.21) ‖ψ‖H`+k
≤ C (‖Dkψ‖H`

+ ‖ψ‖H`

)
.

We would like to apply Corollary 3.2.18 directly to conclude that if ψ,D2ψ ∈ H`, then ψ ∈ H`+2.
While this assertion is true (Corollary 3.2.28), to apply (3.2.19) directly we need to approximate ψ
by smooth functions fn so that fn → ψ and D2fn → D2ψ in the H` norm. One approach [R,§5] is
via Friedrich’s mollifiers. We opt for a different strategy, employing difference quotients as in [N].

We work now in coordinates, which we take to lie on the torus Tn. Then for any (vector-valued)
function f ∈ L2(Tn) and any nonzero h ∈ Tn, define the difference quotient

(3.2.22) fh(x) =
f(x+ h)− f(x)

|h| .

We need some elementary properties of difference quotients.

Lemma 3.2.23. For any ` ≥ 0,

(1) If f(·) ∈ H`, then f( ·+ h) ∈ H` and ‖f( ·+ h)‖H`
= ‖f(·)‖H`

.
(2) If f ∈ H`+1, then fh ∈ H` and ‖fh‖H`

≤ C‖f‖H`+1 .
(3) If f ∈ H` and ‖fh‖H`

≤ C for all sufficiently small |h|, then f ∈ H`+1.

Proof. (1) and (2) are immediate. For (3) we use the Fourier transform f(x) =
∑
ν
f̂νe

iν·x, as in

the proof of Lemma 3.1.19. Then

(3.2.24) ‖f‖2H`
=

∑
ν

(1 + |ν|2 + |ν|4 + · · ·+ |ν|2`)|f̂ν |2.

Now

|f̂h
ν |2 =

∣∣∣∣
eih·ν − 1
|h|

∣∣∣∣
2

|f̂ν |2,

so setting hi = 〈0, . . . , 1, . . . , 0〉 the standard basis vector, we obtain

lim
ε→0

∑

i

|f̂ εhi
ν |2 = |ν|2|f̂ν |2.

Hence for any N ,
∑

|ν|<N

(|ν|2 + |ν|4 + · · ·+ |ν|2(`+1))|f̂ν |2 = lim
ε→0

∑

i

∑

|ν|<N

(1 + |ν|2 + · · ·+ |ν|2`)|f̂ εhi
ν |2

≤ lim
ε→0

∑

i

‖f εhi‖2H`
,

≤ C,

from which f ∈ H`+1.

The main step in the proof of the regularity theorem is the following result.
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Proposition 3.2.25. For any ` ≥ 1, if ψ ∈ H` and D2ψ ∈ H`−1, then ψ ∈ H`+1.

Proof. As in the proof of Lemma 3.1.19, let ρα be a finite partition of unity over whose supports
E is trivial. Then ψ =

∑
ραψ with ραψ ∈ H` and D2(ραψ) ∈ H`−1. It suffices to prove that

ραψ ∈ H`+1. Thus we reduce to the case where ψ is a vector-valued function on the torus with
an arbitrary Riemannian metric defining the Dirac operator. In this coordinate system we have
(cf. (3.1.18))

D2 = L2 ◦ ∇2 + L1 ◦ ∇+ L0

for some matrix functions Li. Now the formation of difference quotients commutes with ∇ but not
with multiplication by Li(x). In fact,

(3.2.26) D2ψh = (D2ψ)h − (
(D2)hψ

)
(x+ h),

where (D2)h is the second order differential operator

(3.2.27) (D2)h = Lh
2 ◦ ∇2 + Lh

1 ◦ ∇+ Lh
0 .

Hence by (3.2.19), (3.2.26), Lemma 3.2.23(2), and Proposition 3.1.13(4),

‖ψh‖H`
≤ C(‖D2ψh‖H`−2 + ‖ψh‖H`−2)

≤ C(‖(D2ψ)h‖H`−2 + ‖(D2)hψ‖H`−2 + ‖ψ‖H`−2)

≤ C(‖D2ψ‖H`−1 + ‖ψ‖H`
)

≤ C.

Now Lemma 3.2.23(3) implies that ψ ∈ H`+1.

Corollary 3.2.28. For any ` ≥ 1, if ψ ∈ H` and D2ψ ∈ H`, then ψ ∈ H`+2.

Proof. Apply Proposition 3.2.25 twice.

The regularity is now an easy induction argument.

Corollary 3.2.29. The eigenspinor fields ψn ∈ H` for all `, and D2ψn = λnψn. It follows that
ψn are smooth.

Proof. We already know ψn ∈ H1 and D2ψn ∈ H1. So Corollary 3.2.28 implies ψn ∈ H3. Now
since D2ψn = λnψn ∈ H3, another application of Corollary 3.2.28 yields ψn ∈ H5. Continue by
induction. The smoothness follows from the Sobolev Lemma 3.1.21.

A useful consequence of this discussion is
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Proposition 3.2.30. For any ψ ∈ H1, if (D2)kψ ∈ H0 for all k, then ψ is smooth.

In particular, the hypothesis is satisfied if D2ψ is smooth. We leave the proof to the reader. Further
consequences appear in the exercises below.

Exercise 3.2.31. Show that D2 : H` → H`−2 is a Fredholm map. This means that its range is
closed, and its kernel and cokernel are finite dimensional.

Exercise 3.2.32. Prove that D2 : L2 → L2 is an unbounded self-adjoint operator.

Exercise 3.2.33. What can you deduce about the spectrum of D? Prove that D is Fredholm.

Exercise 3.2.34. Show that all of our results are valid if we replace D2 by the Laplace operator
acting on functions. (Hint: You can see this as a special case by a judicious choice of V . However,
it is useful to work through it directly.)
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§4 The Heat Equation

Our main tool for studying analytic invariants of Dirac operators is the heat equation. Classically,
the heat operator is e−t4 for 4 the Laplace operator on functions. If f(x) is an initial temperature
distribution, then (e−t4f)(x) is the temperature distribution after time t. We study “spinor-valued
heat,” which flows according to the operator e−tD2

. As t → ∞ the heat spreads all over and so
reflects global properties of the underlying manifold. In particular, e−tD2

approaches projection
onto the kernel of D. On the other hand, if the support of the initial data f lies in a compact
set K, then for small t the solution e−tD2

f is exponentially small away from K. Thus the heat
operator connects global (t→∞) and local (t→ 0). In this chapter we derive the basic properties
of heat flow on compact manifolds. In this (preliminary) version of these notes our treatment of
the asymptotic expansion of the heat kernel is incomplete. We offer a few excuses. First, the
standard argument (essentially due to Minakshisundaram and Pleijel) is nicely presented in [R].
Secondly, we were unable to obtain a satisfactory account at one point (Assertion 4.4.8). Our
current understanding involves slightly more advanced concepts than we would like, and we still
hope to circumvent some of these in the future.

§4.1 Solution on En

Consider first the real line R with standard coordinate x. The heat equation is a partial dif-
ferential equation for a real-valued function u(t, x) = ut(x) of two variables, defined for t > 0
and x ∈ R:

(4.1.1)
∂u

∂t
− ∂2u

∂x2
= 0.

The solution depends on a choice of initial data. Let ût(ξ) be the Fourier transform of ut:

(4.1.2) ût(ξ) =
1√
2π

∫ ∞

−∞
dxu(x)e−ixξ.

Then (4.1.1) is equivalent to

(4.1.3)
∂û

∂t
+ ξ2û = 0,

and the general solution is

(4.1.4) ût(ξ) = C(ξ)e−tξ2
,
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where C(ξ) is an arbitrary function. Note

(4.1.5) C(ξ) = û0(ξ).

Let us assume that û0(ξ) ≡ 1. Then by the Fourier inversion formula,

(4.1.6) ut(x) =
1√
2π

∫ ∞

−∞
dξ eixξe−tξ2

=
1√
4πt

e−x2/4t.

This formula is the foundation for all our work. As t→ 0 the solution ut(x) approaches a δ-function
at the origin. More precisely, for any smooth function h,

(4.1.7) lim
t→0

∫

R
ut(x)h(x) = h(0).

Of course, this follows immediately from û0(ξ) ≡ 1.

Exercise 4.1.8. Verify directly that ut(x) in (4.1.6) solves (4.1.1). What is the solution for
arbitrary initial data f(x)? In other words, find the solution ũt(x) of (4.1.1) with ũ0(x) = f(x).

The extension to Euclidean space En is straightforward. Let {xk} be standard coordinates. Now
the Laplacian

(4.1.9) 4 = −
∑ ∂2

(∂xk)2

replaces −∂2/∂x2 in (4.1.1). Then

(4.1.10) ut(x) =
1

(4πt)n/2
e−|x|

2/4t

solves the scalar heat equation

(4.1.11)
∂u

∂t
+4u = 0

u0 = δ,

where δ is the δ-function at the origin.

Exercise 4.1.12. Check that (4.1.10) solves (4.1.11). Write down the solution for initial condi-
tion δy, the δ-function at y.

Exercise 4.1.13. Let Rn be endowed with an arbitrary inner product and denote the associated
norm by | · |. Prove that (4.1.10) is a solution to the heat equation (4.1.11), where now the
Laplacian 4 = −gij ∂2

∂xi∂xj is defined with respect to the given metric gij .

Exercise 4.1.14. Consider now the Dirac operator (2.2.2) on Euclidean space. Write down the
solution to the heat equation ∂u/∂t+D2u = 0 with u0 a δ-function at the origin with value σ ∈ S.
(Now u is spinor-valued.)
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§4.2 Heat Flow on Compact Manifolds

Let X be a compact Riemannian spin n-manifold, V → X a Hermitian vector bundle with
unitary connection. We denote E = S ⊗ V , where S is the spin bundle over X. The heat equation
on X is a partial differential equation for a time-dependent section ψt of E:

(4.2.1) Hψ =
∂ψ

∂t
+D2ψ = 0.

As before, we need to specify initial data. Then the solution exists and is unique.

Proposition 4.2.2. Fix f ∈ H`(E) = H` for ` ≥ 0. Then there is a unique solution ψt, t > 0,
of (4.2.1) with lim

t→0
ψt = f in H`. Furthermore, ψt is smooth for t > 0, and lim

t→∞
ψt = PkerD(f),

where PkerD is orthogonal projection onto kerD ⊂ H0. Finally,

(4.2.3) ‖ψt‖ ≤ ‖f‖.

We will extend Proposition 4.2.2 to distributional initial data (e.g. δ-functions) in the next section.

Proof. Consider first ` = 0. Recall the spectral decomposition D2ψn = λnψn from (3.2.14). Define

(4.2.4)
e−tD2

: H0 −→ H0

ψn 7−→ e−tλnψn.

Since {ψn} is a complete orthonormal basis of H0, it is clear that e−tD2
is a bounded operator of

norm ≤ 1. Now set

(4.2.5) ψt = e−tD2
f.

Then

(4.2.6)
∂ψ

∂t
= −D2e−tD2

f = −D2ψ,

so that ψ does indeed solve (4.2.1). Furthermore, if f =
∑
n
fnψn, with

∑
n
|fn|2 <∞, then

(4.2.7) lim
t→0

ψt = lim
t→0

∑
n

fne
−tλnψn =

∑
n

fnψn = f
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in H0. Also,

(4.2.8) lim
t→∞

ψt = lim
t→∞

∑
n

fne
−tλnψn =

∑

λn=0

fnψn = PkerD(f).

As for the inequality,

(4.2.9) ‖ψt‖2 =
∑

n

e−2tλn |fn|2 ≤
∑

n

|fn|2 ≤ ‖f‖2.

The inequality proves uniqueness, since if ψ′ is another solution to (4.2.1), then so is ψ − ψ′, but
with initial condition identically zero. Then (4.2.3) shows ‖ψt − ψ′t‖ = 0.

It remains to show that ψt is smooth for t > 0. By Proposition 3.2.30 it suffices to bound ‖(D2)kψ‖
for all k. But

(4.2.10) ‖(D2)kψ‖2 = ‖(D2)ke−tD2
f‖2 =

∑
(λn)2ke−2tλn |fn|2.

Since λ 7→ λ2ke−2tλ is uniformly bounded in λ for any fixed t > 0 (“exponentials beat polynomials”),
we conclude

(4.2.11) ‖(D2)kψ‖ ≤ Ck‖f‖2,

as desired. Notice that this proves

(4.2.12) e−tD2
: H0 −→ H`

is a bounded linear map for t > 0 and all `.
For initial data f ∈ H`, ` > 0, we have only to show lim

t→0
ψt = f in H`. But by (4.2.12) we

know e−tD2
: H` → H` is bounded for t ≥ 0, whence as t → 0 we have e−tD2

f → f in H` (cf.
Exercise 4.2.15 and Exercise 4.2.23).

Several remarks are in order. First, the Sobolev Lemma 3.1.21 (Sobolev) implies that

(4.2.13) e−tD2
: H0 −→ C∞, t > 0

is bounded. Thus we call e−tD2
a smoothing operator. Next, we have lim

t→∞
e−tD2

= PkerD in the

operator norm topology on H0. But lim
t→0

e−tD2
= id only holds in the strong topology. For smooth

initial data this is true in all H`, ` ≥ 0, so by Sobolev we obtain
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Corollary 4.2.14. If f is smooth, then lim
t→0

ψt = f in the C∞ topology.

Exercise 4.2.15. Justify the interchange of lim and
∑

in (4.2.7) and (4.2.8). Prove that lim
t→∞

e−tD2

exists in the norm topology viewing e−tD2
as an operator H0 → H0. What about e−tD2

: H0 → H`?
Why doesn’t lim

t→0
e−tD2

exist in the norm topology? Prove in detail that lim
t→0

e−tD2
= id in the strong

operator topology (for any `).

Exercise 4.2.16. Let F : [0,∞)→ R and define F (D) by F (D)ψn = F (λn)ψn. Prove that F (D) is
smoothing if F is a Schwartz function, i.e., a smooth function which decreases more rapidly than
the inverse of any polynomial.

Exercise 4.2.17. Suppose that y is a parameter on which the metric on X, metric on V , and
connection on V depend smoothly. Then the Dirac operator Dy also varies smoothly. Show that if
the initial condition fy varies smoothly (in some H`), then so too does the solution ψy

t to the heat
equation vary smoothly (in C∞). Is this statement uniform in t as t→ 0?

Next we derive a basic estimate for solutions to the heat equation. We will use it to estimate
approximate solutions.

Proposition 4.2.18. Suppose ψt is any smooth spinor field depending smoothly on t for t ≥ 0.
Let H = ∂

∂t +D2 be the heat operator. Then there exist constants C` (independent of ψ) such that
for all t ≥ 0,

(4.2.19) ‖ψt‖H`
≤ C`

(∫ t

0

ds ‖(Hψ)s‖H`
+ ‖ψ0‖H`

)
.

Here Hψ is a time-varying spinor field whose value at time s is (Hψ)s. Notice that (4.2.3) is a
special case of (4.2.19).

Proof. We claim that

(4.2.20) ψt =
∫ t

0

ds e−(s−t)D2
(Hψ)s + e−tD2

ψ0.

To see this denote the right hand side of (4.2.20) by ϕt. Then

(4.2.21)
∂ϕ

∂t
= −D2ϕ+Hψ.

Hence ψ − ϕ is annihilated by H and vanishes at t = 0. Now the uniqueness statement in Propo-
sition 4.2.2 implies (4.2.20).
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The estimate (4.2.19) follows once we bound the operator norm of e−tD2
: H` → H` uniformly

in t. For ` = 0 we have ‖e−tD2‖ ≤ 1, since the eigenvalues relative to an orthonormal basis are ≤ 1.
For higher ` we employ the elliptic estimate (3.2.21) using the fact that D and e−tD2

commute:

‖e−tD2
f‖H`

≤ C(‖D`e−tD2
f‖ + ‖f‖)

≤ C(‖e−tD2D`f‖ + ‖f‖)
≤ C(‖D`f‖ + ‖f‖)
≤ C‖f‖H`

.

(4.2.22)

Exercise 4.2.23. Prove that the map t 7→ e−tD2
is continuous in the operator norm topology

on H`. (Hint: Derive the identity

(4.2.24) e−P2 − e−P1 = −
∫ 1

0

ds e−sP1(P2 − P1)e−(1−s)P2 ,

and apply it to P1 = tD2, P2 = t′D2.) Observe that ‖e−tD2‖ is finite at t = 0 and t→∞. Conclude
that ‖e−tD2‖ is uniformly bounded in t. This is an alternative proof of (4.2.22).

§4.3 The Heat Kernel

As a preliminary to considering distributional initial data, we define Sobolev spaces H` for
negative values of `. For ` ≥ 0 let H−` be the antidual space to H` relative to the H0 pairing 〈·, ·〉.
More explicitly, the H−` norm of a smooth function f is the best constant C in the inequality
〈f, ψ〉 ≤ C‖ψ‖H`

. Then H−` is the completion of C∞ relative to this norm (cf. Exercise 3.2.2).

Exercise 4.3.1. Define the Hilbert space structure on H−`.

Exercise 4.3.2. Show that ψ =
∑
anψn ∈ H` (for any ` ∈ Z) if and only if

∑
(1+λ2

n)`|an|2 <∞.

Exercise 4.3.3. Prove that
⋃

`∈Z
H` is the (anti-) dual to C∞, the space of distributions on X (with

values in E).

Exercise 4.3.4. Prove that D2 extends to a bounded operator H` → H`−2 for any ` ∈ Z.

The δ-function lives in H` for ` sufficiently small.

Proposition 4.3.5. Fix y ∈ X and σ ∈ Ey, and define a functional

(4.3.6) δσ(ψ) =
(
σ, ψ(y)

)
.
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Then δσ ∈ H−` for ` > n/2, where n = dimX.

Proof. |δσ(ψ)| ≤ |σ| |ψ(y)| ≤ C‖ψ‖H`
for ` > n/2, by the Sobolev embedding theorem.

By duality we extend any operator A` : H` → H`, ` ≥ 0, to A−` : H−` → H−`; simply define A−`

to be the dual of A∗` relative to the H0 pairing. Thus 〈A−`θ, ψ〉 = 〈θ,A∗`ψ〉 for θ ∈ H−`, ψ ∈ H`.
In particular, we extend the heat operator to e−tD2

: H−` → H−`.

Proposition 4.3.7. For t > 0 the heat operator e−tD2
: H−` → C∞ is smoothing.

Proof. As in Proposition 4.2.2 and (4.2.13).

Now we construct the heat kernel as the heat flow with initial data a δ-function.

Proposition 4.3.8. For σ ∈ Ey let k(σ)
t = e−tD2

(δσ). Then σ 7→ k
(σ)
t (x) determines a linear map

(4.3.9) pt(x, y) : Ey −→ Ex

which is smooth in x, y, and t > 0. Also,

(4.3.10) pt(y, x) = pt(x, y)∗,

and

(4.3.11) lim
t→0

pt(x, y) = δx=y · idEx

is the Hom(Ey, Ex)-valued distribution supported on the diagonal x = y as indicated. Here the limit
is taken in the H−` topology for ` > n/2 and y fixed. Finally, for any smooth spinor field f ,

(4.3.12) ψt(x) =
∫

X

dy pt(x, y)f(y)

is the unique solution to the heat equation with initial condition f .

In (4.3.12) the integrand is a map X → Ex, so the integration is well-defined.

Proof. By Proposition 4.3.7, kσ
t (x) = pt(x, y)σ is smooth in x. To see the smoothness in t > 0,

differentiate the heat equation:
∂ikσ

t (x)
∂ti

= (−1)i(D2)ikσ
t (x). Since e−tD2

is formally self-adjoint,
for any σ ∈ Ey and τ ∈ Ex

(4.3.13)
〈e−tD2

δσ, δτ 〉 = 〈δσ, e−tD2
δτ 〉,

(pt(x, y)σ, τ) = (σ, pt(x, y)τ),
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which is (4.3.10). The smoothness of pt(x, y) in y follows immediately. Next, any smooth spinor
field f can be written as the distribution

f =
∫

X

dy δf(y),

since then
〈f, ψ〉 =

∫

X

dy δf(y)(ψ) =
∫

X

dy
(
f(y), ψ(y)

)
.

Therefore,

e−tD2
f =

∫

X

dy e−tD2
δf(y) =

∫

X

dy pt(x, y)f(y),

proving (4.3.12). Equation (4.3.11) follows from the fact that lim
t→0

e−tD2
δσ = δσ in H−`, ` > n/2.

Exercise 4.3.14. Extend Exercise 4.2.17 to show that the heat kernel varies smoothly in a pa-
rameter.

In the remainder of this chapter we study the behavior of pt(x, y) as t→ 0 in the C∞ topology.
For x 6= y the heat kernel approaches zero exponentially fast. We show this next, following the
presentation of [R,§5]. The main idea is to express the heat kernel in terms of the fundamental
solution of the wave equation.

The wave equation for spinor fields is

(4.3.15)
∂ϕ

∂t
= iDϕ.

As for the heat equation we need to specify initial conditions

(4.3.16) ϕ0 = f.

Then formally the solution to the wave equation is ϕt = eitDf . The wave exists for all time, and
the heat operator can be expressed in terms of the wave operator.

Proposition 4.3.17. There is a bounded operator eitD : H` → H` for all t, `. Hence (4.3.15) has
a unique solution ϕt = eitDf ∈ H` for initial data f ∈ H`. It satisfies

(4.3.18) ‖ϕt‖ = ‖f‖

if f ∈ L2. The solution ϕt is smooth if f is. Finally,

(4.3.19) e−tD2
=

1√
4πt

∫ ∞

−∞
du e−u2/4teiuD.
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Exercise 4.3.20. Prove Proposition 4.3.17. The proof is very similar to the proof of Proposi-
tion 4.2.2. (Hint: Verify (4.3.19) on each eigenspace separately. For which topologies on the space
of operators is (4.3.19) valid?)

The wave equation has the crucial property that its solutions propagate with unit speed.

Proposition 4.3.21. Let K ⊂ X be compact and suppose supp f ⊂ K. Let ϕt be the unique
solution to the wave equation (4.3.15) with initial condition f . Then for sufficiently small20 t we
have suppϕt ⊆ B|t|(K) = {x ∈ X : dist(x,K) ≤ |t|}.
Proof. Consider first an arbitrary smooth solution ϕt to (4.3.15) (with arbitrary smooth initial
data). We estimate the energy

∫ |ϕt|2 in a ball. Fix any x ∈ X and sufficiently small R > 0. Let ω
be the 1-form ω(ξ) = (ξ · ϕ,ϕ). Then

d

dt

∫

BR(x)

dy |ϕ(y)|2 = i

∫

BR(x)

dy (Dϕ(y), ϕ(y))− (ϕ(y),Dϕ(y))

= −i
∫

BR(x)

dy d∗ω

= i

∫

SR(x)

dy ω(ν)

= i

∫

SR(x)

dy (ν · ϕ(y), ϕ(y)),

(4.3.22)

where SR(x) = ∂BR(x) is the sphere of radius R with unit normal ν, and we have used the
identity (4.3.26) below (see Exercise 4.3.25) in the second inequality. It follows that

(4.3.23)

∣∣∣∣∣
d

dt

∫

BR−|t|(x)

dy |ϕ(y)|2
∣∣∣∣∣ =

∣∣∣∣∣
∫

SR−|t|(x)

dy (iν · ϕ(y), ϕ(y))− (ϕ(y), ϕ(y))

∣∣∣∣∣ ≤ 0

by Cauchy-Schwartz. This is a general estimate for solutions to the wave equation.
Returning to the hypotheses of the proposition, assume first that the initial spinor field f is

smooth. Fix x /∈ K and choose R < dist(x,K). Then
∫

BR(x)
|ϕ0|2 = 0 by hypothesis. Hence

(4.3.23) implies
∫

BR−|t|(x)
|ϕt|2 = 0 for |t| < R, which proves the proposition for smooth f . Initial

data f ∈ H` can be approximated by smooth data, and the proposition follows from the smooth
case.

Exercise 4.3.24. Write out the details of this approximation argument.

Exercise 4.3.25. Let ϕ,ψ be smooth spinor fields. Define a 1-form ω(ξ) = (ξ ·ϕ,ψ), where ξ ·ϕ is
the Clifford product of the vector ξ and spinor ϕ (using the identification of vectors and covectors

20Here ‘sufficiently small’ depends on the injectivity radius of X.
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via the metric.) Prove

(4.3.26) d∗ω = (ϕ,Dψ)− (Dϕ,ψ).

(Hint: Compute on the frame bundle, writing ω =
∑
k

(γkψ,ϕ)ek and d∗ = −ι(ek)∂k.)

Now we show that pt(x, y)→ 0 as t→ 0 away from the diagonal (where x and y coincide).

Proposition 4.3.27. Fix d > 0 (but d less than the injectivity radius of X). Then there exist
constants C, c such that

(4.3.28) ‖pt(x, y)‖Ck ≤ Ce−c/t

for dist(x, y) > d. In fact, any c < d2/4 works, and then C depends on c and k.

Proof. Fix σ ∈ Ey of unit norm, and set kt(x) = pt(x, y)σ. By (4.3.19) and Proposition 4.3.21 we
can write

(4.3.29) kt(x) =
1√
4πt

∫

|u|>d

du e−u2/4t(eiuDδσ)(x).

Fix c < d2/4. Then

(4.3.30) kt(x) = e−c/t

∫

|u|>d

du
1√
4πt

e−(u2/4−c)/t(eiuDδσ)(x).

We need to bound the Ck norm of the integral (uniformly in t); by Sobolev it suffices to bound
the H` norms, and by the elliptic theory these are bounded by the H0 norms of Dk applied to the
integral. Rather than estimate the operator applied to δσ, we estimate the H0 operator norm of

(4.3.31) ψ 7−→ 1√
4πt

∫

|u|>d

du e−(u2/4−c)/tDkeiuDψ.

Since there is a basis of eigenfunctions we replace D by an eigenvalue µ, and then

1√
4πt

∫

|u|>d

du e−(u2/4−c)/tµkeiuµ ≤ Ce−ε/t

√
4πt

∫ ∞

−∞
du e−u2/4tµkeiuµ

= Ce−ε/te−tµ2
µk

≤ C

(4.3.32)

uniformly in t > 0 and µ ≥ 0. This is the required estimate.
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§4.4 The Asymptotic Expansion

The small time behavior of the heat kernel pt(x, y) for x near y depends on the local geometry
ofX near y. This is made precise by an asymptotic expansion for pt(x, y). In this section we indicate
a derivation of this asymptotic expansion along the diagonal x = y. As noted above, our account
in these preliminary notes omits a crucial step in the proof. Still, we think the geometric ideas
sufficiently clear to warrant presentation at this time. An exposition of the Minakshisundaram-
Pleijel approach is given in [R,§5].

The result we are after is the following.

Theorem 4.4.1. There exists an asymptotic expansion

(4.4.2) pt(y, y) ∼ (4πt)−n/2
∞∑

j=0

Aj(y)tj as t→ 0,

where Aj are smooth sections of EndE whose values at y depend only on the infinite jet of the
geometry (metrics and connections) at y. Furthermore, A0 ≡ 1 and the expansion is uniform in y.

More precisely, for any N

(4.4.3)

∣∣∣∣∣∣
pt(y, y)− (4πt)−n/2

N∑

j=0

Aj(y)tj

∣∣∣∣∣∣
≤ CN t

N−n/2+1/2

for small t. Our method will also give asymptotic expansions for all derivatives ∂α
x pt(x, y)

∣∣
x=y

restricted to the diagonal, but we will not need this. (The standard result of Minakshisundaram
and Pleijel is stronger; it is an asymptotic expansion for pt(x, y) in a full neighborhood of the
diagonal.)

Fix y ∈ X. We construct a deformation of X with a single real parameter ε, call it X → R,
such that the fiber Xε is diffeomorphic to X for ε 6= 0 and X0 is identified with TyX. Intuitively,
we blow up the geometry near y as ε→ 0. This is very much like the “deformation to the normal
cone” construction used in the modern algebro-geometric proof of the Grothendieck-Riemann-Roch
Theorem [F,§5,§15].21

Let

(4.4.4) exp: Br → U ⊂ X

be the restriction of the exponential map at y to the ball of radius r in TyX. We choose r so that
(4.4.4) is a diffeomorphism. Denote by Σy denote the one point compactification of TyX. Then

21I owe this observation to Bill Fulton and Spencer Bloch.
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exp−1 extends to a (degree one) map F : X → Σy. We assume that the extension maps X \ U
into Σy \ Br. Think of Σy as TyX ∪ {∞} so that scalar multiplication makes sense as a map
Σy → Σy, though as usual we leave 0 · ∞ undefined. Let

X ⊂ (R× Σy ×X) \ ({0} × {∞} ×X) = {〈ε, a, x〉 6= 〈0,∞, x〉}

be the solution set of the equation

(4.4.5) F (x) = εa.

It is easy to verify that X is a smooth manifold of dimension n+ 1 and that the projection X→ R
onto the first factor is a submersion. Also, the fibers Xε of this projection are diffeomorphic to X
for ε 6= 0 and X0 = {〈0, a, y〉 : a 6= ∞}. The identification X0

∼= TyX is quite natural. For if
a ∈ TyX then (4.4.5) determines a curve xε = F−1(εa) = exp(εa) for small ε. Since d exp0 is
the identity map (A.2), the tangent to this curve at 0 is equal to a. It is also quite natural to
identify X1 with X.

Covariant geometric data on X lifts to the deformation X as follows. Let i : X ↪→ R × Σy ×X
denote the inclusion and π3 : R × Σy × X → X projection onto the third factor. Then i∗π∗3 lifts
data from X to X. For example, the vector bundle i∗π∗3(TX) is the tangent bundle along the fibers
of X→ R. In particular, it carries a Riemannian metric. This gives a Riemannian structure on Xε.
The vector bundle V = i∗π∗3(V ) is a deformation of V → X to the trivial bundle TyX×Vy → TyX.
(Here Vy is the fiber of V at y.) Also, V inherits a metric and connection from V . It is clear from
the construction that all of the lifted geometric data on X is smooth. Recall that E = S⊗V is the
bundle of V -valued spinors. Denote E = i∗π∗3(E).

We next explain the sense in which the deformed geometry encodes scaling near y. For ε 6= 0 let

(4.4.6)
Tε : TyX −→ TyX

a 7−→ εa

be the scaling map. Then according to (4.4.4) the map

(4.4.7) exp ◦Tε : Br/|ε| −→ U

is a diffeomorphism of the ball of radius r/|ε| in TyX onto the neighborhood U of y in X. By (4.4.5)
we can identify either “side” of (4.4.7) with a neighborhood of 〈ε, 0, y〉 in Xε. As described in the
preceding paragraph, geometric data on X restricts to U and then pulls back via (4.4.7) to give
geometric data on Br/|ε|. At ε = 1 we have the original data on U in exponential coordinates. For
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ε 6= 0 the data on Br/|ε| is the pullback of this original data on Br by the scaling operator T ∗ε .
Finally, at ε = 0 we obtain the original (constant) data on TyX. This applies to the bundle V
together with its metric and connection, which lift via exponential coordinates to a bundle over Br.
Applying T ∗ε we obtain a bundle (with metric and connection) over Br/|ε|, and in the limit ε → 0
this becomes the trivial bundle TyX × Vy → TyX with constant metric and trivial connection.
We must be careful with the intrinsic Riemannian metric. For if g = gk`(a)dakda` is the original
metric in exponential coordinates, then the metric at ε is gk`(εa)dakda`, which is ε2T ∗ε (g). We do
not transform the dak via T ∗ε .

Now we have a smooth family of manifolds (but not a fiber bundle!) with smoothly varying
geometric data. Hence the Dirac operators on Xε have smoothly varying coefficients. Furthermore,
the heat kernel exists on the compact manifold Xε (ε 6= 0) by Proposition 4.3.8 and on X0

∼= TyX by
the explicit formula (4.1.10) (cf. Exercise 4.1.14). We specify initial data as follows. The definition
of E implies that E〈ε,0,y〉 ∼= Ey for any ε. Fix σ ∈ Ey and let kε

t(x) be the solution to the heat
equation in Xε with initial data δσ. Thus kε

t(x) ∈ E〈ε,x〉 and x = 〈a, x〉 satisfies F (x) = εa. By our
previous work we know that kε

t(x) is smooth in x and t for fixed ε.

Assertion 4.4.8. kε
t(x) is uniformly smooth in ε,x for t bounded away from 0.

This is the statement that the solution to the heat equation depends smoothly on parameters. We
leave Assertion 4.4.8 unproved in this preliminary version.22 For a family of compact manifolds (so
for ε 6= 0) the smooth dependence on parameters was stated in Exercise 4.2.17, and is fairly easy
to prove. The difficulty here is the noncompactness of X0.

Accepting Assertion 4.4.8 we prove the asymptotic expansion. As a preliminary we give

Exercise 4.4.9. Suppose ψ is a section of E and ρ a function. Prove

(4.4.10) D2(ρψ) = c(∇2ρ)ψ − 2(dρ,∇ψ) + ρD2ψ.

(Hint: Compute on the frame bundle, as in Exercise 2.2.26.)

The diffeomorphism (4.4.7) identifies a neighborhood of 〈ε, 0, y〉 in Xε withBr/|ε| ⊂ TyX. Parallel
transport in V along radial geodesics lifts (4.4.7) to an identification of Br/|ε| × Ey with E

∣∣
U

. In
these exponential coordinates the heat flow in Xε appears as kε

t(a) ∈ Ey for a ∈ Br/|ε|. The
following lemma relates the heat kernel in U to a scaled heat kernel for the scaled geometry at ε.

Lemma 4.4.11. Fix r′ < r. Then there exist constants C, c independent of ε 6= 0 such that
for |a| < r′

(4.4.12)
∣∣∣k1

t (a)− |ε|−nkε
t/ε2(a/ε)

∣∣∣ ≤ C|ε|−ne−c/t.

22One approach, kindly suggested by Richard Melrose, is to express the heat kernel in terms of the wave kernel
and prove smooth dependence on parameters for the wave kernel instead. The advantage of the wave equation is
that its fundamental solution propagates with finite speed (Proposition 4.3.21), so is easier to control. We haven’t
yet worked out a satisfactory account.

68



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

In fact, we can choose c = r′2/4.

The estimate (4.4.12) extends to all derivatives of k.

Proof. Set δ = (r − r′)/2. Fix a C∞ cutoff function π : Br → [0, 1] satisfying ρ(a) = 1 for |a| ≤ r′

and ρ(a) = 0 for |a| ≥ r − δ. Let

(4.4.13) ψt(x) =

{
k1

t (a)− ρ(a)|ε|−nkε
t/ε2(a/ε), a ∈ Br (x ∈ U),

k1
t (x), x ∈ X \ U

define a smooth time-varying section of E over X. We will employ Proposition 4.2.18 and the
Sobolev Lemma 3.1.21 to estimate |ψ|. As usual, H = ∂

∂t + D2 denotes the heat operator on X.
First we estimate Hψ. Now H(k1) ≡ 0 by definition. Since the geometry in Br/|ε| is T ∗ε applied to
the geometry at ε = 1, except for the Riemannian metric, which is the pullback metric times ε2,
the Dirac operator at ε is |ε|T ∗ε D(T ∗ε )−1. Hence the heat operator at ε is Hε = ∂

∂t + ε2T ∗ε D2(T ∗ε )−1.
Now

0 = Hε(kε
t)

=
∂kε

t

∂t
+ ε2T ∗ε D2(T ∗1/εk

ε
t)

=
1
ε2

∂(T ∗1/εk
ε
t)

∂t
+D2(T ∗1/εk

ε
t)

=
∂(T ∗1/εk

ε
t/ε2)

∂t
+D2(T ∗1/εk

ε
t/ε2),

(4.4.14)

i.e., kε
t/ε2(a/ε) is annihilated byH. Thus the only contribution toHψ comes fromH(ρ(a)|ε|−nkε

t/ε2(a/ε))
for r − δ < |a| < r. Computing with equation (4.4.10) we derive

(4.4.15) Hψ = |ε|−n
{
B

(∇2ρ, kε
t/ε2(a/ε)

)
+B

(∇ρ,∇kε
t/ε2(a/ε)

)}
,

where B(·, ·) are certain bilinear expressions. The Sobolev norms of ∇ρ and ∇2ρ are constants,
and the norms of k and its derivatives decay exponentially by Proposition 4.3.27:

‖kε
t/ε2(a/ε)‖Ck ≤ Ce−(r′2/4ε2)

/
(t/ε2),

= Ce−r′2/4t
(4.4.16)

for |a| > r − δ = r′ + δ. Combining (4.4.15) and (4.4.16),

(4.4.17) ‖(Hψ)t‖H`
≤ C|ε|−ne−r′2/4t.
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Next we show that lim
t→0

ψt = 0 in C∞. First, by definition lim
t→0

kε
t(a) = δσ in H−`, ` > n/2. This

is equivalent to

lim
t→0

∫ (
kε

t(a), ψ(a)
)
da =

(
σ, ψ(0)

)
.

The change of variables a → a/ε shows that lim
t→0
|ε|−nkε

t(a/ε) = δσ in H−`, whence lim
t→0

ψt = 0

in H−`. Now set (cf. (4.2.20))

ϕt = −
∫ t

0

ds e−(s−t)D2
(Hψ)s.

Then ϕt is smooth, lim
t→0

ϕt ≡ 0 in C∞, and H(ψ + ϕ) = 0. Since lim
t→0

(ψt + ϕt) = 0 in H−`, and
solutions to the heat equation are unique, we conclude that ϕ = ψ. This proves that lim

t→0
ψt ≡ 0

in C∞.

Finally, from (4.4.17) and the basic estimate (4.2.19) we obtain

‖ψt‖H`
≤ C|ε|−ne−r′2/4t,

which implies the desired result by the Sobolev embedding theorem.

By the smooth dependence on ε near ε = 0 for t = 1 and a = 0 (Assertion 4.4.8) there is a Taylor
series23

(4.4.18) kε
1(0) =

M∑

i=0

biε
i +O(|ε|M+1),

with bi ∈ Ey. Also, b0 = (4π)−n/2 by (4.1.10). Two applications of (4.4.12) show that for ε > 0

(4.4.19) |kε
1(0)− k−ε

1 (0)| ≤ Ce−c/ε2 .

So up to an exponentially small error, kε
1(0) is an even function of ε. Therefore, b2i+1 = 0 in the

Taylor series (4.4.18). Again by (4.4.12) we have

k1
t (0) = |ε|−nkε

t/ε2(0) +O(|ε|−ne−c/t)

23Here we could differentiate before setting a = 0, and so obtain asymptotic expansions for derivatives of the
heat kernel along the diagonal.
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for any ε. Choose ε = t1/2. Then using (4.4.18)

k1
t (0) = t−n/2

N∑

j=0

b2jt
j +O(tN−n/2+1/2) +O(t−n/2e−c/t)

= (4πt)−n/2
N∑

j=0

ajt
j +O(tN−n/2+1/2)

(4.4.20)

with a0 = 1. Define Aj ∈ EndEy by Aj(σ) = aj . Then (4.4.20) determines the asymptotic
expansion (4.4.2).

It should be clear from the argument that the Aj depend only on the infinite jet of the geometry
at y.

Exercise 4.4.21. Write out a detailed proof of this last assertion. In other words, show that if
X ′ is another compact manifold endowed with a connected Hermitian bundle V ′ → X ′; y ∈ X ′;
φ : U → U ′ an isometry from a neighborhood of y to a neighborhood of y′; and φ̃ : V

∣∣
U
→ V ′

∣∣
U ′ a

lift which preserves the metric and connection, then the asymptotic expansion for the heat kernel
of X at y agrees with the asymptotic expansion for the heat kernel of X ′ at y′.

To see the smooth dependence on y, introduce y as a variable in the problem. Thus instead of
blowing up a neighborhood of y in X, blow up a neighborhood of the diagonal ∆ in X×X. Denote a
typical point ofX×X by 〈y, x〉; in other words, the first factor is the parameter space and the second
factor the “physical space.” Let Σ → X be the bundle whose fiber at y ∈ X is the compactified
tangent space Σy. We identify Σ with j∗π∗1(Σ)→ ∆, where π1 : X ×X → X is projection onto the
first factor and j : ∆ ↪→ X×X the inclusion of the diagonal. Then the exponential map restricts on
a neighborhood of the zero section of Σ to a diffeomorphism onto a neighborhood of ∆ in X ×X.
Extend its inverse to a degree one map F : X×X → Σ (which preserves fibers). Now construct the
deformation space X ⊂ R×Σ×X as the solution set of the equation F (x) = εa, where now a ∈ Σ.
(Again we exclude 0 · ∞.) The composite projection X → R × Σ → R ×X is a submersion, and
the fiber X〈ε,y〉 is the fiber Xε above. Lift the geometric data as before. Clearly everything varies
smoothly with y, hence so do the Taylor series coefficients bi (4.4.18), whence also the asymptotic
expansion coefficients aj (4.4.20).

Exercise 4.4.22. Suppose P is a second order elliptic differential operator with scalar symbol
defined on a ball B in Rn. Glue B into any compact manifold X and extend P to a second order
elliptic differential operator on X. Prove that at any y ∈ B there is an asymptotic expansion for
the heat kernel of P (along the diagonal), and that the expansion is independent of the extension.
(Hint: Construct the deformation X and lift P to a family of operators on Xε. What is the operator
on X0?)
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§5 The Index Theorem

On an even dimensional spin manifold the spinor fields decompose into two types—‘positive’ and
‘negative’—and the Dirac operator D exchanges positive and negative spinor fields. Let D denote
the restriction of the Dirac operator to positive spinor fields, which is the chiral Dirac operator
introduced in §2.3. The adjoint D∗ is the restriction of D to the negative spinor fields. The index
of D is

(5.1) indD = dimkerD − dimkerD∗.

In this chapter we prove the Atiyah-Singer index theorem [AS2], which gives a topological formula
for indD.24 We actually prove a stronger result (Theorem 5.4.1), the so-called local Atiyah-Singer
index theorem [ABP,§7]. Theorem 5.2 is the global version, the original Atiyah-Singer result.

Theorem 5.2. Let X be a Riemannian spin manifold with curvature Ω(X), and V → X a Her-
mitian vector bundle endowed with a unitary connection whose curvature is Ω(V ). Then the index
of the chiral Dirac operator D acting on V -valued spinor fields is

(5.3) indD =
∫

X

Â(Ω(X)) ch(Ω(V )),

where for any skew-symmetric matrix Ω

(5.4) Â(Ω) =

√
det

(
Ω/4πi

sinh Ω/4πi

)
,

and for any skew-Hermitian matrix Ω

(5.5) ch(Ω) = Tr eiΩ/2π.

The index appears as the integral of a differential form, and the identification with characteristic
classes is through Chern-Weil theory (cf. Chapter 6). What is crucial is that the integrand, and
not just the integral, has a geometric interpretation. The first step in the proof of Theorem 5.2 is
an analytic expression for the index in terms of the heat equation, due to Atiyah and Bott [AB1].
The integrand in (5.3) is the small time limit of a local trace of the heat kernel. This result,
Theorem 5.4.1, is in many ways more fundamental to our approach than the index theorem itself,

24In fact, the theorem of Atiyah and Singer applies to arbitrary elliptic pseudodifferential operators. For a
derivation of the full Atiyah-Singer theorem from the index theorem for Dirac operators, see [ABP].
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which is a corollary. We prove Theorem 5.4.1 by a scaling argument. As in Chapter 4 this scaling
is essentially a deformation from the manifold to a given tangent space. Unfortunately, the defor-
mation used here does not seem to have a good intrinsic globalization. Since we only use local
information in any case, it suffices to consider the asymptotic expansion. The scaling of Chapter 4
is modified, and there is a new limiting heat operator on the tangent space—a modified harmonic
oscillator. Mehler’s formula for the heat kernel of the ordinary harmonic oscillator on flat space
yields an explicit formula for the heat kernel of this limiting operator. The Â genus comes from the
explicit form of Mehler’s formula (5.3.10). Although we work with the asymptotic expansions in
this chapter, the reader should keep in mind the global deformation constructed in Chapter 4. The
analogy, then, between this proof of the index theorem and the modern proof of the Grothendieck-
Riemann-Roch theorem [F,§15] is quite strong. Our approach in this chapter is largely based on
Getzler [Ge1], as presented in [R], though as we discussed in Chapter 1 many of these ideas also
appear in the physics literature. In particular, Friedan and Windy [FW] use the scaling (5.4.12) in
their approach to the index theorem.

§5.1 Chirality

In Chapter 2 (especially Theorem 2.1.25, (2.1.34), Exercise 2.1.37, Exercise 2.1.39, Exercise 2.1.36)
we observed that the spin representation S of Spin(n) splits into S+⊕S− for n even. Recall that the
entire complexified Clifford algebra CliffC(En) acts on S. Let e1, . . . , en be the standard oriented
orthonormal basis of En, and consider the element ε = in/2e1 ·e2 · · · · ·en (cf. Exercise 2.1.28). Since
n is even ε anticommutes with ei, so commutes with ei ·ej . Therefore ε commutes with CliffC(En)+

and so with Spin(n) ⊂ CliffC(En)+. On the other hand, a simple computation shows that ε2 = 1.
Hence the spin representation S breaks up according to the eigenspaces of ε (acting on S). The
+1 eigenspace is denoted S+ and the −1 eigenspace S−. The group Spin(n) preserves each of these
eigenspaces. These two irreducible representations of Spin(n) are called the half-spin representa-
tions.

Let X be a spin manifold with even dimension n. Then the spin bundle S → X splits into
S = S+ ⊕ S−; simply apply the previous construction pointwise. Sections of S+ are ‘positive
spinor fields’ and sections of S− are ‘negative spinor fields.’ Relative to this decomposition the
Dirac operator takes the form

(5.1.1) D =
(

0 D∗

D 0

)
,

where

(5.1.2) D : C∞(S+) −→ C∞(S−)
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is the chiral Dirac operator.
The vector space S = S+ ⊕ S− is an example of a Z/2Z-graded vector space.25 A Z/2Z-graded

vector space is simply a vector space F together with a decomposition F = F+ ⊕ F−. The superdi-
mension of F is defined by

(5.1.3) dims F = dimF+ − dimF−.

The grading operator ε is the element of EndF which is +1 on F+ and −1 on F−. Notice that
dims(F) = tr(ε). Consider the action of ε on End(F) by conjugation. As the square of this action
is 1, we can split End(F) = End(F)+⊕End(F)− according to the +1 and −1 eigenspaces. Elements
of End(F)+ preserve F+ and F−, while elements of End(F)− exchange them. Said differently,
elements of End(F)+ are diagonal 2× 2 matrices (relative to the decomposition F = F+⊕F−), and
elements of End(F)− are off-diagonal matrices. The supertrace of A ∈ End(F) is

(5.1.4) trs(A) = tr(εA).

In terms of matrices,

(5.1.5) trs

(
a b
c d

)
= tr(a)− tr(d).

Notice that dims(F) = trs(1). Suppose that A,B are homogeneous elements of End(F). Let |A| = 0
if A ∈ End(F)+ and |A| = 1 if A ∈ End(F)−. The supercommutator [A,B]s is defined by

(5.1.6) [A,B]s = AB − (−1)|A| |B|BA.

Lemma 5.1.7. The supertrace vanishes on supercommutators: trs[A,B]s = 0.

Proof. Using the fact that the ordinary trace vanishes on ordinary commutators, for homogeneous
elements we have

trs[A,B]s = tr
(
εAB − (−1)|A| |B|εBA

)

= tr
(
εAB − (−1)|A| |B|AεB

)

= tr
(
εAB − (−1)|A| |B|(−1)|A|εAB

)

=
(
1− (−1)|A|(|B|+1)

)
tr(εAB).

25This is sometimes termed a super vector space. We give a more complete treatment in Chapter 6.
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The factor in front vanishes unless A is odd and B is even, in which case εAB is off-diagonal and
tr(εAB) vanishes.

We need a formula for the supertrace on the spin space S = S+ ⊕ S−. Recall (2.1.26) that the
complexified Clifford algebra CliffC(En) is End(S)+ in even dimensions. We use the standard basis
{eI = ei1 · · · · · eik

} of the Clifford algebra.

Lemma 5.1.8. Let c = cIeI (summed on I) be an arbitrary element of CliffC(En). Then

(5.1.9) trs(c) = (−2i)n/2c12···n.

Here c12···n is the coefficient of the “volume form” e1 · · · · · en.

Exercise 5.1.10. Characterize the volume form using the inner product and orientation. Hence
verify that the right hand side of (5.1.9) is independent of the choice of oriented orthonormal basis.

Proof of Lemma 5.1.8. Fix a multiindex I and assume i /∈ I. (We can always find such an i if
I 6= 12 · · ·n.) Then it is easy to verify that eI = − 1

2 [ei, eieI ]s. Hence trs(eI) = 0 by Lemma 5.1.7.
Finally, recalling that ε = in/2e12···n and that dimS = 2n/2, we have

trs(e12···n) = tr(εe12···n) = tr
(
(−i)n/2

)
= (−2i)n/2.

§5.2 The Atiyah-Bott Formula

Let X be a compact spin manifold with spin bundle S → X, and suppose V → X is a Hermitian
bundle with unitary connection. Let E = S ⊗ V . Now suppose that n = dimX is even. Then
S = S+ ⊕ S− splits, and therefore we can write E = E+ ⊕ E−, where E+ = S+ ⊗ V and
E− = S−⊗V . The Sobolev spaces of sections of E are also Z/2Z-graded, and the elliptic theory of
Chapter 3 and Chapter 4 applies to each separately. Let H = H+⊕H− be the space of L2 sections
of E. Now the Dirac operator squared (cf. (5.1.1)) is

(5.2.1) D2 =
(
D∗D 0

0 DD∗

)
.

Each of D∗D and DD∗ is elliptic. It follows that each of H+ and H− has an orthonormal basis
of smooth eigenspinor fields. Suppose that ψ ∈ H+ is an eigenspinor field for D∗D with nonzero
eigenvalue λ. Then DD∗Dψ = λDψ, so that Dψ ∈ H− is an eigenspinor field for DD∗ with
eigenvalue λ. It follows easily that for nonzero λ the Dirac operator D maps the λ-eigenspace
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• •
λ• D−−−−→ •λ

• •
ker D• •ker D∗

H+ H−

Figure 1

ofD∗D isomorphically onto the λ-eigenspace forDD∗. Hence the nonzero spectra ofD∗D andDD∗

coincide. No claim is made about the zero eigenvalue. Indeed, the index of D measures the
discrepancy between the dimension of the kernels. We represent the situation schematically in
Figure 1.

With these preliminaries we can give a formula for the index indD = dim kerD−dimkerD∗. In
a formal sense the preceding argument demonstrates that indD = dimH+ − dimH−. Of course,
this makes no sense as each of dimH+, dimH− is infinite. Write (formally) dimH+ =

∑
λ∈spec(D∗D)

1

and dimH− =
∑

λ∈spec(D D∗)
1. We will obtain a well-defined expression by replacing the constant

function 1 with a function F (λ) which renders the sums absolutely convergent. Therefore, we have
the following

Lemma 5.2.2. Let F (λ) : R+ → R be a function satisfying F (0) = 1 and
∑

λ∈spec(D∗D)

|F (λ)| <∞.

Then

indD =
∑

λ∈spec(D∗D)

F (λ)−
∑

λ∈spec(D D∗)

F (λ)

= TrF (D∗D)− TrF (DD∗)

= Trs F (D2).

(5.2.3)

Exercise 5.2.4. Write out a careful proof of Lemma 5.2.2. Notice that the supertrace is only
defined if each of the traces converges absolutely.

Our study of the heat equation in Chapter 4 was motivated by the fact that the hypotheses of
Lemma 5.2.2 are satisfied by F (λ) = e−tλ for any t > 0.

Proposition 5.2.5. The trace of the heat operator

(5.2.6) Tr e−tD∗D =
∑

λ∈spec(D∗D)

e−tλ
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converges. In fact, denoting by pt(x, y)+ the heat kernel of D∗D, we have

(5.2.7) Tr e−tD∗D =
∫

X

dy tr pt(y, y)+.

Recall that the heat kernel pt(x, y) of D2 is a map Ey → Ex. Since D2 preserves chirality, the heat
kernel does also. Hence pt(x, y)+ is the restriction of pt(x, y) to E+

y .

Proof. The essential point is that the heat kernel is smooth. Let ψ+
n be an orthonormal basis of

eigenspinor fields for H+, with D∗Dψ+
n = λnψ

+
n . Recall that for σ ∈ E+

y we define a distribution
δσ(ψ) = (σ, ψ(y)) (cf. (4.3.6)). Thus

pt(x, y)+σ = e−tD∗D(δσ)(x)

= e−tD∗D

(∑
n

〈δσ, ψ+
n 〉ψ+

n

)
(x)

=
∑

n

e−tλnψ+
n (x)(σ, ψ+

n (y)).

Therefore, setting x = y and tracing over σ we obtain

(5.2.8) tr pt(y, y)+ =
∑

n

e−tλn |ψ+
n (y)|2.

Now pt(y, y)+ is a smooth function of y, by Proposition 4.3.8, so the integral of (5.2.8) over X is
finite. This justifies the interchange of

∑
n

and
∫

X
in the computation:

∫

X

dy tr pt(y, y)+ =
∫

X

dy
∑

n

e−tλn |ψ+
n (y)|2

=
∑

n

e−tλn

∫

X

dy |ψ+
n (y)|2

=
∑

n

e−tλn

= Tr e−tD∗D

(5.2.9)

Exercise 5.2.10. Justify (5.2.9) in detail. (Hint: Use the monotone convergence theorem.)
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Corollary 5.2.11. The index of the Dirac operator is

(5.2.12) indD = Trs e
−tD2

=
∫

X

dy trs pt(y, y)

for any t.

In (5.2.12) the integrand is the finite dimensional (local) supertrace of pt(y, y) : Ey → Ey.

Proof. Proposition 5.2.5 is true for DD∗ replacing D∗D and − replacing +. Then

Corollary 5.2.11 = Proposition 5.2.5+ − Proposition 5.2.5−,

using Lemma 5.2.2.

§5.3 Mehler’s Formula

Our final step to the proof of the index theorem is an explicit expression for the heat kernel of
the harmonic oscillator in flat space. Formulas (4.1.6), (4.1.10) give the heat kernel of the scalar
Laplace operator on En. Now we want to solve the equation (on R)

(5.3.1)
∂v

∂t
− ∂2v

∂x2
+ a2x2v = 0

for vt(x) a real valued function of t > 0, x ∈ R, with

(5.3.2) lim
t→0

vt = δ0

the δ-function at 0. Equation (5.3.1) is related to the harmonic oscillator, as we explain in the
exercises below. Encouraged by the form of (4.1.6) we guess a solution to (5.3.1) of the form

(5.3.3) vt(x) = α(t)e−x2β(t)/2.

Substituting into (5.3.1) we obtain the pair of equations

(logα)̇ = −β(5.3.4)

β̇ = 2(a2 − β2),(5.3.5)
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where we adopt Newton’s notation for time derivatives. A rather inspired substitution into (5.3.5)
is β(t) = a coth γ(t), from which we conclude γ̇ = 2a, or γ = 2at+ C for some constant C. Hence

β(t) = a coth(2at+ C)

=
1
2
(log sinh(2at+ C))̇.

(5.3.6)

Comparing with (5.3.4) we conclude

(5.3.7) α(t) = C ′[sinh(2at+ C)]−1/2

for some constant C ′. Equations (5.3.3), (5.3.6), and (5.3.7) determine a solution to (5.3.1). To
satisfy the initial condition (5.3.2) we find C = 0 and C ′ =

√
a/2π. Therefore,

Proposition 5.3.8. The function

(5.3.9) vt(x) =
1√
4πt

(
2at

sinh 2at

)1/2

exp
[−x2

4t

(
2at

tanh 2at

)]

solves (5.3.1) with initial condition (5.3.2). In particular, the solution at the origin is

(5.3.10) vt(0) =
1√
4πt

(
2at

sinh 2at

)1/2

.

§5.4 The scaling argument

The main result we are after is

Theorem 5.4.1. Let X be a Riemannian spin manifold with curvature Ω(X), and V → X a
Hermitian vector bundle endowed with a unitary connection whose curvature is Ω(V ). Denote the
heat kernel of the full Dirac operator on V -valued spinor fields by pt(x, y). Then for each y ∈ X
the limit lim

t→0
trs pt(y, y) dy exists and is computed by

(5.4.2) lim
t→0

trs pt(y, y) dy =
[
Â(Ω(X)) ch(Ω(V ))

]
(n)

(y),

where dy is the volume form of X, and Â, ch are defined in (5.4), (5.5). Here [ω](n) denotes the
n-form component of a differential form ω.
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There are cancellations implicit in (5.4.2), since neither lim
t→0

pt(y, y) nor lim
t→0

tr pt(y, y)± is finite,

as is clear from the asymptotic expansion (4.4.2). These cancellations are exhibited explicitly in
Proposition 5.4.16. The index theorem (5.2) follows immediately from Theorem 5.4.1 by taking
t→ 0 in (5.2.12).

Fix y ∈ X. As in (4.4.4) we use exponential coordinates to identify Br ⊂ TyX with a neighbor-
hood of y in X. Parallel transport in V along radial geodesics identifies Sexp a

∼= Sy and Vexp a
∼= Vy

for a ∈ Br. In these coordinates the heat kernel is

qt(a) = pt(exp a, y) ∈ Hom(Sy, Sexp a)⊗Hom(Vy, Vexp a)

∼= End(Sy)⊗ End(Vy)

∼= Cliff(T ∗yX)+ ⊗ End(Vy).

(5.4.3)

(Recall that the spin bundle is built from the Clifford algebra of the cotangent space, since the Dirac
operator (2.2.21) is defined using Clifford multiplication by cotangent vectors.) Now according
to Lemma 5.1.8 the supertrace trs pt(y, y) only depends on the coefficient of the volume form
in Cliff(T ∗yX)+. Hence in addition to the scaling (4.4.6), which was used to obtain the asymptotic
expansion, we introduce a scaling on the Clifford algebra to study this coefficient.

The relevant algebraic facts were set out in Exercise 2.1.58 and Exercise 2.1.59, which we re-
view here. For ε 6= 0 let En

ε denote Rn with the inner product which renders the standard basis
elements e1, . . . , en mutually orthogonal and of square length ε2. The Clifford algebra Cliff(En

ε ) is
generated by the ei subject to the relation

eiej + ejei = −2δijε2.

For ε = 1 we recover the usual Clifford algebra Cliff(En). Let I = i1 . . . ik be a multiindex with
1 ≤ i1 < · · · < ik ≤ n, and |I| = k. Denote eI = ei1 · · · · · eik

; the eI form a basis of Cliff(En
ε ).

There is a canonical isomorphism of algebras

(5.4.4)
Cliff(En) −→ Cliff(En

ε )

eI 7−→ ε−|I|eI .

On the other hand, denoting the usual basis of the exterior algebra by êI = ei1 ∧ · · · ∧ eik
, the map

(5.4.5)

∧
(Rn) −→ Cliff(En

ε )

êI 7−→ eI

is an isomorphism of vector spaces, and so induces an algebra structure on the vector space
∧

(Rn)
for each ε. Let cε(ê) denote left multiplication by ê ∈ ∧

(Rn) in the algebra structure induced
by (5.4.5). Then

(5.4.6) lim
ε→0

cε(ê) = ε(ê),
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where ε(·) is exterior multiplication. Finally, the composite of (5.4.4) and (5.4.5)−1 is the map

(5.4.7)
Uε : Cliff(En) −→ ∧

(Rn)

eI 7−→ ε−|I|ê,

and from (5.4.6) we deduce

(5.4.8) lim
ε→0

ε|I|cε(UεeI) = ε(êI).

Notice that (5.4.4)–(5.4.8) transform properly under orthogonal transformations, so make sense on
any inner product space.

Exercise 5.4.9. Write a formula for cε in terms of exterior multiplication and interior multiplica-
tion (relative to the standard inner product). Use it to prove (5.4.6).

Recall the scaling map Tε(a) = εa in (4.4.6). Define26 the scaled heat kernel

(5.4.10) qε
t = εnUε(T ∗ε qε2t).

It is a function of a ∈ Br/|ε| with values in
∧

(T ∗yX)⊗End(Vy). (Here Uε : Cliff(T ∗yX)→ ∧
(T ∗yX).)

Note that q1t = qt. To be more explicit we fix an orthonormal basis e1, . . . , en of T ∗yX, and write

qt(a) =
∑

I

qt(a)I e
I ,

where eI ∈ Cliff(T ∗yX) and qt(a)I ∈ End(Vy). Then

(5.4.11) qε
t (a) = εn

∑

I

ε−|I|qε2t(εa)I ê
I ;

in short, the scaling is the substitution

(5.4.12)

a 7−→ εa

t 7−→ ε2t

ei 7−→ ε−1ei

26We can essentially identify qε
t with Uε(kε

ε2t
), where kε

ε2t
is as in Assertion 4.4.8. Since the supertrace only

depends on the coefficient of the volume form, which scales by ε−n under Uε, it follows from Lemma 4.4.11 that
trs qε

1(0) is approximately trs qε2 (0). This motivates the scaling Uε: we have lim
t→0

trs qt(0) = lim
ε→0

trs qε
1(0) (provided

the latter exists, which we prove below). Notice that only the continuity of qε
1 at ε = 0 is needed, whereas the

asymptotic expansion requires the smoothness at ε = 0.
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together with an overall scaling by εn.
Next, we study the effect of the scaling on the asymptotic expansion (4.4.2)

(5.4.13) qt(0) ∼ (4πt)−n/2
∑

j,I

Aj,I t
jeI , Aj,I ∈ End(Vy),

valid as t→ 0. Namely, substituting (5.4.12) into (5.4.13) yields

qε
t(0) ∼ (4πt)−n/2

∑

j,I

ε2j−|I|Aj,I t
j êI

= (4π)−n/2
∑

j,I

ε2j−|I|Aj,I t
j−n/2êI .

(5.4.14)

By (5.1.9) the supertrace is given as (−2i)n/2 times the coefficient of the volume form ê12...n:

(5.4.15) trs qε
t(0) ∼ (2πi)−n/2

∑

j

ε2j−n trAj,12...nt
j−n/2.

Theorem 5.4.1 follows from a more precise result about the asymptotic expansion.

Proposition 5.4.16. We have

(1) Aj,I = 0 if |I| > 2j;

(2) trAn/2,12...n dy = (2πi)n/2
[
Â(Ω(X)) ch(Ω(V ))

]
(n)

(y).

Granting Proposition 5.4.16, and setting ε = 1 in (5.4.15) we conclude

trs qt(0) ∼ (2πi)−n/2
∑

j≥n/2

trAj,12...nt
j−n/2,

from which

lim
t→0

trs qt(0) dy = (2πi)−n/2 trAn/2,12...n dy =
[
Â(Ω(X)) ch(Ω(V ))

]
(n)

(y).

This is (5.4.2).

Proof of Proposition 5.4.16. The logic of the proof is slightly tricky. First we show that (5.4.14) is
the asymptotic expansion27 (at a = 0) associated to a certain heat operator ∂/∂t+Pε on Br/|ε|. It
is crucial to remember that the asymptotic expansion is determined by the operator Pε near a = 0.

27We rely on Exercise 4.4.22 here.

82



Daniel S. Freed PRELIMINARY VERSION (∼ 1987) Geometry of Dirac Operators

Next we show that lim
ε→0

Pε = P0 exists and is a second order elliptic operator on TyX. We compute
its heat kernel explicitly, from which we can easily derive the asymptotic expansion at a = 0.
No theory of the operator P0 on TyX is used here; in particular, we make no claim about the
uniqueness of our solution (though it is unique in appropriate function spaces). Nevertheless, the
asymptotic expansion is unique and is the same for any solution, since it is determined by P0

near a = 0. Finally, the coefficients in the asymptotic expansion depend smoothly on the operator,
which completes the proof. Notice that (1) and the existence of a limit in (2) follow merely from
the existence of a good limiting operator P0.

The heat kernel qt(a) satisfies the heat equation

(5.4.17)
(
∂

∂t
+D2

)
q = 0,

where the Dirac operator D acts on the Clifford algebra valued function q by left Clifford multi-
plication. Furthermore, lim

t→0
qt is the δ-function at a = 0. Let Sε = UεT

∗
ε be the scaling operator

in (5.4.10), but without the scaling in t, and apply Sε to both sides of (5.4.17) to conclude (com-
pare (4.4.14))

(5.4.18)
(
∂

∂t
+ ε2SεD2S−1

ε

)
qε = 0.

Also, lim
t→0

qε
t is the δ-function at a = 0. Therefore, qε is the heat kernel for the operator

(5.4.19) Pε = ε2SεD2S−1
ε

on Br/|ε|. To compute lim
ε→0

Pε we pass to exponential coordinates (cf. Appendix).

The Weitzenböck formula (2.3.5) asserts

(5.4.20) P1 = D2 = ∇∗∇+
R

4
+ c(Ω(V )).

Recall that in exponential coordinates (cf. Appendix A) we use Γk to denote the Levi-Civita con-
nection form and Ak to denote the connection form on V . Also, the Γk act by left Clifford multi-
plication on Clifford algebra valued functions. Finally,

[
m
k`

]
are the classical Levi-Civita symbols in

coordinates (cf. (A.16)). Thus from (A.17), (5.4.20), and (A.8) we derive

(5.4.21) P1 = −gk`(a)
(

∂

∂ak
+

1
2
c
(
Γk(a)

)
+Ak(a)

) (
∂

∂a`
+

1
2
c
(
Γ`(a)

)
+A`(a)

)

+ gk`(a)
[
m

k`

]
(a)

(
∂

∂am
+

1
2
c
(
Γm(a)

)
+Am(a)

)
+
R(a)

4
+ c

(
Ω(V )(a)

)
.
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The extra factor of 1/2 comes from identifying the skew-symmetric matrix Γk with an element of
the Clifford algebra (cf. (2.2.29)). Conjugation by Sε amounts to the substitutions a → εa and
c(e)→ cε(Uεe). Thus

(5.4.22) Pε = −gk`(εa)
(

∂

∂ak
+

1
2
εcε

(
UεΓk(εa)

)
+ εAk(εa)

) (
∂

∂a`
+

1
2
εcε

(
UεΓ`(εa)

)
+ εA`(εa)

)

+ εgk`(εa)
[
m

k`

]
(εa)

(
∂

∂am
+

1
2
εcε

(
UεΓm(εa)

)
+ εAm(εa)

)
+ ε2

R(εa)
4

+ ε2cε
(
UεΩ(V )(εa)

)
.

Now using (A.5), (A.6), (A.14), (A.15), and (5.4.8) we compute

(5.4.23) P0 = lim
ε→0

Pε = −
∑

k

(
∂

∂ak
− 1

4
ε
(
Ω(X)

k` (0)
)
a`

)2

+ ε
(
Ω(V )(0)

)
.

P0 is a generalized harmonic oscillator.
For simplicity write

(5.4.24) Ω = Ω(X)(0), F = Ω(V )(0),

and set

(5.4.25) Q = −
∑

k

(
∂

∂ak
− 1

4
ε(Ωk`)a`

)2

.

It remains to solve for the heat kernel. First, note that the two terms in (5.4.23) commute, so that

(5.4.26) e−tP0 = e−tQe−tF .

Now Ω is a skew-symmetric matrix whose entries are 2-forms. We are free to choose the coordi-
nates ak so that Ω is block diagonal:

(5.4.27) (Ωk`) =




0 −ω1

ω1 0
0 −ω2

ω2 0
. . .



.

Then Q decouples into a sum of operators of the form
(5.4.28)

−
(
∂

∂x
+

1
4
ωy

)2

−
(
∂

∂y
− 1

4
ωx

)2

= −
(
∂2

∂x2
+

∂2

∂y2

)
− 1

16
ω2(x2 + y2) +

1
2
ω

(
x
∂

∂y
− y ∂

∂x

)
.
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Now the first two terms on the right hand side are invariant under rotations, and the last term
annihilates rotationally invariant functions. Hence we can drop the last term—the heat operator
for the sum of the first two terms equals the heat operator for the full operator Q. According
to (5.3.10) the heat kernel (at the origin) for −∂2/∂x2 − ω2x2/16 is

(5.4.29)
1√
4πt

(
itω/2

sinh itω/2

)1/2

.

The heat kernel for the y variable contributes the same factor, so the heat kernel (at the origin)
for Q is

(5.4.30) (4πt)−n/2

√
det

(
tΩ/2

sinh tΩ/2

)
.

Combining (5.4.26) and (5.4.30) we conclude that the heat kernel of P0 at the origin is

(5.4.31) (4πt)−n/2

√
det

(
tΩ/2

sinh tΩ/2

)
e−tF .

The asymptotic expansion as t → 0 of (5.4.31) is computed by forming the Taylor series of the
last two factors. This gives an expansion of the form

(5.4.32) (4π)−n/2
∑

j

Pj(
Ω
2
,−F )tj−n/2,

where Pj is a homogeneous polynomial of degree j. Hence the coefficient of tj−n/2 is a 2j-form.
But this coefficient is the limit as ε→ 0 of the coefficient of tj−n/2 in (5.4.14):

(5.4.33) lim
ε→0

∑

I

ε2j−|I|Aj,I ê
I = Pj(

Ω
2
,−F ),

which implies statement (1) in Proposition 5.4.16, and also gives an explicit formula for
∑

|I|=2j

Aj,I ê
I .

Finally,

(5.4.34) Pn/2(
Ω
2
,−F ) = (2πi)n/2Pn/2(

Ω
4πi

,
iF

2π
),

and assertion (2) in Proposition 5.4.16 follows by combining (5.4), (5.5), (5.4.14), (5.4.31), (5.4.32),
and (5.4.34). This completes the proof of Proposition 5.4.16 and so of the Atiyah-Singer index
theorem.
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§5.5 The Index Theorem for Generalized Dirac Operators

This section is a guided set of exercises working out the index formula (5.3) for the generalized
Dirac operators of §2.3. We begin with the relationship between the Chern character and repre-
sentation theory, which is a special case of the general picture explained in [BH]. In our discussion
X is a closed Riemannian spin manifold of dimension n = 2`.

Exercise 5.5.1. Let Ω0 be the skew-symmetric matrix

(5.5.2) Ω0 =




0 2πx1

−2πx1 0
0 2πx2

−2πx2 0
. . .



,

Show that

(5.5.3) Â(Ω0) =
∏̀

j=1

xj/2
sinhxj/2

.

Note that we can always express the curvature Ω(X) in the form (5.5.2) by a judicious choice of
basis. Then the xj are real 2-forms.

Exercise 5.5.4. Suppose ρ : Spin(n) → Aut(V) is a representation of Spin(n), and Vρ → X the
associated bundle Vρ = Spin(X)×ρ V. Verify that Vρ inherits a connection whose curvature is

(5.5.5) Ω(Vρ) = ρ̇(Ω(X)),

where ρ̇ : so(n) → End(V) is the induced homomorphism of Lie algebras. Verify that for Ω0 as
in (5.5.2),

(5.5.6) Tr e
i

2π ρ̇(Ω0) = χρ(x1, . . . , x`)

is a symmetric function of the xj . It is called the character of ρ. Hence the index polynomial
associated to the coupled chiral Dirac operator DVρ is

(5.5.7) Pρ(x1, . . . , x`) =


∏̀

j=1

xj/2
sinhxj/2


χρ(x1, . . . , x`).
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Next we calculate the index polynomial Pρ for the operators introduced in §2.3.

Exercise 5.5.8. Use Exercise 2.1.48 to compute χρ for the spin representation and the difference
of spin representations:

χS+−S−(x1, . . . , x`) = (−1)`
∏̀

j=1

2 sinhxj/2,

χS(x1, . . . , x`) =
∏̀

j=1

2 coshxj/2.

Conclude that

PS+−S−(x1, . . . , x`) = (−1)`
∏̀

j=1

xj ,(5.5.9)

PS(x1, . . . , x`) =
∏̀

j=1

xj

tanhxj/2
.(5.5.10)

Show that the term of degree ` in (5.5.10) is the same as the term of degree ` in

(5.5.11)
∏̀

j=1

xj

tanhxj

if ` is even. Finally, write (5.5.9), (5.5.10) and (5.5.11) as invariant polynomials in the matrix Ω0.

Exercise 5.5.12. Combine Exercise 2.3.12 and Exercise 5.5.8 to conclude

(5.5.13) χ(X) =
∫

X

Pfaff(Ω(X)),

where for any skew-symmetric matrix Ω,

(5.5.14) Pfaff(Ω) =
√

det(Ω/2πi),

(Recall that when ` is odd the coupling bundle is S−−S+, which takes care of the sign in (5.5.9).)
Formula (5.5.14) is called the generalized Gauss-Bonnet theorem. This was first proved by Allen-
doerfer and Weil [AW], and shortly thereafter Chern [C] gave an intrinsic proof. Treat the special
case n = 2 to recover the classical Gauss-Bonnet theorem.
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Exercise 5.5.15. Combine Exercise 2.3.24 and Exercise 5.5.8 to conclude

(5.5.16) Sign(X) =
∫

X

L(Ω(X)),

where for any skew-symmetric matrix Ω,

(5.5.17) L(Ω) =

√
det

(
Ω/2πi

tanh Ω/2πi

)
.

This is Hirzebruch’s signature theorem (1.1.10).

Exercise 5.5.18. Compute the index polynomials for the self-dual complex and the anti-self-dual
complex (Exercise 2.3.25).

Exercise 5.5.19. Recall from Exercise 2.3.39 that on a Kähler manifold X the operator 1
2 (∂̄+ ∂̄∗)

can be identified with the chiral Dirac operator coupled to K−1/2, where K is the canonical bundle.
To calculate the index, which is the arithmetic genus of X, we must compute chK−1/2. This is
slightly different than the previous examples, since K−1/2 is not associated to a representation of
Spin(2`), but rather to a representation of Ũ(`) (cf. Exercise 2.1.54). Now on a Kähler manifold with
spin structure, the bundle of spin frames Spin(X) has a reduction Ũ(X) with structure group Ũ(`).
Restricted to this bundle the curvature is a skew-Hermitian matrix (whose entries are 2-forms).
The matrix

(5.5.20)



−2πix1

−2πix2

. . .




maps to Ω0 under the natural map u(`) → so(2`). Compute that the character of det 1/2 (the
representation which defines K−1/2) is

(5.5.21) χdet 1/2(x1, . . . , x`) =
∏̀

j=1

exj/2.

Conclude that the index polynomial is

(5.5.22) Pdet 1/2(x1, . . . , x`) =
∏̀

j=1

xj

1− e−xj
.
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Finally,

(5.5.23) index(∂̄ + ∂̄∗) =
∫

X

Todd(Ω(X)),

where

(5.5.24) Todd(Ω) =

√
det

(
Ω/2πi

1− e−Ω/2πi

)
.

Equation (5.5.23) is a generalization of the classical Riemann-Roch theorem, first proved by Hirze-
bruch [H1] for smooth projective varieties (cf. Chapter 1).
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§6 Superconnections

The basic invariant of a Dirac operator is its index, which is an integer. For a family of Dirac op-
erators there are more sophisticated invariants. In the original treatment of Atiyah and Singer [AS4]
these invariants take values in cohomology or K-theory. We start with more precise geometric data
and so find more refined invariants. Thus instead of cohomology classes we obtain differential
forms (whose de Rham cohomology classes are the old invariants). An element of K-theory is an
equivalence class of differences of vector bundles. Differential geometers study equivalence classes
of ordinary vector bundles via connections. Quillen [Q1], [Q2] introduced superconnections as the
differential geometric representative of an element of K-theory. After we review the theory of
connections and Chern-Weil theory (mostly in exercise form), we develop the formalism of super-
connections in §6.2, following [Q1]. The main construction is the super Chern character, which we
develop in §6.3. Our treatment of K-theory in §6.4 is incomplete in these preliminary notes.

§6.1 Review of Connections

Suppose F → Y is a smooth finite dimensional vector bundle over a smooth manifold Y . A
connection ∇ on F is a first order differential operator on sections of F . Thus if s is a section of F
and ξ a vector field on Y , then ∇ξs is a new section of F . The connection satisfies the Leibnitz
rule

(6.1.1) ∇ξ(fs) = (ξf)s+ f∇ξs.

Let Ω∗ = Ω∗Y denote the algebra of differential forms on Y , and Ω0(F ) the space of smooth sections
of F . Then Ω∗(F ) = Ω0(F ) ⊗Ω0 Ω∗ is the space of differential form valued sections of F . It is a
module over Ω∗, and we let Ω∗ act by right multiplication. A typical element in this module is sθ,
where s ∈ Ω0(F ), θ ∈ Ω∗. Since ∇ξs is tensorial in ξ, it follows that ∇s is a 1-form valued section
of F . Thus

(6.1.2) ∇ : Ω0(F ) −→ Ω1(F ).

We can extend to an operator

(6.1.3) ∇ : Ω∗(F ) −→ Ω∗(F )

by setting (for σ ∈ Ω0(F ), θ ∈ Ω∗)

(6.1.4) ∇(σθ) = (∇σ)θ + σ dθ.
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Note that ∇ raises the degree of the differential form by one. An easy computation shows that
∇2 is linear over Ω∗:

∇2(σθ) = ∇(
(∇σ)θ + σ dθ

)

= (∇2σ)θ − (∇σ)dθ + (∇σ)dθ + σ d2θ

= (∇2σ)θ.

(6.1.5)

The minus sign in the second line comes from moving d past a 1-form. Let

(6.1.6) Ω∗(EndF ) = Ω∗ ⊗Ω0 Ω0(EndF )

be the algebra of differential forms with values in EndF . Locally an element of Ω∗(EndF ) is a
matrix of differential forms. A typical element has the form θA for θ ∈ Ω∗, A ∈ Ω0(EndF ), and
the multiplication is θA · θ′A′ = (θ ∧ θ′)AA′.
Proposition 6.1.7. Ω∗(EndF ) is the algebra of endomorphisms of Ω∗(F ) which are linear over Ω∗.

Proof. Any α ∈ Ω∗(EndF ) acts as an endomorphism of Ω∗(F ) by left multiplication. Write α = θA

and choose σ = sθ′ ∈ Ω∗(F ). Then α(σ) = (As)(θ∧θ′), and α is clearly linear over Ω∗. Conversely,
if α is an endomorphism of Ω∗(F ), linear over Ω∗, then the restriction of α to Ω0(F ) determines
the desired element of Ω∗(EndF ).

It follows from (6.1.5) and Proposition 6.1.7 that ∇2 ∈ Ω2(EndF ). (Since ∇ raises degree by 1,
it is clear that ∇2 is a 2-form.) We call ∇2 the curvature of the connection ∇.28

These algebras and modules admit a natural Z-grading. Thus the differential forms Ω∗ form a
Z-graded algebra according to the decomposition Ω∗ = ⊕∞i=0Ω

i into homogeneous forms. Exterior
multiplication satisfies Ωi ∧ Ωj ⊂ Ωi+j . Furthermore, Ω∗(F ) is a Z-graded module over Ω∗, and
Ω∗(EndF ) is also a Z-graded algebra (whose homogeneous elements are graded endomorphisms
of Ω∗(F )). The following definition is simply a restatement of (6.1.4).

Definition 6.1.8. A connection is a derivation of Ω∗(F ) over Ω∗ of degree +1

We develop some properties of connections in the exercises. Many of these will be repeated in
the context of superconnections.

Exercise 6.1.9. Show that the difference of two connections is an element of Ω1(EndF ). If ∇ is
a connection and ω ∈ Ω1(EndF ), what is the curvature of ∇+ ω?

Exercise 6.1.10. Reconcile our present view of connections with the treatment in Chapter 2 of
the Riemannian connection and curvature.

28In previous chapters we denoted this curvature by Ω(F ).
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Exercise 6.1.11. Let ι : F ′ ↪→ F be a subbundle, and Q : F → F ′ a projection. Fix a connection∇
on F . Define the projected connection Q∇ι on F ′ and compute its curvature.

Exercise 6.1.12. For a vector space F we let Grk(F) be the space of k-dimensional subspaces of F.
Endow F with an inner product. Than an element of Grk(F) is described by a rank k orthogonal
projection e ∈ End(F). The trivial bundle Grk(F) × F has a canonical subbundle S → Grk(F)
whose fiber over e ∈ Grk(F) is the image of e. Define a natural connection on S and compute its
curvature.

Exercise 6.1.13. The trace is a linear map tr : Ω0(EndF )→ Ω0. Note that tr[A,B] = 0. Extend
to a map tr : Ω∗(EndF )→ Ω∗, and show that the trace of a supercommutator is zero: tr[α, β]s = 0
for α, β ∈ Ω∗(EndF ). (If α, β are homogeneous, then [α, β]s = αβ+(−1)|α||β|βα.) If α ∈ Ω∗(EndF )
and ∇ is any connection, prove

(6.1.14) d trα = tr(∇α).

Here ∇α is defined using the connection on EndF induced from the connection on F . As an
operator on Ω∗(F ) it acts by the supercommutator [∇, α]s.

Exercise 6.1.15. Let ∇ be a connection on F . Prove that tr∇2 is closed for all k ≥ 0. Conclude
that tr e−∇

2
is a closed form.

Exercise 6.1.16. Let ∇u be a 1-parameter family of connections on F . Show that ∇̇u = d∇u

du is
an element of Ω1(EndF ). Prove that

(6.1.17)
d tr e−∇

2
u

du
= −d{tr(e−∇2

u∇̇u)}.

Conclude that if ∇,∇′ are two connections on F , then tr e−∇
2 − tr e−∇

′2
is exact.

Let ∇ be a connection on F . The Chern character of ∇ is the differential form

(6.1.18) ch(∇) = tr e−∇
2
.

It is an inhomogeneous differential form on Y with components in degrees 0, 2, 4, . . . . Our normal-
ization is not the usual one.29 (Usually one takes ch(∇) = tr exp(i∇2/2π).) By Exercise 6.1.16 the
de Rham cohomology class of ch(∇) is independent of the connection ∇, and so is a topological in-
variant of F . In fact, the de Rham cohomology class of (−i

2π )k times the k-form component of ch(∇)
is the kth Chern character class of F . We develop this Chern-Weil Theory and the relationship to
characteristic classes in the exercises below.

EXERCISES ON CHERN-WEIL THEORY ALSO A-HAT GENUS
29and we are not at all happy about it. However, when we come to superconnections there seems to be no nice

way to normalize so that the differential forms represent the usual Chern character classes. Hence we choose (6.1.18)
to be consistent with our choice for superconnections below.
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§6.2 Superconnections in finite dimensions

Suppose now that F = F+ ⊕ F− is Z/2Z-graded. We replace the Z-algebras and modules of
the previous section with Z/2Z-graded algebras and modules. Thus we forget the Z-grading on Ω∗

and view Ω∗ = Ω+ ⊕ Ω− as a Z/2Z-graded algebra: A homogeneous differential form is even if
its degree is even and odd if its degree is odd. The space of sections Ω0(F ) = Ω0(F+) ⊕ Ω0(F−)
is Z/2Z-graded, and so Ω∗(F ) is a graded30 module over Ω∗. The endomorphisms Ω0(EndF ) are
also graded: An element A is even if it preserves the homogeneous components of Ω0(F ) (i.e.,
is a diagonal matrix) and odd if it permutes the homogeneous components of Ω0(F ) (i.e., is an
off-diagonal matrix). As in (6.1.6) we set

(6.2.1) Ω∗(EndF ) = Ω∗⊗̂Ω0Ω0(EndF ),

but now the tensor product is taken in the graded sense.

Exercise 6.2.2. Suppose A,B are two graded algebras. Their graded tensor product A⊗̂B is
generated by elements a⊗ b,
a ∈ A, b ∈ B with multiplication on homogeneous elements defined by

(6.2.3) (a⊗ b) · (a′ ⊗ b′) = (−1)|a
′||b|aa′ ⊗ bb′.

Here |a| is the degree of a, which is 0 if a is even and 1 if a is odd. Verify that A⊗̂B is a graded
algebra.

Exercise 6.2.4. A graded algebra A is commutative if

(6.2.5) aa′ = (−1)|a||a
′|a′a

for all homogeneous a, a′. Give an example of a graded commutative algebra. Give an example of
a graded algebra which is not commutative. Show that if A,B are commutative then so is A⊗̂B.

Exercise 6.2.6. The graded commutator (or supercommutator) of homogeneous elements a, a′ ∈ A
is (cf. (5.1.6))

(6.2.7) [a, a′]s = aa′ − (−1)|a||a
′|a′a.

Write the appropriate Jacobi identity for [·, ·]s. If A,B are graded algebras, compute [a⊗b, a′⊗b′]s.
30We use ‘graded’ for ‘Z/2Z-graded.’ Often the word ‘super’ is substituted for ‘Z/2Z-graded,’ whence the termi-

nology ‘superalgebra,’ ‘superconnection,’ etc.
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Exercise 6.2.8. Ω∗(F ) can be viewed as either a left or a right Ω∗-module. If σ ∈ Ω∗(F ), θ ∈
Ω∗ are homogeneous, then

(6.2.9) σθ = (−1)|θ||σ|θσ.

Proposition 6.1.7 still holds—Ω∗(EndF ) is the graded algebra of endomorphisms of Ω∗(F ) as
a graded Ω∗-module. An even element of Ω∗(EndF ) is a matrix with even forms on the diagonal
and odd forms on the off-diagonal; an odd element of Ω∗(EndF ) is a matrix with odd forms on the
diagonal and even forms on the off-diagonal.

Definition 6.2.10. A superconnection ∇∇∇ on F is a graded derivation of Ω∗(F ) over Ω∗ of odd
degree. Thus for σ ∈ Ω∗(F ), θ ∈ Ω∗ homogeneous,

(6.2.11) ∇∇∇(σθ) = (∇∇∇σ)θ + (−1)|σ|σ dθ.

This should be compared with Definition 6.1.8. Note that we could equally write (6.2.11) as

(6.2.12) ∇∇∇(θσ) = dθ σ + (−1)|θ|θ∇∇∇σ.

Let ∇ = ∇+ ⊕∇− be an ordinary connection (in the sense of (6.1.2)) on F = F+ ⊕ F− which
preserves the grading. Thus ∇+ is a connection on F+ and ∇− is a connection on F−. We can
extend ∇ to a graded derivation of Ω∗(F ) satisfying (6.2.11), and so extend ∇ to a superconnection.
Note that the extension is different than that of an ordinary connection. Thus if s− ∈ Ω0(F−) and
θ ∈ Ω∗, then for the superconnection extension ∇∇∇ we have

(6.2.13) ∇∇∇(s−θ) = (∇−s−)θ − s−dθ.

The difference of two superconnections is an odd element of Ω∗(EndF ). Hence the general super-
connection can be written

(6.2.14) ∇∇∇ = ∇+ ω =
(∇+ + ω++ ω+−

ω−+ ∇− + ω−−

)
,

where ω ∈ Ω∗(EndF )−, ω++ ∈ Ωodd(EndF+), ω+− ∈ Ωeven
(
Hom(F−, F+)

)
, ω−+ ∈ Ωeven

(
Hom(F+, F−)

)
,

and ω−− ∈ Ωodd(EndF−).
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The curvature of ∇∇∇ is the operator ∇∇∇2. As for ordinary connections (see (6.1.5)) it is linear
over Ω∗:

∇∇∇2(σθ) = ∇∇∇(
(∇∇∇σ)θ + (−1)|σ|σ dθ

)

= (∇∇∇2σ)θ + (−1)|σ|+1(∇∇∇σ)dθ + (−1)|σ|∇∇∇σ dθ + s d2θ

= (∇∇∇2σ)θ.

(6.2.15)

So ∇∇∇2 is an even element of Ω∗(EndF )—it has even forms on the diagonal and odd forms on the
off-diagonal. If ∇∇∇ = ∇+ ω,

(6.2.16) ∇∇∇2 = ∇2 +∇ω + ω2.

Suppose F+, F− are Hermitian, ∇+,∇− are unitary connections, and L : F+ → F− is a linear
map. Then

L =
(

0 L∗

L 0

)

is an odd element of Ω∗(EndF ). We define a family of superconnections

(6.2.17) ∇∇∇t = ∇+
√
tL =

( ∇+
√
tL∗√

tL ∇−
)
.

The curvature of ∇∇∇ is

(6.2.18) ∇∇∇2
t = ∇2 +

√
t∇L+ tL2 =

(
∇+2

+ tL∗L
√
t∇L∗√

t∇L ∇−2
+ tLL∗

)
.

Notice that the diagonal entries are sums of a 0-form and a 2-form, whereas the off-diagonal entries
are 1-forms. Also, ∇L denotes the transformation ∇−L− L∇+ and ∇L∗ denotes ∇+L∗ − L∗∇−.
We study the family of superconnections (6.2.17) in detail in the next section.

Exercise 6.2.19. Let F = F+ ⊕F− be a graded vector space. Set Y = End(F+,F−), and F+, F−

the obvious trivial bundles over Y . There is a canonical vector bundle map L : F+ → F−. Define
the superconnection (6.2.17) and compute its curvature.

§6.3 The super Chern character

Recall that the supertrace is defined on endomorphisms of a graded vector space F = F+ ⊕ F−.
Let ε be the involution which defines the grading; it is +1 on F+ and −1 on F−. Then for A ∈ EndF
we have (cf. (5.1.4))

(6.3.1) trsA = tr(εA).
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Thus if A =
(
a b
c d

)
, then trsA = tr a − tr d. By Lemma 5.1.7 the supertrace vanishes on

supercommutators: trs[A,B]s = 0.
Now let F = F+⊕F− be a graded bundle over Y , as before. Then trs : Ω0(EndF )→ Ω0 extends

to an operator

(6.3.2) trs : Ω∗(EndF ) −→ Ω∗

in the obvious way: trs(θA) = (trsA)θ. This extension satisfies

(6.3.3) trs[α, β]s = 0

for α, β ∈ Ω∗(EndF ), where the supercommutator is taken in the superalgebra Ω∗(EndF ).

Exercise 6.3.4. Prove (6.3.3). (Compare Exercise 6.1.13.)

If ∇∇∇ is any superconnection on F , then for α ∈ Ω∗(EndF ) we have

(6.3.5) d trs α = trs(∇∇∇α),

where ∇∇∇α denotes the endomorphism [∇∇∇, α]s of Ω∗(F ).

Exercise 6.3.6. Prove (6.3.5). (Compare (6.1.14). Hint: Compute locally, writing ∇∇∇ = d + ω

relative to some trivialization of F .)

Now we define the super Chern character31 by analogy with (6.1.18). Thus let ∇∇∇ be a super-
connection on F . Set

(6.3.7) chs(∇∇∇) = trs e−∇∇∇
2
.

It is an even differential form, with components in degrees 0, 2, 4, . . . .

Proposition 6.3.8. The differential form chs(∇∇∇) is closed. If ∇∇∇u is a family of superconnections
parametrized by a real parameter u, then

(6.3.9)
d trs e−∇∇∇

2
u

du
= −d

{
trs(e−∇∇∇

2
u ∇̇∇∇u)

}
.

In particular, if ∇∇∇ and ∇∇∇′ are two superconnections on F , then chs(∇∇∇)− chs(∇∇∇′) is exact.

31In the literature this is simply called the ‘Chern character.’ We introduce the ‘super’ for greater clarity.
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Note that ∇̇∇∇ = d∇∇∇u/du in (6.3.9) is an odd element of Ω∗(EndF ). Equation (6.3.9) is sometimes
called the transgression formula.

Proof. Using (6.3.5) we calculate

d chs(∇∇∇) = d trs e−∇∇∇
2

= trs[∇∇∇, e−∇∇∇
2
]s

= 0,

(6.3.10)

since ∇∇∇ and e−∇∇∇
2

commute. To verify the transgression formula (6.3.9), we compute (omitting ‘u’
from the notation)

(6.3.11)
d

du
trs e−∇∇∇

2
u = − trs(e−∇∇∇

2∇∇∇∇̇∇∇+ e−∇∇∇
2 ∇̇∇∇∇∇∇),

and

−d(trs e−∇∇∇
2 ∇̇∇∇) = − trs

(
[∇∇∇, e−∇∇∇2 ∇̇∇∇]s

)

= − trs(∇∇∇e−∇∇∇
2 ∇̇∇∇+ e−∇∇∇

2 ∇̇∇∇∇∇∇).
(6.3.12)

Since ∇∇∇ and e−∇∇∇
2

commute we conclude that (6.3.11) and (6.3.12) are equal, as desired. The last
statement in the proposition follows by setting

∇∇∇u = ∇∇∇+ u(∇∇∇′ − ∇∇∇)

and integrating (6.3.9) from u = 0 to u = 1.

Corollary 6.3.13. Let ∇ = ∇+ ⊕ ∇− be a connection on the (finite dimensional) bundle F =
F+ ⊕ F−, and ∇∇∇ = ∇ + ω any superconnection on F . Then chs(∇∇∇) and ch(∇+) − ch(∇−) are
cohomologous in de Rham theory.

Here ch(∇±) is the Chern character of the ordinary connection on F±, as defined in (6.1.18).

Proof. Set ∇∇∇u = ∇+uω and apply (6.3.9). Note that chs(∇∇∇1) = chs(∇∇∇) and chs(∇∇∇0) = ch(∇+)−
ch(∇−).

In the rest of this section we study in detail the Chern character form γt of the superconnec-
tion (6.2.17). Thus

(6.3.14) γt = chs(∇∇∇t) = trs e−(tL2+
√

t∇L+∇2).
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Observe first that

(6.3.15) γ0 = chs(∇) = ch(∇+)− ch(∇−).

Now consider t → ∞. If L is invertible then we expect the first term tL2 in the exponential to
dominate (6.3.14), and so expect γt → 0. This is correct, but to prove it requires a few preliminary
formulæ which are important in their own right.

The main result already appeared in (4.2.24); it is sometimes called Duhamel’s formula. Al-
though we apply it here to finite dimensional matrices, we state it in greater generality. Recall
that a Banach algebra is a Banach space with an algebra structure whose multiplication satis-
fies ‖AB‖ ≤ ‖A‖ ‖B‖.
Proposition 6.3.16. Let A be a Banach algebra. Then for P1, P2 ∈ A we have

(6.3.17) e−P2 − e−P1 = −
∫ 1

0

ds e−sP1(P2 − P1)e−(1−s)P2 .

Proof. Observe

(6.3.18)
d

ds

(
e−sP1e−(1−s)P2

)
= e−sP1(P2 − P1)e−(1−s)P2 ,

and integrate from s = 0 to s = 1.

We rewrite (6.3.17) in the form

(6.3.19) e−P2 = e−P1 − e−P1(P2 − P1)#e−P2 ,

the ‘#’ being shorthand for the convolution in (6.3.17). Then iterating (6.3.19) we obtain

e−P2 = e−P1 − e−P1(P2 − P1)#e−P1 + e−P1(P2 − P1)#e−P1(P2 − P1)#e−P1 − · · ·

=
∞∑

k=0

(−1)k[e−P1(P2 − P1)]#k#e−P1 .

(6.3.20)

This should be viewed as the noncommutative analog of a Taylor series. Indeed, if P1 and P2 −P1

commute, then we can write

e−P2 = e−(P2−P1)e−P1 =
∞∑

k=0

(−1)k (P2 − P1)k

k!
e−P1 .
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It is important to realize that the kth term in (6.3.20) is an integral over a k-simplex of volume 1/k!.
For example, the second term is

(6.3.21)
∫ 1

0

ds1

∫ s1

0

ds2 e
−s2P1(P2 − P1)e−(s1−s2)P1(P2 − P1)e−(1−s1)P1 .

The following exercises show how Duhamel’s formula lends insight into the structure of γt.

Exercise 6.3.22. Apply Duhamel’s formula to (6.3.14), choosing P2 = ∇∇∇2
t = tL2 +

√
t∇L +∇2

and P1 = tL2. By writing out (6.3.17) deduce that the 0-form component of γt is trs e−tL2
. Write

out the next term in (6.3.20) to see explicitly that the 1-form component of γt vanishes. What is
the formula for the 2-form component?

Exercise 6.3.23. Write an explicit formula for the 1-form component of trs(e−∇∇∇
2
t ∇̇∇∇t). This term

appears in the transgression formula (6.3.9).

Next we apply Duhamel’s formula to derive a standard estimate on exponentials.

Proposition 6.3.24. Let A be a Banach algebra, and fix A,B ∈ A. Suppose ‖esA‖ ≤ Mesa for
some constants M,a > 0 and all 0 ≤ s ≤ 1. Then ‖eA+B‖ ≤Mea+M‖B‖ .

Proof. By (6.3.20) we write

(6.3.25) eA+B =
∞∑

k=0

(eAB)#k#eA.

The kth term is an integral over the k-simplex involving k + 1 terms of the form e(si−si+1)A and
k factors of B. (See (6.3.21) for the case k = 2.) Since the volume of the k-simplex is 1/k!, it

follows from our hypothesis that the norm of the kth term is bounded by
Mk+1ea‖B‖k

k!
, whence

‖eA+B‖ ≤
∞∑

k=0

Mk+1ea‖B‖k
k!

= Mea+M‖B‖ .

Exercise 6.3.26. These ideas occur in the theory of ordinary differential equations. Suppose
A(t) is a curve of N ×N matrices, say real matrices, and u(t) is a variable curve in RN . Write an
explicit solution to the equation

(6.3.27)
du

dt
+Au = 0

with initial condition u0. Vary the initial conditions to see the solution as a curve of invertible
matrices. Can you see this in terms of integration of a time-varying vector field on some manifold?
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Show that if A(t) is constrained to lie in the Lie algebra of a Lie group G, then the solution
to (6.3.27) lies in G. Derive the equation for parallel transport on a principal bundle (or vector
bundle) with connection.

With these preliminaries in hand, we return to our study of the superconnection ∇∇∇t = ∇+
√
tL.

Recall that γt denotes the super Chern character form of ∇∇∇t.

Proposition 6.3.28. Suppose L : F+ → F− is invertible. Then lim
t→∞

γt = 0 and

(6.3.29) γt = −d
(

1
2
√
t

∫ ∞

t

trs
[
e−(tL2+

√
t∇L+∇2)L

])
.

Proof. Since L2 is invertible, ‖L2‖ ≥ a for some a > 0, so that ‖e−stL2‖ ≤ e−sta for all s, t ≥ 0.
Now Proposition 6.3.24 implies

‖e−(tL2+
√

t∇L+∇2)‖ ≤ e−ta+C

for some constant C This approaches zero as t→∞, and since trs is a continuous map, it follows
that lim

t→∞
γt = 0. Equation (6.3.29) now follows from the transgression formula (6.3.9), integrated

from u = t to u =∞.

If L is not invertible, then the same argument works away from the kernel of L. It is useful

to recall our favorite picture (Figure 1) at this juncture. The operator L =
(
L∗L 0
0 LL∗

)
is

nonnegative self-adjoint, so for fixed y decomposes F+
y ⊕ F−y into a finite sum of eigenspaces. The

eigenspaces of L∗L,LL∗ for nonzero eigenvalues are isomorphic via the map L. The situation is
illustrated schematically in Figure 2. As y varies the eigenvalues vary continuously, the multiplicities
of the eigenvalues can change, etc. In particular, there is no guarantee that kerL and kerL∗ have
constant rank (cf. Exercise 6.2.19).

• •

λ• L−−−−→ •λ

• •

ker L• •ker L∗

F+ F−

Figure 2
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For the next result, we make an explicit assumption about the kernels.

Proposition 6.3.30. Suppose kerL = kerL⊕ kerL∗ has locally constant rank. Let PkerL denote
the orthogonal projection of F onto kerL, and PkerL∇ the projected connection on kerL (cf. Exer-
cise 6.1.11). Then

lim
t→∞

γt = chs(PkerL∇) = ch(Pker L∇+)− ch(Pker L∗∇−).

Proof. We can split the supertrace in the definition of γt into the sum of a supertrace over kerL
and a supertrace over the orthogonal complement. The argument of Proposition 6.3.28 applies to
show that the supertrace over the complement converges to zero as t→∞. Hence

lim
t→∞

γt = lim
t→∞

trs
(
PkerLe−(tL2+

√
t∇L+∇2)PkerL

)

= lim
t→∞

trs e−PkerL(tL2+
√

t∇L+∇2)PkerL .
(6.3.31)

Now PkerL(tL2)PkerL = 0 is obvious. In fact, the restriction of ∇L to kerL is also zero. For
example, the restriction of ∇L to kerL, projected to kerL∗, is

Pker L∗(∇−L− L∇+)Pker L = Pker L∗∇−LPker L − Pker L∗L∇+Pker L,

and LPker L = Pker L∗L = 0. The argument for the adjoint similar. Hence

(6.3.32) lim
t→∞

γt = trs e−PkerL∇2PkerL .

But PkerL∇2PkerL is the curvature of the projected connection PkerL∇ (cf. Exercise 6.1.11), whence
the proposition.

When L has variable rank the same statement is morally true, only now kerL is a sheaf, rather
than a vector bundle. We will see how to handle this in the next section.

§6.4 K-Theory

Suppose Y is a compact space. The set of complex vector bundles on Y is a semigroup; that is,
given two vector bundles F, F ′ over Y we can form their direct sum F ⊕ F ′. The idea of K-theory
is to add inverses to this situation. Thus we define a K-bundle32 to be a formal difference of vector

32Standard language distinguishes easily between a vector bundle and its equivalence class under isomorphisms
of vector bundles. By contrast, an element of K-theory is understood to be an equivalence class, and there is no
standard word to denote a member of the equivalence class. Hence we coin the phrase K-bundle .
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bundles F+−F− over Y . It is clear how to add and subtract elements: (F+−F−)+(F ′+−F ′−) =
F+ ⊕ F ′+ − F− ⊕ F ′−, and −(F+ − F−) = F− − F+. There is a natural equivalence relation:
F+ − F− ∼ F ′+ − F ′− if there is an isomorphism F+ ⊕ F ′− ∼= F ′+ ⊕ F−. The set of equivalence
classes form the K-theory group K(Y ).

We will need to patch K-bundles which are only defined locally. This is analogous to the
patching description of a vector bundle. The K-bundles we are interested in will come in this form.
Also, in this way we extend the definition of K-theory to noncompact manifolds (including infinite
dimensional manifolds). Thus let {Uα} be a cover of a manifold Y , and suppose F+

α − F−α → Uα

is a K-bundle over Uα. The patching isomorphisms are maps

gαβ : F+
α ⊕ F−β

∣∣
Uα∩Uβ

∼−→ F+
β ⊕ F−α

∣∣
Uα∩Uβ

which satisfy the cocycle condition

gαβ ⊕ gβγ = gαγ ⊕ idF+
β ⊕F−β

.

We define the collection F = {F+
α −F−α , gαβ} to be aK-bundle over Y . Notice that we do not require

that each F+
α −F−α be a trivial bundle, though this can be arranged by choosing the covering {Uα}

fine enough. If F′ = {F ′+α − F ′−α , g
′
αβ} is another K-bundle , then an isomorphism F ∼= F′ is

specified by a collection of maps fα : F+
α ⊕ F ′−α ∼−→ F ′+α ⊕ F−α which intertwine appropriately with

the gαβ , g
′
αβ .

Exercise 6.4.1. Write down the precise definition. Verify that it defines an equivalence relation.

Exercise 6.4.2. Suppose L : F+ → F− is an isomorphism. Prove that the K-bundle F+ −F− is
equivalent to the trivial bundle (of rank 0).

We denote the set of equivalence classes of K-bundles over Y by K(Y )—this is our extended
definition of K-theory. Notice that K(Y ) is an abelian group.

Exercise 6.4.3. Show that if Y is compact, then any K-bundle in this new sense is equivalent
to a global K-bundle F+ − F− → Y (for globally defined F+, F−). Is this also true for locally
compact spaces?

Exercise 6.4.4. Some topologists are inclined to define K(Y ) as the set of homotopy classes of
maps Y → Z× BU , where BU is the classifying space of the stable unitary group. How does our
definition compare with the topologists’? You can make this comparison for any CW-complex Y ;
our definition doesn’t require that Y be a manifold.

Exercise 6.4.5. Give a definition of K1(Y ) in the spirit of our treatment. What about the relative
groups K(Y,A)? Can you describe some of the boundary maps in the standard exact sequences
(e.g. K1(A)→ K(Y,A))?
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Now consider a map F+ L−→ F− of vector bundles over Y . We want to construct an element
of K(Y ) in this situation. The obvious candidate is the global K-bundle F+ − F−, but this does
not take into account the map L. Rather, we want to use L to “cancel” the parts of the bundles
where L is an isomorphism. One way of expressing this is through the exact sequence

(6.4.6) 0 −→ kerL −→ F+ L−→ F− −→ cokerL −→ 0.

Since every sequence of vector bundles is split, there is an isomorphism F+⊕cokerL ∼= F−⊕kerL,
and so F+ − F− ∼ kerL − cokerL represent the same element of K(Y ). However, as we pointed
out at the end of the last section, in general kerL, cokerL are not of constant rank, so do not
form vector bundles. Hence this naive construction is insufficient. Assume now that F+, F− are
endowed with Hermitian metrics. Then we can decompose F+, F− according to L∗L,LL∗, as in
Figure 2. Now for each a > 0 let Ua ⊂ Y be the set of points where a is not in the spectrum of L∗L
(hence not in the spectrum of LL∗). Let F±a ⊂ F be the sum of the eigenspaces for eigenvalues less
than a. Since the eigenvalues vary continuously, F±a have constant rank over connected components
of Ua, and so form vector bundles.

Exercise 6.4.7. Prove this last assertion rigorously.

Therefore, the K-bundle F+
a − F−a → Ua is well-defined. To patch, fix b > a and consider a

point in Ua ∩ Ub. Let F±a,b ⊂ F± be the sum of the eigenspaces for eigenvalues between a and b.
Then F±b ∼= F±a ⊕ F±a,b, and the map L : F+

a,b → F−a,b is an isomorphism. Hence the patching map
gab : F+

a ⊕ F−b → F+
b ⊕ F−a is canonically defined (from L). This constructs a globally defined

K-bundle .
The reader will quickly realize that the preceding paragraph is silly. The K-bundle we have just

constructed is naturally equivalent to F+ − F−. Our motivation here is the infinite dimensional
case, which we take up in the next chapter. There F± are bundles of spinor fields and L is the Dirac
operator. Because these bundles are infinite dimensional, the patching construction is necessary to
define an element of K-theory.

Exercise 6.4.8. Compare our construction here to the difference bundle construction in K-
theory [ABS,Part 2]. Extend our construction to complexes of Hermitian bundles.
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§7 Families of Dirac Operators

We now take up the index problem for families of Dirac operators. In their original treat-
ment [AS4], Atiyah and Singer work in a purely topological framework. Their starting point is a
homotopy class of a family of symbols parametrized by a topological space Y . The index of the
family is an element in the K-theory of Y , and its Chern character is a real cohomology class on Y .
We start with differential geometric data—a family of Riemannian manifolds (possibly endowed
with an external vector bundle with metric and connection) parametrized by a manifold Y . Hence
the index invariants come in precise differential geometric form—an infinite dimensional supercon-
nection on Y whose associated Chern character is a differential form on Y . Of course, these more
precise indices represent the K-theory index and its Chern character. After dispensing with the
basic geometry of a family of Riemannian manifolds in §7.1, we discuss the Bismut superconnection
and its associated K-theory element. The Riemann-Roch formula in this context computes the lim-
iting Chern character as the parameter t in the superconnection tends to zero; it is a generalization
of Theorem 5.4.1. In this preliminary version we omit the proof of Theorem 7.2.21. The results in
this chapter are originally due to Bismut [Bi3].

§7.1 Families of Riemannian Manifolds

By a family of smooth manifolds we mean a fiber bundle π : Z → Y , where Z and Y are smooth
manifolds. Thus π is a submersion, and Z is locally (in Y ) diffeomorphic a product Y ×X for some
manifold X. We allow Y and Z to be infinite dimensional manifolds, though we can carry out all of
our arguments by working over finite dimensional submanifolds of Y . The fiber X in our examples
will always be a smooth finite dimensional closed manifold. In terms of Steenrod’s definition [Ste]
π is a fiber bundle with structure group Diff(X) and typical fiber X. We denote the fiber π−1(y)
by Zy. In the trivial case where Y is a point, the family of manifolds reduces to a single manifold.
The tangent bundle TZ has a canonical subbundle kerπ, which is the tangent bundle along the
fibers. We denote it by T (Z/Y ). Notice that there is no God-given complement.

Definition 7.1.1. A Riemannian structure on the family of manifolds π : Z → Y consists of a
metric g(Z/Y ) on T (Z/Y ) and a projection P : TZ → T (Z/Y ).

The kernel of the projection P is a complement to the vertical inside TZ. We term elements of kerP
‘horizontal.’ Definition 7.1.1 generalizes the notion of a Riemannian structure on a single manifold.
The justification for including the projection P as part of the definition is Lemma 7.1.5 below.

Exercise 7.1.2. Given a fibration π : Z → Y , show that there exist Riemannian structures. Prove
that the space of Riemannian structures on a fixed fibration is contractible.

Exercise 7.1.3. Associate to π : Z → Y a principal Diff(X) bundle. Show that P determines a
connection on this bundle, and vice versa. What is its curvature?
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Exercise 7.1.4. Let X be a smooth manifold and Y = Met(X) the space of Riemannian metrics
on X. In what sense is Y a manifold? Describe the natural Riemannian structure on the product
fibering Y ×X → Y . The group of diffeomorphisms Diff(X) acts smoothly on Y and on Y ×X.
Construct a Riemannian structure on the quotient. Is it still a product? How can we correct for
the fact that the action of Diff(X) is not free?

For a single Riemannian manifold the Levi-Civita theorem states that there is a unique torsionfree
metric connection. The analog for a Riemannian family is a distinguished metric connection ∇(Z/Y )

on T (Z/Y ). We define ∇(Z/Y ) in terms of an auxiliary metric.

Lemma 7.1.5. Choose any metric g(ker P ) on the horizontal spaces, and combine it with the Rie-
mannian structure of π to produce a metric g(Z) on Z (relative to which T (Z/Y ) and kerP are
orthogonal). Denote the Levi-Civita connection by ∇(Z). Fix a horizontal vector field ξ̃ and vertical
vector fields α, β. Then the second fundamental form IIξ̃(α, β) and the component (∇(Z)

ξ̃
α, β) of

the projected Levi-Civita connection are independent of g(ker P ). In fact, we have the formulas

IIξ̃(α, β) = −1
2
(Lξ̃g

(Z/Y ))(α, β)(7.1.6)

(∇(Z)

ξ̃
α, β) = ([ξ̃, α], β)− IIξ̃(α, β).(7.1.7)

In (7.1.6) we use Lξ̃g
(Z/Y ) to denote the Lie derivative. Implicit in this equation is the assertion

that this Lie derivative is tensorial in ξ̃.

Definition 7.1.8. Let π : Z → Y be a family of Riemannian manifolds. The associated Riemann-
ian connection ∇(Z/Y ) on T (Z/Y ) is the vertical projection of any Levi-Civita connection on Z.
By Lemma 7.1.5 it is independent of the choice of metric on kerP .

Of course, the Riemannian connection ∇(Z/Y ) restricts to the Levi-Civita connection in each fiber.
The point is that there is a unique torsionfree extension compatible with P , though it is awkward
to state directly what ‘torsionfree’ and ‘compatible with P ’ mean in this context.

Exercise 7.1.9. State directly what ‘torsionfree’ and ‘compatible with P ’ mean in this context.

Proof of Lemma 7.1.5. Since the right hand sides of (7.1.6) and (7.1.7) are expressed purely in terms
of g(Z/Y ) and P , we have only to prove these formulas to conclude the independence from g(ker P ).
For simplicity let g denote the metric g(Z) on Z and ∇ its associated Levi-Civita connection ∇(Z).
Now expand ξ̃ · (α, β) in two different ways:

ξ̃ · (α, β) = (∇ξ̃α, β) + (α,∇ξ̃β)

= (Lξ̃g)(α, β) + ([ξ̃, α], β) + (α, [ξ̃, β]).
(7.1.10)
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But since the connection is torsionfree,

(7.1.11) (∇ξ̃α, β) = ([ξ̃, α], β) + (∇αξ̃, β),

with a similar equation for α and β exchanged. Thus

(7.1.12) (Lξ̃g)(α, β) = (∇αξ̃, β) + (α,∇β ξ̃).

A standard argument shows that the two terms on the right hand side of (7.1.12) are equal:

(∇αξ̃, β)− (α,∇β ξ̃) = −(ξ̃,∇αβ) + (∇βα, ξ̃) = (ξ̃, [β, α]) = 0.

Here we use the fact that [β, α] is a vertical vector field. Hence

(Lξ̃g)(α, β) = 2(∇αξ̃, β) = −2IIξ̃(α, β),

which is (7.1.6). Now (7.1.7) follows by combining (7.1.10), (7.1.11), (7.1.12), and (7.1.6).

It is interesting to notice that the preceding proof is local, so works for any foliation on Z; the
foliation need not be a fibration.

There are two tensors associated to the Riemannian structure which we need in the next section.
The first is the curvature of the horizontal distribution kerP . It is a 2-form T on Y whose values are
vector fields along the fibers of π. Let ξ1, ξ2 be vector fields on Y , denote by ξ̃1, ξ̃2 their horizontal
lifts to Z, and set

(7.1.13) T (ξ1, ξ2) = [ξ̃1, ξ̃2]− [̃ξ1, ξ2].

The usual argument shows that T is tensorial in ξ1, ξ2.
The other tensor δ is the section of (kerP )∗ → Z which measures the local change in volume

between fibers. Let vol denote the volume form of the vertical metric g(Z/Y ); it is a section
of

∧n
T (Z/Y )∗ → Z. Suppose ξ̃ is a horizontal vector field. Then define δ(ξ̃) by the equation

(7.1.14) Lξ̃ vol = δ(ξ̃)vol .

We check that δ is tensorial as follows. Extend vol to a vertical n-form on Z using the splitting TZ ∼=
T (Z/Y )⊕ kerP . Then

Lξ̃ vol = ιξ̃dvol+dιξ̃ vol = ιξ̃dvol,
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so that δ extends to the horizontal 1-form defined by

(7.1.15) dvol = δ ∧ vol .

Spinors and the Dirac operator are defined as for a single manifold. Set n = dimZ/Y = dimX.
Let SO(Z/Y )→ Z be the principal SO(n) bundle of frames along the fiber. A point of SO(Z/Y )
over z ∈ Z is an orientation-preserving isometry p : En → Tz(Z/Y ). The connection ∇(Z/Y )

determines a connection on this frame bundle. The vector fields ∂1, . . . , ∂n are defined as the
horizontal lifts of basis vectors. Notice that ∂k is vertical (relative to π). As in Definition 2.2.16 a
spin structure is a double cover of the frame bundle.

Definition 7.1.16. A spin structure on π : Z → Y is a principal Spin(n) bundle Spin(Z/Y ) which
double covers SO(Z/Y ), and for which the diagram

Spin(Z/Y )× Spin(n) −−−−→ Spin(Z/Y )
y2:1

y2:1

y2:1

SO(Z/Y ) ×SO(n) −−−−→ SO(Z/Y )

commutes.

The topological obstruction to the existence of a spin structure is the second Stiefel-Whitney
class w2(T (Z/Y )) ∈ H2(Z;Z/2Z).

Suppose that π : Z → Y is endowed with a spin structure. The associated spin bundle S → Z is
defined using the spin representation γ, as in (2.2.20). If n is even there is a splitting S = S+⊕S−.
The connection ∇(Z/Y ) induces a connection on S, which we denote γ̇∇(Z/Y ). (Recall that γ̇ is the
infinitesimal spin representation.) Now as in (2.2.21) the Dirac operator is

(7.1.17) D = c(∂) = c(ek)∂k = γk∂k.

It acts on spinor fields. In even dimensions we writeD =
(

0 D∗

D 0

)
, withD : C∞(S+)→ C∞(S−).

The Dirac operator restricted to the fiber Zy is exactly the Dirac operator for the single Rie-
mannian manifold Zy. In particular, the projection P does not enter its definition. Notice, though,
that the spin structures on the fibers Zy must fit together to form a global spin structure on Z → Y .
The Weitzenböck formula (2.2.33) holds as before, where now R denotes the scalar curvature of the
fiber.

Generalized Dirac operators are defined in this context by starting with a vector bundle V → Z

with metric g(V ) and unitary connection ∇(V ). (To define the Dirac operator we need only a
connection in vertical directions, just as we only used ∇(Z/Y ) in vertical directions. Derivatives in
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horizontal directions enter in the Bismut superconnection below.) The generalized Dirac operator
is the composition

(7.1.18) C∞(S ⊗ V )
γ̇∇(Z/Y )⊗1+1⊗∇(V )

−−−−−−−−−−−−−→ C∞(T ∗X ⊗ S ⊗ V )
c(·)⊗1−−−−→ C∞(S ⊗ V ).

As in §2 this could alternatively be described in terms of principal bundles.

§7.2 The Bismut Superconnection

We recapitulate the data which defines a geometric family of Dirac operators.

Definition 7.2.1. Suppose π : Z → Y is a smooth family of manifolds endowed with a Riemannian
structure (Definition 7.1.1) and a spin structure (Definition 7.1.16). We assume that the fibers
of π are compact. Let V → Z be a complex vector bundle with Hermitian metric g(V ) and unitary
connection ∇(V ). Then this data determines a geometric family of Dirac operators, as described in
the previous section.

As for a single operator, the spin structure may be irrelevant for other operators of Dirac type (e.g.
∂̄ operator on Kähler manifolds, signature operator).

Exercise 7.2.2. Let E → X be a Hermitian vector bundle over a Riemannian spin manifold X.
Let Y be the space of unitary connections on E. Construct a natural geometric family of Dirac
operators parametrized by Y . A gauge transformation is an automorphism of E → X which induces
the identity map on X. The group G of gauge transformations acts on Y , though not quite freely.
Construct a natural geometric family of Dirac operators parametrized by Y/G. How do you handle
the fact that G does not act freely?

Exercise 7.2.3. Let Y parametrize a geometric family of Dirac operators, and suppose Y ′ → Y is
a smooth map. Construct a pullback family parametrized by Y ′.

Exercise 7.2.4. Let E → M be a fixed Hermitian bundle with unitary connection, and X a
compact Riemannian spin manifold. Construct a geometric family of Dirac operators parametrized
by Map(X,M). How is this family related to Exercise 7.2.2? What are the relevant symmetries in
this example? (Hint: Be careful about the spin structure.)

Exercise 7.2.5. Let X be a compact oriented 2-manifold of genus g. There are 22g spin structures
on X (Exercise 2.2.18). Fix one. LetM be the set of metrics on X with constant Gauss curvature,
and D the subgroup of Diff(X) consisting of diffeomorphisms which fix the given spin structure.
Construct a geometric family of Dirac operators parametrized by M/D. (Hint: To construct a
spin structure on the resulting family of manifolds you will need to consider the action of a double
cover of D.) Discuss the case g = 1 in detail, identifyingM and D explicitly.
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Fix a geometric family of Dirac operators as in Definition 7.2.1. Assume that the fibers of π : Z →
Y are even dimensional. Then for each y ∈ Y the fiber Zy is a Riemannian spin manifold with
half-spin bundles S±y → Zy and a Hermitian vector bundle Vy → Zy with unitary connection. Let
H±y = L2(S±y ⊗ Vy) be the Hilbert space of Vy-valued spinor fields on Zy. The Hilbert spaces H±y
patch to form continuous vector bundles over Y—the transition functions of π : Z → Y , which take
values in Diff(X), act continuously on H± by pullback. However, the composition L2 × C∞ → L2

is not differentiable, so the H± are not smooth bundles. The subbundles of C∞ spinor fields are
better, since composition C∞×C∞ → C∞ is smooth, but the fibers are Fréchet spaces, not Hilbert
spaces. We work with finite dimensional subbundles of H±y spanned by eigenspinor fields. By the
elliptic theory §3 the eigenspinor fields are smooth, whence these subbundles are smooth finite
dimensional vector bundles over Y .

Let us construct these subbundles now. (Compare with the discussion following (6.4.6).) We
have our favorite picture at each y ∈ Y , as displayed in Figure 3. Let Ua ⊂ Y be the set of points
where a is not in the spectrum of D∗yDy. Let H±a ⊂ H± be the sum of eigenspaces for eigenvalues
less than a.

• •
λ• Dy−−−−→ •λ

• •
ker Dy• •ker D∗

y

H+
y H−y

Figure 3

Lemma 7.2.6. H±a has locally constant rank on Ua.

Proof. Fix a compact subset of Ua and choose ε > 0 such that the spectrum of D∗yDy does not
contain any point of (a− ε, a+ ε) for y in the compact set. Now fix a smooth function F : [0,∞)→
[0, 1] which vanishes on [a + ε,∞) and is identically 1 on [0, a − ε]. Then the operator Py =
F (D∗yDy) is smoothing (cf. Exercise 4.2.16) and varies smoothly in y. It is clear that Py is projection
onto H+

a (y). Thus rankH+
a (y) = TrPy is integral valued and smoothly varying. Hence it is locally

constant.

So H±a → Ua are vector bundles. Consider the K-bundle H+
a − H−a → Ua. We patch these local

K-bundles into an element of K(Y ), as in §6.4. Fix b > a and let H±a,b be the sum of eigenspaces
for eigenvalues between a and b. These are vector bundles over Ua ∩ Ub. The patching map

gab : H+
a ⊕H−b −→ H+

b ⊕H−a
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over Ua∩Ub are canonically defined using H±b ∼= H±a ⊕H±a,b and the isomorphism D : H+
a,b

∼−→ H−a,b.

Definition 7.2.7. The index bundle indD of the family of Dirac operators is {H+
a −H−a , gab} ∈

K(Y ).

This is the ‘analytic index’ of Atiyah and Singer [AS4].
We proceed to construct a family of superconnections on H = H+ ⊕ H−. Recall that H is

only a continuous bundle, so differentiation of arbitrary sections is not well-defined. Therefore, the
connection ∇(H) that we construct below, and the family of superconnections ∇∇∇t, only operates on
sections of the dense subbundle of smooth spinor fields. The super Chern character e−∇∇∇

2
t , however,

is a bounded (trace class) operator on all of L2.
Let us first construct a connection ∇(H) on H → Y . Suppose ψ is a smooth section of H. We

represent ψ as a section of the bundle S⊗V → Z, which we are assuming to be smooth over Z. (An
arbitrary section of H is only L2 in the fiber directions.) Fix ξ ∈ TyY and let ξ̃ be its horizontal
lift to a vector field along the fiber Zy. Then ∇(Z/Y )

ξ̃
ψ is a new section of E → Zy, and so defines

an element in the fiber of H over y. (The connection ∇(Z/Y ) on T (Z/Y ) acts on the associated
spin bundle S via the infinitesimal spin representation γ̇, which we omit from the notation for
convenience.) We call this the pointwise covariant derivative (on sections of H). However, it does
not preserve the L2 inner product on H, since it does not take into account the variation in the
volume form across fibers. To correct we use the divergence form δ (7.1.15). Set

(7.2.8) ∇(H)
ξ = ∇(Z/Y )

ξ̃
+

1
2
δ(ξ̃),

where the right hand side acts pointwise. We claim that ∇(H) is unitary for the L2 metric 〈·, ·〉.
For if ϕ,ψ are smooth sections of H, and ξ ∈ TyY , then

ξ · 〈ϕ,ψ〉 = ξ ·
∫

Z/Y

(ϕ,ψ)vol

=
∫

Z/Y

{
ξ̃ · (ϕ,ψ)vol+(ϕ,ψ)ιξ̃dvol

}

=
∫

Z/Y

{
(∇(Z/Y )

ξ̃
ϕ,ψ) + (ϕ,∇(Z/Y )

ξ̃
ψ) + (ϕ,ψ)δ(ξ̃)

}
vol

= 〈∇(H)
ξ ϕ,ψ〉 + 〈ϕ,∇(H)

ξ ψ〉.

(7.2.9)

Here
∫

Z/Y
is integration over the fiber, which commutes with d. Notice that ∇(H) preserves the

splitting H ∼= H+ ⊕H−, since ∇(Z/Y ) and δ do.
It is convenient to observe that

(7.2.10) ∇̂(E) = ∇(Z/Y ) +
1
2
δ
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defines a new connection on T (Z/Y ) (which does not preserve the metric). If Ω(Z/Y ) denotes the
curvature of ∇(Z/Y ), then the curvature of ∇̂(E) is (cf. Exercise 6.1.9)

(7.2.11) Ω̂(E) = Ω(Z/Y ) +
1
2
∇(Z/Y )δ.

Next we compute the curvature of H. Recall that T (ξ1, ξ2) is a vertical vector field, essentially
the curvature of the horizontal distribution kerP (7.1.13).

Proposition 7.2.12. The curvature of ∇(H) is the first order differential operator (along the fibers)

(7.2.13) Ω(H)(ξ1, ξ2) = ∇̂(E)
T (ξ1,ξ2)

+ Ω̂(E)(ξ̃1, ξ̃2),

where both terms act by Clifford multiplication on spinors.

We will not need the actual formula (7.2.13), but only the fact that Ω(H) is a first order differential
operator. As a curvature it is a 2-form which acts as an endomorphism of the fiber. Here the fiber
is the Hilbert space of spinor fields, and the content of the proposition is that the endomorphism
is a first order differential operator.

Proof. We write ∇(H)
ξ = ∇̂(E)

ξ̃
acting pointwise, whence

Ω(H)(ξ1, ξ2) = [∇(H)
ξ1

,∇(H)
ξ2

]−∇(H)
[ξ1,ξ2]

= [∇̂(E)

ξ̃1
, ∇̂(E)

ξ̃2
]− ∇̂(E)

[ξ̃1,ξ̃2]
+ ∇̂(E)

T (ξ1,ξ2)

= Ω̂(E)(ξ̃1, ξ̃2) + ∇̂(E)
T (ξ1,ξ2)

.

We are now in a position to define a family of superconnections on H = H+ ⊕H−. A natural
is ∇(H) +

√
tD, a direct imitation of (6.2.17). One of Bismut’s key insights is the addition of an

extra term. We explain this term later (MAKE SURE!), noting now that it diverges as t→ 0.

Definition 7.2.14. The Bismut superconnection with parameter t > 0 is the operator

(7.2.15) ∇∇∇t = ∇(H) +
√
tD − c(T )

4
√
t
.

Here T is the curvature tensor (7.1.13), a 2-form whose values are vertical vector fields. Using
the metric we can convert the vector field to a 1-form, and then it acts on spinors via Clifford
multiplication c. Hence this additional term is an off-diagonal matrix of 2-forms (relative to the
decomposition H = H+⊕H−), and so is an odd element of Ω∗(EndH). The term

√
tD is a 0-form

which is off-diagonal. Hence ∇∇∇t does define a superconnection (cf. (6.2.14)). In the trivial case
where Y is a point, the superconnection reduces to the scaled Dirac operator

√
tD.
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Proposition 7.2.16. The curvature ∇∇∇2
t at y ∈ Y is a second order differential operator on Zy

with coefficients in the exterior algebra
∧
T ∗y Y . Therefore, e−∇∇∇

2
t is a bounded trace class operator

on H, and the super Chern form

(7.2.17) γt = trs e−∇∇∇
2
t

is a well-defined element of Ω∗, i.e., a smooth differential form on Y .

Proof. We can compute ∇∇∇2
t directly (cf. (6.2.16)):

(7.2.18) ∇∇∇2
t = tD2 + Ω(H) +

c(T )2

16t
+
√
t[∇(H),D]− 1

4
√
t
[∇(H), c(T )]− 1

4
(Dc(T ) + c(T )D).

The first term tD2 is the Dirac Laplacian. It is a second order differential operator with scalar
symbol. By Proposition 7.2.12 the curvature Ω(H) is a first order operator, and the remaining terms
are evidently differential operators of order at most one. So in a local coordinate system xk along
the fiber Zy, the operator ∇∇∇2

t takes the form

(7.2.19) −gk`(x)
∂2

∂xk∂x`
+ bk(x)

∂

∂xk
+ c(x),

where gk`(x) is the inverse metric, and bk, c are endomorphisms of S⊗V with coefficients in
∧
T ∗y Y .

(The term c(T )2/16t is a 4-form which acts as a multiplication operator,
√
t[∇(H),D] is a 1-

form which acts as a first order differential operator, etc.) Notice that bk, c consist of forms
of positive degree. We view ∇∇∇2

t as a second order elliptic operator on Zy, acting on sections
of S ⊗ V ⊗ ∧

T ∗y Y . Here
∧
T ∗y Y is to be interpreted as a trivial vector bundle on Zy, and the

differential form coefficients bk, c act by left exterior multiplication.33 Since the operator has scalar
symbol, the elliptic theory of Chapter 3 and Chapter 4 applies to give the desired conclusion. Notice
that the supertrace in (7.2.17) is taken over the S ⊗ V variables, but not over the exterior algebra
variables. Also, we have implicitly used the smooth dependence of the heat kernel on parameters
(Exercise 4.3.14), as the data varies smoothly in y. The differential form γt is smooth on Y (and
smooth in t).

Exercise 7.2.20. As an alternative approach to analyzing (7.2.18), and so making sense of the
super Chern character forms (7.2.17), apply Duhamel’s formula (6.3.20) as in Exercise 6.3.22.

Bismut’s theorem can now be stated.

33If Y is infinite dimensional, restrict to a finite dimensional submanifold. In any case, if we study the component
of γt of degree 2k, we can restrict to 2k dimensional subspaces of

∧
T ∗y Y .
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Theorem 7.2.21 (Bismut [Bi3]). The super Chern character form γt is a de Rham representative
of the super Chern character chs(indD) of the index bundle for any t > 0. As t → 0 there is a
limit given by the local formula

(7.2.22) lim
t→0

γ̃t =
∫

Z/Y

Â(Ω(Z/Y )) ch(Ω(V )),

where the homogeneous components of γ̃t are related to the homogeneous components of γt by scaling:

(7.2.23) [γ̃t](2k) =
(−i

2π

)k

[γt](2k) .

Notice that if Y is a point, then (7.2.22) reduces to the local index theorem Theorem 5.2. Turning
this around, the local index theorem proves (7.2.22) for the component of degree zero. Also, taking
cohomology classes in (7.2.22) yields the topological formula for chs(indD) given in [AS4]. The
main import of Theorem 7.2.21 is an analytic representation of this topological result. We remark
that the diverging term in (7.2.15) is there to ensure the existence of the limit in (7.2.22). It is
rather strange that a diverging term is needed to accomplish this!
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Appendix: Exponential Coordinates

Let X be a Riemannian manifold and fix y ∈ X. For r sufficiently small the exponential map
(at y)

(A.1) exp: Br −→ U

is a diffeomorphism from the ball of radius r in TyX onto a neighborhood of y in X. By definition
the line segment {ta : 0 ≤ t ≤ 1, a ∈ Br} is mapped onto the geodesic emanating from y in the
direction a. Since the tangent to this geodesic at y is a, the differential of exp at 0 is the identity
map:

(A.2) d exp0 = id .

We fix an orthonormal basis of TyX relative to which we write a = 〈a1, . . . , an〉 ∈ Br. The vector
fields ∂/∂ak are not in general orthonormal relative to the induced metric on Br. Set

(A.3) gk`(a) =
(

∂

∂ak
,
∂

∂a`

)
(a).

It follows from (A.2) that

(A.4) gk`(0) = δk`,

so that

(A.5) gk`(a) = δk` +O(|a|).

Finally, define gk` as the inverse matrix

(A.6)
(
gk`

)
= (gk`)

−1
.

Now suppose V → X is a (real or complex) vector bundle with connection. We introduce “expo-
nential coordinates,” or more properly a synchronous framing, of V as follows. Fix an orthonormal
(or unitary) frame s1, . . . , sr of the fiber Vy. Then use parallel transport along radial geodesics in U
to produce frames in Vx, x ∈ U . Thus a section of V over U , relative to this framing, is specified by
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a function f : Br → Rm (or Cm)—the section is f · s =
∑
α
fαsα. Define the connection forms Ak

on Br, with values in m×m matrices, by

(A.7) ∇
∂/∂ak (f · s) =

(
∂f

∂ak
+Akf

)
· s,

or more simply

(A.8) ∇k = ∇
∂/∂ak =

∂

∂ak
+Ak.

Now since the si are parallel on radial geodesics, for fk constant we have

(A.9) fk∇ks(tf1, . . . , tfk) = 0

for all t ≥ 0. In particular, this is true at the origin (t = 0), and for all fk, from which

(A.10) Ak(0) = 0.

Next, for k 6= ` take fk = f ` = 1 and all other f i = 0. Differentiating at t = 0 we find

(
∂

∂ak
+

∂

∂a`

)
(Ak +A`)(0) = 0,

But also
∂Ak

∂ak
(0) =

∂A`

∂a`
(0) = 0, by the same argument with only one nonzero f i, whence

(A.11)
∂Ak

∂a`
(0) +

∂A`

∂ak
(0) = 0.

Now the curvature Ω(V ) is a 2-form which is given in coordinates as

Ω(V ) =
1
2
Ω(V )

k` dak ∧ da`,

Ω(V )
k` = [∇k,∇`]

=
∂A`

∂ak
− ∂Ak

∂a`
+ [Ak, A`].

(A.12)

Combining (A.10)–(A.12) we conclude

(A.13) Ω(V )
k` (0) = −2

∂Ak

∂a`
(0).
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Finally, from (A.9) and (A.13) we see that the Taylor series for Ak at a = 0 is

(A.14) Ak(a) = −1
2
Ω(V )

k` (0)a` +O(|a|2).

These formulæ apply to the tangent bundle TX. Notice that the synchronous framing is different
from the coordinate framing ∂/∂ak (unless X is flat). Now we denote the connection forms in the
synchronous framing by Γk and (A.14) is

(A.15) Γk(a) = −1
2
Ω(X)

k` (0)a` +O(|a|2).

We will have use for the classical Levi-Civita symbols
[
m
k`

]
for the connection relative to the coor-

dinate framing:

(A.16) ∇
∂/∂ak

∂

∂a`
=

[
m

k`

]
∂

∂am
.

Suppose V is a metrized bundle with a metric connection ∇. Then the covariant Laplacian
(cf. (2.2.33)) in these coordinates is

(A.17) ∇∗∇ = −gk`(∇k∇` −
[
m

k`

]
∇m).

For since ∇∗ = −ι(dxk)∇k (cf. (2.2.34)) and ∇kdx
m =

[
m
k`

]
dx` (by duality from (A.16)), we

compute

∇∗∇s = −ι(dxk)∇k(dxm ⊗∇ms)

= −ι(dxk)
{
−

[
m

k`

]
dx` ⊗∇ms+ dxm ⊗∇k∇ms

}
,

which is (A.17).
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