
Lemma 3.98.1. Let R be a Noetherian ring and M an R-module. Then Supp (M) =
⋃
V (p)

where p runs through Ass (M).

Proof. Indeed, one sees easily that Mp 6= 0 if and only if AssRp
(Mp) 6= ∅. But this holds if and

only if there is a q ∈ Ass (M) such that

q ∩ (R− p) = ∅,

that is, if and only if p ⊃ q for some q ∈ Ass (M).

3.99 An Interlude with Hilbert’s Nullstellensatz

We have already proved various weak forms of Hilbert’s Nullstellensatz, but here we state another
weak version and use the “celebrated trick of Rabinowitsch” to get the strong form.

Theorem 3.99.1 (Another Weak Nullstellensatz). If k is an algebraically closed field and I is a
proper ideal of k[X1, . . . , Xn] then V (I) 6= ∅.

Proof. It suffices to prove this in the case of a maximal ideal, since if I ⊂ J then V (J) ⊂ V (I).
Thus we may assume that L = k[X1, . . . , Xn]/I is a field, and, of course, L ⊃ k. If one knew that
L = k then the result would be established since for each Xi the I-residue ai of Xi would belong
to k, and then the point (a1, . . . , an) ∈ V (I), so V (I) 6= ∅. Thus it suffices to establish

If an algebraically closed field k is a subfield of a field L, and there is a k-algebra
homomorphism of k[X1, . . . , Xn] onto L (that is a ring homomorphism that is the
identity on k), then k = L.

We postpone the proof of this last fact, and now show how this Weak Nullstellensatz gives the
classical

Theorem 3.99.2 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let I be
an ideal of k[X1, . . . , Xn]. Then I(V (I)) =

√
I, the nilradical of I.

Proof. The inclusion
√
I ⊂ I (V (I)) is easy (fn ∈ I and x ∈ V (I) imply fn(x) = 0 whence

f(x) = 0 and so f ∈ I (V (I)). To see the reverse inclusion, let I = (F1, . . . , Fr) and suppose that
G = I(V (I)). Let J = (F1, . . . , Fr, Xn+1G − 1) ⊂ k[X1, . . . , Xn, Xn+1]. Then V (J) ⊂ An+1 = ∅
by construction, since G vanishes where all the Fi are zero. We apply the Weak Nullstellensatz to
J to conclude that 1 ∈ J . Thus we have an equation of the form

1 =
∑
i

Ai(X1, . . . , Xn, Xn+1)Fi(X1, . . . , Xn) +B(X1, . . . , Xn, Xn+1)(Xn+1G(X1, . . . , Xn)− 1).

Let Y = 1/Xn+1, and multiply the equation by a sufficiently high power of Y to obtain

Y N =
∑
i

Ci(X1, . . . , Xn, Y )Fi +D(X1, . . . , Xn, Y )(G− Y )

in k[X1, . . . , Xn, Y ]. Now put Y = G(X1, . . . , Xn) to obtain the desired result.

To complete the proof of the Weak Nullstellensatz (and thus justify its use in the proof of
Hilbert’s Nullstellensatz) we must prove the result whose proof was postponed.

First some remarks on field extensions. Suppose K is a subfield of a field L and suppose
L = K(v) for some v ∈ L. Let φ : K[X] −→ L be the K-homomorphism taking X to v, and let
kerφ = (F ) with F ∈ K[X]. Since K[X]/(F ) ∼= K[v] which is an integral domain, the ideal (F ) is
prime. There are two possible cases
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1. F = 0. In this case K[v] is isomorphic to K[X] and so L = k(v) is isomorphic to K(X),
and one sees easily that L is not finitely generated as a ring over K. Indeed L = K[X]
contains infinitely many monic irreducible polynomials, and any purported finite set of ring
generators for L over K could involve only finitely many such irreducibles as denominators,
while L = K(X) clearly contains the reciprocals of all its irreducible monics.

2. F 6= 0. In this case we may assume F to be monic, and as above it must clearly be irreducible
since the quotient ring is a domain. But in K[X] prime ideals are maximal, so K[v] = K(v).
Moreover F (v) = 0, so v is algebraic over K, and L = K[v] is finitely generated as a K-
module.

Exercise 1. Show that if k is algebraically closed and L is a field containing k, then any element
of L algebraic over k must belong to k. Show also that an algebraically closed field k has no field
extensions L which are finitely generated over k as vector spaces, except k itself. (These are almost
tautologies.)

Exercise 2. Show that if k is a field, the k[X] is integrally closed in its field of quotients, that is,
show that if f ∈ k(X) satisfies a monic equation with coefficients in k, then f ∈ k[X].

Solution: If f = n/d with (n, d) = 1 then from(n
d

)e
+ an−1

(n
d

)e−1
· · · a1

n

d
+ a0 = 0

with ai ∈ k[x] one finds, on clearing denominators that

ne = d(element of k[x])

which contradicts (n, d) = 1, unless d ∈ k, that is, unless the quotient really belongs to k[x].

In view of the preceding exercise to prove the postponed part of the Weak Nullstellensatz it
suffices to prove

Proposition 1 (Zariski). If a field L is finitely generated as a ring over a subfield K, then L is
finitely generated as a module over K, and hence it algebraic over K.

Proof. Suppose L = K[v1, . . . , vn]. We proceeda by induction on n, the discussion preceding
Exercise 1 settling the case n = 1. So assume the result for all extensions generated by n − 1
elements, and put K1 = K(v1). By the induction hypothesis L = K1[v2, . . . , vn] is a finitely
generated module over K1. If v1 is algebraic over K, the result is easy (take generators vjui where
0 ≤ j < degree of v over K and the ui are generators of L as a K1-module). So we may assume v1
not algebraic over K. Then for i = 2, . . . , n each vi satisfies an equation

vni
i ∗ ai1v

ni−1
i + · · ·+ ai,ni

= 0 with all aij ∈ K1.

If we choose a ∈ K[v1] to be a multiple of all the denominators of the aij we get equations

(avi)
ni + · · ·+ aniai,ni

= 0.

Since the set of elements of L that satisfy monic equations (i.e. the integral elements of L over
K1) is a subring of L containing K1, we find that in fact there is an integer N such that for all
z ∈ L one has aNz is integral over K[v1]. In particular this holds for z ∈ K(v1). But, as one easily
checks using the techniques of Exercises 1 and 2, this is impossible. Indeed, it suffices to choose an
element z of K[v1] which is prime to a, and consider 1/z. No power of a can push 1/z into k[v],
and only such elements are integral over k[v].

We mention in passing (i.e. , without proof, a modern version of the Nullstellensatz which
holds over an arbitrary field.
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Theorem 3.99.3. If a ring R is finitely generated over a field, then the Jacobson radical of R
coincides with the nilradical of R.

One recovers a more classical interpretation by taking R to be the ring k[X1, . . . , Xn]/J and
noting that f ∈ R belongs to the Jacobson radical iff and only f one has f(m) = 0 for all maximal
ideals m of R (where, of course, f(m) means the reduction of f modulo m, which may be naturally
identified with f(x) when m corresponds to the point x). So f lies in the Jacobson radical if and
only if f ∈ I(V (J)), this latter set being identified with the closed points of Spec(R). On the
other hand, f belongs to the nilradical of R iff and only if its preimages in k[X1, . . . , Xn] belong
to the nilradical of J .

Exercise 3. Re-examine your counterexamples to the classical versions of the Nullstellensatz
(weak and Hilbert versions) in the light of the “modern version”.

3.100 Artinian Rings

Let R be a ring. An R-module M is said to be Artinian if every nonempty set of R-submodules
of M has a minimal element, (or equivalently, if every descending chain of submodules stops). A
ring R is Artinian if it is Artinian as an R-module, that is, if every descending chain of ideals
stops. This definition can also be given when R is not commutative, in which case one is lead to
the study of such objects as matrix rings over a field, division rings, and Brauer groups. Many
familiar and important rings are NOT Artinian, Z and k[X1, . . . , Xn] being important examples,
whose localizations provide many other examples. However Artinian rings also play an important
role in classical algebraic geometry where they appear, for example, as the rings associated with
0-dimensional intersections of algebraic varieties, in particular with the intersection of two plane
algebraic curves without common components. Indeed, Artinian rings turn out to be precisely the
0-dimensional Noetherian rings.

Proposition 2. Let R be a ring. An R-module M has finite length if and only if it is both artinian
and noetherian.

Proof. If M has finite length, then by the Jordan-Hölder Theorem, every chain of submodules has
finite length. Hence M is both Artinian and Noetherian. Conversely, one may construct a filtration
{Mi} of M as follows: let M0 = M and construct the filtration recursively by taking Mi+1 to be
a maximal proper submodule of Mi for each i. This descending chain must stop (by the Artinian
hypothesis), and by construction it is a composition series for M , so M has finite length.

Lemma 3.100.1. Let R be a ring in which (0) is the product of a finite number of maximal
ideals m1, . . . ,mn. Then any prime ideal p of R is one of the mi, and R is both Noetherian and
Artinian. Moreover, if the R/mi are all finitely generated algebras over a field k, then A has finite
k-dimension.

Proof. Since any prime p contains (0) = m1 · · ·mn, it follows that p = mi for some index i. Let
Ij = m1 · · ·mj . The Ij provide R with a finite filtration I0 ⊃ I1 ⊃ · · · ⊃ In = (0) with quotients
Ij−1/Ij which are finite dimensional vector spaces over R/mj , indeed, with quotients which are
isomorphic to the R/mj . Hence by Proposition 2 we see that R is both Artinian and Noetherian.
Moreover, if each A/mi is of finitely generated as an algebra over k,then by Proposition 1 of the
preceding section A/mi has finite k-dimension, and from this the last assertion follows.

Theorem 3.100.2. A ring R is Artinian if and only if the following two conditions hold:

1. R is Noetherian.

2. R has dimension zero, that is, EVERY prime ideal of R is maximal.
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Moreover, if R is Artinian, then R has only a finite number of primes, and the Jacobson radical
J(R) is nilpotent. If, moreover, R is finitely generated as a ring over a field k, then R has finite
dimension over k.

Proof. Suppose that R is Noetherian. Then every ideal of R contains a finite product of prime
ideals. This may be seen via “Noetherian induction”: indeed, if the thesis is false, let I be an ideal
maximal with respect to NOT containing a finite product of primes. The I is surely not prime and
also not equal to all of R. Since I is not prime there exist a, b ∈ R\I with ab ∈ I. By maximality
of I both I + Ra and I + Rb contain a finite product of prime ideals, and the product of those
products is again a finite product of prime ideals contained in the product (I + aR)(I + bR) ⊂ I.
This contradicts the choice of I. If, furthermore, every prime ideal of R is maximal then (0) may
be written as a product of maximal ideals, and so by Lemma 3.100.1 R is Artinian.

Conversely, suppose that R is Artinian, and let m be the smallest product of maximal ideals
of R. Let S be the set of ideals I contained in m such that Im 6= (0). If I is minimal in S, then

m2I = mI 6= (0).

Hence by minimality we must have mI = I. Since m ⊂ J(R), the Jacobson radical of R, if I = xR,
then I = 0 by Nakayama’s Lemma. Hence, if x ∈ I, then xm = (0) so Im = 0, which contradicts
the minimality of I with respect to the property Im 6= (0). Hence the set S must be empty, and so
m = m2 = 0. Thus by Lemma 3.100.1 R is Noetherian, and every prime ideal of R is maximal.

Exercise 4. Give a counterexample (very easy) to show that the situation described by the phrase
beginning “If, moreover, R is finitely generated ...” does not always hold.

Corollary 3.100.3. Let R be an Artinian ring and M a finite R-module. Then M has finite
length, and Ass (M) = Supp (M).

Proof. This follows from the previous result and Lemma 3.98.1.

Proposition 3. Let R be an Artinian ring and m1, . . . ,mr the maximal ideals of R. Then

1. The natural map u : A −→
∏
Ami

is an isomorphism.

2. For sufficiently large n, the natural maps

vi : Rmi −→ A/mn
i

are isomorphisms.

Proof. Since X = Spec(R) is discrete, the map u appearing in 1) is just the natural isomorphism
of R with the ring of global sections on Spec(R). As to the second statement, any s /∈ mi becomes
a unit in the local ring R/mn

i . Hence, by the universal property of localization the maps vi exist.
For fixed i consider ui : R −→ Rmi

. For each positive integer n one can certainly find

s ∈
(
∩j 6=im

n
j

)
\mi

Then by the preceding Theorem, for n sufficiently large one has sa = 0 for all a ∈ mn
i , so ui induces

u′i : R/mn
i −→ Rmi

, which is an inverse for vi.
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