
Chapter 4

Completion

The set R of real numbers is a complete metric space in which the set Q of rationals
is dense. In fact any metric space can be embedded as a dense subset of a complete
metric space. The construction is a familiar one involving equivalence classes of Cauchy
sequences. We will see that under appropriate conditions, this procedure can be general-
ized to modules.

4.1 Graded Rings and Modules

4.1.1 Definitions and Comments

A graded ring is a ring R that is expressible as ⊕n≥0Rn where the Rn are additive
subgroups such that RmRn ⊆ Rm+n. Sometimes, Rn is referred to as the nth graded
piece and elements of Rn are said to be homogeneous of degree n. The prototype is a
polynomial ring in several variables, with Rd consisting of all homogeneous polynomials
of degree d (along with the zero polynomial). A graded module over a graded ring R is a
module M expressible as ⊕n≥0Mn, where RmMn ⊆Mm+n.

Note that the identity element of a graded ring R must belong to R0. For if 1 has a
component a of maximum degree n > 0, then 1a = a forces the degree of a to exceed n,
a contradiction.

Now suppose that {Rn} is a filtration of the ring R, in other words, the Rn are additive
subgroups such that

R = R0 ⊇ R1 ⊇ · · · ⊇ Rn ⊇ · · ·
with RmRn ⊆ Rm+n. We call R a filtered ring. A filtered module

M = M0 ⊇M1 ⊇ · · · ⊇ · · ·
over the filtered ring R may be defined similarly. In this case, each Mn is a submodule
and we require that RmMn ⊆Mm+n.

If I is an ideal of the ring R and M is an R-module, we will be interested in the I-adic
filtrations of R and of M , given respectively by Rn = In and Mn = InM . (Take I0 = R,
so that M0 = M .)
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4.1.2 Associated Graded Rings and Modules

If {Rn} is a filtration of R, the associated graded ring of R is defined as

gr(R) =
⊕

n≥0

grn(R)

where grn(R) = Rn/Rn+1. We must be careful in defining multiplication in gr(R). If
a ∈ Rm and b ∈ Rn, then a + Rm+1 ∈ Rm/Rm+1 and b + Rn+1 ∈ Rn/Rn+1. We take

(a + Rm+1)(b + Rn+1) = ab + Rm+n+1

so that the product of an element of grm(R) and an element of grn(R) will belong to
grm+n(R). If a ∈ Rm+1 and b ∈ Rn, then ab ∈ Rm+n+1, so multiplication is well-defined.

If M is a filtered module over a filtered ring R, we define the associated graded module
of M as

gr(M) =
⊕

n≥0

grn(M)

where grn(M) = Mn/Mn+1. If a ∈ Rm and x ∈Mn, we define scalar multiplication by

(a + Rm+1)(x + Mn+1) = ax + Mm+n+1

and it follows that

(Rm/Rm+1)(Mn/Mn+1) ⊆Mm+n/Mm+n+1.

Thus gr(M) is a graded module over the graded ring gr(R).

It is natural to ask for conditions under which a graded ring will be Noetherian, and
the behavior of the subring R0 is critical.

4.1.3 Proposition

Let R = ⊕d≥0Rd be a graded ring. Then R is Noetherian if and only if R0 is Noetherian
and R is a finitely generated R0-algebra.

Proof. If the condition on R0 holds, then R is a quotient of a polynomial ring R0[X1, . . . , Xn],
hence R is Noetherian by the Hilbert Basis Theorem. Conversely, if R is Noetherian, then
so is R0, because R0

∼= R/I where I is the ideal ⊕d≥1Rd. By hypothesis, I is finitely
generated, say by homogeneous elements a1, . . . , ar of degree n1, . . . , nr respectively. Let
R′ = R0[a1, . . . , ar] be the R0-subalgebra of R generated by the ai. It suffices to show
that Rn ⊆ R′ for all n ≥ 0 (and therefore R = R′). We have R0 ⊆ R′ by definition of
R′, so assume as an induction hypothesis that Rd ⊆ R′ for d ≤ n − 1, where n > 0. If
a ∈ Rn, then a can be expressed as c1a1 + · · · + crar, where ci (i = 1, . . . , r) must be a
homogeneous element of degree n − ni < n = deg a. By induction hypothesis, ci ∈ R′,
and since ai ∈ R′ we have a ∈ R′. ♣

We now prepare for the basic Artin-Rees lemma.
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4.1.4 Definitions and Comments

Let M be a filtered R-module with filtration {Mn}, I an ideal of R. We say that {Mn}
is an I-filtration if IMn ⊆ Mn+1 for all n. An I-filtration with IMn = Mn+1 for all
sufficiently large n is said to be I-stable. Note that the I-adic filtration is I-stable.

4.1.5 Proposition

Let M be a finitely generated module over a Noetherian ring R, and suppose that {Mn}
is an I-filtration of M . The following conditions are equivalent.

1. {Mn} is I-stable.

2. Define a graded ring R∗ and a graded R∗-module M∗ by

R∗ =
⊕

n≥0

In, M∗ =
⊕

n≥0

Mn.

Then M∗ is finitely generated.

Proof. Let Nn = ⊕n
i=0Mi, and define

M∗n = M0 ⊕ · · · ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ · · ·

Since Nn is finitely generated over R, it follows that M∗n is a finitely generated R∗-module.
By definition, M∗ is the union of the M∗n over all n ≥ 0. Therefore M∗ is finitely generated
over R∗ if and only if M∗ = M∗m for some m, in other words, Mm+k = IkMm for all k ≥ 1.
Equivalently, the filtration {Mn} is I-stable. ♣

4.1.6 Induced Filtrations

If {Mn} is a filtration of the R-module M , and N is a submodule of M , then we have
filtrations induced on N and M/N , given by Nn = N ∩Mn and (M/N)n = (Mn + N)/N
respectively.

4.1.7 Artin-Rees Lemma

Let M be a finitely generated module over the Noetherian ring R, and assume that M
has an I-stable filtration {Mn}, where I is an ideal of R. Let N be a submodule of M .
Then the filtration {Nn = N ∩Mn} induced by M on N is also I-stable.

Proof. As in (4.1.5), let R∗ = ⊕n≥0I
n, M∗ = ⊕n≥0Mn, and N∗ = ⊕n≥0Nn. Since R

is Noetherian, I is finitely generated, so R∗ is a finitely generated R-algebra. (Elements
of R∗ can be expressed as polynomials in a finite set of generators of I.) By (4.1.3), R∗ is
a Noetherian ring. Now by hypothesis, M is finitely generated over the Noetherian ring
R and {Mn} is I-stable, so by (4.1.5), M∗ is finitely generated over R∗. Therefore the
submodule N∗ is also finitely generated over R∗. Again using (4.1.5), we conclude that
{Nn} is I-stable. ♣



4 CHAPTER 4. COMPLETION

4.1.8 Applications

Let M be a finitely generated module over the Noetherian ring R, with N a submodule of
M . The filtration on N induced by the I-adic filtration on M is given by Nm = (ImM)∩N .
By Artin-Rees, for large enough m we have

Ik((ImM) ∩N) = (Im+kM) ∩N

for all k ≥ 0.

There is a basic topological interpretation of this result. We can make M into a
topological abelian group in which the module operations are continuous. The sets ImM
are a base for the neighborhoods of 0, and the translations x + ImM form a basis for the
neighborhoods of an arbitrary point x ∈ M . The resulting topology is called the I-adic
topology on M . The above equation says that the I-adic topology on N coincides with
the topology induced on N by the I-adic topology on M .

4.2 Completion of a Module

4.2.1 Inverse Limits

Suppose we have countably many R-modules M0, M1, . . . , with R-module homomor-
phisms θn : Mn → Mn−1, n ≥ 1. (We are restricting to the countable case to simplify
the notation, but the ideas carry over to an arbitrary family of modules, indexed by a
directed set. If i ≤ j, we have a homomorphism fij from Mj to Mi. We assume that the
maps can be composed consistently, in other words, if i ≤ j ≤ k, then fij ◦ fjk = fik.)The
collection of modules and maps is called an inverse system.

A sequence (xi) in the direct product
∏

Mi is said to be coherent if it respects the
maps θn in the sense that for every i we have θi+1(xi+1) = xi. The collection M of all
coherent sequences is called the inverse limit of the inverse system. The inverse limit is
denoted by

lim
←−

Mn.

Note that M becomes an R-module with componentwise addition and scalar multiplica-
tion of coherent sequences, in other words, (xi) + (yi) = (xi + yi) and r(xi) = (rxi).

Now suppose that we have homomorphisms gi from an R-module M ′ to Mi, i =
0, 1, . . . . Call the gi coherent if θi+1 ◦ gi+1 = gi for all i. Then the gi can be lifted to a
homomorphism g from M ′ to M . Explicitly, g(x) = (gi(x)), and the coherence of the gi

forces the sequence (gi(x)) to be coherent.
An inverse limit of an inverse system of rings can be constructed in a similar fashion,

as coherent sequences can be multiplied componentwise, that is, (xi)(yi) = (xiyi).

4.2.2 Examples

1. Take R = Z, and let I be the ideal (p) where p is a fixed prime. Take Mn = Z/In and
θn+1(a + In+1) = a + In. The inverse limit of the Mn is the ring Zp of p-adic integers.
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2. Let R = A[x1, . . . , xn] be a polynomial ring in n variables, and I the maximal ideal
(x1, . . . , xn). Let Mn = R/In and θn(f + In) = f + In−1, n = 1, 2, . . . . An element of
Mn is represented by a polynomial f of degree at most n−1. (We take the degree of f
to be the maximum degree of a monomial in f .) The image of f in In−1 is represented
by the same polynomial with the terms of degree n− 1 deleted. Thus the inverse limit
can be identified with the ring A[[x1, . . . , xn]] of formal power series.

Now let M be a filtered R-module with filtration {Mn}. The filtration determines a
topology on M as in (4.1.8), with the Mn forming a base for the neighborhoods of 0. We
have the following result.

4.2.3 Proposition

If N is a submodule of M , then the closure of N is given by N = ∩∞n=0(N + Mn).
Proof. Let x be an element of M . Then x fails to belong to N iff some neighborhood of x
is disjoint from N , in other words, (x+Mn)∩N = ∅ for some n. Equivalently, x /∈ N +Mn

for some n, and the result follows. To justify the last step, note that if x ∈ N + Mn,
then x = y + z, y ∈ N, z ∈ Mn. Thus y = x − z ∈ (x + Mn) ∩ N . Conversely, if
y ∈ (x + Mn) ∩N , then for some z ∈Mn we have y = x− z, so x = y + z ∈ N + Mn. ♣

4.2.4 Corollary

The topology is Hausdorff if and only if ∩∞n=0Mn = {0}.
Proof. By (4.2.3), ∩∞n=0Mn = {0}, so we are asserting that the Hausdorff property is
equivalent to points being closed, that is, the T1 condition. This holds because separating
distinct points x and y by disjoint open sets is equivalent to separating x− y from 0. ♣

4.2.5 Definition of the Completion

Let {Mn} be a filtration of the R-module M . Recalling the construction of the reals from
the rationals, or the process of completing an arbitrary metric space, let us try to come up
with something similar in this case. If we go far out in a Cauchy sequence, the difference
between terms becomes small. Thus we can define a Cauchy sequence {xn} in M by
the requirement that for every positive integer r there is a positive integer N such that
xn − xm ∈ Mr for n, m ≥ N . We identify the Cauchy sequences {xn} and {yn} if they
get close to each other for large n. More precisely, given a positive integer r there exists
a positive integer N such that xn − yn ∈ Mr for all n ≥ N . Notice that the condition
xn − xm ∈ Mr is equivalent to xn + Mr = xm + Mr. This suggests that the essential
feature of the Cauchy condition is that the sequence is coherent with respect to the maps
θn : M/Mn → M/Mn−1. Motivated by this observation, we define the completion of M
as

M̂ = lim
←−

(M/Mn).

The functor that assigns the inverse limit to an inverse system of modules is left exact,
and becomes exact under certain conditions.
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4.2.6 Theorem

Let {M ′n, θ′n}, {Mn, θn}, and {M ′′n , θ′′n} be inverse systems of modules, and assume that
the diagram below is commutative with exact rows.

0 �� M ′n+1

θ′n+1

��

fn+1 �� Mn+1

θn+1

��

gn+1 �� M ′′n+1

θ′′n+1

��

�� 0

0 �� M ′n
fn �� Mn

gn �� M ′′n �� 0

Then the sequence

0→ lim
←−

M ′n → lim
←−

Mn → lim
←−

M ′′n

is exact. If θ′n is surjective for all n, then

0→ lim
←−

M ′n → lim
←−

Mn → lim
←−

M ′′n → 0

is exact.
Proof. Let M =

∏
Mn and define an R- homomorphism dM : M → M by dM (xn) =

(xn − θn+1(xn+1)). The kernel of dM is the inverse limit of the Mn. Now the maps (fn)
and (gn) induce f =

∏
fn : M ′ =

∏
M ′n → M and g =

∏
gn : M → M ′′ =

∏
M ′′n . We

have the following commutative diagram with exact rows.

0 �� M ′
f ��

dM′

��

M
g ��

dM

��

M ′′ ��

dM′′

��

0

0 �� M ′
f �� M

g �� M ′′ �� 0

We now apply the snake lemma, which is discussed in detail in TBGY (Section S2 of the
supplement). The result is an exact sequence

0→ ker dM ′ → ker dM → ker dM ′′ → coker dM ′ ,

proving the first assertion. If θ′n is surjective for all n, then dM ′ is surjective, and conse-
quently the cokernel of dM ′ is 0. The second assertion follows. ♣

4.2.7 Corollary

Suppose that the sequence

0 �� M ′
f �� M

g �� M ′′ �� 0

is exact. Let {Mn} be a filtration of M , so that {Mn} induces filtrations {M ′∩f−1(Mn)}
and {g(Mn)} on M ′ and M ′′ respectively. Then the sequence

0→ (M ′)̂→ M̂ → (M ′′)̂→ 0
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is exact.

Proof. Exactness of the given sequence implies that the diagram below is commutative
with exact rows.

0 �� M ′/(M ′ ∩ f−1(Mn+1)) ��

θ′n+1

��

M/Mn+1
��

θn+1

��

M ′′/g(Mn+1) ��

θ′′n+1

��

0

0 �� M ′/(M ′ ∩ f−1(Mn)) �� M/Mn
�� M ′′/g(Mn) �� 0

Since θ′n is surjective for all n, (4.2.6) allows us to pass to the inverse limit. ♣

4.2.8 Remark

A filtration {Mn} of an R-module M induces in a natural way a filtration {N ∩Mn}
on a given submodule N , and a filtration {(N + Mn)/N} on the quotient module M/N .
We have already noted this in (4.2.7) (with f the inclusion map and g the canonical
epimorphism), but the point is worth emphasizing.

4.2.9 Corollary

Let {Mn} be a filtration of the R-module M . Let M̂n be the completion of Mn with
respect to the induced filtration on Mn [see (4.2.8)]. Then M̂n is a submodule of M̂ and
M̂/M̂n

∼= M/Mn for all n.

Proof. We apply (4.2.7) with M ′ = Mn and M ′′ = M/Mn, to obtain the exact sequence

0→ M̂n → M̂ → (M/Mn)̂→ 0.

Thus we may identify M̂n with a submodule of M̂ , and

M̂/M̂n
∼= (M/Mn)̂ = (M ′′)̂.

Now the mth term of the induced filtration on M ′′ is

M ′′m = (Mn + Mm)/Mn = Mn/Mn = 0

for m ≥ n. Thus M ′′ has the discrete topology, so Cauchy sequences (and coherent
sequences) can be identified with single points. Therefore M ′′ is isomorphic to its com-
pletion, and we have M̂/M̂n

∼= M/Mn for every n. ♣

4.2.10 Remarks

Two filtrations {Mn} and {M ′n} of a given R-module are said to be equivalent if they
induce the same topology. For example, under the hypothesis of (4.1.8), the filtrations
{InN} and {N ∩ InM} of the submodule N are equivalent (Problem 5). Since equivalent
filtrations give rise to the same set of Cauchy sequences, it follows that completions of a
given module with respect to equivalent filtrations are isomorphic.
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4.3 The Krull Intersection Theorem

4.3.1 Definitions and Comments

Recall from (4.1.1) and (4.1.8) that the I-adic topology on the R-module M is the topology
induced on M by the I-adic filtration Mn = InM . The completion of M with respect to
the I-adic filtration is called the I-adic completion.

There is a natural map from a filtered module M to its completion M̂ given by
x→ {x + Mn}. The kernel of this map is ∩∞n=0Mn, which is ∩∞n=0I

nM if the filtration is
I-adic. The Krull intersection theorem (4.3.2) gives precise information about this kernel.

4.3.2 Theorem

Let M be a finitely generated module over the Noetherian ring R, I an ideal of R, and
M̂ the I-adic completion of M . Let N be the kernel of the natural map M → M̂ . Then
N is the set of elements x ∈ M such that x is annihilated by some element of 1 + I. In
fact, we can find a single element of 1 + I that works for the entire kernel.
Proof. Suppose that a ∈ I, x ∈M , and (1 + a)x = 0. Then

x = −ax = −a(−ax) = a2x = a2(−ax) = −a3x = a4x = · · · ,
hence x ∈ InM for all n ≥ 0. Conversely, we must show that for some a ∈ I, 1 + a
annihilates everything in the kernel N . By (4.1.8), for some n we have, for all k ≥ 0,

Ik((InM) ∩N) = (In+kM) ∩N.

Set k = 1 to get

I((InM) ∩N) = (In+1M) ∩N.

But N ⊆ In+1M ⊆ InM , so the above equation says that IN = N . By (0.3.1), there
exists a ∈ I such that (1 + a)N = 0. ♣

4.3.3 Corollary

If I is a proper ideal of the Noetherian integral domain R, then ∩∞n=0I
n = 0.

Proof. The intersection of the In is the kernel N of the natural map from R to R̂. By
(4.3.2), 1 + a annihilates N for some a ∈ I. If 0 �= x ∈ N then (1 + a)x = 0, and since R
is a domain, 1 + a = 0. But then −1, hence 1, belongs to I, contradicting the hypothesis
that I is proper. ♣

4.3.4 Corollary

Let M be a finitely generated module over the Noetherian ring R. If the ideal I of R is
contained in the Jacobson radical J(R), then ∩∞n=0I

nM = 0. Thus by (4.2.4), the I-adic
topology on M is Hausdorff.
Proof. Let a ∈ I ⊆ J(R) be such that (1 + a) annihilates the kernel N = ∩∞n=0I

nM
of the natural map from M to M̂ . By (0.2.1), 1 + a is a unit of R, so if x ∈ N (hence
(1 + a)x = 0), we have x = 0. ♣
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4.3.5 Corollary

Let R be a Noetherian local ring with maximal ideal M. If M is a finitely generated
R-module, then ∩∞n=0MnM = 0. Thus the M-adic topology on M , in particular the
M-adic topology on R, is Hausdorff.
Proof. SinceM = J(R), this follows from (4.3.4). ♣

4.4 Hensel’s Lemma

Let A be a local ring with maximal ideal P , and let k = A/P be the residue field.
Assume that A is complete with respect to the P -adic topology, in other words, every
Cauchy sequence converges. In algebraic number theory, where this result is most often
applied, A is a discrete valuation ring of a local field. But the statement and proof of the
algebraic number theory result can be copied, as follows.

If a ∈ A, then the coset a + P ∈ k will be denoted by a. If f is a polynomial in A[X],
then reduction of the coefficients of f mod P yields a polynomial f in k[X]. Thus

f(X) =
d∑

i=0

aiX
i ∈ A[X], f(X) =

d∑

i=0

aiX
i ∈ k[X].

Hensel’s lemma is about lifting a factorization of f from k[X] to A[X]. Here is the precise
statement.

4.4.1 Hensel’s Lemma

Assume that f is a monic polynomial of degree d in A[X], and that the corresponding
polynomial F = f factors as the product of relatively prime monic polynomials G and H
in k[X]. Then there are monic polynomials g and h in A[X] such that g = G, h = H and
f = gh.
Proof. Let r be the degree of G, so that deg H = d − r. We will inductively construct
gn, hn ∈ A[X], n = 1, 2, . . . , such that deg gn = r, deg hn = d− r, gn = G, hn = H, and

f(X)− gn(X)hn(X) ∈ Pn[X].

Thus the coefficients of f − gnhn belong to Pn.
The basis step: Let n = 1. Choose monic g1, h1 ∈ A[X] such that g1 = G and h1 = H.
Then deg g1 = r and deg h1 = d− r. Since f = g1h1, we have f − g1h1 ∈ P [X].
The inductive step: Assume that gn and hn have been constructed. Let f(X)−gn(X)hn(X) =∑d

i=0 ciX
i with the ci ∈ Pn. Since G = gn and H = hn are relatively prime, for each

i = 0, . . . , d there are polynomials vi and wi in k[X] such that

Xi = vi(X)gn(X) + wi(X)hn(X).

Since gn has degree r, the degree of vi is at most d− r, and similarly the degree of wi is
at most r. Moreover,

Xi − vi(X)gn(X)− wi(X)hn(X) ∈ P [X]. (1)
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We define

gn+1(X) = gn(X) +
d∑

i=0

ciwi(X), hn+1(X) = hn(X) +
d∑

i=0

civi(X).

Since the ci belong to Pn ⊆ P , it follows that gn+1 = gn = G and hn+1 = hn = H. Since
the degree of gn+1 is at most r, it must be exactly r, and similarly the degree of hn+1 is
d− r. To check the remaining condition,

f − gn+1hn+1 = f − (gn +
∑

i

ciwi)(hn +
∑

i

civi)

= (f − gnhn −
∑

i

ciX
i) +

∑

i

ci(Xi − gnvi − hnwi)−
∑

i,j

cicjwivj .

By the induction hypothesis, the first grouped term on the right is zero, and, with the
aid of Equation (1) above, the second grouped term belongs to PnP [X] = Pn+1[X]. The
final term belongs to P 2n[X] ⊆ Pn+1[X], completing the induction.
Finishing the proof. By definition of gn+1, we have gn+1 − gn ∈ Pn[X], so for any
fixed i, the sequence of coefficients of Xi in gn(X) is Cauchy and therefore converges.
To simplify the notation we write gn(X) → g(X), and similarly hn(X) → h(X), with
g(X), h(X) ∈ A[X]. By construction, f − gnhn ∈ Pn[X], and we may let n → ∞ to get
f = gh. Since gn = G and hn = H for all n, we must have g = G and h = H. Since
f, G and H are monic, the highest degree terms of g and h are of the form (1 + a)Xr and
(1 + a)−1Xd−r respectively, with a ∈ P . (Note that 1 + a must reduce to 1 mod P .) By
replacing g and h by (1 + a)−1g and (1 + a)h, respectively, we can make g and h monic
without disturbing the other conditions. The proof is complete. ♣


