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Pontryagin Duality

Motivation: duality for vector spaces

Dual of a vector space

V : a finite dimensional vector space over C.

e1, · · · , en : basis for V .
V ∗ := {φ|φ : V → C linear map }.
〈φi , ej〉 := φi (ej) := δij , φi , · · · , φn, dual basis for V ∗.

Dual of a map, T : V →W

T ∗ : W ∗ → V ∗,T ∗(φ)(v) = φ(T (v)).
T : V →W ,S : W → U, (S ◦ T )∗ = T ∗ ◦ S∗ : U∗ →W ∗
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Proposition

ΦV : V → V ∗∗,ΦV (v)(φ) = φ(v), gives a “natural isomorphism”
between V and V ∗∗.

Proof: 〈φj ,ΦV (ei )〉 = 〈φj , ei 〉 = δij .
Therefore, ΦV (e1), · · · ,ΦV (en) is the dual basis of φ1, · · · , φn.

Natural isomorphism

V

T
��

ΦV // V ∗∗

T∗∗

��
W

ΦW // W ∗∗
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Pontryagin dual of an abelian group

G : a finite Abelian group

S1 := {z ∈ C||z | = 1}, note that this is also an abelian group
Ĝ = {φ : G → S1|φ(e) = 1, φ(g1g2) = φ(g1)φ(g2)}

Proposition: Ĝ is a group, called Pontryagin dual of G .

Product (φ1 · φ2)(g) := φ1(g)φ2(g)

Inverse φ−1(g) := φ(g)−1

Identity φe(g) := 1
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How does Ĝ look like?

G : cyclic group of order n

G = {0, 1, · · · , n − 1} with addition modulo n.
φ ∈ Ĝ ↔ φ(1) = z ∈ S1, zn = 1

φ 7→ φ(1) ∈ {e
2πik
n |k = 0, 1, · · · , (n − 1)} ⊂ S1 proves

Ĝ ∼= {e
2πik
n |k = 0, 1, · · · , (n − 1)}

Note

(a) Given any l ∈ G , l 6= 0 there exists φ ∈ Ĝ such that φ(l) 6= 1.

More precisely take φ(1) = e
2πi
n

(b) G is isomorphic with Ĝ , in particular |G | = |Ĝ |.
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More precisely take φ(1) = e
2πi
n

(b) G is isomorphic with Ĝ , in particular |G | = |Ĝ |.
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G = G1 ⊕ G2, a direct sum of two groups G1 and G2

φ ∈ Ĝ determines a pair of elements φj = φ|Gj
∈ Ĝj , j = 1, 2.

Conversely, φj ∈ Ĝj , j = 1, 2 determine φ ∈ Ĝ given by
φ(g1, g2) = φ1(g1)φ2(g2).

φ 7→ (φ1, φ2) gives an isomorphism Ĝ ∼= Ĝ1 × Ĝ2.

G = G1 × G2, a direct product of two groups G1 and G2

In this case we have an isomorphism Ĝ ∼= Ĝ1 ⊕ Ĝ2.

Note

|G | = |G1|.|G2| = |Ĝ1||Ĝ2| = |Ĝ |
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G = G1 × G2, a direct product of two groups G1 and G2

In this case we have an isomorphism Ĝ ∼= Ĝ1 ⊕ Ĝ2.
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Conversely, φj ∈ Ĝj , j = 1, 2 determine φ ∈ Ĝ given by
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∈ Ĝj , j = 1, 2.
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Pontryagin duality

Theorem: G is “naturally isomorphic” with
̂̂
G .

Define ΦG : G → ̂̂
G , as ΦG (g)(φ) = φ(g).

Assertion holds if G is cyclic
ΦG is one to one: ΦG (g)(φ) = 1, ∀φ ∈ Ĝ .
Then, φ(g) = 1, ∀φ ∈ Ĝ . This implies g = e.

Since |G | = |Ĝ | = | ̂̂G |,Φ is an isomorphism.

Assertion holds if G = G1 ⊕ G2 where ΦG1 ,ΦG2 are
isomorphisms.̂̂
G ∼= ̂̂

G1 × Ĝ2
∼= ̂̂

G1 ⊕
̂̂
G2
∼= G1 ⊕ G2 = G .

Assertion holds for all finite abelian groups.
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Then, φ(g) = 1, ∀φ ∈ Ĝ . This implies g = e.
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Then, φ(g) = 1, ∀φ ∈ Ĝ . This implies g = e.
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G

F
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ΦG // ̂̂
G

̂̂
F

��

H
ΦH // ̂̂

H
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Ĝ could be trivial

If G is simple then Ĝ is the trivial group.

Ĝ is always abelian

Since Ĝ is always abelian for nonabelian groups one should not

hope to have G ∼= ̂̂
G .
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Prelude on tensor product of vector spaces

U,V ,W : Vector spaces over C.

Bilinear map : T : U × V →W

T (au1 + bu2, v) = aT (u1, v) + bT (u2, v)

T (u, av1 + bv2) = aT (u, v1) + bT (u, v2)

Example

T : Mn(C)×Mn(C)→ Mn(C), (A,B) 7→ AB
(A,B) 7→ AB − BA.
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U ⊗ V , the tensor product of U and V

There exists a vector space U ⊗ V along with a bilinear map
⊗ : U × V → U ⊗ V such that given any other vector space W
and a bilinear map T : U × V →W there exists a unique linear
map T̃ : U ⊗ V →W such that T = T̃ ◦ ⊗.

U × V

T %%KKKKKKKKKK
⊗ // U ⊗ V

T̃
��

W
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Working with the concept

Flip: σ̃ : U ⊗ V → V ⊗ U

σ : (u, v) 7→ (v , u).

U × V
⊗ //

σ

��

U ⊗ V

σ̃
��

V × U ⊗
// V ⊗ U
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Tensor product of linear maps

T1 : U1 → V1,T2 : U2 → V2

T1 × T2 : (u1, u2) 7→ (T1(u1),T2(u2)),

U1 × U2
⊗ //

T1×T2

��

U1 ⊗ U2

T1⊗T2

��
V1 × V2 ⊗

// V1 ⊗ V2
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Tensor product in concrete terms

U : a vector space with basis e1, · · · , en.

V : a vector space with basis f1, · · · , fm.
U ⊗ V is an nm dimensional vector space with basis
{ei ⊗ fj : 1 = 1, · · · , n; j = 1, · · · ,m}.
φ : (u, λ) 7→ λu, ψ : (λ, u) 7→ λu

U × C ⊗ //

φ
%%KKKKKKKKKK U ⊗ C

φ̃
��

C⊗ U

ψ̃
��

C× U
⊗oo

ψ
yyssssssssss

U U
U ⊗ C ∼= U ∼= C⊗ U
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(b) (H,m, η,∆, ε,S) ∼= (H∗,m∗, η∗,∆∗, ε∗,S∗)∗.
(c) (C ∗(G ),m∗
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provided G is abelian

Proof: (c) Note C (G ) has basis {δg |δg : h 7→ δg ,h, g ∈ G}
mG (δg ⊗ δh) = δg ,hδg ,∆G (δg ) =

∑
g=g1g2

δg1 ⊗ δg2

{ξg |g ∈ G} is the dual basis of {δg |g ∈ G}.
〈m∗

G (ξg1 ⊗ ξg2), δg 〉 = δg ,g1g2 = 〈ξg1 ⊗ ξg2 ,∆G (δg )〉
〈∆∗

G (ξg ), δg1 ⊗ δg2〉 = δg ,g1δg ,g2 = 〈ξg ,mG (δg1 ⊗ δg2〉
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Ĝ
, η

Ĝ
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Ĝ
) ∼= (C ∗(G ),m∗

G , η
∗
G ,∆

∗
G , ε

∗
G , S

∗
G ).

provided G is abelian

Proof: (c) Note C (G ) has basis {δg |δg : h 7→ δg ,h, g ∈ G}
mG (δg ⊗ δh) = δg ,hδg ,∆G (δg ) =

∑
g=g1g2

δg1 ⊗ δg2

{ξg |g ∈ G} is the dual basis of {δg |g ∈ G}.
〈m∗

G (ξg1 ⊗ ξg2), δg 〉 = δg ,g1g2 = 〈ξg1 ⊗ ξg2 ,∆G (δg )〉
〈∆∗

G (ξg ), δg1 ⊗ δg2〉 = δg ,g1δg ,g2 = 〈ξg ,mG (δg1 ⊗ δg2〉



Pontryagin duality: classical formulation
Limitations of the classical formulation

Some algebraic structures
The finite group case

Duality for Hopf algebras

Theorem

(a) (H∗,m∗, η∗,∆∗, ε∗,S∗) is a Hopf algebra called the dual of H.
(b) (H,m, η,∆, ε,S) ∼= (H∗,m∗, η∗,∆∗, ε∗, S∗)∗.
(c) (C ∗(G ),m∗

G , η
∗
G ,∆

∗
G , ε

∗
G , S

∗
G ) ∼= (C (G ),mG , ηG ,∆G , εG , SG )∗.

(d) (C (Ĝ ),m
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Theorem

(a) (H∗,m∗, η∗,∆∗, ε∗,S∗) is a Hopf algebra called the dual of H.
(b) (H,m, η,∆, ε,S) ∼= (H∗,m∗, η∗,∆∗, ε∗, S∗)∗.
(c) (C ∗(G ),m∗

G , η
∗
G ,∆

∗
G , ε

∗
G , S

∗
G ) ∼= (C (G ),mG , ηG ,∆G , εG , SG )∗.

(d) (C (Ĝ ),m
Ĝ
, η

Ĝ
,∆

Ĝ
, ε

Ĝ
,S

Ĝ
) ∼= (C ∗(G ),m∗

G , η
∗
G ,∆

∗
G , ε

∗
G , S

∗
G ).

provided G is abelian

Proof: (c) Note C (G ) has basis {δg |δg : h 7→ δg ,h, g ∈ G}
mG (δg ⊗ δh) = δg ,hδg ,∆G (δg ) =

∑
g=g1g2

δg1 ⊗ δg2

{ξg |g ∈ G} is the dual basis of {δg |g ∈ G}.
〈m∗

G (ξg1 ⊗ ξg2), δg 〉 = δg ,g1g2 = 〈ξg1 ⊗ ξg2 ,∆G (δg )〉
〈∆∗

G (ξg ), δg1 ⊗ δg2〉 = δg ,g1δg ,g2 = 〈ξg ,mG (δg1 ⊗ δg2〉



Pontryagin duality: classical formulation
Limitations of the classical formulation

Some algebraic structures
The finite group case

Duality for Hopf algebras

Pontryagin duality

G // C (G )oo

Ĝ C (Ĝ ) ∼= C ∗(G ) ∼= (C (G )∗

̂̂
G ∼= G C (

̂̂
G ) ∼= C (Ĝ )

∗ ∼= (C (G )∗∗ ∼= C (G )
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Pontryagin duality

G //

��

C (G )oo

��

Ĝ // C (Ĝ ) ∼= C ∗(G ) ∼= (C (G )∗oo

̂̂
G ∼= G C (

̂̂
G ) ∼= C (Ĝ )

∗ ∼= (C (G )∗∗ ∼= C (G )
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Pontryagin duality

G //

��

C (G )oo

��

Ĝ //

��

C (Ĝ ) ∼= C ∗(G ) ∼= (C (G )∗oo

��̂̂
G ∼= G

//
C (

̂̂
G ) ∼= C (Ĝ )

∗ ∼= (C (G )∗∗ ∼= C (G )
oo
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Thank you for your attention !
slides are available at

www.imsc.res.in/∼parthac/talks/Summer-talk-2012.pdf
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