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¢'—>¢(1)€{enlk—01 -+ ,(n—1)} c S* proves
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(a) Given any | € G, | # 0 there exists ¢ € G such that o(l)#1

More precisely take ¢(1) = e ~
(b) G is isomorphic with G, in particular |G| = |G]|.
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G = G1 @ Gp, a direct sum of two groups G; and Go

o)S G determines a pair of elements ¢; = ¢|Gj € @,j =12
Conversely, ¢; € CA;j,j = 1,2 determine ¢ € G given by
?(g1,82) = P1(81)P2(82)-

o — (¢1,P2) gives an isomorphism G ’G'I X 2;\2

G = Gy X Gp, a direct product of two groups G; and G;

In this case we have an isomorphism G = G1 @ Go.

Note
G| = |G1.|G2| = [G1]|G2| = |G|
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Theorem: G is “naturally isomorphic” with G.

Define ¢ : G — é as P (g)(0) = o(g).
@ Assertion holds if G is cyclic R
®¢ is one to one: Pg(g)(¢) =1, € G.
Then, ¢(g) = 1,¥¢ € G. This implies g = e.
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~
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@ Assertion holds for all finite abelian groups.
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Limitations of the classical formulation

What happens if we drop the abelian condition

G could be trivial

If G is simple then G is the trivial group.

”
G is always abelian

Since G is always abelian for nonabelian groups one should not
hope to have G = G.
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VixVo—=>V1®V;
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Thank you for your attention !
slides are available at
www.imsc.res.in/~parthac/talks/Summer-talk-2012.pdf
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