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I
BE,(x,y) = 8A " (x) K My) (V.3.49)

Equating (V.3.47) and {(V.3.49}, and factoring out Kla, we obtain
GAmI(x):

sa i = 8 el) + £1567 0 A'w) (v.3.50)

i.e. the gauge variation of a non-abelian vector field.

The D=4 action § obtained after integrating out the G/H

-4t
harmenics in the M4><MKD 20mpactified action, is invariant under gauge
transformations (V.3.50), and must contain therefore a Yang-Mills piece
v FW. This can be directly verified, as was done in the Méxsl

case, and we suggest it as a useful exercise. The relevant orthogonality

relations ave given in (V.3.22).

The mass of AmI(x] is of course zero, since otherwise (V.3.50)

would not be a symmetry of SD=¢§'
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CHAPTER V.4

COMPACTIFYING SQLUTIONS OF D =11 SUPERGRAVITY

V.4.1 - The D=4 vacuum: maximal symmetry

The D=4 vacuum, in order to be a "true vacuum", should have
maximal symmetry, i.e. invarisnce under a maximal set of translations
and rotations. This implies, for (+---) D=4 signature, invariance of
the vacuum under S0(1,4), Poincare, or $0{2,3), corresponding respec-
tively to De Sitter {cosmological constant A>1D), Minkowski (A=0)

or anti De Sitter (A<0) space. In coset space notation:

i)  De Sitter 001,43 | (V.4.1a)
spacetime 50(1,3) o

15¢(1,3) = Poincaré

ii) Minko:#i (V.4.1b)
spacetim S0(1,3)

. De Si 2,3

iii} anti De Sitter s6(2,3) (v.4.1c)

spacetime (AdS™) $0(1,3)
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A1l three cases are important exampies of non-compact coset manifolds,
We should note, however, that only ii) and 1ii) admit a positive energy
theorenm and an S-matrix constyuction,

Let us examine the allowed vacuum expectation values of the D=1}
5.G. fields satisfying D=4 maximal invariance. In the following, 1<I
denctes a Killing vector of any of the three groups SG(1,4), Poincaré,
80{2,3).

The D=11 vacuum metric must be invariant under the coordinaste

transformations generated by KI

ax = kY (V.4.2)

According to {1.6.115) the metric transforms as

" _p ¥ H
Sgyp(x,y) = ﬁxlgﬂn = Ry 3y (y) + (3K g ¢

+ Ok Mgy (v.4.3)

The condition §g,;(x,y)=0 (D=4 maxinal invariance) impzies;F*)
gw(x,yl = g, (x) £ (v.4.4)
gm(x,y) =0 (v.4.5)
ggﬂ(x,)f) = gasty) (V.4.6)

where gw{x) is the metric of (V.4.1); gW(X,Y) rust vanish, since
there are no Peincaré or (anti) De Sitter invariant vectors.

"
) We recall the index convention:
u,V,... ¢ curved D=4 indices ; «,B,... : curved D=7 indices ;

mn,... ! flat D=4 indices ; a,b,... : flat D=7 indices .
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Maximal invariance of the gravitino -v.e.v. ¥, implies

<> = 0 (V.4.7)

since <\;JA> 4 0 would violate the 50(1,3) Lorentz isotropy subgroup

of {v.4.1),
Finally, for the "photon" curl FA A (x,y) we have the condi-
1o hy

tion

4., F =0 (v.4.8}

with the unigue solution:

P, =g ) (V.4.9)

€ h
Voo wipg

_ (v.4.10)
FotByﬁ - FOLBY(S &

all other components = 0

Moreover, the Bianchi identity 3{& FWDC‘] =0 implies that Pp\}pd is
y-independent, so that h(y} = congtant in {V.4.9).

Sumparizing, the nonvanishing components of the most general back-

ground fields with maximal D=4 symmetry are given by

= (V.4.11a)
8W(X,)’) = EW(X) £{y)
By (V) (v.4.11b)
ol
(v.4.11c)
FaBYﬁ(Y)
= = stant (V.4.11d)
Flopo = © g S
In flat indices, (V.4.11d) takes the fomm
(v.4.12)

=g g
anrs mnrs

o

g

R e e

R T e e

e

P ST e e e,

e SN
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In what follows, the '“warp factor" £{y) will be taken equal to 1
For f£(y}#1, see Sect. V.9.4.

4
V.4.2 - AdS” x4’ solutions (Freund-Rubin)

Let us examine the D= 11 field Eqs., {with ‘JJA=9) for - .
i
. " 1
Einst .t - s 3 o
( ein) L 5 gk 6 L ngF....r- (v.4.13) |
(Maxwell) & ;:‘Aﬂz o L AR oxxxx
e % F o P (V.4.14)

(cfr. TII.8.59 and III.8.53}.

Does t{}*u)e maximally symmetric set of fields (V.4.11) satisfy these
eqs.? The answer is yes, provided (V.4.11) fulfills some additional
conditions,

Separating four- and seven-dimensional indices, and inserting
(v.4.11} in the Einstein eqs. ylelds

Ry = £ (2067 - % Fops AL (V.4.153)

Ry = guﬁfﬂez_ - § E gen FYoeny | g Farée F8Y6€ (V.4.15b)

Ry = O {V.4.15¢)
Similarly, the Maxwell Eq. (V.4.14) becomes:

9 gPAr . g (V.4.16a)

2, pabed % ¢ ghodefgh Foggn = (V.4.16)

)

A more practical form of (V.4.13} is

e

Ryw = 6 F

AT [

it - 172 gm-...F.

Eqs. (V.4.15) - (V.4.16) are satisfied by the following set of curvatures

{Freund-Rubin solution)

_ 2
Rli\J = - 2e gw {V.4.17a}
R, = 12 (V.4.17b)
(v1:] a8 e
anrs I (v.4.17¢c)

all other components vanishing.
Solutions with Fabcd#O {Englert-type solutions) will be

discussed in Sect. V.9.2,

(V.4.17a) describes a four-dimensional Einstein spacetime with
negative cosmelogical constant, identified with anti-De Sitter space-
time in order to have maximal symmetry.

(V.4.17b) corresponds to a seven-dimensional Einstein space MT
with positive curvature and Euclidean signature (wwmmmnm }. These spaces
are always compact, so that (V.4.17} can be rightly called a "spontanecus
compactification” of D=11 §.G. on AdSé xM’. The choice of dimension
four for spacetime is here a copsequence of the field eqs., and is essen-

tially due to Frmrs = B[m Anrs] having rank four. The existence of

Amr; T is, in turn, due to supersymmetry.
Notice that one could also set F proportional to €. 4 and
anrs =0, thus obtaining (D=7 anti De Sitter) X {compact M ). As Duff,

¥ilsson and Pope have peinted out, there could be a mathematical way to
rule out this unphysical vacuum. They ubserve that in the 4+7 compacti-
fications, F is set equal to the volume form on a noncempact M4, and
this is consistent with the equation F=dA since d-dimensional nom-
compact spaces Md have trivial cohomology group Hd(Md, R). In 7+4
compactifications, however, F 1is proportional to the volume of a 4-
dimensional compact M4, and F=dA cannot be globally valid since
Hé(Md, R) is non-tyivial.

This argument in favour of the 4+7 Freund-Bubin solutions would

not hold if there existed a dual formulaticn of D= 11 S.4., with a 6-form
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AA A instead of the 3-form AAHZ' If this were the case, ¥

1+
could be set proportional to the volume element of a non-compact D=7
anti De Sitter spacetime,

However, ro such formulation does exist (see Chapter 111.8).

In conclusion, there seems to be an asymmetry betwsen 4+7 and 7+4
compactifications, with some evidence in favour of AdS ><M7

¥.4.3 - Properties of the intemns] space M7: Killing spinors and

Weyl holonomy

Einstein spaces

The iaternal space M must be an Einstein space, as required by
Eq. {(V.4.17). Moveover, since we are interested in getting D=4 gauge
fields from the spontaneous compactification on M7, we restrict our
attention te 7-dimensional compact coset spaces G/H,

Every compact M7= G/H admitting an Einstein metric corresponds
to a solution

AdS x G/H (v.4.18)

of D=11 5.6. Classifying these solutions is equivalent to classifying
all 7-dimensional compact homogencous Einstein spaces. An exhaustive
list is given in Table V.6.1.

The solutions (V.4.17) have the coset space structuye

50(2,3) , & (v.4.19)

50(1,3) H

The isometries of these vacua are given by S0(2,3) XG. Since we
deal with supergravity, we can ask whether the vacwum {V.4.19) is invari-
ant also under supersymmetry transformations.

First of all, we have to discuss what we wean by a supersymmetric
vacuum, and how N=1, D=11 supersymmetry is related to D=4 super-
symmetzTy.
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The D= il supersymmetry transformations (Table 111.8.1), applied

on the v.e.v. of the fields

A : vielbein of AdS*G/H

Yy
\L’A =0
Fmpq ™ © Smypq
Fiisn = | Fabea * ©
all other components = 0 {v.4.20}

will preserve the vacuum structure (V.4.20) if and only if

65@? ,pA = DAE =9

1 AB, i gABC, D 1 LABCDM M

Wy Vi Y anco
(efr. Table III.8.31, or (V.5.48¢)). (v.4.21)
are automatically equal to zero

A
The variations 8gup Vy's Sgyp Appy

for 1}JA=0. ,
Consider now Eq. (V.4.21) in the AdS XM background (\1.45,.2(;1i
Splitting the AdS and W indices, and using the D=11 I matrices

Ty D=4 I-matrices

Iy= (et vg ol ‘ (V.4.22)
Fa: D=7 T-matrices
we obtain:
Sgyp Yy (xayd = (B - %Bum Yo * 28 Yoy vu‘**} e(x,y} = 0 (V.4.23a)
Sgup Ylo¥) = (3 = 387 Ty - @ T, VD) eley) = 0 (v.4.23)

) For notational economy, we use the same symbol [ for D=11 and
D=7 T-matrices, usually distinguished by their indices. When there is
possibility of confusion, we use the symbol T for D=11 I'-matrices.

For ex: T = YTy

B

P e

R N T e e T

D N

- Tl e s .

Eaach

ST
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m .
where By (x) and Baab (¥) are the AdS and M7 spin connections. 1
and € can both be expanded in M’ -harmonics

=

0,70 = [0, 020) & ;D=4 spinor index

ma i a "
‘l'fafx.ﬂ =] lbam (x3 Dla(y) i : D=7 spinor index

" x,y) = | ") 0Py I : G-irrep index
(V.4.24)

We have explicitly written the D=1l spinor index 4s a product of D=4
and D= 7 spinor indices ® and & vespectively. The sums are over all
the G-irreps containing H-irreducible pieces of the SO{7) index a (see
Sect. V.3). For notational convenience, we write the generic term in
the sums (V.4.24) as '

%ifu(x} niy)
lbd(x) n{y)
e{x) nly) (v.4.25}

and Eqs. (V.4.23) take the form:

= w 1, rs
Dms(xJ (am "7 Bm Vo * 2e Ysym)e(x) = 0 {V.4.20a)

cd
a

s 1
%’)an(y) (2 _EB

. Tg-elniy) =0  (V.4.260)

The integrability conditions for (V.4.25) are:

2 1 '
ewd = [- 7 Ry, - 46’ YV A Ve = 0 (V.4.27a)
-2 1 ab 2

Py} = [- 7 R Pgp = ¢ Ty Ef‘ - Eb]n(y) =0 (V.4.27b)
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The first is identically satisfied for the AdS M solution of Egs.
(V.4.20), since the AdS curvature is given by

s 2 .rs
R = 16e Bﬁm (v.4.28)

Thus we cnly need to concentrate on Eq. (V.4.278). _
The existence of N independent solutions n(y) of (V.4,26b)

implies N surviving D=4 supersymmetries in the AdS <M background.
A necessary condition for (V.4.26b) to hold is given by Eg.
{V.4.27b), cor

- cd 2 pcd _
Cabn z (R ab de 5ab}rcdn =0 {V.4.29)

The Cab operator defined above contains linear combinations of S0(7}

generators ch' If Cyp admits N null eigenspinors, it generates

MAX
a subgroup of $0(7). This subgroup is called the Weyl holomomy group

K of M7, and is the subgroup of S0(7) which leaves n spinors invariant.
In other words, NMAX is equal to the number of singlets appearing in
the decomposition of $0{7) under ¥. From Table V.4.1, where the possi-
ble holonomy groups & and branching rules SO{7} + ¥ are given, we
see that NMAX can take the values NMAX=G’1’2’4’8'

We stress that Cab having NMAX null eigenspinors is a necessary
but not a sufficient condition for the existence of NMAX solutions to
Eq. {v¥.4.26), i.e. for N=NMAX
{V.4.29) still have to satisfy the first order Eg. (V.4.26b): the number

supersymmetry. The null eigenspinors of

of D=4 supersymmetries may be smaller than the maximal N allowed by
holenomy.

As discussed in Part III, a supersymmetric gravity theory can be
formuiated on a supergroup manifcld, or in superspace (a super coset
manifold). In the case of AdSxG/H compactifications, the coset struc-
ture of a vacuum preserving N supersymmetries can be extended to 2

super coset space as follows:

50(2,3) ,, G , Osp(4/N) X &' (V. 4.30)
S0(1,3) H  S0(1,3) xH
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where
G = SG(N) x Gt (V.4.31)

Let us justify (V.4.30) and (V.4.31). The rationale of superspace
or supergroup manifold formalism is that it allows a geometyic interpre-
tation of supersymmetry, seéen as part of the superisometry group. Local
supersymmetry transformations are just diffeomoyphisms in the §-direc:
tions.

Thus a solution of D =11 supergravity preserves N-supersymmetry if
its extension to superspace (obtained by integration of the rheonomic
conditions, see Chapter II1.3), admits N fermionic Killing vectors g,
or Killing spiners.

The algebva of Killiag vectors snd Killing spinors closes on a
super-Lie algebra. Since g transforms as a Majorana spinor under
80(2,3) *S5p(4) {see Chapter II1.Z}, this superalgebra must contain
Osp(4/N), the superextension of the bosonic group Sp(4) X SO{N} (see
Sect. V.7.3).

On the other hand the bosonic symmetries of the AdS xG/H vacuum
are given by S0(2,3) %G, Hence, for an N-supersymmetric vacuum, G
must have the form G=G'xSO(N), the SO(N) subgroup being necessary
for the superextension to Osp{4/N} xG'.

The Killing spinors q are fermionitc tamgent vectors to the super-

M4+7/32

space (the superspace of D=11, N=1 5.G. has a 32-component

Grassman coordinate 6.}, so that q=q(x,y,8)
To say that q(x,y,0) 1is z fermionic Killing vector of w7732

translates into the equations:

1 AB
LVeg W Typ ¥ (V.4,32)

', e WAB v (V.4.33)

These eqs. are just the supersymmetric extemsion of Bq. (1.6.119): we
have now a supervielbein given by [VA(x,y,G}, P(x,y,8)) and {V.4.32-
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V.4.33) are its transformation laws under diffeomorphisms in the -
directions.

Evaluating (V.4.32) at 8= o vields ,Qq ‘MB:O: GSUP P=0, sin(.:e
%(8=0)=90 and the Lie derivative on { gives its supersymmetry varia-
tion (see Part III).

Thus the Killing spinors g(x,y,0=0) can be interpreted as the
supersynmetry parameters e(x) n{y) of (V.4,25). The existence of N
Killing spinors, i.e. of an N-supersymsetric background, is equivaltent
to the existence of N independent solutions of Eqs. (v.4.26), in agree~
ment with our previous results.

Summarizing: the condition GSUP $=0 for a supersymmetric back-
ground can be retrieved from a geometrical point of view by considering
the fermionic Kiiling equation in superspace. The existence of fermionic

isometries {i.e. supersymmetries) implies GSUP g=0 at §=0.

V.4.4 - 0sp{4/N) formulation

Here we study the AéS=<M7 solutions of D= 11 supergravity from a

more geometrical point of view that elucidates the

Osp(4/N} x 6! (V.4.34)
S0(L,3) x H

styucture, already discussed in the previous section in the context of

supersymmetry.
We recall the definitions of the D=1l curvatures

RAB = deB - mAC ~ wCB {v.4,35a)

- at -t AVB-%{;;A?W (V. 4.35D)

(v.4.35¢c)

P S e

N e

P

— e

T T s N

e

P

T e R N
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1 B
R =dA—5€zArAB¢nvAnv

the rheonomic equations

(V.4.35q)

R = 0 (V.4.36a)
A A
R =F,  , Via. vt (V.4.56b)
1%
. ALLA A A,...AB
_ B i .13 4 1.1 B
0= QABVA AV - E-(F Vs 5 r yoaV )FAl-..A4
{v.4.36¢)
AE AR C D, 1 ABCDE 2 .CD[A .B]E
R™ = R CDV AV QCDLE T - E-T § +
+2FAB[C 5D]EWAV R
E D
ABC,-C
T RS (V.4.36d)
24 174
and the inner equations
ABC
I ppe = 0 (V.4.37a)
. FACI ":3@_1%‘31 Cahyen by ] . o
A 96 Apeo By Agie Ay
(V.4.37b)
R LN
BC BC,...Cs 2B €y eCy
(V.4.37¢)

Splitting D=11 indices in 4+7 {A={m,a})

indices, using the familiar

basis (V.4.22} for T matrices, we now assume

1201
=0, op = 0 le...m4 =® Eml...m4
F =0 otherwise (v.4.38)
and obtain for the rheonomic equations:
du™ - upr L™ e 166° VP VR 4 2ie ) YSYmn v (V.4.392)
o - Vs %@A ¢ (V.4.35b)
N R A 2 (v.4.35¢)

c 4 . =
du™ - Aw =R cd " VAV -ig.a Yo I (V.4.394)

dxp-i—w ymhww}w Al p s
= 8 VaFa AU+ 2e v Ye¥n § (V.4.39)
dAwél-E)ymnAwAv’“Av“»ffbysymrawﬂvmﬂva-
- %x}zrab it (V.4.395)
The inner equations become
R‘““ﬁr - - 246" 6: (V.4.402)
R = 12¢” 67 (V.4.40b)

Suppose now that:

i} there are N orthonormal commuting SO(7} real spimors nM{y)
which satisfy the equation (V.4.26b):
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Ny ® - 7u T, = e VT, 0y (V.4.412)

i = S (V.4.41b)

o 0 o 0
1) V8, d™(x,8), AN(x,0), U, (x,8) are the Osp(4/N)
left-invariant one-forms on the coset space

M4/4N - Osp(4/N)
SO(l,}} * S0()

(V.4.42)

satisfying, by definition, the Osp(4/N) Maurer-Cartan equations:

& om  on i? me
dﬂ-wnﬂv“-gwhy P = 0 (V.4.432)
0 4 Q
g™ LB LS 1ee® VW - 2h o yy™ b = 0
T M 5 M
(V.4.43b)
M oMR  9RN . o 9
M Lo RMRBRN By~ ¥s By = 0 (V.4.43¢)
Lmg 8 o 0 oM ©
de 71 by - 2e v (SAR TR S
(V.4.43d)

Then we have the

Theorem: & solution of the superspace field equations (V.4.39) is given
by the potentials:

Ve (x,6) (V. 4.442)
o™ = e, (V. 4.44b)
¥ = n,ly) @M{x,e] (V.4.44c)

= V) + 20 Py o) R0 (V.4.444)
= ) - 200 ) #600) (7.4.44e)
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W@ = 0 (V.4.44£)
A= K(x,y,e): 3-form satisé}ing Eq. (V.4.45} (v.4.44¢)
o o
o T 17z LG B
dA = € Emnrp VvtV §-$ wM Vv
0 - 12 ¢ . _ab a b
= Yy~ Vs g~ anMPanN AV E-w ~ ¥y nMP Ny ~ VAV,
{V.4.45)
This solution lives in the superspace!
P ' Osp{4/N 4]
M4+7/4N " Osp(4/N) x G " (/N
S0(1,3) x #  (locally) S0(1,3) x SO(N) H
T 7
N-gxtended anti- M
Da Sitter
= S0{N) xG! superspace
(recall G {N) ) w.4.46)
Proof: insert (V.4.44} into {V.4.39) and use the identities:
MR RS
ﬁMrabnNﬁR rbnsAMN s 4 nMF AT LA (V.4.47a)
o A V.4.47b)
(g NR)A % = T - 3 g ) (
- by BN RS
nMFaannch 5 AR E
1) MR BN 1 - .4 =g My . RS V. 4.47¢)
= 4 nMF Ty A A AT - §~nMF nNnR? g A A (
and
b eod a2 lag bl A v.4.482)
a Cd(y)v nMF ng~A = 48" V" my I ny (
RS M
ab - ¢ - od RS MY _ 2e2 ; F . A
R cd nRF nSnMP My A A A n S M N
(V.4.48b)

s

ST e

SN

—

TN

T

Fa

R T T L

.

,f-‘

e
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Eqs. (V.4.47) are derived by a straightforward Fierz rearrangement.
Egs. (V.4.48) are a consequence of the identity

b b]

- ood 2 lax
R M Iy = %@ S Mg Ty (V.4.49)

obtained from the consistency condition of Eq. (V.4.4%a):

1. ed _ 1l ab  ed 2 .ab
-Z'R =h rcdﬂN-"zR CdI‘ T!N—B T T\N (V.4‘50)
¢
multiplying by ﬁMI“-: and antisymmetrizing in M++N. The 3-form A
has not been written explicitly. There is no need for that because,
once Egqs, (V.4.3%a-e) are satisfied, Eq. {V.4.45) is an integrable

equation and therefore certainly admits a solution.

V.4.4 - Differential operators on M?

In the linearization of the D= Il field equations we will encoun-
ter varicus invariant differential operators on M7. ‘The masses of the
D=4 spaceiizae fields ave given in terms of eigenvaiues of these invari-
ant operators.

In this section we discuss some of their general properties, such
as zerp modes or lower bounds on their eigenvalues. Most of the
following considerations are independent of the actual choice for the
internal manifold M7.

The relevant operators are:

- the Dirac and Rarita-Schwinger operators for the fermions.

- the Hodge-de Rahm operator acting on scalars, vectors, and
antisymmetric tensors of rank < 3.

- the Lichnerowicz operator acting on symmetric rank - two
tensors.

These differential cperators are invariant, since all of them
can be expressed in terms of ¥= ravaﬁ the covariant Dirac operator
in B=7, itself an invariant operator? (¥ commutes with the covariant
Lie derivative, see later}.

1205

Dirac and Rarita-Schwinger operators

The relevant SO(7) irreps for the fermions (coming from the
D= 11 Majorana gravitino ,(x,y)) are the [1/2,1/2,3/2] and
[3/2,1/2,1/2]. The first is associated with the [3/2,1/2] of $0(1,3)
and hence with the gravitine spectrum, while the second i3 associated
with the [1/2,1/2] of SG(1,3) and hence with the spin 1/2 spectrua.

a [ 1/2,1/2,1/2] real irrep of SO(7) is an 8-component Majorana

spinor n:

(v.4.51)

H

[t/2,1/2,1/2]: Cn n*

C (D= 7) charge conjugation matrix

{7

while a [3/2,1/2,1/2] irrep is & Majorana spinor-vector F’a satisfy-

ing the trace condition Fa§a= o

* . a -
[3/2,1/2,1/2] 1 € = Gy &3 5 T =0 {V.4.52)
See Appendiz (V.4.1) for an explicit representation of D=7 gamma

matrices,
The SO(7) and SO{8) covariant derivatives are respectively defined

by
i ab
SO(7): Qan = 3an -y w rab N (V.4.53a)
c 1 cod

@agb = aagh -, E;c - Z w, ?cd Eb (v.4.53b)

80(8): Van = Qan -8 I‘a f (v.4.54a)

= - .4.54b

vagb 9agb i I‘a gb v )

The invariant operators arising in the linearization of the gravitino
field equation are the D=7 Dirac operator and the D=7 Rarita-Schwinger

operator:
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)
PEIV (V.4.55)

be
Ve {v.4,56)

b _
(RS}a z ?a
¥ maps [1/2,1/2,1/2] fields into [1/2,1/2,1/2] fields, while the
. . b .
Rarita-Schwinger operator {RS}a maps spinor-vectors into spinor-
vectors

(RS} "B =& =T TV & {v.4.57)

b
(RS]a » however, does not map [3/2,1/2,1/2} irreps into [3/2,1/2,1/2]
irreps, since rd E; £ 0,

This suggests a decomposition of the RS operator into two parts,

ﬁab and Sb:
®s) "=l 1 o {V.4.58)
where
s = % r (s) ° (V.4.59a)
&’ = s)” - % r. ¢ @s) (V.4.550)

b
&, nowmaps [3/2,1/2,1/2] into [5/2,1/2,1/2], and by straight-
forward algebra we obtain:

g P Eb =¥ Ea +2eg -

a rv-¢g (V.4.60)

a

~3ino

& _ 5.,
STEr gV (V.4.61)

. A = a
with ¥« Va £°,
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The operators Rab, Sb, 7 and D are easily shown to be
invariant, i.e. to commute with the covariant Lie derivative Ly
i.ab =
LA = RA + WA Ci tab H RA + wA

(V.4.62)

with t =50(7) generators in the relevant S0(7) irreps. |CfT,
(1.6.124): in the vector 50(7) irrep {tab)Cd= —6;5].

For the 2 operator

abt

P=4+w abEd+w {V.4.63)

the commutator [LA’ 9] is vanishing as an immediate consequence of

the equation

s [o, W (V. 4.64)

%, 0= d¥ N

A A

which in turm can be derived by applying RA to the definition of the

torsion-less connection mab (1.6.155)
Exercise: prove that [L,, & b] = [L Sb] =L, v =0
RXeTCize: P a Ta A A ‘

According to the discussion in Chapter V.3, we can expand a
generic [3/2,1/2,1/2] field £ (x,y) fin [3/2,1/2,1/2] - 80(7) har-
monics on 6/H {cfr. (V.3.38)):

- 2
£,y = ] M z] (52,172,172} (V.4.65)
I
I: xuns on G-irreps containing H-irreducible pieces
of [3/2,1/2,1/2] '
For fermionic S0(7) harmonics we use the notation =(y) instead of
labelling the G-irreps together with

Y{y). I is a composite index,
of Eq. (V.3.38); the 50(7) spinor

their indices, i.e. I=[{v),n,E]

index is omitted.

Fan P

-

s

P

~
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The [3/2,1/2,1/2] - harmonics EaI{S/Z,l/Z,I/Z](y) are eigen-

functions of the (irreducible) inveriaat Rarita-Schwinger operator & b,
a

b . I[3/2,1/2,1/2 z
a0 g 2012 0y Ly Ls TBI Gy 6

Similarly, a gemeric [1/2,1/2,1/2} - field n{x,y) can be expanded as

1 _1{1/2,1/2,1/2
nlxyy =[x (02 { ' ](y) (V.4.67)
I
R JIj/2,172,1 .
where the harmonics ¥ [ 12,1 /zj{y) are eigenfunctions of the

Dirac operator ¥:

oI s
75 [1/2,1/2,1/2}(y) N, 21[1/2,1/2,1/2](yJ (V.4.68)

Now we observe that for each EE[1/2,1/2,1/2] appearing in the

expansion (V.4.67) it is possible to construct a [3/2,1/2,1/2] -

: o I s .
harmonic CH [3/2’1/2'1/2] contributing to the expansion {V.4.65):

5 372,172,172} _ v <I{1/2,1/2,172] Ly gbyg =101/2,1/2,1/2]
3 a” 7 & b~

= (v, 51[1/2’1/2’1/2})3/2 (V.4.69)

vhere ( )3/, denotes the [3/2,1/2,1/2] irreducible part of the

spinor-vector in the brackets.

The eigenvalue of the [3/2,1/2,1/2] - irreducible operator ﬁab

on 3 1(3/2,1/2,1/2]

a is easily related to the eigenvalue of ¥ on the

parent harmonic 81[1/2’1/2’1/2]. A little of algebra shows that

w 1.5 I
/2 7N v.4.70)

o
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Exercise: verify (V.4.70).
Similarly we can compute the value of the operator & on
~His2,172,5/2]
{Va' )3/2
b o1[1/2,1/2,1/2]y _ S .ab 1[1/2,1/2,1/2]
S, Vajp =50 VoW 2 )32
_ 5 I 6. I, .111/2,1/2,1/2]
= - 7—M1/2 {12e + . MI/Z }E (v.4.71)
To prove this equation we first establish the identity:
v, =0+ 126 7 (V.4.72)
From (V.4.54b} and the fact that @a commutes with Fb, we have
b b b
VI =TV, - 2T, V.4.73)
so that
_ ply by pdeb b _ pdpb .
eIy =T v, - 2 P = IT V. - 12 7=
ab a
= 19§, + V0 - e ¥ (V.4.74)
The term rabvavb gives a vanishing contributien; indeed
ab _ 1.ab ced
V=77 Taa® "
R [a b] aby cd
= % -4 IR Sl B (v.4.75)

where RCdab are the S0(8) - curvature components.*

* since Va is the S0(8) covariant derivative, mgdab is a subset of

the components RCDAB of the full S0{8) Riemann temsor, with A= (a,8).
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Vanishing of (V.4.75) is due to the cyclic identity on R
implying

abed?

abed

T Rabc& = (V.4.76)

and to the fact that the SO{8) - curvature is Ricci flat (verify this).
Therefore (V.4.74) indeed yields the relation (V.4.72).

Using now (V.4.61), (V.4.69) and VT = I 7% (see V.4.73) we
can write:

b o1[172,1/2,1/2 .5 .b 1 <I[1/2,172,172

(V.4.77)

Substituting (V.4.72) and recalling that pallY/2:1/2,1/2]
M 52[1/2’1/2’1/2} we finally arrive at [V.4.71).
2 1[3/2,1/2,1/2]
An ipportant thing to observe is that not all the Ea P
harmonics can be obtained as derivatives of the 31[1/2’1/2’1/2] har-
monics. Indeed we can distinguish two sets of 531[3/2’1/2’1/2}
harmonics: '

i) the longitudinal harmonics, of the type

I, [372,1/2,1/2}
g LETEER g tl12,1/2,172]
a - (va - )3/2 (V.4.78)

W

The longitudinal representations IL are therefore those contributing
to the expansion of the [1/2,1/2,1/2] spinor (V.4.48). We have

ﬁb?%ﬁﬁJﬂJn]HEM %rIJULULUﬂ (V.4.79)
) E, R V7 o
1.[3/2,1/2,1/2] I !
b L > » _ 5 L 6 L
S’E, Tty (e oMy, )
1,[1/2,172,1/2]
‘s (v.4.80)

121

1,(3/2,1/2,1/2]
ii) " the trensverse harmonics Ea

These ave the [3/2,1/2,1/2] harmonics that cannot be obtained as

derivatives of 21[1/2’1/2’1/2], and correspond to the transverse repre-
sentations, not contributing to the [1/2,1/2,1/2] spinor expansion.

We have

1.[3/2,1/2,1/2
o, 1:[3/2,1/2,1/2] o : ol 1 o D
By

b 1?[3/2,1/2,1/2}

i were nonvanishing, it would zlso be
Indeed if § %

1ly/2,1/2,12)
i £ (§ maps
proporticnal to a [1/2,3/2,1/2] - harmonic E
[3/2,1/2,1/2] fields into [1/2,1/2,1/2] fields), contrary to the
assumption that the transverse representations I do not contribute

to the [1/2,1/2,1/2] spinor.
I 3T[3/2,1/2,1/2]

t be
The ﬁab eigenvalue I\f.l:,‘}/2 on canno

I
i arately.
related to an eigenvalue M, L and must be evaluated sep

We discuss nmow some bounds on the eigenvalues X of 2.
2 ~Rubi ions (V.4.17)),
(29 = M). For Ry = 126° g (Freund-Rubin solutions (

the nonnegative guantity:
¢ 4.82
Jd7yvf§ 12,0 - eryl’ - Jd7y VE 7 20 (v.4.82)
is also equal to

2 .4.83
(O - 7e) (A + 5€) [d7yfq§f¢f (v.4.83)

s _ 2 .
To prove this, use Eq. {v.4.72), valid for Rab = 12e 8ap’

vava = 99 + 12e ¥ (V.4.84)

e

ey

T e, = . P

—~
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and

79 - 7e (v.4.85)
Requiring (V.4.83) to be > 0 yields the bounds

AzTe or A< -5e (vV.4.806)
Consider now the quantity

fd7y,/g 2,0 + er yl® 2 0 (V.4.87)

obtained from (V.4.82) by changing the sign of e. Then (V.4.87) is

equal to

(+ _7e)u - 5e) Jcﬂyfg‘wiz 20 (V.4.88)
and the bounds on A become

A< -Te or Az Se (V.4,89)

Since both (V.4.83) and {V.4.88) are nonmegative, the bounds (V.4.86)
and (V.4.89) must hold simultaneously, implying
Az Te

Ag-Te or (V.4.80)

i.e. a forbidden region (~7e<AX<7e) in the spectrum of @ For
Killing spirors n {cfr. V.4.26b) Vaﬂ=(}, i.e.

gn = Ten (V.2.91)

Notice that Killing spinors can exist only on Einstein spaces, since
1 1 .cd
i {74 @~n=—mRC
L(s,, 9,0 - 4

el
abfea =% Iy (V.4.92)

¥
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Contracting with Fb we find

R, - 1265 ) 10n=0 (v.4.93)

ab Eab o

The Einstein condition follows by multiplying om the left by AT,
The Hodge-de Rahm and Lichnerowicz operators

The Hodge-de Rahm operator A is defined by

A=Edé v dd (v.4.94)

and maps p-forms into p-forms; d is the exterior derivative and ¢
is its adjoint: &= (-1)F *d* (for cdd-dimensional spaces)

We recall that a form u is closed if dw=8, coclesed if dw=0,
harmonic if Aw=0; w is exact if w=do and coexact if w=do.

A 1is a nonmegative operator, as may be seen by introducing the

noxm of @
7 ap..8
(w, @) F J/Ed Y W P (V.4.95)
T
s
vanishing only if w=0. By definition
(w, dw} = (Sw, w) (V.4.96)
and hence
(w, Aw) = {dw, du} + {Su, Su} 2 0 (v.4.97)

the equality holding if and oniy if w is closed and coclosed (i.e.
harmonic).
As already discussed in Part I, any p-form w admits a unique

decomposition into its exact, coexact and harmonic pleces:



1214

@=d0 + 6B+ vy ¥: harmonic p-form (V.4.98)

da, 68 and Y are mutually orthogonal with respect to the norm
(v.4.55)., Eq. (v.4.98) implies the well-known isomorphism between the
de Rahm cohomology classes and harmonic forms, so that the number of
tlosed but not exact p-forms on P manifold, given by the p-th Betti
number bp, is also the number_of zero modes of 4 (cfr. the discus-
sion after Eq. (1.6.280)).

The action of A on p-forms with 0<p<3 is given below:

— am a

b = -Ous= -9 Qaw (v.4.99)
Aw = -Ou - 28°g = 93 0 (V.4.100)

1"a a a b [b a} T

< cd c S

Azmab = —Dcuab ® 4Racbdw + 4R [awb]c =@ Q{cwab] (v.4.101)
b, = -Blu .+ 12k, %, - erp 9 (v.4.102)

3 abe abe fab “clde [a wbc}d T

Exercise: prove {V.4.99-102) using the definition (V.4.94). For
Rab= lzezgab, we mention the following results on the A eigenvalues
(for more details see [9]).

7 R
Zero-forms. For any connected M  there is always one zero-mode of

AO, namely w=constant. Next, considering the nonnegative quantity

7 22
[d ya/—g—E.@a.@bw +c gabl =
= 2 - ag2de® + 2h) + 7c4]Jd7ya/§'m2 (V.4.103)

with AOLu:J\w and czw‘fez or cz=0, one finds that the first nen

zero & eigenvalue satisfies:

A3 28e” (v.4.104)
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with equality if and only if

2
Q*a@bm = -de"g : (vV.4.105)

Such modes occur on the round Y (the only W where they occur), and

correspond to the existence of conformal Killing vectors Ca=@aw on

S7 satisfying
2 (V.4.106)
7% e
J(acb) 4e B

(see Sect. (V.7.1}).

1-forms. From A}f -0 12e2 we have immediately
8, > 24e° (V.4.107)
1 -

For transverse vectors Dme=G, there is a stronger bound:

5 2 48¢° (V.4.108)

with equality holding only for Killing vectors.
For Az,ﬁs, simllar bounds are more difficult to find, because of
the appearance of the uncontracted Riemann tensor R, ., 1IN {(v.4.101-

102). The same is true for the Lichnerowicz operator 4;:

cd ¢ .4.108)
- _ h (v.4
bhy = 'Dhab 4Racbdh * 4R(a b)c

‘s _ i geni-
Ai, is not, in general, positive defirite, and lower bounds on the eig

value spectrum are difficult to establish, without explicit knowledge of
the #ull Riemann tensor Racb &

We conclude by giving a list of the SO(7) harmonics Y
on G/H (cfr. {V.3.37)) relevant to compactified D=1l .supergravity:

(v} [)\} {y)

P s

B T . ey

P

e
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harmonic S0(7} irrep dimension
Y(y) [0,0,0] 1 : scalar hamonic (V.4.1104)
Ya(y} [3, 0, 0} 7 & transverse vector harmonic
a

9%, =0 (V.4.110b).
Y[ab] ¥) [1,1,0] 21 & transverse two-form _

eaay[ab] =0 {V.4.110¢)
Y[abc] ') [t,1,1] 35 : transverse 3-form

@a“[az;c] =0 (v.4.1104)
Y(ab}{y] {2 L0, 0] 27 : transverse symmetric traceless

- a -

Vian) = 0r Y gy = 0 (V.4.110e)
2y) {.;., % %} 8  spinor (V.4.110£)
2, 2,1, 4] 48 : irzeducible transverse vector-spinor

a. a.
T :'.awO;@ :.a=0 (v.4.110g)

where we have omitted the G-irrep labels and indices (:}; f)\l,?\z,ls]
classifies the S0(7) irrep by specifying the corresponding Young tableau,
and the underlined numbers give its dimension.

The eigenvalues of the invariant M vperators on the harmonics

{V.4.110) are denoted as foilows(*}:

a =
-AGY—@%Y—M Y

s (V.4.111a)
(0)

b - .
- AlYa = 29 @[b Ya] = {0« 24)Y =¥

¥ (V.4.111b)
a 1(0)2 a

(*)

M7 is taken te be Einstein with Rabz 12 a0 {e=1 units).

it
i

cd-e

C de
- B)Ypgp] =39 Ygp) 7 [+ 48) & - 4r (%] Y[ge] *
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= M Y (vV.4.11%c)
() 1]
N ) 1 81‘ .€4 _
4 ¥rabe] = 37 Cave b ley Ye2e3e4] - M(1)3 ¥labe]
{v.4.111d)
_ . (de} ,,rd-e .
ALY{ab) [(T+ 48) 5(31)) 4Ra_b_] Y(de) M(Z)(OJZ Y{ab}
(v.4.111e)
JE=T%2 -TI)E= (- NE=¥ G (V.4,111)
aoa (12’
b - ;
R°5 = (9-5)3, =M B (v.4.111p)
2 * emamt *

APPENDLY V.4,1; S0{7) TI'-MATRICES

The S0{7) Clifford algebra is normalized as
{I‘a, I‘b} =2, N = disg (R )
Explicit represemtation:

T

iﬂ4®zm {‘3=u8®T3 ?A=”A®T3

(m=1,2 , A= 4,5,6,7)

where Tyr Tyy Ty are the usual 2 x 2 Pauli matrices, and

3

{iiA,UB} = - ZGAB
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0 7 0 1'2
]Ja = -1 }-ES = -1
T 0 T, ]
] s 0 -1
Hg = 2 My ®
g 0 1}2)(2 o
-3 ﬂ2x2 0
Qg =
G i ‘ﬁzXz
Hence:
0 -1 ‘ﬂm 0
I'l = r‘z =
R 0 Y
- Vg 0 - ¥ 0
Ty = Ty =
] Hg 0 Hy

The 7-dimensional charge conjugation matrix C{”

SR

¢ mn T 'a

Fa €

and in our representation takes the foxm:

4x4

is defined by

I
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¢ 0 :;T2 0
. 0 0 0 -3’.'r2
(7 niT ¢ 0 0
2
0 i?z ¢ 0

with the properties
2 T . .¢
€y = ¥ ’ L %)

A Majorana spinor n in D=7 satisfies the condition

¢ n* =

—

o~

e

L T N e

—~

—

AN N

Lt

e

R e R i
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TABLE V.4.1
HOLONGMY GROUPS FOR 7-MANIFOLDS
Helonomy Branching rule for 8 of S0{7) NMAX
Spin {7) 8 0
G2 1+ 7 1
SU(4) 4+ 0
SU(2) xSUL2) xSU(2)  (1,2,2) + (2,2,1) 0
SU(3) 1+1+3+5 2
$p{2) 4+ 4 0
SU(2) % $6(2) (2,2} + (1,3) + (3,1) 1
Su(2) x SU(2) (2,2) + (L,2) + (1,2) 0
Su{2) = su(z} (L,2) « {L,2) = (2,1) + (2,1} 0
SU(2) x 8U(2) (2,2) + (2,2} 0
30(2) 1+ 141414242 4
St(2} 1+1+3+3 2
SULY 1+2+24+3 1
sU(2) 1+7 1
su(2} 4+ 4 9
sU(2) 2+2+2+12 9
1 1+ 1 +3+1+1+1+1+1 8
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CHAPTER V.5

THE D=4 MASS SPECTRUM IN AdS® xM’ BACKGROUNDS

V.5.1 — The linearized field equations of D=11 supergravity

In this chapter we derive the D=4 mass operators arising from
the Freund-Rubin compactification on an arbitrary marifold W

As already discussed in the previous chapters, the D=4 spacetime
fields are the x-dependent coefficients in the harmonic expansion of
the D= 11 field fluctuations. Here we define the fluctuations hAB(x,y),
\pﬁ{x,y), amz{x,y) around an arbitrary background by:

Q ] -
VAA(XrY} = VAA(X.’}’) * hAB(}(,Y)VA (X)Y) (V.S.l&)

$p(x,y) = 6+ 4, () (v.5.1b}

A (YD = %Z(x,y) + By (X7 (V.5.1e)



