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CHAPTER III.6

THE THEORY OF FREE DIFFERENTIAL ALGEBRAS AND SOME APPLICATIONS

111.6.1 ~ Intrcduction

The aim of the present chapter is to emphasize the role played in
supergravity theories by the algebraic concept of "free-differentisl
algebra”, which turns out to be a natural generalization of a Lie
{supar)~algebra. This notion is well established in mathematics and 2
complete account of the related theory is given by Sullivan. (See

reference at the end of this part).

The previously discussed group-manifold scheme can accomodate
simple supergravity in 4 and 5 dimensions but certainly not higher
dimensional supergravities. This is so because when D> 35 the super-
gravity multiplet contains, besides the vielbein V;(x), the gravitine
@y(x) and the spin connection msb, which can be viewed as the poten-
tials of the D-dimensional super Poincaré Lie Algebra &, also some

antisymmetric tensor fields, For example, in the D=1} theory the super-

gravity multiplet contains a 3~index photon Ayvp(x) which, being a 3~

form, camnot be identified as the potential of amy group generator.
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This situation raises the question whether the concept of Lie Algebra

can be extended in such a way as to accomedate also forms of degree
higher than one. b3

The answer is yes and the more general structure which does the
job is the "Free Differential Algebra”. We shall show that the entire
programme of the group manifeld cen be almost trivially extended to the
case where the Lie algebra E is replaced by a "Free Differential

Algebra".

I11.6.2 - The concept of free differential algebra

To introduce the concept of "Free Differential Algebra" we start
from the dual formulation of the superalgebra via the Maurer-Cartan

: >
equation and we extend it to the case of p-forms with p=1l.

Consider an unspecified manifold M and a set of exterior forms

{BA(P)}, defined on M, labelled by the index A and by the degree P

which may be different for different values of A.
b H]
Given this set we can write a "generalized Maurer-Cartan equatlen
of the following type:

31(1’&) an(pﬁ) o
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N
gh@® L 7 LA

tom Bp). B A
n=1 Pt non (TI1.6.1)

® are generalized strusture constants with the
where Cg](p])"'ﬁn(pn) g
same symmetry 2s induced by permuting the 8's in the wedge product.

They are mon-zero only if:

(111.6.2)
prl=p vpyF et P

o aaeh®) is identicall
Equation {TII.6.1) is self-consistent only if ddo is identically

zero, This implies:
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Whenever (III.6.3) holds true we say that Eq. {III.6.1} defines a "Free
Differential Algebra” or a "Cartan Integrable System". The ordinary Lie

Algebra case is retrieved vhen ell the 8's have degree p=1.

Indeed in this case Egs. (I1I.6.1) and (ITI.6.3) reduce to

a® + 1

A B €
2 ¢ BC

8 .86 =0 {1I1.6.4)

A B g feo

se € or (I11.6.5}

ado® = - L
2

that is, to the Maurer-Cartan equations and the Jacebi identities of

an ordinary (super)-lie Algebra.

117.6.3 - The structure of free differential algebras and some thecress

A complete classification of the free differential algebras,
similar to the ciassification of semisimple Lie Algebras, is given in

the mathematical literature by Sullivan.

1t is very instructive to have a look at the most general form of
s free differential algebra (F.D.A.) as it emerges from Suliivan's

theorems. First we introduce the definition of "minimal algebra” which
a(p) =0

B{p+1) '
form appears in the generalized Maurer-Cartan equation (I1I.6.1). For

is one for which C This excludes the case where a {p+l)-

instance,

gt - oty gB() O AR (II1.6.6)

does not define 2 minimal algebra. In a minimal algebra all non-

differential terms are products of at Teast twe elements of the algebra,

o,

7

Ap}

50 that all forms appearing in the expansion of d& have at mest

degree p, the degree (p+l) being ruled out,

On the other hand a "contractible algebra" is one where the only

form appearing in the expansion of deA(p) has degree p+l, namely:
gt @) - At o A BHD g (111.6.7)
A contractible algebra has a trivial structure. The basis {GA(p)}

can be subdivided into two subsets {EA(p)} and [wB(p+])} where A

spans a subset of the values taken by B, so that

w2 o (111.6.8)

for all values B and

4@ L A (111.6.9)

Ta words this means that {wB{p+l)} are all closed forms and
{mA(p+§)} are those among the {wg(p+])} which are alsoc exact, being

the derivatives of the {EA(p)}. Denoting by Mk and Ck, respec—

tively, the minimal and contractible algebras generated by all p~forms

with psk we can write

acte ! (111.6.10)
for the contractible algebra, and

A e (T11.6.11)

for the minimal one.

Mow Sullivan's fundamental theorem tells the following:

Theorem 1: The most general Free Differential Algebra ig the direct

sum of & contractible algebra with a minimal algebra.
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Therefore we just need to study the structure of a minimal

algebra,

The decomposition of amy F.D.A. into its minimal and contractible
partg:

& =Ce M (111.6.12}

can be obtained via an iterative redefinition of the generators which

we do not show here.

A second theorem states that the most general minimal algebra is

obtained by means of the following iterative procedure.

Theorem 2: Iterative construction of a Minimal Free Differentisl

Algebra:
a) First comsider a finite dimensional ordinary Lie Algebra €.

It is described by N I-forms {GA} satisfying:

do +%cmc a0, (I11.6.13)

b} Hext consider the spectrum of finite dimensicnal irreducible
representations of €. For each representation D(n) (n-labels the
representation) we will have a matrix ﬁ(n} (TA)]:'j satisfying the
commutation relations of G. By means of this matrix we can introduce
a B-covariant derivative:

() _ i 4 _{n) i
v = (l).jd +¢ . D {TA}‘j (II1.56.14)

acting on objects which have an index j in the chosen representation

space. Bquation (I11.6.13) guarantees that the operator V(n) satisfies

gm} olm) _ o (1I1.6.15)

<) Now consider the polynomials of the following type:
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i i ] B (I11.6.16)
=g g v A O
%a,p) Aoy

N . n} R .
where 1 runs in the irrep D( and Al"' AP run in the adjoint

. 1
representation of G. QA s are constants.

1 ] .
. . i
The above objects are named Chevalley cochains. A cochain Q(n,p)

is called a coeyle if it is covariantly closed:

(n) i - (I11.6.17)
v Q(“:P} 0

On the other handé a cochain ﬁtn 2 is named coboundary if we can
M ’
i

find a cochain é{ 1 in the same representation such that
. Typm

i _ o{n} i (111.6.18)
ﬂ(n,?) =7 Q(nsp"l) )

0f great interest are the cocyles which are not coboundaries.
They are the representatives of the Chevalley cohomology classes of the
chosen Lie Algebra 6. They are an intrimsic property of & and depend

. n
both on the degree p and the representation D

cochains

coboundaries

Fig. IIL.6.1.

d) Each cohomology class ﬁ(n p) corresponds to a possible extemslon
]
of (II1.6.13) to a non trivial differential algebra. Indeed for each
i i .
{ i ite the
cocyle g?n,p) we can introduce a new form A(n,p—i) and wr
generalized Maurer-Cartsn equations:

A1 A B C_g (111.6.1%a)
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i Al
A + 4§ =
(n,p-1)  "{n,p)
a') At this juncture, we can start the whole procedure once again
using {II1.6.19) as starting point. Namely, keeping the defimition of

V(ﬁ) fized, we can consider the cochains constructed on the forms

(oh, 4ty

NI R »
E) - + ¥
(n,p) Al...Ar ieedg
Al Ar i% is
® G N aes A T . A ”onee o A
(“1’95) {ns,ps)

{111.6.20)

where

3
p=r+ ) p (111.6.21)
'::] 1
1
and i runs in the (n) representation; A]...An run in the adjoint
representation and ij run in the nj—representation respectively.
(n}
v

Equations {II1I.6.19) guarantee that the operator is gtill closed

[V(“)2= 0] also in the larger space of the ﬂi' cochains. Hence we
can still talk about cocycles, coboundaries and cohomol?gy classes of
the new structure {III.6.1%), Each cohomology class ﬁ?;’p} corres~
ponds to a new further extension of the differential Algebra. It

'

suffices to introduce new A forms and write:

(n,p—l)

ALl A B C e
do” + 5 ¢ BC g .0 0 (111.6.22)
MO NN {(311.6.23)

(n:P"]) (nsp)

(n} 1 g = ©(1I1.6.24

¥ A(n,p-l) + Q(n’P){c,A) 0. ( )

In this way one obtains, iteratively, the most general free differemtial

zlgebra which contains a given ordinary superalgebra €.
B4

B

&l

The above theorem is of outstanding relevance for the geometrical
foundations of supergravity. Indeed it tells us that all the particles
appearing in the spectrvum, multi~index photons included, have a geo-
metrical origin and are sc to say “predicted” by the geometry of rigid

superspace, namely the super Poincaré Lie Algebra.

The impertant point is that a Lie Algebra determines its possible

extensions through the mechanism of Chevalley cohomology.

As an illustration we now give a few pedagogical examples:

{n (2)

Example i: Consider a l-form & and a 2-form §°7°. The

most general noatrivial F.D.A. we can write with these ingredients is;
(1 2 2 1
w0 a0 (I11.6.25)

Tndeed a8V g @@ a2t has

to be zaro. On the other hand (II1.6.25} are consistent since

cannot be unless =0 because

M o g (111.6. 26)
200 _ @ G, @ ()
NG N O L (111.6.27)

The system (III.6.25) is in fact equivalent to an ordipary group.

Indeed we can set
l i
dM Loty @l 2 (I11.6.28)
where

d e0  ateo .o (111.6.29)

and then (ITI.6.25) follows from {iI1.6.29). The corresponding algebra
has the form [t ,t;]= fe,.t,] =0, [£,.8,] =-2t,,.
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Example 2: Consider a bosonic I-form b, a bosomic 2-forz A
and a fermionic I-form 9. Since § is fermionic it commutes with

itself and with A but it anticommutes with b.

We can easily check that the following F.D.A. is consistent:
dh=A,.b+y . ¢.b; &= 0; d=b_ ¢ . (I11.6.30)

Just as in the previous example, (III1.6.30) is equivalent to an

ordinary supergroup. Indeed, introducing az new bosonic I-form t we

can write
A= BI t.b+ 82 ] (111.6.31)
dt = v, b.t+ Yy v (111.6.32a)
db =0 {If1.6.32b)
d =B, ¢ (111.6.32¢)

vhere Bl’ BZ’ Yy, ¥, are numerical coefficients, to be fixed by
requiring that (II1I1.6.32) be consistent and (IT1I.6.30) follow from
{III.6.31-32). ghe only consistency requirement whieh constrains the

parameters is dt=0 which yields (yl -—2}";2 =0. Substitution of
11i.6. i i

(. 31) into (IIT.6.30) yields B]YZ +82 =], One can now choose

different values for the parameters that still remain free, cbtaining

different groups.

Example 3: As a less trivial case we start from the Qsp(4/1)

group on which D=4, =] supergravity is based:

ab ab 8 cb

Rz dw - w cn W 0 (117.6.33a)
a. ,..a_ ab i
Kz av® -u® v -8y =0 (II1.6.33b)
2
= T = - l ab
p =Y =ady 79 ATpt=0. {111.6.332)
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One notices that within Osp(4/iy the following 4-form
iy
A AR v ; (IT1.6.34)

is a representative of a non trivial cohomolegy class with respect to

the identity representation. Indeed, if D=4, we have:
g0 =129} 123 R
vg_dsz-zwwnymw“v‘“wg)ﬁ:mm%abmw

1 - m -
% LR AL AN A A 0 (I11.6.35)
where we have used the Fierz identiry (II1.2,21). On the other hand
one can easily be convinced that there is no way of producing 2 as

the result of a derivative of a 3-form contained ameng the Bspl&7 Ty

cochains. Therefore # 35 closed but not exact. Correspondingly it
can be used as the non-derivative part in a generalized Maurer-Cartan
equation for a 2-form, say T,

(111.6.33) can be extended to the following F.DuA.?

aW® - el =0 (111.6.362)
2y - %E LYy =0 (II1.6.36b)
Gy =0 (111.6.36c)

(I11.6.36d)

i ™ -
ar Zliqudu 0.
In discussing Sullivan's theorems ve have seen the réie played by

Chevalley cohomology. Now we note that Chevalley cohomelogy of a Lie

Algebra can be further specialized to the concept

of a Lie Algebra 6 with respect to a subalgebra M.

1t is actually this more restrictive cohomelogy which is most

relevant to supergravit

Tt is easily introduced. In our previous definition the cochains &

and the Ospl4/1) Maurex—Cartan eguations

of relative cohomolegy

v and lies at the basis of the rheonomy approach.
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(1)

were polyncmials in all the € one-forms {GA}. if we restriect @

to be polynomials in the K components of {UA} where
t§=HeaK {II1.6.37)

is the splitting of € into z subalgebra M and a subspace K and

if we also demand that the coefficients Qz A be invariant tenscrs
preedy
of H, repeating, for the rest, the same construction as before, we

obtain the relative cohomology groups H(p) (@, H, D).

The foilowing theorem holds:

Chevalley-Eilenberg Theorem 1: If G is semisimple and D 1is

irreducible (and nmon trivial), then for all cheices of H and p we

have

1P o, m, m =0, (111.6.38)

If a representation D is not irreducible (hence fully reducible)

then the covariant derivative operator ¥ splits into the sum

VeI g} (I11.56.39)

where V{n) are the covariant derivatives of the irreducible components
. P i i

of D. A p-form in the D-representatlon 18 also a sum w =l w(n} and

for each irreducible component wtn) the above theorem can be applied.

We have therefore the:

Corollary: For € semisimple and D a fully reducible represen-

tation not containing the identity representation

g, = 0. ' (111.6.40)

This means that 2 semisimple algebra can have cohomology classes, and
hence free differential algebra extensions, only in the trivial repre-
sentation D=1. Moreover, the theorem shows that non trivial cohomo-

logies are mainly to be found in nonsemisimple algebras.

805
In fact we have the following theorem:

Chevalley-Eilenberg Theorem 2: I1f & is semisimple and D is

the identity representation, then there are no nontrivial I-form and

2-form cohomology classes.

There is, however, always a non trivial 3-form cohomology class,

namely:

9= CABC @ .0 .0 {I11.6.41)

where CABC are the structure constants with all the indices lowered.
This means that for ¢ semisimple every closed l-form or 2-form is

exact.

As an application of this theorem we notice that the 3-form &
of Eq. (IIX.6.35) is closed only for the nonsemisimpie group Osp(&/1).
Indeed if we were to use the semisimple versionm 0Osp(4/1), then from

Eq. (III.3.189¢), taken at zero curvature one has:

a

By=igyp .V (I11.6.42)
and therefore
o (111.6.43)

gecording to the theorem.

As another application we may consider the extension of the
(semisimple) group SO(3) defined by
i iik _
dg +~£ € oj. - Oy = 0. (I11.6.44)
This algebra can be extended by means of a 2~form A whose

derivative is

ijk
€ G, AT, A0 o (I11.6.45)

=i
da 3 i i k
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Equations (III.6.44) and (III.6.43) are integrable since
w=¢€,,, ¢ ,ad 4@ {I11.6.46)

is the only acm trivial cohomology class of order three predicted by

Chevalley's second theorvem.

All the examples of F.D.A. given so far de not have direct appli-
cations to supergravity thecries. In the vemaining sections of this
chapter we study a non trivial example of F.D.A. which is relevant for
the form:lation of a D=4 supergravity theory, namely the Sohnius-West
medel also called the new minimal formulation of N=! off-shell super-

gravity.

This example will be the topic of Sect. I1I.6.5 and II1.6.5 and
will provide an example of supergravity theory with auxiliary fields
whose action is off-shell supersymmetric. In Sect. IIT.6.7 we give the

building principles of supergravity theories in their final form.

The role of F.D.A.'s in higher dimensional supergravities will be
discussed in the next two chapters for the D=6 and D=1l theories and in
Chapter IX of Part VI for the D=10 theory.

I111.6.4 - Gauging of the free differential algebras and the building

rules revigited

Physical applications of the F.D.A.'s require a generalization of
the concepts of soft i-forms and curvatures introduced for the gauging
of the Maurer-Cartan equations (see Eqs. (IIT,3.130-134)). 1t will he
evident that all the concepts advocated in the geometrical construction
of supergravity actions based on Maurer—Cartan equations ean be straight-
forwvardly extended to theories based on F.D.A.'s. Therefore it suffices
to give z sketeh of this generalization.

A{5’): they are in one~to-one

First we introduce the soft forms =
correspondence to the rigid forms SA(p}, but do not fulfill the
generalized Mavrer-Cartan equations (1I1I1.6.1). The deviation from zero
of the r.h.s. of {III1.6.]1) defines what we call the curvature of the

set 'ﬂ'A(p) H
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N B (p,) B {p )
Alp+1) _ . A) 1 .AG) 1 R
R = dn + n£l - CB;(pl)"an(pn) % wree oT

# {I11.6.47)

Obviously the ﬁA(p)'S can be viewed as the "Yang-Mills potentials” of

the soft ¥.D.A. and the R#(p+]) are their field-strengths, in the same

way as the |-forms uA are the ordinary Yang-Mills potentials of a
(super} group and the RA(p) are their related curvatures. On the

+1 :
base space, i.e. on space-time, nA(P) and RA(p ) can be equivalently
considered as graded-antisymmetric temsor fields of degree p or p*l

respectively. If we apply the d-operator to both sides of Eq. {I11.6.47)

. +1 .
we obtain a differential identity om the RA(p ) vhich we can call
generalized Bianchi identity:
wb® s O ) g R
def ne=i 171 nn
B (p+1)  B,(p,) B (p,)
cr TR 0T g (111.6.48)

In complete analogy to what cne does in ordinary group thecry we say
that the left hand side of (III1.6.48) defines the covariant derivative

. (p+i) .
v of an adjoint set of p+i-forms; that is if P is a set of

p+1-forms, the combinatien:

¥
Al Al Ap) x
? nzi B](pi}...Bn(pﬂ)

B, (p,+] B,{p,) B_(p_)
< H 1B+ nnz?z R (111.6.49)

. . . Alprl} : .
will be named the adjoint covariant derivative of B P*H7 0 with this
definition the Bianchi identity (IIL.6.48) just states that the cova-

Alp+1}

riant derivative of the curvature set K is zero just as 1t

happens for ordinary supergroups.

Let us now assume that we have a multiplet VA(D-p=1) of forms

whose degree is the complement of the degree of pb(p+!}  with respect

to some fized number D. We say that {“A(B—p~])} ig a coadjoint set

of (D-p-1)-forms if:

e

BT T o e e

e

P e

s

— A



- et (111.6.50)

» Valp-p-1)

fs an invariant, meaning that the covariant derivative of I coiacides
s

with its ordinary exteriotr derivative:

+1 A(p+) )
o1 = q @ e * [ D LARE LA Wy mp-1)

- ante*) Y ALY

= dl ~ Va(m-p=1) A(D=pm1). 7

{III.6.51)

Equation (IT1.6.51) provides the definition of coadjoint covariant

Tndeed, in order for (1I1.6.51) to be true, we must have

derivative,
- d - Pt § cB*(p*) —
VvA(D~p~E) = vA(n«p—l) el A(p)Bz{pz)... 2 Pr
B,(py) B ()
xq M eer W F R VBL(D‘P“I} (111.6.52)
where
(1I11.6.53)

Pl « 1 =p+ pZ + 93 E P 4 1:r!1 B

Let us now consider the construction of geometrical actions based on

F.D.A.'s. The modifications to the building rules established in Sect.
111.3.9 are almost cbvious.

The proper generalization of rule A is the following: an action

g i £t forms WA(P)
is geometrical when it is constructed in terms of the so 0

and of their curvatures without use of the Hodge duality on forms.

. I
Furthermore the action usually contains also multiplets of O-forms F,

and can be written as follows:

~“’=I 1+ 204D

e

RA(pH) ARB(q”)

+
~Va(p-p-1) ~V 4B (D-p-g-2)

I A A (TLT.6.54)
Lo E) -

o] JMD

the O-form variational equations be satisfied at both R

oUd

Here MDC:M is a floating D-dimensicnal hypersurface and M is the

supermanifeld on which the soft forms wA{p)

A(P)r

are defined. A, Yy and

Vg are polynomials in the ¥
respectively. Notice that {IX1.6.54) is completely analogous to
(II1.3,148) and to its generalization Eq, (III.4,36). 4As we discussed

in Sect. IIY.3.9 and examplified in the W=, D=4 theory and also in the

s of degree D, D-p~1, D-p-g-2

coupling of gravity to matter fields, the extra term S?KIN appearing
in (IIL.6.54) conteins multiplets of O-forms FI which are necessary
for the construction of the kinetic term of fields whose spin is S 1.
In this way one obtains the most general action which is still geometri-

cal, since it does not contain the duality operator.

As far as xule B of Sect. XIT.3.% is concemmed, we require that
when the F.D.A. is H-gauge invariant, H being a Lie subgroup of the
given F.D.A., then the corresponding action should also be H-gauge-
invariant. The corresponding requirements on the general term of
(II1.6.54) are exactly the same as in the case of an ordimary super-
group.

The condition to be satisfied by the action (II1.6,54) in order
to admit the vacuum solutiom, rule D, is also the straightforward
generalization of condition {(III.3.138) {or of its counterpart in

presence of O-forms Eq. (ITI.4.48)), namely:

54 - Alp+1}
A a7 R 0 (111.6.558)
at
8
=0 rhe 0 (1T1.6.55b)
5 Fr

Equations (III.6.535a) are the variational equations derived from
(II1.6.54) evaluated at vanishing curvatures in sbsence of O-forms.
When the O-form fields are alsc present we must add the conditions that
Alp+l) and FI
equal to zero. Indeed, as we pointed out several times, the Flrs are
to be identified in second order formalism with the field strengths of

physical fields (see Chapter I.5 and Sect, ILL.4,3),
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The rheonomy principle B can also be extended in a straightforvard

manner. We demand that the parametrization of the generalized curva-
tures, given by the equations of motion, must be such that the outer
components, that is the components along at least one ¥, nust be

ewmw%hin&msdthpWﬁwlﬁﬂ&ﬁmm&smt%smmf

time MD.

Finally the good scaling behavior, building rule C, can be
extended also to the general case since, as we are going to see in the
sequel, the F.D.4. and its related Bianchi identities possess a rigid

scale invariance,

In the next section we study a first example of a physical theory
based on a F.D.4A.

I11,6.5 - The Sohnius-West model (New minimal N=] supergravity):

the on~shell formulation

We begin by introducing a slight gemeralization of the F.D.A.
given in Egys. (II1.6,36). Let us start from the D=6 super Poincaré
Algebra with a chiral charge whose associated 1-form potential is
denoted by A. The ordinary Maurer-Cartan equations corresponding to
this superalgebra are:

@®-e® uP 0 (IT1.6.56a)

gy° - %% %= 0 (111.6.56b)

Gy - % Ysb . A= 0 (I11.6.56¢)

=0 (I11.6.56d)
The 2~form:

Q= -% b . tA N e (111.6.57)

8N
introduced in Eq. (I11.6.34), is closed also within the new group
osp{4/1) xU(l}, since & is a U(1) scalar. Indeed:
ds}mvﬂ%z@nvm?mﬁﬂvmérE:—;-}Zéﬂ\'m‘baéﬁx'mw
=%$,Y5Ym¢,ﬂaﬂv‘”—%$Ay‘“u“@hymwso (I11.6.58)

since both terms are identically zero.

Therefore introducing the 2-form 7T we may add to Egs. (I11.6.56)
the further equation (II1.6.36d) namely:

® i= m = 0 (111.6.59)

Equations (III.6.56) plus (I11.6.59) define the F.D.A. uaderlying the

Sohnius-West model, also called the new minimel N= supergravity.

According to the discussion of the previous section we now gauge
the F.D.A. just introduced.

) Tald
Using the same symbols W*, V%, 9, A, T} for the gauged fields

as for the left-invariant ones, we define the following set of genera-

iized curvatures:

b g geb 111. 6. 60a)
Rab = dwab - mac Y (
a_ gyd.i3z 2 . (1IL.6.60b)
RO = 2V - 5% . Y'Y
i (111.6.60¢)
g = Q'}J - "2" Ys"p - A
R® = da {111.6.604)
& a (I11.5.60e)

R =d’.[:—~§-§.ym\{i,.v

. & . .
Notice that Rab, Ra, p and B° are 2-forms while R  is a 3-form.

By d-differentiation of both sides of the strzuctural equations

(III.6.60) one cbtains the generalized Bianchi identities

o

P

— e

B U .

P T T T S N N

2

e e,

Py
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(IIL,6,61a)
_ab
28% = 0
SR T (II1.6.6ib)
G+ ™y - 0¥ TP
P, o
, 1 ,ab g~ div.b . R%=0 (I11.6.61¢c)
G i +o B2 TV T T M
Gp + 7 V5P - A+
. (II1.6.61d)
aRr®=o¢
- m, iy vy  BE=0 (Il1.6.61e}
AR -i7. vp -V 3 Voo Ty

: ons (I11.6.60) are an extension of the ordinary
tio

ak

DA, equa 2
The soft F.D.A, equ Hence ve know that Vi, w’ and

S tions,
£t E/7Y structural 2qud \ .
% Ospi./bi ) resent the vielbein, the spin connection and the
iable to rep
wu are . -
gravitino field o . ;
the two extra fields A and T - will play

| supergravity. Furthermore, as we are going

to see in due course,

he réle of itiary ¢ields, Namely they will be non-propagating
the rdie of auxilia

resence is necessary for
: . —shell, but whose p
fields which are zero o

he off-shell closure of the supersyumetry algebra under which the
- clo .
z ° e .S E' invariant. ThUs they play in N=i D=4 supergravity the
rangian 1s inva .
ag an%l laved in the Wess-fumino model by F and § {see Chapter
same tdle played in
11.6). '
int ¢ of the gohnius-West model based on (IIL.6,60) is
The interest o ) ) .
fold e hand it ig an example of the gauging (= softeming)
thus twofold: on om
DAL the othe
of e > has therefore, a closed off-shell algebra of
4

r hand it is also a geometric theory with

auxiliary fieids which

: i ith the first explicit example
s . 11 provide us wit
transformationg, This Wl

et it will cast new light on the inter-
of off-ghell rheonomy. MOT®IV

; ; ctions.
pretation of geometrical @

indi - lation of
. : rhat of finding an off-shell formu
Since our goal is t

. h need is a parametrization of the curvatures
supergravity, what we

: itions:
satisfying the following condl

with the Bianchi identities (II1.6.,61), without
i istenc without
D consis ? equations.‘,This guatrantees off-shell closure
implying the space-time g

of the algebra.
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ii) rheonomy, that is, all the cuter components of the cupya-

tures are given in terms of the inner ones.

iii) consistency with the variational equations associated o
the actien.

Pulfillment of these conditions defines off-shell rheonomy.

In order to decide whether the condition i1i) holds, we must of

course find an action. Using the building rules for geometrical actions

established in Seet, TI1.3.9 and generalized in the previous section for
F.D.A. one obtains:

é iy a o
Eabed T AV LYY L V-4 RT ),

(I11.6.62)

This action can be easily retrieved by observing that the only other

terms that we can add to the action (I11.3.51) of N1, D=5 supergravity

must be consistent with the S0{},3) xu(1} gauge invariance of Eqs.

(III.6.60-61) and have the same scaling powver [wz}. Bow Eqs.

{II1.6.60-61) imply that fields and curvatures must gcale as follows:

w0 5 80 ; g? 5 g (I11.6.63a)
v s yd R S (IT1.6.63b)
[ wl/zw ; p wl/zp (II11.6.63c)
A+ A ; 2"+ " (IT1.6.63d)
T+ Wit P (II1.6.63)

The only geometrical term fulfilling the two requirements is easily
seen to be: 2R® | T. Its coefficient can be found by imposing the

vacuum condition on the equation obtained by A varistion. Then one

finds immediately: a=-4, This justifies Eq. (II.6.62). The equa~

tions of motion derived from the action (I11.6,62) are:
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6t 2 ey 2. v =0 (I11.6.64a)
d . ab ¢ z _
6V sz, S RT LV A vgrg = 0 (1I1.6.64b)
m -
841 By . V-4 Yer$ . B =0 (111.6.64c)
8
FATR =0 (111.6.64d)
§T R =0 (1I1.6. 6he)

The first three equations are the same as in N=1 D=4 supergravity (see
Egs. (I11.3.52)) and lead to the same space time equations and rhecnomic

conditions.

Fquations (I1I.6.64d,e), however, say that both the A and T
#ields have a vanishing curvature in superspace. Therefore the action
(111.6.64) describes a theory which is not essentially different from
the usual ¥=1 D=4 theory, and the algebra of supersymmetry transforma-
tions leaving (III.6.64) invariant does not close off-shell. This will
be apparent from ouy subsequent developments., Hence for the purpose of
atriving to an off-shell supersymmetric theory we extend the previous
action by adding a kinetic term for Tuv' This we do by introducing a
O~form fa according to the procedure explained in Chapter 1.5 and in
the comstruction of the D=4 W=2 theoxy, Sect. III.4.3. Following these
latter examples we supplement {(III1.6.62) with

k L

- & & o i
KIN JA (afaR Y +Bfafei}.mv,vavhv}

Mol (111.6.65)
vhere f£° is an 80(1,3}-vector valued C-form which we want to identify

with the VWV components of R%.  Indeed setting

8 _ 1] k b
R v v Ly Eiij {111.6.66)

by 6£2 variation of (III.6.65) we find:
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i jkia a ikt _ 6
o f Eijk& £ + 2B ¢ Eijki £ 0 (111.6.67)
which implies B=w/8. Thereforgzwe arrive at the following final
form of the action with O-forms:
. &b c d - a
Al J 4 EEPA Cabed T 4V - Vst - Y
McM
-GRY T el R LY,
sleste b v VL) (I11.6.68)
a ijki
The new eguations of motion axe:
ab c d
. = 111.6.6%
Sw™ ¢ 2 sabcé R,V 0 ( )
582t ak®=a vl v Ve (I11.6.69b)
: - " ijkk
a k& n -
VT 2R LV € kgn 4y, oY P
N - P I I A (I11.6.69¢)
) aijk
mo . 2
8 5 8 ygyp -V 1a'fm1b.\vm,\fav
" .
- = 111.6.694
boygy ¥ R¥ =0 ( )
B m ia [ o= m
ST:-4R +a¥ , Pf - L.V
~af BE°=0 (I11.6.69)
m
& (I11.6.69%)

AR =20

Considering £2 ag s O-form field strength, according to the discussion
following {I1T.4.48) and (I1I.6.65), we see that Eqs. {IT1.6.69) satisfy

. . ab a2 & 6
the vacuws condition, namely they admit the solution R =R =R =R =

250 independently of the value of the parameter ¢,

TN TN A

TR TN T s

—~

o

B T T

P

e
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Next we obsetve that the on-shell eontent of the extended actiom
{(II1.6.68) is idemtical to that given by action {III.6.62).
. a
Indeed Eqs. (II1.6.6%b) snd (111.6.69f) imply £ =0 so that the

set of equations (I1.6.69) is equivalent to the set (I11.6.64). There-
fore, recalling Egs. {1I1.3.74) and (T11.3.62), we find the following

rheonomic parametrization of the curvatures:

=== 0 (111.6.70a)
- a b (I11.6.708)
p=py, VLY
% - g% R L R (I11.6.70¢c)
[ " c

~ ab
where @abc is given in Eq. (I11.3.72), and the teasor R~ and the

tensor spinor P satisfy the propagation equations:

1 ,a m 0 (III.5.70d)
bm 2 b mmn

(I11.6,708)

L}
<

m
Y fan

Hence rhecnomy if fulfilled because every non-vanishing cuter component
. &

of the curvature is expressed in terms of the inner ones R an’ Pma

This impiies that every solution of the restriction of Eqs. (III1.6.704,

e) to the 4-dimensional space-time surface can he uniguely extended to

a soluticn on the whole superspace manifold. Notice that the above

result is independent of ao. If we perform a superspace general coordi-

nate transformation on this extended solution and ther we restrict it

once again to the x-manifold we obtain a new solution of the restricted

equations. Hence rheonomy guarantees that the x-space field equations

have an algebra of symmetries with as many generaters as there are forms

in the differential algebra (II1.6.60).
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111.6.6 - The Sohnius-West model; off-shell extensions

The important point to realize is that Eqs. (ITL.6,70) allow the
extension to the whole superspace only of those initial data which in
x-space satisfy the differential equations (IIL.6.70d,e}. That it must
he so follows from the fact that on-shell the theory is not essentially
different from the ¥=1 D=4 supergravity of Chapter III.3 since both rY

and R®, the curvatures associated to the new fields, are zerc on shell,

Therefore if we insert Egs. (IIL.6.70a,b,c) into the Bianchi
jdentities (I1I.6.61) we obtain, as in Sect. IIl.3.6, that they are

satisfied only upon use of the space-time equations (IIL.6.70d,e).

In the present case, however, we are more ambitious and we would
like a recipe to extend not only solutions of the space-time equations,
but alsc arbitrary off-shell configurations. The reason is that even-
tually we want to do quantum physics and we need supersymmetry of the

action functional and not oniy of the equations of motion.

In order to do that we have to figure out whether we can write a
rheonomie parametrization of the curvatures (I1I.6.60) which is softer
than that given by the superspace equations of motion, By softer we
mean the following: the new parametrization should contain as a
particular case the on-shell parametvization (I11.6.70s,b,c), but in
such a way that the Bianchi identities should not imply the space-time
equations {III.6.70d,e). Contrary to what happeas in pure supergravity,
this program can be solved in the present case since the extra fields
TW and AU provide a more general rheonomic parametrization of the

curvatures.

To determine it we write down the most general rheonomic para-
metrization which is compatible with the 50{1,3) x#{{) gauge invariance
and the scaling law (IT1.6.63). In other words we use the building
rules of supergravity in comnecticn with the Bianchi ideatities as
explained in Sect. ITI.3.12. Moreover we impose from the beginning the

two eonstraints:

RE =0 (III.6.71a)
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® _.a b ¢ 4
=5V v .V € obed (111.6.71b)

These in fact are kinematical equations of motion which allow the elimi-
*
nation of the first order fields wsb and fa.( ) What we want to
remove are the space-time equations of the physical propagating fields,
a
namely: (Vu, wk’ Ab’ Tyv)'

Taking Egs. (II1.6.71) into account it is easy to write down the

following rheonomic (and hopefully off-shell) ansatz for the curvatures:

R =9 (111.6,72a)
B =gt yd | gk £k (111.6.72b)
Rab - Rabmn W™yt (2i‘§c[a Yb] -1 ﬁab Yc)$ R

-ie glbed 3 R (IT1.6.72¢)
b =Py ve Vb + gl y5$ . fava - i YSYmn¢ i (I11.6.72d)
=r, v Ve A SRR T (111.6.72¢)

We point out a few peculiarities. First of all we have given to the 4V
component of Rab the same form that was obtained in Eq. (II1.3.219a)
vhen we solved the Bianchi identities of the D=4, ¥=| theory, This
(D, | y
form, called 2] c in Table I1I.3.I, was shown to be on shell equi-

valent to the one used in (I1I.6.70e), found by solving the space-time

(D
equations of motion { 9 zb in Table IFT.3,I}. It is quite natural ro

(Ir)ab \ . . . N
use 8 . Inour ansatz since our goal is to find a parametrization

of the curavtures which satisfies the Bianchi identities without the

use of the equations of motion.

(*) (I11.6.71a) fixes also the vielbein supersymmetry transformation
law (see the comment after Eq. (ITI.3.208)).

' o
ing the definition of the ¥ comp%?ent of R",
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~3/2
i i ter—
i with scaling behaviour [W ], en
Secondly the spinor Xm oot 8
must be mal ab
b
by rheonomy.

i . th
Thirdly L itself must be proportiomal to the i.h.s of the

gravitine equation (111.6.70e}. Indeed the given ansatz {111.6.72)

must reduce to the cn-shell parametrization (I11.6.702,b,c) if we

supplement (111.6.72} with the equations of motionm of the propagating

i a-0; i to xetrieve
fields. Wow Eqs. (311.6.70) impiy £ =0; hence, ib order to

a > 4 d
Eqs. {1IL.6.70), the sforementioned proportionality between 3 = an

n
st hold.
Yoe, ™

i d
We are therefore left with the computation of 8, £ Gy» O an

of the explicit form of the spimor x by working out the Bianchi iden~-

i i ints
tities. Let us rewrite Egs. (III.6.61) using the first order constral

(111.6.71):
b (T11.6.73a)

9r* =9
R® v i .y =0 (111.6.73b)

0D-yp (111.6,73¢)
sabcd) -13 a =0 (II1.6.734)

2 (I11.6.73e)

the YWV component is identicaily
; at the WPV level one

Let us first consider %q. (IIL.6.73b};
satisfied by the parametrization (IIT.6.72c)

easily finds

(III.6.74)

Next we examine the yyVV projection of (II1.6,73d); one finds:

a- b c v i g ¥ . b
£y L yv .V LV e . a
bed (YI1.6.75)

e N Y

ST ST AT s s

.

—
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where we have set

B, b b
B = -3 .6,
1375 f i ¢y '\{5 Yab i, (I11.6.76)

It easily follows:
¢y = €y = 3/ . (111.6.77)

The §VVV projection of the same equation gives on the other hard:

- gbed ;= a b _
V. By - Vb DV LYy E ol P S RN vV L v =0

(¥11.6.78)
where Ea is y-component of Qfa:
Gf =@ f T +pE_, (IT1.6.79)
a ma a
Equation (I1%.6.78) implies:
52, . 1 abed s (111.6.80)

31 ¢ Ve Py

In this way we have solved Eqs. (II1.6.73b) and (I11,6.73d).

Next we consider the gravitine Bianchi equation (III.6.73c). At

the Yy level we have:

abed

1 5B . 3
R B R A A N ST VEgE

2

=1

(171.6.81)

i
L)

1 - m
+§“C3Y5¢»¢.\Y YE

This equation can be analyzed into its irreducible comstituents using
Table II.8.V,

Annihilating the coefficient of 5(12) yields

¢y = j-a . (11¥.6.82)

Finally we examine the UV projection of Eq. (III.6.73c); we find:

82t

; - b -
mabwm%,v "lavsﬁbnb:aaVa

3i z A b _i_rs -

2 Y5V ab bowE LY 4 LA Tr Psp ¥
sy e ) =Ry u § v¥ =0 (111.6.83)

b "rg’ 2 '5 7" Xa o U

where is given by Eq. (I11.6.80)}. Decomposing { ¥ according

“b
to Eg. (I1.8.V) we obtain two equations corresponding to the currents
¥ me and ¥ ymnw. After some y-matrix algebra one finds the follow-

ing common solution:
& _ ia _abed . ma
X =2 (3! £ Ty feg ~ Y5 Tp P ) (I11.6.84)

The two terme on the r.h.s. of this equation are both proportional ro
the 1.h.s. of the gravitino equation (see Egs. (IIL.2.62c) and
(11E.2.100b)).

Therefore the spinor Xy is indeed proportional to the 1.h.s. of

the gravitino equation as anticipated.

At this point the parametrization of the curvatures has been
completely found with the exception of the parameter a, which is still
gndetermined. The only remaining place where it could be determined is
in the ¢Py-projection of the gravitino Bianchi identity (131.6.73c).
However in this projection the two terms coataining the a parameter
cancel identically leaving an equation among the Py components which
ig identically satisfied. However this apparent indeterminacy is
spurious since the presence of the parameter a just amounts to a
redefinition of the gauge field A. Indeed we see that the term
ia75¢£3 -V, sppearing in the r.h.s. of Eq. {111.6.72d) can be
reabsorbed in the SG(1,3)®U(1) covariant derivative £V by
redefining A'=A+la £2 v, Thug, Fixing the value of a is equiva-
lent to fixing a particular definition of A. In the following we

shall keep this freedom for later convenience.

Thus we arrive at the conmclusion that the parametrization of the

curvatures in Bgs. (II1.6.72), with €s Ty Oy and Xy given by
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Eqs. (II1.6.74,77,82) and (III.6.84) respectively, is consistent with
the Bianchi's and does not imply the space-time equations of the
physical fields. Therefore, using Zqs. (I11.6.72) into the definition

of the superspace Lie derivative:

st =g af e a el = et et (I11.6.85)

where uA E{Va, v, uab, 4, T}, we obtain an off-shell closed algebra

of supersymmerry transformatioms.

It is useful, at this point, to compare the previocusly found
parametrization of the curvatures with the variational equations
(311.6.70).

We have already observed that the use of the vwhole content of
Eqs. (I11.6.69) impiy fa=0’ and hence R¥=R"=2%=0 so that we
are on-shell, If however we disregard Eq. (II1.6.69f), znd we consider
Egs. (II1.6.69a) and (I11.6.69d), using the yV component of p as
given by the Bianchi's, from Eq. (I1¥.6.69d) we would obtain:

. b 3i r .5 a
SYngag¢f Yy ~§ngﬂ:AV £ .V
-day vV, v £, =0 (111.6.86)

This equation is inconsistent unless one has fa==0, since the second
term inside the brackets has no counterpart. This shows the mechanism
of rheonomy: the on-shell parametrization of the curvatures, which is
determined by the variational equations, is consistent with that given
by the Bianchi identities, but requires the use of the space-time

propagation equations; in this case: fa--O.

Fow we come to the invariance of the action functional under the
transformations (III.6.85), The fact that (111.6,85) close an algebra
of off-shell transformations for the physical fields does not mean, of
course, that this should also be a closed symmetry algebra of the
action (III.6.68). We have given in Chapter III.3 the condition under

vhich an action functional of a certain 4-form over some 4-dimensional
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surface M& immersed in superspace is invariant under 8 closed s%t of
supersymmetyy transformetions. There we found that this happens if and
only if the Lagrangise is a closgd form, namely: d¥= 0.

Therafore our mext task is to consider the d-derivative of the
Lagrangian (171.6.68}. Using the Bianchi identities (111.6.73)-in
second order formalism (nemely with the two kinematical constraints
{111.6.71) included) ome obtains:

- a a ®
a¥= 4 p . Y5V, P s v - 4R LR

- b a
vadf R LV eiaf §.y eV LV
a” a
i k |2
' ¥ 2 8 vow L v Ly
SRR Ly g B L
. . C e
> g g? hov vt Lv (111.6.87)
+ e £ fa sijki VoY .

The first term on the r.h.s. is the exterior derivative of the N=1 D=4
supergravity Lagrangian evaluated at R®=0, {see Bg. (1I1.3.116)),
the others are new.

Equation {I11.6.87) has two relevant‘projections, namely Yyvvy

and YVVVV.

From the $Vvvv-projection one finds, after use of the parametriza~

tion (II1.6.72) and some simple algebra, that all the terms cancel

except the following cne:

abed {1I1.6.88)
E

(162 - 12 ~ o) E ¥ a vy Peg ™ 0

Therefore we find the first condition:
(111.6.89)

6a=12-a=190

Next we consider the YyVVV-projection. Onme has

N

=

.

Ea

P T

P T T T
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- n
49 . Hmysyaﬁnw L A

i

. d
4i-a) % . v . fmfaV N TR

= m b a
i N AR
+ia fa$ N Ybﬁm$ ¥

_iuca i j k ) =
2f A SO A A Eijkﬁ [ Ya¢
s ie g2 R R LR AR AL (111.6.90)

R 1Y)

where we have set according to (I111.6.76,77):

o
I

. 3 n
= ; § 6.
iaf P 21757 (111.6.91a)

(III1.6.91b)

==
I

_ +

After some tenscr algebra one arrives at the following equatioms:

- gt - (%iufz &€ ¢ 2i@3-aE YT V= 0 (I11.6.92)
vhere
t -~ ot atmn
Fr=49y . HmYSYaHn e . {111.6.93)

Straightforward manipuiations or {III.6.93) give the result:

FE = [i@4a-18) (P65 - £55 ) + 56 fE .M. (111.6.94)
Therefore (III.6.92) takes the final form:

i(:—?» - 24a + 18)E5 . v = 0 (111.6.95)

We see that the relation between a and o implied by Eq. (II1.6.85}
5 the same as (IIL.6,89). Furthermorg d¥ vanishes identically along

8
any 5-form with more than 2¢~fields. We conclude that the action
(I11.6.68) is invariant against an off-shell closed algebra of super-
symmetry tramsformations, provided the pavameter a and a entering
the Lagrangian (11X.6.68) and the curvatures (III.6.72) satisfy the
relation {£11.6.89). The explicit supersymmetry transformations are
given in Table IIL.6.I at the end of this chapter: they are easily
found as already explained by the combined use of the Lie derivative

formula (III.6.85)

% v (7e)? + gR® ' {I11.6.96a)
Es v = {¥) +¢lp (111.6.96%)
2 A= ()7 + gfR® (111.6.9¢c)
2, 1= ()7 + efr” (II1.6.96d)
p o™ = 0% ¢ gz (I11.6.9%6e)

and the parametrization (T1I1.6.72) of the curvatures. As usual

B

T 5& and the covariant derivative (Ve)A‘E{Vaab, Vsa, e, ve", VE@)

can be easily detained from the explicit form of the Bianchi identities

7R =0 (see the remark following Eq. (IIL.3.11)).

As a final remark we note that once the value of z has been
fixed by a particular choice of A4, o I also fixed. If a= %, then
@=0 and the action takes the very simple form (I11.6.62}. It is 2
strongly geometrical action sinee all the non-geometrical terms involving

G-forms have disappeared.

Vie summarize our discussion as follows:

a) The Sohnius-West thecry is the local theory of an appropriate free

differential algebra.

b} Requiring the independence of the action from the specific cholce
of the space-time section of superspace, namely off-shell supersymmetry
invariance, fixzes the action completely. In practice this is done by

imposing the condition d¥ =0,
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I11.6.7 ~ The building rules in their final form

The discussion of the last section has put into evidence the
differences existing between the theories with avxiliary fields 1like
the Sohnius-West model and the theories without auxiliary fields. In
the latter case, the action determined by the building rules is not,

in general, invariant against a closed algebra, but only its equations

of motion are.

Iz the purely space~time approach to supergravity (Noether methed)
the action is usually determined using the concept of an algebra of
transformations which closes only on-shell, that is, an open algebra of
transformations. Actually this requirement is equivalent fo all the
building rules of the geometrical approach including aiso the last.
There are cases where the concept of invariance of the space-time action
is convenient also in the geometric approach. This happens when the
action contains terms which are puzely space-time, that is propertional
to I vielbeing (D is the space~rime dimension) and which have no geo~
metrical origin, that is, they do not involve the gauge fields of the
theory. Usually such terms are 4~fermion terms arising in the matter
coupled supergravity theories or are functionals of the scalar fields
(see Part IV}, It is evident that the coefficients in front of these
terms cannot be determined by the vacuum condition, since they do not
contain the gauge fields, nor by the rheonomy principle, since they
appear only in the V...,V projection of the superspace eguations of

motion, namely in the spacetime propagation equations.

it is true that a complete analysis of the Bianchi identities of
the theory would determine the space~time equations of motion as
integrability conditions of the rheonomic conditions; however this
would be a very cumbersome and lemgthy way to find the undetermined

parameters,

A much easier way, instead, is to resort to supersymmetry invari-
ance of the action, which, in our language, is implemented by _Ejdﬁ?ﬂ 0
(see Section II1.3.8 and in particular Eqs. (IT1.3.117-118)). Explieit

examples ¢f this procedure will be given in Part IV,
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Since the discussion given in Sect, III.3.9 we have extended and
slightly modified the building yules for constructing the action ?f
supergravity theories. Specificafﬁy we have introduced modifications
of the building rules & md D of Chapter IIL.4, we have extended rules
A-E to the case of Free Differential Algebras, and we have also dis—
cussed the role of supersymmetry invariance of the action and the
meaning of the condition d& =0. It is worthwhile at this peint to

give a short summary of the building rules in their final form.

i) A supergravity theory in D~dimensions is besed on a Free
Differential Algebra; the physical fields and their field strengths

are described by the soft forms and curvatures of the given F.D.A.

Rule A: The Lagrangian ¥ of the theory is geometrical, in the sense

. _ s ivative
of being a D-form constructed using only p-forums, d-exterior derivatives

it dees not contain the Hodge duality operator
e construction

and exterior products.
but will contain in general multiplets of O-forms for th .
of kinetic temms in first order formalism. The action is obtained b?
integrating ¥ on a D-dimensional surface Mpc M, M being the mani-~

fold on which the p-forms are defined:

x:JMDCMy .

i i ing to the
The equations of motion are obtained by varying & according

extended action principle; they are valid on the whole M.

Rule B: & must be H-ipvariant, H peing the invariance subgroup of

the F.D.A

Rule C: Each term of the Lagrangian must gcale homogeneously as
i i . its

[WD-2] under the rigid rescaling which leaves tge F.D.A, and i
| i ] P2 g 1lin,
generalized Bilanchi jidentities invariant. (Eﬂ ] is the scaling

behavior of the Einstein term).

e e

o~

P

e

R T e e e

e e

T e e S

e
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Rule D: The equations of motion must be satisfied by the vacuum con-

figuration defined by the condirions

I .
RA being the curvatures of the F.D.A. and F the multiplets of

O-forms.

Rule %: The superspace equations of motion must admit non-trivial

. . A T
rheonomic solutions besides the trivial one R =F =0,

Rule F: The constraints on the imner curvature components implied by
the Bianchi identities by the outer sectors of the variational equations
(that is by the rheonomic parametrization of the curvatures) must coin-
¢ide with the inmer sectors of the szme equations. This requirement
guarantees the self consistency, as differential form equations, of the
equations of motion. (No new information on the physical field is

gained by extending the equations from space-time to superspace).

Furthermore this principle is uecessary for a complete equivalence

between the geometric approach and the Noether approach,

A violation of this rule wiil be discussed in constyucting the
Lagrangian of D=6 supergravity.
These principles suffice for the geometric comstruction of the

supergravity theories without auxiliary fields. In the case of theories

with zuxiliary fields, namely in the case where the action should be
invariant against a closed supersymmetry algebra, we must add the

further rule.
Rule G: The Lagrangian is a clesed form in superspace: d¥=0,

Finally we note that in theories where there agpear terms pro-
; . 1 a .
portional to the maximum set of vielbeins e, Vo, .V  their
peee

o
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ceefficients cannot be fixed by rules A-E). They could be fixed by

rule ¥ or resorting to the study of the Bianchi identities. In practice
however it is convenient to fix these remaining coefficients simply by
requiring supersymmetry invariance of the action gld¥=0. Indeed the
algebra being already determined by the previous steps we can just focus
on these space~time terms and cancel their wvariation by suitable choice

of the coefficients. How this works will be seen in Part IV,
TABLE II1.6.1

Summary of the Sohnius~West new minimal model (N=1, D=4
Supergravity with auxiliary fields).

A) Gauge multiplet: {mahu, Vau, wy, A, T }

M v
Super Poincaré gauge fields: (wab, va, )
yas . . A: U(]}-gauge connecticn
Auxiliary fields: { T -form

B) Free Differential Algebra Curvatures

b ab ac b

) .8

= gv? .

dT ~

)
u

'@nvawﬁva

N | B

<) Generalized Bianchi identities

28 = ¢

@Ra'bRab v - a
/N Y. yp=20

Posivo a+tr® v y-Eyy. 2 =0
5 ~ ab 2 157 »



0ff-shell parametrization of the curvatures F)  Invariant Action

e o= [¢
. MM
®_ 1 3 % 4
R =£" ¥ ﬁVk,.V Eijk:l
where:

Raﬂ:__‘Rabm_l * v b—c[a Tb} -3 Eab Yc)lb R

_ . a d T V- 4R
“i‘geab(:daﬁ‘dﬂif - ¥=x% .V .V Eabcd*—l“b ~ YeYgP
c

g 7

a .9 1 a vi Vj Vk Vz)
o_ 2 b = ia abcd _ ma + (1ba=~12)(f" R ,\Va+-§faf Eijkg - - -
Ro=F V.V +tb-§~e YPed =2 Y5¥P )Ava
+G-03 2 e, and

¥ = bap(a71)/50(1,3) @ U(1).

. a .b . a __‘:}_, m.n
e=p, V.V +1ayswﬂf Y, 5 Lyey $.Vf

(a free). ]

Supersymmetry transformations leaving the action imvariant

and closing an off-shell algebra (Ind-order formalism)

_ i . a, _3,. m.n
68 =P > 75A€+aly55f Va 5 ;ysymnevf

- ,ila abed ma ;
Ge A=t ("5” & LERRY: z Y5¥gP }va
§ T=1 Ey € ,\Va

Gs wab =chain rule
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