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Introduction

• Agda is a dependently typed functional programming
language (can be compiled to Haskell, Epic or Javascript)

• Agda is a proof assistant based on Martin–Löf dependent type
theory
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The core theory

• Infinite hierarchy of universes à la Russel (no coercions)
Set = Set0, Set1, Set2, ..., Setn, ...

Setn : Setn+1

• Dependent product

A : Setn x : A ` P x : Setm

(x : A) → P x : Setmax(n,m)

• Variables, application (u v), abstraction (ń x → u)
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The core theory

• βη-equality for functions, type directed conversion algorithm:

x : A ` u x ≡ v x : P x

` u ≡ v : (x : A) → P x

• No cumulativity, A : Set i ; A : Set (suc i)

(a lifting operation can be defined using records)

• No impredicativity
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Inductive types

• Strictly positive inductive types and inductive families

• No dependent eliminator, no match, no fix, but definitions by
pattern matching and termination checker

f : N → A

f O = x

f (S n) = h n (f n)

• Default pattern matching algorithm is too strong for HoTT (it
implies K), use the option --without-K

$ agda --help

[...]

--without-K disable the K rule (maybe)

[...]
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Records

• Enjoy definitional η-equality (gives η for unit and Σ)

` π1 u ≡ π1 v : A ` π2 u ≡ π2 v : P (π1 u)

` u ≡ v : Σ A P

• Gives lifting operation for universes

record lift {i} (A : Set i) : Set (suc i) where

constructor ↑
field ↓ : A
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Universe polymorphism

• There is an abstract type of universe levels

Level : Set0 (= Set zero)

zero : Level

suc : Level → Level

max : Level → Level → Level

• One can quantify over universe levels

id : {i : Level} {A : Set i} → (A → A)

id x = x

• Not all types belong to some universe
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Universe polymorphism

i : Level

Set i : Set (suc i)

A : Set i x : A ` P x : Set j j : Level

(x : A) → P x : Set (max i j)

(j does not depend on x)

A type x : A ` P x type

(x : A) → P x type

A : Set i

A type
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Instance arguments

• Agda’s version of type classes

• Arguments declared as instance arguments are inferred from
the context if there is exactly one matching value

postulate

group-structure : Set → Set

_•_ : {G : Set} {{G-str : group-structure G}}

→ G → G → G

H : Set

H-str : group-structure H

function : H → H → H → H

function x y z = (x • y) • (z • (x • y))
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Instance arguments

• They can have other uses

axiom-of-choice : Set

axiom-of-choice = [...]

lemma : {{ac : axiom-of-choice}} → [...]

lemma {{ac}} = [...] ac [...]

theorem : {{ac : axiom-of-choice}} → [...]

theorem = [...] lemma [...]

• Main drawback: instance arguments are non-recursive (design
choice)
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Abstract blocks

In the following situation

abstract

f : [...]

f = [...]

g : [...]

g = [...]

h : [...]

h = [...]

g can access the definition of f but h cannot access the definition
of either f or g .
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Other features

• Induction-recursion

• Irrelevant arguments

• Coinduction

• Reflection

• Positivity checking can be disabled

• Termination checking can be disabled

• Coverage checking can be disabled

• Type in type can be enabled
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Emacs mode

• The only supported way to use Agda interactively is emacs
with the agda-mode

• Input method for Unicode characters

• Key bindings for interactive edition of proofs
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Input method

λ \lambda,\Gl

→ \to, \->
≡ \equiv,\==

' \simeq,\∼-

Σ \Sigma,\GS

∀ \forall,\all

∧ \wedge,\and

∨ \vee,\or

× \times,\x
© \bigcirc

τ \tau

〈 \<
〉 \>
• \.
≤ \le, \<=

¬ \neg

◦ \o
π \pi

4 \ 4
2 \ˆ2

⊥ \bot

N \bn

Z \bz

↑ \u

Use M-x describe-char to see how to input a particular
character and M-x describe-input-method to have a full list.
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Interactive proofs

• There are no tactics, you write λ-terms directly

• You can write λ-terms with holes, which will be filled later
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Common commands

C-c C-l Load the file

C-c C-SPC Fill the current goal

C-c C-a Try to automatically fill the current goal

C-c C-c Case split

C-c C-r Introduction of λ or record constructors

C-c C-t Gives the type of the goal

C-c C-d Gives the type of the given term

C-c C-. Gives the type of the goal and of the given term

C-u C-c C-t Same without normalizing

C-u C-c C-d Same without normalizing

C-u C-c C-. Same without normalizing
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Examples

(examples)
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