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Chromatic Red-Shift

Algebraic K -theory often increases chromatic complexity by
one.

Algebraic K -theory of a finite field is a form of integral
cohomology.

Algebraic K -theory of the integers is a form of topological
K -theory.

Algebraic K -theory of topological K -theory is a form of
elliptic cohomology.

We study algebraic K -theory of elliptic cohomology, K (tmf ),
expecting to find a form of a v3-periodic cohomology theory,
tentatively called hyperelliptic cohomology.
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Periodic Families

With increasing chromatic complexity, more of the stable
homotopy groups of spheres is detected.

Rational cohomology detects the 0-stem π0(S).

Topological K -theory detects the image-of-J summand in
π∗(S). This includes all classes in dimensions ∗ ≤ 5.

Elliptic cohomology detects the v2-periodic families in
π∗(S). For p = 2, this includes all classes in dimensions
∗ ≤ 30.

With K (tmf ) we may hope to show that ηθ4 in the 31-stem, or
certain classes in the 39- to 41-stems, are part of v3-periodic
families. No such periodic family is presently known for p = 2.
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Trace Invariants of Algebraic K -Theory

We study the algebraic K -theory of an S-algebra B by the
Bökstedt–Hsiang–Madsen trace maps

tr : K (B)
trc

// TC(B; p) // THH(B) .

The right hand map factors through the S1-homotopy fixed
points

THH(B)hS1
= F (S∞

+ , THH(B))S1

and the approximate S1-homotopy fixed points

THH(B)aS1
= F (S3

+, THH(B))S1
.
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σ-operator

The cyclic structure on THH(B) gives a circle action

S1
+ ∧ THH(B) → THH(B) .

The σ-operator

σ : H∗THH(B) → H∗+1THH(B)

is induced by circle action and the fundamental class in
H1(S1

+).
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Summary of Results

Let p = 2 and B = tmf , the topological modular forms
spectrum. We can:

Compute the Morava K (n)-localizations LK (n)THH(tmf ) for
0 ≤ n ≤ 2.

Describe H∗THH(tmf ) as an A∗-comodule algebra.

Give a (quite complete) calculation of π∗THH(tmf ).

To pass from homological to homotopical calculations, we use
the Adams spectral sequence.
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Plans for Further Work

Jointly with Sverre Lunøe-Nielsen we plan to:

Determine H∗THH(tmf )aS1
as an A∗-comodule algebra

Compute π∗THH(tmf )aS1
(in a range)

Use this to detect potential v3-periodic classes in π∗(S)

Similar results for THH(tmf )hS1
or the S1-Tate construction

THH(tmf )tS1
would establish v3-periodicity.
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Rational THH(tmf )

In rational (= K (0)-local) homotopy

π∗(tmf ) ⊗ Q = Q[c4, c6]

equals elliptic modular forms, with |ci | = 2i .

Theorem

π∗THH(tmf ) ⊗ Q is an exterior algebra over π∗(tmf ) ⊗ Q on two
algebra generators σc4 and σc6 in dimensions 9 and 13.
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K (1)-Local THH(tmf )

By Hopkins and Laures, the KO∗-algebra unit map for tmf
factors

KO∗
// KO∗[x ]

f
// KO∗tmf

where f is étale.

Theorem

π∗LK (1)THH(tmf ) is an exterior algebra over
π∗LK (1)tmf = KO∗[j−1] on one generator σf in dimension 1.
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K (2)-Local THH(tmf )

By the Morava change-of-rings theorem the Hopkins–Miller
spectrum LK (2)tmf = EO2 is a pro-étale extension of LK (2)S.

Theorem

π∗LK (2)THH(tmf ) is isomorphic to π∗LK (2)tmf = π∗EO2.
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Chromatic Assembly Problem

THH(tmf ) is

K (0)-locally like four = 22 copies of tmf ,

K (1)-locally like two = 21 copies of tmf , and

K (2)-locally like one = 20 copy of tmf .

What is the global picture?
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The Steenrod Algebra

Let A = 〈Sqi | i ≥ 1〉 be the mod 2 Steenrod algebra and
let

A∗ = P(ξ̄k | k ≥ 1)

be the dual Steenrod algebra, with |ξ̄k | = 2k − 1.

The coproduct on A∗ is given by

ψ(ξ̄k ) =
∑

i+j=k

ξ̄i ⊗ ξ̄2i

j .
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Homology of tmf

In cohomology

H∗(tmf ) = A ⊗A(2) F2

where A(2) = 〈Sq1, Sq2, Sq4〉.

In homology

H∗(tmf ) = P(ξ̄8
1 , ξ̄4

2 , ξ̄2
3 , ξ̄k | k ≥ 4)

is an A∗-comodule subalgebra of A∗.
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The Bökstedt Spectral Sequence

The Bökstedt spectral sequence

E2
∗∗

= HH∗(H∗(tmf )) =⇒ H∗(THH(tmf ))

collapses at

E2
∗∗

= H∗(tmf ) ⊗ E(σξ̄8
1 , σξ̄4

2 , σξ̄2
3 , σξ̄k | k ≥ 4)

since the algebra generators are in filtration ≤ 1.
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The Homology of THH(tmf )

The multiplicative extensions are determined by the
Dyer–Lashof operations.

Theorem

H∗THH(tmf ) = H∗(tmf ) ⊗ E3P∗

as an A∗-comodule algebra, where

E3P∗ = E(σξ̄8
1 , σξ̄4

2 , σξ̄2
3) ⊗ P(σξ̄4) .
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The Adams Spectral Sequence for π∗THH(tmf ), I

The E2-term of the Adams spectral sequence

Es,t
2 = Exts,t

A (H∗THH(tmf ), F2) =⇒ πt−sTHH(tmf )∧2

can, by change-of-rings, be rewritten as

E∗∗

2 = Ext∗∗A(2)(E
3P∗, F2) = Ext∗∗A(2)∗

(F2, E3P∗) .

We must understand E3P∗ as an A(2)∗-comodule.
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A∗-Coaction

The A∗-coaction is generated by

σξ̄8
1 7→ 1 ⊗ σξ̄8

1

σξ̄4
2 7→ 1 ⊗ σξ̄4

2 + ξ̄4
1 ⊗ σξ̄8

1

σξ̄2
3 7→ 1 ⊗ σξ̄2

3 + ξ̄2
1 ⊗ σξ̄4

2 + ξ̄2
2 ⊗ σξ̄8

1

σξ̄4 7→ 1 ⊗ σξ̄4 + ξ̄1 ⊗ σξ̄2
3 + ξ̄2 ⊗ σξ̄4

2 + ξ̄3 ⊗ σξ̄8
1

so the square (σξ̄4)
2 in dimension 32 is A∗-comodule primitive.
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A∗-Comodule Decomposition of E3P∗

Definition

L[1]∗ = F2{σξ̄8
1 , σξ̄4

2 , σξ̄2
3 , σξ̄4}

with exterior powers the layer comodules

L[j]∗ = ΛjL[1]∗ for 0 ≤ j ≤ 4.

Lemma

E3P∗ = (L[0]∗ ⊕ · · · ⊕ L[4]∗) ⊗ P((σξ̄4)
2)

is the direct sum of the terms Σ32iL[j]∗ for i ≥ 0, 0 ≤ j ≤ 4.
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The A∗-Comodules L[j ]∗, I

The bottom and top exterior powers

L[0]∗ = F2{1} 0

L[4]∗ = F2{σξ̄8
1 σξ̄4

2 σξ̄2
3 σξ̄4} 53

are concentrated in dimensions 0 and 53.
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The A∗-Comodules L[j ]∗, II

The generating comodule

L[1]∗ 9

Sq4

¹¹

13

Sq2

!!

15
Sq1

// 16

is dual to the third exterior power

L[3]∗ 37
Sq1

// 38

Sq2

!!

40

Sq4

¹¹

44
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The A∗-Comodules L[j ]∗, III

The middle exterior power L[2]∗

22

Sq2

==
24

Sq1
//

Sq4

ºº

25

Sq4

GG
28

Sq1
// 29

Sq2

!!

31

is self-dual.
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A Realization Lemma

Lemma

For each 0 ≤ j ≤ 4 there exists a finite CW spectrum L[j] with

H∗L[j] = L[j]∗

as A∗-comodules. This determines L[j] uniquely up to 2-adic
equivalence.
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A Linear Ordering

Each A∗-comodule Σ32iL[j]∗ in the sum decomposition of

E3P∗ = E(σξ̄8
1 , σξ̄4

2 , σξ̄2
3) ⊗ P(σξ̄4)

has a unique A∗-comodule primitive.
We linearly order the summands according to the dimension of
this primitive:

L[0]∗ , L[1]∗ , L[2]∗ , Σ32L[0]∗ , L[3]∗ ,

Σ32L[1]∗ , L[4]∗ , Σ32L[2]∗ , Σ64L[0]∗ , . . .
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A tmf -Module Filtration

Lemma

There is a filtration of tmf -module spectra

tmf = T 0 → · · · → T k−1 → T k → · · · → THH(tmf )

with homotopy cofiber sequences

T k−1 → T k → tmf ∧ Σ32iL[j]

such that
H∗T k =

⊕
H∗(tmf ) ⊗ Σ32iL[j]∗

is the sum of terms 0 through k in the linear ordering.
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Comment on Proof

This is approximately the tmf -module filtration generated by a
skeleton filtration.
When the E3P∗-summands overlap, as for L[3]∗ and Σ32L[1]∗,
the proof is incomplete, due to a possible attachment of a cell
of the “lower” piece to a cell of the “higher” piece by η2. This
first plays a role in dimension 44, and can probably be resolved
by the K (1)-local calculation.
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The Adams Spectral Sequence for π∗THH(tmf ), II

The Adams spectral sequence E2-term

E∗∗

2 = Ext∗∗A (H∗THH(tmf ), F2)

= Ext∗∗A(2)(E
3P∗, F2) =⇒ π∗THH(tmf )∧2

is machine computable using Bruner’s ext-program.

It gets crowded after the 30-stem.
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THHtmf/A2 from s,n=0,0 THHtmf/A2 from s,n=0,22
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Adams Chart for π∗THH(tmf ), 44 ≤ ∗ ≤ 88

THHtmf/A2 from s,n=0,44 THHtmf/A2 from s,n=0,66
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Plan for the Calculation of π∗THH(tmf )

To clarify we use the tmf -module filtration:

tmf // . . . // T k−1 // T k //

²²

. . . // THH(tmf )

tmf ∧ Σ32iL[j]

First calculate homotopy tmf∗(Σ32L[j]) of the filtration
quotients, for 0 ≤ j ≤ 4.

Then assemble homotopy π∗(T k ) of filtration stages, for
k ≥ 0.
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Adams Spectral Sequence for Filtration Layers

The Adams spectral sequence for the (i , j)-th layer

Es,t
2 = Exts,t

A (H∗(tmf ∧ Σ32iL[j]), F2)

= Exts,t
A(2)(Σ

32iL[j]∗, F2) =⇒ (tmf )t−s(Σ
32iL[j])

is practically independent of i .

Reduces to the five cases 0 ≤ j ≤ 4.
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Adams E2-Term for π∗tmf

For j = 0, L[0] = S and we are computing π∗tmf .
The Adams E2-term

Es,t
2 = Ext∗∗A(2)(F2, F2) =⇒ πt−s(tmf )∧2

was computed by Iwai–Shimada. It has algebra generators:

h0, h1, h2

α0 = v8
2 , α1, α2, . . . , α6, α7

ω0 = v4
1 , ω1
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Adams Chart for π∗tmf , 0 ≤ ∗ ≤ 24

1

0

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20 21 22 236 7 8 90 1 2 3 4 5 24

t − s

s

10

11

12

h2

h1

α1 α2 α3

ω1

α4ω0

h0

α5
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Adams Chart for π∗tmf , 24 ≤ ∗ ≤ 48

t − s

34 35 36 37 38 39 40 41 42 43 44 45 46 47 4824 25 26 27 28 29 30 31 32 33

5

6

7

8

9

15

16

10

11

12

13

14

α6

α0

α7

s

17

18

19

20

ω1α3
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Remaining Steps

Adams Differentials for π∗tmf

Hopkins–Mahowald computed these Adams differentials.
Permanent cycles are black. Dead classes are white.
To describe the differentials, write the E2-term as the sum of
two pieces:

The Bott periodic part: free over P(ω0, α0) = P(v4
1 , v8

2 ).

The Mahowald–Tangora wedge: free of rank one over
P(v1, w , α0) on ω1α3 in dimension 35.

The first piece comes in several stages: Infantile, Puerile,
Juvenile, Virile, Senile.
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Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf — The Bott Periodic Part
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf — The Wedge Part
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Spectral Sequence for tmf — Summary

The Adams E2-term for tmf is completely known, including
cup and Massey products, by machine computation.

The Adams differentials are completely known, using E∞

structure and/or the Adams–Novikov spectral sequence.

The additive extensions of π∗(tmf ) are completely known,
using Massey products and Moss’ theorem.
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Hyperelliptic Cohomology
K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams E2-Term for tmf∗(L[1])

For j = 1, L[1] = S9 ∪ν e13 ∪η e15 ∪2 e16.

The Adams E2-term

Es,t
2 = Ext∗∗A(2)(L[1]∗, F2) =⇒ tmf∗(L[1])∧2

was computed by Davis–Mahowald.

This spectral sequence is a module over the tmf spectral
sequence.

We write gn (or xn) for a module generator in dimension
n = t − s.
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[1]), 9 ≤ ∗ ≤ 33
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Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[1]), 33 ≤ ∗ ≤ 57
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Differentials for tmf∗(L[1]

This spectral sequence is quite sparse.

The first nonzero differential is

d3(α
2
0g18) = ω4

1α3g18

landing in dimension t − s = 113.

This is well beyond the initial range of interest.
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams E2-Term for tmf∗(L[2])

For j = 2, L[2] is a self-dual 6-cell CW spectrum.

The Adams E2-term

Es,t
2 = Ext∗∗A(2)(L[2]∗, F2) =⇒ tmf∗(L[2])∧2

is machine computable.

This spectral sequence is a module over the tmf spectral
sequence.

We write gn for a module generator in dimension n = t − s.
The two generators in dimension 34 are called g34,1 and
g34,2.
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[2]), 22 ≤ ∗ ≤ 46

1

0

2

3

4

5

6

7

8

9

s

10

11

12

t − s

32 34 36 38 40 42 44 4624 26 2822 30

g45

g27 g31

g33

g34,2

g34,1

g36 g39

g22

Bob Bruner, John Rognes Topological Hochschild homology of topological modular forms



Hyperelliptic Cohomology
K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[2]), 46 ≤ ∗ ≤ 70
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Differentials for tmf∗(L[2])

We have computed the Adams differentials for tmf∗(L[2]).
To describe the differentials, write the E2-term as the sum of
two pieces:

A Bott periodic part, which is free over P(ω0, α0).

A double Mahowald–Tangora wedge, which is free of rank
two over P(v1, w , α0) on ω1g39 and α2

3g34,1 in
dimensions 59 and 64.
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[2]) — The Bott Periodic Part
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Chart for tmf∗(L[2]) — The Wedge Part
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams Spectral Sequence for tmf∗(L[2]) — Summary

The Adams E2-term for tmf∗(L[2]) is completely known,
including cup and Massey products.

The Adams differentials are completely known, using
rational information and the tmf -module structure.

The additive extensions of tmf∗(L[2]) are (almost)
completely known.
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Adams spectral sequences for tmf∗(L[3]), tmf∗(L[4])

For j = 3, with

L[3] = S37 ∪2 e38 ∪η e40 ∪ν e44

the Adams spectral sequence for tmf∗(L[3]) is sparse like
the one for tmf∗(L[1]).

For j = 4, with L[4] = S53 the Adams spectral sequence for
tmf∗(L[4]) is a shifted copy of the one for π∗(tmf ).
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Assembling the Layers

The zeroth layer T 0 = tmf splits off from THH(tmf ).

The second layer tmf ∧ L[2] is nontrivially attached to the
first layer tmf ∧ L[1]:

Theorem

There is a differential

d2(g22) = h2g18

in the Adams spectral sequence for π∗THH(tmf ).
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K (n)-Local THH(tmf )

Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

The String Orientation

The proof uses the string orientation

M String = MO〈8〉 → tmf

and the induced map

tmf ∧ BBO〈8〉+ = THH(MO〈8〉, tmf ) → THH(tmf )

to prove that g2
9 = g18 in π∗THH(tmf ).

From h2g9 = 0 it follows that h2g18 is a boundary.
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Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

The NeXT Step

The third layer tmf ∧ S32 is nontrivially attached to the second
layer:

Lemma

There is a nonzero differential

dk+2(g32) = hk
0g31

for some k ≥ 0.

May need Pontryagin power operations in tmf -homology to
determine k .
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Homology of THH(tmf )
Homotopy of THH(tmf )

Adams Sp. Seq. for THH(tmf )
Adams Sp. Seq. for tmf
Adams Sp. Seq. for tmf ∧ L[1] and tmf ∧ L[2]

Remaining Steps

Christian Nassau’s Big Ext Chart
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