
Analysis in Univalent Type Theory

Auke Bart Booij

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences

University of Birmingham

January 2020

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ii

ABSTRACT

Some constructive real analysis is developed in univalent type theory (UTT). We develop var-

ious types of real numbers, and prove several equivalences between those types. We then

study computation with real numbers. It is well known how to compute with real numbers

in intensional formalizations of mathematics, where equality of real numbers is speci�ed by

an imposed equivalence relation on representations such as Cauchy sequences. However, be-

cause in UTT equality of real numbers is captured directly by identity types, we are prevented

from making any nontrivial discrete observations of arbitrary real numbers. For instance,

there is no function which converts real numbers to decimal expansions, as this would not be

continuous. To avoid breaking extensionality, we thus restrict our attention to real numbers

that have been equipped with a simple structure called a locator. In order to compute, we

modify existing constructions in analysis to work with locators, including Riemann integrals,

intermediate value theorems and di�erential equations. Hence many of the proofs involving

locators look familiar, showing that the use of locators is not a conceptual burden. We discuss

the possibility of implementing the work in proof assistants and present a Haskell prototype.

iii

iv

ACKNOWLEDGEMENTS

This dissertation exists thanks to the detailed, patient and sympathetic supervision of Martín

Escardó and Benedikt Ahrens. Thanks to the Birmingham Theory group, and in particular the

CARGO category theory reading group for many opportunities to have (often opinionated)

discussions on constructive mathematics.

Thanks to Thorsten Altenkirch, Andrej Bauer, Mark Bickford, Ulrik Buchholtz, Achim

Jung, Milly Maietti, Peter Schuster, Bas Spitters, Steve Vickers and various anonymous re-

viewers for their input and inspiring discussions. Thanks to Hajime Ishihara and Tomoaki

Hashizaki for their care and company during my stay at the Japan Advanced Institute of Sci-

ence and Technology. Thanks to Sebastian Faust for welcoming me in his group without ques-

tion after my move to Darmstadt.

Thanks to my parents, family, and friends for continued support throughout my studies.

Kristina, thank you for your love and support.

Thanks to the computing facilities team at the School of Computer Science for providing

the most thankless service in IT: fast and stable Wi-Fi.

This project has received funding from the School of Computer Science at the University

of Birmingham, and from the European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Skłodowska-Curie grant agreement No 731143.

v

vi

CONTENTS

1 Introduction 1

1.1 Summary of contributions . 4

2 Univalent mathematics 7

2.1 Case study: propositional logic . 8

2.1.1 Formalizing the theorem statement . 8

2.1.2 Formalizing the proof . 10

2.2 Proofs versus derivations . 11

2.3 Case study: every natural is either even or odd 12

2.3.1 Formalizing the theorem statement . 13

2.3.2 Formalizing the proof . 22

2.4 Case study: surjective maps, images of maps 27

2.4.1 Formalizing the theorem statement . 28

2.4.2 Formalizing the proof . 36

2.5 Extensionality . 36

2.5.1 Function extensionality . 37

2.5.2 Contractibility . 39

2.5.3 Computation rules for higher-inductive types 41

2.5.4 Univalence . 42

2.5.5 Consequences of extensionality . 45

vii

viii CONTENTS

2.6 Subtypes and embeddings . 46

2.6.1 Lattice-like structure of HProp . 50

2.6.2 Quanti�cation over subtypes . 52

2.6.3 Identi�cations in subtypes . 53

2.7 Case study: quotient types . 54

2.8 Classical principles . 56

2.9 Notes . 58

3 Fixpoints in dcpos 61

3.1 Dcpos . 62

3.2 Fixpoints . 64

3.3 Notes . 66

4 Real numbers 67

4.1 Algebraic structure of numbers . 69

4.2 Rationals . 75

4.3 Archimedean property . 76

4.4 Cauchy completeness of real numbers . 77

4.5 HoTT book reals . 81

4.6 Dedekind reals . 89

4.7 Notes . 92

5 Universal properties of real numbers 95

5.1 Subsets of the Dedekind reals . 97

5.1.1 Minimality of the HoTT book reals . 98

5.1.2 Euclidean reals and interval objects . 100

5.2 Homotopy-initiality of the Euclidean reals . 101

5.3 Interval objects . 111

5.4 Notes . 116

CONTENTS ix

6 Locators 119

6.1 De�nition . 120

6.2 Terminology for locators . 122

6.3 Locators for rationals . 122

6.4 The logic of locators . 123

6.5 Bounded search . 127

6.6 Computing bounds . 128

6.7 Locators for algebraic operations . 130

6.8 Locators for limits . 137

6.9 Calculating digits . 138

6.10 Dedekind cuts structure . 141

6.11 Notes . 145

7 Some constructive analysis with locators 147

7.1 Preliminaries . 147

7.2 Integrals . 150

7.3 Intermediate value theorems . 151

7.4 Notes . 153

8 Metric spaces 155

8.1 Basic de�nitions in pseudometric spaces . 156

8.2 Function spaces . 159

8.3 Banach �xed point theorem . 163

8.4 Picard-Lindelöf . 167

8.5 Notes . 170

9 Computation in proof assistants 173

9.1 From inference rules to proof assistants . 173

9.2 Locators . 174

9.3 Metric spaces . 176

x CONTENTS

9.4 Haskell prototype . 177

10 Closing remarks 181

Index 185

Bibliography 189

Chapter 1

INTRODUCTION

Traditionally important parts of mathematics can be developed in a constructive setting, as

Bishop showed in his self-proclaimed constructivist propaganda [18]. Like most mathemati-

cians before Bishop, including constructive mathematicians such as Brouwer, Bishop worked

informally, although he did envision formal systems that allowed for computationally execut-

ing the �nite routines he described [17, 19].

Martin-Löf [75] proposed a formal system in which Bishop’s work was supposed to be

formalizable. This formal system and several of its variations are now known as Martin-Löf

Type Theory (MLTT). Interpretation of Bishop’s mathematics in MLTT has been described in

e.g. Coquand and Spiwack [35, Section 3].

It is well known how to compute with real numbers in such an intensional formalization,

with equality of real numbers speci�ed by an imposed equivalence relation on representa-

tions [20, 36, 77], such as Cauchy sequences, sequences of nested intervals, or streams of digits.

It has to be checked explicitly that functions on the representations preserve these equivalence

relations. Discrete observations, such as �nite decimal approximations, can be made because

representations are given, but a di�erent representation of the same real number can result in

a di�erent observation, and hence discrete observations are necessarily non-extensional.

Interpretation of the so-called identity types remained an issue in MLTT. Such identity

types represent the logical notion of equality, and so mirroring �rst-order logic, were not given

any structure beyond being thought of as containing at most one element, despite this seem-

ingly not being provable in MLTT. The genie was let out of the bottle by the development of

1

2

a model of MLTT in groupoids, where identity types can contain more than one element [53].

The potential non-uniqueness of identi�cations was exploited in an explanation of identity

types originating from homotopy theory [46, 11, 59]. The development of homotopy theory in

terms of type theory led to the univalence axiom which reinforces this explanation and makes

non-uniqueness of identi�cations provable.

The resulting univalent type theory (UTT), which we discuss in Chapter 2, allows to for-

malize mathematics with the identity types in a much more central role than in plain MLTT.

For example, we can de�ne types of real numbers whose identity types directly capture the

intended equality of real numbers, rather than this equality being captured by a de�ned equiv-

alence relation. See also Chapter 4 for some types of reals.

Certain types in UTT can be characterized by universal properties in the sense of category

theory [71, 9], again thanks to the well-behavedness of identity types in UTT. For the particular

case of the real numbers, we are reminded of the characterization of reals in terms of interval

objects [43], and so we compare some notions of reals using this terminology in Chapter 5.

All functions automatically preserve identi�cations of real numbers for type-theoretic rea-

sons. As a consequence, nontrivial discrete observations of arbitrary real numbers would vi-

olate continuity principles. So, as a drawback of this automatic preservation, we cannot in

general tolerate a construction of a decimal expansion for any real number, as this would not

be continuous. This kind of problem is already identi�ed in Hofmann [52, Section 5.1.7.1] for

an extensional type theory. Hofmann solves this by making discrete observations of real num-

bers using an extensionality-breaking choice operator, which does not give rise to a function.

Altenkirch, Danielsson, and Kraus [3] and Gilbert [48] make observations of Cauchy reals

(Section 4.4) and HoTT book reals (Section 4.5) using a delay monad de�ned as a quotient

inductive-inductive type. Their constructions depend on a speci�c de�nition of the type of

reals, and so it is not clear whether such an approach works more generally, for example with

the Dedekind reals (Section 4.6).

To avoid breaking extensionality in UTT, the central idea of Chapters 6–8 is to restrict our

attention to real numbers that have been equipped with a simple structure called a locator.

3

Such a locator is a strengthening of the locatedness property of Dedekind cuts, although we

work with an arbitrary type of reals. While the locatedness of a real number G says that for

rational numbers @ < A we have the property @ < G or G < A , a locator produces a speci�c

selection of one of @ < G and G < A . In particular, the same real number can have di�erent

locators, and it is in this sense that locators are structure rather than property.

In a constructive setting such as ours, it cannot be proved that all real numbers have lo-

cators, and we prove that the ones that do are the ones that have Cauchy representations in

Section 6.9. However, working with locators rather than Cauchy representations gives a de-

velopment which is closer to that of traditional real analysis. For example, we can prove that

if G has a locator, then so does 4G , and this allows to compute 4G when working constructively,

so that we say that the exponential function lifts to locators. As another example, if 5 is given a

modulus of continuity and lifts to locators, then
∫ 1

0 5 (G) dG has a locator and we can compute

the integral in this way.

Thus the di�erence between locatedness and locators is that one is property and the other

is structure. Plain Martin-Löf type theory is not enough to capture this distinction because, for

example, it allows to de�ne the notion of locator as structure but not the notion of locatedness

as property, and therefore it does not allow to de�ne the notion of real numbers we have in

mind, whose identity type should capture directly the intended notion of equality of real num-

bers. For us, most of the time it is enough to work in the fragment of UTT consisting of MLTT

with propositional truncation (introduced in Section 2.4.1), and propositional extensionality

and function extensionality (introduced in Section 2.5). However, there a few exceptions that

use the more general extensionality principle of univalence, such as

1. our de�nition of the HoTT book reals, and in particular Theorem 4.5.13 (Cauchy com-

pleteness by obtaining an induction principle from a universal property), and

2. Lemmas 2.6.3 and 2.8.1.

The need for univalence would also arise when considering types of sets with structure such as

the type of metric spaces or the type of Banach spaces for the purposes of functional analysis.

4 1.1. SUMMARY OF CONTRIBUTIONS

We believe that our constructions can also be carried out in other constructive foundations

such as CZF, the internal language of an elementary topos with a natural numbers object, or

Heyting arithmetic of �nite types. Our results being phrased in UTT can be seen as a pragmatic

choice, as it is a constructive system with su�cient extensionality, which admits, at least in

principle, applications in proof assistants such as cubical Agda allowing for computation using

the techniques in this work.

1.1 Summary of contributions

We have chosen to introduce UTT by case studies in Chapter 2, rather than building the theory

from the ground up, which seems to be more common. The development otherwise essentially

follows The Univalent Foundations Program [91]. We have done our best to avoid talking

about dependent identi�cations as we feel these do not add pedagogical value.

The development of dcpos in Chapter 3 is a translation of existing work into type theory,

where we have paid special attention to universe levels, which were not an issue in the im-

predicative settings used previously. We have minutely rephrased the proof of Pataraia’s �xed

point theorem by adding Corollary 3.2.2 as an intermediary claim.

The de�nition of ordered �elds in Chapter 4 is a simpli�cation of the one in The Univa-

lent Foundations Program [91, De�nition 11.2.7]. We have elaborated on the inclusion of the

rationals into ordered �elds. The presentation of the HoTT book reals as an initial Cauchy

algebra, rather than by its inference rules as a HIIT, is new. The Dedekind reals are presented

by overloading the inequality relation <, so that we can conveniently write @ < G to mean

that the rational @ is in the left cut of G .

We characterize the HoTT book reals as a certain initial subset of the Dedekind reals in

Section 5.1, which answers a question raised in The Univalent Foundations Program [91, Chap-

ter 11] positively. The homotopy-initiality of the Euclidean reals in Theorem 5.2.1, and an

equivalent de�nition of interval objects in Theorem 5.3.4, are new to the best of our knowl-

edge.

Chapter 6 gives the basic theory of the new notion of locators, and consequently all results

1.1. SUMMARY OF CONTRIBUTIONS 5

that mention locators are new, although many results can be said to have equivalents in terms

of intensional representations of reals. For instance, while we can compute a rational lower

bound @ < G from a locator for G in Lemma 6.6.1, it was already known how to compute such a

lower bound when G is presented as a Cauchy sequence of rationals, or as a sequence of nested

intervals. We consider Theorems 6.9.7 and 6.10.3 to be the omnibus theorems of locators.

Many of the proofs in Chapter 6, including proofs of claims about locators, are very similar

to existing proofs in constructive analysis: the reader is invited to rather pay attention to the

claims themselves, and in particular to our focus on the distinction between when such claims

are made as property, and when they are made as structure, after these terms have been de�ned

in Chapter 2.

We have developed constructive analysis with locators in Chapter 7 by introducing the

notion of lifting to locators. We rephrase the proof of a known approximate intermediate value

theorem and of the computation of integrals to additionally work with locators, so that in the

same spirit as that of the previous chapter, we may say that it is not the proof but the state-

ment that is new. Our exact intermediate value theorem, namely Theorem 7.3.5, improves on

existing results stated in terms of representations by assuming local nonconstancy as property

rather than as structure.

Chapter 8, too, takes known results in constructive analysis and upgrades them to locators,

so that it is our focus on property versus structure in the claims, rather than any particular

proof, that is new.

The main contribution of the thesis is to redevelop constructive analysis in a way that is

closer to classical analysis by working with locators, so that we can focus on real numbers

rather than their representations. Additionally, this allows to compute with the proofs using

proof assistants, and this prospect is discussed in Chapter 9.

6 1.1. SUMMARY OF CONTRIBUTIONS

Chapter 2

UNIVALENT MATHEMATICS

We discuss the formalization of mathematics in univalent type theory (UTT), which may be

described as dependent type theory with additional inference rules. In such type theories, we

reason mathematically by constructing elements of types, with the constraint that we only

talk about typed elements. The notation Γ ` " : � asserts that " is a term whose type is �,

optionally using (typed) bound variables, and free variables speci�ed by the context Γ. If the

type-theoretic context is clear from the linguistic context, that is, whenever the types of the

free variables of " and � are implicit, we simply write " : �. We write ", # : � for " : �

and # : �. Concretely, typing means that integers are not also rationals—at best we relate the

integer 5 and the rational 5 via a choice of inclusion Z→ Q.

In a simple type theory such as simply typed lambda calculus, the elements live either in

an atomic type) or a function type f → g where f and g are types. In other words, it is a

type theory of higher-order functions. For example, we have the term _(5 :) →))._(G :

)).5 (5 (G)) of type () →)) → () →)), which takes a function 5 and applies it twice to an

input G .

Dependent type theory is more expressive in the sense that it has dependent types, which

we’ll describe in detail below, as well as certain basic types and type formers. Such a type

theory is su�ciently expressive to encode a wide range of mathematics.

Univalent type theory adds certain extensionality principles as well as additional type for-

mers to dependent type theory. These additions allow us to give identity types, which are

already present in dependent type theory, a more central role.

7

8 2.1. CASE STUDY: PROPOSITIONAL LOGIC

At times we will relate type-theoretic concepts to set theory and Bishop mathematics. We

emphasize that the purpose of this is to show that certain type-theoretic concepts and con-

structions are unsurprising, and expressly not to motivate the usage of type theory as a foun-

dation. The only requirement of alternative foundations of mathematics is that they allow the

accurate interpretation of informal mathematics: informal de�nitions and constructions can

be made precise, and it should be possible to use informal proofs as strategies for building for-

mal proofs of formalized theorems, all following the inference rules of, in this case, univalent

type theory.

We explain how univalent type theory works by example, by describing how to formalize

some theorems and their proofs.

2.1 Case study: propositional logic

Theorem. If % or & , then ¬% implies & .

Note that in constructive mathematics, negation of % is de�ned by the statement that truth

of % implies a contradiction.

Proof. Assume % or & .

If % , then further assume ¬% , which is a contradiction, and hence we may conclude & .

If & , assume ¬% and conclude & . �

2.1.1 Formalizing the theorem statement

Claims such as % and & and the theorem statement are formalized by types, and proofs of the

theorem are formalized by elements of the corresponding type.

Discussion 2.1.1. As is usual in logic, by a term we mean a well-typed expression in the

language of UTT. This contrasts with elements which are the more general constituents

of a type. So when we have assumed to have = : N, that means we have taken an arbitrary

element = of the typeN of natural numbers. The expression = is then a term. An expression

2.1. CASE STUDY: PROPOSITIONAL LOGIC 9

such as succ(0) would be a speci�c term, also of typeN. When making some mathematical

claim in the language of UTT, we can’t take an arbitrary term, since this is a concept of the

language of UTT. So the distinction between term and element is the same as that between

numerals and numbers.

The claim is an implication from “% or &” to “¬% implies &”. Implications are formalized

as function types, and we have the empty type 0 which formalizes the contradiction in ¬% . So

after formalizing the disjunction, we can formalize the theorem statement as

“% or &”→ (¬% → &).

Discussion 2.1.2. Now we discuss the formalization of the disjunction “% or&”. In univalent

type theory, there are two ways to disjoin two types- and. , where the di�erence between

these two choices is central to our work:

1. We can form the coproduct - +. whose elements are either an element of - on the

left, or an element of . on the right. One can think of - +- as containing twice as

many elements as - .

2. We can form the propositional disjunction - ∨ . , which contains at most one ele-

ment, which represents that one of- or. is non-empty. It is not possible in general

to obtain a speci�c element of - or . from a proof of - ∨ . .

The claim that - ∨. contains at most one element can be made precise type-theoret-

ically using identity types, which formalize when two elements of a �xed type are to be

considered equal. We discus identity types below.

The distinction between a choice such as a coproduct and a propositional truth value

such as the disjunction - ∨ . is important. For instance, if certain Brouwerian continu-

ity principles are stated incorrectly, they are false, rather than independent of the type

theory[44].

To keep the formalization of the proof simple, we choose the former option as formalization

10 2.1. CASE STUDY: PROPOSITIONAL LOGIC

of the theorem:

% +& → (¬% → &).

2.1.2 Formalizing the proof

We have to �nd a term whose type is

% +& → (¬% → &).

In other words, we have to de�ne a function whose input is an element of type % + & , and

whose output is an element of type ¬% → & .

The speci�cation of coproduct types gives us a recursion principle which tells us that we

may de�ne a function- +. → / by pattern matching: we have to supply functions 5 : - → /

and 6 : . → / , where the �rst corresponds to the case that the input element of type - + .

is of the form inl(G) for some G : - , and similarly for the second. We then obtain the function

as:

rec-+. (/, 5 , 6) : - + . → /

In our case, we have to de�ne functions % → (¬% → &) and & → (¬% → &).

“% → (¬% → &)”: The informal statement that we “assume %” corresponds to _-abstrac-

tion: we take an element ? : % , and output an element of type ¬% → & . To do that, we take

an element =? : ¬% , and output an element of type & . Hence, we seek to implement ex falso

quodlibet efq& : 0→ & . We appeal to the recursion principle for 0 which tells us that we may

de�ne a function 0→ & by pattern matching on nothing: we only have to specify our output

type, but we do not have to supply any functions or input data. Hence we can de�ne efq& as:

efq& B rec0(&) : 0→ &.

Having de�ned this, we can de�ne an element of type % → (¬% → &) as:

(? : %).(=? : ¬%) . efq& (=? (?)) : % → (¬% → &).

“& → (¬% → &)”: Having done the above, this case is straightforward, using two lambda

2.2. PROOFS VERSUS DERIVATIONS 11

%,¬% ` &
% ` ¬% ⇒ &

&,¬% ` &
& ` ¬% ⇒ &

% ∨& ` ¬% ⇒ &

` (% ∨&) ⇒ (¬% ⇒ &)

Figure 2.1: An example of a propositional derivation in natural deduction

abstractions:

(@ : &).(=? : ¬%).@ : & → (¬% → &).

Finally, the full formalized proof can be given as:

rec%+& ((¬% → &), _(? : %) ._(=? : ¬%). efq& (=? (?)), _(@ : &) ._(=? : ¬%).@)

: % +& → (¬% → &)) .

2.2 Proofs versus derivations

The example of Section 2.1 may be shown in natural deduction as in Figure 2.1.

The proof theory of univalent type theory can be seen as a variation of natural deduction:

the valid terms are described by a proof theory. A full derivation of the proof term in Sec-

tion 2.1.2 may be provided in terms of the inference rules of univalent type theory, which are

presented e.g. in The Univalent Foundations Program [91, Appendix A.2].

For illustrative purposes, we give one such derivation of a term now. Whenever � is a

type, that is, whenever we have been able to de�ne an element� of a universeU of types, we

can de�ne the identity function on �. Read logically, this expresses that for any claim �, the

truth of � implies the truth of �. This can be shown by implementing the identity function

id� ≡ _(G : �).G on �, for example as in Figure 2.2.

We do not prove theorems using complete such derivation trees, because the derivation

tree is already encoded by the conclusion. Proof assistants, discussed in Section 9.1, can be used

to perform this reconstruction algorithmically. For example, in Figure 2.2, the outermost term

constructor is _-abstraction, and hence the inference rule used to reached the conclusion must

12 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

Γ ` � : U
Γ, G : � ctx

ctx-ext

Γ, G : � ` G : �
Vble

Γ ` _(G : �).G : �→ �
Π-intro

Figure 2.2: The identity function inferred in type theory

have been Π-intro. The type checking mechanism in proof assistants such as Coq and Agda

can be thought of as reconstructing these derivation trees. Hence, when doing mathematics

inside type theory, we only need to consider the �nal typing judgments.

2.3 Case study: every natural is either even or odd

Theorem. Let = be a natural number. Either = is even or = is odd.

Proof. By induction, it su�ces to show that 0 is either even or odd, and that, whenever = is

either even or odd, then so is = + 1.

0 is even because 0 = 2 · 0.

Assume = is either even or odd. We need to show that = + 1 is either even or odd. If = were

even, that is, if = = 2: , then = + 1 is odd. If = were odd, that is, if = = 2: + 1, then = + 1 is odd

because = + 1 = (2: + 1) + 1 = 2(: + 1). �

In essence, we can formalize this in UTT by closely following the above. First, the theorem

statement gets formalized as a type

(Π= : N) isEven(=) + isOdd(=)

where isEven and isOdd, respectively, are type families expressing that = is respectively even

or odd. Then we prove the theorem by �nding an element of this type, which we can do

using the induction principle indN of the natural numbers. The case = = 0 can be shown by

constructing an element of the type isEven(0) + isOdd(0), and the induction case is shown

using an induction principle ind=N on identity types.

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 13

Γ ctx

Γ ` N : U8
N-form

Γ ctx

Γ ` 0 : N
N-intro1

Γ ` = : N
Γ ` succ(=) : N

N-intro2

Figure 2.3: Formation and introduction rules governingN (as presented in The Univalent Foun-
dations Program [91, Appendix A.2]). Γ and = are arbitrary expressions.

We now discuss this in detail. Note that the majority of the text is an explanation of type

theory in general, rather than representing an intrinsic part of the formalization of the above

theorem.

2.3.1 Formalizing the theorem statement

Types play the role of both logical claims, and of collections of elements, that is, of mathe-

matical constructions. In contrast, in traditional set-based mathematics, the constructions are

carried out in sets, but the logic is formalized by a di�erent language such as �rst-order logic.

In any case we represent the theorem statement by some type. The theorem makes a claim

about an arbitrary natural number=, namely that= is either even or odd. Three of the inference

rules governing N, displayed in Figure 2.3, say that we can form the type N, and that it has

0 : N, and that whenever = : N, we can form succ(=) : N. In other words, the inference rules

specify that we can form the type N, and that it has two generators, namely 0 and succ, of

appropriate arities. There are a couple more inference rules governing the naturals, which we

will get to later in Section 2.3.2. The natural numbers can also be presented as a W-type [10].

Inference rules

We look at these rules in a bit more detail. The assumption Γ ctx in the formation rule says

that Γ is a well-formed context of variable declarations—intuitively, an ordered list of typed

variables, where the types of later variables may be written in terms of earlier ones. The

conclusion N : U8 says that N is an element of the 8th universe of types. The reason for the

index 8 is that we wish to think of a universeU of types itself as a type, but saying thatU : U

would lead to an inconsistency, for example via Girard’s paradox [49]. So instead we have a

14 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

hierarchy U0 : U1 : U2 : . . . of universes indexed by numerals (i.e. natural numbers of the

metatheory), and we writeU for one suchU8 , leaving the choice of 8 undecided or implicit.

Remark 2.3.1. The Coq proof assistant (see also Chapter 9) pretends to have a universe

U : U which is an element of itself:

$ coqtop

Welcome to Coq 8.8.2 (October 2018)

Coq < Check Type.

Type

: Type

When Coq is asked to check the type of Type, it returns that Type is an element of

itself. However, in reality Coq is hiding the universe levels, and we can ask Coq to show

them:

$ coqtop

Welcome to Coq 8.8.2 (October 2018)

Coq < Set Printing Universes.

Coq < Check Type.

Type@{Top.1}

: Type@{Top.1+1}

(* {Top.1} |= *)

Now, Coq reports that the universe with a variable index Top.1 is an element of the uni-

verse with index Top.1+1, as expected.

Remark 2.3.2. We present a type theory in which there is a context judgment denoted

ctx, a term typing judgment denoted (−) ` (−) : (−), and two corresponding judgmental

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 15

Γ ` � : U8 Γ, G : � ` � : U8
Γ ` (ΠG : �)� : U8

Π-form
Γ, G : � ` 1 : �

Γ ` _(G :�). 1 : (ΠG : �)�
Π-intro

Figure 2.4: Formation and introduction rules governing Π (based on the presentation in The
Univalent Foundations Program [91, Appendix A.2]). Γ, �, � and 1 are arbitrary expressions.

equality judgments (discussed in Section 2.3.2). Another common way to present type

theory adds a type judgment that expresses something is a well-formed type in some

context, and a corresponding judgmental equality judgment. For example, N-form would

be presented as:

Γ ctx

Γ ` N type
N-form’

The advantage of this approach is that it does not require a hierarchy of universes. How-

ever, it requires additional rules that let us see elements of a universeU as types and vice

versa: the elements of U are considered codes of types which may be rei�ed into actual

types. This alternative approach is known as universes à la Tarski, whereas we present

universes à la Russell.

The statement of these rules in terms of a context Γ is especially important for dependent

types, and the contexts also play a role in the induction principle and computation rules for

N. We discuss both topics below.

Universal quanti�cation

As we are making a claim about any natural number =, we have to generate a type for every

natural number. So, writing isEvenOrOdd(=) for the claim about a given =, we require a type

family, that is, a function

isEvenOrOdd : N→U

from the natural numbers to a certain collection U of types—we formalize functions in a

second. Generally speaking, we wish to minimize the number of universes involved in our

development, and in this case we are able to choose the �rst universeU0 asU. In this work,

16 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

we will normally abstain from explicitly choose universe levels, and instead pretend to have a

universeU : U.

It is incorrect to say that isEvenOrOdd itself is the formalization of the theorem statement:

after all, it is not a type but an element of the type N → U. To understand how to formalize

the theorem statement, consider what we expect a proof of the theorem to do. It should take

as an input a natural number =, and give as an output a proof of isEvenOrOdd(=), namely a

proof that = is either even or odd. In other words, the theorem statement should be a type

of dependent functions whose input is a natural number =, and whose output is a proof of the

claim isEvenOrOdd(=) about that natural number =.

We obtain such a type using the type former for Π-types in Figure 2.4. We have to specify

a �xed domain � : U, and for every element of � we have to specify a codomain—in other

words, we need a function � : � → U. Given this data, we can form the type (ΠG : �)�(G)

whose elements are maps that take an element G : � and output an element of �(G). So, after

de�ning isEvenOrOdd, as we will do below, we can formalize the theorem statement as the

type

(Π= : N) isEvenOrOdd(=).

We may construct elements of dependent function types using _-abstraction, as is made

precise by the introduction rule for (in)dependent functions as displayed in Figure 2.4. Loosely

speaking, it says that if we can specify an output term 1 in terms of a free variable G : �, we

may bind the variable G to obtain a function.

The “dependent” in “dependent function” refers to the fact that the output type, namely

isEvenOrOdd(=), depends on the input value =, in contrast to what one might call “indepen-

dent functions” of type - → . which have a �xed codomain . which is independent of the

input value (of type -).

Choices

In fact, we now de�ne the independent function isEvenOrOdd by _-abstraction. So it su�ces

to de�ne isEvenOrOdd(=) in terms of a given =. isEvenOrOdd(=) is a logical disjunction of

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 17

Γ ` � : U8 Γ ` � : U8
Γ ` � + � : U8

+-form

Γ ` � : U8 Γ ` � : U8
Γ ` 0 : �

Γ ` inl(0) : � + �
+-intro1

Γ ` � : U8 Γ ` � : U8
Γ ` 1 : �

Γ ` inr(1) : � + �
+-intro2

Figure 2.5: Formation and introduction rules governing + (as presented in The Univalent Foun-
dations Program [91, Appendix A.2]). Γ, �, �, 0 and 1 are arbitrary expressions.

the claim that = is even and the claim that = is odd. Recall from Discussion 2.1.2 that there are

two ways to disjoin two types - and . :

1. We can form the coproduct - +. whose elements are either an element of - on the left,

or an element of . on the right. One can think of - + - as containing twice as many

elements as - .

2. We can form the propositional disjunction - ∨ . , which contains at most one element,

which represents that one of - or . is non-empty. It is not possible in general to obtain

an element of - or . from a proof of - ∨ . .

The di�erence between these two choices is central to our work. However, in our partic-

ular case of = being even or odd, it turns out that the choice does not matter, as “= is even”

and “= is odd” are mutually exclusive propositions. We discuss propositions in more detail in

Section 2.4.1. Hence we formalize isEvenOrOdd(=) as a coproduct, which is easier to use in

most cases. The formation and introduction rules for coproducts are displayed in Figure 2.5.

To formalize when = is even and when = is odd, we wish to say that = is even if there

exists a natural : such that = = 2: , and that = is odd if there exists a natural : such that

= = 2: + 1 = succ(2:). Given a predicate& on a type - (formalized as a function& : - →U),

there are two ways to existentially quantify over the elements of - that satisfy & , where in

our working example - will be N and & is the claim about : : N that = = 2: :

1. We can form the dependent sum

(ΣG : -)& (G)

18 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

Γ ` � : U8 Γ, G : � ` � : U8
Γ ` (ΣG : �)� : U8

Σ-form

Γ, G : � ` � : U8 Γ ` 0 : � Γ ` 1 : � [0/G]
Γ ` (0, 1) : (ΣG : �)�

Σ-intro

Figure 2.6: Formation and introduction rules governing Σ (based on the presentation in The
Univalent Foundations Program [91, Appendix A.2]). Γ,�, �, 0 and1 are arbitrary expressions.

Γ ` � : U8 Γ ` 0 : � Γ ` 1 : �
Γ ` 0 =� 1 : U8

=-form
Γ ` � : U8 Γ ` 0 : �
Γ ` refl(0) : 0 =� 0

=-intro

Figure 2.7: Formation and introduction rules governing = (based on the presentation in The
Univalent Foundations Program [91, Appendix A.2]). Γ, �, 0 and 1 are arbitrary expressions.

whose elements consist of pairs (G, @) of G : - and @ : & (G). The “dependent” in “de-

pendent sum” refers to the fact that the type of the second coordinate @ depends on the

value of the �rst coordinate G , in contrast to the Cartesian product - × . of pairs (G,~)

with G : - and ~ : . .

2. We can take the propositional existential quanti�er

(∃G : -)& (G)

which contains at most one element, representing that there is a valid choice G without

specifying such a choice. It is not possible in general to obtain an element of - from a

proof of (∃G : -)& (G).

The di�erence between these two choices, too, is central to our work. And again, in our

particular case, it turns out that the choice does not matter, as : , if it exists, is unique. Hence

we pick the �rst option, as it is usually easier to work with. The formation and introduction

rules for dependent sums are displayed in Figure 2.6.

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 19

Γ, G : N ` � : U8
Γ ` 20 : � [0/G] Γ, G : N, ~ : � ` 2B : � [succ(G)/G] Γ ` = : N

Γ ` indN(_(G : N).�, 20, _(G : N)._(~ : �).2B, =) : � [=/G]
N-elim

Γ, G : N ` � : U8 Γ ` 20 : � [0/G] Γ, G : N, ~ : � ` 2B : � [succ(G)/G]
Γ ` indN(_(G : N).�, 20, _(G : N)._(~ : �).2B, 0) ≡ 20 : � [0/G]

N-comp1

Γ, G : N ` � : U8
Γ ` 20 : � [0/G] Γ, G : N, ~ : � ` 2B : � [succ(G)/G] Γ ` = : N
Γ ` indN(_(G : N).�, 20, _(G : N)._(~ : �).2B, succ(=))

≡ 2B [=, indN(_(G : N).�, 20, _(G : N)._(~ : �).2B, =)/G,~]
: � [succ(=)/G]

N-comp2

Figure 2.8: Induction principle and computation rules governing N (based on the presentation
in The Univalent Foundations Program [91, Appendix A.2]). Γ, � , 20, 2B and = are arbitrary
expressions.

Natural numbers

Now we formalize that = is twice : . We wish to state this as the equality

= = 2:.

Equalities are formalized via identity types, which will de�ne in more detail later. What matters

now is that for any type - and any G,~ : - we can form the identity type between G and ~,

denoted Id- (G,~), G =- ~ or G = ~. We emphasize that the fact that we can form the type

G =- ~ does not imply that G and ~ are to be considered equal: after all, the type G =- ~ may

not contain any elements. For any G : - we have a proof that G is identical to itself, namely

the refl constructor. The formation and introduction rules are shown in Figure 2.7.

To formalize 2: , we de�ne a function double : N → N. At this point we should consider

more inference rules associated with N, namely those concerning the induction principle. It

states that we can de�ne (dependent) functions out of the naturals by specifying what such

functions should do for the generators. In our case of de�ning of de�ning an independent

function double : N→ N, it su�ces to specify a codomain, in our case N, and the value of

20 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

1. double(0), and

2. double(succ(=)), optionally in terms of double(=).

These are given by 0 and succ(succ(double(=))), respectively. Hence we may explicitly de�ne

double as

indN(_(= : N).N, 0, _(= : N)._(< : N). succ(succ(<))) : N→ N.

Remark 2.3.3. A stricter reading of the inference rules says that we have to give a fourth

argument to indN, namely some = : N, to obtain an element of N in our above example.

Instead we have simply not given a fourth argument to construct an element of type N→

N. We can justify our reading of the inference rule using a _-abstraction, or by instead

introducing indN as an element of type

(Π� : N→U8) (Π20 : � (0)) (Π2B : (ΠG : N)� (G) → � (succ(G))) (Π= : N)� (=).

Normally induction rules are not introduced as elements of such complex types to avoid

depending on Π-types.

Such restrictions of induction principles to independent functions � → �, given by con-

stant type families, are known as recursion principles, and we previously discussed the recur-

sion principle for coproducts in Section 2.1.2.

Discussion 2.3.4. There are two further inference rules that essentially say that if you eval-

uate such inductively de�ned functions on one of the constructors of N, the expression

automatically simpli�es in the expected way. In dependent type theories such simpli�-

cations are phrased in terms of judgmental equality which we denote by ≡. Judgmental

equality allows us to transparently identify terms and types that are equal by simpli�ca-

tion, such as expanding function evaluations, evaluating inductively de�ned maps, and

substituting a name for its de�nition. A type theory does not reason about its own judg-

mental equality, in the sense that we cannot type-theoretically express that two terms are

judgmentally equal. If two terms are judgmentally equal, then they can be used inter-

changeably, and proof assistants such as Coq and Agda recognize this. As such, we will

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 21

usually invoke judgmental equality implicitly.

Remark 2.3.5. The pattern of four classes of inference rules for a basic type, in this case

N, namely

1. a type formation rule that speci�es how to obtain the type,

2. introduction rules specifying the generators of the type,

3. an induction rule that allows us to pattern match on elements of the type, and

4. computation rules specifying how the induction rule acts on all the generators,

is typical of so-called positive types, which encompass most basic types we discuss except

for dependent function types and universes of types. This contrasts with negative types

such as dependent function types, in which we have the same four classes of inference

rules, except that it has a primitive induction rule and a derived introduction rule, rather

than vice versa, and coinductive types, which have a coinduction rule that tells us how to

construct a map into it rather than how to eliminate its elements [2].

We give two more examples of positive types. The type 1 is speci�ed by the following

informal inference rules:

1. the type formation rule that says that 1 : U8 for any universe level 8 ,

2. one introduction rule that says that ★ : 1,

3. an induction rule that says that in order to de�ne a function 5 : (ΠG : 1)� (G), it

su�ces to specify an element of 2 : � (★), and

4. a computation rule that says that the function 5 obtained from the above induction

rule satis�es 5 (★) ≡ 2 .

The type 0 is somewhat degenerate since it has no constructors. Its inference rules

consist of:

22 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

1. a type formation rule that says that 0 : U8 for any universe level 8 ,

2. no introduction rules since 0 is supposed to be an empty type,

3. an induction rule that says that for every type family� : 0→U8 , we get a function

5 : (ΠG : 0)� (G) for free, intuitively because there is no possible input to give to 5 ,

and

4. no computation rules since there are no corresponding introduction rules.

To conclude, we formalize the theorem as follows. First we de�ne

double B indN(_(= : N).N, 0, _(= : N)._(< : N). succ(succ(<))),

isEven(=) B(Σ: : N)= =N double(:),

isOdd(=) B(Σ: : N)= =N succ(double(:)), and

isEvenOrOdd(=) B isEven(=) + isOdd(=),

meaning we de�ne double, isEven, isOdd and isEvenOrOdd to be judgmentally equal to their

de�nition, with B associating more weakly than =N, and then the theorem statement is

(Π= : N) isEvenOrOdd(=).

To prove the theorem means to de�ne an element of this type.

2.3.2 Formalizing the proof

The informal proof works by induction, and the formalized proof will do so as well. Recalling

the induction principle forN in Figure 2.8, we need to provide two elements, respectively with

the following types:

isEven(0) + isOdd(0), and

(Π= : N) (isEven(=) + isOdd(=)) →

(isEven(succ(=)) + isOdd(succ(=))) .

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 23

Remark 2.3.6. In the second type, the induction case, the outer product (Π= : N) binds

weakly, and so it should be read as:

(Π= : N)
[
(. . .) → (. . .)

]
.

In words, we need to show that 0 is either even or odd, and that whenever = is either even

or odd, then so is succ(=).

For the base case, we observe that 0 is even. How do we use this fact formally? We need

to provide a proof of the base case, and the left disjunct is the one we’d like to show, so we use

the inl-constructor for coproducts as in Figure 2.5. It takes an argument, in this case of type

(Σ: : N)0 =N double(:). We construct an element of that type using the introduction rule for

dependent sums as in Figure 2.6: we choose 0 for : , in which case double(:) is judgmentally

equal to 0, by using the computation rules of N as in Figure 2.8, and hence it su�ces to show

the identity 0 =N 0. This identity can be shown using the introduction rule for = in Figure 2.7,

which says that refl(0) : 0 =N 0. So, the full proof of the base case is:

inl((0, refl(0))).

Remark 2.3.7. To verify this proof, that is, to check the judgment

Γ ` inl((0, refl(0))) : isEven(0) + isOdd(0),

we dissect the term according to the inference rules. The outermost constructor is inl, so

we try to apply +-intro1. For this, we need that isOdd(0) is a well-formed type, which

follows from the correctness of our proof statement above, and the correctness of the

judgment

Γ ` (0, refl(0)) : isEven(0).

To check this judgment, we apply Σ-intro, and so on. As remarked in Section 2.2, this

type checking process is done automatically by proof assistants.

We now show the induction case. Let = : N be arbitrary, that is, use _-abstraction to put

= : N in the context. Then we need to de�ne a function that takes an element of a coproduct,

24 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

Γ, I : (� + �) ` � : U8
Γ, G : � ` 2 : � [inl(G)/I] Γ, ~ : � ` 3 : � [inr(~)/I]

Γ ` 4 : � + �
Γ ` ind�+� (_(I : � + �).�, _(G : �).2, _(~ : �).3, 4) : � [4/I]

+-elim

Γ, I : (� + �) ` � : U8 Γ, G : � ` 2 : � [inl(G)/I] Γ, ~ : � ` 3 : � [inr(~)/I]
Γ ` 0 : �

Γ ` ind�+� (_(I : � + �).�, _(G : �).2, _(~ : �).3, inl(0)) ≡ 2 [0/G]
: � [inl(0)/I]

+-comp1

Γ, I : (� + �) ` � : U8 Γ, G : � ` 2 : � [inl(G)/I] Γ, ~ : � ` 3 : � [inr(~)/I]
Γ ` 1 : �

Γ ` ind�+� (_(I : � + �).�, _(G : �).2, _(~ : �).3, inr(1)) ≡ 3 [1/~]
: � [inr(1)/I]

+-comp2

Figure 2.9: Induction principle and computation rules governing + (based on the presentation
in The Univalent Foundations Program [91, Appendix A.2]). Γ, �, �, � , 0, 1, 2 , 3 and 4 are
arbitrary expressions.

and outputs an element of another coproduct. We use the induction principle for coproducts,

displayed in Figure 2.9. It says that we need to provide two maps:

isEven(=) →
(
isEven(succ(=)) + isOdd(succ(=))

)
and

isOdd(=) →
(
isEven(succ(=)) + isOdd(succ(=))

)
.

For the �rst map, if = is even, then surely succ(=) is odd. But how to show this? Using

the induction principle of Σ-types, loosely speaking, we may assume that the input of type

isEven(=) is of the form (:, ?) with : : N and ? : = =N 2: . We wish to �nd :′ : N and

?′ : succ(=) =N succ(double(:)). Setting :′ to be : should do the trick, after all, if G =N ~ then

surely succ(G) =N succ(~). But how to obtain ?′?

The more general principle that we need is that if we have 5 : - → . and ? : G =- G′,

with in our case succ as 5 , then we should be able to obtain an element of 5 (G) =. 5 (G′). To

obtain this, we discuss the induction principle of = in more detail.

2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD 25

Γ, G : �,~ : �, ? : G =� ~ ` � : U8
Γ, I : � ` 2 : � [I, I, refl(I)/G,~, ?] Γ ` 0 : � Γ ` 1 : � Γ ` ?′ : 0 =� 1

Γ ` ind=� (_(G : �)._(~ : �).? .�, _(I : �).2, 0, 1, ?′) : � [0, 1, ?′/G,~, ?]
=-elim

Γ, G : �,~ : �, ? : G =� ~ ` � : U8 Γ, I : � ` 2 : � [I, I, refl(I)/G,~, ?] Γ ` 0 : �
Γ ` ind=� (_(G : �)._(~ : �)._(? : G =� ~) .�, _(I : �).2, 0, 0, refl(0)) ≡ 2 [0/I]

: � [0, 0, refl(0)/G,~, ?]

=-comp

Figure 2.10: Induction principle and computation rules governing = (based on the presentation
in The Univalent Foundations Program [91, Appendix A.2]). Γ,�,� , 0, 1, ?′ and 2 are arbitrary
expressions.

The induction and computation rules governing = are shown in Figure 2.10. The induction

principle for identity types says that to construct a map of type

(ΠG,~ : �) (Π? : G =� ~)� (G,~, ?)

for some type family

� : (ΠG,~ : �)G =� ~ →U8,

it su�ces to, for every G : �, provide a value of � (G, G, refl(G)).

We emphasize that the induction principle does not tell us how to construct an element of

(Π? : G =� ~)� (?)

with

� : G =� ~ →U8 .

The latter could be argued to follow the same pattern as the induction principle for N and +:

after all, the only way to construct an element of identity types is refl(G) : G =� G . However,

crucially, it is not the individual types G =� ~ that are de�ned by a generator, but the type

family of identity types between any two elements G,~ : � in a �xed type �, which is de�ned

by the re�exivity generators. Indeed, even though the only generator speci�ed by the identity

types is refl, we cannot prove that it is the only element of the type G =� G . In fact, in

the presence of univalence, we can de�ne types whose identity types have elements that are

26 2.3. CASE STUDY: EVERY NATURAL IS EITHER EVEN OR ODD

themselves not identical to re�exivity.

Hence we see that we must generate an element of 5 (G) =. 5 (G′) given an identity G =. G
′

for arbitrary G, G′ : - . So what we want is an element of

(ΠG, G′ : -) (Π? : G =- G
′) 5 (G) =. 5 (G′).

This �ts the induction principle above by setting

� (G, G′, ?) B (5 (G) =. 5 (G′)) .

Hence what we need is, for any G : - , an element of � (G, G, refl(G)) ≡ (5 (G) =. 5 (G)), which

we can give as refl(5 (G)). Concretely, the element is

ind=- (_(G : -)._(G′ : -)._(? : G =- G
′).(5 (G) =. 5 (G′)), _(G : -). refl(5 (G)))

: (ΠG, G′ : -) (Π? : G =- G
′) 5 (G) =. 5 (G′).

As we use this principle more often, we write ap5 ,G,G ′ for this element, whose type is

G =- G
′→ 5 (G) =. 5 (G′).

By the above argument, we know that G =N ~ implies succ(G) =N succ(~). This completes

the proof of

isEven(=) →
(
isEven(succ(=)) + isOdd(succ(=))

)
.

After all: by the induction principle of Σ-types, we may assume the input to be of the form

(:, ?) with : : N and ? : = =N double(:). Thus we can output inr(:, apsucc,=,double(:) (?)). So

we have the element 4 of the above type de�ned by the equation

4 ((:, ?)) B inr(:, apsucc,=,double(:) (?)) .

Next, assume that we have a proof of isOdd(=), then we wish to show

(
isEven(succ(=)) + isOdd(succ(=))

)
.

2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS 27

This should be true because if= is odd, then succ(=) is even. Again, we may assume the witness

of isOdd(=) to be of the form (:, ?) with : : N and ? : = =N succ(double(:)). Hence we set

:′ B succ(:) and we wish to show that succ(=) =N double(:′), namely, that = is even. Now

double(:′) = succ succ(double(:)) by the computation rule for double, which was de�ned

using the induction principle for N. Hence showing that succ(=) =N double(:′) is equivalent

to showing succ(=) =N succ(succ(double(:))), which is true by apsucc,=,succ(double(:)) (?). In

conclusion, we have the element

> : isOdd(=) →
(
isEven(succ(=)) + isOdd(succ(=))

)
de�ned by the equation

> ((:, ?)) B inl((succ(:), apsucc,=,succ(double(:)) (?))) .

This completes the induction step of our proof that every natural number is either even or

odd, and hence we have shown the theorem.

2.4 Case study: surjective maps, images of maps

We now discuss the following theorem, whose statement in set theories is clear, but whose

type-theoretic translation needs discussion.

Theorem. Let 5 : - → . be a map. The following are equivalent:

1. For every element of . there exists a pre-image in - .

2. The image of 5 is equal to . .

We will postpone the proof until after the formalization of the theorem, as the proof is

intended to be straightforward. The theorem statement, however, requires some attention.

28 2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS

2.4.1 Formalizing the theorem statement

First of all, the statement concerns a map 5 : - → . between arbitrary types-,. . So we start

with three Π-types that express this universal quanti�cation:

(Π-,. : U)(Π5 : - → .) . . .

The claim about some particular 5 , namely that two conditions are equivalent, is a bicondi-

tional, which is formalized as the product of two implications:

(Π-,. : U)(Π5 : - → .) (. . .→ . . .) × (. . .→ . . .),

where�×� means (ΣG : �)�, formalized using a Σ-type with a constant type family �′ : �→

U de�ned by �′(0) B �. Such “independent sum types” are more typically referred to as

Cartesian products or product types.

Existence of pre-images

A pre-image of ~ : . under 5 : - → . is an element of (ΣG : -) 5 (G) = ~, also known as the

�ber of 5 over ~.

How do we formalize that ~ : . has a pre-image under 5 in -? We recall the two ways to

formalize existential quanti�cation in univalent type theory:

1. We can form the dependent sum

(ΣG : -)& (G)

whose elements consist of pairs (G, @) of G : - and @ : & (G). The “dependent” in “de-

pendent sum” refers to the fact that the type of the second coordinate @ depends on the

value of the �rst coordinate G , in contrast to the Cartesian product - × . of pairs (G,~)

with G : - and ~ : . .

2. We can take the propositional existential quanti�er

(∃G : -)& (G)

2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS 29

which contains at most one element, representing that there is a valid choice G without

specifying such a choice. It is not possible in general to obtain an element of - from a

proof of (∃G : -)& (G).

The elements of the formalization following the �rst choice, that is, the elements of

(Π~ : .) (ΣG : -) 5 (G) = ~

correspond to, for each ~ : . , a choice of pre-image in - . In particular, from an element of

(Π~ : .) (ΣG : -) 5 (G) = ~ we can obtain a function 6 : . → - which is right inverse to 5 .

Hence, we have not formalized when 5 is surjective, but when 5 is a retraction.

We would like to �x this by hiding the choice of pre-images, so that we do not obtain a

right inverse to 5 . The second choice for the existential quanti�cation does this, so we describe

it in some more detail below.

In any case, the correct formalization of the �rst statement is:

(Π~ : .) (∃G : -) 5 (G) = ~.

Propositions

De�nition 2.4.1. A proposition is a type % all whose elements are identical, which is expressed

type-theoretically as

isHProp(%) B (Π?, @ : %) (? =% @).

We have the type

HProp B (Σ% : U) isHProp(%)

of all propositions, and we identify elements of HProp with their underlying type, that is, their

�rst projection. The letter ‘H’ stands for homotopy, which we brie�y touch on in Section 2.5.4.

Although we generally speaking abstain from specifying which universeU we are refer-

ring to, in this case we emphasize that, in reality, the above de�nition assigns a type HProp

to each choice of universeU. These respective types of propositions are, in the �rst instance,

not provable to be equal, and we return to this point in Section 2.6.1.

30 2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS

Γ ` � : U8
Γ ` ‖�‖ : U8

‖ · ‖-form
Γ ` 0 : �

Γ ` |0 | : ‖�‖
‖ · ‖-intro1

Γ ` 4 : ‖�‖ Γ ` 4′ : ‖�‖
Γ ` sq(4, 4′) : 4 =‖�‖ 4′

‖ · ‖-intro2

Γ, I : ‖�‖ ` � : U8 Γ, I : ‖�‖ ` ? : isHProp(�)
Γ, G : � ` 2 : � [|G |/I] Γ ` 4 : ‖�‖

Γ ` ind‖�‖ (_(I : ‖�‖) .�, _(I : ‖�‖) .?, _(G : �) .2, 4) : � [4/I]
‖ · ‖-elim

Γ, I : ‖�‖ ` � : U8 Γ, I : ‖�‖ ` ? : isHProp(�)
Γ, G : � ` 2 : � [|G |/I] Γ ` 0 : �

Γ ` ind‖�‖ (_(I : ‖�‖) .�, _(I : ‖�‖) .?, _(G : �).2, |0 |) ≡ 2 [0/G] : � [|0 |/I]
‖ · ‖-comp

Figure 2.11: The inference rules governing ‖·‖. �,� , 0, 2 , 4 , 4′ and ? are arbitrary expressions.

Propositions are used to model truth values in type theory, to contrast with arbitrary types,

which can have arbitrarily many elements. We will use the word “proof” also to refer to type-

theoretic constructions, including when such constructions are not unique. Additionally, we

use the word “proposition” to mean a mathematical statement of neutral importance.

In univalent type theory, it is assumed that every type - has a propositional truncation

‖- ‖.

Axiom 2.4.2. For every type - , there is a propositional truncation ‖- ‖ that satis�es the

inference rules in Figure 2.11.

De�nition 2.4.3. The propositional truncation of a type- is a proposition ‖- ‖ together with a

truncation map | · | : - → ‖- ‖ such that for any other proposition& , given a map 6 : - → & ,

we obtain a map ℎ : ‖- ‖ → & .

Remark 2.4.4. The uniqueness of the obtained map ‖- ‖ → & follows from the fact that&

is a proposition, and function extensionality, which is discussed in Section 2.5.1.

The propositional truncation ‖- ‖ of a type - is a proposition. We may say, quite simply,

that we have a constructor sq which is a proof that the type ‖- ‖ is a squashed to be a propo-

2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS 31

sition: it takes two elements of ‖- ‖ and gives a proof that they are identical, i.e. squashed

together.

The recursion principle of De�nition 2.4.3 may be expressed diagrammatically as the unique

existence of a vertical map in the following diagram.

- ‖- ‖

&

| · |

∃!

Corresponding to this recursion principle, we may phrase an induction principle as follows.

Given a type family � : ‖- ‖ → U, such that �(C) is a proposition for each C : ‖- ‖, and given

the data 5| · | : (ΠG : -)�(|G |), we obtain a map 5 : (ΠC : ‖- ‖)�(C) satisfying the computation

rule 5 (|G |) ≡ 5| · | (G) for each G : - .

Propositional truncations can be de�ned as higher-inductive types, namely, as a type that

is freely generated by both constructors and constructors of its (iterated) identity types, which

are also discussed in Section 2.5.4. Propositional truncations can alternatively be constructed

via impredicative encodings assuming propositional resizing [8].

One motivation of propositional truncation is that in toposes, the truncation ‖- ‖ of an

object - can be computed as the image of the unique map - → 1 to the terminal object. Note

that toposes have Σ and Π as left and right adjoint to the pullback functor, and (∃G : �)q (G) is

isomorphic to ‖(ΣG : �)q (G)‖ in any topos, and in fact we can take this existential quanti�er

as primitive rather than truncation. In setoid-based mathematics, the truncation of a setoid is

given by the same underlying set of elements, but with the chaotic equivalence relation that

relates all elements.

Univalent logic, the logic of propositions, is then the following generalization of the logic

of truth values in toposes, namely elements of the subobject classi�er Ω.

De�nition 2.4.5. Univalent logic is de�ned by the following, where %,& : HProp and ' : - →

HProp [91, De�nition 3.7.1]:

> B 1

⊥ B 0

32 2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS

% ∧& B % ×&

% ⇒ & B % → &

% ⇔ & B % = &

¬% B % → 0

% ∨& B ‖% +& ‖

(∀G : -)'(G) B (ΠG : -)'(G)

(∃G : -)'(G) B ‖(ΣG : -)'(G)‖

We use the above notation when the types involved are indeed propositions. For example, we

write - ⇒ . when - and . are propositions, and - → . if this has not been established.

Propositions are types that have at most one element. The truncation of a type - is a

type which has exactly one point if - has any number of elements: we think of ‖- ‖ as

{★ | ∃G ∈ - }. However, with the way we have set things up, this is not a very informative

de�nition as ∃ is in turn de�ned in terms of ‖ · ‖.

Discussion 2.4.6. We revisit the propositional logic example of Section 2.1. We may for-

malize the statement of Section 2.1 in univalent logic as

(% ∨&) ⇒ (¬% ⇒ &).

To prove this statement, as we will see in Lemma 2.5.21, ¬% → & is a proposition, and so

we may use the elimination rule for propositional truncations. It says that to prove the

above, it su�ces to construct an element of

(% +&) → (¬% → &),

which in turn can be constructed using the recursion principle for coproducts, for which it

su�ces to show % → (¬% → &) and& → (¬% → &), which can be done as in Section 2.1.

Hence, this formulation of propositional logic in propositions in the sense of De�ni-

tion 2.4.1 also holds.

2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS 33

De�nition 2.4.7. We refer to types that are propositions as properties. We refer to types that

potentially have several witnesses as structure. The claim “there exists an � satisfying �” is to

be interpreted by ∃, and the claims “we can �nd � satisfying �”, “we have � satisfying �” and

“we have � equipped with a �” are to be interpreted by Σ.

Example 2.4.8. Suppose we want to state that we have a method for computing roots of

polynomials over a certain ring '. This statement should be formalized as

(Π5 : ' [-]) (ΣG : ') 5 G = 0

rather than

(∀5 : ' [-]) (∃G : ') 5 G = 0,

as the latter exposes the existence as a truth value rather than as a witness.

Even though the elimination rule in De�nition 2.4.1 only constructs maps into proposi-

tions, we can sometimes obtain witnesses from existence.

De�nition 2.4.9. A decidable proposition is a proposition % such that % + ¬% . We have the

collection

DHProp B (Σ% : HProp)% + ¬%

of decidable propositions. We identify elements of DHProp with their underlying proposition,

and hence with their underlying types.

Remark 2.4.10. If % and & are decidable, then so is % ∧ & , and we use this fact in later

developments.

Example 2.4.11 (Escardó [40], [44], [91, Exercise 3.19]). Let % : N→ DHProp. If (∃= : N)% (=)

then we can construct an element of (Σ= : N)% (=). This element is constructed as the least =

satisfying % in Theorem 6.5.1.

Images of maps

What is the image of a map 5 : - → .? It is the collection of elements of . which are mapped

to by 5 from some element of - . As in the de�nition of surjectivity, we have to make sure not

34 2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS

to include a choice of pre-image. Indeed, the type

(Σ~ : .) (ΣG : -) 5 (G) = ~

is isomorphic to - , in the sense that there are maps back and forth, with both compositions

being pointwise equal to the identity map, and so does not represent the image of 5 . We

will make this more precise in Example 2.5.11. Again, to correct this, we hide the choice of

pre-image using the existential quanti�er:

im(5) B (Σ~ : .) (∃G : -) 5 (G) = ~

Perhaps surprisingly from a set-theoretic point of view, for our purposes it would be wrong

to formalize the claim that the image of 5 is equal to . as the identity type

im(5) =U . .

Indeed, there are non-surjective maps for which this is true, such as our map double : N→ N

above: the image of double is the collection of even natural numbers, and there is an isomor-

phism between the type of even naturals and the type of all naturals. Univalence, discussed in

Section 2.5.4, tells us in particular that from an isomorphism between types we can obtain an

identi�cation between types. Hence, the image of double, as a type, is identical to its codomain

N, even though double is not surjective.

This behavior is a feature, rather than a bug, of type theory: elements of types are seen

intensionally, i.e. they have no internal structure that can be observed by other types. In

contrast, in material set theories, the elements of sets are themselves sets, and in such systems

it makes sense at least on a formal level to ask, for example, whether {5, {exp}} ∈ 7
3 .

In our example of the double function, we would like to �x the formalization by somehow

specifying that we would like to see the collection of even natural numbers as a subset or

subtype of the natural numbers: after all, as a subset of N, the set of even naturals is not equal

to the set of all naturals.

After we have formalized subsets below, we can formalize the second claim in the theorem

2.4. CASE STUDY: SURJECTIVE MAPS, IMAGES OF MAPS 35

statement as im(5) ⊆ . ∧ . ⊆ im(5), where im(5) and . are seen as subsets of . .

Subtypes

What is a subtype of a �xed type - : U?

1. From a logical perspective, one could de�ne a subtype of- to be a predicate on- which

gives a truth value for every element of - .

2. From a categorical perspective, one could de�ne a subtype to be a type . , together with

an inclusion map from . to - .

Both notions can be made precise in univalent type theory, and we will show in Lemma 2.6.3

that they are equivalent in an appropriate sense. For now, we focus on the former perspective.

A predicate on a type - is a function � : - → HProp. Given such a predicate, we can see

� as a subset of - by de�ning

G ∈ � B �(G).

We can de�ne � ⊆ � for �, � : - → HProp by

(∀G : -)G ∈ �⇒ G ∈ �.

The powerset of - may be de�ned as, simply, - → HProp: its elements correspond to

subsets of - .
Remark 2.4.12. Recalling that HProp is de�ned in terms of a universe of types U, and

recalling that there is not one universe U, but, for example, a hierarchy of universes

U0 : U1 : U2 : . . ., for each universe level 8 we have a di�erent notion of subset of - .

Conclusion

Recalling the de�nition of the image of a map above,

im(5) B (Σ~ : .) (∃G : -) 5 (G) = ~,

we observe that the inclusion map to - should indeed be the projection map pr0, and that the

corresponding predicate � : - → HProp is �(G) = (∃G : -) 5 (G) = ~. Explicitly, the second

36 2.5. EXTENSIONALITY

part of the theorem statement says that the subtype . of . is wholly contained in the subtype

im(5) of . , that is, . ⊆ im(5). The subtype . of . is represented by the predicate which is

constantly true. Hence we obtain the formalization as:

(Π~ : .)> → (∃G : -) 5 (G) = ~.

Then the full theorem statement is:

((Π~ : .) (∃G : -) 5 (G) = ~) ⇔ ((Π~ : .)> ⇒ (∃G : -) 5 (G) = ~) .

2.4.2 Formalizing the proof

We have to prove two implications. First, consider

((Π~ : .) (∃G : -) 5 (G) = ~) → ((Π~ : .)> ⇒ (∃G : -) 5 (G) = ~) .

We prove this by several _-abstractions, so let 6 : (Π~ : .) (∃G : -) 5 (G) = ~, let~ : . and C : >.

Then 6(~) : (∃G : -) 5 (G) = ~, as required.

For the other implication, we need to show

((Π~ : .)> ⇒ (∃G : -) 5 (G) = ~) → ((Π~ : .) (∃G : -) 5 (G) = ~) .

Let ℎ : (Π~ : .)> ⇒ (∃G : -) 5 (G) = ~, let ~ : . . Recalling the generator ★ : 1, we have

ℎ(~,★) : (∃G : -) 5 (G) = ~, as required.

The full proof is thus:

(_6._~._C .6(~), _ℎ._~.ℎ(~,★)) .

2.5 Extensionality

Univalent type theory aims to give the identity types a central role. In contrast, in traditional

set theories, where sets come equipped with a notion of equality speci�ed by �rst-order logic,

many objects we like to think of as being equal, such as isomorphic groups, are in fact distinct

sets. In this section, we give a taste of the central role of the identity type in univalent type

2.5. EXTENSIONALITY 37

theory.

2.5.1 Function extensionality

We would like to say that two functions are identical as elements of the function type if and

only if they are pointwise equal. However, it is not clear at �rst sight that the two claims of

equality-as-functions and pointwise equality we are comparing are propositions, and in fact

in general they are not, as we discuss below. This hints at the fact that the exact phrasing of

the desired equivalence between equality of functions and pointwise equality, namely func-

tion extensionality, requires some choices. Some variations can be found in Garner [47] and

Lumsdaine [69].

Nonetheless, an implication from equality of functions to pointwise equality of functions

can be shown with the techniques we already discussed so far.

Lemma 2.5.1. Let -,. : U be arbitrary types. For 5 , 6 : - → . , given an element of 5 = 6 we

can prove (ΠG : -) 5 (G) = 6(G).

Proof. By _-abstraction we may de�ne an evaluation map

ev′ B _(G : -)._(ℎ : - → .).ℎ(G) : - → (- → .) → . .

Now for any G : - , we have ev′(G) : (- → .) → . and hence

apev′(G),5 ,6 : 5 = 6→ 5 (G) = 6(G),

so that we have the full proof

_5 ._6._?._G .apev′(G),5 ,6 (?) : (Π5 , 6 : - → .) 5 = 6→ (ΠG : -) 5 (G) = 6(G). �

Similarly, for dependent functions 5 , 6 : (ΠG : -). (G) with 5 = 6 we get a pointwise

identity (ΠG : -) 5 (G) = 6(G):

Lemma 2.5.2. Let -,. : U be arbitrary types. For 5 , 6 : (ΠG : -). (G), given an element of

5 = 6 we can prove (ΠG : -) 5 (G) = 6(G).

38 2.5. EXTENSIONALITY

This hints at a dependent version of the ap principle, which can be stated in terms of

dependent identi�cations as in De�nition 4.5.17.

In both the dependent and independent case, we would like to conversely say that from

(ΠG : -) 5 (G) = 6(G) we may conclude 5 = 6, which is not provable in dependent type the-

ory, because there are also type theories in which equality of functions is thought of as two

functions being implemented by the same algorithm [76]. In that sense, extensionality can be

seen as a feature we can choose to have, or not, when setting up the type theory.

De�nition 2.5.3. Naive independent function extensionality is the claim that Lemma 2.5.1 has

a converse: for all -,. ;U and 5 , 6 : - → . , if (ΠG : -) 5 (G) = 6(G) then 5 = 6.

Perhaps surprisingly, it may happen that this requirement is not a proposition: there may

be di�erent ways to exhibit this inverse implication [91, Theorem 4.1.3], just like there may

be di�erent ways to prove the above lemmas. This means that we have not unambiguously

speci�ed our wish. In particular this happens when - and . are not sets.

De�nition 2.5.4. A set is a type - whose identity types are propositions, that is:

isSet(-) B (ΠG,~ : -) isHProp(G =- ~).

In our work on constructive analysis, we will mainly be concerned with sets. But the

presence of types which are not sets is something we will have to deal with in our type-

theoretic foundations.

We can disambiguate our search for a converse of Lemma 2.5.1 by de�ning a proposition

that expresses that the speci�c map constructed in that lemma is invertible in the appropriate

sense. This appropriate notion of having both left- and right-sided inverses, namely that it is

an equivalence, is discussed in Section 2.5.4.

However, since we are mainly concerned with sets, any converse of Lemma 2.5.1 for arbi-

trary types will do, since on those types that are sets any converse implication is unique. Our

focus on naive function extensionality is additionally motivated by the surprising but non-

trivial fact that an arbitrary converse of Lemma 2.5.1, even for types that are not sets, can be

used to show that the particular implication from equality of functions to pointwise equality

2.5. EXTENSIONALITY 39

constructed in Lemma 2.5.1, or even its variant for dependent function in Lemma 2.5.2, is an

equivalence [69].

Sections 2.5.3 and 2.5.5 discuss two ways to construct a converse to Lemma 2.5.1.

2.5.2 Contractibility

As a preliminary to the next subsection, we discuss types that have exactly one point, namely

contractible types.

De�nition 2.5.5. A type - : U is contractible if it is a pointed proposition, that is:

isContr(-) B - × isHProp(-).

The �rst projection of an element of isContr(-), that is, the corresponding element of - , is

referred to as the center of contraction.

We use contractibility to formalize claims of “existence and uniqueness”, for example in

Theorem 5.2.1, Theorem 5.3.4, and an equivalent de�nition of the notion of equivalences in

Section 2.5.4.

Despite De�nition 2.5.5 suggesting to be data-like in the sense that the chosen point of -

seems part of the data, contractibility is a proposition. To show this, we �rst show that being

a proposition itself is a proposition.

Lemma 2.5.6. For an arbitrary type - : U, we have isHProp(isHProp(-)).

Proof. Let ?, @ : isHProp(-), that is, ?, @ : (ΠG,~ : -)G = ~. We wish to show ? = @. As is typ-

ical, to show the equality of the dependent functions ? and @, we use function extensionality.

One application of function extensionality says that in order to show that ? and @ are identical,

it su�ces to show, for every G : - , that ? (G) = @(G). This, in turn, can be shown by another

application of function extensionality, so that it now su�ces to show, for every G,~ : - , that

? (G,~) = @(G,~). Note, however, that this is an identity in - itself, which we know to be a

proposition by ? (or @). Hence we obtain the required identi�cation ? (G,~) = @(G,~). �

Corollary 2.5.7. For an arbitrary type - : U, we have isHProp(isContr(-)).

40 2.5. EXTENSIONALITY

Proof. Let F, I : isContr(-), that is, F, I : - × isHProp(-). Using the induction principles of

product types and identity types, in order to show an equality in a product type, it su�ces to

show equality coordinate-wise. The second coordinates ofF and I are identical because of the

above lemma, and the �rst coordinates are identical because the second coordinate of either

F or I says that - is a proposition. �

We now give two examples of contractible types.

Lemma 2.5.8. The unit type 1 is contractible.

Proof. To show that 1 is a proposition, let G,~ : 1. By the induction principle of 1, we may

assume both G and ~ to be judgmentally equal to ★, so that it su�ces to show the identity

★ = ★, which we get by re�exivity.

We have the center of contraction ★ : 1. �

The second example is that of singleton types. In order to show that such singleton types

are contractible, we �rst develop a one-sided variant of the induction principle for identity

types.

Lemma 2.5.9. Let- be any type, and G : - a point. Given a type family� : (Π~ : -)G = ~ →U

and an element 2 : � (G, refl(G)), we get an element 5 : (Π~ : -) (Π? : G = ~)� (~, ?) satisfying

the computation rule 5 (G, refl(G)) ≡ 2 judgmentally.

Proof. We apply induction principle of = as in Figure 2.10 to

� (I,F, @) B (Π�′ : (Π~ : -)I = ~ →U)�′(I, refl(I)) → �′(F,@),

3 (I) B _�′._2′.2′,

so that we obtain 5 ′ : (ΠI,F : -) (Π@ : I = F)� (I,F, @) with 5 ′(I, I, refl(I)) ≡ 3 (I). Then we

set 5 (~, ?) B 5 ′(G,~, ?,�, 2), so that 5 (G, refl(G)) ≡ 5 ′(G, G, refl(G),�, 2) ≡ 3 (I,�, 2) ≡ 2 . �

Lemma 2.5.10. Let - : U and G : - . The singleton type (Σ~ : -)G = ~ is contractible.

Proof. We have the center of contraction (G, refl(G)). To show that (Σ~ : -)G = ~ is a propo-

sition, let (~, ?) and (~′, ?′) be elements of (Σ~ : -)G = ~. To show that (~, ?) and (~′, ?′) are

2.5. EXTENSIONALITY 41

identical, apply based path induction twice on the statement

(Π~ : -) (Π? : G = ~) (Π~′ : -) (Π?′ : G = ~′) (~, ?) = (~′, ?′),

so that it su�ces to show that (G, refl(G)) = (G, refl(G)), which holds by re�exivity. �

Example 2.5.11. As an application of the contractibility of singletons, we consider the naive

formalization (Σ~ : .) (ΣG : -) 5 (G) = ~ of the image of a function 5 : - → . , discussed in

Section 2.4.1. In a sense we will discuss in more detail in Section 2.5.4, this type is equivalent to

the type (ΣG : -) (Σ~ : .) 5 (G) = ~, where we have simply swapped the order of the dependent

sums. Now the inner dependent sum (Σ~ : .) 5 (G) = ~ is a singleton type, and hence, as can

be made precise later, equivalent to 1, so that the type is equivalent to (ΣG : -)1, that is, to - .

2.5.3 Computation rules for higher-inductive types

As mentioned in Section 2.4.1, we can de�ne the propositional truncation as a higher-inductive

type: a type that is freely generated by both constructors of the type, and constructors of

(iterated) identity types of that type. A propositional truncations ‖- ‖ is generated by the

following two constructors:

1. |·| : - → ‖- ‖, and

2. sq : (ΠB, C : ‖- ‖)B =‖- ‖ C .

This raises the question of which such lists of constructors are admissible, that is, can be

interpreted semantically. This has been answered to some extent in Lumsdaine and Shulman

[70].

We recall from Remark 2.3.5 that the constructors of an inductively de�ned type should

come with corresponding computation rules. For higher-inductive types, it is not entirely

clear how this should be done, since computation rules corresponding to the identi�cations,

sq in this case, are naively stated in terms of the de�ned element ap [91, Notes to Chapter 6],

rather than in terms of more primitive notions, which are better understood. Nonetheless,

for the propositional truncation, following The Univalent Foundations Program [91], we have

42 2.5. EXTENSIONALITY

given a computation rule for |·| as a judgmental equality in Figure 2.11. This has the perhaps

unintuitive consequence that we can write a mysterious term myst with idN ≡ myst ◦ |·| that

seems to undo the information hiding of propositional truncation [61].

With this computation rule for |·|, we can prove naive function extensionality, following

Lumsdaine [69] and Escardó [41]. As a preliminary to this, note that the type � B ‖2‖, namely

the truncation of the Booleans, which has two constructors tt, ff : 2, satis�es the following

recursion principle.

Lemma 2.5.12. Given two points ~tt, ~ff : . and ? : ~tt = ~ff , we get a map 5 : � → . satisfying

the judgmental computation rules 5 (|tt|) ≡ ~tt and 5 (|ff |) ≡ ~ff .

Proof. The singleton type (Σ~ : .)~tt = ~ is a proposition by Lemma 2.5.10, and has elements

(~tt, refl(~tt)) and (~ff, ?). Hence, by applying the recursion principle of propositional trun-

cation, and the recursion principle of the Booleans, we get a map 5 ′ : � → (Σ~ : .)~tt = ~

satisfying 5 ′(|tt|) = (~tt, refl(~tt)) and 5 ′(|ff |) = (~ff, ?). Then composing 5 ′ with a projection

map that forgets the equality gives the required map 5 . �

Lemma 2.5.13. For two functions 5 , 6 : - → . , given ? : (ΠG : -) 5 (G) = 6(G), we get 5 = 6.

Proof. De�ne ℎ′ : - → � → . by, for a given G : - , applying the recursion principle for � to

5 (G), 6(G) and ? (G) : 5 (G) = 6(G). Note that for a given G , we have that ℎ′(G) satis�es the

judgmental equalities ℎ′(G, |tt|) ≡ 5 (G) and ℎ′(G, |ff |) ≡ 6(G). This means that ℎ : � → - → .

de�ned by ℎ(8, G) B ℎ′(G, 8) satis�es ℎ(|tt|) ≡ 5 and ℎ(|ff |) ≡ 6.

Because ‖2‖ is a proposition, we have |tt| = |ff |, so that by applying ap we get 5 = 6. �

2.5.4 Univalence

In the previous sections we have paid attention to contractibility, propositions and sets. These

notions are part of the hierarchy of h-levels, as is developed in The Univalent Foundations

Program [91, Chapter 7], where the ‘h’ stands for homotopy. H-levels are phrased in terms

of (iterated) identity types. Namely, for a �xed type - , two points G,~ : - give rise to the

identity type G =- ~. Then, any two points ?, @ : G =- ~ of that type give rise to the identity

2.5. EXTENSIONALITY 43

type ? =G=-~ @. By repeating this process of building identity types of increasing nesting, we

get the notion of iterated identity types. We then get a curious relationship between h-levels

and identity types: a proposition - has, for any G,~ : - , contractible identity types G =- ~. A

set is a type - for which all types G =- ~ are propositions, and so given any ?, @ : G =- ~, the

type ? =G=-~ @ is contractible. Such relationships can be developed in more generality.

The notion of sets arises unprompted from the notion of decidable equality in the following

sense.

Lemma 2.5.14. Consider a type - : U. If - has decidable equality, that is, given an element of

(ΠG,~ : -) (G = ~) + ¬(G = ~),

then - is a set.

This lemma is due to Hedberg [50], and is presented in more modern notation in Kraus

et al. [62].

Another natural property of h-levels is that every contractible type is a proposition, and

that every proposition is a set, and more generally h-levels are cumulative in a way reminiscent

of homotopy theory. This natural role of h-levels has prompted some to develop homotopy-

theoretic results in type-theoretic language [11, 95], so that, for instance, contractible ho-

motopy types are modeled by contractible types. An appropriate notion modeling spacial

equivalences is then the following type-theoretic notion.

De�nition 2.5.15. For -,. : U an equivalence is a map 5 : - → . for which the following

holds:

((Σ6 : . → -) (ΠG : -)6(5 (G)) =- G) × ((Σℎ : . → -) (Π~ : .) 5 (ℎ(~)) =. ~) .

We have the Σ-type - ' . consisting of maps 5 : - → . that are equivalences in the above

sense.

As is developed in The Univalent Foundations Program [91, Chapter 4], the above condition

for 5 : - → . is in fact a proposition.

44 2.5. EXTENSIONALITY

In other words, a map 5 : - → . is an equivalence if it has a left inverse 6 and a right

inverseℎ. In particular, every isomorphism is an equivalence, since we can take the both-sided

inverse 6 : . → - for both single-sided inverses. Conversely, every equivalence 5 : - → . is

also an isomorphism [91, Chapter 4] in the sense that it has a both-sided inverse 6 : . → - .

However, perhaps surprisingly, being an isomorphism is not a proposition [91, Theorem 4.1.3],

so that the notion of equivalence is preferred, although a form of univalence phrased with

isomorphisms has been considered in Hofmann and Streicher [53].

Equivalently, we may de�ne 5 : - → . to be an equivalence when for every ~ : . , the

�ber (ΣG : -) 5 (G) = ~ is contractible. Recalling from Section 2.5.2 that contractibility can be

read as “existence and uniqueness”, this formalization can be read as stating that every �ber

has a unique point.

An equivalence 5 : - → . , just like any map, induces a function ap5 ,G,G ′ : G =- G′ →

5 (G) =. 5 (G′) on identity types. The fact that 5 is an equivalence implies that ap5 ,G,G ′ is an

equivalence for every G, G′ : - . For the same reason, we get an equivalence on all iterated

identity types, evocative of weak equivalences in homotopy theory.

Homotopically equivalent spaces are often considered equal in the same sense that iso-

morphic groups are considered equal. This leads us to consider an extensionality principle

stating that an equivalence between types should correspond to an identi�cation of types as

elements of the universeU.

This is made precise in a fashion similar to function extensionality. The direction given by

dependent type theory is the following.

Lemma 2.5.16. Given -,. : U and ? : - = . , we get an equivalence - ' . .

Proof. By the induction principle of identity types, we may assume. to be judgmentally equal

to - , and the path to be re�exivity, so that we may give the identity function id- : - → - as

an equivalence from - to - . �

We then obtain a converse to this lemma by requiring the construction to be an equiva-

lence.

2.5. EXTENSIONALITY 45

De�nition 2.5.17. A universeU is univalent if the construction of Lemma 2.5.16 is itself an

equivalence. In particular, this means that from an equivalence - ' . we obtain an identity

- = . .

In univalent type theory, it is assumed that every universe is univalent.

Axiom 2.5.18. Every universe is univalent.

Semantic justi�cation is given by simplicial [58] and cubical [33, 78, 32] sets. Syntactic

justi�cation is given by 2-dimensional [67] and (Cartesian) cubical type theories [33, 5, 96].

We believe that the majority of our work goes through without full univalence, instead

using the weaker extensionality principles discussed in the next section, although we have

not checked this.

2.5.5 Consequences of extensionality

In Section 2.5.3, we obtained naive function extensionality by exploiting the computation rules

of propositional truncations. Perhaps surprisingly, function extensionality can also be shown

assuming univalence, as in The Univalent Foundations Program [91, Section 4.9] or Knapp [60,

Corollary 2.45].

The following two consequences of univalence are often considered independently of uni-

valence.

De�nition 2.5.19. Propositional univalence is univalence for types -,. : U when - and .

are known to be propositions. Explicitly, propositional univalence holds forU if for all types

-,. : U with isHProp(-) and isHProp(.), the type of equivalences - ' . is equivalent to

the type - = . , that is,

(Π-,. : U) isHProp(-) → isHProp(.) → (- ' .) ' (- = .).

De�nition 2.5.20. Propositional extensionality, another extensionality for propositions -,. :

U, states than for all types -,. : U with isHProp(-) and isHProp(.), the type of pairs of

46 2.6. SUBTYPES AND EMBEDDINGS

maps - → . and . → - is equivalent to the type - = . , that is,

(Π-,. : U) isHProp(-) → isHProp(.) → (- ⇔ .) ' (- = .).

We will often implicitly appeal to function extensionality to show that certain types are

propositions.

Lemma 2.5.21. Given - : U and � : - → U, if we have ? : (ΠG : -) isHProp(�(G)), then

isHProp((ΠG : -)�(G)).

Proof. Consider 5 , 6 : (ΠG : -)�(G). In order to show equality of 5 and 6, by function exten-

sionality, it su�ces to show equality pointwise. But 5 (G) = 6(G) by ? (G). �

This lemma �nishes Discussion 2.4.6, where we needed that if & is a proposition, then a

type ¬% → & is a proposition.

In summary, there is a variety of extensionality principles one may consider in the context

of type theory, even for a focused area such as the two extensionality axioms for propositions

above. UTT gives identity types a central role, regardless of whether we have opted to use

certain extensionality principles.

2.6 Subtypes and embeddings

The extensionality discussed in the previous section means that a naive formalization of well-

known subcollections, such as the even numbers as a subcollection of the naturals, will not

behave as expected. Whereas in a material set theory, the collection of even numbers is distinct

from the collection of all natural numbers, univalence would make the corresponding types

identical, as we discussed in Section 2.4.1.

To avoid this unintended identi�cation of the formalization of certain subcollections, we

adjust the way we formalize subcollections in this section.

We will often be more explicit about universe levels, by amending De�nition 2.4.1 so that

for every universe level 8 , we have a type HProp8 of propositions in U8 , instead of having a

single symbol HProp for the type of propositions in an implicitly chosen universeU8 .

2.6. SUBTYPES AND EMBEDDINGS 47

De�nition 2.6.1. By a 9-subtype � : P9� of� : U8 we mean a map � : �→ HProp 9 . For 1 : �

we de�ne (1 ∈ �) B �(1). A subtype � : P� is a 9-subtype � : P9� for some universe level 9 .

A subset is a subtype of a type that is a set in the sense of De�nition 2.5.4.

This is motivated by the fact that if � : P9� is a a subtype of �, then the projection map

pr0 : (Σ0 : �)�(0) → � is an embedding, and vice versa embeddings give rise to subtypes, as

we will make precise in Lemma 2.6.3.

De�nition 2.6.2. Given a function 5 : � → �, we say 5 is an embedding, and write 5 : � ↩→ �,

if one of these two equivalent conditions holds:

(Π0 : �) isHProp ((Σ2 : �) 5 2 = 0) (2.1)

(Π2, 2′ : �) isEquiv(ap5 ,2,2 ′) (2.2)

The second condition expresses that ap5 ,2,2 ′ : (2 =� 2′) → (5 2 =� 5 2′) is an equivalence for all

2, 2′ : � .

The fact that conditions (2.1) and (2.2) above are equivalent is a special case of Lemma 7.6.2

in The Univalent Foundations Program [91].

We use the notion of embedding, rather than that of injectivity, namely the requirement

that ap5 ,2,2 ′ has a converse, for the convenient reason that “embedding + surjection = equiv-

alence”. If � and � are sets, then the identity types are propositions and hence embeddings

coincide with injections.

De�nitions 2.6.1 and 2.6.2 are equivalent in the following sense.

Lemma 2.6.3. A subtype � : P9� of � : U8 gives rise to a type � : U8t 9 that embeds into �,

where 8 t 9 is the least universe level above 8 and 9 . Conversely, a type� : U9 with an embedding

into � : U8 gives rise to a subtype � : P8t 9�. These constructions are inverse to each other.

Proof. In one direction, the type � B (Σ1 : �)1 ∈ � embeds into � by the projection map.

Conversely, given an embedding 5 : � ↩→ �, the subtype is given by �(0) B (Σ2 : �) (5 2 = 0),

which is well-de�ned by the fact that 5 is an embedding. For details, see e.g. Rijke and Spitters

[82, Theorem 2.29]. �

48 2.6. SUBTYPES AND EMBEDDINGS

Remark 2.6.4. This result uses univalence to show an equality of types. It may be possible

that Theorem 4.5.13, which uses it, can be shown without univalence.

We will often use this correspondence implicitly.

Lemma 2.6.5. For types � : U8 and � : U9 , and a relation ≤: � → � → HProp 9 , such that

(�, ≤) is a partial order, the type �→ � with the ordering

5 ≤ 6 B (∀0 : �) 5 (G) ≤ 6(G)

is a partial order. Explicitly, with 5 , 6, ℎ : �→ �:

1. 5 ≤ 5 ,

2. (5 ≤ 6) → (6 ≤ 5) → 5 = 6,

3. (5 ≤ 6) → (6 ≤ ℎ) → (5 ≤ ℎ).

Proof. Straightforward, where antisymmetry uses function extensionality. �

Lemma 2.6.6. The type HProp 9 forms a partial order with the relation ⇒. Explicitly, with

%,&, ' : HProp 9 :

1. % ⇒ % ,

2. (% ⇒ &) → (& ⇒ %) → % = & ,

3. (% ⇒ &) → (& ⇒ ') → (% ⇒ ').

Proof. Straightforward, where antisymmetry is propositional extensionality. �

De�nition 2.6.7. For � : U8 , � : P9� and� : P:�, we de�ne the ordering relation ⊆: P9�→

P:�→ HProp8t 9t: by

% ⊆ & B (∀0 : �) (0 ∈ %) ⇒ (0 ∈ &).

Corollary 2.6.8. For � : U8 , the type P9� of 9-subtypes of � is a partial order with ⊆: P9� →

P9�→ HProp8t 9 .

2.6. SUBTYPES AND EMBEDDINGS 49

Section 5.1 uses the following formulation of the antisymmetry of Corollary 2.6.8. Note

that for embeddings from � and � into �, the relation � ⊆ � holds if we have a certain

commutative triangle as below.

Lemma 2.6.9. Suppose given a triangle of maps as follows.

� �

©

�

5

8� 8�

If 8� and 8� are embeddings, and the commutativity condition 8� ◦ 5 = 8� is satis�ed, then 5

is an embedding.

Proof. We can show, by induction on identity types, that ap8� = ap8� ◦ ap5 . Then, by a two-

out-of-three property for equivalences [91, Theorem 4.7.1], we get that ap5 is an equivalence,

as required. �

Lemma 2.6.10. Suppose given a triangle of maps as follows.

� �

©

�

5

8�

6

8�

If 8� and 8� are embeddings, and the commutativity conditions 8� ◦ 5 = 8� and 8� ◦6 = 8� are

satis�ed, then 5 and 6 are equivalences.

Proof. It su�ces to show that 6 ◦ 5 = id� and 5 ◦ 6 = id� .

By the fact that 8� and 8� are embeddings, and using function extensionality, this is equiv-

alent to showing that 8� ◦ 6 ◦ 5 = 8� and 8� ◦ 5 ◦ 6 = 8� . Both cases can be shown by applying

commutativity of the triangle both ways round. Explicitly, 8� ◦ 6 ◦ 5 = 8� ◦ 5 = 8� and

8� ◦ 5 ◦ 6 = 8� ◦ 6 = 8� . �

50 2.6. SUBTYPES AND EMBEDDINGS

2.6.1 Lattice-like structure of HProp

The types HProp and P�, seen as partial orders, seem to have some additional structure rem-

iniscent of being complete lattices. However, the naive construction of least upper bounds

gives an element of a di�erent type, namely propositions in a di�erent universe.

Lemma 2.6.11. For a given :-subtype � : P:HProp 9 of HProp 9 , the object
∨
� : HProp(9+1)t:

de�ned by ∨
� B (∃% : HProp 9)% ∈ � ∧ %

is an upper bound of � in the sense that

(∀% : HProp 9)% ∈ � ⇒ (% ⇒
∨

�)

and is minimal in the sense that

(∀& : HProp 9) ((∀% : HProp 9)% ∈ � ⇒ (% ⇒ &)) ⇒ (
∨

� ⇒ &) .

Similarly,
∧
� : HProp(9+1)t: de�ned by

∧
� B (∀% : HProp 9)% ∈ � ⇒ % is a maximal

lower bound.

Proof. For the claim that
∨
� is an upper bound, let % : HProp 9 with % ∈ �, and suppose %

holds. Then by de�nition we have that
∨
� holds, as required.

For minimality, suppose & : HProp 9 is another upper bound, and that
∨
� holds. By the

universal property of truncation, we may assume to have % : HProp 9 with % ∈ � such that %

holds, and so because & is an upper bound of �, we have that & holds, as required.

The proof for
∧
� is similar. �

Importantly, we do not claim that HProp 9 is a complete lattice, because the object
∨
� we

have constructed is an element of HProp(9+1)t: rather than HProp 9 . We will work towards a

solution after also stating what the above situation means for the partial order of subsets of a

type.

2.6. SUBTYPES AND EMBEDDINGS 51

Lemma 2.6.12. For any � : U8 , for a given :-subtype � : P:P9� of P9�, the object
⋃
� :

P(9+1)t:� de�ned by (⋃
�

)
(0) B (∃� : P9�)� ∈ � ∧ 0 ∈ �

is an upper bound of � in the sense that

(∀� : P9�)� ∈ � ⇒ (� ⊆
⋃

�)

and is minimal in the sense that

(∀� : P9�) ((∀� : P9�)� ∈ � ⇒ (� ⊆ �)) ⇒ (
⋃

� ⊆ �).

Similarly,
⋂
� : P(9+1)t:� de�ned by (⋂�) (0) B (∀� : P9�)� ∈ � ⇒ 0 ∈ � is a maximal

lower bound.

When we think of HProp8 as a collection of truth values, motivated by the subobject clas-

si�er Ω in toposes, we may consider the possibility that there is only one such collection.

De�nition 2.6.13. Propositional resizing holds if for any two universe levels 8, 9 , we have

HProp8 ' HProp 9 .

Corollary 2.6.14. Assuming propositional resizing, HProp8 is a complete lattice. That is, for

every � : P:HProp8 , the proposition
∨
� : HProp8 de�ned using propositional resizing by

∨
� B

(∃% : HProp8)% ∈ � ∧ % is a join of �, and similarly
∧
� B (∀% : HProp8)% ∈ � ⇒ % is a meet

of �.

Conversely, the claim that every HProp8 is a complete lattice implies propositional resiz-

ing [38], but we will not be using this.

Corollary 2.6.15. Assuming propositional resizing, for any � : U8 , the type P9� of 9-subsets of

� is a complete lattice. That is, for any collection of subsets � : P:P9�, the intersection
⋃
� : P9�

de�ned using propositional resizing by(⋃
�

)
(0) B (∃� : P9�)� ∈ � ∧ 0 ∈ �

52 2.6. SUBTYPES AND EMBEDDINGS

is a join of �, and similarly the map
⋂
� : P9� de�ned by(⋂

�

)
(0) B (∀� : P9�)� ∈ � ⇒ 0 ∈ �

is a meet of �.

2.6.2 Quanti�cation over subtypes

Given a subtype � : P� of �, we sometimes consider only the elements of � that happen to

be in �. In other words, we consider the elements of the type (Σ1 : �)1 ∈ � corresponding via

Lemma 2.6.3 to �. We introduce the following notation.

De�nition 2.6.16. For � : U, � : P� and � : ((Σ0 : �)0 ∈ �) → U and � : ((Σ0 : �)0 ∈

�) → HProp, we write

(Π1 ∈ �)� (1) B (Π1 : �) (Πa : 1 ∈ �)� (1, a),

(Σ1 ∈ �)� (1) B (Σ1 : �) (Σa : 1 ∈ �)� (1, a),

(∀1 ∈ �)� (1) B (∀1 : �) (∀a : 1 ∈ �)� (1, a),

(∃1 ∈ �)� (1) B (∃1 : �) (∃a : 1 ∈ �)� (1, a).

For � : �→U and � : �→ HProp, this simpli�es to the notation

(Π1 ∈ �)� (1) B (Π1 : �)1 ∈ � → � (1),

(Σ1 ∈ �)� (1) B (Σ1 : �)1 ∈ � ×� (1),

(∀1 ∈ �)� (1) B (∀1 : �)1 ∈ � ⇒ � (1),

(∃1 ∈ �)� (1) B (∃1 : �)1 ∈ � ∧ � (1).

For � : U, this further simpli�es to the notation for function types

� → � B (Π1 : �)1 ∈ � → �.

2.6. SUBTYPES AND EMBEDDINGS 53

Remark 2.6.17. A di�erent way to read the above notations is using the correspondence

of Lemma 2.6.3, so that, for instance,

(Π1 ∈ �)� (1) B (ΠC : (Σ1 : �)1 ∈ �)� (C).

It is straightforward to check that this type coincides with the above interpretation.

Remark 2.6.18. Following the correspondence of Lemma 2.6.3, for � : P� and � : U, we

read � → � as the type � → (Σ1 : �)1 ∈ �.

2.6.3 Identi�cations in subtypes

Let � : � → HProp be a subtype of �. When are two elements of � equal? Note that this can

be interpreted in two ways: either that we ask when two elements D, E : (Σ1 : �)1 ∈ � of the

Σ-type are equal, or that we ask when two 1, 2 : � with 1, 2 ∈ � have 1 =� 2 .

In fact, these two notions are equal.

Lemma 2.6.19. For D, E : (Σ1 : �)1 ∈ �, we have

D =(Σ1:�)1∈� E ⇔ pr1(D) =� pr1(E).

Proof. We have to show two implications. For the �rst, let D, E : (Σ1 : �)1 ∈ � and ? : D = E be

arbitrary. By the induction principle of identity types, we may assume D ≡ E and ? ≡ refl(D),

so that it su�ces to prove pr1(D) =� pr1(D), which holds by refl(pr1(D)).

For the second implication, let D, E : (Σ1 : �)1 ∈ � be arbitrary. By the induction principle

of Σ-types, we may assume that D ≡ (1, B) and E ≡ (2, C) with B : 1 ∈ � and C : 2 ∈ �.

Now let @ : 1 =� 2 . By the induction principle of identity types, we may assume 1 ≡ 2 and

@ ≡ refl(1), so that B, C : 1 ∈ �. It su�ces to prove (1, B) = (1, C), which holds because � is

valued in propositions, so that B = C , and hence using ap(1,−),B,C : B = C → (1, B) = (1, C) we get

the required result. �

In Section 2.5.2 we discussed that contractibility is used to formalize unique existence of

an element with a given property. We can now make this more precise.

54 2.7. CASE STUDY: QUOTIENT TYPES

Lemma 2.6.20. For � : �→ HProp, the following two claims are equivalent:

1. isHProp((Σ1 : �)1 ∈ �), and

2. (Π1, 2 : �)1 ∈ � ⇒ 2 ∈ � ⇒ 1 = 2 .

Proof. Assuming isHProp((Σ1 : �)1 ∈ �), for any 1, 2 : � with B : 1 ∈ � and C : 2 ∈ � we get

(1, B) = (2, C) and hence 1 = 2 .

Assume (Π1, 2 : �)1 ∈ � ⇒ 2 ∈ � ⇒ 1 = 2 . Given D, E : (Σ1 : �)1 ∈ �, we get pr1(D) =

pr1(E) and hence by Lemma 2.6.19 we get D = E . �

Lemma 2.6.21. For � : �→ HProp, the following two claims are equivalent:

1. isContr((Σ1 : �)1 ∈ �), and

2. (Σ1 : �)1 ∈ � ∧ ((Π2 : �)2 ∈ � ⇒ 1 = 2).

Proof. Assuming isContr((Σ1 : �)1 ∈ �), we get the center of contraction D : (Σ1 : �)1 ∈ �,

and can hence set 1 ≡ pr1(D). The required claim (Π2 : �)2 ∈ � ⇒ 1 = 2 then follows from

Lemma 2.6.20.

Assume 1 : � with B : 1 ∈ � and that (Π2 : �)2 ∈ � ⇒ 1 = 2 . We can set the center

of contraction to be (1, B), and then isHProp((Σ1 : �)1 ∈ �) follows from Lemma 2.6.20: for

2, 3 : � with 2, 3 ∈ � we get 2 = 1 = 3 . �

Remark 2.6.22. The second equivalent claim expresses that we have some element of �

satisfying property�, but uniqueness is only expressed about the element of�. In contrast,

the �rst variant in terms of contractibility additionally expresses a kind of uniqueness of

the proof of the property itself. But, since this property is propositional, this does not add

any information.

2.7 Case study: quotient types

Propositional truncations can be thought of as taking a type, and adding all possible identi�-

cations between elements, so that it becomes a proposition. In a similar fashion, we can think

2.7. CASE STUDY: QUOTIENT TYPES 55

of quotient types as taking a type and adding some identi�cations. Because identi�cations are

added freely, attention has to be paid to the resulting identity types: when the binary relation

relates an element G in a set - to itself, we still want the identity type G = G to be contractible.

A straightforward solution, though perhaps unsatisfactory, is to, in addition to the iden-

ti�cations coming from the relation, add further identi�cations that force the constructed

quotient type to be a set. Quotients are constructed in more generality in Rijke [81], where

such set-quotients �t in a hierarchy also including propositional truncation and Rezk comple-

tion [1], and where the resulting set-quotient is a set automatically, rather than it being forced

by an additional constructor.

De�nition 2.7.1. A binary relation on a type - : U means a map ' : - → - → HProp. The

quotient type -/' is then de�ned as a higher-inductive type given by three constructors:

1. an inclusion constructor 8 : - → -/',

2. an equivalence class identi�cation constructor 2 : (ΠG,~ : -)'(G,~) → 8 (G) = 8 (~), and

3. a set-squashing constructor B : (ΠB, C : -/') (Π?, @ : B = C)? = @,

noting that the last constructor can also be read as, simply, isSet(-/').

An equivalence class is an element of-/', and the equivalence class of G : - is simply 8 (G).

By abuse of terminology, we may say that G : - is an element of an equivalence class B : -/'

when B = 8 (G).

Axiom 2.7.2. For each - and ' as above we have a quotient type -/' in our type theory.

Remark 2.7.3. In contrast to traditional set-theoretic constructions of quotients, we do

not require that the binary relation ' is an equivalence relation: its only role is to cause

su�ciently many elements of -/' to be identi�ed. Regardless, the identity types of -/'

become equivalence relations for type-theoretic reasons. For instance, re�exivity is simply

given by the refl constructor of identity types.

Considering the above constructors, Remark 2.3.5, and the recursion principle for propo-

sitional truncations in De�nition 2.4.3, the recursion principle is as follows. For a codomain

� : U, such that � is a set, we obtain a map 5 : -/' → � from the following data:

56 2.8. CLASSICAL PRINCIPLES

1. a map 58 : - → �, and

2. for each G,~ : - with '(G,~), an element of 58 (G) = 58 (~).

Then 5 satis�es the computation rule that for every G : - , we have 5 (8 (G)) ≡ 58 (G).

There is also a corresponding induction principle, which is normally stated in terms of

dependent paths.

2.8 Classical principles

The majority of existing work in analysis has been developed in a classical framework, and

for that reason we need to be able to relate results to principles used in classical mathematics.

Again, care has to be taken when formalizing statements.

Lemma 2.8.1. Naive excluded middle

(Π- : U)- + ¬-

is false.

A proof can be found in The Univalent Foundations Program [91, Corollary 3.2.7]. The

problem can be thought of as follows. An element 5 : (Π- : U)- + ¬- chooses a point of - ,

whenever this is possible. If we permute the elements of - , then 5 chooses the same point,

contradicting the fact that 5 is equivariant under equivalences, as follows from univalence. So,

concretely, suppose 5 (2) = tt. Using an identi�cation 2 =U 2, obtained via univalence from

an equivalence swapping the two points of 2, we can show that 5 (2) = ff, so that tt = ff, a

contradiction.

We can take away the need for 5 to choose a point by restricting to propositions.

De�nition 2.8.2. The principle of excluded middle is the claim that every proposition is either

true or false, that is:

PEM B (Π% : HProp)% + ¬% .

2.8. CLASSICAL PRINCIPLES 57

Discussion 2.8.3. The inclusion (or not) of the principle of excluded middle has a strong

impact on the mathematics in a given foundational setting. It is often desirable to compare

the provability of a given claim in a system without excluded middle with the provability

of that claim in a system with excluded middle. The important situation is where a claim

� is provable in a logic !+PEM that includes PEM, but we know that no proof exists in the

weaker logic !, since we have a semantics of ! where the negation ¬� of the claim holds,

and where thus PEM must be false. The terminology “� is not provable in !” refers to the

meta-theoretical claim that there is no proof of � in !, usually because it is independent.

This should be contrasted with the terminology “� is false in !”, which has not been

established in the described situation.

We will also consider following consequences of PEM. Recall the type DHProp of decidable

propositions from De�nition 2.4.9.

De�nition 2.8.4.

1. The limited principle of omniscience is the claim that for every decidable predicate % :

N→ DHProp on the naturals, we can decide (∃= : N)% (=):

LPO B (Π% : N→ DHProp) ((∃= : N)% (=)) + ¬((∃= : N)% (=)) .

2. The weak limited principle of omniscience is the claim that for every decidable predicate

% : N→ DHProp on the naturals, we can decide ¬(∃= : N)% (=):

WLPO B (Π% : N→ DHProp)¬((∃= : N)% (=)) + ¬¬((∃= : N)% (=)) .

Remark 2.8.5. As we will see in Theorem 6.5.1, we have that from (∃= : N)% (=) we get

(Σ= : N)% (=).

We can see WLPO as a consequence of weak excluded middle, which, for an arbitrary type

- , decides ¬- :

WEM B (Π- : U)¬- + ¬¬- .

58 2.9. NOTES

In Lemma 6.10.2 we will prove WLPO from the existence of a strongly nonconstant function

from the reals to the Booleans.

The principles PEM and WEM can be characterized by speci�c violations of parametric-

ity [24]. See Bernardy, Jansson, and Paterson [16] and Atkey, Ghani, and Johann [7] for notions

of parametricity extended to dependent type theory. For example, PEM is equivalent to the

existence of a function 5 : (Π- : U)- → - and a type - : U with a point G : - such that

5- (G) ≠ G . If we have pushouts [81], then WEM is equivalent to the existence of a function

5 : (Π- : U)- → 2 with types -,. : U and elements G : - , ~ : . with 5- (G) ≠ 5. (~).

We also consider choice-like axioms. For similar reasons as above, we have to make some

restrictions to the types involved to avoid inconsistencies.

De�nition 2.8.6.

1. The axiom of choice states that, for every set - : U, and type family . : - → U such

that . (G) is a set for each G : - , we have the implication

((ΠG : -) ‖. (G)‖) → ‖(ΠG : -). (G)‖ .

2. Countable choice is the axiom of choice with N for - . That is, for every type family

. : N→U such that . (=) is a set for each = : N, we have the implication

((Π= : N) ‖. (=)‖) → ‖(Π= : N). (=)‖ .

2.9 Notes

We have presented parts of the type theory introduced in The Univalent Foundations Program

[91], and have included some attention for the proof-theoretic underpinnings in our discus-

sion. This will allow us to make a connection with proof assistants in Section 9.1.

Section 2.5 described an important distinction between general type theories and UTT. We

have described function extensionality to some extent, with a focus on independent functions,

to avoid considering homotopy-theoretic concepts such as dependent identi�cations. Con-

2.9. NOTES 59

tractibility of singletons in Lemma 2.5.10 is traditionally shown in terms of such dependent

identi�cations, which we have avoided for the sake of more elementary arguments.

Although subtypes are considered in The Univalent Foundations Program [91], we have

expanded on it somewhat: we have paid more attention to universe levels, and have introduced

a notation for quanti�cation in subtypes in De�nition 2.6.16. This allows us to make sense of

expressions such as (∀G ∈ �)q (G), where � is the subset of the naturals consisting of the even

numbers. This may falsely lead some readers to believe that we are using set-theoretic, rather

than type-theoretic, foundations.

60 2.9. NOTES

Chapter 3

FIXPOINTS IN DCPOS

In Section 2.6 we discussed the partial order P� of subtypes of a �xed type �. Assuming

propositional resizing, this partial order has joins and meets.

In this chapter we develop the theory of directed-complete partial orders (dcpo), namely

partially ordered sets in which only certain joins are required to exist. We apply this theory in

Section 5.2 to show that two types of real numbers coincide by computing a certain �xpoint

in a dcpo.

The theory of dcpos is well understood in toposes, where we have a single object Ω of

truth values, and a single notion of subset.

In univalent type theory, we have a hierarchy of truth values HProp8 indexed by universe

levels 8 . Correspondingly, we also have a powerset P8� for each universe level 8 , and although

we can upgrade elements of P8� to elements of P8+1�, the various P8� are not automatically

equivalent. Consequently, there are choices to be made when de�ning dcpos. This is why we

develop the theory of dcpos in some detail in this chapter, paying extra attention to universe

levels. This chapter can be seen as a simpli�cation of the general approach of de Jong [57]: we

have taken some universe levels to be equal.

We assume propositional resizing to construct the dcpo in our application in Section 5.2, so

that, as in Section 2.6, all joins exist in P8�. Additionally, once we have propositional resizing,

P8� is equivalent to P:� for all 8 , : , so that one may expect the topos-theoretic approach

may work out as usual. The purpose of this chapter is to investigate if propositional resizing

su�ces to resolve all issues with the hierarchy of truth values, and where exactly propositional

61

62 3.1. DCPOS

resizing is used in �xpoint theorems.

Note that throughout this chapter, we make extensive usage of the notation for subsets as

in Section 2.6.

3.1 Dcpos

We start by de�ning partial orders. By a binary relation ' on a set - , we mean a map - →

- → HProp, as in De�nition 2.7.1. We can specify which universe the binary relation lands

in by saying that ' is HProp8-valued or is a relation in universe 8 if ' : - → - → HProp8 .

De�nition 3.1.1. A binary relation ' on a set - is

1. re�exive if (∀G : -)'GG ;

2. irre�exive if (∀G : -)¬'GG ;

3. symmetric if (∀G,~ : -)'G~ ⇒ '~G ;

4. antisymmetric if (∀G,~ : -)'G~ ⇒ '~G ⇒ G = ~;

5. transitive if (∀G,~, I : -)'G~ ⇒ '~I ⇒ 'GI;

6. cotransitive if (∀G,~, I : -)'G~ ⇒ ('GI) ∨ ('I~).

Remark 3.1.2. Cotransitivity is also known as weak linearity [91, De�nition 11.2.7] or the

approximate splitting principle [84].

De�nition 3.1.3.

A preorder , denoted by ≤, is a re�exive transitive relation.

A partial order is an antisymmetric preorder.

De�nition 3.1.4. Let (�, ≤) be a partially ordered set, as in De�nition 3.1.3.

1. An endomap 5 : �→ � is in�ationary if it is monotonic, i.e. (∀G,~ : �)G ≤ ~ ⇒ 5 (G) ≤

5 (~), and increasing, i.e. (∀G : �)G ≤ 5 (G).

3.1. DCPOS 63

2. A subset D : P� of � is semidirected if whenever G,~ ∈ D, there exists I ∈ D with

G ≤ I and ~ ≤ I.

3. A subset D of � is directed if it is semidirected and inhabited.

4. (�, ≤) is a directed-complete partial order (dcpo) if every directed subset D of � has a

join in �, i.e. has an upper boundF : � ofD such that if E is also an upper bound ofD,

thenF ≤ E .

5. A subset - : P� of a dcpo (�, ≤) is a subdcpo if whenever D is a directed subset of �

contained in - , its join is contained in - .

6. We can be more explicit about universe levels, discussed in Section 2.3.1, by saying,

when the ordering relation on some � : U8 is valued in HProp8 , that (�, ≤) is an 8-dcpo

if every directed subset D : P8� has a join in �.

7. Similarly, a subset- : P8� of an 8-dcpo (�, ≤) is an 8-subdcpo if for every directed subset

D : P8� with D ⊆ - , its join in the dcpo (�, ≤) is an element of - .

The following lemma justi�es the name subdcpo. There is also a converse formulation,

which we will not use.

Lemma3.1.5. An 8-subdcpo� : P8� of an 8-dcpo (�, ≤) gives rise to an 8-dcpo ((Σ1 : �)1 ∈ �, ≤)

of elements in � with the ordering given by restriction as

(1, `) ≤ (1′, `′) B 1 ≤ 1′.

Proof. Let D : P8 ((Σ1 : �)1 ∈ �) be a directed subset of (Σ1 : �)1 ∈ �. Then the subset

D′ : P8� de�ned by

(3 ∈ D′) B (Σ` : 3 ∈ �) ((3, `) ∈ D)

is directed because D is, and contained in the subdcpo �, so that it has a join in �, that is,∨D′ ∈ �, so that it has a join in (Σ1 : �)1 ∈ �, as required. �

Given any dcpo, the function type with that dcpo as its codomain is again a dcpo.

64 3.2. FIXPOINTS

Lemma 3.1.6. Given a type � : U8 and an 8-dcpo (�, ≤), the type � → � with the pointwise

ordering 5 ≤ 6 B (∀G : �) 5 (G) ≤ 6(G) is an 8-dcpo.

Proof. The given relation is a partial order by Lemma 2.6.5.

Let D : P8 (� → �) be directed. We construct a join 3 : � → � of D pointwise. For an

arbitrary G : �, we claim the subset D[G] : P8� of � de�ned by

(~ ∈ D[G]) B (∃5 : �→ �) 5 ∈ D ∧ ~ = 5 (G)

is directed. It is inhabited because D is. For semidirectedness, consider ~, I ∈ D[G], so that

there exist 5 , 6 : � → � with 5 , 6 ∈ D and ~ = 5 (G) and I = 6(G). Then since 5 , 6 ∈ D,

there exists ℎ ∈ D with 5 , 6 ≤ ℎ, and so because of the pointwise ordering on�→ � we have

5 (G), 6(G) ≤ ℎ(G), i.e. ~, I ≤ ℎ(G), as required.

Hence D[G] has a join that we call 3 (G), so that 3 : � → �, and 3 is an upper bound of

D because D[G] ≤ 3 (G) for each G . If 4 : �→ � is another upper bound of D, then for each

G : � we have D[G] ≤ 3 (G) ≤ 4 (G), and hence 3 ≤ 4 because the ordering is pointwise, so

that 3 is indeed the least upper bound of D. �

Finally, we have the main example of a dcpo, which will also be used in Section 5.2.

Lemma 3.1.7. Assuming propositional resizing, for any � : U8 , the type P8� of subtypes of � is

an (8 + 1)-dcpo under the ⊆ ordering.

Proof. By Lemma 2.6.8, ⊆: P8�→ P8�→ HProp8 is a partial order.

We can form the join of D : P(8+1)P8� using Corollary 2.6.15. �

3.2 Fixpoints

Given a certain endomap 5 : �→ � on a dcpo, we aim to construct a �xpoint of 5 . Pataraia’s

�xed point theorem, in Theorem 3.2.3 below, which merely assumes 5 to be monotonic, com-

putes a �xpoint using propositional resizing. Perhaps surprisingly, if we additionally have that

5 is increasing, so that it is in�ationary, then we do not need propositional resizing, and this

is Corollary 3.2.2 below.

3.2. FIXPOINTS 65

Proposition 3.2.1 (Pataraia [79], Escardó–Simpson [43]). Let (�, ≤) be an 8-dcpo. The subset

� : P8 (�→ �) of �→ � of in�ationary endomaps, given by

(5 ∈ �) B ((∀G,~ : �)G ≤ ~ ⇒ 5 (G) ≤ 5 (~)) ∧ ((∀G : �)G ≤ 5 (G)),

is an 8-subdcpo. � is a directed subset of � , so that � has a top element >. Given a point G : �, >(G)

is a common �xed point of all in�ationary maps on �.

Proof. Let D ⊆ � be directed. To show that its join
∨D in � → � is an in�ationary map,

notice that if G ≤ ~ in � then (∨D) (~) is an upper bound of D[G], and that for G : � and

any 5 ∈ D, we have G ≤ 5 (G), so that (∨D) (G) is an upper bound of 5 (G) and hence of G .

� is semidirected in � because for 5 , 6 ∈ � we have 5 , 6 ≤ 5 ◦ 6, and inhabited because the

identity map is in�ationary. Hence � is directed.

Let G : � and let 5 : � → � be in�ationary, so that in particular > ≤ 5 ◦ >. Since 5 ∈ � ,

we have 5 ◦ > ≤ >, and hence 5 ◦ > = >, making >(G) a �xed point of 5 . �

The following corollary is the �xed point theorem we will use in Section 5.2.

Corollary 3.2.2. Let (�, ≤) be an 8-dcpo, and 5 : � → � an in�ationary endomap. If � : P8�

is an 5 -closed 8-subdcpo of �, then from a point of � we can construct a �xed point of 5 .

Proof. The type (Σ1 : �)1 ∈ � in U8 of elements in � is an 8-dcpo by Lemma 3.1.5, and 5 :

�→ � gives rise to an in�ationary endomap on it, so that Proposition 3.2.1 applies. �

For completeness, we include a type-theoretic proof of Pataraia’s �xed point theorem,

which we will not use. Note the usage of propositional resizing for the construction of an

intersection �′ of subdcpos.

Theorem 3.2.3 (Pataraia’s �xed point theorem [43, 79]). Let (�, ≤) be an 8-dcpo with a bottom

element, and let 5 : � → � be a monotonic endomap. Assuming propositional resizing, 5 has a

least �xed point.

Proof. Using propositional resizing, we can de�ne the intersection �′ : P8� of all 8-subdcpos

of � that contain the least element ⊥ of � and that are closed under 5 as in Corollary 2.6.15:

(G ∈ �′) B (∀� : P8�) [subdcpo8 (�) ∧ ⊥ ∈ � ∧ ((∀~ ∈ �) 5 (~) ∈ �)] ⇒ G ∈ �,

66 3.3. NOTES

where subdcpo8 (�) expresses that � is an 8-subdcpo of �. Now �′ is an 5 -closed 8-subdcpo.

Additionally, 5 is an in�ationary map on �′ because if G ∈ �′ then G is also an element of the

8-subdcpo given by �(G) B G ≤ 5 (G), and hence G ≤ 5 (G).

By Corollary 3.2.2, 5 has a �xed point 0 ∈ �′. It remains to show that 0 is the least �xed

point of 5 , which we do by showing the more general property that it is the least pre�xed

point of 5 . So let ~ be a pre�xed point of 5 , that is, 5 (~) ≤ ~. Then the down set of ~ is an

8-subdcpo, which is 5 -closed and contains ⊥, and hence also contains 0, so that 0 ≤ ~. �

By analysing in detail how propositional resizing is used in the basic theory of dcpos and

Pataraia’s �xpoint theorem, we have formulated a �xpoint theorem that does not use propo-

sitional resizing. Our proof in Section 5.2 only uses propositional resizing in order to appeal

to Lemma 3.1.7.

3.3 Notes

The work in this chapter was partially developed contemporaneously with de Jong [57], which

we recommend for the general treatment of dcpos in UTT. Our de�nition of dcpos, and our

version of Pataraia’s theorem, were written solely to be applied in the proof of Theorem 5.2.1.

Chapter 4

REAL NUMBERS

In order to do analysis, we need a solid understanding of real numbers. Traditionally, anal-

ysis is developed either using an axiomatic collection of real numbers, such as an arbitrary

Cauchy complete Archimedean �eld, or using a concrete set of real numbers, for example a

set of Dedekind cuts. Notions from analysis such as continuity, trigonometric functions, and

integration, can then be developed in terms of the chosen real numbers.

Our development of constructive analysis and metric spaces in Chapters 6, 7 and 8 uses the

former approach of assuming an arbitrary type of reals. This chapter presents the appropriate

notion of Cauchy complete Archimedean �eld, and presents a number of concrete sets of real

numbers, thereby justifying the axiomatic approach.

De�nitions that are classically well-understood require re-examining in a constructive set-

ting. Already the de�nition of a �eld is problematic, as we discuss in Section 4.1, because the

assumption that a number is not equal to 0 is often not strong enough to allow the computation

of a multiplicative inverse. We solve this, as is usual in constructive mathematics, by using an

apartness relation instead of the negation of equality, so that inverses may be computed from

the assumption that a number is apart from 0.

In the speci�c case of real numbers, this apartness relation arises from the ordering as

G # ~ B (G < ~) ∨ (~ < G), and so the notion of constructive �eld, which is equipped with an

arbitrary apartness relation, specializes to ordered �elds in which the apartness relation arises

from the strict order as described.

We state the Archimedean condition in the style of the The Univalent Foundations Program

67

68

[91] in Section 4.3, where we try to be more explicit about the role of the rational numbers.

The concrete sets of reals also deserve attention. For example, the classically equivalent

sets of Cauchy reals and Dedekind reals cannot be shown to be equivalent in our construc-

tive setting, although we do have the usual canonical inclusion from the Cauchy reals into

the Dedekind reals. Additionally, highly surprisingly from a classical standpoint, the Cauchy

reals, namely equivalence classes of Cauchy sequences in the rationals, cannot be shown to be

Cauchy complete, as we discuss in Section 4.4. This then leads us to consider the HoTT book

reals in Section 4.5, which is a Cauchy complete Cauchy completion of the rationals. Another

possibility is given by the Dedekind reals in Section 4.6, which are easier to understand from

a type-theoretic point of view, but cannot live in the lowest universe.

During formalization, attention should be paid to what should be property and what should

be structure, so that, for example, we avoid duplicating Dedekind reals because we accidentally

collected cut-bound pairs, in which a single real number is represented several times with dif-

ferent upper and lower bounds, rather than Dedekind cuts with the property of boundedness.

As a rule of thumb, constructions of sets correspond to structures in type theory, while logical

claims correspond to properties formalized using univalent logic as in De�nition 2.4.5, where

we use the emphasized terms as in De�nition 2.4.7. One important reason to deviate from

this rule of thumb is for considerations of constructivity, for example our focus on Cauchy

sequences with modulus as in De�nition 4.4.1.

Univalent type theory allows us to de�ne sets of real numbers, with identity types directly

capturing the intended equality of real numbers. By contrast, in setoid-based approaches such

as in e.g. Bishop and Bridges [20] and Bauer et al. [12], an equivalence relation is speci�ed

capturing the intended equality. Whereas in setoid-based approaches, there is an understand-

ing that the map G,~ ↦→ G +~ has to be checked to be invariant under the equivalence relation,

in a univalent approach this requirement is automatically enforced by the type theory, so that

the only de�nable maps are those that preserve equality on the reals.

The de�nitions and results in this chapter can essentially be found in existing literature.

We rephrase them here to make the relation between property and structure more explicit. As

4.1. ALGEBRAIC STRUCTURE OF NUMBERS 69

an example, consider the exponential function exp(G) = ∑∞
:=0

G:

:! which computes its output

as the limit of a series. If we can only compute limits for sequences with a modulus of Cauchy

convergence, we seem to need to have such a modulus as a structure, whose construction

requires discrete data about the input G . We avoid requiring this data by observing that the

type of limits of a �xed sequence is a proposition, so that the property of existence of a modulus

for the series su�ces to compute limits. As another example, in Chapter 6 we will rephrase a

certain locatedness property into structure, allowing us to compute with real numbers in an

algebraic way, while also being able to compute discrete results such as digit representations.

In summary, we de�ne Cauchy complete Archimedean ordered �elds in Sections 4.1–4.3,

Cauchy reals in Section 4.4, the HoTT book reals in Section 4.5, and Dedekind cuts in Sec-

tion 4.6.

4.1 Algebraic structure of numbers

In this section we give some de�nitions of �elds. The most important notion is that of an

ordered �eld in De�nition 4.1.10, which in Sections 4.3 and 4.4 be augmented to a Cauchy

complete Archimedean �eld.

First, we consider the classical de�nition of a �eld. We de�ne apartness relations, ordering

relations, and lattices, so that we can de�ne constructive �elds and ordered �elds.

Fields have the property that nonzero numbers have a multiplicative inverse, or more pre-

cisely, that

(∀G : �)G ≠ 0⇒ (∃~ : �)G · ~ = 1.

Remark 4.1.1. If we require the collection of numbers to form a set in the sense of De�ni-

tion 2.5.4, and satisfy the ring axioms, then multiplicative inverses are unique, so that the

above is equivalent to the proposition

(ΠG : �)G ≠ 0⇒ (Σ~ : �)G · ~ = 1.

Classically, existence of multiplicative inverses can be shown for the Cauchy reals by starting

70 4.1. ALGEBRAIC STRUCTURE OF NUMBERS

with a real number represented by an element of its equivalence class G = [(G=)=], and invert-

ing it pointwise to obtain ~ = [(G−1
=)=], taking 0−1 to be 1. By several applications of LPO, we

can show that (G−1
=)= is a Cauchy sequence, and that ~ is a multiplicative inverse of G . We use

LPO to obtain an index from which onward (G=)= is bounded away from Y > 0.

Constructively, in the case of �nite �elds, rationals, and algebraic numbers, the assumption

G ≠ 0, where by G ≠ ~ we mean the negation¬(G = ~) of equality, is strong enough to compute

multiplicative inverses. These rings are �elds in the classical sense.

De�nition 4.1.2. A classical �eld is a set � with points 0, 1 : � , operations +, · : � → � → � ,

which is a commutative ring with unit, such that

(∀G : �)G ≠ 0⇒ (∃~ : �)G · ~ = 1.

Remark 4.1.3. As in the classical case, by proving that additive and multiplicative inverses

are unique, we also obtain the negation and division operations.

For the reals, the assumption G ≠ 0 does not give us any information allowing us to bound

G away from 0, which we would like in order to compute multiplicative inverses.

Hence, we give a variation on the de�nition of �elds in which the underlying set comes

equipped with an apartness relation #, which satis�es G # ~ ⇒ G ≠ ~, although the converse

implication may not hold. This apartness relation allows us to make appropriate error bounds

and compute multiplicative inverses based on the assumption G # 0.

De�nition 4.1.4.

An apartness relation, denoted by #, is an irre�exive symmetric cotransitive relation.

A strict partial order , denoted by <, is an irre�exive transitive cotransitive relation.

De�nition 4.1.5. A constructive �eld is a set � with points 0, 1 : � , binary operations +, · :

� → � → � , and a binary relation # such that

1. (�, 0, 1, +, ·) is a commutative ring with unit;

2. G : � has a multiplicative inverse i� G # 0;

4.1. ALGEBRAIC STRUCTURE OF NUMBERS 71

3. # is tight, i.e. ¬(G # ~) ⇒ G = ~;

4. + is #-extensional, that is, for allF, G,~, I : �

F + G # ~ + I ⇒ F # ~ ∨ G # I.

Lemma 4.1.6. For a constructive �eld (�, 0, 1, +, · , #), the following hold.

1. 1 # 0.

2. Addition + is #-compatible in the sense that for all G,~, I : �

G # ~ ⇔ G + I # ~ + I.

3. Multiplication · is #-extensional in the sense that for allF, G,~, I : �

F · G # ~ · I ⇒ F # ~ ∨ G # I.

Proof. The �rst item follows because 1 has multiplicative inverse 1.

For #-compatibility of +, suppose G # ~, that is, (G+I)−I # (~+I)−I. Then #-extensionality

gives (G + I # ~ + I) ∨ (−I # −I), where the latter case is excluded by irre�exivity of #. The

other direction is similar.

To show #-extensionality of · , supposeF · G # ~ · I. By cotransitivity of #, we get (F · G #

F · I) ∨ (F · I # ~ · I). By #-compatibility of +, we have thatF · G # F · I implies 0 # F · (I −G),

so that I − G has multiplicative inverseF · 1
F ·(I−G) , and hence G # I. In the caseF · I # ~ · I, we

get 0 # I · (~ −F), so that ~ −F has multiplicative inverse I · 1
I·(~−F) , and henceF # ~. �

In the case of the real numbers, that we will develop in Sections 4.4–5.1, apartness # and

the ordering relation ≤ arise from its strict partial order <, as follows.

Lemma 4.1.7. Given a strict partial order < on a set - :

1. we have an apartness relation de�ned by

G # ~ B (G < ~) ∨ (~ < G), and

72 4.1. ALGEBRAIC STRUCTURE OF NUMBERS

2. we have a preorder de�ned by

G ≤ ~ B ¬(~ < G).

Proof. Straightforward. �

Whenever we have a strict partial order on a set - , by # and ≤ we mean the relations

induced by Lemma 4.1.7.

We specialize the notion of constructive �eld to that of ordered �eld in which the strict

partial order < is suitably compatible with the algebraic operations. In addition, we want

ordered �elds to come equipped with joins and meets.

De�nition 4.1.8. Let (�, ≤) be a partial order, and let min,max : � → � → � be binary

operators on�. We say that (�, ≤,min,max) is a lattice if min computes greatest lower bounds

in the sense that for every G,~, 2 : �, we have

2 ≤ min(G,~) ⇔ 2 ≤ G ∧ 2 ≤ ~,

and max computes least upper bounds in the sense that for every G,~, 2 : �, we have

max(G,~) ≤ 2 ⇔ G ≤ 2 ∧ ~ ≤ 2.

Remark 4.1.9.

1. From the fact that (�, ≤,min,max) is a lattice, it does not follow that for every G

and ~, max(G,~) = G ∨max(G,~) = ~, which would hold in a linear order. However,

in Lemma 6.7.1 we characterize max as

I < max(G,~) ⇔ I < G ∨ I < ~,

and similarly for min.

2. In a partial order, for two �xed elements 0 and 1, all joins and meets of 0, 1 are

equal, so that Lemma 2.6.20 the type of joins and the type of meets are propositions.

Hence, providing the maps min and max as in the above de�nition is equivalent to

4.1. ALGEBRAIC STRUCTURE OF NUMBERS 73

the showing the existence of all binary joins and meets.

The following de�nition is modi�ed from on The Univalent Foundations Program [91,

De�nition 11.2.7].

De�nition 4.1.10. An ordered �eld is a set � together with constants 0, 1, operations +, · ,

min, max, and a binary relation < such that:

1. (�, 0, 1, +, ·) is a commutative ring with unit;

2. < is a strict order;

3. G : � has a multiplicative inverse i� G # 0, recalling that # is de�ned as in Lemma 4.1.7;

4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (�, ≤) is a partial order;

5. (�, ≤,min,max) is a lattice.

6. for all G,~, I,F : � :

G + ~ < I +F ⇒ G < I ∨ ~ < F, (†)

0 < I ∧ G < ~ ⇒ GI < ~I. (∗)

Our notion of ordered �elds coincides with The Univalent Foundations Program [91, Def-

inition 11.2.7].

Lemma 4.1.11. In the presence of the �rst �ve axioms of De�nition 4.1.10, conditions (†) and (∗)

are together equivalent to the condition that for all G,~, I : � ,

1. G ≤ ~ ⇔ ¬(~ < G),

2. G # ~ ⇔ (G < ~) ∨ (~ < G),

3. G ≤ ~ ⇔ G + I ≤ ~ + I,

4. G < ~ ⇔ G + I < ~ + I,

5. 0 < G + ~ ⇒ 0 < G ∨ 0 < ~,

6. G < ~ ≤ I ⇒ G < I,

7. G ≤ ~ < I ⇒ G < I,

8. G ≤ ~ ∧ 0 ≤ I ⇒ GI ≤ ~I,

9. 0 < I ⇒ (G < ~ ⇔ GI < ~I),

10. 0 < 1.

74 4.1. ALGEBRAIC STRUCTURE OF NUMBERS

Proof. First, assume (†) and (∗).

Items 1 and 2 are true by the convention after Lemma 4.1.7 that ≤ and # are de�ned in

terms of <.

For item 4, suppose G < ~, so (G +I) −I < (~+I) −I. By (†), we have (G +I < ~+I) ∨ (−I <

−I). The latter case contradicts irre�exivity of <.

Conversely, suppose G +I < ~ +I. By (†), we have (G < ~) ∨ (I < I). Again, the latter case

contradicts irre�exivity of <.

Item 3 follows from item 4 using the fact that if �⇔ � then ¬�⇔ ¬�.

Item 5 is an instance of (†).

For item 6, suppose G < ~ and ¬(I < ~). By cotransitivity, we have G < I ∨ I < ~, the

latter case being excluded by assumption.

Item 7 goes through in a similar fashion.

For item 10, since 1 has multiplicative inverse 1, it is apart from 0, hence 0 < 1 ∨ 1 < 0. If

1 < 0 then by item 4 we have 0 < −1 and so by (∗) we get 0 < (−1) · (−1), that is, 0 < 1, so by

transitivity 1 < 1, contradicting irre�exivity of <.

For item 8, suppose G ≤ ~ and 0 ≤ I and ~I < GI. Then 0 < I (G − ~) by (†), and so,

being apart from 0, I (G −~) has a multiplicative inverseF . Hence I itself has a multiplicative

inverseF (G −~), and so 0 < I ∨I < 0, where the latter case contradicts the assumption 0 ≤ I,

so that we have 0 < I. Now F (G − ~) has multiplicative inverse I, so it is apart from 0, that

is (0 < F (G − ~)) ∨ (F (G − ~) < 0). In the latter case, from (∗) we get IF (G − ~) < 0, i.e.

1 < 0 which contradicts item 10, so that we have 0 < F (G −~). By (∗), from 0 < F (G −~) and

~I < GI we get ~IF (G − ~) < GIF (G − ~), so ~ < G , contradicting our assumption that G ≤ ~.

For item 9, assuming 0 < I and G < ~, the required conclusion GI < ~I is an instance

of (∗).

For the other direction of item 9, assume 0 < I and GI < ~I, so that ~I − GI has a multi-

plicative inverse F , and so I itself has multiplicative inverse F (~ − G). Then since 0 < I and

GI < ~I, by (∗), we get GIF (~ − G) < ~IF (~ − G), and hence G < ~.

Conversely, assume the 10 listed items—in particular, items 4, 5 and 9. In order to show (†),

suppose G + ~ < I + F . So, by item 4, we get (G + ~) − (G + ~) < (I + F) − (G + ~), that is,

4.2. RATIONALS 75

0 < (I − G) + (F −~). By item 5, (0 < I − G) ∨ (0 < F −~), and so by item 4 in either case, we

get G < I ∨ ~ < F .

(∗) follows from item 9. �

Lemma 4.1.12. An ordered �eld (�, 0, 1, +, · ,min,max, <) is a constructive �eld (�, 0, 1, +, · , #).

Proof. We need to show that + is #-extensional, and that # is tight.

First, assumeF +G # ~ +I. We need to showF # ~∨G # I. Consider the caseF +G < ~ +I,

so that we can use (†) to obtain F < ~ ∨ G < I, which gives F # ~ ∨ G # I in either case. The

caseF + G > ~ + I is similar.

Tightness follows from the fact that ≤ is antisymmetric, combined with the fact that ¬(% ∨

&) is equivalent to ¬% ∧ ¬& . �

We will mainly be concerned with ordered �elds, as opposed to the more general con-

structive �elds. This is because the Archimedean property can be phrased straightforwardly

for ordered �elds, as in Section 4.3, and because the ordering relation allows us to de�ne loca-

tors, as in Chapter 6.

We have de�ned ordered �elds, which capture the algebraic structure of the real numbers.

4.2 Rationals

In Section 2.3 we introduced the natural numbersN. We can de�ne the integers as, for example,

Z B N + N

where elements of the right summand represent nonnegative numbers, and elements of the

left summand represent negative numbers.

Rational numbers can be presented as pairs (:, =) : Z×N≥1 of a numerator : and a positive

denominator =. Such pairs can be reduced to their lowest terms with an idempotent map

fracred : Z × N≥1 → Z × N≥1.

76 4.3. ARCHIMEDEAN PROPERTY

The rationals Q can then be de�ned as the type (Σ? : Z × N≥1) fracred(?) = ? of �xpoints of

this map. We also have the type Q+ of positive rationals.

The rationals form an ordered �eld. Its apartness relation is then equivalent to the negation

of equality.

4.3 Archimedean property

We now de�ne the notion of Archimedean ordered �elds. We phrase this in terms of a certain

interpolation property, that can be de�ned from the fact that there is a unique morphism of

ordered �elds from the rationals to every ordered �eld.

De�nition 4.3.1. A morphism from an ordered �eld (�, 0� , 1� , +� , · � ,min� ,max� , <�) to an

ordered �eld (�, 0� , 1� , +� , ·� ,min� ,max� , <�) is a map 5 : � → � such that

1. 5 is a morphism of rings,

2. 5 re�ects < in the sense that for every G,~ : �

5 (G) <� 5 (~) ⇒ G <� ~.

Remark 4.3.2. The contrapositive of re�ecting < means preserving ≤.

Lemma 4.3.3. For every ordered �eld (�, 0� , 1� , +� , · � ,min� ,max� , <�), there is a unique mor-

phism 8 of ordered �elds from the rationals to � . Additionally, 8 preserves < in the sense that for

every @, A : Q

@ < A ⇒ 8 (@) <� 8 (A).

Proof. 8 can be constructed in the usual way by �rst considering what the integers get mapped

to, and then considering arbitrary rationals.

We can also show that 8 is unique in the usual way.

To see that 8 preserves <, let :/= and :′/=′ be two rationals, with :, :′ : Z and =, =′ : N+,

and assume :/= < :′/=′. Hence :=′ < :′= and so :′= = :=′ +< for some< : N+. By induction

4.4. CAUCHY COMPLETENESS OF REAL NUMBERS 77

on <, it follows that 8 (:=′) < 8 (:′=) and hence 8 (:/=) < 8 (:′/=′) using the fact that 8 is a

morphism of rings.

Since 8 preserves <, it also re�ects it: consider rationals @, A : Q, and suppose 8 (@) <� 8 (A).

By trichotomy of the rationals, we have (@ < A) ∨ (@ = A) ∨ (A < @). The �rst disjunct is

the desired conclusion, and the latter two contradict that <� is a strict order since they yield,

respectively, 8 (@) <� 8 (@) and 8 (A) <� 8 (@). �

Remark 4.3.4. Since 8 preserves <, it is an embedding.

De�nition 4.3.5. Let (�, 0� , 1� , +� , · � ,min� ,max� , <�) be an ordered �eld, so that we get a

canonical morphism 8 : Q → � of ordered �elds, as in Lemma 4.3.3. We say the ordered �eld

(�, 0� , 1� , +� , · � ,min� ,max� , <�) is Archimedean if

(∀G,~ : �) (∃@ : Q)G < 8 (@) < ~.

If the ordered �eld is clear from the context, we will identify rationals @ : Q with their in-

clusion 8 (@) in the ordered �eld, so that we may also say that (�, 0� , 1� , +� , · � ,min� ,max� , <�)

is Archimedean if

(∀G,~ : �) (∃@ : Q)G < @ < ~.

Example 4.3.6. In an Archimedean ordered �eld, all numbers are bounded by rationals. That

is, for a given G : � , there exist @, A : Q with @ < G < A . This follows from applying the

Archimedean property to G − 1 < G and G < G + 1.

4.4 Cauchy completeness of real numbers

We focus on Cauchy completeness, rather than Dedekind or Dedekind-MacNeille complete-

ness, as we will focus on the computation of digit expansions, for which Cauchy completeness

su�ces.

In order to state that an ordered �eld is Cauchy complete, we need to de�ne when se-

quences are Cauchy, and when a sequence has a limit. We also take the opportunity to de�ne

78 4.4. CAUCHY COMPLETENESS OF REAL NUMBERS

the set of Cauchy reals in De�nition 4.4.9. Surprisingly, this ordered �eld cannot be shown to

be Cauchy complete.

Fix an ordered �eld (�, 0� , 1� , +� , · � ,min� ,max� , <�). We get a notion of distance, given

by the absolute value as

|G − ~ | B max� (G − ~,−(G − ~)) .

Consider a sequence G : N→ � of elements of � . Classically, we may state that G is Cauchy as

(∀Y : Q+) (∃# : N) (∀<,= : N)<,= ≥ # ⇒ |G< − G= | < Y,

We can interpret the quanti�ers as in De�nition 2.4.5.

Following a propositions-as-types interpretation, we may also state that G is Cauchy as the

structure

(ΠY : Q+) (Σ# : N) (Π<,= : N)<,= ≥ # → |G< − G= | < Y.

The dependent sum represents a choice of index # for every error Y, and so we have arrived

at the following de�nition.

De�nition 4.4.1. For a sequence of reals G : N → � , a a modulus of Cauchy convergence is a

map " : Q+ → N such that

(∀Y : Q+) (∀<,= : N)<,= ≥ " (Y) ⇒ |G< − G= | < Y.

In constructive mathematics, we typically use such sequences with modulus, for example,

because they can sometimes be used to compute limits of Cauchy sequences, avoiding choice

axioms.

De�nition 4.4.2. A number ; : � is the limit of a sequence G : N → � if the sequence

converges to ; in the usual sense:

(∀Y : Q+) (∃# : N) (∀= : N)= ≥ # ⇒ |G= − ; | < Y.

4.4. CAUCHY COMPLETENESS OF REAL NUMBERS 79

Remark 4.4.3. We do not consider the statement of convergence in propositions-as-types

(ΠY : Q+) (Σ# : N) (Π= : N)= ≥ # → |G= − ; | < Y,

because if the sequence has a modulus of Cauchy convergence " , then _Y." (Y/2) is a

modulus of convergence to the limit ; , so that we get an element of the above type.

De�nition 4.4.4. The ordered �eld (�, 0� , 1� , +� , · � ,min� ,max� , <�) is said to beCauchy com-

plete if for every sequence G with modulus of Cauchy convergence " , we have a limit of G .

In other words, an ordered �eld is Cauchy complete i� from a sequence–modulus pair (G,"),

we can compute a limit of G .

For the remainder of this section, additionally assume that � is Archimedean.

Lemma 4.4.5. The type of limits of a �xed sequence G : N→ � is a proposition.

Proof. This can be shown using the usual proof that limits are unique in Archimedean ordered

�elds, followed by an application of Lemma 2.6.20. �

Corollary 4.4.6. Fix a given sequence G : N → � . Suppose that we know that there exists a

limit of the sequence. Then we can compute a limit of the sequence.

Proof. By applying the induction principle of propositional truncations of De�nition 2.4.3. �

Corollary 4.4.7. Fix a given sequence G : N → � . Suppose that, from a modulus of Cauchy

convergence, we can compute a limit of the sequence. Then from the existence of the modulus of

Cauchy convergence we can compute a limit of the sequence.

Proof. By applying the induction principle of propositional truncations of De�nition 2.4.3. �

We can thus compute the limit of G : N → � as the number lim(G, ?), where ? is a proof

that the limit of G exists. We will rather use the more traditional notation lim=→∞ G= for this

number.

Example 4.4.8 (Exponential function). In a Cauchy complete Archimedean ordered �eld, we

can de�ne an exponential function exp : � → � by exp(G) = ∑∞
:=0

G:

:! . For a given input G , we

80 4.4. CAUCHY COMPLETENESS OF REAL NUMBERS

obtain the existence of a modulus of Cauchy convergence for the output from boundedness of

G , that is, from the fact that (∃@, A : Q)@ < G < A .

The point of this work is that, because we have a single language for properties and struc-

ture, we can see more precisely what is needed for certain computations. In the above example,

we explicitly do not require that inputs come equipped with a modulus of Cauchy convergence,

but rather that there exists such a modulus. On the one hand, we do need a modulus to obtain

the limit, but as the limit value is independent of the chosen modulus, existence of such a

modulus su�ces.

De�nition 4.4.9. The Cauchy reals RC is the collection of rational sequences equipped with

a modulus of Cauchy convergence, quotiented (as in Section 2.7) by an equivalence relation

that relates two sequence–modulus pairs (G,") and (~, #) i�

(∀Y : Q+)
��G" (Y/4) − ~" (Y/4) �� < Y.

The Cauchy reals form an Archimedean ordered �eld in a natural way. The natural strategy

to prove that the Cauchy reals are Cauchy complete, perhaps surprisingly, does not work, and

in some constructive foundations the Cauchy completeness of the Cauchy reals is known to

be false [68].
One immediate source of confusion here is identifying reals with sequence–

modulus pairs. A real is an equivalence class of such pairs, and it is not

obvious how a representative can be chosen constructively from each real;

in fact, this cannot in general be done, as we shall see. This distinction has

not always be[en] made though. For instance, as observed by Fred Richman,

in [92], the Cauchy completeness of the reals was stated as a theorem, but

what was proved was the Cauchy completeness of sequence–modulus pairs.

To be precise, what was shown was that, given a countable sequence, with

its own modulus of convergence, of sequence–modulus pairs, then there is a

limit sequence, with modulus. For that matter, it is not hard (and left to the

reader) that, even if the given sequence does not come equipped with its own

4.5. HOTT BOOK REALS 81

modulus, it still has a Cauchy sequence as a limit, although we will have to

punt on the limit having a modulus. But neither of those two observations is

the Cauchy completeness of the reals.

— Lubarsky in “On the Cauchy Completeness of the Constructive Cauchy Re-

als” [68]

An alternative interpretation of the non-completeness of the Cauchy reals is that the sequential

de�nition of completeness ought to be amended [80].

4.5 HoTT book reals

We will now de�ne a Cauchy complete type of Cauchy sequences. However, as opposed to

taking Cauchy sequences valued in the rationals, we will de�ne the HoTT book reals RH, with

Cauchy sequences valued in RH itself, so that we avoid needing to pick representatives.

Remark 4.5.1. The name “HoTT book reals” refers to a common way to refer to The Uni-

valent Foundations Program [91], in which the name Cauchy reals is used. We rather use

this to refer to the quotient type of Section 4.4.

Following Sojakova [88], we take an algebraic view on types of real numbers and higher

inductive-inductive types (HIITs). We will do this, as opposed to directly giving the type-

theoretic inference rules of the HIIT, in order to make a clear link with the Euclidean reals in

Section 5.1. By analogy with Richman [80] and the The Univalent Foundations Program [91],

we de�ne premetric spaces and Y-closeness.

De�nition 4.5.2. A premetric on a type ' : U is a relation

· ∼· · : Q+ × ' × ' → HProp.

We will often write ' for the premetric space (',∼), leaving the premetric ∼ implicit. In the

case that D ∼Y E holds (where Y : Q+ and D, E : ') we say that D and E are Y-close.

Note the outright lack of natural conditions one might put on ∼: our premetric spaces

are a very wild notion. In fact, having few conditions here is a good thing, as any conditions

82 4.5. HOTT BOOK REALS

introduced now would need to be respected later by the induction principle in De�nition 4.5.12,

thus making that induction principle harder to use.

We think of D ∼Y E as being true when |D − E | < Y. Once operations have been de�ned for

the HoTT book reals, then this can be made precise [91, Theorem 11.3.44]. In Chapter 8 we

work with a premetric de�ned in terms of a (pseudo)metric as D ∼Y E B d (D, E) < Y.

De�nition 4.5.3. For a premetric space (-,∼), and a sequence G : N→ - in - , a modulus of

Cauchy convergence for G : N→ - is an assignment " : Q+ → N such that

(∀Y : Q+) (∀<,= : N)<,= ≥ " (Y) ⇒ G< ∼Y G= .

When the premetric is de�ned in terms of the absolute value as |G − ~ | < Y, this coincides

with the modulus of Cauchy convergence in De�nition 4.4.1. As in Section 4.4, we are mainly

interested in sequences that are Cauchy with modulus, where the modulus is either given

explicitly, or proved to exist in the sense of De�nition 2.4.5, as opposed to sequences that are

Cauchy convergent in the classical sense.

De�nition 4.5.4. For a premetric space (-,∼), and a sequence G : N→ - in- , a point G∞ : -

is a limit of G if

(∀Y : Q+) (∃# : N) (∀= : N)= ≥ # ⇒ G= ∼Y G∞.

Again, this de�nition is justi�ed because it coincides with De�nition 4.4.2.

So far we have taken a sequence in ' to be a function N → ', and a modulus of Cauchy

convergence to be a function Q+ → N. The following notion encapsulates the composition

Q+ → ' of a modulus of convergence with a sequence.

De�nition 4.5.5. If ' is a premetric space, then G : Q+ → ' is a Cauchy approximation if

isCauchy(G) B (∀X, Y : Q+)GX ∼X+Y GY . (4.1)

We de�ne the type C' of Cauchy approximations in ' as

C' B (ΣG : Q+ → ') isCauchy(G).

4.5. HOTT BOOK REALS 83

Since being a Cauchy approximation is a property rather than structure, we identify elements

of C' with their underlying map Q+ → '.

Remark 4.5.6. Compared to De�nition 4.5.3, for Cauchy approximations, the Cauchy-ness

is speci�ed by proposition (4.1), rather than the structure of a modulus, just like being a

regular Cauchy sequence can be phrased as a proposition. In exchange, when construct-

ing the underlying data Q+ → ', we need to be aware of the convergence rate, whereas

with sequences we can construct the underlying data N → ' and consider the rate of

convergence only later when constructing a modulus for it. As in Example 4.4.8, the ex-

ponential function on real numbers is more easily de�ned as a power series, since the rate

of convergence of a power series depends on the magnitude of the input value.

De�nition 4.5.7. If G is a Cauchy approximation in a premetric space ', then we say that

D : ' is a limit of G if

(∀Y, \ : Q+)GY ∼Y+\ D.

If for every Cauchy approximation we can compute a limit, we say that ' is Cauchy complete.

Cauchy approximations and sequences with modulus of Cauchy convergence (as in Def-

inition 4.4.1) are interde�nable in the sense that from one we can compute the other, such

that, in particular, they have the same limit, if any. We give a construction in the proof of

Corollary 4.5.11.

In our very weak notion of premetric spaces, we do not automatically have uniqueness of

limits, so that the existence of limits does not imply that we can compute limits.

De�nition 4.5.8. A Cauchy structure is a premetric space (',∼) together with the following

84 4.5. HOTT BOOK REALS

structure, collected in a Σ-type.

rat : Q→ '

lim : C' → '

eq : (ΠD, E : ') ((∀Y : Q+)D ∼Y E) → D =' E

(Π@, A : Q) (ΠY : Q+) (−Y < @ − A < Y) → rat(@) ∼Y rat(A)

(Π@ : Q) (Π~ : C') (ΠY, X : Q+) rat(@) ∼Y ~X → rat(@) ∼Y+X lim(~)

(ΠG : C') (ΠA : Q) (ΠY, X : Q+)GX ∼Y rat(A) → lim(G) ∼Y+X rat(A)

(ΠG : C') (Π~ : C') (ΠY, X, [: Q+)GX ∼Y ~[→ lim(G) ∼Y+X+[lim(~)

A morphism of Cauchy structures from ' to (is a map 5 : ' → (and a family of maps

6Y,D,E : D ∼Y E → 5 (D) ∼Y 5 (E) that preserve rat, lim and eq in the obvious sense. Explicitly:

CS-hom(', () B(Σ5 : ' → ()

(Σ6 : (ΠY : Q+) (ΠD, E : ')D ∼Y E → 5 (D) ∼Y 5 (E))

((Π@ : Q) 5 (rat(@)) = rat(@))

× ((ΠG : C') 5 (lim(G)) = lim(5 ◦ G))

× ((ΠD, E : ') (Π? : (∀Y : Q+)D ∼Y E) 5 ∗(eq(D, E, ?)) = eq(5 (D), 5 (E), 6(?))) .

Remark 4.5.9.

1. The remaining four maps of the Cauchy structure are automatically preserved as ∼

is valued in propositions.

2. A morphism of Cauchy structures from ' to (gives rise to a map C' → C(.

3. Identity maps are Cauchy structure morphisms, and Cauchy structure morphisms

are closed under composition.

4.5. HOTT BOOK REALS 85

4. We emphasize that even though a Cauchy structure has the lim map, it need not be

Cauchy complete, since the elements GY of a Cauchy approximation might not be of

the form rat(@) or lim(I). In other words, the lim map does not necessarily compute

limits.

For example, we may de�ne a Cauchy structure on a type 2 with two elements,

where both rat and lim constantly output ff, and we have the relations tt ∼Y tt and

ff ∼Y ff for all Y, but nothing else. Then we have a Cauchy approximation that is

constantly tt, and lim computes it limit as ff, which is not a limit in the sense of

De�nition 4.5.7—a valid limit would be tt.
A Cauchy complete Archimedean ordered �eld induces a canonical Cauchy structure. We

use the following lemma.

Lemma 4.5.10. Let (�, 0, 1, +, ·,min,max, <) be an Archimedean ordered �eld, and de�ne a pre-

metric on � by D ∼Y E B |D − E | < Y. For a Cauchy approximation G : C� in � , a limit D : � of G

in the sense of De�nition 4.5.7, and X : Q+, we have |GX − D | ≤ X .

Proof. In order to show |GX − D | ≤ X , we aim to show a contradiction from the assumption

X < |GX − D |. By the Archimedean property there exists [: Q+ with

X < X + [< |GX − D | .

Since D is a limit of GX , we have |GX − D | < X + [, which contradicts the above. �

Corollary 4.5.11. A Cauchy complete Archimedean ordered �eld (�, 0, 1, +, ·,min,max, <) with

the premetric D ∼Y E B |D − E | < Y comes equipped with a canonical Cauchy structure.

Proof. The map rat : Q→ � is obtained from Lemma 4.3.3.

To construct the lim map, take a Cauchy approximation G : Q+ → � . We can present this

as a sequence–modulus pair by setting ~= B G1/= with " (Y) B
⌈2
Y

⌉
. Now (~,") has a limit ;

by Cauchy completeness in the sense of De�nition 4.4.4, which is then also a limit of G in the

sense of De�nition 4.5.7. Incidentally, we can conversely present a sequence ~ with Cauchy

modulus " as a Cauchy approximation, namely by setting GY B ~" (Y) , although we will not

use this here.

86 4.5. HOTT BOOK REALS

We construct eq : (ΠD, E : �) ((∀Y : Q+)D ∼Y E) → D = E . Suppose that D and E are Y-close

for any Y : Q+. We show D = E using antisymmetry of ≤, so that it su�ces to show D ≤ E

and E ≤ D. Without loss of generality, we show the former, for which it su�ces to show a

contradiction from E < D. By using the Archimedean property on 0 < D − E , there exists Y : Q

with 0 < Y < D − E , contradicting that D and E are Y-close.

The �rst distance law follows from the fact that the map rat obtained from Lemma 4.3.3 is

a morphism of ordered �elds, so that rat(@−A) = rat(@) − rat(A). The remaining three distance

laws can be shown by applying Lemma 4.5.10: for instance: if |rat(@) − ~X | < Y, then since

|~X − lim~ | ≤ X , we get |rat(@) − lim~ | < Y + X , showing the second distance law. �

We now de�ne the HoTT book reals RH [91, Section 11.3]. We use the following de�nition,

which is equivalent to the one in The Univalent Foundations Program [91] as we will show in

Theorem 4.5.18.

De�nition 4.5.12. RH is a homotopy-initial Cauchy structure, in the sense that for any other

Cauchy structure (, the type of Cauchy structure morphisms from RH to (is contractible.

Theorem 4.5.13. RH is Cauchy complete.

To prove this theorem, we will develop an induction principle for RH, so that RH is equiv-

alent, and hence by univalence, identical, to the type developed in [91, Section 11.3].

De�nition 4.5.14. Given

� : RH →U

� : (ΠD, E : RH)�(D) → �(E) → (ΠY : Q+) (D ∼Y E) → HProp

we obtain a natural premetric on (ΣD : RH)�(D), given by the relation:

(D, 0) ∼Y (E, 1) B (ΣZ : D ∼Y E)�(D, E, 0, 1, Y, Z)

For the remainder of this section, �x a choice of � : RH →U and � : (ΠD, E : RH)�(D) →

�(E) → (ΠY : Q+) (D ∼Y E) → HProp — these type families will be input for our induction

principle. The remaining input will allow us to de�ne a Cauchy structure on (ΣD : RH)�(D).

4.5. HOTT BOOK REALS 87

We will often denote the type �(D, E, 0, 1, Y, Z) by 0 ∼Y 1, since D can typically be inferred from

0 and E from 1, and Z is unique since the premetric on RH is valued in propositions.

De�nition 4.5.15. Let G : CRH and 0 : (ΠY : Q+)�(GY), satisfying

(∀X, Y : Q+)0X ∼X+Y 0Y .

Then we call 0 a dependent Cauchy approximation over G . We denote the type of all dependent

Cauchy approximations over G by DG
�

, and again identify its elements with their underlying

(dependent) function.

Lemma 4.5.16. Suppose G : CRH and 0 : (ΠY : Q+)�(GY). Then the function

_Y.(GY, 0Y)

is a Cauchy approximation in (ΣD : RH)�(D) i� 0 is a dependent Cauchy approximation over G .

Proof. Straightforward. �

The above lemma allows us to take limits componentwise, as we will do in the proof of

an induction principle in Theorem 4.5.18. To be able to phrase an induction principle, we �rst

de�ne dependent identi�cations, namely the identity of elements in a type family evaluated

at identical elements of RH.

De�nition 4.5.17. Given a type � : U, a type family � : �→U, an identi�cation ? : G =� ~

in�, and elements D : �(G) and E : �(~), the type of dependent identi�cations D =�? E is de�ned

by induction on ?: if ? is refl(G) then (D =�refl(G) E) B (D =�(G) E). We refer to elements of

D =�? E as identi�cations from D to E over ? .

In particular, an identi�cation ? : G =� ~ can be combined with a dependent identi�cation

@ : D =�? E into an identi�cation (G,D) =(Σ0:�)�(0) (~, E) in the dependent sum type, and vice

versa an identi�cation in the dependent sum type gives rise to an identi�cation ? in � and a

dependent identi�cation over ? .

88 4.5. HOTT BOOK REALS

Theorem 4.5.18. Suppose we are provided

� : RH →U

� : (ΠD, E : RH)�(D) → �(E) → (ΠY : Q+) (D ∼Y E) → HProp

and the following data.

5rat : (Π@ : Q)�(rat(@))

5lim : (ΠG : CRH)DG
� → �(lim(G))

5eq : (ΠD, E : RH) (Π0 : �(D)) (Π1 : �(E)) (Π? : (∀Y : Q+)0 ∼Y 1)0 =�eq(D,E,?) 1

(Π@, A : Q) (ΠY : Q+) − Y < @ − A < Y → 5rat(@) ∼Y 5rat(A)

(Π@ : Q) (Π~ : CRH) (Π1 : D~

�
) (ΠX, Y : Q+) rat(@) ∼Y ~X

→ 5rat(@) ∼Y 1X → 5rat(@) ∼Y+X 5lim(~,1)

(ΠG : CRH) (Π0 : DG
�) (ΠA : Q) (ΠX, Y : Q+)GX ∼Y rat(A)

→ 0X ∼Y 5rat(A) → 5lim(G, 0) ∼Y+X 5rat(A)

(ΠG,~ : CRH) (Π0 : DG
�) (Π1 : D~

�
) (ΠX, [, Y : Q+)GX ∼Y ~[

→ 0X ∼Y 1[→ 5lim(G, 0) ∼Y+X+[5lim(~,1)

In that case, we obtain

5 : (ΠD : RH)�(D) and

6 : (ΠD, E : RH) (ΠY : Q+) (ΠZ : G ∼Y ~)�(D, E, 5 (D), 5 (E), Y, Z),

satisfying

5 (rat(@)) = 5rat(@) and

5 (lim(G)) = 5lim(G, (5 , 6) [G]),

where (5 , 6) [G] is the dependent Cauchy approximation de�ned by

(5 , 6) [G]Y B 5 (GY) .

4.6. DEDEKIND REALS 89

Proof. We reason similar to Sojakova [88]. Write) = (ΣD : RH)�(D). Given the input data,

we can de�ne a natural Cauchy structure on) . For example, rat) (@) B (rat(@), 5rat(@)).

Hence, by homotopy-initiality of RH, we obtain ℎ : RH →) and 8Y,D,E : D ∼Y E → ℎ(D) ∼Y

ℎ(E) preserving rat, lim and eq in the obvious sense.

Postcomposing ℎ and 8 (the latter componentwise) with the �rst projection functions gives

us a Cauchy morphism RH → RH, and so by homotopy-initiality, the �rst component of any

ℎ(D) is identical toD. By transporting along this identi�cation, we obtain dependent functions

5 and 6 with the required properties. �

We have shown that RH satis�es the same universal property as the type de�ned in [91,

Section 11.3], so that the types are equivalent. We now appeal to The Univalent Foundations

Program [91, Section 11.3.2] for a proof of Theorem 4.5.13.

4.6 Dedekind reals

The set of Dedekind cuts is another Cauchy complete Archimedean ordered �eld. Recall the

notation G ∈ � for a subtype � : P- of a type-U from Section 2.6. A Dedekind real is de�ned

by a pair (!,*) of predicates PQ on Q with some properties. To phrase these properties

succinctly, we use the following notation for G = (!,*):

(@ < G) B (@ ∈ !) and

(G < A) B (A ∈ *).

This notation will be justi�ed by the fact that @ ∈ ! holds i� 8 (@) < G , with 8 the inclusion of

the rationals into the Dedekind reals from Lemma 4.3.3.

There also exist one-sided de�nitions of Dedekind cuts [92, Chapter 5, De�nition 5.1].

However, two-sided cuts will be more convenient for the de�nition of locators in Chapter 6.

De�nition 4.6.1. A pair G = (!,*) of predicates on the rationals is aDedekind cut orDedekind

real if it satis�es the four Dedekind properties:

1. bounded: (∃@ : Q)@ < G and (∃A : Q)G < A .

90 4.6. DEDEKIND REALS

2. rounded: For all @, A : Q,

@ < G ⇔ (∃@′ : Q) (@ < @′) ∧ (@′ < G) and

G < A ⇔ (∃A ′ : Q) (A ′ < A) ∧ (G < A ′).

3. transitive: (@ < G) ∧ (G < A) ⇒ (@ < A) for all @, A : Q.

4. located: (@ < A) ⇒ (@ < G) ∨ (G < A) for all @, A : Q.

The collection RD of pairs of predicates (!,*) together with proofs of the four properties,

collected in a Σ-type, is called the Dedekind reals.

Remark 4.6.2. The Univalent Foundations Program [91] has disjointness

(∀@ : Q)¬(G < @ ∧ @ < G)

instead of the transitivity property, which is equivalent to it in the presence of the other

conditions, and it is this disjointness condition that we use most often in proofs.

Proof. Assuming transitivity, if G < @∧@ < G , then transitivity yields @ < @, which contradicts

irre�exivity of < on the rationals, which shows disjointness.

Conversely, if @ < G and G < A , apply trichotomy of the rationals on @ and A : in case that

@ < A we are done, and in the other two cases we obtain G < @, contradicting disjointness. �

Lemma 4.6.3. The type RD is a set.

Proof. By Lemma 2.6.19, it su�ces to show that (Q → HProp) × (Q → HProp) is a set. By

the characterization of identity types in ×, this follows from the fact that Q→ HProp is a set.

This, in turn, using function extensionality, follows from the fact that HProp is a set, which

holds by propositional univalence: namely, for %,& : HProp, the type % = & is equivalent to

% ' & , which is equivalent to % ⇔ & , which is a proposition. �

4.6. DEDEKIND REALS 91

Discussion 4.6.4. We quickly consider the universe levels. If the rationals are developed

in U8 , and we take subsets to mean maps to propositions in the same universe U8 , then

a pair of predicates on Q is an element of P8Q × P8Q. The condition that (!,*) is a

Dedekind real can be stated as a proposition in HProp8 , that is, we have a map isCut :

P8Q × P8Q → HProp8 expressing the proposition isCut(!,*) that (!,*) is a Dedekind

cut. The type (Σ!,* : P8Q) isCut(!,*) of all Dedekind reals is then a type in U8+1. We

discuss the de�nition of isCut in more detail in Section 6.10.

De�nition 4.6.5. For Dedekind reals G and ~, we de�ne the strict ordering relation by

G < ~ B (∃@ : Q)G < @ < ~

where G < @ < ~ means (G < @) ∧ (@ < ~), and their apartness by

G # ~ B (G < ~) ∨ (~ < G).

As is typical in constructive analysis, we have G # ~ ⇒ ¬(G = ~), but not the converse.

The Dedekind reals form an ordered �eld. We will not show this in detail, but for instance,

addition can be de�ned by

(@ < G + ~) B (∃B, C : Q) (@ = B + C) ∧ (B < G) ∧ (C < ~) and

(G + ~ < A) B (∃B, C : Q) (A = B + C) ∧ (G < B) ∧ (~ < C),

where it has to be checked that G + ~ satis�es the conditions of Dedekind cuts as in Def-

inition 4.6.1. Similarly, the constant 0RD : RD representing zero can be de�ned neatly by

@ < 0RD B @ < 0 and 0RD < A B 0 < A , where the inequalities on the right-hand side refer to

the ordering on Q.

Because of our chosen strict ordering relation, the inequality < of the Dedekind reals au-

tomatically satis�es the Archimedean property, using the fact stated above that 8 (@) < G holds

when @ is in the lower cut of G , and similarly for G < 8 (@). The following proof that RD is

Cauchy complete is based on The Univalent Foundations Program [91, Theorem 11.2.12].

92 4.7. NOTES

Lemma 4.6.6. The Dedekind reals are Cauchy complete. More explicitly, given a modulus of

Cauchy convergence for a sequence G of Dedekind reals, we can compute its limit ; as the Dedekind

cut de�ned by:

(@ < ;) B (∃Y, \ : Q+) (@ + Y + \ < G" (Y)),

(; < A) B (∃Y, \ : Q+) (G" (Y) < A − Y − \).

Proof. Inhabitedness and roundedness of ; are straightforward. For transitivity, suppose @ <

; < A , then we wish to show @ < A . There exist Y, \, Y′, \ ′ : Q+ with @ + Y + \ < G" (Y) and

G" (Y ′) < A − Y′ − \ ′. Now
��G" (Y) − G" (Y ′) �� ≤ max(Y, Y′), so either @ + \ < G" (Y ′) or G" (Y) < A − \ ,

and in either case @ < A .

For locatedness, suppose @ < A . Set Y B A−@
5 , so that @ + 2Y < A − 2Y. By locatedness of GY ,

we have (@ + 2Y < GY) ∨ (GY < A − 2Y), hence (@ < ;) ∨ (; < A).

In order to show convergence, let Y : Q+, set # B " (Y), and let = ≥ # . We need to show

|G= − ; | ≤ Y, or equivalently, −Y ≤ G= − ; ≤ Y. For G= − ; ≤ Y, suppose that Y < G= − ; , or

equivalently, ; < G= − Y. There exist Y′, \ ′ : Q+ with G" (Y ′) < G= − Y − Y′ − \ ′, or equivalently,

Y + Y′ +\ ′ < G= −G" (Y ′) , which contradicts" being a modulus of Cauchy convergence. We can

similarly show −Y ≤ G= − ; . �

Proposition 4.6.7. We have canonical inclusions RC ⊆ RH ⊆ RD.

Proof. The Cauchy reals are included into the HoTT book reals by Cauchy completeness of

RH: the equivalence class of a sequence–modulus pair (G,") is simply included as the limit,

computed in RH, of that sequence of rationals.

The Univalent Foundations Program [91, Theorem 11.3.50] constructs 8� : RH → RD as a

map which is both an embedding and a Cauchy structure morphism. �

4.7 Notes

The results in this chapter are essentially known, although we have attempted to optimize

the arguments. For instance, De�nition 4.1.10 captures the compatibility of the �eld operators

4.7. NOTES 93

with the �eld ordering with two laws, with a corresponding new lemma, namely Lemma 4.1.11,

of equivalence with The Univalent Foundations Program [91].

The inclusion of the rationals into ordered �elds, Lemma 4.3.3, was originally written to

phrase the Archimedean property precisely. As far as we are aware, the observation that <

being preserved implies < being re�ected is new. This lemma allowed us to relate Cauchy

structures and Cauchy complete Archimedean ordered �elds in Corollary 4.5.11, and this im-

portant observation will be used again in Proposition 5.1.1.

The Cauchy reals, which we de�ned in Section 4.4, is a simple translation of well-known

traditional de�nitions of the Cauchy reals. In UTT, more attention is paid to the HoTT book

reals; however, the Cauchy reals will pop up naturally in Theorem 6.10.3.

The de�nition of the HoTT book reals as a homotopy-initial Cauchy structure is new, and

will allow for certain neat new theorems and proofs in Chapter 5.

The main new element in our discussion of both-sided Dedekind cuts was the overloading

of inequality relation, which enables writing concise de�nitions of Dedekind cuts.

94 4.7. NOTES

Chapter 5

UNIVERSAL PROPERTIES OF REAL NUMBERS

Escardó and Simpson introduced the notion of interval object, which can be de�ned in any

category with �nite products, as a universal property for closed and bounded real line seg-

ments [43]. Indeed, in the category of classical sets, the real interval [−1, 1] is an interval ob-

ject. In the category of topological spaces, the real interval [−1, 1] with the Euclidean topology

is an interval object. Vickers [97] showed that in the category of locales, the locale correspond-

ing to the interval [−1, 1] is an interval object.

In a topos, the interval [−1, 1] in a certain subobject RE of the Dedekind reals is an in-

terval object. The object RE, referred to as the Euclidean reals, is de�ned as the least Cauchy

complete subset of the Dedekind reals containing the rationals. This can be constructed as the

intersection of all Cauchy complete subsets of the Dedekind reals that contain the rationals.

Assuming the propositional resizing axiom of De�nition 2.6.13, we can translate the con-

struction of the Euclidean reals RE as an intersection of subsets of RD into type theory, and

similarly translate the proof that the interval in RE is an interval object. The fact that RE is

the least Cauchy complete subset of RD containing the rationals is then easily veri�ed. The

Euclidean reals sit between the Cauchy reals and the Dedekind reals: we have the sequence of

canonical inclusions

RC ⊆ RE ⊆ RD

where neither of the inclusions can be shown to be an equality. This reminds us of the HoTT

95

96

propositional
resizing

interval object
(Section 5.3)

homotopy-
initial Cauchy

structure

least Cauchy
complete

subset of RD

Escardó–
Simpson [43] Section 5.2 Section 5.1

Section 5.4 Section 5.1

Section 5.4 Section 5.2

Figure 5.1: Overview of relations

book reals of Section 4.5, which also sits between RC and RD in a canonical way:

RC ⊆ RH ⊆ RD.

This raises the question whether the HoTT book reals and the Euclidean reals coincide,

so that the interval in the HoTT book reals would be an interval object, de�ned precisely in

Section 5.3. The Univalent Foundations Program [91, Chapter 11, Notes] indeed conjectures

that RH and RE coincide.

When phrasing this question more precisely, we are reminded that we may be working in

a type theory in which we do not have the HoTT book reals, or in a type theory which does

not have propositional resizing, so that we cannot de�ne the Euclidean reals. In this chapter,

we relate RH, RE and interval objects in three di�erent ways, sometimes assuming the exis-

tence of the HoTT book reals, and sometimes assuming propositional resizing, as visualized in

Figure 5.1. Each box in the �gure represents a certain assumption, and the arrows are logical

implications. For example, assuming propositional resizing, it would be possible to de�ne RE

and to repeat the result of Escardó–Simpson that the interval in RE is an interval object.

We can relate RH to RE by showing that RH is the least Cauchy complete subset of RD con-

taining the rationals, as we do in Section 5.1. This result can be phrased without propositional

resizing, since RE can be characterized as the least Cauchy complete subset of the Dedekind

reals containing the rationals. In particular, when we do have propositional resizing, we can

de�ne RE and, by this result, it coincides with RH. A previous version of this development [26]

5.1. SUBSETS OF THE DEDEKIND REALS 97

assumed both propositional resizing and the existence of RH.

If we do not have RH, we can still relate RE to RH by showing that RE satis�es a universal

property similar to the one of the HoTT book reals given in De�nition 4.5.12. This result in

Section 5.2 assumes propositional resizing. In particular, when we do have RH, this implies

that RE and RH coincide.

We use propositional resizing to de�ne RE, and by the above, we can prove it has a cer-

tain universal property. We may also wonder whether a least Cauchy complete subset of the

Dedekind reals containing the rationals, without knowing its construction as RE, has this uni-

versal property; see Discussion 5.2.3. This question can be phrased without propositional re-

sizing. Another open question is whether we can de�ne a homotopy-initial Cauchy structure

from an interval object, and vice-versa; see Section 5.4.

In summary, we con�rm the conjecture of The Univalent Foundations Program [91] in two

ways, once assuming the existence of RH, and once assuming propositional resizing. We leave

three relations, shown as dashed arrows in Figure 5.1, as open questions.

5.1 Subsets of the Dedekind reals

The fact that R2 is the least Cauchy complete archimedean ordered �eld, as

was proved in Theorem 11.3.50, indicates that our Cauchy reals probably coin-

cide with the Escardó-Simpson reals. It would be interesting to check whether

this is really the case.

— The Univalent Foundations Program [91, Chapter 11, Notes]. Note that we

introduced this object as the “HoTT book reals, RH” in De�nition 4.5.12.

In order to relate RH to RE, without assuming propositional resizing, we relate RH to an

arbitrary Cauchy complete subset ' of RD that contains the rationals, using the homotopy-

initiality of RH as in De�nition 4.5.12. Theorem 11.3.50 in The Univalent Foundations Pro-

gram [91] gives a canonical embedding of RH into ', which we redevelop in more detail in

Section 5.1.1. So we reduce the question of coincidence of RH and RE to the fact that both

98 5.1. SUBSETS OF THE DEDEKIND REALS

are minimal Cauchy complete subsets of the Dedekind reals, answering the above question

positively.

Conversely, in Section 5.1.2 we relate RH to RE, without assuming RH exists, by showing

that RE satis�es a homotopy-initiality property similar to that of RH. This reduces the coinci-

dence of RH and RE to uniqueness up to unique isomorphism of objects de�ned by a universal

property.

In the particular case that we have bothRH and propositional resizing, using either of these

two developments, RH and RE coincide.

5.1.1 Minimality of the HoTT book reals

Let ' : PRD be a subtype of the Dedekind reals. We can consider the collection (ΣG : RD)G ∈ '

of elements in ', as in Section 2.6. We restrict the Cauchy structure of RD obtained from

Corollary 4.5.11 to '.

Proposition 5.1.1. Given a Cauchy complete subset ' : PRD of the Dedekind reals containing

the rationals, the Cauchy structure on RD restricts to a Cauchy structure on '.

Proof. First, the premetric on ' is inherited from the one on RD by restriction: for Y : Q+ and

G,~ : RD with ` : G ∈ ' and a : G ∈ ', we simply say that (G, `) ∼Y (~, a) holds i� G ∼Y ~.

The map rat : Q → RD obtained via Corollary 4.5.11 from Lemma 4.3.3 is an embedding,

so that we may see Q as a subtype Q : PRD of the Dedekind reals. Assuming ' is a subtype

of RD containing the rationals, i.e. Q ⊆ ' ⊆ RD, we also get rat : Q→ ' by a straightforward

restriction.

In order to phrase when we have a lim structure, we de�ne a subset C' of the type CRD ,

consisting of Cauchy approximations in ', by, for G : CRD ,

C' (G) B (∀Y : Q+)GY ∈ ',

noting that this C' , now seen as a type that embeds into CRD , is equivalent to the type of

Cauchy approximations in (ΣG : RD)G ∈ '. By further assuming that ' is Cauchy complete in

the sense that for every Cauchy approximation G ∈ C' of elements in ', i.e. G : CRD such that

5.1. SUBSETS OF THE DEDEKIND REALS 99

(∀Y : Q+)GY ∈ ', there exists a limit of G in ', we obtain a lim map: after all, we can compute

the limit in RD using the lim structure of RD, and then Cauchy completeness of ' states that

this unique limit is an element of '.

The construction of eq follows from (2.2) in De�nition 2.6.2. That is, the projection map

pr0 : ((ΣG : RD)G ∈ ') → RD is an equivalence between identity types of ' and identity types

of RD, so that we may appeal to the eq structure of RD.

The distance laws hold because the premetric on ' is just the restriction of the premetric

on RD. �

Corollary 5.1.2. The map that includes ' into RD is a Cauchy structure morphism.

Proposition 4.6.7 established RH as a subset of RD using a Cauchy structure morphism

8� : RH → RD. So we have two subsets RH and ' of RD. The following proposition tells us

that RH ⊆ '.

Proposition 5.1.3. We have RH ⊆ ' as subsets of RD. That is, there is a horizontal map in the

following diagram making the triangle commute.

RH '

©

RD

5

8� 8'

Proof. By homotopy-initiality of the HoTT book reals, we obtain 5 : RH → ', and by the fact

that Cauchy structure morphisms are closed under composition, using homotopy-initiality of

the Cauchy structure of RH once more, we obtain the commutativity condition 8' ◦ 5 = 8� . �

Lemma 2.6.9 tells us that the map 5 : RH → ' above is an embedding.

For an arbitrary Cauchy complete subset ' of RD containing the rationals, we have shown

that RH ⊆ '. The HoTT book reals are the least Cauchy complete subset of the Dedekind reals

containing the rationals.

100 5.1. SUBSETS OF THE DEDEKIND REALS

Corollary 5.1.4. Assuming RH exists, RC of Section 4.4 is Cauchy Complete i� RC and RH are

the same subset of RD.

Proof. IfRC is Cauchy complete, then it satis�es the conditions we set for ' above. Conversely,

if RC and RH coincide, then Cauchy completeness of RH also applies to RC. �

5.1.2 Euclidean reals and interval objects

Escardó and Simpson [43] showed that, in any elementary topos, the Euclidean real interval

is an interval object. They carried out the proof in a type theory for toposes [65, 72, 56],

higher-order intuitionistic logic, which we adapt to our type theory, assuming propositional

resizing.

De�nition 5.1.5 (Escardó and Simpson [43]). Assuming propositional resizing, the type RE

of Euclidean reals is de�ned as the meet (as in Lemma 2.6.15) of the subtypes of the Dedekind

reals which are Cauchy complete and contain the rationals.

Discussion 5.1.6. We now take a moment to consider universe levels. Let Q : U8 , and

recall from Section 4.6 that this means RD : U8+1. For simplicity, let subsets ' of RD

correspond to functions ' : P8RD that maps an element of RD to a proposition in U8 .

The condition (∀@ : Q)8 (@) ∈ ' that ' contains the rationals is canonically a proposi-

tion in HProp8 , and that it is Cauchy complete is canonically stated as the proposition

(∀G : CRD) ((∀Y : Q+)GY ∈ ') ⇒ limG ∈ ' in HProp8+1. In other words, RE is the meet

of a subset P8+1P8RD. Hence, corresponding to Lemma 2.6.12, RE, as a subset of RD, is

a function P8+1RD: for a given G : RD, it outputs a proposition that quanti�es over all

' : P8RD that satisfy the condition in HProp8+1 that ' is Cauchy complete and contains

the rationals.

Using propositional resizing, RE can also be seen as an element of P8RD.

The de�nition of RE as an intersection of Cauchy complete subsets of RD containing the

rationals makes RE itself into the least such subset of RD.

5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS 101

Theorem 5.1.7. Assuming propositional resizing and that RH exists, RE coincides with RH as

subsets of RD.

Proof. The fact that RH ⊆ RE is Proposition 5.1.3. Since RH is a Cauchy complete subset of the

Dedekind reals containing the rationals, we have RE ⊆ RH. Hence RE = RH. �

From Theorem 10.1.12 in The Univalent Foundations Program [91], we know that the type

of all sets in a given universe is a topos. This allows us to interpret Escardó and Simpson’s

de�nition, and construction, of interval objects in toposes.

Theorem 5.1.8. Assuming propositional resizing, so that we can construct RE as an element of

some universeU. The unit interval in RE is an interval object, where interval objects are de�ned

as in Escardó and Simpson with respect to that category of sets in universeU.

Proof. This is simply a translation of the proof in Escardó and Simpson [43], where we note

that our de�nition of RE coincides with the de�nition in category-theoretic terms. �

Since the HoTT book reals are a set [91, Theorem 11.3.9], as a consequence, the interval in

the HoTT book reals is an interval object.

Corollary 5.1.9. Assuming propositional resizing, so that we can construct RE as an element of

some universe U, and that RH exists in U. The unit interval in RH is an interval object, where

interval objects are de�ned as in Escardó and Simpson with respect to that category of sets in

universeU.

Instead of this approach, we discuss the possibility of a direct proof that the interval in RH

is an interval object in Section 5.4, avoiding propositional resizing.

5.2 Homotopy-initiality of the Euclidean reals

In the previous section, we have related RH and RE by showing that RH is the least Cauchy

complete subset of RD containing the rationals—a result that requires having the type RH in

the �rst place. In a type theory where RH is not given as a primitive type, we can still relate

102 5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS

the Euclidean reals and the HoTT book reals. The HoTT book reals are de�ned uniquely by

their universal property; that is, any two homotopy-initial Cauchy structures are equal. The

goal of this section is to show that RE satis�es that same universal property, so that when we

do have RH, it coincides with RE.

We borrow two strategies from the proof of Escardó–Simpson [43, draft full version] that

the interval in the Euclidean reals is an interval object, namely

1. de�ning a dcpo, such that the construction of a certain point of that dcpo corresponds

to proving the theorem, and

2. using a �xed point theorem, based on Pataraia’s [79], to construct that point.

Concretely, we need to show that for any Cauchy structure ((,∼), the type CS-hom(RE, ()

of Cauchy structure morphisms is contractible. So for a given Cauchy structure ((,∼), we

de�ne a certain subdcpo F((,∼) of P8+1RD whose elements are subsets Q ⊆ ' ⊆ RE for which,

loosely speaking, the type of Cauchy structure morphisms restricted to ' is contractible. By

showing that RE is an element of F((,∼) , we have the required result. In particular, RE is found

as a �xed point of a certain F((,∼)-closed endomap Φ, which extends a subset ' to the set of

limits of sequences valued in '.

The de�nitions of F((,∼) and Φ loosely follow the style of Escardó–Simpson, but have some

changes since we are showing a di�erent universal property and working in a di�erent logic.

The construction of F((,∼) and Φ, and establishing their required properties, requires ex-

tensive calculations, since the construction of an element of F((,∼) requires showing that a

certain type of restricted Cauchy structure morphisms is contractible. This contractibility,

in turn, consists of the construction of a restricted Cauchy structure morphism, and a proof

of uniqueness of those restricted Cauchy structure morphisms. The fact that the �xed point

theorem that we use has weaker assumptions than, for instance, Kleene’s or Knaster–Tarski’s

works to our advantage.

Although the proof of Pataraia’s �xed point theorem uses the propositional resizing axiom

of De�nition 2.6.13, we use Corollary 3.2.2, which does not require it. However, we do use

5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS 103

propositional resizing to appeal to Lemma 3.1.7, which gives that P8+1RD is a dcpo. We use

the speci�c construction of the joins in our proof that F((,∼) is a subdcpo.

Theorem 5.2.1. Assuming propositional resizing, the Euclidean reals satisfy the universal prop-

erty of the HoTT book reals of Section 4.5 for sets. That is, for a Cauchy structure ((,∼), where (

is a set, the type CS-hom(RE, () of Cauchy structure morphisms from RE to (is contractible.

Remark 5.2.2. Since (is a set, saying that CS-hom(RE, () is contractible is equivalent to

saying that there exists a Cauchy structure morphism from RE to (, and any two such

morphisms are pointwise equal.

It would be desirable to be able to prove homotopy-initiality for arbitrary types (, rather than

only for sets, but we leave this as an open problem. A similar issue arises in work by Awodey,

Frey and Speight on impredicative encodings of higher inductive types [8].

We refer to the data of the Cauchy structure on RD as rat, lim and eq, and to the data of

another Cauchy structure ((,∼) with subscripts as rat(, lim(and eq(.

Throughout this section, we make extensive usage of the notation for subsets as in Sec-

tion 2.6, and in particular the notation for quanti�cation over subtypes introduced in De�ni-

tion 2.6.16.

Recall from Discussions 4.6.4 and 5.1.6 that if we start with some type of rationals Q in

universe 8 , then we have RD,RE : U8+1.

Proof. As in Section 5.1.1, for a given subset . : P8+1RD of the Dedekind reals, we de�ne a

subset C. : P8+1CRD of the type CRD of Cauchy approximations in RD, with G : CRD , as

C. (G) B (∀Y : Q+)GY ∈ . .

For a subset . of RD with Q ⊆ . , we de�ne what it means to have a restricted Cauchy

structure morphism . → (. Compared to ordinary Cauchy structure morphism as in De�ni-

tion 4.5.8, the essence of the de�nition is that although the output of rat : Q→ RD is always an

element of . , because Q ⊆ . , the output of lim : C. → RD may not be, and so we require the

104 5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS

corresponding preservation condition for . only in the case that it is. Additionally, because (

is a set, preservation of the eq structure is automatic. In conclusion, we de�ne

sub-CS-hom(., () B(Σ5 : . → ()

(Σ6 : (ΠY : Q+) (ΠD, E ∈ .)D ∼Y E → 5 (D) ∼Y 5 (E))

((Π@ : Q) 5 (rat(@)) = rat((@))

×((ΠG ∈ C.) limG ∈ . ⇒ 5 (limG) = lim((5 ◦ G))

where, following De�nition 2.6.16, (ΠD, E ∈ .)� (D, E) means (ΠD, E : RD)D, E ∈ . ⇒ � (D, E),

and similarly (ΠG ∈ C.)� (G) means (ΠG : CRD)G ∈ C. ⇒ � (G).

Note that sub-CS-hom(RE, () ' CS-hom(RE, () because lim is always de�ned on RE. The

goal is to show that RE is an element of the subset F((,∼) : P8+1P8+1RD of P8+1RD de�ned by

F((,∼) (.) B Q ⊆ . ⊆ RE ∧ isContr(sub-CS-hom(., ()),

so that there is a unique Cauchy structure morphism from RE to (. We show this by using

Corollary 3.2.2 to construct a �xed point of a certain map Φ that we will de�ne later, and then

showing that this �xed point is a Cauchy complete subset of RE, so that it must be equal to

RE.

Note that two restricted Cauchy structure morphisms, that is, two elements of the type

sub-CS-hom(., (), are equal i� their underlying maps. → (are equal, because the remaining

data is a proposition.

First, to be more precise, in order to be able to use Corollary 3.2.2, we show the following

claims.

Claim 1. P8+1RD is an (8 + 2)-dcpo with the relation ⊆.

Claim 2. F((,∼) is a subdcpo of P8+1RD.

Claim 3. Q ∈ F((,∼) .

Claim 4. The map Φ : P8+1RD → P8+1RD, which we de�ne later, is in�ationary.

Claim 5. F((,∼) is Φ-closed.

5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS 105

Proof of Claim 1. By Lemma 3.1.7, indeed P8+1RD is an (8 + 2)-dcpo. �

Proof of Claim 2. To show that F((,∼) is an (8 + 2)-subdcpo, letD : P8+2P8+1RD withD ⊆ F((,∼)

be a directed subset of F((,∼) . Following Corollary 2.6.15, the join ofD inP8+1RD is constructed

using propositional resizing as . =
⋃D with . : P8+1RD, and we claim that it is an element

of F((,∼) . Because D ⊆ F((,∼) , the various elements - ∈ D give rise to their own restricted

Cauchy structure morphism which is unique on - , and we refer to their underlying maps as

5- : - → (and 6- : (ΠY : Q+) (ΠD, E ∈ -)D ∼Y E → 5- (D) ∼Y 5- (E).

Q ⊆ . ⊆ RE holds because the elements of D satisfy this property.

To show that sub-CS-hom(., () is a proposition, consider two restricted Cauchy structure

morphisms with maps 5 , 5 ′ : . → (, and let ~ ∈ . , recalling from De�nition 2.6.16 that this

means we take ~ : RD and assume ~ ∈ . . We aim to show the proposition 5 (~) = 5 ′(~), so we

may assume to have - ∈ D with ~ ∈ - . Both 5 and 5 ′ restrict to restricted Cauchy structure

morphisms on - , where they must both equal the center of contraction given by 5- : - → (,

and in particular 5 (~) = 5- (~) = 5 ′(~).

We construct 5. : . → (as a certain map

5 ′. : (Π~ ∈ .) (ΣB : () (∃- ∈ D)~ ∈ - ∧ 5- (~) = B

composed with a projection map that forgets the proof of (∃- ∈ D)~ ∈ - ∧ 5- (~) = B . Notice

that for every ~, the codomain (ΣB : () (∃- ∈ D)~ ∈ - ∧ 5- (~) = B of 5 ′
.

is a proposition,

because given B, B′ : (and -,- ′ ∈ D with ~ ∈ - and ~ ∈ - ′ and 5- (~) = B and 5- ′ (~) = B′,

from the fact that D is directed, we know that there exists / ∈ D with -,- ′ ⊆ / . But the

map 5/ restricts to both - and - ′ where it must be equal to 5- and 5- ′ , respectively, so that

B = 5- (~) = 5/ (~) = 5- ′ (~) = B′.

To construct 5 ′
.

, take an element ~ ∈ . . By the construction of . =
⋃D, this means there

exists - ∈ D with ~ ∈ - . Since the codomain is a proposition, we may assume to have - ∈ D

with ~ ∈ - . Set B B 5- (~).

To construct 6. : (ΠY : Q+) (ΠD, E ∈ .)D ∼Y E → 5. (D) ∼Y 5. (E), let Y : Q+, let -,- ′ ∈ D

with D ∈ - and E ∈ - ′, and let a : D ∼Y E . Because D is directed, we know that there exists

106 5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS

/ ∈ D with -,- ′ ⊆ / , so that we can output 6/ (Y,D, E, a).

To show the preservation conditions, �rst note that (∀- ∈ D)(∀G ∈ -) 5. (G) = 5- (G), be-

cause 5. (G) : (and 5- (G) : (both arise as elements of the codomain (ΣB : () (∃- ∈ D)~ ∈ - ∧

5- (~) = B of 5 ′
.

, which is a proposition, as shown above.

To show that (Π@ : Q) 5. (rat(@)) = rat((@), let @ : Q. Since D is inhabited, there exists

- ∈ D, and since we are showing a proposition, we may assume to have such an - . Then,

because 5- satis�es the preservation conditions, 5. (rat(@)) = 5- (rat(@)) = rat((@).

To show that (ΠG ∈ C.) limG ∈ . ⇒ 5. (limG) = lim((5. ◦ G), let G ∈ C. and assume

limG ∈ . .

One may be inclined to look for - ∈ D with GY ∈ - for all Y : Q+, and also limG ∈ - ,

suggesting that we needD to be in�nitary-directed, meaning that we would have an element

inD which contains all GY . In fact, we can avoid this by observing that limG can be computed

as the limit of the constant Cauchy approximation _Y′. limG . If we can show that the Cauchy

approximation 5. ◦ G is close to the constant Cauchy approximation _Y′.5. (limG), then we

can use eq(to show the required preservation condition. We now make this argument more

precise.

First, note that since RD is Cauchy complete indeed we have limG = lim(_Y′. limG). Since

limG ∈ . , and since we are showing a proposition, we may assume to have - ∈ D with

limG ∈ - . Then

5. (limG) = 5- (limG)

= 5- (lim(_Y′. limG))

= lim((_Y′.5- (limG))

= lim((_Y′.5. (limG)) .

By eq(, it su�ces to show

(∀Y : Q+) lim((_Y′.5. (limG)) ∼Y lim((5. ◦ G).

Let Y : Q+. The fourth distance law of Cauchy structures gives us, with Y/2, Y/4 and Y/4

5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS 107

respectively for Y, X and [:

5. (limG) ∼Y/2 5. (GY/4) → lim((_Y′.5. (limG)) ∼Y lim((5. ◦ G).

In order to show the proposition 5. (limG) ∼Y/2 5. (GY/4), from directedness of D we obtain

- ∈ D with limG ∈ - and GY/4 ∈ - . Then

6- (Y/2, limG, GY/4) : limG ∼Y/2 GY/4 → 5- (limG) ∼Y/2 5- (GY/4),

and limG ∼Y/2 GY/4 can be shown using Cauchy completeness (as in De�nition 4.5.7) of RD.

This concludes the proof of Claim 2 that F((,∼) is an (8 + 2)-subdcpo of P8+1RD. �

Proof of Claim 3. To show that Q ∈ F((,∼) , note that Q ⊆ Q ⊆ RE. To show that the type

sub-CS-hom(Q, () is a proposition, let 5 , 5 ′ : Q → (be Cauchy structure morphisms. Since

they both satisfy the preservation condition for rationals, we have 5 (rat(@)) = rat((@) =

5 ′(rat(@)), as required.

Now we construct an element of sub-CS-hom(Q, (). The map 5Q : Q → (is given by

rat(directly. Then 6Q can be constructed using the �rst distance law on the Cauchy structure

((,∼). The preservation condition for rationals holds by de�nition. Let G ∈ CQ and assume

limG ∈ Q. We need to show 5 (limG) = lim((5 ◦G), i.e. rat((limG) = lim((5 ◦G). So by eq(and

the second distance law it su�ces to show for arbitrary Y : Q+ that rat((limG) ∼2Y/3 5 (GY/3), i.e.

that rat((limG) ∼2Y/3 rat(GY/3), i.e. by the �rst distance law that −2Y/3 < limG − GY/3 < 2Y/3,

which holds because limG is a limit of G . �

Proof of Claim 4. We now de�ne an in�ationary F((,∼)-closed map Φ whose �xed point we will

show to be RE.

For - : P8+1RD, de�ne Φ(-) : P8+1RD to be the subset of RD of limits of Cauchy approxi-

mations valued in - , that is:

Φ(-) (~) B (∃G ∈ C-)~ = limG

The map Φ is increasing because every real is the limit of a constant sequence, and monotone

because if - ⊆ . then C- ⊆ C. . �

108 5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS

Proof of Claim 5. To show that Φ is F((,∼)-closed, assume - ∈ F((,∼) , and note that Q ⊆ Φ(-)

holds because rat(@) = lim(_Y′. rat(@)), and Φ(-) ⊆ RE follows from Cauchy completeness of

RE.

From isContr(sub-CS-hom(-, ()) we obtain 5- : - → (.

To show that sub-CS-hom(Φ(-), () is a proposition, consider two restricted Cauchy struc-

ture morphisms with maps 5 , 5 ′ : Φ(-) → (, and let G ∈ C- . To show the proposition

5 (limG) = 5 ′(limG), note that 5 and 5 ′ restrict to the same restricted Cauchy structure mor-

phism 5- on - . Then, since 5 and 5 ′ satisfy the preservation condition for the limit of G , we

have 5 (limG) = lim((5 ◦ G) = lim((5 ′ ◦ G) = 5 ′(limG).

We de�ne 5Φ(-) : Φ(-) → (as a certain map

5 ′Φ(-) : (Π~ ∈ Φ(-)) (ΣB : () (∃G ∈ C-)~ = limG ∧ B = lim((5- ◦ G)

followed by a projection map that forgets the proof of (∃G ∈ C-)B = lim((5- ◦ G).

First we show that the codomain of 5 ′
Φ(-) is a proposition. For suppose B, B′ : (andG, G′ ∈ C-

with ~ = limG = limG′ and B = lim((5- ◦ G) and B′ = lim((5- ◦ G′). Because lim computes

limits in RD, we know that limG = limG′ implies

(∀Y, Y′, \, \ ′ : Q+)GY ∼Y+Y ′+\+\ ′ GY ′

and hence in particular

(∀Y : Q+)GY/6 ∼4Y/6 G
′
Y/6.

Now 6- gives us

(∀Y : Q+) 5- (GY/6) ∼4Y/6 5- (G′Y/6)

and so by the fourth distance law of the Cauchy structure (

(∀Y : Q+) lim((5- ◦ G) ∼Y lim((5- ◦ G′)

and so with the eq(, we get B = lim((5- ◦ G) = lim((5- ◦ G′) = B′, as required.

Since the codomain of 5 ′
Φ(-) is a proposition, for a given ~ ∈ Φ(-) we may assume to have

G ∈ C- with ~ = limG . Then we can compute the output as lim((5- ◦ G), completing the

5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS 109

de�nition of 5 ′
Φ(-) and 5Φ(-) : Φ(-) → (.

To de�ne

6Φ(-) : (ΠY : Q+) (ΠD, E ∈ Φ(-))D ∼Y E → 5Φ(-) (D) ∼Y 5Φ(-) (E),

let Y : Q+, G,~ ∈ C- and a : limG ∼Y lim~. We aim to show 5Φ(-) (limG) ∼Y 5Φ(-) (lim~), i.e.

lim((5- ◦ G) ∼Y lim((5- ◦ ~) by the above de�nition of 5Φ(-) .

Since limG ∼Y lim~, that is, |limG − lim~ | < Y, by the Archimedean property we know

that

(∃X : Q+) |limG − lim~ | < X < Y.

Since we are showing a proposition, we may assume to have such a X . Because lim computes

limits in RD, using the de�nition of ∼ in RD we know that limG ∼X lim~ implies

(∀b, b′, \, \ ′ : Q+)Gb ∼X+b+b ′+\+\ ′ ~b ′

and so in particular with b B Y−X
6 we have Gb ∼X+4b ~b . Then 6- gives 5- (Gb) ∼X+4b 5- (~b) and

hence by the fourth distance law lim((5- ◦ G) ∼Y lim((5- ◦ ~).

To show that 5Φ(-) and 6Φ(-) satisfy the coherence conditions for restricted Cauchy struc-

ture morphisms, let@ : Q. Then 5Φ(-) (rat(@))may be computed as lim((_Y′.5- (rat(@))), which,

by the fact that 5- is a restricted Cauchy structure morphism, is equal to lim((_Y′. rat((@)). By

eq(it su�ces to show

(∀Y : Q+) lim((_Y′. rat((@)) ∼Y rat((@),

so let Y : Q+. Then rat((@) ∼Y/2 rat((@) by the �rst distance law, and so lim((_Y′. rat((@)) ∼Y

rat((@) by the third distance law.

For the second preservation condition, let G ∈ CΦ(-) and assume limG ∈ Φ(-), that is,

(∃G′ ∈ C-) limG = limG′. Since we are showing the proposition 5Φ(-) (limG) = lim((5Φ(-) ◦G),

let G′ be such, so that we have to show lim((5- ◦ G′) = lim((5Φ(-) ◦ G). By eq(, it su�ces to

show for Y : Q+ that

lim((5- ◦ G′) ∼Y lim((5Φ(-) ◦ G).

110 5.2. HOMOTOPY-INITIALITY OF THE EUCLIDEAN REALS

Using the fourth distance law, it su�ces to show

5- (G′Y/6) ∼4Y/6 5Φ(-) (GY/6) .

Now

5- (G′Y/6) = 5- (lim(_Y
′.G′

Y/6)) = lim((5- ◦ (_Y′.G′Y/6)) = 5Φ(-) (_Y
′.G′

Y/6) = 5Φ(-) (G
′
Y/6),

so this is equivalent to

5Φ(-) (G′Y/6) ∼4Y/6 5Φ(-) (GY/6)

and so by 6Φ(-) it su�ces to show

G′
Y/6 ∼4Y/6 GY/6

which holds because limG = limG′.

This concludes the proof of Claim 5 that Φ is F((,∼)-closed. �

Hence, by Corollary 3.2.2, Φ has a �xed point ' in F((,∼) . By de�nition, ' ⊆ RE. It remains

to show that RE ⊆ ', which will follow from the fact that ' is a Cauchy complete subset of the

Dedekind reals containing the rationals. Additionally, the fact that ' contains the rationals is

part of the de�nition of F((,∼) , so we only have to show that ' is Cauchy complete.

Let G ∈ C' . By de�nition, we have limG ∈ Φ('). Since ' is a �xed point of Φ, we have

limG ∈ ', and this is a limit of G because it is its limit in RD.

Hence RE is an element of F((,∼) . �

Discussion 5.2.3. Now we consider what happens in the absence of propositional resizing.

The construction of RE will not go through, as our construction of an intersection of

subsets P8RD of RD results in a subset P8+1RD, which is not a true meet because, living in

the wrong universe, it has the wrong type.

But suppose given any Cauchy complete R : P8RD containing the rationals, which

is the least such subset, can we prove a homotopy-initiality theorem similar to Theo-

rem 5.2.1, replacing instances of RE with R? The �xed point theorem, Corollary 3.2.2, that

we used in the proof of Theorem 5.2.1, does not use propositional resizing, and we also do

5.3. INTERVAL OBJECTS 111

not need it to construct the desired �xed point R since we simply assume it to be given.

We cannot straightforwardly apply Corollary 3.2.2, since we cannot show P8+1RD to be a

dcpo. It may su�ce to see P8+1RD as a partial order, and F((,∼) as a subdcpo of that partial

order in the sense that it contains all the joins of directed subsets that exist in P8+1RD.

Showing that F((,∼) is a subdcpo in this sense would still require the construction of a re-

stricted Cauchy structure morphism with some underlying maps 5. and 6. for a join . of

a directed subsetD as in the proof above. In the absence of propositional resizing, we can

not construct . using existential quanti�ers as in Corollary 2.6.8, and so the construction

of 5. and 6. in the proof of Theorem 5.2.1 will not go through.

5.3 Interval objects

Sections 5.1 and 5.2 state results that are related to interval objects. In order to state some

open questions in Section 5.4, we now de�ne interval objects in our type theory.

Such a type-theoretic de�nition is necessary since the de�nition by Escardó–Simpson [43]

is not stated in the internal language of a topos, but in what type-theoretically would be con-

sidered the metatheory.

Escardó–Simpson start with a binary algebra in a category with binary products, namely

a pair (�,<) consisting of an object� with a morphism< : �×�→ �. Such a binary algebra

is a cancellative midpoint algebra if it is idempotent, commutative, and satis�es a transposition

and cancellation law. This is easily phrased in type theory.

De�nition 5.3.1. A cancellative midpoint algebra is a set � with a map < : � × � → �

satisfying:

1. idempotent: (∀G : �)<(G, G) = G ,

2. commutative: (∀G,~ : �)<(G,~) =<(~, G),

3. transposition: (∀G,~, I,F : �)<(<(G,~),<(I,F)) =<(<(G, I),<(~,F)), and

4. cancellation: (∀G,~, I : �)<(G, I) =<(~, I) ⇒ G = ~.

112 5.3. INTERVAL OBJECTS

The intuition is that� is an interval in a collection of real numbers, and that<(G,~) = G+~
2 .

Next, Escardó–Simpson de�ne a right-iteration axiom that may be understood as saying

that< can be extended to the midpoint

" (G) = G0
2 +

G1
4 +

G2
8 · · · =<(G0,<(G1,<(G2, . . .)))

of a sequence of points G : �N in �. Escardó–Simpson state their axiom without reference to

sequences or the natural numbers, by requiring that for every morphism 2 : - → �×- , there

exists a unique morphism D : - → � making the following diagram commute.
� × - � ×�

- �

id ×D

<2

D

This de�nition involves quantifying over all objects in the category. To avoid impredica-

tivity issues, we would like to phrase the type-theoretic analogue di�erently, which we can

do using their Proposition 3.1, which gives an equivalent de�nition in the category of sets

using sequences of elements of �, and this is a common de�nition in su�ciently expressive

settings [39].

De�nition 5.3.2. A convex body is a cancellative midpoint algebra (�,<) that satis�es the

following iteration property: it comes equipped with a map " : �N → � such that for every

G,~ : �N we have

1. " (G) =<(G0, " (_8.G8+1)), and

2. if (∀8 : N)~8 =<(G8, ~8+1) then ~0 = " (G).

Lemma 5.3.3. Given a cancellative midpoint algebra (�,<), the iteration property above is a

proposition. By Lemma 2.6.20, this means that given two maps ", # : �N → � satisfying the

conditions above, we get" = # .

Proof. Since we are showing the equality of functions, we use function extensionality, so that

we may take G : �N. It su�ces to show " (G) = # (G).

We de�ne the sequence ~ : �N by

~8 B " (_=.G=+8).

5.3. INTERVAL OBJECTS 113

Then we have " (G) = ~0. It remains to show that ~0 = # (G), which we do using the second

condition of De�nition 5.3.2. So it su�ces to prove (∀8 : N)~8 = <(G8, ~8+1). So let 8 : N, and

we compute:

~8 = " (_=.G=+8)

=<(G8, " (_=.G=+8+1))

=<(G8, ~8+1). �

By the above lemma, the iteration property of De�nition 5.3.2 is a proposition, justifying

the usage of the word “property”. Motivated by this result, we rephrase the iteration property

more type-theoretically.

Theorem 5.3.4. A cancellative midpoint algebra (�,<) satis�es the iteration property of De�-

nition 5.3.2 i� the following proposition holds:

(ΠG : �N) isContr((ΣU : �N) (Π8 : N)U8 =<(G8, U8+1)) .

The intuition is that while" (G) represents the series of the entire sequence G , the element

U : �N represents the series of all tails of the sequence, with U0 = " (G).

Proof. Let (�,<) be a cancellative midpoint algebra with a map " : �N → � which satis�es

the two conditions of De�nition 5.3.2. We show that the stated proposition holds, so let G : �N.

To show that the type

(ΣU : �N) (Π8 : N)U8 =<(G8, U8+1)

is a proposition, suppose we have U, V : �N with (Π8 : N)U8 = <(G8, U8+1) and (Π8 : N)V8 =

<(G8, V8+1). It su�ces to show U: = V: for : : N arbitrary. The sequences ~,~′ : �N de�ned by

~8 = U8+: and ~′~ = V8+:

satisfy (∀8 : N)~8 =<(G8+: , ~8+1) and (∀8 : N)~′8 =<(G8+: , ~′8+1), so that by the second condition

of De�nition 5.3.2 we have U: = ~0 = " (_=.G=+:) = ~′0 = V: .

114 5.3. INTERVAL OBJECTS

To construct an element of

(ΣU : �N) (Π8 : N)U8 =<(G8, U8+1),

set U: B " (_=.G=+:). Then (Π8 : N)U8 = <(G8, U8+1) holds by the �rst condition of De�ni-

tion 5.3.2, applied, for 8 : N, to the sequence _=.G=+8 .

Conversely, suppose that

5 : (ΠG : �N) isContr((ΣU : �N) (Π8 : N)U8 =<(G8, U8+1)),

with a pointwise center of contraction 52 : (ΠG : �N) (ΣU : �N) (Π8 : N)U8 =<(G8, U8+1), and in

particular a choice map 5U (G) B pr0(52 (G)) of type �N → �N, and a map 5? (G) B pr1(52 (G))

of type (ΠG : �N) (Π8 : N) 5U (G) (8) =<(G8, 5U (G) (8 + 1)). We set " (G) B 5U (G) (0).

To show the �rst condition for our de�nition of " , let G : �N. Since we have

5? (G) (0) : 5U (G) (0) =<(G0, 5U (G) (1)),

in order to show " (G) =<(G0, " (_=.G=+1)), it su�ces to show

5U (G) (1) = 5U (_=.G=+1) (0).

We show the more general property that the sequences

U8 B 5U (G) (8 + 1) and V8 B 5U (_=.G=+1) (8)

are equal. They satisfy (Π8 : N)U8 = <(G8+1, U8+1) using _8.5? (G) (8 + 1) and (Π8 : N)V8 =

<(G8+1, V8+1) using 5? (_=.G=+1). This yields two elements of the contractible type

(ΣU : �N) (Π8 : N)U8 =<(G8+1, U8+1).

Because a contractible type is a proposition, we get U = V and in particular

" (G) =<(G0, U0) =<(G0, V0) =<(G0, " (_=.G=+1)) .

To show the second condition for our chosen " , let G,~ : �N with (∀8 : N)~8 =<(G8, ~8+1),

5.3. INTERVAL OBJECTS 115

so that ~ is an element of the contractible type (ΣU : �N) (Π8 : N)U8 = <(G8, U8+1). Hence,

because a contractible type is a proposition, we get ~ = 5U (G) and in particular ~0 = " (G). �

Theorem 5.3.4 restates the iteration property into a style commonly found in univalent

type theory. This restatement is a proposition even if � is not a set. In the same spirit, it

may be valuable to rephrase the cancellation property in De�nition 5.3.1 into the requirement

that for every G : �, the map <(−, G) : � → �, or using symmetry equivalently the map

<(G,−) : � → �, is an embedding in the sense of De�nition 2.6.2, so that the condition is a

proposition even if � is not a set.

Such changes may result in de�nitions of convex bodies and interval objects that work for

arbitrary underlying types �, rather than restricting to sets. However, we do not investigate

this any further.

De�nition 5.3.5. A bipointed convex body (�,<, 0, 1) is a convex body (�,<) with two points

0, 1 : �. A homomorphism of convex bodies from (�,<, 0, 1) to (�′,<′, 0′, 1′) is a map 5 : �→

�′ on the underlying sets that preserves the structure in the sense that 5 (0) = 0′, 5 (1) = 1′,

and (∀G,~ : �) 5 (<(G,~)) =<′(5 (G), 5 (~)).

Finally, we are ready to de�ne interval objects.

De�nition 5.3.6. An interval object is a homotopy-initial bipointed convex body, i.e. a bi-

pointed convex body (�,<, 0, 1) such that for any other convex body (�′,<′, 0′, 1′), the type

(Σ5 : �→ �′) 5 (0) = 0′ ∧ 5 (1) = 1′ ∧ (∀G,~ : �) 5 (<(G,~)) =<′(5 (G), 5 (~))

of homomorphisms from (�,<, 0, 1) to (�′,<′, 0′, G′) is contractible.

Remark 5.3.7. Since �′ is a set, saying that the above type of homomorphisms is con-

tractible is equivalent to saying that that there exists a homomorphisms, and any two

homomorphisms are pointwise equal.

This concludes our rephrasing of the category-theoretic de�nition by Escardó–Simpson

into type theory.

116 5.4. NOTES

5.4 Notes

Thanks to our systematic use of Cauchy structures, and in particular Corollary 4.5.11, we have

written a rather short new proof that the HoTT book reals coincide with the Euclidean reals

in Proposition 5.1.3, without relying on propositional resizing, thus also improving on Booij

[26].

In the presence of propositional resizing, we can de�ne RE. Theorem 5.2.1, showing that

RE is a homotopy-initial Cauchy structure, without assuming that RH exists, is new. Two open

questions remain in regard to this result:

1. Can we show homotopy-initiality with respect to arbitrary types equipped with Cauchy

structures, rather than only sets? Note that a type with a Cauchy structure is not auto-

matically a set: given a Cauchy structure on a type - , we can assign a Cauchy structure

to - + . for an arbitrary type . , with elements in the right disjunct being assigned an

in�nite distance to all elements.

2. What homotopy-initiality can be shown in the absence of propositional resizing, given

only a least Cauchy complete subset of the Dedekind reals, without knowing its con-

struction as an intersection of subsets of RD?

The �rst type-theoretic de�nition of interval objects given by De�nitions 5.3.1 and 5.3.2

is a naive translation of Escardó and Simpson [43, 39]. Type-theoretic language then allowed

us to phrase uniqueness of the iteration operator " as a certain type being a proposition in

Lemma 5.3.3, and we have subsequently given a new and equivalent de�nition of interval

objects in Theorem 5.3.4.

The results of Sections 5.1 and 5.2 suggest that the interval in the HoTT book reals is an

interval object, since in toposes the interval in the Euclidean reals is an interval object [43].

We obtain a convex body by following the intuition of the structure of convex bodies.

Concretely, we take as the underlying set the interval [−1, 1] ⊆ RH, i.e.

IH B (ΣG : RH) − 1 ≤ G ≤ 1,

5.4. NOTES 117

with the usual identi�cation of elements of IH with their underlying element of RH, and

<(G,~) = G−~
2 , so that the convex body is given by (IH,<,−1, 1). It has to be checked that

(IH,<,−1, 1) satis�es the property of a convex body.

Conjecture 5.4.1. (IH,<,−1, 1) is an interval object.

Conversely, we may also start with an arbitrary interval object (I,<, 0, 1). From this, we

may de�ne a candidate type RI of real numbers as a quotient of Z × I, where we identify

1. (: − 1, G) with (:,~) if<(G,~) =<(<(0, 1), 0), and

2. (:, G) with (: + 1, ~) if<(G,~) =<(<(0, 1), 1),

so that (:,<(0, 1)) represents the real number : , and so that (:, 0) is identi�ed with (: −

1,<(0, 1)) and similarly (:,1) with (: + 1,<(0, 1)) and (: + 2, 0).

Conjecture 5.4.2. Given an interval object (I,<, 0, 1), a Cauchy structure can be de�ned on

the type RI constructed above, so that RI satis�es a homotopy-initiality property similar to the

one for RE in Theorem 5.2.1. That is, for a Cauchy structure ((,∼), where (is a set, the type

CS-hom(RI, () of Cauchy structure morphisms from RI to (is contractible.

If this works out, it may be possible to present the interval objects, and thus the HoTT

book reals, as a higher-inductive type, rather than as a higher inductive-inductive type.

118 5.4. NOTES

Chapter 6

LOCATORS

In this chapter we work with an arbitrary but �xed type of reals R, namely any Cauchy com-

plete Archimedean �eld in the sense of Chapter 4. A previous version of this work was devel-

oped for RD speci�cally [23].

The basic idea is that we equip real numbers with the structure of a locator, de�ned in

Section 6.1. The purpose of the work is to show how to extract discrete information from an

existing theory of real analysis in UTT.

The following example, which will be fully proved in Theorem 7.3.5, illustrates how we

are going to use locators. Suppose 5 is a pointwise continuous function, and 0 < 1 are real

numbers with locators. Further suppose that 5 is locally nonconstant, that 5 (G) has a locator

whenever G has a locator, and that 5 (0) ≤ 0 ≤ 5 (1). Then we can �nd a root of 5 , which

comes equipped with a locator. For the moment, we provide a proof sketch, to motivate the

techniques that we are going to develop in this section. We de�ne sequences 0, 1 : N → R

with 0= < 0=+1 < 1=+1 < 1= , with 5 (0=) ≤ 0 ≤ 5 (1=), with 1= − 0= ≤ (1 − 0)
(2

3
)= , and such

that all 0= and 1= have locators. Set 00 = 0, 10 = 1. Suppose 0= and 1= are de�ned. We will

explain in the complete proof of Theorem 7.3.5 how to to �nd @= with 20=+1=
3 < @= <

0=+21=
3

and 5 (@=) # 0. The important point for the moment, is that this is possible precisely because

we have locators.

• If 5 (@=) > 0, then set 0=+1 B 0= and 1=+1 B @= .

• If 5 (@=) < 0, then set 0=+1 B @= and 1=+1 B 1= .

119

120 6.1. DEFINITION

The sequences converge to a number G . For any Y : Q+, we have |5 (G) | ≤ Y, hence 5 (G) = 0.

This completes our sketch.

We need to explain why the sequences 0 and 1 come equipped with locators, and why

their limit G has a locator. In fact, all @= are rationals, and hence have locators, as discussed

in Section 6.3. The number @= is constructed using the central techniques for observing data

from locators, see Sections 6.4 and 6.5. These techniques can then also be used in Section 6.6

to compute rational bounds. Locators for 20=+1=
3 and 0=+21=

3 can be constructed as locators for

algebraic operations, as in Section 6.7. Locators for limits are discussed in Section 6.8.

We compute signed digit representations for reals with locators in Section 6.9. Given a

real and a locator, we strengthen the properties for being a Dedekind cut into structure in

Section 6.10.

6.1 De�nition

Recall that the rationals are a sub�eld of R by Lemma 4.3.3. Throughout Chapters 6–8 we

identify @ : Q with its embedding 8 (@) : R.

Recall from De�nition 4.6.1 that a pair of predicates on the rationals G = (!,*) is located

if (∀@, A : Q) (@ < A) ⇒ (@ < G) ∨ (G < A). Indeed, this property holds for an arbitrary G : R

by cotransitivity of <.

De�nition 6.1.1. A locator for G : R is a function ℓ : (Π@, A : Q)@ < A → (@ < G) + (G < A).

We denote by locator(G) the type of locators on G . That is, we replace the logical disjunction

in locatedness by a disjoint sum, so that we get structure rather than property, allowing us to

compute.

Remark 6.1.2. It should be possible to substitute for Q, throughout Chapters 6–9, the

dyadic rationals, or other dense subsets of the reals satisfying suitable conditions, per-

haps including approximate division as in Bauer and Taylor [13]. We use Q, rather than

6.1. DEFINITION 121

a computationally more convenient type, in order to stay close to the traditional mathe-

matical development.

A locator can be seen as an analogue to a Turing machine representing a computable real

number, in the sense that it will provide us with enough data to be able to type-theoretically

compute, for instance, signed-digit expansions. However, a locator does not express that a

given real is a computable real: in the presence of excluded middle, there exists a locator for

every G : R, despite not every real being computable.

Lemma 6.1.3. Assuming PEM, for every G : R, we can construct a locator for G .

Proof. For given rationals @ < A , use PEM to decide @ < G . If @ < G holds, we can simply return

the proof given by our application of PEM. If ¬(@ < G) holds, then we get G ≤ @ < A so that

we can return a proof of G < A . �

Remark 6.1.4. We recall from our discussion in Section 2.4.1 that we use the word “proof”

also to refer to type-theoretic constructions of types that are not propositions. This chap-

ter contains many such proofs that do not prove propositions in the sense of De�ni-

tion 2.4.1.

In Chapter 7, we will de�ne when a function 5 : R→ R lifts to locators, which can be seen

as an analogue to a computable function on the reals. There, the contrast with the theory of

computable analysis becomes more pronounced, as the notion of lifting to locators is neither

stronger nor weaker than continuity.

The structure of a locator has been used previously by The Univalent Foundations Program

in a proof that assuming either countable choice or excluded middle, the Cauchy reals and the

Dedekind reals coincide [91, Section 11.4].

The reader may wonder why we only choose to modify one of the Dedekind properties

to become structure. We show in Theorem 6.10.3 that given only a locator, we can obtain the

remaining structures, corresponding to boundedness, roundedness and transitivity, automat-

ically.

122 6.2. TERMINOLOGY FOR LOCATORS

6.2 Terminology for locators

A locator ℓ for a real G can be evaluated by picking @, A : Q and a : @ < A . The value ℓ (@, A, a)

has type (@ < G) + (G < A), and so ℓ (@, A, a) can be either in the left summand or the right

summand. We say that “we locate @ < G” when the locator gives a value in the left summand,

and similarly we say “we locate G < A” when the locator gives a value in the right summand.

We often do case analysis on ℓ (@, A, a) : (@ < G) + (G < A) by constructing a value

2 : � (@ <G A) for some type family � : (@ < G) + (G < A) → U. To construct 2 we use

the elimination principle of +, for which we need to specify two values corresponding to the

disjuncts @ < G and G < A , so the two values have corresponding types (Πb : @ < G)� (inl(b))

and (ΠZ : G < A)� (inr(Z)). These two values correspond to the two possible answers of the

locator, and we will often indicate this by using the above terminology: the expression “we

locate @ < G” corresponds to constructing a value of the former type, and the expression “we

locate G < A” corresponds to constructing a value of the latter type.

For example, for every real G with a locator ℓ , we can output a Boolean depending on

whether ℓ locates 0 < G or G < 1. Namely, if we locate 0 < G we output true, and if we locate

G < 1 we output false. We use this construction in the proof of Lemma 6.10.1.

6.3 Locators for rationals

Lemma 6.3.1. Suppose G : R is a rational, or more precisely, that (∃B : Q) (G = 8 (B)), with

8 : Q ↩→ R the canonical inclusion obtained from Lemma 4.3.3, then G has a locator.

We give two constructions, to emphasize that locators are not unique. We use trichotomy

of the rationals, namely, for all 0, 1 : Q,

(0 < 1) + (0 = 1) + (0 > 1).

First proof. Let @ < A be arbitrary, then we want to give (@ < B) + (B < A). By trichotomy of

6.4. THE LOGIC OF LOCATORS 123

the rationals applied to @ and B , we have

(@ < B) + (@ = B) + (@ > B)

In the �rst case @ < B , we can locate @ < B . In the second case @ = B , we have B = @ < A , so we

locate B < A . In the third case, we have B < @ < A , so we locate B < A . �

Second proof. Let @ < A be arbitrary, then we want to give (@ < B) + (B < A). By trichotomy of

the rationals applied to B and A , we have

(B < A) + (B = A) + (B > A)

In the �rst case B < A , we can locate B < A . In the second case B = A , we have @ < A = B , so we

locate @ < B . In the third case, we have @ < A = B , so we locate @ < B . �

In the case that @ < B < A , the �rst construction locates B < A , whereas the second con-

struction locates @ < B . In particular, given a pair @ < A of rationals, the �rst proof locates

@ < 0 if @ is indeed negative, and 0 < A otherwise. The second proof locates 0 < A if A is indeed

positive, and @ < 0 otherwise. Note that these locators disagree when @ < 0 < A , illustrating

that locators are not unique.

6.4 The logic of locators

Our aim is to combine properties of real numbers with the structure of a locator to make

discrete observations.

If one represents reals by Cauchy sequences, one obtains lower bounds immediately from

the fact that any element in the sequence approximates the real up to a known error. As a

working example, we show, perhaps surprisingly, that we can get a lower bound for an real G ,

that is an element of (Σ@ : Q)@ < G , from the locator alone.

Recall that Dedekind reals are bounded from below, so that (∃@ : Q)@ < G . For an ar-

bitrary G : R, we know that G − 1 < G , and hence by the Archimedean property we have

(∃@ : Q)G − 1 < @ < G , and so we get lower boundedness (∃@ : Q)@ < G as a consequence of

124 6.4. THE LOGIC OF LOCATORS

this. We will de�ne a proposition % which gives us a bound, in the sense that we can use the

elimination rule for propositional truncations to get a map

((∃@ : Q)@ < G) → %,

and then we can extract a bound using a simple projection map

% → ((Σ@ : Q)@ < G).

More concretely, we de�ne a type of rationals which are bounds for G and which are min-

imal in a certain sense. The minimality is not intended to �nd tight bounds, but is intended to

make this collection of rationals into a proposition: in other words, minimality ensures that

the answer is unique, so that we may apply the elimination rule for propositional truncations.

Our technique has two central elements: reasoning about the structure of locators using

propositions, and the construction of a unique answer using bounded search (Section 6.5).

Given a locator ℓ : locator(G), @, A : Q and a : @ < A , we have the notation

@ <ℓG A B ℓ (@, A, a) : (@ < G) + (G < A),

leaving the proof of @ < A implicit. We further often drop the choice of locator, writing @ <G A

for @ <ℓG A .

Recall the type DHProp B (Σ% : HProp)% + ¬% of decidable propositions from De�ni-

tion 2.4.9.

Lemma 6.4.1. For types � and �, we have

� + � ' (Σ% : DHProp) (% → �) × (¬% → �).

Proof. For a given element G : � + �, the proposition % is de�ned to hold when G an given by

an element of �, and false otherwise, so that the two conditions on % hold. Vice versa, for a

given proposition % we simply decide % to obtain the respective element of � + �. It has to be

checked that these two constructions result in an equivalence. �

6.4. THE LOGIC OF LOCATORS 125

Lemma 6.4.2. The type locator(G) of De�nition 6.1.1 is equivalent to the type

(ΣlocatesRight : (Π@, A : Q)@ < A → DHProp)

((Π@, A : Q) (Πa : @ < A) locatesRight(@, A, a) → @ < G)

× ((Π@, A : Q) (Πa : @ < A)¬ locatesRight(@, A, a) → G < A).

Proof. The previous lemma yields the equivalence

locator(G) ' (Π@, A : Q)@ < A →

(Σ% : DHProp) (% → @ < G) × (¬% → G < A),

and then we can apply Theorems 2.15.5 and 2.15.7 in The Univalent Foundations Program [91]

to distribute the Π-types over Σ and ×. �

Remark 6.4.3. We emphasize that, confusingly, locatesRight(@, A, a) is de�ned type-theo-

retically as isLe�(@ <ℓG A).

De�nition 6.4.4. For a real G with a locator ℓ and rationals @ < A , we write

locatesRight(@ <ℓG A) or locatesRight(@ <G A)

for the decidable proposition locatesRight(@, A, a) obtained from Lemma 6.4.2. We write

locatesLe�(@ <ℓG A) or locatesLe�(@ <G A)

to be the negation of locatesRight(@ <G A): so it is the proposition which is true if we locate

G < A .

Remark 6.4.5. In general, if we have @′ < @ < A , then locatesRight(@ <G A) does not imply

locatesRight(@′ <G A).

126 6.4. THE LOGIC OF LOCATORS

Lemma 6.4.6. For any real G with a locator ℓ and rationals @ < A ,

¬(@ < G) ⇒ locatesLe�(@ <ℓG A), and

¬(G < A) ⇒ locatesRight(@ <ℓG A).

Proof. From the de�ning properties of locatesRight in Lemma 6.4.2, we know

locatesRight(@ <ℓG A) ⇒ (@ < G), and

¬ locatesRight(@ <ℓG A) ⇒ (G < A).

The contrapositives of these are, respectively:

¬(@ < G) ⇒ ¬ locatesRight(@ <ℓG A), and

¬(G < A) ⇒ ¬¬ locatesRight(@ <ℓG A).

Using the fact that ¬¬�⇒ � when � is decidable, this is the required result. �

Example 6.4.7. Let G be a real equipped with a locator. We can type-theoretically express

that the locator must give certain answers. For example, if we have @ < A < G , shown visually

as

G@ < A
R

we must locate @ < G , because ¬(G < A). In other words, we obtain truth of the proposition

locatesRight(@ <G A): the property ¬(G < A) yielded a property of the structure @ <G A .

Continuing our working example of computing a lower bound, for any @ : Q we have the

claim

% (@) B locatesRight(@ − 1 <G @)

that we locate @ − 1 < G . This claim is a decidable proposition. And from the existence

(∃@ : Q)@ < G of a lower bound for G , we can deduce that (∃@ : Q)% (@), because if @ < G then

¬(G < @) and hence the above lemma applies. If we manage to �nd a @ : Q for which % (@)

holds, then we have certainly found a lower bound of G , namely @ − 1.

6.5. BOUNDED SEARCH 127

6.5 Bounded search

Even though the elimination rule for propositional truncation in De�nition 2.4.3 only con-

structs maps into propositions, we can use elements of propositional truncations to obtain

witnesses of non-truncated types — in other words, we can sometimes obtain structure from

property.

Theorem 6.5.1 (Escardó [40], [44], [91, Exercise 3.19]). Let % : N→ DHProp. If (∃= : N)% (=)

then we can construct an element of (Σ= : N)% (=).

Proof. De�ne the type of least numbers satisfying % as (Σ= : N)% (=) ×minimal(=, %), where

minimal(=, %) B (∀: : N): ≤ = ⇒ % (:) ⇒ = = :

expresses that = is minimal with respect to % , and observe that (Σ= : N)% (=) ×minimal(=, %)

is a proposition. We have

((Σ= : N)% (=)) → ((Σ= : N)% (=) ×minimal(=, %))

by a bounded search: given a natural number = that satis�es % , we can �nd the least natu-

ral number satisfying % , by searching up to =. Using the elimination rule for propositional

truncations, we obtain the dashed vertical map in the following diagram.

(Σ= : N)% (=) (∃= : N)% (=)

(Σ= : N)% (=) ×minimal(=, %)

(Σ= : N)% (=)

| · |

bounded search
∃!

proj

The vertical composition is the required result. �

Remark 6.5.2. There are di�erent ways to obtain an element of (Σ= : N)% (=) from an ele-

ment of (∃= : N)% (=).

1. The output doesn’t have to be the smallest natural satisfying P, since you could

128 6.6. COMPUTING BOUNDS

choose a strange ordering on the naturals, and, for example, search backwards be-

tween 0 and 100, and ordinary (increasing) above 100.

2. The output doesn’t even have to be the minimal number — not even in a strange

ordering of the naturals. For a (contrived) example, an ill-informed search could

choose to always test % (0) through % (5), and output the least 8 between 0 and 4 for

which % (8) and % (8+1) are both true, if it exists, and otherwise do ordinary bounded

search starting from 0. This computation always succeeds since, in the worst case,

we fall back to the bounded search, which we know works. But the output value

is not minimal in any sense, since it may output 4 even if % (0) also holds (but % (1)

doesn’t), but may also output 0 even if % (4) also holds (but % (5) doesn’t).

Remark 6.5.3. In general, we don’t have ‖- ‖ → - for all types - , as this would imply

excluded middle [63]. But for some types - , we do have ‖- ‖ → - , namely when - has a

constant endomap [63].

Even without univalence, Theorem 6.5.1 also works for any type equivalent to N.

Corollary 6.5.4. Let � be a type and 4 : N ' � be an equivalence, that is, a function N → �

with a left inverse and right inverse. Let % : �→ DHProp. If (∃0 : �)% (0) then we can construct

an element of (Σ0 : �)% (=).

Proof. Use Theorem 6.5.1 with % ′(=) B % (4 (=)). In order to show (∃= : N)% ′(=), it su�ces to

show ((Σ0 : �)% (0)) → ((Σ= : N)% ′(=)), so let 0 : � and ? : % (0). Then since 0 = 4 (4−1(0))

we get % (4 (4−1(0))) by transport.

Hence from Theorem 6.5.1 we obtain some (=, ?′) : (Σ= : N)% ′(4 (=)), so we can output

(4 (=), @). �

6.6 Computing bounds

We are now ready to �nish our running example of computing a lower bound for G .

6.6. COMPUTING BOUNDS 129

Lemma 6.6.1. Given a real G : R equipped with a locator, we get bounds for G , that is, we can

�nd @, A : Q with @ < G < A .

Proof. We pick any enumeration of Q, that is, an equivalence N ' Q. Set

% (@) B locatesRight(@ − 1 <G @).

From Section 6.4 we know that (∃@ : Q)% (@), and so we can apply Corollary 6.5.4. We obtain

(Σ@ : Q)% (@), and in particular (Σ@ : Q)@ − 1 < G .

Upper bounds are constructed by a symmetric argument, using

% (A) B locatesLe�(A <G A + 1) . �

We emphasize that even though we cannot decide @ < G in general, we can decide what

the locator tells us, and this is what is exploited in our development. Given a real G with a

locator, the above construction of a lower bound searches for a rational @ for which we locate

@ − 1 < G . We emphasize once more that the rational thus found is minimal in the sense that

it appears �rst in the chosen enumeration of Q, and not a tight bound.

Remark 6.6.2. The proof of Theorem 6.5.1 works by an exhaustive, but bounded, search.

So our construction for Lemma 6.6.1 similarly exhaustively searches for an appropriate

rational @. The e�ciency of the algorithm thus obtained can be improved:

1. We do not need to test every rational number: it su�ces to test, for example, bounds

of the form ±2:+1 for : : N, as there always exists a bound of that form. Formally,

such a construction is set up by enumerating a subset of the integers instead of

enumerating all rationals, and showing the existence of a bound of the chosen form,

followed by application of Corollary 6.5.4.

2. More practically, Lemma 6.6.1 shows that we may as well additionally equip bounds

to reals that already have locators. Then, any later constructions that use rational

bounds can simply use these equipped rational bounds. This is essentially the ap-

proach of interval arithmetic with open nondegenerate intervals. We can also see

130 6.7. LOCATORS FOR ALGEBRAIC OPERATIONS

this equipping of bounds as a form of memoization, which we can apply more gen-

erally.

Lemma 6.6.3. For a real G equipped with a locator and any positive rational Y we can �ndD, E : Q

with D < G < E and E − D < Y.

Proof. The construction of bounds in Lemma 6.6.1 yields @, A : Q with @ < G < A . We can

compute = : N such that A < @ + =Y
3 . Consider the equidistant subdivision

@ − Y3 , @, @ +
Y

3 , @ +
2Y
3 , . . . , @ +

=Y

3 , @ +
(= + 1)Y

3 .

By Lemma 6.4.6, necessarily locatesRight(@ − Y
3 <G @) because @ < G . Similarly, we have

locatesLe� (@ + =Y
3 <G @ + (=+1)Y3) because G < @ + =Y

3 .

For some 8 , which we can �nd by a �nite search using a discrete intermediate value theorem

such as the one-dimensional version of Sperner’s lemma, we have

locatesRight
(
@ + 8Y3 <G @ +

(8 + 1)Y
3

)
∧ locatesLe�

(
@ + (8 + 1)Y

3 <G @ +
(8 + 2)Y

3

)
.

For this 8 , we can output D = @ + 8Y
3 and E = @ + (8+2)Y3 . �

Remark 6.6.4. The above result allows us to compute arbitrarily precise bounds for a real

number G with a locator. But, as in Remark 6.6.2, the above theorem shows that we may

as well equip an appropriate algorithm for computing arbitrarily precise lower and upper

bounds to real numbers. This may be a better idea when e�ciency of the computation

matters. We come back to this in Remark 6.10.4.

6.7 Locators for algebraic operations

If G and ~ are reals that we can compute with in an appropriate sense, then we expect to be

able to do so with −G , G +~, G ·~, G−1 (assuming G # 0), min(G,~) and max(G,~) as well. In our

case, that means that if G and ~ come equipped with locators, then so should the previously

listed values.

If one works with intensional real numbers, such as when they are given as Cauchy se-

quences, then the algebraic operations are speci�ed directly on the representations. This

6.7. LOCATORS FOR ALGEBRAIC OPERATIONS 131

means that the computational data is automatically present. Since in our case the algebraic op-

erations are speci�ed extensionally, they do not give any discrete data, and so the construction

of locators has to be done explicitly in order to compute.

If these algebraic operations are de�ned as speci�c values, such as when G + ~ is de�ned

as a pointwise sum of two Cauchy sequences, or as a certain Dedekind cuts combining those

of G and ~, then it is clear what work needs to be done to construct a locator. However, since

R and the operations on it are arbitrary, we �rst need to characterize the algebraic operations

in terms of the strict order <.

Recall from Section 4.6 that for a Dedekind cut G = (!,*) we write @ < G for the claim that

@ : Q is in the left cut !. In fact, now that we have identi�ed @ : Qwith its canonical embedding

8 (@) : R in the reals, we can simply understand @ < G as 8 (@) <R G , which coincides with the

notation for Dedekind cuts.

The algebraic operations can be de�ned for Dedekind cuts as in The Univalent Foundations

Program [91, Section 11.2.1]. Those same de�nitions, when written in our notation, become

properties that we can prove for our arbitrary notion of reals. This was previously observed in

The Univalent Foundations Program [91, Theorem 11.2.14]. Considering that we start with an

arbitrary notion of real numbers, it is surprising that, at least in terms of the strict order, the

algebraic operations necessarily coincide with the de�ned operations on the Dedekind reals.

Recall that R is Archimedean, which can be succinctly stated as the claim that for all G,~ :

R,

G < ~ ⇒ (∃@ : Q)G < @ < ~.

Lemma 6.7.1. For G,~, I,F : R withF < 0 < I and @, A : Q we have:

@ < −G ⇔ G < −@

−G < A ⇔ −A < G

@ < G + ~ ⇔ (∃B : Q)B < G ∧ (@ − B) < ~

G + ~ < A ⇔ (∃C : Q)G < C ∧ ~ < (A − C)

@ < G~ ⇔ (∃0, 1, 2, 3 : Q)@ < min(02, 03, 12, 13)

132 6.7. LOCATORS FOR ALGEBRAIC OPERATIONS

∧ 0 < G < 1 ∧ 2 < ~ < 3

G~ < A ⇔ (∃0, 1, 2, 3 : Q)max(02, 03, 12, 13) < A

∧ 0 < G < 1 ∧ 2 < ~ < 3

@ < I−1 ⇔ @I < 1

I−1 < A ⇔ 1 < AI

@ < F−1 ⇔ 1 < @F

F−1 < A ⇔ AF < 1

@ < min(G,~) ⇔ @ < G ∧ @ < ~

min(G,~) < A ⇔ G < A ∨ ~ < A

@ < max(G,~) ⇔ @ < G ∨ @ < ~

max(G,~) < A ⇔ G < A ∧ ~ < A

Proof. @ < −G ⇔ G < −@ holds by compatibility of + with <.

Suppose @ < G + ~. We aim to show (∃B : Q)B < G ∧ (@ − B) < ~. Using the Archimedean

property we get (∃Y : Q+)@ + Y < G + ~. Again by the Archimedean property (∃B : Q)B < G <

B + Y, and in particular −B < −G + Y. Then we have @ + Y − B < G + ~ − G + Y = ~ + Y, hence

@ − B < ~, as required.

Conversely, suppose (∃B : Q)B < G ∧ (@ − B) < ~, then @ < G + ~ holds by compatibility of

+ with <.

For multiplication, suppose @ < G~. As in the case for +, we �rst note that (∃Y : Q+)@ +

Y < G~. Then note that (∃I : Q+) |G | + 1 < I ∧ |~ | + 1 < I. Set X B min(1, Y2I). Now

(∃0, 1, 2, 3 : Q)0 < G < 1 ∧ 2 < ~ < 3 ∧1 −0 < X ∧3 − 2 < X using a number of applications of

the Archimedean property. It su�ces to show that @ < min(02, 03, 12, 13), which can be done

by showing it for each of the four cases. For instance, to show that @ < 02 , since @ + Y < G~, it

su�ces to show G~−Y < 02 , that is, that G~ < G~−G (~−2) − (G−0)~+ (G−0) (~−2) +Y, i.e. that

G (~−2) + (G −0)~ < (G −0) (~−2) +Y. But this holds since G (~−2) + (G −0)~ < |G | X + |~ | X < Y.

Conversely, suppose (∃0, 1, 2, 3 : Q)@ < min(02, 03, 12, 13) ∧ 0 < G < 1 ∧ 2 < ~ < 3 . Since

0, 1, 2, 3 are rationals, the minimum of the products is equal to one of the four products. For

6.7. LOCATORS FOR ALGEBRAIC OPERATIONS 133

example, if min(02, 03, 12, 13) = 02 , then 02 ≤ 03 gives 0 ≤ 0, and 02 ≤ 12 gives 0 ≤ 2 . Hence

@ < 02 ≤ 0~ < G~. The remaining three cases are similar.

The laws for multiplicative inverses hold by compatibility of multiplication with <.

Suppose @ < min(G,~). Without loss of generality we show @ < G . By cotransitivity of <

we have @ < G ∨ G < min(G,~). The former case is the desired conclusion. For the latter case,

recall from the de�nition of lattice that we have

min(G,~) ≤ min(G,~) ⇔ min(G,~) ≤ G ∧min(G,~) ≤ ~,

and so since the left-hand side is tautologically true, we get min(G,~) ≤ G , contradicting

G < min(G,~).

Conversely, suppose @ < G ∧ @ < ~. Using cotransitivity twice we get @ < min(G,~) ∨

min(G,~) < G and @ < min(G,~) ∨ min(G,~) < ~. In either former case we are done, so the

remaining case is that we have both min(G,~) < G and min(G,~) < ~. We know that

G ≤ min(G,~) ⇔ G ≤ G ∧ G ≤ ~,

~ ≤ min(G,~) ⇔ ~ ≤ G ∧ ~ ≤ ~.

By the fact that min(G,~) < G and min(G,~) < ~, the left hand sides of these claims are false,

and hence we have ¬(G ≤ ~) and ¬(~ ≤ G), which together contradict that < is transitive and

irre�exive.

Next we show from min(G,~) < A that G < A ∨ ~ < A , so assume min(G,~) < A . By

cotransitivity we have min(G,~) < G or G < A , and similarly we have min(G,~) < ~ or ~ < A .

Now in either latter case we are done, so we may assume to have both min(G,~) < G and

min(G,~) < ~. By the same reasoning as before, this is a contradiction.

Conversely, suppose without loss of generality, that we have G < A . By cotransitivity we

have G < min(G,~) or min(G,~) < A . In the latter case we are done, and the former case

contradicts

min(G,~) ≤ min(G,~) ⇔ min(G,~) ≤ G ∧min(G,~) ≤ ~,

as above.

134 6.7. LOCATORS FOR ALGEBRAIC OPERATIONS

The laws not shown explicitly can be shown in a symmetric fashion. �

We will use the following variation of the Archimedean property.

Lemma 6.7.2. For real numbers G < ~, there exist @ : Q and Y : Q+ with G < @ − Y < @ + Y < ~.

Proof. By a �rst application of the Archimedean property, we know (∃B : Q)G < B < ~. Since

we are showing a proposition, we may assume to have such an B : Q. Now for B < ~, by the

Archimedean property, we know (∃C : Q)B < C < ~, and again we may assume to have such a

C . Now set @ B B+C
2 and Y B C−B

2 . �

In particular, the above variation can be used to strengthen the ∃ of the Archimedean prop-

erty into Σ when the reals involved come equipped with locators. Its corollary, Corollary 6.7.4,

is used to compute locators for multiplicative inverses.

Lemma 6.7.3. For reals G and ~ equipped with locators we have the Archimedean structure

G < ~ → (Σ@ : Q)G < @ < ~.

Proof. Let G and~ be reals equipped with locators. By Lemma 6.7.2, there exist @ : Q and Y : Q+

with G < @ − Y < @ + Y < ~. The following proposition is decidable for any (@′, Y′) and we have

(∃(@, Y) : Q × Q+)% (@, Y):

% (@′, Y′) B locatesLe�(@′ − Y′ <G @′) ∧ locatesRight(@′ <~ @′ + Y′).

Using Corollary 6.5.4 we can �nd (@′, Y′) with % (@′, Y′) and hence G < @′ < ~. �

Corollary 6.7.4. For reals G and ~ equipped with locators, and B : Q a rational, if G < ~ then we

have a choice of G < B or B < ~, that is:

(ΠB : Q)G < ~ → (G < B) + (B < ~).

Proof. By Lemma 6.7.3 we can �nd @ : Q with G < @ < ~. Apply trichotomy of the rationals: if

@ < B or @ = B then we locate G < B , and if B < @ then we locate B < ~. �

6.7. LOCATORS FOR ALGEBRAIC OPERATIONS 135

Remark 6.7.5. Instead of the rational B : Qwe can have any real I equipped with a locator in

the above corollary, so that we obtain a form of strong cotransitivity of the strict ordering

relation on the real numbers, but we will not be using this.

Having developed such a strong cotransitivity, the proof of Lemma 6.7.1 could be car-

ried out using the Archimedean structure of Lemma 6.7.3 rather than using the Archi-

medean property. This would then yield a structural characterization of the algebraic

operations for G,~ : R equipped with locators, along the lines of:

@ < G + ~ ⇔ (ΣB, C : Q) (@ = B + C) ∧ B < G ∧ C < ~

@ < G · ~ ⇔ (Σ0, 1, 2, 3 : Q)@ < min(0 · 2, 0 · 3, 1 · 2, 1 · 3)

∧ 0 < G < 1 ∧ 2 < ~ < 3

@ < max(G,~) ⇔ @ < G + @ < ~

...

Theorem 6.7.6. If reals G,~ : R are equipped with locators, then we can also equip −G , G + ~,

G · ~, G−1 (assuming G # 0), min(G,~) and max(G,~) with locators.

Remark 6.7.7. As we de�ne absolute values by |G | = max(G,−G), as is common in con-

structive analysis, if G has a locator, then so does |G |, and we use this fact in the proof of

the above theorem.

Proof of Theorem 6.7.6. Throughout this proof, we assume G and ~ to be reals equipped with

locators, and @ < A to be rationals.

We construct a locator for −G . We can give (@ < −G) + (−G < A) by considering −A <G −@.

We construct a locator for G + ~. We need to show (@ < G + ~) + (G + ~ < A). Note that

@ < G +~ i� there exists B : Q with @ − B < G and B < ~. Similarly, G +~ < A i� there exists C : Q

with G < A − C and ~ < C .

Set Y B (A − @)/2, such that @ + Y = A − Y. By Lemma 6.6.3 we can �nd D, E : Q such that

D < G < E and E − D < Y, so in particular G < D + Y. Set B B @ − D, so that @ − B < G . Now

136 6.7. LOCATORS FOR ALGEBRAIC OPERATIONS

consider B <~ B + Y. If we locate B < ~, we locate @ < G + ~. If we locate ~ < B + Y, we have

G < @ − B + Y = A − B − Y, that is, we can set C B B + Y to locate G + ~ < A .

We construct a locator for min(G,~). We consider both @ <G A and @ <~ A . If we locate

G < A or ~ < A , we can locate min(G,~) < A . Otherwise, we have located both @ < G and @ < ~,

so we can locate @ < min(G,~).

The locator for max(G,~) is symmetric to the case of min(G,~).

We construct a locator for G~. We need to show (@ < G~) + (G~ < A). Note that @ < G~

means:

(∃0, 1, 2, 3 : Q) (0 < G < 1) ∧ (2 < ~ < 3) ∧ (@ < min{02, 03, 12, 13}) .

Similarly, G~ < A means:

(∃0, 1, 2, 3 : Q) (0 < G < 1) ∧ (2 < ~ < 3) ∧ (max{02, 03, 12, 13} < A).

Using Lemma 6.6.3 we can �nd I,F : Q with |G | + 1 < I and |~ | + 1 < F , since we have

already constructed locators for max, +, − and all rationals.

Set Y B A − @, X B min{1, Y2I } and [B min{1, Y
2F } . Find 0 < G < 1 and 2 < ~ < 3 such

that 1 − 0 < [and 3 − 2 < X . Note that |0 | < |G | +[≤ |G | + 1 < I and similarly |1 | < I, |2 | < F

and |3 | < F . Then the distance between any two elements of {02, 03, 12, 13} is less than Y. For

instance, |02−13 | < Y because |02−13 | ≤ |02−03 |+|03−13 |, and |02−03 | = |0 | |2−3 | < |0 |X < Y
2

and similarly |03 − 13 | < Y
2 . Hence max{02, 03, 12, 13} − min{02, 03, 12, 13} < Y. Thus, by

dichotomy of the rationals, one of @ < min{02, 03, 12, 13} and max{02, 03, 12, 13} < A must be

true, yielding a corresponding choice of (@ < G~) + (G~ < A).

We construct a locator for G−1. Consider the case that G > 0. Given @ < A , we need

(@ < G−1) + (G−1 < A), or equivalently (@G < 1) + (1 < AG). By the previous case, @G and AG

have locators, so we can apply Corollary 6.7.4. The case G < 0 is similar. �

Remark 6.7.8. Locators for reciprocals can also be constructed by more elementary meth-

ods, as follows. For G > 0, we use dichotomy of the rationals for 0 and @. If @ ≤ 0 we may

locate @ < G , and otherwise we have 0 < 1/A < 1/@, so that by considering 1/A <G 1/@ we

6.8. LOCATORS FOR LIMITS 137

may either locate G < A or @ < G . There is a similar construction for G < 0.

By deducing the same properties for the algebraic operations as the de�nitions in The

Univalent Foundations Program [91, Section 11.2.1], and using the techniques of Sections 6.4

and 6.5, we have computed locators for algebraic operations applied to reals equipped with

locators.

6.8 Locators for limits

In a spirit similar to the previous section, if we have a Cauchy sequence of reals, each of which

equipped with a locator, then we can compute a locator for the limit of the sequence.

Lemma 6.8.1. Suppose G : N → R has modulus of Cauchy convergence " , and suppose that

every value in the sequence G : N → R comes equipped with a locator, that is, suppose we have

an element of (Π= : N) locator (G=) . Then we have a locator for lim=→∞ G= .

Proof. Let @ < A be arbitrary rationals. We need (@ < lim=→∞ G=) + (lim=→∞ G= < A). Set

Y B
A−@

3 so that @ + Y < A − Y. Recall from Remark 4.4.3 that
��G" (Y/2) − lim=→∞ G=

�� < Y, that is

G" (Y/2) − Y < lim=→∞ G= < G" (Y/2) + Y.

We consider the locator equipped to G" (Y/2) and do case analysis on @ + Y <G" (Y/2) A − Y. If we

locate @ + Y < G" (Y/2) then we can locate @ < lim=→∞ G= . If we locate G" (Y/2) < A − Y then we

can locate lim=→∞ G= < A . �

Remark 6.8.2. We emphasize that Lemma 6.8.1 requires the sequence to be equipped with

a modulus of Cauchy convergence, whereas existence su�ces for the computation of the

limit itself, as in Corollary 4.4.7.

Example 6.8.3 (Locators for exponentials). Given a locator for G , we can use Lemma 6.6.1 to

obtain a modulus of Cauchy convergence of exp(G) = ∑∞
:=0

G:

:! . Hence exp(G) has a locator.

Example 6.8.4. Many constants such as c and 4 have locators, which can be found by exam-

ining their construction as limits of sequences.

138 6.9. CALCULATING DIGITS

We can now construct locators for limits of sequences whose elements have locators, and

so using Lemma 6.3.1, in particular, limits for sequences of rationals. As we will make precise

in Theorem 6.9.7, this covers all the cases.

6.9 Calculating digits

Example 6.9.1. We would like to print digits for numbers equipped with locators, such as

c . Such a digit expansion gives rise to rational bounds of the number in question: if a digit

expansion of c starts with 3.1 . . ., then we have the bounds 3.0 < c < 3.3.

We now wish to generate the entire sequence of digits of a real number G equipped with

a locator. As in computable analysis and other settings where one works intensionally, with

reals given as Cauchy sequences or streams of digits, we wish to extract digit representations

from a real equipped with a locator.

In fact, various authors including Brouwer [29] and Turing [94] encountered problems

with computing decimal expansions of real numbers in their work. As is common in con-

structive analysis, we instead consider signed-digit representations. Wiedmer [99] shows how

to calculate directly on the signed-digit representations in terms of computability theory.

De�nition 6.9.2. A signed-digit representation for G : R is given by : : Z and a sequence 0

of signed digits 08 ∈
{

9̄, 8̄, . . . , 1̄, 0, 1, . . . , 9
}
, with 0̄ B −0, such that

G = : +
∞∑
8=0

08 · 10−8−1.

Example 6.9.3. The number c may be given by a signed-decimal expansion as 3.1415 . . ., or

as 4.8̄6̄15 . . ., or as 3.25̄8̄5̄

Lemma 6.9.4. For any G equipped with a locator, we can �nd : : Z such that G ∈ (: − 1, : + 1).

Proof. Use Lemma 6.6.3 with Y = 1 to obtain rationals D < E with D < G < E and E < 1 +D. Set

: = bDc + 1. Then:

: − 1 = bDc ≤ D < G < E < D + 1 < : + 1. �

6.9. CALCULATING DIGITS 139

Theorem 6.9.5. For a real number G , locators and signed-digit representations are interde�nable.

Proof. If a real number has a signed-digit representation, then it is the limit of a sequence of

rational numbers, and so by Lemma 6.8.1 it has a locator.

Conversely, assume a real G has a locator. By Lemma 6.9.4 we get: : Zwith G ∈ (:−1, :+1).

Consider the equidistant subdivision

: − 1 < : − 9
10 < · · · < : − 1

10 < : < : + 1
10 < · · · < : + 1.

By applying the locator several times, we can �nd a signed digit 00 such that

: + 00 − 1
10 < G < : + 00 + 1

10 .

We �nd subsequent digits in a similar way. �

Note that since R is Cauchy complete, there is a canonical inclusion RC → R from the

Cauchy reals into R.

De�nition 6.9.6. We write isCauchyReal(G) for the claim that a given real G : R is in the

image of the canonical inclusion of the Cauchy reals into R. Equivalently, isCauchyReal(G)

holds when there is a rational Cauchy sequence with limit G .

We emphasize that ‖locator(G)‖ is not equivalent to the locatedness property of De�ni-

tion 4.6.1.

Theorem 6.9.7. The following are equivalent for G : R:

1. ‖locator(G)‖, that is, there exists a locator for G .

2. There exists a signed-digit representation of G .

3. There exists a Cauchy sequence of rationals that G is the limit of.

4. isCauchyReal(G).

Proof. Items 1 and 2 are equivalent by Theorem 6.9.5. Item 2 implies item 3 since a signed-digit

representation gives rise to a sequence with a modulus of Cauchy convergence. Item 3 implies

140 6.9. CALCULATING DIGITS

item 1 because a sequence of rational numbers with modulus of Cauchy convergence has a

locator by Lemma 6.8.1. Equivalence of items 3 and 4 is a standard result. �

Remark 6.9.8. The notion of locator can be truncated into a proposition in three ways:

‖(Π@, A : Q)@ < A → (@ < G) + (G < A)‖ (6.1)

(Π@, A : Q) ‖@ < A → (@ < G) + (G < A)‖ (6.2)

(Π@, A : Q)@ < A → ‖(@ < G) + (G < A)‖ (6.3)

Now (6.1) is ‖locator(G)‖, and (6.3) is the locatedness property of De�nition 4.6.1, which

holds for all G : R as mentioned in Section 6.1. In summary, we have

(6.1) =⇒ (6.2) ⇐⇒ (6.3)

where the implications to the right can be shown using the induction rule for propositional

truncations, and the implication to the left follows from the fact that @ < A is a decidable

proposition for @, A : Q.

In other words, we cannot expect to be able to equip every real with a locator, as this would

certainly imply that the Cauchy reals and the Dedekind reals coincide, which is not true in

general [68].

Corollary 6.9.9. The following are equivalent:

1. For every Dedekind real there exists a signed-digit representation of it.

2. The Cauchy reals and the Dedekind reals coincide.

The types RC and RD do not coincide in general, but they do assuming excluded middle

or countable choice. We are not aware of a classical principle that is equivalent with the

coincidence of RC and RD.

6.10. DEDEKIND CUTS STRUCTURE 141

6.10 Dedekind cuts structure

Let G = (!,*) be a pair of predicates on the rationals, i.e. !,* : PQ. In De�nition 4.6.1

we speci�ed the necessary properties for G to be a Dedekind cut. More explicitly, we have

isCut : PQ × PQ→ HProp de�ned by:

isCut(G) B boundedLower(G) ∧ boundedUpper(G)

∧ closedLower(G) ∧ closedUpper(G)

∧ openLower(G) ∧ openUpper(G)

∧ transitive(G) ∧ located(G),

boundedLower(G) B (∃@ : Q)@ < G,

boundedUpper(G) B (∃A : Q)G < A,

closedLower(G) B (∀@, @′ : Q) (@ < @′) ∧ (@′ < G) ⇒ @ < G,

closedUpper(G) B (∀A, A ′ : Q) (A ′ < A) ∧ (G < A ′) ⇒ G < A,

openLower(G) B (∀@ : Q)@ < G ⇒ (∃@′ : Q) (@ < @′) ∧ (@′ < G),

openUpper(G) B (∀A : Q)G < A ⇒ (∃A ′ : Q) (A ′ < A) ∧ (G < A ′),

transitive(G) B (∀@, A : Q) (@ < G) ∧ (G < A) ⇒ (@ < A),

located(G) B (∀@, A : Q) (@ < A) ⇒ (@ < G) ∨ (G < A).

We may also consider when G has these data as structure, that is, when it is equipped with the

structure isCut§ : PQ × PQ→U de�ned by:

isCut§(G) B boundedLower§(G) × boundedUpper§(G)

× closedLower§(G) × closedUpper§(G)

× openLower§(G) × openUpper§(G)

× transitive§(G) × located§(G),

142 6.10. DEDEKIND CUTS STRUCTURE

boundedLower§(G) B (Σ@ : Q)@ < G,

boundedUpper§(G) B (ΣA : Q)G < A,

closedLower§(G) B (Π@, @′ : Q) (@ < @′) × (@′ < G) → @ < G,

closedUpper§(G) B (ΠA, A ′ : Q) (A ′ < A) × (G < A ′) → G < A,

openLower§(G) B (Π@ : Q)@ < G → (Σ@′ : Q) (@ < @′) × (@′ < G),

openUpper§(G) B (ΠA : Q)G < A → (ΣA ′ : Q) (A ′ < A) × (G < A ′),

transitive§(G) B (Π@, A : Q) (@ < G) × (G < A) → (@ < A),

located§(G) B (Π@, A : Q) (@ < A) → (@ < G) + (G < A) = locator(G).

In this section we investigate when G = (!,*) has the property isCut(G), and when it has

the data isCut§(G). First, note that we cannot expect all Dedekind cuts to come equipped with

that data.

Lemma 6.10.1. Suppose given a choice (ΠG : R) locator(G) of locator for each G : R. Then we

can de�ne a strongly non-constant function 5 : R→ 2 in the sense that there exist reals G,~ : R

with 5 (G) ≠ 5 (~).

Proof. Given a locator for G : R, we can output true or false depending on whether the locator

return the left or the right summand for 0 < 1, as follows.

5 (G) =


true if locatesRight(0 <G 1)

false if locatesLe�(0 <G 1) .

The map thus constructed must give a di�erent answer for the real numbers 0 and 1. �

Since any strongly non-constant map from the reals to the Booleans gives rise to a dis-

continuous map on the reals, we have violated the continuity principle that every map on the

reals is continuous. Following Ishihara [55], we can derive WLPO from it.

Lemma 6.10.2. If there exists a strongly non-constant function R→ 2, then WLPO holds.

6.10. DEDEKIND CUTS STRUCTURE 143

Proof. Since WLPO is a proposition, we may assume to have 5 : R → 2 and G,~ : R with

5 (G) ≠ 5 (~). Let % : N→ DHProp be a decidable predicate.

We start by setting up a decision procedure. We de�ne two sequences 0, 1 : N → R with

5 (08) = ff and 5 (18) = tt for each 8 , and so that 0 and 1 converge to the same real ; .

Without loss of generality, assume 5 (G) = ff and 5 (~) = tt, and set:

00 B G 10 B ~

0=+1 B


0=+1=

2 if 5
(
0=+1=

2

)
= ff

0= otherwise
1=+1 B


0=+1=

2 if 5
(
0=+1=

2

)
= tt

1= otherwise

In words, with 0= and 1= de�ned, we decide the next point by considering 5 evaluated at

the midpoint 0=+1=2 , and correspondingly updating one of the points. The sequences converge

to the same point ; . Without loss of generality, we have 5 (0=) = 5 (;) = ff and 5 (1=) = tt for

all = : N.

We may now decide ¬(∃= : N)% (=). We �rst de�ne a sequence 2 : N→ R as follows. For

a given = : N, we decide if there is any 8 < = for which % (8) holds, and if so, we set 2= = 18 for

the least such 8 . Otherwise, we set 2= = ; .

The sequence 2 converges, giving a limit< : R. Consider 5 (<).

If 5 (<) = ff, then ¬(∃= : N)% (=), since if there did exist = with % (=), then< = 18 for some

8 ≤ =, so that 5 (<) = 5 (18) = tt.

If 5 (<) = tt, then ¬¬(∃= : N)% (=), since if (∀= : N)¬% (=) then< = ; and so 5 (<) = ff. �

The following key theorem explains the relationships between being a Dedekind cut, hav-

ing the Dedekind data isCut§(G), and equipping a real with a locator.

Theorem 6.10.3. For a pair G = (!,*) of predicates on the rationals we have the following:

1. isCut§(G) → isCut(G),

2.

isCut§(G)

⇒ isCut(G),

3. isCut(G) × locator(G) → isCut§(G),

144 6.10. DEDEKIND CUTS STRUCTURE

4. isCut(G) × ‖locator(G)‖ ⇒ isCauchyReal(G), and

5.

isCut§(G)

⇒ isCauchyReal(G).

The third item tells us that for a given Dedekind real G , in order to obtain the structures

that make up isCut§(G), we only require locator(G).

Proof. We show the �rst item by considering all property/structure-pairs above.

boundedLower§(G) → boundedLower(G) follows by applying the truncation map | · | of

De�nition 2.4.3, and similarly for boundedUpper.

closedLower§(G) → closedLower(G) is trivial since, following De�nition 2.4.5, their de�-

nitions work out to the same thing: we do not need to make any changes to make closedLower§

structural.

openLower§(G) → openLower(G) by a pointwise truncation: let @ : Q be arbitrary and

assume @ < G , then we get (Σ@′ : Q) (@ < @′)× (@′ < G), and hence (∃@′ : Q) (@ < @′)∧ (@′ < G).

Again following De�nition 2.4.5, transitive(G) and transitive§(G) are de�ned equally.

locator(G) → located(G) again by a pointwise truncation.

The second item follows using the elimination rule for propositional truncations since

isCut(G) is a proposition.

For the third item, it remains to construct bounds, and to construct openLower§(G) and

openUpper§(G). The former is Lemma 6.6.1. The latter follows from the Archimedean struc-

ture of Lemma 6.7.3 and the fact that we have locators for rationals, as in Lemma 6.3.1.

The fourth item follows from Theorem 6.9.7.

The �fth item follows by combining the second and the fourth. �

Remark 6.10.4. Indeed, as already touched upon in Remark 6.6.4, the above means that,

rather than only equipping locators to our a real number G , we may as well equip the

full structure isCut§(G), and our work with locators would still go through. This would

give the possibility to choose more e�cient algorithms to compute with. The point of the

above theorem is that just having a locator already su�ces.

6.11. NOTES 145

Theorem 6.10.5. For an arbitrary pair G = (!,*) of predicates on the rationals it is not provable

that isCut(G) implies

isCut§(G)

.
Proof. By Theorem 6.10.3,

isCut§(G)

 implies that G is a Cauchy real. However, in general

the Cauchy reals and the Dedekind reals do not coincide [68]. �

6.11 Notes

We have introduced the term locator to mean the structure that is the focus of this chapter,

and have introduced a basic theory of locators. The fact that the results about locators have

equivalents in terms of intensional representations of reals suggests that we are not doing

anything new. This is desirable: we merely introduced a particular representation that seems

suitable for computation.

Whereas inequalities such as @ < G are undecidable, we can decide what the output of a

locator is: we simply evaluate a locator on rationals @ < A and observe what output value

we get in the sense of Lemma 6.4.6, and this decidability is exploited in our development.

Sections 6.4 and 6.5 give the central techniques.

In order to construct locators for algebraic operations, we �rst characterized those opera-

tions in terms of < in Lemma 6.7.1. This lemma shows in detail a claim left as an exercise in

The Univalent Foundations Program [91, Theorem 11.2.14]. We are also led to consider cer-

tain strengthenings of the �eld structure, such as the Archimedean structure in Lemma 6.7.3,

strong cotransitivity in Lemma 6.7.4 and Remark 6.7.5, and a structural characterization of

algebraic operations in terms of < in Remark 6.7.5. These structural characterizations of �eld

structure are new to our knowledge. They allow us to upgrade mathematical arguments to

computational techniques.

Sections 6.8 and 6.9 then establish that locators are simply an alternative representation of

rational Cauchy sequences—again desirable as it shows that we are not doing anything fun-

damentally new. The results can be interpreted as explaining what the di�erence between the

Cauchy and Dedekind reals is: namely, Cauchy reals are those that arise during computation.

Finally, in Section 6.10 we explain why the particular property of a Dedekind cut being

146 6.11. NOTES

located was strengthened into structure: the other properties are automatically also strength-

ened into structure. This again shows that, in principle, all we need to compute with real

numbers is a locator.

Chapter 7

SOME CONSTRUCTIVE ANALYSIS WITH

LOCATORS

We show some ways of using locators in an existing theory of constructive analysis on a

pre-de�ned set of reals. This means that our work does not depend on other results being

developed in terms of some chosen representation of real numbers: locators can be added

after the fact.

The central notion is that of functions on the reals that lift to locators, discussed in Sec-

tion 7.1, which is neither weaker nor stronger than continuity. We compute locators for in-

tegrals in Section 7.2. We discuss how locators can help computing roots of functions in Sec-

tion 7.3.

As in Chapter 6, we work with an arbitrary but �xed type of reals R, namely any Cauchy

complete Archimedean �eld in the sense of Chapter 4.

7.1 Preliminaries

What are the functions on the reals that allow us to compute? When such a function 5 : R→ R

is applied to an input real number G : R that we can compute with, then we should be able

to compute with the output 5 (G). This can be formalized in terms of locators in the following

straightforward way, which we use as an abstract notion of computation.

De�nition 7.1.1. A function 5 : R → R lifts to locators if it comes equipped with a method

147

148 7.1. PRELIMINARIES

for constructing a locator for 5 (G) from a locator for G . This means that 5 lifts to locators if it

is equipped with an element of the type

(ΠG : R) locator(G) → locator(5 (G)) .

Another way to say this is that 5 lifts to locators i� we can �nd the top edge in the diagram

RL RL

R R

pr1 ◦ pr1

5

where RL B (ΣG : R) locator(G) is the type of real numbers equipped with locators.

“Lifting to locators” itself is structure.

Remark 7.1.2. If the reals are de�ned intensionally, for example as the collection of all

Cauchy sequences without quotienting, then every function on them is de�ned completely

by its behavior on those intensional reals. However, in our case, given only the lifting

structure RL → RL, we cannot recover the function 5 : R → R, because we do not have

a locator for every G : R.

In other words, well-behaved maps are speci�ed by two pieces of data, namely a func-

tion 5 : R → R representing the extensional value of the function, and a map RL → RL

that tells us how to compute.

Example 7.1.3. The exponential function exp(G) = ∑∞
:=0

G:

:! of Examples 4.4.8 and 6.8.3 lifts

to locators, for example using our construction of locators for limits as in Lemma 6.8.1.

In order to start developing analysis, we de�ne some notions of continuity.

De�nition 7.1.4. A function 5 : R→ R is continuous at G : R if

(∀Y : Q+) (∃X : Q+) (∀~ : R) |G − ~ | < X ⇒ |5 (G) − 5 (~) | < Y.

5 is pointwise continuous if it is continuous at all G : R.

De�nition 7.1.5. A modulus of uniform continuity for 5 on [0, 1], with 0, 1 : R, is a map

l : Q+ → Q+ with:

(∀G,~ ∈ [0, 1]) |G − ~ | < l (Y) ⇒ |5 (G) − 5 (~) | < Y.

7.1. PRELIMINARIES 149

Example 7.1.6 (Continuity of exp). For any 0, 1, there exists a modulus of uniform continuity

for exp on [0, 1]: after all, if |G − ~ | < Y
exp(1+max(0,0,1))) then we have |exp(G) − exp(~) | < Y. The

existence of a modulus of uniform continuity then follows since we know that there exists a

rational � : Q+ such that � < 1
exp(1+max(0,0,1)) . If 0 and 1 have locators, for instance when

they are rationals, then we can �nd a modulus of uniform continuity for exp on that interval

by computing such a positive lower bound �. This reasoning applies to various functions for

which real error bounds can be expressed. This notion of continuity on a subset is made precise

later by De�nition 8.1.7.

From a constructive viewpoint in which computation and continuity align, it would be

desirable if some form of continuity of 5 : R → R would imply that it lifts to locators. Alas,

this is not the case, not even for constant functions.

Lemma 7.1.7. If it holds that all constant functions lift to locators, then every G : R comes

equipped with a locator.

Using Lemmas 6.10.1 and 6.10.2, this then yields the constructive taboo WLPO.

Proof. For G : R, let 5 : R → R be the constant map at G , and note that 5 is continuous, so

that by assumption it lifts to locators. Since the rational number 0 has a locator, 5 (0) = G has

a locator. �

The converse direction, that lifting to locators would imply continuity, also fails dramati-

cally.

Lemma 7.1.8. Assuming PEM, we can de�ne a discontinuous map 5 : R → R that lifts to

locators.

Proof. We can use PEM to de�ne a discontinuous function, which automatically lifts to locators

by applying Lemma 6.1.3. �

It may be the case that the structure of lifting to locators can be used to strengthen certain

properties of continuity into structures. For example, does every function that lifts to locators

150 7.2. INTEGRALS

and is pointwise continuous come equipped with the structure

(ΠG : R) (ΠY : Q+) (ΣX : Q+) (∀~ : R) |G − ~ | < X ⇒ |5 (G) − 5 (~) | < Y

of structural pointwise continuity at every G : R? We leave this as an open question.

For the above reasons, the theorems in this chapter and the next assume continuity and

a structure of lifting to locators: the former to make the constructive analysis work, and the

latter to compute.

7.2 Integrals

We can compute de�nite integrals of uniformly continuous functions in the following way.

Theorem 7.2.1. Suppose 5 : R → R has a modulus of uniform continuity on [0, 1], and 0 and

1 are real numbers with locators. Suppose that 5 lifts to locators. Then
∫ 1

0
5 (G) dG has a locator.

Proof. For uniformly continuous functions, the integral
∫ 1

0
5 (G) dG can be computed as the

limit

lim=→∞
1 − 0
=

=−1∑
:=0

5

(
0 + : · 1 − 0

=

)
.

Now every value
1 − 0
=

=−1∑
:=0

5

(
0 + : · 1 − 0

=

)
.

in the sequence comes equipped with a locator using Lemmas 6.3.1 and 6.7.6, and using the

fact that 0 and 1 have locators and 5 lifts to locators. From the modulus of uniform continuity

of 5 , and the computation of a rational � with 1 − 0 ≤ � using Lemmas 6.7.6 and 6.6.1 we

can compute a modulus of Cauchy convergence of the sequence. Hence the limit has a locator

using Lemma 6.8.1. �

Combining this with the calculation of signed-digit representations of reals with locators

in Theorem 6.9.5, the above means we can generate the digit sequence of certain integrals.

Through the construction of close bounds in Lemma 6.6.3, we can in principle verify the value

of integrals up to arbitrary precision.

7.3. INTERMEDIATE VALUE THEOREMS 151

Remark 7.2.2. Integrals, as elements of R, can be de�ned given only the existence of a

modulus of uniform continuity. To get a locator, we use the modulus of uniform continuity

to �nd a modulus of Cauchy convergence.

Example 7.2.3. The integral
∫ 8

0 sin(G + exp(G)) dG has a locator (where sin is de�ned, and

shown to lift to locators, in a way similar to exp). This integral is often incorrectly approxi-

mated by computer algebra systems. Mahboubi, Melquiond, and Sibut-Pinote [73, Section 6.1]

have formally veri�ed approximations of this integral, and in principle our work gives an al-

ternative method to do so. However, our constructions are not e�cient enough to do so in

practice, and we give some possible remedies in the conclusions in Chapter 10.

7.3 Intermediate value theorems

We may often compute locators of real numbers simply by analysing the proof of existing

theorems in constructive analysis. The following construction of the root of a function is an

example of us being able to construct locators simply by following the proof in the literature.

Theorem 7.3.1. Suppose 5 is pointwise continuous on the interval [0, 1] and 5 (0) < 0 < 5 (1)

with 0, 1 : R. Then for every Y : Q+ we can �nd G : R with |5 (G) | < Y. If 5 lifts to locators, and 0

and 1 are equipped with locators, then G is equipped with a locator.

Proof. We de�ne sequences 2, 3, I,F : N→ R as in Frank [45]:

I0 = 0 2= = (I= +F=)/2 I=+1 = 2= − 3= (1 − 0)/2=+1

F0 = 1 3= = max
(
0,min

(
1
2 +

5 (2=)
Y

, 1
))

F=+1 = F= − 3= (1 − 0)/2=+1

with G de�ned as the limit of 2 : N → R, which converges since I,F : N → R are monotone

sequences with I= ≤ 2= ≤ F= and I= −F= = (1 − 0)/2= . The fact that |5 (G) | < Y can be shown

as in Frank [45]. Because 5 lifts to locators, and 0 and 1 have a locator, all 2= have locators.

For a modulus of Cauchy convergence, Lemma 6.7.6 gives a locator for 1 − 0 so that we can

use Lemma 6.6.1 to compute a rational � with |I= −F= | ≤ �/2= . So by Lemma 6.8.1, G has a

locator. �

152 7.3. INTERMEDIATE VALUE THEOREMS

We will now work towards an intermediate value theorem in which the locators help us

with the computation of the root itself, avoiding any choice principles. We stated this inter-

mediate value theorem and its proof informally in the introduction to Chapter 6.

De�nition 7.3.2. A function 5 : R→ R is locally nonconstant if for all G < ~ and C : R, there

exists I : R with G < I < ~ and 5 (I) # C , recalling that (5 (I) # C) = (5 (I) > C) ∨ (5 (I) < C).

Example 7.3.3. Every strictly monotone function is locally nonconstant, but not every locally

nonconstant function is strictly monotone.

Lemma 7.3.4. Suppose 5 is a pointwise continuous function, and G , ~ and C are real numbers

with locators with G < ~. Further suppose that 5 is locally nonconstant, and lifts to locators. Then

we can �nd A : Q with G < A < ~ and 5 (A) # C .

Proof. Since 5 is locally nonconstant, there exist I : R and Y : Q+ with |5 (I) − C | > Y. Since 5

is continuous at I, there exists @ : Q with |5 (@) − C | > Y/2. Since Q+ and Q are denumerable,

we can �nd A : Q such that there exists [: Q+ with |5 (A) − C | > [. In particular A satis�es

|5 (A) − C | > 0, that is, 5 (A) # C . �

The above result can be thought of as saying that if 5 is a pointwise continuous function

that lifts to locators, then the property of local nonconstancy implies a certain structure of local

nonconstancy: for given reals with locators G < ~ and C , we do not just get the existence of a

real I, but we can explicitly choose a point I where 5 is apart from C .

Exact intermediate value theorems based on local nonconstancy usually assume dependent

choice, see e.g. Bridges and Richman [28, Chapter 3, Theorem 2.5] or Troelstra and van Dalen

[92, Chapter 6, Theorem 1.5]. The following result holds in the absence of such choice princi-

ples. It can perhaps be compared to developments in which the real numbers are represented

directly as Cauchy sequences [86, 87, 51] or with Taylor [90]. Note, however, that

1. we assume local nonconstancy rather than monotonicity, and that

2. we use the property of local nonconstancy to compute roots, rather than assuming this

as structure.

7.4. NOTES 153

Theorem 7.3.5. Suppose 5 is a pointwise continuous function, and 0 < 1 are real numbers with

locators. Further suppose that 5 is locally nonconstant, and lifts to locators, with 5 (0) ≤ 0 ≤ 5 (1).

Then we can �nd a root of 5 , which comes equipped with a locator.

Proof. We de�ne sequences 0, 1 : N→ R with 0= < 0=+1 < 1=+1 < 1= , with 5 (0=) ≤ 0 ≤ 5 (1=),

with 1= − 0= ≤ (1 − 0)
(2

3
)= , and such that all 0= and 1= have locators. Set 00 = 0, 10 = 1.

Suppose 0= and 1= are de�ned, and use Lemma 7.3.4 to �nd @= with 20=+1=
3 < @= <

0=+21=
3 and

5 (@=) # 0.

• If 5 (@=) > 0, then set 0=+1 B 0= and 1=+1 B @= .

• If 5 (@=) < 0, then set 0=+1 B @= and 1=+1 B 1= .

For a modulus of Cauchy convergence, we can compute a locator for 1 − 0 and from this we

can compute a rational � with |1= − 0= | ≤ �
(2

3
)= . The sequences converge to a number G . For

any Y, we have |5 (G) | ≤ Y, hence 5 (G) = 0. �

Remark 7.3.6. Since we only appealed to Lemma 7.3.4 with C = 0, that is, since we were

only interested in points where 5 is apart from 0, Theorem 7.3.5 may be strengthened by

only requiring that 5 is locally nonzero.

Example 7.3.7. The function exp is strictly increasing, and hence locally nonconstant. So if

~ > 0 has a locator, then exp(G) = ~ has a solution G with a locator.

7.4 Notes

Many proofs in this chapter have intentionally been written as similar as possible to originals

from constructive and traditional mathematics. The presence of the locators is not to make

the constructive analysis work; rather, it is to make the computation work. In this sense, we

have made the computation work without a conceptual burden of intensional representations.

The new notion of lifting to locators grew out of a naive desire to have locators for the

output of a function whenever we have a locator for the input. We have left the following

154 7.4. NOTES

open question: given that 5 : R → R lifts to locators, do we obtain a certain structure of

continuity from a property of continuity?

We have not spent much time �nding an alternative notion of “functions that compute”

with a closer relationship to continuity, and this could be the topic of further research. Such

a notion could perhaps allow for more satisfying formulations of the theorems in Sections 7.2

and 7.3.

Theorem 7.3.5 is an improvement on existing exact intermediate value theorems [86, 90]

since it assumes the property of local nonconstancy to compute roots.

Chapter 8

METRIC SPACES

Uniqueness of limits, a basic result of metric spaces, crucially makes use of the property that

d (G,~) = 0⇒ G = ~. When the points of the space are equipped with further non-unique data,

such as when real numbers are equipped with locators, this property is no longer satis�ed, so

that we obtain a pseudometric space, and some results such as uniqueness of limits have to be

rephrased to conclude d (G,~) = 0 instead of G = ~. Spaces in which zero distance does not

imply equality have also been considered in Bourbaki [27, Chapter IX].

Remark 8.0.1. Pseudometric spaces are distinct from the more general premetric spaces

from Section 4.5.

We study both pseudometric and metric spaces, and will work towards solutions of dif-

ferential equations in Section 8.4, with the reals equipped with locators, and the functions

involved lifting them, so that we can compute a solution of di�erential equations that gives us

discrete data.

We start by de�ning (pseudo)metric spaces and giving their basic theory, including con-

vergence and uniform continuity, in Section 8.1. Then we consider Lipschitz continuous en-

domaps on a (pseudo)metric space, and the construction of their �xpoints, in Section 8.3. We

construct a particular endomap in Section 8.4 that computes Picard iterations for a di�eren-

tial equation, on a pseudometric space of uniformly continuous maps [0, 1] → [2, 3] that lift

to locators. In this way, we compute solutions for di�erential equations as limits of certain

sequences. Because this solution lifts to locators, we can compute the solutions of such di�er-

ential equations and produce, for instance, signed-digit representations.

155

156 8.1. BASIC DEFINITIONS IN PSEUDOMETRIC SPACES

The majority of this chapter does not contain substantially new proofs. Instead, the ma-

jority of the proofs have been developed as they have been in existing literature. This may

mislead some readers to conclude that nothing new has been added. However, the statements

of the theorems have been changed. For instance, the solution of di�erential equations in

Theorem 8.4.7 is a function that lifts to locators in an appropriate sense, while the proof is es-

sentially a traditional Picard iteration. In this way, the traditional proof techniques can be used

to give discrete data out of solutions to di�erential equations, such as digit approximations at

certain inputs.

We emphasize, as we did in Chapters 6 and 7, that the purpose of the work is to show

how to extract discrete information from real analysis in UTT, as opposed to arguing which

system is most suited to such computation. There are three main di�erences with traditional

mathematics:

1. the use of type theory rather than set theory,

2. the heavy use of moduli of uniform continuity for reasons of constructivity, and

3. the use of locators on top of a pre-supplied development with real numbers rather than

computing solely with reals by representations.

Throughout this chapter, we �x a set of realsR, namely any Cauchy complete Archimedean

�eld in the sense of Chapter 4. We have the setR≥0 of nonnegative reals,R+ is the set of positive

reals, and we identify their elements with their underlying element of R.

8.1 Basic de�nitions in pseudometric spaces

The basic de�nitions of metric spaces are inspired by Bishop and Bridges [20].

De�nition 8.1.1. For a set - , a metric is a map d : - × - → R≥0 satisfying, for G,~, I : - :

1. d (G, G) = 0, and

2. d (G,~) = d (~, G), and

8.1. BASIC DEFINITIONS IN PSEUDOMETRIC SPACES 157

3. d (G, I) ≤ d (G,~) + d (~, I), and

4. d (G,~) = 0⇒ G = ~.

A pseudometric is a map d : - × - → R≥0 that only satis�es conditions 1–3.

Remark 8.1.2. The �rst condition is equivalent to G = ~ ⇒ d (G,~) = 0.

The real numbers are an important example of a metric space.

Lemma 8.1.3. The Euclidean distance d (G,~) = |G − ~ | is a metric on R.

Example 8.1.4. Of particular interest is the collection of elements of uniformly continuous

functions [0, 1] → [2, 3] equipped with the structure of lifting to locators. We discuss this in

more detail in Section 8.2.

Whenever we have a (pseudo)metric on a set - , we canonically set the premetric ∼ to be,

for G,~ : - and Y : Q+:

G ∼Y ~ B d (G,~) < Y.

The notions of Cauchy approximation, convergence to a limit, and Cauchy completeness are

thus inherited from the premetric as in Section 4.5. In Section 8.4, we compute solutions of

di�erential equations as limits of Cauchy sequences.

Lemma 8.1.5. In a pseudometric space, if a sequence G has points G∞ and ~∞ as limits, then

d (G∞, ~∞) = 0. Hence, in metric spaces, limits are unique.

Proof. First, because in pseudometric spaces the premetric is transitive and symmetric in the

expected way, we have (∀Y : Q+)G∞ ∼Y ~∞. Hence we have d (G∞, ~∞) ≤ 0, and so in metric

spaces we get G∞ = ~∞. �

The lack of uniqueness of limits in pseudometric spaces means that, from existence of lim-

its, we do not obtain a map that computes limits. So we require Cauchy complete pseudometric

spaces to have such a map directly, and we do not have an equivalent of Corollary 4.4.6 for

pseudometric spaces.

158 8.1. BASIC DEFINITIONS IN PSEUDOMETRIC SPACES

Additionally, theorems that compute certain limits in pseudometric spaces have a struc-

ture as their conclusion, rather than a proposition. This means that, generally speaking, such

theorems need stronger assumptions than their equivalents for metric spaces.

De�nition 8.1.6. A pseudometric space (-, d) is Cauchy complete when it has a lim function

which, given a sequence with Cauchy modulus, computes a limit of it. In other words, (-, d)

is Cauchy complete when from a sequence equipped with a modulus we can obtain a limit.

In our constructive setting, there is no known general notion of continuity of maps be-

tween metric spaces that makes 1/G continuous on the reals apart from 0 and is closed under

composition [85]. We avoid this issue by working with uniformly continuous functions on �-

nite intervals of real numbers, where uniform continuity is de�ned in terms of the premetric.

We de�ne this simply by generalizing De�nition 7.1.5 to pseudometric spaces.

De�nition 8.1.7. For premetric spaces (-,∼) and (.,∼), a modulus of uniform continuity of

a map 5 : - → . is an assignment l : Q+ → Q+ such that

(∀Y : Q+) (∀G,~ : -)G ∼l (Y) ~ ⇒ 5 (G) ∼Y 5 (~).

For pseudometric spaces (-, d) and (., f), this condition states

(∀Y : Q+) (∀G,~ : -)d (G,~) < l (Y) ⇒ f (5 (G), 5 (~)) < Y.

And in particular for the Euclidean distance of Lemma 8.1.3 this coincides with De�nition 7.1.5.

As usual, the identity map has a modulus of uniform continuity (namelyl (Y) = Y), and we

can compose uniformly continuous maps in the sense that if 5 : - → . has modulus l and

6 : . → / has k , then 6 ◦ 5 has modulus l ◦k . Note we use the reverse composition for the

modulus.

Uniformly continuous functions preserve Cauchy sequences in the following sense.

Lemma 8.1.8. Let (-, d) and (., f) be pseudometric spaces. If 5 : - → . has modulus of

uniform continuityl , and a sequence G in- is Cauchy with modulus" , then _=.5 (G=) is Cauchy

with modulus" ◦ l .

8.2. FUNCTION SPACES 159

Proof. Let Y : Q+ be arbitrary, and let <,= ≥ " (l (Y)). Because " is a modulus of Cauchy

convergence for G , we have d (G<, G=) < l (Y) and hence by the uniform continuity of 5 , we

have f (5 (G<), 5 (G=)) < Y. �

De�nition 8.1.9. A map 5 : - → . between pseudometric spaces (-, d) and (., f) preserves

limits if whenever G∞ is a limit of G : N → - , we also have that 5 (G∞) is a limit of _=.5 (G=).

Notice that this limit is not required to be the limit given by the limit operator obtained from

Cauchy completeness.

Lemma 8.1.10. If 5 : - → . between two pseudometric spaces (-, d) and (., f) has modulus

of uniform continuity l then it preserves limits.

Proof. Let G∞ be a limit of the sequence G . We show that 5 (G∞) is a limit of _=.5 (G=). Let

Y > 0, then we need to �nd # : N such that whenever = ≥ # we have f (5 (G=), 5 (G∞)) < Y.

From the fact that G∞ is a limit of G , there exists # : N such that whenever = ≥ # , we have

d (G=, G∞) < l (Y), and so by uniform continuity of 5 we also have f (5 (G=), 5 (G∞)) < Y. �

We will use the above theory of (pseudo)metric spaces to compute solutions of di�erential

equations.

8.2 Function spaces

In this section we develop the pseudometric space in which we compute the solution of a given

di�erential equation. Loosely speaking, this is a space of functions from a closed interval to a

closed interval, equipped with modulus of uniform continuity, and with the structure of lifting

to locators.

First, by reading a closed interval [0, 1] as the Σ-type of elements G : R satisfying0 ≤ G ≤ 1,

we can make sense of maps [0, 1] → [2, 3]. Then the metric on closed intervals [0, 1] is

inherited from R as d ((G, `), (~, a)) B |G − ~ |, and by identifying elements of [0, 1] with their

underlying element of R we can simply write |G − ~ | for the distance between two elements

G,~ : [0, 1].

160 8.2. FUNCTION SPACES

De�nition 8.2.1. For elements 0 < 1 and 2 < 3 in R, we de�ne the type* [0, 1] [2, 3] of maps

[0, 1] → [2, 3] equipped with moduli of uniform convergence as

(Σ5 : [0, 1] → [2, 3])

(Σl : Q+ → Q+) (∀Y : Q+) (∀G,~ : [0, 1]) |G − ~ | < l (Y) ⇒ |5 (G) − 5 (~) | < Y.

We identify elements of* [0, 1] [2, 3] with their underlying map [0, 1] → [2, 3].

Lemma 8.2.2. For reals 0 < 1, we can calculate the supremum of a function 5 : [0, 1] → R with

modulus of uniform continuity l as the limit of the sequence

G B _=.max
(
5 (0) , 5

(
0 + 1 − 0

= + 1

)
, . . . , 5 (1)

)
which has modulus of Cauchy convergence

" (Y) B 1 − 0
l (Y) .

Proof. The function " is a modulus of the sequence because the maxima are taken over val-

ues that do not deviate too much. More precisely, if <,= ≥ " (Y), and without loss of gen-

erality < ≤ =, then for every 8 between 0 and < there exists 9 between 0 and = such that��8 1−0
<+1 − 9

1−0
=+1

�� < l (Y) and hence
���5 (

0 + 8 1−0
<+1

)
− 5

(
0 + 9 1−0

=+1

)��� < Y, so that |G< − G= | < Y.

We can show that the limit ; of the sequence G is an upper bound of 5 by �rst showing that

; is an upper bound of the sequence itself. Then the fact that it is a limit of the sequence can

be used to show that it is a minimal upper bound. �

Lemma 8.2.3. For elements 0 < 1 and 2 < 3 in R, the type * [0, 1] [2, 3] is a pseudometric

space, with the distance d (5 , 6) de�ned as the supremum of the pointwise Euclidean distance

|5 (G) − 6(G) |, computed as in Lemma 8.2.2.

Proof. Conditions 1 and 2 of De�nition 8.1.1 are shown algebraically.

For the third condition: if G is the point in the interval [0, 1] for which |5 (G) − ℎ(G) | is

maximized, then we have |5 (G) − ℎ(G) | ≤ |5 (G) − 6(G) | + |6(G) − ℎ(G) |. But by de�nition we

have |5 (G) − 6(G) | ≤ d (5 , 6) and |6(G) − ℎ(G) | ≤ d (6, ℎ) so that indeed d (5 , ℎ) ≤ d (5 , 6) +

d (6, ℎ). �

8.2. FUNCTION SPACES 161

What does it mean for a function on a closed interval to lift to locators? First, since we

identify elements of closed intervals with their underlying element of R, a locator for G : [0, 1]

also gives, for every pair of ordered rationals @ < A in Q, one of @ < G or G < A . In particular,

those rationals do not need to somehow be contained in the interval [0, 1].

De�nition 8.2.4. With 0, 1, 2, 3 : R and 0 < 1, 2 < 3 , a function 5 : [0, 1] → [2, 3] lifts to

locators if it comes equipped with a method for constructing a locator for 5 (G) from a locator

for G . This means that 5 lifts to locators if it is equipped with an element of the type

(ΠG : [0, 1]) locator(G) → locator(5 (G)) .

Another way to say this is that 5 lifts to locators i� we can �nd the top edge in the diagram

[0, 1]L [2, 3]L

[0, 1] [2, 3]

pr1 ◦ pr1

5

where [0, 1]L B (ΣG : [0, 1]) locator(G) is the type of real numbers in the interval [0, 1]

equipped with locators.

Remark 8.2.5. As was the case for De�nition 7.1.1, the notion of lifting to locators is struc-

ture rather than property, and we cannot recover the function 5 from a map [0, 1]L →

[2, 3]L. The reason for this is that this only gives the values of 5 for those reals that can

be equipped with a locator, but as we saw in Theorem 6.10.3, these are only Cauchy reals.

Lemma 8.2.6. For any pseudometric space (-, d) and any map c : . → - , the map f (~, I) B

d (c (~), c (I)) is a pseudometric on . .

De�nition 8.2.7. For elements 0 < 1 and 2 < 3 inR, we de�ne the type*![0, 1] [2, 3] of maps

[0, 1] → [2, 3] equipped with moduli of uniform convergence, and additionally equipped with

the structure of lifting to locators. This may be formalized as the type

(Σ5 : [0, 1] → [2, 3])

((Σl : Q+ → Q+) (∀Y : Q+) (∀G,~ : [0, 1]) |G − ~ | < l (Y) ⇒ |5 (G) − 5 (~) | < Y)

× ((ΠG : [0, 1]) locator(G) → locator(5 (G))) .

162 8.2. FUNCTION SPACES

Put di�erently, the type *![0, 1] [2, 3] consists of triples (5 , l, !) consisting of a function 5 :

[0, 1] → [2, 3] with modulus of uniform continuityl , and the structure ! of lifting to locators.

We identify elements of*![0, 1] [2, 3] with their underlying map [0, 1] → [2, 3].

Corollary 8.2.8. The type *![0, 1] [2, 3] of maps [0, 1] → [2, 3] with modulus of uniform

continuity, and the structure of lifting to locators, is a pseudometric space, with distance computed

as on* [0, 1] [2, 3].

We have the pseudometric spaces* [0, 1] [2, 3] and*![0, 1] [2, 3]. While these are not met-

ric spaces, they are almost metric spaces in the sense that if two functions 5 , 6 : [0, 1] → [2, 3]

have zero distance in these spaces, then those functions, as opposed to elements of the pseudo-

metric space, are identical. The original elements of* [0, 1] [2, 3], and similarly*![0, 1] [2, 3],

may be di�erent because they come equipped with di�erent moduli of uniform continuity.

Lemma 8.2.9. Let (5 , l, !) and (6, b, ") be elements of *![0, 1] [2, 3], and suppose they have

distance 0, i.e. are pseudo-equal. Then 5 = 6.

Proof. If 5 and 6 have distance 0, then the supremum of their pointwise distances is 0, and

hence |5 (G) − 6(G) | = 0 at every point G . This makes 5 and 6 pointwise identical, and so by

function extensionality identical as functions. �

In summary, we have the following types:

1. the type [0, 1] → [2, 3] of arbitrary functions on reals whose inputs and outputs are

bounded, on which we do not have any (pseudo)metric,

2. the type * [0, 1] [2, 3] of such functions equipped with modulus of uniform continuity,

on which we have a pseudometric, and

3. the type *![0, 1] [2, 3] of such uniformly continuous functions additionally equipped

with the structure of lifting to locators, which is not used for computing distances.

There are projection maps going up this list, which takes two elements with distance 0 in

* [0, 1] [2, 3] into identical elements of [0, 1] → [2, 3].

8.3. BANACH FIXED POINT THEOREM 163

Lemma 8.2.10. For reals 0 < 1 and 2 < 3 , the pseudometric space *![0, 1] [2, 3] is Cauchy

complete.

Proof. Let 58 : [0, 1] → [2, 3], for 8 : N, be elements of a Cauchy sequence of functions with

corresponding moduli of uniform continuity l8 : Q+ → Q+. Since the sequence is Cauchy,

it is Cauchy pointwise, so that we can compute the underlying function 6 of the limit on the

reals pointwise. This limit function 6 is uniformly continuous: for a given Y, we pick # : N

such that d (5# , 6) ≤ Y/3 and set l (Y) B l# (Y/3). The function 6 lifts to locators because if a

sequence of reals comes equipped with locators for each element, then its limit can be assigned

a locator, as in Lemma 6.8.1. �

8.3 Banach �xed point theorem

We will compute solutions to di�erential equations as �xpoints of a certain Lipschitz continu-

ous endomap on a function space. In the Section 8.1, we discussed that in pseudometric spaces,

limits are not unique, and hence our theorems will often conclude a structure rather than a

property. For us, this means that, when developing precise statements of �xpoints of Lipschitz

endomaps, we need to pay attention to when we have certain data, and when we merely know

it to exist, as well as when continuous data provided by real numbers su�ces, versus when

we need to have the discrete data of rationals.

The development of the Banach �xed point theorem and the Picard-Lindelöf theorem in

Section 8.4 is based on Royden and Fitzpatrick [83].

De�nition 8.3.1. Given two pseudometric spaces (-, d) and (., f), and a map 5 : - → . , a

Lipschitz constant for 5 is a number 2 : R such that

(∀G,~ : -)f (5 (G), 5 (~)) ≤ 2d (G,~).

Lemma 8.3.2. Let (-, d) and (., f) be pseudometric spaces, and 5 : - → . have a rational

Lipschitz constant 2 : Q+. Then l (Y) = Y/2 is a modulus of uniform continuity for 5 .

Corollary 8.3.3. Let (-, d) and (., f) be pseudometric spaces, and 5 : - → . have a real

164 8.3. BANACH FIXED POINT THEOREM

Lipschitz constant 2 : R+. Then there exists a modulus of uniform continuity for 5 .

Proof. There exists A : Q with 2 < A , and so A is a rational Lipschitz constant for 5 . �

Lemma 8.3.4. Let (-, d) be a pseudometric space, and) : - → - an endomap with Lipschitz

constant 2 : R. If 2 < 1 then a pseudo-�xed point of) is pseudo-unique, that is, if d () (G), G) = 0

then for any ~ : - with d () (~), ~) = 0 we have d (G,~) = 0.

Proof. Suppose d () (G), G) = 0 and d () (~), ~) = 0. Then

d (G,~) ≤ d (G,) (G)) + d () (G),) (~)) + d () (~), ~) = 2d (G,~).

If d (G,~) > 0 then this implies d (G,~) < d (G,~), a contradiction. This argument shows that

d (G,~) ≤ 0, hence d (G,~) = 0. �

Corollary 8.3.5. Let (-, d) be a metric space, and) : - → - an endomap with Lipschitz

constant 2 : R. If 2 < 1, then the type of �xed points of) is a proposition.

Proof. By Lemma 2.6.20, it su�ces to prove that any two �xed points of) are equal. If G

and ~ are �xed points of) , that is) (G) = G and) (~) = ~, then in particular d () (G), G) =

d () (~), ~) = 0, and so by Lemma 8.3.4 we get d (G,~) = 0, so G = ~. �

Remark 8.3.6. In fact, in the above corollary it su�ces to know that there exists a Lipschitz

constant for 5 , as we are now showing a proposition, in contrast with Lemma 8.3.4.

For the remainder of this section, �x a pseudometric space (-, d) with a point G0 : - , and

an endomap) : - → - . We aim to show that if) is Lipschitz, then we have a modulus of

Cauchy convergence for the sequence _=.)= (G0). To phrase this, we de�ne a logarithm-like

function log2 : Q+ → N.

Lemma 8.3.7. For 2 : Q with 0 < 2 < 1 we can de�ne log2 : Q+ → N satisfying, for any @ : Q+,

that

2 log2 (@) < @.

8.3. BANACH FIXED POINT THEOREM 165

Proof. Find 3 : N with 1
3
≤ @, and take 0, 1 : N coprime such that 2 = 0

1
, noting that 0 > 0

because 2 > 0. Since 2 < 1 we have 1 = 0 + : with : ≥ 1. We aim to �nd = = log2 (@) such that(0

0 + :

)=
<

1
3
,

or equivalently

30= < (0 + :)= .

By the binomial theorem, this is satis�ed when

30= < 0= + := + =:0=−1,

or equivalently,

0 < 0=−1(0 + =: − 30) + :=,

which certainly holds when we set = = log2 (@) B 30. �

Lemma 8.3.8. Suppose) : - → - has rational Lipschitz constant 0 < 2 < 1. Suppose we have

a rational � : Q with d () (G0), G0) ≤ � .

The sequence _=.)= (G0) is Cauchy with modulus

" (Y) B log2

(
Y (1 − 2)
�

)
.

Proof. By induction we can show that for : : N

d (G:+1, G:) ≤ 2:d (G1, G0) ≤ �2: .

Hence, if< > : , then, using the triangle inequality and the geometric sum formula,

d (G<, G:) ≤
<−1∑
8=:

d (G8+1, G8) ≤
<−1∑
8=:

�28 ≤ �2
: − 2<
1 − 2 .

Since 0 < 2 < 1,

d (G<, G:) ≤
�2:

1 − 2 ,

which is strictly bounded from above by Y when

: ≥ log2

(
Y (1 − 2)
�

)
. �

166 8.3. BANACH FIXED POINT THEOREM

Remark 8.3.9. Rather than the condition d () (G0), G0) ≤ � , we normally assume more

generally that the space (-, d) itself has a bound, namely a number � so that

(∀G,~ : -)d (G,~) ≤ �.

Remark 8.3.10. We use the stronger assumption that the Lipschitz constant 2 is a rational

because Cauchy moduli are phrased in terms of rationals. In the more general case that

we have a real Lipschitz constant 2 : R with 0 < 2 < 1, we know that (∃@ : Q)2 < @ < 1,

and hence we get the existence of a Cauchy modulus. Similarly, if we have a real bound

� : R of the space (-, d), we get the existence of a Cauchy modulus.

As we will be dealing with real numbers equipped with locators in the next section,

we may also assume the bound of- and Lipschitz constant of) to be a real with a locator,

rather than the stronger requirement of them being rational numbers: after all, if we have

a real with a locator, we can use Lemma 6.7.3 to compute appropriate rationals so that

Lemma 8.3.8 applies.

In conclusion:

Theorem 8.3.11. Let (-, d) be a pseudo-metric space with a point G0. Suppose - is Cauchy

complete and bounded by � : Q. Let) : - → - be an endomap with a rational Lipschitz

constant 0 < 2 < 1.

Then) has a pseudo-unique pseudo-�xed point, i.e. we have a point G with d () (G), G) = 0,

and for any ~ : - with d () (~), ~) = 0 we have d (G,~) = 0.

Proof. Lemma 8.3.8 gives us a modulus for the sequence _=.)= (G0), so that by Cauchy com-

pleteness we can construct a limit G∞. By Lemma 8.3.2,) is uniformly continuous, and hence

preserves limits, so that) (G∞) is a limit of _=.)=+1(G0). Now d () (G∞), G∞) = 0 because they

are limits of sequences which di�er only by some o�set. �

In the next section, we will use the above theorem to compute solutions of di�erential

equations, where the functions involved lifts to locators, so that we get discrete data out.

8.4. PICARD-LINDELÖF 167

8.4 Picard-Lindelöf

We will consider di�erential equations speci�ed by a map6 : [G0−0, G0+0]×[~0−1,~0+1] → R

that takes an element of a product space. So we now give the pseudometric of such product

spaces. After de�ning when 6 lifts to locators, we are ready to use the previous sections to

compute a solution to di�erential equations in Theorem 8.4.7.

De�nition 8.4.1. If (-1, d1), . . . , (-=, d=) are pseudometric spaces, then the product
∏
8 -8 =

-1 × · · · × -= is given the pseudometric

d ((G1, . . . , G=), (~1, . . . , ~=)) B
=∑
8=1

d8 (G8, ~8).

Additionally, if all d8 are metrics, then so is d .

Proof. We can show conditions 1–3 of De�nition 8.1.1 for d when they do for all d8 using basic

algebra. If all d8 satisfy condition 4, then we can show it for d using the fact that if a �nite sum

of nonnegative reals is 0, then all the summands must be 0. �

Remark 8.4.2. This means that R2 gets assigned the taxicab metric on R2, rather than the

Euclidean metric. This is just a matter of convenience.

Lemma 8.4.3. Let (-8, d8) and (.8, f8) be pseudometric spaces, with 8 between 1 and =. Given

58 : -8 → .8 for 8 ∈ {1, . . . , =} with respective moduli of uniform continuity l8 , the map 51× · · · ×

5= :
∏
8 -8 →

∏
8 .8 is uniformly continuous with modulus

l (Y) B min8∈{1,...,=} l8 (Y/=).

Proof. LetG8, G′8 : -8 for 8 between 1 and= be the components of two elements of the input space,

and assume
∑=
8=1 d8 (G8, G′8) < min8∈{1,...,=} l8 (Y/=). In particular, this yields d8 (G8, G′8) < l8 (Y/=)

for 8 between 1 and =, and so f8 (58 (G8), 58 (G′8)) < Y/=, and hence
∑=
8=1 f8 (58 (G8), 58 (G′8)) < Y, as

required. �

Lemma 8.4.4. The diagonal maps- →∏=
8=1- are uniformly continuous with modulusl (Y) B

Y/=.

168 8.4. PICARD-LINDELÖF

Proof. If G, G′ : - with d (G, G′) < Y/=, then
∑=
8=1 d (G, G′) < Y. �

Corollary 8.4.5. Let (-, d), (., f) and (/, g) be pseudometric spaces. If 5 : - → . is uniformly

continuous with modulus l and 6 : - × . → / is uniformly continuous with modulus k , then

ℎ(G) B 6(G, 5 (G)) is uniformly continuous with modulus b (Y) B min(k (Y)/2, l (k (Y)/2))/2.

Proof. The map ℎ is the composition of a diagonal map - → - × - , composed with id ×5 :

- ×- → - ×. , and �nally 6 : - ×. → / , so that the moduli of uniform continuity compose

in reverse. �

Additionally, since the aim is to calculate a solution to a di�erential equation which lifts

to locators in the sense of De�nition 8.2.4, we need to de�ne what it means for such a 6 to lift

to locators. The following notion su�ces as an abstract notion of computation.

De�nition 8.4.6. With 0, 1, 2, 3 : R and 0 < 1, 2 < 3 , a function 6 : [0, 1] × [2, 3] → R lifts to

locators if it comes equipped with a method for constructing a locator for 6(G,~), given both

a locator for G and a locator for ~. This means that 6 lifts to locators if it is equipped with an

element of the type

(ΠG : [0, 1]) (Π~ : [2, 3]) locator(G) → locator(~) → locator(6(G,~)) .

Another way to say this is that 6 lifts to locators i� we can �nd the top edge ! in the

diagram

[0, 1]L × [2, 3]L RL

[0, 1] × [2, 3] R

pr1 × pr1 ◦ pr1

6

where [0, 1]L B (ΣG : [0, 1]) locator(G) is the type of real numbers in the interval [0, 1]

equipped with locators.

Theorem 8.4.7. Let G0, ~0 : R and 0, 1 : R+ come equipped with locators. Suppose the function

6 : [G0 −0, G0 +0] × [~0 −1,~0 +1] → R has a modulus of uniform continuity, lifts to locators in

the sense of De�nition 8.4.6, and satis�es the following Lipschitz condition: we have a real ! : R+

8.4. PICARD-LINDELÖF 169

equipped with a locator such that for all G : [G0 − 0, G0 + 0] and all ~1, ~2 : [~0 − 1,~0 + 1], we

have

|6(G,~1) − 6(G,~2) | ≤ ! |~1 − ~2 | .

Then we can compute a real ; with a locator, with 0 < ; ≤ 0, such that on [G0 − ;, G0 + ;] we have

a solution for di�erential equation

5 ′(G) = 6(G, 5 (G))

5 (G0) = ~0

in the sense that we can compute a uniformly continuous 5 : [G0 − ;, G0 + ;] → R that lifts to

locators, with for all G : [G0 − ;, G0 + ;]

5 (G) = ~0 +
∫ G

G0

6(G, 5 (G)) dG .

Proof. We �rst compute a number such that |6(G,~) | ≤ for all G : [G0 − 0, G0 + 0] and

~ : [~0−1,~0+1]. We do this by applying the supremum construction of Lemma 8.2.2 pointwise

to every function |6(G, ·) | : [~0 − 1,~0 + 1] → R for each G : [G0 − 0, G0 + 0], noting that

these functions are indeed all uniformly continuous. Then Lemma 8.2.2 can be applied to the

pointwise supremum to obtain .

Conform to Royden and Fitzpatrick [83], we set

; B min(1/ , 1/2!) .

We calculate the solution using Theorem 8.3.11 in the space*![G0−;, G0+;] [~0−1,~0+1].

We can use Lemma 6.6.1 to obtain a rational bound � of this space. The space has a point

given by the constant function at ~0. It remains to construct an endomap on this space with a

rational Lipschitz constant.

To construct the endomap on the space, for a given 5 : *![G0 − ;, G0 + ;] [~0 −1,~0 +1] we

compute the underlying function of) (5) as in Royden and Fitzpatrick [83],

_G.~0 +
∫ G

G0

6(C, 5 (C)) dC,

170 8.5. NOTES

where the integrand is uniformly continuous by Corollary 8.4.5, and lifts to locators, so that

by a version of Theorem 7.2.1, the integral has a locator whenever G does, and so the above

function can be made into an element) (5) of*![G0 − ;, G0 + ;] [~0 − 1,~0 + 1].

The endomap) has a real Lipschitz constant ;!: for arbitrary G we have

|) (5) (G) −) (5 ′) (G) | =
����∫ G

G0

[6(C, 5 (C)) − 6(C, 5 ′(C))] dC
����

≤
∫ G

G0

|6(C, 5 (C)) − 6(C, 5 ′(C)) | dC

≤
∫ G

G0

!d (5 , 5 ′) dC

≤ |G − G0 | !d (5 , 5 ′)

≤ ;!d (5 , 5 ′),

so that we get d () (5),) (5 ′)) ≤ ;!d (5 , 5 ′). Note that ;! has a locator. By de�nition of ; , we

have ;! ≤ 1/2 < 1, so that by Lemma 6.7.3 we can �nd a rational Lipschitz constant 2 < 1 for

) .

Hence by Theorem 8.3.11,) has a pseudo-unique pseudo-�xpoint with an underlying func-

tion 5 . Since 5 is a pseudo-�xpoint of) , by Lemma 8.2.9 the function) (5) equals 5 , so that

the desired equality holds. �

8.5 Notes

The notion of functions that lift to locators is used as an abstract model of computation. As

discussed in Chapter 7, this notion is neither stronger nor weaker than continuity.

Picard iteration of an old endomap on a new pseudometric space gives a solution of a

di�erential equation that computes, in the sense that when the resulting function is evaluated

on reals with locators, then the output is a real with locator. In this way we can output, for

instance, signed-digit representations of solutions of di�erential equations. The traditional

proof was modi�ed in three ways:

1. it was rephrased from set theory to type theory,

8.5. NOTES 171

2. some assumptions are taken as structure rather than property, such as the data of a

modulus of uniform continuity, and

3. we have assumed that the real numbers G0, ~0, 0, 1 and 2 involved come equipped with

locators, to make the computation work.

The result in Theorem 8.4.7 tells us how we can type-theoretically compute di�erential equa-

tions with a pre-de�ned type of real numbers. This means that if we have certain initial data

and parameters, not only is there a unique solution, but it can also be computed.

We have not found a de�nition of locators for general metric spaces, of which the locators

introduced in Chapter 6 would be a special case. This would be an important future direction

of research.

Another natural possibility to compute in metric spaces is to have the (pseudo)metric take

values in a type RL≥0 of nonnegative reals equipped with locators. We have not investigated

this and leave it as a direction of future research. For us, the assumption that speci�c bounds

and constants are equipped with locators su�ces to compute.

172 8.5. NOTES

Chapter 9

COMPUTATION IN PROOF ASSISTANTS

We brie�y discuss how the mathematical ideas contained in this thesis may be formalized.

9.1 From inference rules to proof assistants

From a valid type-theoretic conclusion Γ ` " : �we can systematically recover the derivation,

namely the tree of inference rules that led to that conclusion, as we hinted to at the end of Sec-

tion 2.2. This reconstruction, known as type checking, is done by various computer programs

known as proof assistants. Most proof assistants do not output the derivation tree directly, but

instead provide information about that tree, such as whether it exists, or, if there is a mistake

in the conclusion, what part of the conclusion is problematic.

Another algorithm implemented in the vast majority of proof assistants is that of nor-

malization, where a given term is simpli�ed by use of judgmental equalities, introduced in

Discussion 2.3.4. This is possible because judgmental equalities have a natural direction: for

example, the computation rule

Γ ` indN(_(G : N).�, 20, _(G : N)._(~ : �).2B, 0) ≡ 20 : � [0/G]

can be read as saying that indN evaluated at input 0 should simplify to the term 20. Note that

the simpli�ed term 20 type-checks because the original term in terms of indN did. There are a

number of strategies for normalization. It is also possible to use hardware acceleration.

The relevance of this software ecosystem for us is that it makes type theory into a pro-

173

174 9.2. LOCATORS

gramming language, with type checking playing the role of compiling, and term normalization

playing the role of program execution. One notable exception to the adequacy of current proof

assistants is given by Brunerie’s proof that c? (S3) = Z/=Z, where = : N is a term that should

normalize to 2: no proof assistant has yet been able to normalize = in realistic memory and

time constraints [30, 4].

Regardless, proof assistants have been implemented that support UTT, including univa-

lence and certain higher-inductive types such as propositional truncation [34, 96]. Such cubi-

cal type theories [32] can, at least in theory, reduce any term = : N to a numeral, so that they

satisfy a canonicity property [54]. This makes UTT into a programming language, allowing

us to compute with mathematical proofs, in a sense rather distinct from Russian construc-

tivism [28]. There exist several libraries of formalized results from UTT [98, 15, 31, 66, 33, 6],

implemented in a variety of proof assistants such as Coq, Agda, Cubical Agda [96], cubicaltt,

Lean and RedPRL. There are also proof assistants that aim to implement a number of type

theories and normalization strategies [14].

Our work deals with real numbers. A Dedekind real, say, can be formalized as a certain

tuple whose main data is speci�ed by functions, namely a predicateQ→ HProp. The canonical

form of such a real does not tell us anything about its actual value, and this is one thing that

can be addressed using our work. For instance, we can compute signed-digit representations

without violating extensionality by formalizing Theorem 6.9.5, which says that locators and

signed-digit representations are interde�nable.

9.2 Locators

In Chapter 6 we developed the theory of locators. To implement locators in a proof assistant,

we need to make a choice about the type R of real numbers and the type Q of rationals.

1. These types of numbers can be de�ned explicitly as in Chapter 4. This will immedi-

ately allow us to compute. However, in this way we �x our choice of R, which reduces

modularity of the implementation.

9.2. LOCATORS 175

2. The types may be introduced as axioms, so that the entire development is conditional on

such a choice being made after the fact, or on the proof assistant being able to compute

despite no explicit construction being used.

3. The entire development in this chapter may be parameterized by these types of num-

bers, so that speci�c constructions as in e.g. Chapter 4 can later be applied. This is the

approach taken by Spitters and van der Weegen [89] and Gilbert [48].

Having somehow obtained appropriate types of numbers and operations on them, locators can

be phrased in terms of them. For instance, in the Coq proof assistant, we may de�ne locators

as:

Definition locator (x : R) :=

forall q r : Q, q < r -> ((i q) < x) + (x < (i r)).

where i is the inclusion of Q into R obtained from Lemma 4.3.3. Using implicit coercions, it may

be possible to avoid using i explicitly.

Having formalized the notion of locators, we can pass around Records consisting of a real

with a locator for it. Another option may be to use the typeclass mechanism via Classes

and Instances, so that locators are constructed implicitly. The latter option allows us to

write theorem statements and proofs that seem even closer to the original ones from plain

constructive mathematics.

The equivalent presentation of locators established by Lemma 6.4.2 allows us to formalize

locators in a perhaps more elementary way. Namely, recalling that DHProp ' 2, we can de�ne

a locator for G : R as a map (Π@, A : Q)@ < A → 2 satisfying certain correctness criteria. If

desired, we can do away with the dependent product in the structural part of the formalization

of locators by replacing our interval @ < A by an arbitrary @ : Q and a positive rational Y : Q+,

so that we may de�ne a locators as:

Record locator (x : R) :=

{ ell : Q -> Q+ -> Bool

; ax1 : forall q : Q, forall e : Q+,

176 9.3. METRIC SPACES

ell q e = true -> i q < x

; ax2 : forall q : Q, forall e : Q+,

ell q e = false -> x < i (q + ' e)

}.

where, as before, i includes the rationals into the reals, and additionally ' includes the positive

rationals into the rationals.

9.3 Metric spaces

The pseudometric space *![0, 1] [2, 3] de�ned in Section 8.2 may be formalized in a proof

assistant such as Coq, for instance as a Record consisting of the underlying function [0, 1] →

[2, 3], a modulus of continuity, and the structure of lifting to locators. The method used to

formalize the notion of a map [0, 1] → [2, 3] may have a great in�uence on the e�ort required

to formalize further results. For instance, we can directly interpret [0, 1] and [2, 3] as Σ-types

following Lemma 2.6.3, and �nd an appropriate programming technique to identify elements

of them with their underlying element of R. We may also follow De�nition 2.6.16 and see it

as a map

(ΠG : R)G ∈ [0, 1] → (Σ~ : R)~ ∈ [2, 3],

which requires a nontrivial de�nition of function composition and other basic notions.

As in the previous section, it may be bene�cial to store the modulus of continuity and

the structure of lifting to locators using typeclasses, so that we can simply pass around the

underlying function without explicitly choosing speci�c moduli of continuity or structures of

lifting to locators.

In order to compute solutions of di�erential equations following Theorem 8.4.7, we can

similarly use a certain Record type whose elements are functions equipped with moduli of

uniform continuity and the structure of lifting to locators, and de�ne the endomap) on that

type. Part of the proof obligation here will be to prove that the underlying function of) (5) is

indeed a function whose output values range between ~0 − 1 and ~0 + 1, that it is uniformly

9.4. HASKELL PROTOTYPE 177

continuous, and that it lifts to locators, as we have sketched in the proof of Theorem 8.4.7.

9.4 Haskell prototype

Having recalled inference rules as introduced in Chapter 2, we discussed how proof assistants

are able to compute with mathematical proofs directly. We have given some initial thoughts

and de�nitions towards a development of the work in this thesis in a proof assistant, which

would allow executing the algorithms contained in the mathematical proofs.

In order to test the feasibility of such an implementation, we have implemented the math-

ematical ideas in Haskell [25]. Although Haskell does not have the expressivity of dependent

type theory, it still gives some idea about feasibility, as proof assistants such as Coq and Agda

can compile dependent type theory down to Haskell, so that a naive Haskell implementation

should be at least as good as a naive Coq or Agda implementation.

The type of reals equipped with locators is represented as the following type RL.

data Location = LocatesLeft | LocatesRight

type RL = Rational -> Rational -> Location

The locator accepts two rationals q and r as input, where it is a requirement that q<r, although

this is not checked by the Haskell code. For a locator l evaluated at q and r, an output value of

LocatesLeft indicates that the real is on the left of r, and an output value of LocatesRight

indicates that the real is on the right of q.

Compared to the de�nition in UTT, we have dropped the data specifying the real itself,

keeping only the locator. This is justi�ed because given only the locator, we can recover the

corresponding subsets of the rationals, and correspondingly phrase when the data of a locator

speci�es a Dedekind cut. Since we have locators, it may be possible to capture the Dedekind

cut axioms in Haskell using Theorem 6.10.3, although our implementation does not include

this.

Having de�ned locators, we can work towards the terminology of Lemma 6.4.2.

locatesLeft :: RL -> Rational -> Rational -> Bool

178 9.4. HASKELL PROTOTYPE

locatesLeft l q r = l q r == LocatesLeft

locatesRight :: RL -> Rational -> Rational -> Bool

locatesRight l q r = l q r == LocatesRight

locatesLeft l q r is true when the real locates to the left of r. That is, if we think of l as

representing a real x, then locatesLeft l q r -> (x < r). However, this property is not

enforced by Haskell.

A naive way to compute lower bounds is to �nd the �rst element in a list of decreasing

integers that locates right:

-- Compute a rational lower bound of x

lowerBound :: RL -> Rational

lowerBound l = fromInteger $ head

[q-1 | q <- [0,-1..]

, locatesRight l (fromInteger (q-1)) (fromInteger q)

]

Many constructions are implemented in various ways. For instance, lower bounds can also

be computed using a method which only tries the negations of powers of two, rather than all

negative integers.

This Haskell implementation shows that the essence of the ideas contained in this thesis

works, in the sense that simple calculations with locators work, including the constructions

in Sections 6.3–6.9. For instance, the locators for −G , max(G,~) and |G | can be constructed as

follows.

-- Construct a locator for -x from a locator for x

mkMinus :: RL -> RL

mkMinus l q r = case l (-r) (-q) of -- Note: if q < r then -r < -q

LocatesLeft -> LocatesRight -- if x < -q then q < -x

LocatesRight -> LocatesLeft -- if -r < x then -x < r

9.4. HASKELL PROTOTYPE 179

-- Construct a locator for max(x, y)

mkMax :: RL -> RL -> RL

mkMax l m q r =

case (l q r, m q r) of

(LocatesLeft, LocatesLeft) -> LocatesLeft -- x < r and y < r

_ -> LocatesRight

-- Locator for |x|

mkAbs :: RL -> RL

mkAbs l = mkMax l (mkMinus l)

A particular shortcoming, which is common for exact real algebra, occurs with deeply

nested algebraic combinations, such as when 2 + (2 + . . . (2 + 2) . . .) is computed by using the

locator for the rational 2 followed by successive construction of locators for addition as in The-

orem 6.7.6: locators constructed in this way are often not usable in practice. The construction

of locators for multiplication is particularly troublesome: computation of a 5-digit signed digit

representation of 2 · (2 · (2 · (2 · 2))) takes 23 seconds on an Intel Core i5-5200U processor.

180 9.4. HASKELL PROTOTYPE

Chapter 10

CLOSING REMARKS

Univalent type theory (UTT) allows to de�ne types of reals whose identity types directly

capture the intended equality of real numbers. We have de�ned the required structure of

real numbers, namely that of a Cauchy complete Archimedean ordered �eld, and carried out

several speci�c constructions of types of numbers, in Chapter 4. Some types of reals can be

conveniently characterized by a universal property, which allowed us to make certain new

relations between such speci�c constructions in Chapter 5.

As a future direction, it should be the case that a uniformly continuous map Q= → R can

be extended to a map R= → R.

Mathematical theorems are proven in UTT by writing terms of a type. As we have discussed

in our mentioning of the inference rules of type theory in Chapter 2, this means that, if we are

only interested in proving theorems, we do not need to concern ourselves with the proof tree,

as this can be recovered from the �nal term. Proof assistants execute this reconstruction in a

process called proof checking, and additionally normalize terms.

The latter process of normalization leads us to computation in type theory: the mathemat-

ical proofs can be seen as algorithms which we can execute. This makes most sense for terms

of discrete types such as the Booleans and disjoint unions since, for instance, the normal form

of functions are _ terms with little interpretability.

Computation with real numbers is well understood in intensional systems such as in a

formalization based on setoids [36, 64, 21, 22]. Computation with real numbers has also been

181

182

studied from a more programming-theoretic point of view, such as in Di Gianantonio [37] and

Escardó [42].

In UTT we are hindered from following the setoidal approach of making observations of

real numbers using operators that violate the equivalence condition, because every term in

type theory respects identity types.

In order to solve this, we have paid attention to the di�erence between property and struc-

ture while de�ning the real numbers and other foundations of constructive analysis. We have

equipped the reals with a natural structure to observe information of real numbers, such as

signed-digit expansions.

The constructions and results remind of computable analysis. But our development is or-

thogonal to computability: even reals that are not computable in some semantics can have

locators, for example in the presence of excluded middle, in which case all reals have loca-

tors. And our abstract notion of computation, given by functions that lift to locators, does not

coincide with continuity, in contrast with computable analysis. Speci�cally, if all continuous

functions automatically lift to locators, we obtain WLPO, and conversely using PEM we can

construct a discontinuous function that lifts to locators, so that lifting to locators is neither

weaker nor stronger than continuity.

We have shown how to �nd Cauchy sequences from our locators, and we can similarly

obtain a sequence of nested intervals for a real with a locator.

Our work allows to obtain signed-digit representations of integrals. These results are based

on backwards error propagation, essentially due to our notion of lifting to locators. The ad-

vantage of this is that we are guaranteed to be able to �nd results. However, forward error

propagation, as in Martin-Dorel and Melquiond [74] and Mahboubi, Melquiond, and Sibut-

Pinote [73], may be more e�cient. It may be possible to combine the naturalness of locators

with forward error propagation by equipping the real numbers involved with bounds as in

Remark 6.6.2. Having shown that we can compute arbitrarily precise approximations to reals

with locators in Lemma 6.6.3, we may as well equip real numbers with an e�cient method for

doing so. Thus, in future work, some of the techniques of previous work on veri�ed compu-

183

tation with exact reals may be developed in our setting as well.

We have shown a new exact intermediate value theorem in Section 7.3, showing that loca-

tors can also be useful in their own right when computation is not the goal, although the root

we construct does come equipped with a locator and hence can be computed.

In Chapters 6–8 we have assumed a Cauchy complete Archimedean ordered �eld R. How-

ever, as we showed in Theorem 6.9.7, the only numbers equipped with locators we encounter

are elements of the Cauchy reals, a type which is not an example of a Cauchy complete Archi-

medean ordered �eld. This means that the requirement of Cauchy completeness is too strong:

we are asking for a larger type of reals than we actually end up using.

We solved ordinary di�erential equations as uniformly continuous functions that lift to

locators. This solution is developed in pseudometric spaces, so that we can equip the solution

with a modulus of uniform continuity and the structure of lifting to locators, rather than this

data merely existing. The proof follows a traditional Picard iteration, showing that the use of

locators is not a burden, and additionally allow to compute.

A possible future direction is to �nd a more general notion of locator that applies to more

general spaces, such as the complex plane, function spaces, or (pseudo)metric spaces. A related

question is that of the appropriate notion of locator for variations of Dedekind reals such as

the extended reals.

Another possible direction of future research is to apply locators to other areas of analysis.

The work lends itself to being formalized in a proof assistant such as Agda or Coq, for

the sake of automatically obtaining algorithms from proofs. In fact, this was included in our

original aims, but it proved to be too ambitious for our time-limited project, although we

did implement a Haskell prototype, discussed in Section 9.4. One particular issue that will

somehow need to be dealt with is our widespread identi�cation of elements of subtypes with

their underlying element of the supertype, such as the identi�cation of rationals with their

embedding in the reals, and in the formalization of maps [0, 1] → [2, 3] of closed intervals.

It would be more than convenient to have a proof-theoretic notion of subtyping that agreed

with the univalent notion described in Section 2.6, justifying this identi�cation.

184

We may worry that the proofs we provided are not su�ciently e�cient for useful calcula-

tions, and we intend to address this important issue in future work. It is also possible that the

chosen de�nition of the real numbers, as in Section 9.2, may impact computational e�ciency,

despite us actually being interested in the discrete data obtained from the locators rather than

the underlying reals.

Index

Symbols

N, 13

Q, 76

Q+, 76

RC, 80

RD, 90

RE, 100

RH, 86

RL, 148

Z, 75

C' , 82

C. , 103

U, 14

U8 , 14

P, 47

-/', 55

CS-hom, 84

DHProp, 33

LPO, 57

PEM, 56

HProp, 29

WEM, 57

WLPO, 57

ap, 26

isCut§, 142

efq, 10

eq, 84

locatesRight, 125

locatesLe�, 125

id, 11

im, 34

indN, 19–20

ind=, 25–26

ind-+. , 24

inl, 17

inr, 17

isContr, 39

isCut, 91, 141

isHProp, 29

isSet, 38

185

186 INDEX

lim=→∞, 79

lim, 84

log2 , 164

max, 72

min, 72

rat, 84

rec0, 10

rec-+. , 10

refl, 18

sq, 30

sub-CS-hom, 104

succ, 13

0, 21

1, 21

=, 18–19

D =�? E , 87

≡, 20

Π, 15–16

+, 17

Σ, 18

×, 28

∧, 32

∨, 32

#, 70

∀, 32

∃, 32

⇒, 32

⇔, 32

¬, 32

∈, 47

≤, 62

· , 73

≠, 70

∼, 81

>, 31

⊥, 31

‖·‖, 30–31

|·|, 30

★, 21

A

antisymmetric, 62

apartness relation, 70

Archimedean, 77

axiom of choice, 58

B

binary relation, 55

bounded, 89

C

Cauchy approximation, 82

Cauchy complete, 79

center of contraction, 39

constructive �eld, 70

continuous, 148

contractible, 39

convex body, 112

cotransitive, 62

countable choice, 58

INDEX 187

D

decidable, 33

dependent identi�cation, 87

dependent type theory, 7

disjoint, 90

E

embedding, 47

equivalence class, 55

F

function extensionality, 37

I

interval object, 115

irre�exive, 62

iteration property, 112

J

judgmental equality, 20

L

lattice, 72

lifting to locators, 147, 161, 168

limit, 78, 82, 83

limited principle of omniscience, 57

Lipschitz constant, 163

locally nonconstant, 152

located, 90

locator, 120

M

metric, 156

modulus of Cauchy convergence, 82

modulus of Cauchy convergence, 78

modulus of uniform continuity, 148, 158

N

naive independent function extensionality,

38

O

ordered �eld, 73

P

partial order, 62

pointwise continuous, 148

predicate, 35

premetric, 81

preorder, 62

preserving limits, 159

proposition, 29

pseudometric, 157

Q

quotient type, 55

R

re�exive, 62

rounded, 90

S

set, 38

strict partial order, 70

subset, 47

188 INDEX

subtype, 47

symmetric, 62

T

transitive, 62, 90

truncation, 30

type family, 15

U

univalent type theory, 7

UTT, 7

W

weak limited principle of omniscience, 57

Bibliography

[1] B. Ahrens, C. Kapulkin, and M. Shulman. “Univalent categories and the Rezk comple-

tion”. In: Mathematical Structures in Computer Science 25.5 (Jan. 2015), pp. 1010–1039.

issn: 1469-8072. doi: 10.1017/s0960129514000486.

[2] B. Ahrens, P. Capriotti, and R. Spadotti. “Non-wellfounded trees in Homotopy Type

Theory”. In: ArXiv e-prints (Apr. 2015). arXiv: 1504.02949 [cs.LO].

[3] T. Altenkirch, N. A. Danielsson, and N. Kraus. “Partiality, Revisited - The Partiality

Monad as a Quotient Inductive-Inductive Type”. In: Foundations of Software Science

and Computation Structures - 20th International Conference, FOSSACS 2017, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Upp-

sala, Sweden, April 22-29, 2017, Proceedings. 2017, pp. 534–549. doi: 10.1007/978-3-

662-54458-7_31.

[4] C. Angiuli and R. Harper. “Meaning explanations at higher dimension”. In: Indaga-

tiones Mathematicae 29.1 (2018), pp. 135–149. issn: 0019-3577. doi: 10 . 1016 / j .

indag.2017.07.010.

[5] C. Angiuli, K. Hou, and R. Harper. “Computational Higher Type Theory III: Univalent

Universes and Exact Equality”. In: CoRR abs/1712.01800 (2017). arXiv: 1712.01800.

[6] C. Angiuli et al. “The RedPRL Proof Assistant (Invited Paper)”. In: Proceedings of the

13th International Workshop on Logical Frameworks and Meta-Languages: Theory and

Practice, LFMTP@FSCD 2018, Oxford, UK, 7th July 2018. 2018, pp. 1–10. doi: 10.4204/

EPTCS.274.1.

189

https://doi.org/10.1017/s0960129514000486
https://arxiv.org/abs/1504.02949
https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1016/j.indag.2017.07.010
https://doi.org/10.1016/j.indag.2017.07.010
https://arxiv.org/abs/1712.01800
https://doi.org/10.4204/EPTCS.274.1
https://doi.org/10.4204/EPTCS.274.1

190 BIBLIOGRAPHY

[7] R. Atkey, N. Ghani, and P. Johann. “A relationally parametric model of dependent

type theory”. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. 2014,

pp. 503–516. doi: 10.1145/2535838.2535852.

[8] S. Awodey, J. Frey, and S. Speight. “Impredicative Encodings of (Higher) Inductive

Types”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science. LICS ’18. Oxford, United Kingdom: ACM, 2018, pp. 76–85. isbn: 978-1-4503-

5583-4. doi: 10.1145/3209108.3209130.

[9] S. Awodey, N. Gambino, and K. Sojakova. “Homotopy-initial algebras in type theory”.

In: ArXiv e-prints (Apr. 2015). arXiv: 1504.05531 [math.LO].

[10] S. Awodey, N. Gambino, and K. Sojakova. “Inductive Types in Homotopy Type The-

ory”. In: Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium on. June

2012, pp. 95–104. doi: 10.1109/LICS.2012.21.

[11] S. Awodey and M. A. Warren. “Homotopy theoretic models of identity types”. In:

Math. Proc. Cambridge Philos. Soc. 146.1 (2009), pp. 45–55. issn: 0305-0041. doi: 10.

1017/S0305004108001783. arXiv: 0709.0248.

[12] A. Bauer and other contributors. A formalization of the Dedekind reals in Coq. Ac-

cessed July 2019. url: https://github.com/andrejbauer/dedekind-reals.

[13] A. Bauer and P. Taylor. “The Dedekind reals in abstract Stone duality”. In: Math.

Struct. Comput. Sci. 19.4 (2009), pp. 757–838. doi: 10.1017/S0960129509007695.

[14] A. Bauer et al. “Design and Implementation of the Andromeda Proof Assistant”. In:

CoRR abs/1802.06217 (2018). arXiv: 1802.06217.

[15] A. Bauer et al. “The HoTT library: a formalization of homotopy type theory in Coq”.

In: Proceedings of the 6th ACM SIGPLAN Conference on Certi�ed Programs and Proofs,

CPP 2017, Paris, France, January 16-17, 2017. 2017, pp. 164–172. doi: 10 . 1145 /

3018610.3018615.

https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3209108.3209130
https://arxiv.org/abs/1504.05531
https://doi.org/10.1109/LICS.2012.21
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://arxiv.org/abs/0709.0248
https://github.com/andrejbauer/dedekind-reals
https://doi.org/10.1017/S0960129509007695
https://arxiv.org/abs/1802.06217
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615

BIBLIOGRAPHY 191

[16] J. Bernardy, P. Jansson, and R. Paterson. “Proofs for free: Parametricity for de-

pendent types”. In: J. Funct. Program. 22.2 (2012), pp. 107–152. doi: 10 . 1017 /

S0956796812000056.

[17] E. Bishop. “A general language”. url: http://www.cs.bham.ac.uk/~mhe/Bishop/

AGeneralLanguage.pdf.

[18] E. Bishop. Foundations of constructive analysis. Vol. 60. McGraw-Hill series in higher

mathematics. New York: McGraw-Hill Book Co., 1967. isbn: 4871877140.

[19] E. Bishop. “How to compile mathematics into Algol”. url: http://www.cs.bham.ac.

uk/~mhe/Bishop/Algol.pdf.

[20] E. Bishop and D. Bridges. Constructive analysis. Berlin New York: Springer-Verlag,

1985. isbn: 978-3-642-64905-9. doi: 10.1007/978-3-642-61667-9.

[21] S. Boldo, C. Lelay, and G. Melquiond. “Coquelicot: A User-Friendly Library of Real

Analysis for Coq”. In: Mathematics in Computer Science 9.1 (2015), pp. 41–62. doi: 10.

1007/s11786-014-0181-1.

[22] S. Boldo, C. Lelay, and G. Melquiond. “Formalization of real analysis: a survey of proof

assistants and libraries”. In: Mathematical Structures in Computer Science 26.7 (2016),

pp. 1196–1233. doi: 10.1017/S0960129514000437.

[23] A. B. Booij. “Extensional constructive real analysis via locators”. In: ArXiv e-prints

(2018). arXiv: 1805.06781 [math.LO].

[24] A. B. Booij et al. “Parametricity, Automorphisms of the Universe, and Excluded Mid-

dle”. In: 22nd International Conference on Types for Proofs and Programs (TYPES 2016).

Ed. by S. Ghilezan, H. Geuvers, and J. Ivetić. Vol. 97. Leibniz International Proceedings

in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2018, 7:1–7:14. isbn: 978-3-95977-065-1. doi: 10.4230/LIPIcs.TYPES.

2016.7.

[25] A. B. Booij. Haskell implementation of reals equipped with locators. Accessed January

2020. url: https://github.com/abooij/haskell-locators.

https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1017/S0956796812000056
http://www.cs.bham.ac.uk/~mhe/Bishop/AGeneralLanguage.pdf
http://www.cs.bham.ac.uk/~mhe/Bishop/AGeneralLanguage.pdf
http://www.cs.bham.ac.uk/~mhe/Bishop/Algol.pdf
http://www.cs.bham.ac.uk/~mhe/Bishop/Algol.pdf
https://doi.org/10.1007/978-3-642-61667-9
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1007/s11786-014-0181-1
https://doi.org/10.1017/S0960129514000437
https://arxiv.org/abs/1805.06781
https://doi.org/10.4230/LIPIcs.TYPES.2016.7
https://doi.org/10.4230/LIPIcs.TYPES.2016.7
https://github.com/abooij/haskell-locators

192 BIBLIOGRAPHY

[26] A. B. Booij. “The HoTT reals coincide with the Escardó-Simpson reals”. In: CoRR

abs/1706.05956 (2017). arXiv: 1706.05956.

[27] N. Bourbaki. Elements of mathematics: General Topology, part 2. Actualités scienti�ques

et industrielles. Berlin: Springer, 1998. isbn: 9783540645634.

[28] D. Bridges and F. Richman. Varieties of Constructive Mathematics. London Mathemati-

cal Society Lecture Notes 97. Cambridge University Press, 1987. isbn: 0521318025.

[29] L. E. Brouwer. “Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?” In: Mathema-

tische Annalen 83 (1921), pp. 201–210. url: http://eudml.org/doc/158869.

[30] G. Brunerie. “On the homotopy groups of spheres in homotopy type theory”. PhD

thesis. Université de Nice, 2016. arXiv: 1606.05916 [math.AT].

[31] G. Brunerie et al. Homotopy Type Theory in Agda. Accessed February 2018. url:

https://github.com/HoTT/HoTT-Agda.

[32] E. Cavallo, A. Mörtberg, and A. W. Swan. “Unifying Cubical Models of Univalent Type

Theory”. In: 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, Jan-

uary 13-16, 2020, Barcelona, Spain. Ed. by M. Fernández and A. Muscholl. Vol. 152.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 14:1–14:17. doi:

10.4230/LIPIcs.CSL.2020.14.

[33] C. Cohen et al. “Cubical Type Theory: A Constructive Interpretation of the Uni-

valence Axiom”. In: FLAP 4.10 (Nov. 2017), pp. 3127–3170. url: http : / /

collegepublications.co.uk/ifcolog/?00019.

[34] T. Coquand, S. Huber, and A. Mörtberg. “On Higher Inductive Types in Cubical Type

Theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-

puter Science. LICS ’18. Oxford, United Kingdom: ACM, 2018, pp. 255–264. isbn: 978-1-

4503-5583-4. doi: 10.1145/3209108.3209197.

[35] T. Coquand and A. Spiwack. “Towards Constructive Homological Algebra in Type

Theory”. In: Towards Mechanized Mathematical Assistants, 14th Symposium, Calcule-

https://arxiv.org/abs/1706.05956
http://eudml.org/doc/158869
https://arxiv.org/abs/1606.05916
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.4230/LIPIcs.CSL.2020.14
http://collegepublications.co.uk/ifcolog/?00019
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1145/3209108.3209197

BIBLIOGRAPHY 193

mus 2007, 6th International Conference, MKM 2007, Hagenberg, Austria, June 27-30,

2007, Proceedings. 2007, pp. 40–54. doi: 10.1007/978-3-540-73086-6_4.

[36] L. Cruz-Filipe. “Constructive Real Analysis: a Type-Theoretical Formalization and Ap-

plications”. PhD thesis. University of Nijmegen, Apr. 2004.

[37] P. Di Gianantonio. “A Functional Approach to Computability on Real Numbers”. PhD

thesis. Universita di Pisa-Genova-Udine, 1993.

[38] M. Escardó. Introduction to Univalent Foundations of Mathematics with Agda: The pow-

erset in the presence of propositional resizing. Accessed October 2019. Oct. 19, 2019.

url: https://www.cs.bham.ac.uk/~mhe/HoTT- UF- in- Agda- Lecture-

Notes/HoTT-UF-Agda.html#powerset-resizing.

[39] M. Escardó. “Categorical axioms for functional real-number computation”. Accessed

April 2020. Nov. 2011. url: https://www.cs.bham.ac.uk/~mhe/.talks/map2011/

parts-1-2-escardo.pdf.

[40] M. H. Escardó. Message to the Univalent Foundations mailing list. https://groups.

google.com/d/msg/univalent- foundations/SA0dzenV1G4/d5iIGdKKNxMJ.

Accessed July 2019. Mar. 2013.

[41] M. H. Escardó. Message to the Univalent Foundations mailing list. https://groups.

google.com/d/msg/homotopytypetheory/-5mLEi_qMTo/GyTkmhIRK1AJ. Accessed

July 2019. Mar. 2014.

[42] M. H. Escardó. “PCF extended with real numbers: a domain-theoretic approach to

higher-order exact real number computation”. PhD thesis. University of Edinburgh,

1997.

[43] M. H. Escardó and A. K. Simpson. “A Universal Characterization of the Closed Eu-

clidean Interval”. In: 16th Annual IEEE Symposium on Logic in Computer Science,

Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. Draft full version at http:

//www.cs.bham.ac.uk/~mhe/papers/interval.pdf, accessed August 2019. 2001,

pp. 115–125. doi: 10.1109/LICS.2001.932488.

https://doi.org/10.1007/978-3-540-73086-6_4
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#powerset-resizing
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#powerset-resizing
https://www.cs.bham.ac.uk/~mhe/.talks/map2011/parts-1-2-escardo.pdf
https://www.cs.bham.ac.uk/~mhe/.talks/map2011/parts-1-2-escardo.pdf
https://groups.google.com/d/msg/univalent-foundations/SA0dzenV1G4/d5iIGdKKNxMJ
https://groups.google.com/d/msg/univalent-foundations/SA0dzenV1G4/d5iIGdKKNxMJ
https://groups.google.com/d/msg/homotopytypetheory/-5mLEi_qMTo/GyTkmhIRK1AJ
https://groups.google.com/d/msg/homotopytypetheory/-5mLEi_qMTo/GyTkmhIRK1AJ
http://www.cs.bham.ac.uk/~mhe/papers/interval.pdf
http://www.cs.bham.ac.uk/~mhe/papers/interval.pdf
https://doi.org/10.1109/LICS.2001.932488

194 BIBLIOGRAPHY

[44] M. H. Escardó and C. Xu. “The Inconsistency of a Brouwerian Continuity Principle

with the Curry-Howard Interpretation”. In: 13th International Conference on Typed

Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland. 2015,

pp. 153–164. doi: 10.4230/LIPIcs.TLCA.2015.153.

[45] M. Frank. “Interpolating Between Choices for the Approximate Intermediate Value

Theorem”. In: ArXiv e-prints (Jan. 2017). arXiv: 1701.02227 [math.LO].

[46] N. Gambino and R. Garner. “The identity type weak factorisation system”. In: Theoret-

ical Computer Science 409.1 (2008), pp. 94–109. issn: 0304-3975. doi: https://doi.

org/10.1016/j.tcs.2008.08.030.

[47] R. Garner. “On the strength of dependent products in the type theory of Martin-Löf”.

In: Annals of Pure and Applied Logic 160.1 (July 2009), pp. 1–12. issn: 0168-0072. doi:

10.1016/j.apal.2008.12.003.

[48] G. Gilbert. “Formalising real numbers in homotopy type theory”. In: Proceedings of the

6th ACM SIGPLAN Conference on Certi�ed Programs and Proofs, CPP 2017, Paris, France,

January 16-17, 2017. 2017, pp. 112–124. doi: 10.1145/3018610.3018614.

[49] J.-Y. Girard. “Interprétation fonctionelle et élimination des coupures de l’arithmétique

d’ordre supérieur”. PhD thesis. Université Paris VII, 1972.

[50] M. Hedberg. “A coherence theorem for Martin-Löf’s type theory”. In: J. Functional

Programming (1998), pp. 4–8.

[51] M. Hendtlass. “The intermediate value theorem in constructive mathematics without

choice”. In: Ann. Pure Appl. Logic 163.8 (2012), pp. 1050–1056. doi: 10.1016/j.apal.

2011.12.026.

[52] M. Hofmann. “Extensional concepts in intensional type theory”. PhD thesis. Univer-

sity of Edinburgh, 1995.

[53] M. Hofmann and T. Streicher. “The groupoid interpretation of type theory”. In:

Twenty-�ve years of constructive type theory (Venice, 1995). Vol. 36. Oxford Logic

Guides. New York: Oxford Univ. Press, 1998, pp. 83–111.

https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://arxiv.org/abs/1701.02227
https://doi.org/https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1016/j.apal.2008.12.003
https://doi.org/10.1145/3018610.3018614
https://doi.org/10.1016/j.apal.2011.12.026
https://doi.org/10.1016/j.apal.2011.12.026

BIBLIOGRAPHY 195

[54] S. Huber. “Canonicity for Cubical Type Theory”. In: J. Autom. Reasoning 63.2 (2019),

pp. 173–210. doi: 10.1007/s10817-018-9469-1.

[55] H. Ishihara. “Sequentially Continuity in Constructive Mathematics”. In: Combinatorics,

Computability and Logic. Ed. by C. S. Calude, M. J. Dinneen, and S. Sburlan. London:

Springer London, 2001, pp. 5–12. isbn: 978-1-4471-0717-0. doi: 10.1007/978- 1-

4471-0717-0_2.

[56] P. T. Johnstone. Sketches of an elephant: a topos theory compendium. Oxford New York:

Oxford University Press, 2002. isbn: 978-0198524960.

[57] T. de Jong. The Scott model of PCF in univalent type theory. 2019. arXiv: 1904.09810

[math.LO].

[58] C. Kapulkin and P. L. Lumsdaine. “The Simplicial Model of Univalent Foundations

(after Voevodsky)”. In: ArXiv e-prints (Nov. 2012). arXiv: 1211.2851 [math.LO].

[59] C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. “Univalence in Simplicial Sets”. In:

ArXiv e-prints (Mar. 2012). arXiv: 1203.2553 [math.AT].

[60] C. Knapp. “Partial functions and recursion in univalent type theoy”. PhD thesis. Uni-

versity of Birmingham, 2018.

[61] N. Kraus. The truncation map |_| : N → ||N| | is nearly invertible. Accessed September

2019. Oct. 28, 2013. url: https://homotopytypetheory.org/2013/10/28/the-

truncation-map-_-%E2%84%95-%E2%80%96%E2%84%95%E2%80%96-is-nearly-

invertible/.

[62] N. Kraus et al. “Generalizations of Hedberg’s Theorem”. In: Typed Lambda Calculi

and Applications. Ed. by M. Hasegawa. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 173–188. isbn: 978-3-642-38946-7.

[63] N. Kraus et al. “Notions of Anonymous Existence in Martin-Löf Type Theory”. In:

Logical Methods in Computer Science 13.1 (2017). doi: 10.23638/LMCS- 13(1:15)

2017.

https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/978-1-4471-0717-0_2
https://doi.org/10.1007/978-1-4471-0717-0_2
https://arxiv.org/abs/1904.09810
https://arxiv.org/abs/1904.09810
https://arxiv.org/abs/1211.2851
https://arxiv.org/abs/1203.2553
https://homotopytypetheory.org/2013/10/28/the-truncation-map-_-%E2%84%95-%E2%80%96%E2%84%95%E2%80%96-is-nearly-invertible/
https://homotopytypetheory.org/2013/10/28/the-truncation-map-_-%E2%84%95-%E2%80%96%E2%84%95%E2%80%96-is-nearly-invertible/
https://homotopytypetheory.org/2013/10/28/the-truncation-map-_-%E2%84%95-%E2%80%96%E2%84%95%E2%80%96-is-nearly-invertible/
https://doi.org/10.23638/LMCS-13(1:15)2017
https://doi.org/10.23638/LMCS-13(1:15)2017

196 BIBLIOGRAPHY

[64] R. Krebbers and B. Spitters. “Type classes for e�cient exact real arithmetic in Coq”. In:

Logical Methods in Computer Science 9.1:1 (2013), pp. 1–27. doi: 10.2168/LMCS-9(1:

01)2013.

[65] J. Lambek and P. Scott. Introduction to Higher Order Categorical Logic. Cambridge

Studies in Advanced Mathematics 7. Cambridge University Press, 1986. isbn:

0521246652.

[66] D. R. Licata and G. Brunerie. “A Cubical Approach to Synthetic Homotopy Theory”.

In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,

Japan, July 6-10, 2015. 2015, pp. 92–103. doi: 10.1109/LICS.2015.19.

[67] D. R. Licata and R. Harper. “Canonicity for 2-dimensional type theory”. In: Proceed-

ings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. 2012,

pp. 337–348. doi: 10.1145/2103656.2103697.

[68] R. S. Lubarsky. “On the Cauchy Completeness of the Constructive Cauchy Reals”. In:

Electr. Notes Theor. Comput. Sci. 167 (2007), pp. 225–254. doi: 10.1016/j.entcs.

2006.09.012.

[69] P. L. Lumsdaine. Strong functional extensionality from weak. Accessed August 2019.

Dec. 19, 2011. url: https://homotopytypetheory.org/2011/12/19/strong-

funext-from-weak/.

[70] P. L. Lumsdaine and M. Shulman. “Semantics of higher inductive types”. In: Mathe-

matical Proceedings of the Cambridge Philosophical Society (June 2019), pp. 1–50. doi:

10.1017/S030500411900015X.

[71] S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathemat-

ics 5. Springer-Verlag, 1971. isbn: 0387900357.

[72] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: a First Introduction to

Topos Theory. Universitext. Springer-Verlag, 1992. isbn: 0387977104.

https://doi.org/10.2168/LMCS-9(1:01)2013
https://doi.org/10.2168/LMCS-9(1:01)2013
https://doi.org/10.1109/LICS.2015.19
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1016/j.entcs.2006.09.012
https://doi.org/10.1016/j.entcs.2006.09.012
https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak/
https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak/
https://doi.org/10.1017/S030500411900015X

BIBLIOGRAPHY 197

[73] A. Mahboubi, G. Melquiond, and T. Sibut-Pinote. “Formally Veri�ed Approximations

of De�nite Integrals”. In: Interactive Theorem Proving–7th International Conference, ITP

2016, Nancy, France, August 22-25, 2016, Proceedings. 2016, pp. 274–289. doi: 10.1007/

978-3-319-43144-4_17.

[74] É. Martin-Dorel and G. Melquiond. “Proving Tight Bounds on Univariate Expressions

with Elementary Functions in Coq”. In: J. Autom. Reasoning 57.3 (2016), pp. 187–217.

doi: 10.1007/s10817-015-9350-4.

[75] P. Martin-Löf. “An intuitionistic theory of types”. In: Twenty-�ve years of construc-

tive type theory (Venice, 1995). Ed. by G. Sambin and J. M. Smith. Vol. 36. Oxford Logic

Guides. Oxford University Press, 1998, pp. 127–172.

[76] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type The-

ory: An Introduction. Oxford University Press, July 1990. isbn: 0198538146.

[77] R. O’Connor. “Incompleteness & Completeness: Formalizing Logic and Analysis in

Type Theory”. PhD thesis. Radboud Universiteit Nijmegen, 2009.

[78] I. Orton and A. M. Pitts. “Axioms for Modelling Cubical Type Theory in a Topos”.

In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 -

September 1, 2016, Marseille, France. 2016, 24:1–24:19. doi: 10.4230/LIPIcs.CSL.

2016.24.

[79] D. Pataraia. “A constructive proof of the �xed-point theorem for dcpo’s”. Unpub-

lished manuscript presented at the 65th Peripatetic Seminar on Sheaves and Logic,

in Aarhus, Denmark, November 1997.

[80] F. Richman. “Real numbers and other completions”. In: Mathematical Logic Quarterly

54.1 (2008), pp. 98–108. issn: 1521-3870. doi: 10.1002/malq.200710024.

[81] E. Rijke. The join construction. 2017. arXiv: 1701.07538 [math.CT].

[82] E. Rijke and B. Spitters. “Sets in homotopy type theory”. In: Mathematical Structures in

Computer Science 25.5 (Jan. 2015), pp. 1172–1202. doi: 10.1017/S0960129514000553.

https://doi.org/10.1007/978-3-319-43144-4_17
https://doi.org/10.1007/978-3-319-43144-4_17
https://doi.org/10.1007/s10817-015-9350-4
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1002/malq.200710024
https://arxiv.org/abs/1701.07538
https://doi.org/10.1017/S0960129514000553

198 BIBLIOGRAPHY

[83] H. L. Royden and P. M. Fitzpatrick. Real analysis. Pearson, 2010. isbn: 978-0-13-

143747-0.

[84] P. Schuster. “Unique existence, approximate solutions, and countable choice”. In:

Theor. Comput. Sci. 305.1-3 (2003), pp. 433–455. doi: 10 . 1016 / S0304 - 3975(02)

00707-7.

[85] P. Schuster. “What is Continuity, Constructively?” In: J. UCS 11.12 (2005), pp. 2076–

2085. doi: 10.3217/jucs-011-12-2076.

[86] P. Schuster and H. Schwichtenberg. “Constructive Solutions of Continuous Equa-

tions”. In: de Gruyter Series in Logic and Its Applications. Ed. by G. Link. Walter de

Gruyter, Jan. 2004. doi: 10.1515/9783110199680.227.

[87] H. Schwichtenberg. “Constructive analysis with witnesses”. Lecture notes. Accessed

November 2019. Jan. 2017. url: http://www.math.lmu.de/~schwicht/seminars/

semws16/constr16.pdf.

[88] K. Sojakova. “Higher Inductive Types as Homotopy-Initial Algebras”. In: ArXiv e-

prints (Feb. 2014). arXiv: 1402.0761 [cs.LO].

[89] B. Spitters and E. van der Weegen. “Type classes for mathematics in type theory”. In:

Mathematical Structures in Computer Science 21.4 (2011), pp. 795–825. doi: 10.1017/

S0960129511000119.

[90] P. Taylor. “A lambda calculus for real analysis”. In: J. Logic & Analysis 2 (2010). Ac-

cessed January 2020. url: http://logicandanalysis.org/index.php/jla/

article/view/63/25.

[91] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. Accessed September 2015. Institute for Advanced Study, 2013. url:

https://homotopytypetheory.org/book.

[92] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, an Introduction.

Vol. 1. Studies in Logic and the Foundations of Mathematics 121. North-Holland, Aug.

1988. isbn: 9780444705068.

https://doi.org/10.1016/S0304-3975(02)00707-7
https://doi.org/10.1016/S0304-3975(02)00707-7
https://doi.org/10.3217/jucs-011-12-2076
https://doi.org/10.1515/9783110199680.227
http://www.math.lmu.de/~schwicht/seminars/semws16/constr16.pdf
http://www.math.lmu.de/~schwicht/seminars/semws16/constr16.pdf
https://arxiv.org/abs/1402.0761
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
http://logicandanalysis.org/index.php/jla/article/view/63/25
http://logicandanalysis.org/index.php/jla/article/view/63/25
https://homotopytypetheory.org/book

BIBLIOGRAPHY 199

[93] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidungs-

problem”. In: Proceedings of the London Mathematical Society. Second Series 42 (1936).

See correction [94]., pp. 230–265.

[94] A. M. Turing. “On computable numbers, with an application to the Entscheidungs-

problem. A correction”. In: Proceedings of the London Mathematical Society. Second Se-

ries 43 (1937). See [93]., pp. 544–546.

[95] B. van den Berg and R. Garner. “Types are weak l-groupoids”. English. In: Proceedings

of the London Mathematical Society 102.2 (Feb. 2011), pp. 370–394. issn: 0024-6115.

doi: 10.1112/plms/pdq026.

[96] A. Vezzosi, A. Mörtberg, and A. Abel. “Cubical agda: a dependently typed program-

ming language with univalence and higher inductive types”. In: Proc. ACM Program.

Lang. 3.ICFP (2019), 87:1–87:29. doi: 10.1145/3341691.

[97] S. Vickers. “The localic compact interval is an Escardó-Simpson interval object”. In:

Math. Log. Q. 63.6 (2017), pp. 614–629. doi: 10.1002/malq.201500090.

[98] V. Voevodsky, B. Ahrens, D. Grayson, et al. UniMath — a computer-checked library of

univalent mathematics. Accessed October 2019. url: https://github.com/UniMath/

UniMath.

[99] E. Wiedmer. “Exaktes Rechnen mit reellen Zahlen und anderen unendlichen Objek-

ten”. PhD thesis. ETH Zurich, 1977.

https://doi.org/10.1112/plms/pdq026
https://doi.org/10.1145/3341691
https://doi.org/10.1002/malq.201500090
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath

	UoB_research_archive_copyright_notice_A4size.pdf
	Booij2020PhD_original_submission.pdf
	Introduction
	Summary of contributions

	Univalent mathematics
	Case study: propositional logic
	Formalizing the theorem statement
	Formalizing the proof

	Proofs versus derivations
	Case study: every natural is either even or odd
	Formalizing the theorem statement
	Formalizing the proof

	Case study: surjective maps, images of maps
	Formalizing the theorem statement
	Formalizing the proof

	Extensionality
	Function extensionality
	Contractibility
	Computation rules for higher-inductive types
	Univalence
	Consequences of extensionality

	Subtypes and embeddings
	Lattice-like structure of HProp
	Quantification over subtypes
	Identifications in subtypes

	Case study: quotient types
	Classical principles
	Notes

	Fixpoints in dcpos
	Dcpos
	Fixpoints
	Notes

	Real numbers
	Algebraic structure of numbers
	Rationals
	Archimedean property
	Cauchy completeness of real numbers
	HoTT book reals
	Dedekind reals
	Notes

	Universal properties of real numbers
	Subsets of the Dedekind reals
	Minimality of the HoTT book reals
	Euclidean reals and interval objects

	Homotopy-initiality of the Euclidean reals
	Interval objects
	Notes

	Locators
	Definition
	Terminology for locators
	Locators for rationals
	The logic of locators
	Bounded search
	Computing bounds
	Locators for algebraic operations
	Locators for limits
	Calculating digits
	Dedekind cuts structure
	Notes

	Some constructive analysis with locators
	Preliminaries
	Integrals
	Intermediate value theorems
	Notes

	Metric spaces
	Basic definitions in pseudometric spaces
	Function spaces
	Banach fixed point theorem
	Picard-Lindelöf
	Notes

	Computation in proof assistants
	From inference rules to proof assistants
	Locators
	Metric spaces
	Haskell prototype

	Closing remarks
	Index
	Bibliography

