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0. Mmduction 

A topos -- even a Grothendieck topos -- need not have any points. There is an 
example due to P. Deli~e in [ 10, IV.7.41. An even simpler example can be con- 
structed as follows. L%t 5 be a complete booiean algebra, considered as a partially 
ordered set t c0d3~ed as a categapy, considered as a site with the canonical topol- 
ogy (a COW of a b E5 is a set of elements whose sup is b), and let lliB be the cate- 
gory of sheaves. The set of subobjects of 1 in Y5 is just 5. A point of 35 (3 cocon- 
tinuous, left exact functor to the category S of sets) takes 1 to 1, subobjects to sub- 
objects and preserves sups. Hence it restricts to a complete boolean homomorphism 
8 + 2 whose kernel is aptiflcipLll maximal ideal generated by the complement of an 
atom. If B has no atoms, there are no points. (Gonversely, each atom of 5 does in- 
duce a point of 95.) 

Since a complete atomic boolean algebra is just (the algebra of subsets of) a set. 
a complete atomless boolean algebra may be thought of as a “set without points” 
and more generally an arbitrary complete boolean algebra as a generalized set. 

You can even talk about generatized topological spaces in this context. A topol- 
ogy on the set X is an exact retract (inctusion has an exact right adjoint) of 2*. 
Done more generally for a complete boolean algebra we arrive at the notion of coma 
plete Heytins algebra. (Conversely, it can be shown that every complete Heytine al- 
gebra arises in this way.) When X is a topolopyical space and Top0 is the category 
of sheaGes on X, the collection of points of Top(X) gives rise to an exact cotriple- 
able functor Top(x) -+ 95, where 5 is the algebra of subsets of X. This is because 
95 is just .Sx, the X-indexed families of sets. 

These considerations have led F.W. Lawvere to make the following conjecture: 
“Every Grothendieck topos has an exact cotripleable functor to a topos 95 for 
some complete boolean algebra 5.” It is this conjecture which we establish here. 

lawvere would add the following to the above abservations: 
“A Grothendieck topos is of the form q5 for some complete booiean algebra 5 

if and only if it satisfies the condition that every epimorphism splits (by [S) and un- 
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published work of Diaconescu). Such toposes are thus a very natural class of exten- 
sions of the category of sets and one is thus led to conjecture that any Crothendieck 
topos has enough boolean-valued points. There is an analogy here with algebraic va- 
rieties which may have no points defined over the ground field but always have 
enough points defined over extension fields of the ground fields. Of course, unlike 
fields, complete boolean algebras are closed with respect to infinite products SQ that 
a “sufficient” set X of points valued in complete boolean algebras B, can be com- 
bined into one “faithful point” valued in a complete Boolean algebra B. Thus the 
conjecture takes the form [given above]. The result is closely related to a Boolean- 
valued completeness theorem for suitable infinitary theories.” 

In connection with the last remark, C. Keyes has recently informed me that a 
new proof of Lawvere’s conjecture can be derived from such a completeness theo- 
rem. 

This conjecture could have been arrived at from an entirely different direction. 
In the spatial case, Van Osdol [ 111 has used the induced exact triple in Top(X) to 
carry over all the standard homological algebra (as in, for example, [3)) to the cate- 
gory of sheaves. The existence of an analogous triple will permit these results to be 
carried over to an arbitrary Grothendieck topos. 

There are two points to observe in this connection. The first is that, since the 
triple will preserve finite products, it HilI extend to any category of finitary alge- 
bras over the topos. If E is the topos and T = (T, Q, p) is an exact (or even finite- 
product preserving) triple, then for any ring object R in A!‘. TR is a ring and qR is a 
ring homomorphism. If M is an R-module, then 7YM is a TR-module which becomes an 
R-module using T$Z to transport the structure. When this is done, M becomes a 
homomorphism of R-modules. 

The second point is that neither B nor the cotripl*able functor is canonical and 
hence neither is the triple. But by the ciual of 13, (5.2 j] the homological properties 
of the triple wilt depend only on the injective class of objects which, in turn, de- 
pends only on the injective class of maps. Adapting the discussion at the bottom of 
p. 3% of [4] to the non-additive case, we see that the injective maps are those 
which are sent to split monos in the underlying category. But regardless of B, a 
morphism in YB is a split mono if and only if it is monomorphism between objects 
of the same support (exercise: use the fact that YB is boolean and that supports 
split j. Since an exact functor preserves support, this means that for any T of the 
type considered, the injective class of maps will be support preserving monomorphisms, 
and hence that any such T’s are ‘nomologically equivaleat. 

CT. Vaisl OsdtSi has been using the tesu’ts cf this paper to show that such things 
as Verdi& assumption [IO, Exp. V] of enough points is not necessary to do homol- 
ogical algebra in a topos. 

I would like to thank A. Joyal for many valuable discussions and thank 
8. Banaschewski and G. GrPtzer f\:r telling me how to embed complete Iieyting alge- 
bras into complete boolean algebras. 
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After this paper w3s written, I received 3 reprint of [7] in which the idea of 3 com- 

plete Hcyting algebra (there called 3 complete Brouwerian lattice) as a generalized 
topological space-without-points is developed at length. Included in that paper are 
severai further references to the same idea. 

1.1. bt &’ be an elementary topos. There are many natural topologies on E, but in 
this p;rper we will be considering primarily two. The first is the canonical topology 
in which the covers are the universally regular epimorphic families (see [ 2, p. 1061 
for the definition). The second, which for want of a better term I wili call the strong 
topology, has as covers all epimurphic families {Ei % E). Of course such a sieve 
is an epimorphic f3mily if, given fc f’: E -9 E’, fei = f’ei for 311 i implies f =f. It fol- 
lows from elementary properties of toposes that such families are stable under pull- 
back and are extremal (i.e. factor through no proper subobject of their common do- 
main). 

1.2. The canonical topology is usually described as the strongest topology for which 
the representable functors are sheaves. The strong topology may be analogously de- 
fined as the strongest topology for which the representable functors are separated 
presheaves. 

It is shown in [2, (A.23)] that in 3 Grothendieck topos the two topologies coin- 
cide. We will investigate below a condition which guarantees that they do coincide. 

1.3. If C is a site, we let rP(C), d(C) and 9(C) denote the categories of presheaves. 
separated preshesves and sheaves, respectively. For an object C E C we will denote 
the corresponding representable functor of P(C) by ( - , c) and the sheaf associated 
to ( - ) c) by e(C). Provided that representable functors are separated (which will 
always be the case), the functor e is faithful, being the composite 

in which the first is full and faithful and the second is (as always) faithful. 

1.4. Theorem. Sucpposr, C is a site for which e,vety cover is un ex tremal epirnorphk 
fami&. Suppostt ah that given nny cover (Ci + C) which can be fatord {Cj + c’ + C) , 
then the dew (ci ? c jpvers some (neces@ly &pe) subobject C” - C . Then 
the strong topolcqy is the canonical one. 

Remark. (? is necessarily unique because the covers are extremal epimorph 

Proof. This amounts to showing that every representable 
i 

unctor is a sheaf in the 
strong topology. Or equivalently that given a cover (Ci i-+ C: i E I) and 1 family 



of maps gi : Ci + C’ SU& that Ci Xc’ Ci r) Ci Xc C’i for all i, i E I, then there is a map 
h : C + C’ such that I$ = gi, Vi E 1 (Ca is necessarily unique because we are supposing 
covers to be epimorphic fati@). This is not the wzy the sheaf condition is norm- 
ally phrased, but it is easily seen to be equivalent, and is the form most convenient 
for the proof. 

Mow consider the famiky of maps {Ci - 
Vjj gi) 

L+ C X c’), which when followed 
by the projection C X d -+ C is a cover of C. Hence by our condition this family 
covers a unique subobject I? )-, C X c’. We wili show that R is the graph of a func- 
tion h : C -+ c’ which can easily be shown to have the desired property. This is equiv- 
alent to showing that the composite R + C X C’ + C is an isomorphism. It is cer- , 

tainly an extremal epimorphism since if it factored through any subabject of C, so 
would every fi. To see that it is a monomorphism, observe that Vi, i & I, 

Thus for any sheaf F we have a commutative diagram 

FC __+ IUE’i -- IIFfCi XC Cj) 

with both lines equalizers, which implies that FR -A FC. 
But both the Yoneda embedding and sheaf reflection preserve finite limits, so 

that if 

is a kernel pair diagram, it remains so when e is applied. Thus e& = eB ’ l But as ob- 
served in II 2, r~ is faithful, hence do = d* c and R + C is a monomorphism. El 

IS. cototlrvy (Joyat). rf 0 cufegwy with pullbacks has the propeHy that evi?qv map 
factors uni@ely us un epimoq~hism fotlowed by a monomorphism and the epimo@~- 
lsnts ure stuble undt~ pt.&a&s, theR they ure regular. 

Roof. Simply take the t&:bology in which coveri are the epimorphisms. The unique- 
ness of the factorization g,:srantees that the epimorphisms are extremai. U 

Rem&. This corollary is rather easy to prove if you assume that coequalizers exist 
but becomes remarkably more delicate without that assumption. 

t .6. Corollary. If’E is an elementary topos in which the subobject lattices of each 
object are complete, then the strong topolom is the same as the canonical one. 



Roof. For then one can satisfy the 
of the images of the Ci. Cl 

Tbpuses with4 t points 

hypothesis of 1.4 by taking 6’ to be the union 
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Of course these lattices are always internally complete but as observed, e.g., in 
[S, (2.7)] W the internal union just will not necessarily work. 

2. Staunch functots 

2.1. Ikf-JRition. Let ii’ and f? be elementary toposes. A functor F : E + E’ is called 
a 10g&al mcrrphlism if it preserves finite limits, finite colimits, Q and exponentiation. 
(Actually t fall owing the work of Christian Juul Mikkelsen, it is unnecessary to sup- 
pose that it preserve the finite colimits.)* A functor F : E + E’ is called strung if it 
preserves epimorphic families. Finally, we shall call a functor F : E -+ E’ staunch if 
it is faithful, strong and logical. 

2.2. Pr~posMon. Fin ewy object E of’ an elementary topos E, the finctor 
E X - : E -+ K/E is a strung kq$xd marphism. it is staunch if and only if in addition 
E has support 1. 

Having support 1 means that the (unique) map E + 1 is an epimorphism. 

bof. The f”!&st part follows directly from (5, (2.3 t )] . Since E X - reflects isomor- 
phistns if and only if E has support 1 12, III (2 .i t )] : the second part follows from: 

2.3. Lamma. Let X und Y be balanced categurie. A functor F : X + Y which pre- 
serves finite, limits attd coiimits is faithfui if and onk” if it reflects isomorphisms 

8alanced is a practically archaic word used to describe categories in which maps 
that are simultaneously mono and epi are isomorphisms. 

Roof. Let F reflect isomorphisms and & g: X + x’ with Ff = Fg. This implies that 
the equalizer off and g becomes an isomorphism, hcr.ce is one, hence f = g. To go 
the other way, let Ffbe an isomorphism. This means that the two maps in the 
kernel pair off are equal, hence f is mow. Similarly iI is epi. II 

2.4. Theorem. Let A be a directed set, and let D : A + Comp Top be a finctor into 
the category of small toposes and staunch morphisms. Then for each Q( E A the tmn- 
sitiun map Da + lim E is a staunch functot. 

* This has been beautifulty simplified in a forthcoming paper of R. Par& 
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Remark. Something of this sort is implicit in the proof [ 5, (3.2 1 1 )] . The only trouble 
is that the part of the proof asserting that T is strong is based on his ofthand assump 
tion that a cc&nit of strong functors is strong. We show by counter-example later 
that this assertion is false. (The correction, including a complete revision of his Sec- 
tion 5.6, is availabie from Freyd.) 

Proof. Let us denote DQr by E, and for a < fl the value of D(at < 6) by Fso : Ea + ED. 
Let E be the direct hmit and F, : EpI + E the canonical map. The argument of [5, 
(3.2 I 1 )I, dependent on the “essentially algebraic” nature of toposes, can be readily 
repeated to show that E is a tows and that the FQ are logical morphisms. That they 
are faithful is completely trivial. The only point at issue is whether or not they are 
strong. This is based on: 

2.5. Lemma. Suppose F : E + E’ is staurrch and f : E. -+ E a map in E which does 
not fad%w through a given subobject El --, E. Then Ff does not fkcmr through 
FE0 -FE. 

Proof. The map f factors through E. if and onIy if im f C E, , if and only if 
fm f‘n El = Im A logical morphism preserves images, so that we want to show 
that Xmffi Et Im f implies that 

F(Imf) n FE, SF(W), 

or, since F preserves finite intersections, that E2 $ E, implies FE, $ FE 1. But since 
monos are regular, there is an equalizer diagram 

with do + d, and, since F is faithfui, Fd, JE: Fd It and hence FE2 $ FE,. 

To continue the tProof of 2.3, let {Ei -*E: i EI}, be an epimorphic f&&y in Ea. 
A map in E whose codomain is F,E is represented by a fl> a and a map f : l? + F& 
in &@. If this is not a monomorphism in Eo, then since Fa is faithful we can repeat the 
above argument with the cokernel pair off to conclude that the map Ffl which f is 
representing is not mono either, Thus a proper subobject of FOE is represented by a 
subobject) evidently proiwr, E’ + Fa4E for some fi 3 Q. Since Fptl is assumed to be 
staunch, jF@pE, -+ Q,E} is a cover in Ea, and hence there is’ some i E 1 such that 
F&&Et -+ FadlE C~OCS not factor through E’. By (2.4), F,JTi + F,,,E does not factor 
through F,pt;=’ M F.,,E for any 7 > p. Hence FaEi + F,$f does not factor through 
F&+F&cl 

The following seems to be the best substitute for [S, (3.21)] available. 

2.7. Theorem. For eve9 smull boolean topos &’ there is a boolean topos 6 in which 
supports split and a staunch functot T : B + 6. 
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Roof. Follow the “proof” offered by Freyd [S] except stick to those A whose sup- 
port is 1. The result will be a B and a staunch T : B + b in which I is projective. Be- 
ing boolean, all its subobjects are summands and are hence projective as well. 17 

By dropping the hypothesis of being boolean we obtain the following theorem, 
originally due to Andre Joyal (unpublished, but with substantiahy the same proof). 

2.8. Theurem. For every small tops B there is a topus 8 in which 1 is projective to- 
gether with o staunch T : B 3 b. 

2.9. Remarks. Mote that I being projective is equivalent to ail its complemented 
subobjects being projective. In the boolean case, of course, this means that ali sub- 
objects of 1 are projective, in which case they can easiiy be seen to also generate. 
(Given E’ - E a proper subobject, split the map from 7 A?@ to its support .) If (and 
only if) it is also complete, then such a category is W3, the category of sheaves for 
the canonical topology on the complete booIe;m algebra B. Needless to say, B = (1, St) 

is the lattice of subobjects of 1. 

Note also that if a topos is complete (and then, evidently, not small), a logical 
functor is strong if and onty if it is cocontinuous. For let E = IIEi. Then {Ei --* E} 
is an cpimorphic family, which implies the same for { TEi + TE}. Furthermore, 

SO that in fact TE = WTEi. If, additionally, E is a Grothendieck topos, then the spe- 
cial adjoint functor imphes that T has a right adjoint R which is obviously a geome- 
tric morphism. Lawvere calis a geometric morphism whose left adjoint is logical a 
local homeomorphism, presumably because, as is easily shown, the geometric mor- 
phism induced by a local homeomorphism between topological spaces does not have 
that property. 

3. IndlWNI functms on sheaf categories 

A sieve {Et + 45’) in a category is called an extremal epimqdic family if no pro- 
per subobject of E factors ail the Et. It is universal if it remains extrenaal when pulled 
back with any E’ 3 E. in an elementary topos every epimorphic family is extremal 
and universal, the first because aII monos are regr\ar and the second because pull- 
backs have right adjoints. In a partiaily ordered set an extrx?mal’@qily B a family 
{bi G b) whose sup IS b. In a Heyting algebra every such family is universal, n@n 
since A has a right adjoint. 

All the categories we consider in this section will have the property that extremal 
epimorphic families are universal, and we consider them as sites with those families 
as covers. We let, for such a category E, ‘SE, 3E and YE denote the catego-ies of 
set-valued presheaves on E (functors API’ + s), separated presheaves and she~es, 
respectively. 
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A functor is called conservativs if it reflects isomorphisms. A functor between 
toposes is conservative if and only if it is faithful. A functor between lattices is con- 
servative if and only if it is mono. 

3.1. ‘Ilmxan. tct F :: E -+ D be cuntimous and exact. 77~ F extends to an exact 
fttnctut F’S : YE + $FD. Fs has u tight adjoint F, : YD -+ FE If F is consewative 
amI C has cmnpkste stibobject IWices, then F5 is also conservaHve. 

Proof. Everything except the last sentence follows from [ 10, Exp. I, 5 A(4)], to- 
gether with [IO, Exp. I11,1.2, I .3,1.6]. To show the last line, it wifs be necessary 
to analyse the proofs of these propositians more carefully. The functot F induces a 
functor SPF : 9D + PE which has a left adjoint F! : 9E + SPD (as weD as a right 
adjoint F!). When E has and F preserves finite limits, so does F! . The continuity of 
F (in the topology) implies (rather easily) that 9F takes sheaves to sheaves, so that 
we have a commutative diagram 

f’ro~~~ which it follows that F$ = ?F,f is left adjoint to Fs [I, Theorem 3, dual). Here, 
of course,, i’ is the associated Aeaf iunctor , well known to be exact. Since all three 
i), F! and I are exact, so is Fg. ‘Rw rub is that ? is not faithful, so we cannot use the 
sart’e argument to show that FS is. 

3.2. Ropition. Wndet the hypotheses uf Themem 3.1, F! IdE is faithful. 

Proof. It is clearly sufficient to show that if R : E”P + S is a sepzated presheaf and 
R” : lP + S is its left Kan extension, then the natural map R + RF is a monomor- 
phism. If D E D, then an element of b is a pair (J x), where f : D + F.& and x E FE. 
Ifi : D + FE, and f2 : D + FE* are maps in E, then &, x1) rclr cf2, x2), provided 
thereisanobjectEEEandmapsgt :E+fQ2:E+E2 andh :D+FEsuchthat 

FEi +-----FE 
c?rl @t --+FE2 

commutes and such that “I IE = x$E. Note that we will often write things like 
x1 IE instead of the cumbersome Rgi(xl) when the functor and morphism are clear. 
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The fact that E has and F preserves finite limits imp&s that this defines an equivai- 
ence relation. The contravariant funztor defined by R takes a pair (x, j’) and a map 
g:D’-*Dto(x,~g).~le~pR *RF takes an element x E RE to (FE, x). In order 
that (FE, xl) - (FE, q), we need a eommutative diagram 

FE 

such that Rgl(xt) = Rg&Q. Since FgI l ?I = Fg2 l h, 11 factors through the equalizer 
of F’& and Fg2. Since F preserves equalizers. h factors through Fg’, where 

F? &* --+~4 e+>E 

is an equalizer. This gives, with g = gl$ =gzg’, the diagram 

FE 

FE 

with x 1 I!? =x#i? But Fg is a spiit, hence extremal epi, and since F is conservative, 
this implies that g is an extremaf epi as well and, since R is a separated presheaf that 
Rg is mono. But R&xl) =&(x2), and hence x1 =x7. Cl & 

3.3. Ropositiun. Under the hypotheses of the theorem, F+Ui+) C 31). 

@f, In other words, we are claiming that if R E 3E, Es left Kan extension 
R E dlk if cfl, x1), (fz, x2) represent two elements of RD, we can represent them 
both with the same map, using 

FE .+-------- 
1 FEl X FE, *FE2 

Thus we can suppose we are given (f, x I), cfi x2) E R”X and an extremal epimorphic 
family {IIt ’ + D : i E I} such that for all i E I, 

The definition of equality means that we have a commutative diagram 
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FE T-- FEi -v FE 
t’r 

such that Rhil(X,) =Rh&2). By replacing Ei by the equaiizer Of hi, and jti2, we 

XIUY, In fact, SUPPOSE tbt hi, = hi2 = hi and that we have a commutative diagram 

6 
D: +-----------------3 D 

FEi 
i w----------+ FE 

such that XI IEj =~2iEi. NOW kt E’ -E be the union 
Clearly we have an extremal epimorphicfif;miiy {Ei 

if f the images of the Ed. 
i b E’) which gets sent to 

an extrernaf epimorphic family {FEi - * N FE? since F is continuous. Next I 

ciaim that D + FE factors through FE’. To see this, consider the pullback diagram 

One easily sees that every Di + D factors through FE’ XE D + D, and then extrem- 
ality implies that the top arrow is an isomorphism. This gives the desired map 
D + FE”. Since xI fE,: =x$Ei for all i, {Ei + E’) is a cover, and R is separated, 
x I IE’ = x 

it 
fl?, which then implies that (f, x1) and v] x2) represent the same ele- 

ment of D. 0 

Now to return to the prmf of Theorem 3.1. What we have shown is that there is 
ti commutative diagram 

1’D 

. 

and that F# is faithful. Thii means that we could have as weif. defined F’ as the com- 
posite 
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each of which is faithful, and hence so is FS. Notice that the associated sheaf functor 
is faithful when restricted to separated presheaves, since such a presheaf is contained 
in its associated sheaf. Fs is then a faithful functor between toposes and, as we noted 
above, this implies that it is conservative. tl 

Note that I;s is a geometric morphism. A geometric morphism whose left adjoint 
is faithful is described by bwvere as “surjective”. It is an easy consequence of Beck’s 
tripleableness criteria (actually the co-CTT, see [9, p. 15 1, excercises,6,7]) that Fs 
is cotripleable if and only if it is conservative if and only if it is faithful. Thus we 
have: 

3.4. &lorolhuy. Lt~t F : E + D be a strong exact faithfit functor, and suppose that 
the sububject lattices of objects of E ate complete. Then F” : 9E + 70 is corrdple- 
able 

4. The main theorem 

4.1. Theomn. Let E be o Grothendieck topus. Tiien there is a complete boolean 
uigebra B und an exact ctztriplezzble functor E --* 5% 

The proof will be divided into two parts. First we shall find such a functor 
E + TH for a complete Heyting algebra H and then use a known theorem of lattice 
theory which provides an embedding H --t B with suitable properties. 

The first question to &tie is when a Grothe+eck topos is of the form TIT. The 
answer seems to be widely known, but I have not been able to find a direct reference 
in print. 

4.2. Ropositirra. A Grothendieck topos E is equivalent to on TH if und only if the 
subobjects uf t are a set of generators of E in which case H is the subobject tat&e 
of 1. If C is a site (with finite limits) in which every object has a cover by subobjects 
of 1, then the subobjects of 1 me a set of generators in Ye. 

R-f. It is shown in [2, (A.22)] that if E is a Grothendieck topos and C is any sub- 
category of E containing z set of generators fox E and closed under finite products 
and subobjects, then E s 3C for the canonical topology on C. Note that by being 
closed under subobjects, C will have complete subobject lattices and the strong to- 
pology is the same as the canonical one. In particular, if the Heyting algebra H of 
subobjects of I contains a set of generators, it certainly satisfies the other condi- 
tions, so that E 2 YH. The converse is a special case of the second sentence of the 
proposition, to whose proof we now turn. Let F n G’ be sheaves such that MXS 
for all S )-* 1. Let C E C, and choose a cover (St + C}, where the Si )-+ I. Then con- 
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sides: the commutative diagram 

whose rows are equalizers. An easy diagram chase shows that FC z GC. Cl 

We leave to the reader the statement of the more general proposition contained 
in the above proof. 

Now let E’ be an arbitrary Crothendieck topos. Let G be an object of E (the sum 
of a set of generators will do). Let C be a small subcategory of E which is closed 
under finite products and sums, subobjects and quotient objects, and exponentiation, 
and which cL)ntains both C and Q, Such a subcategory certainly exists, for you can 
begin with G and Q, repeatedly close up under ail those operations, and take a count- 
able union. Clearly C is a small topos whose objects have complete subotisct lattices. 
This implies, in particular, that the strong topology on C is the canonical bAie. Oh- 
serve also that the object G must have support 1, otherwise its subobjects could not 
generate 1. Hence by 2.2 the functor G X - : C + C/G is staunch, and similarly for 

G PI+1 
XG” -=GX -:C/Gn+C/Gn+‘. 

Here G”+’ + G” is projection on the last n coordinates. Hence if we let D be the 
direct limit of the sequence 

the induced map C + D is competent by 2.4. From 3.4, we see that the induced 
functor ‘%Y + TD is cotripleable, From [2, (A.22)], we infer that E z 3C. 

Pro& An object of I) is a map C + G” for some n, subject to the identification of 
C+G” withC XC+G”+’ . A map C + G* to C” --) Gm consists of a 3-tuple (i, i. f), 
where i and j are integers such that i + n = j + nz and f : C’ X C + Gi X C’ over Gf”“, 
subject to the identification of (i, j, fi with (i + 1, j + 1, G X fi. The map {i, j, fi re- 
presents a mono;morphism in D if and only if f is a monomorphism in C (this de- 
pends on the fact that the transition functors are faithful; see the proof of 2.4 for 
details). In particular, a subobject off : C + Gn is a subobject of C’ X C thought of 
as the object Ci X C + G’ r+n of E/Gi? Let c* )-+ Gi X C. Since the subobjects of G 
generate C, there is a u : S w G and ;a rr~p g : S + G’ X C which does not factor 
*through c’. In C’, Gi+i+n we have thdn diagram 
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and it follows from 2.5 that (u, R) does not factor through GXC’ in D. The structure 
map of S as an object of c;IC1+i+rt is 

which is a monomorphism since its first coordinate is, and hence, as noted above, is 
a monomorphism in D. Thus (u, fR) : S H G1+i+m is a subobject of the terminal ob- 
ject of D, which has a map to G i’l X C that does not factor through ihe subobject 
G X&22 

4.4. Corollary. ENY~ object of D has a cover by subobjects of 1. Hence TD 1~ TH 
jtir Q cum@te Hey ting Orgebta H. 

Proof. What we have shown is that for all D E I), and proper subodject D’ w D, 
thereisans )-, 1 andamaps +D which does not factor through D’. Hence the 
family {Si 3 D} of all maps to D whose domain is a subobject of 1 is an extremal 
epimorphic family. The last sentence follows from 4.2. Cl 

4.5. Corollary. Every Grothendieck topos E has an exact cotripleable functor 
E -* FH j21r some complete Hevting algebra H. 

I am indebted to B. Banaschewslci and C. Gratzer for pointing out the tb!lowiaa. 

4.6. Reposition. Let H be II complete Hey ting algebra Then there is a boolean ulge- 
bra B and an embedding H + B which preserves j?nite infs and csrbitray sups. 

Proof. For details refer to Grgtzer 16, Section lo]. In that section he shows how 
every distributive lattice L has a standard embedding into a boolean algebra B(L). 
He then states (his Lemma 13) that if the complete distributive lattice L has both 
infinite distributivities - of finite infs over ail sups and of finite sups over all infs - 
then this embedding preserves ail sups as well as all infs. But in fact the two parts are 
separate. He actually proves that if finite infs distribute over all sups, then this stan- 
dard embedding preserves all sups, and this is exactly the result we need. 0 



4.7. Codlary. F’r awry complete Heyting ulgebra ii, there is a compkte boolean 
algebra B and nn exact cotripieoble functot %I + FB. 

Proof. tlsc the embedding above follawed by the embedding of B(L) into its com- 
pletion. This gives a faithful functor H -+ B betw een complete categories which pre- 
serves finite limits and epimorphic families, and hence, by 3.4, an exact cotriple- 
able functor YH + iEf_B. Note than an exact tripleable functor is co_CTT (see 191). 

5. Some counter-examples 

In this section we give a few assorted counter-examples. 

5. I. Example to show that 2.4 may fuil if “faithful” is omitted (from both hype- 
thesis md conciusion); that is, if “staunch ” is replaced b>p sttmg and IogikaL Re- 
ferring to the notation used in the proof of 2.4, let A =I be the set of positive in- 
tegers and Ei be the category of sheaves on the open interval (0, l/i) (in the usual 
topology on W). For i < j, the functor Ei + E’ is just restriction to that subinterval 
which of course is an instance of [ 5, (2.3 II )] and therefore strong and logical. tet 
Ei E Ei be the functor represented by the open interval (1 /(i f 2), 1 /f). Then it is 
clear that {Ei + 1) is an epimorphic family (1 is the functor represented by the 
imerval (0,l)) while the inclusion 0 -+ Ei becomes an isomorphism in Ei+z, so that 
FlQ = 0.0n the other hand, 0 + 1 never becomes an isomorphism at any stage 
and hence does not in the limit. 0ne way of looking at this is to observe that the 
two maps 1 3 1 + 1 remain distinct at every step and hence in the limit. Thus 
{O + 1 i is not a cover and the epimorphic family is not preserved. 

Actually the existerce of ah example of this kind is implicit 
but we included it anyway. because it 1s so simple and direct. 

in the next example, 

5.2. &XT&? ta show thot [S, Theorem 3.2 11 is wurtg. (As mentioned above, a 
correction to this effect is available from Freyd, but it is hard to figure out from 
that an explicit counteraxample.) Let B be a complete atomless boolean algebra. 
Let CC TB be a subcategory closed under finite products and sums, equalizers 
and coequalizers, S2 and exponentiation, just as in the proof of 4.1. Then it is evi- 
dent that C is a topos and that 3-‘c 2 YB. If there were a topos t?, generated by 1 
anid a strong logical T : C + e, we would get functors Z? YC+ FC and its right 
adjoint 7$ %‘-+ Wjust as in the first part of the roof of 3.1 9 where faithful- 
ness is not used. From 4.2 it follows readily that P 3 is a Grothendieck topos in 
which 1 is a generator. The object 1 can have no proper subobjects because it could 
not generate them. More precisely, if S # )-+ 1, then no map ‘1 + S exists to distinguish 
0 B-+ S. Hence by 4.2, WY s W, where H is the Heyting:algebra {O, 1); i.e. Wf ZJS S. 
But then fl is a point of FB, which is a contradiction. 
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5.3. An exmnple of a topos in which the strong topology is stronger than the cano- 
nical topolo~. Let Eo be the category of finite sets, and let Ei : -ro/2i. Then we 
have a sequence of toposes and staunch functors 

E. +E, +E, + . ..+En -,..,, 

in each case the functor describable as 2 X - . Let E be the direct limit and Fi : Ei --BE 
be the canonical functor, The terminal object of Ei is 2’, which can be thought of as 
i-tuples of 0”s and 1 ‘s. Zet Si %+ 2’ be the set of all i-tuples except (0, . . . . 0). Then I 

claim fitSt that {FjiTi --) 1) is an epimorphic family and second that it is not regular. 
To see the first claim, let S P-+ f be a proper subobject of 1 in E. Then S is repre- 

sented in some En, say by the subobject A - 2”, which is the same as 2 X A H 2l’“. 
0r , more precisely, 

F,(A) = F,+,(2 X A) =S. I 

Now NA) Q 2”-=-I, since A is proper, so that #(2 X A) < 2”+‘-2, which means 
that &+I Q 2X A, and hence that 

Fa+,S,+l Q F,,1(2 x A) =s* 

This shows that the family is extremal epimorphic. To see that it is not regular, de- 
fine a sequence of maps& : Si + 2’ X 2, which represent maps F$i + Fo2 in Ea 
SQ=O,soweneednotworryaboutit.fi :St+22isdefinedbyfi(l)=(1,1.), 
which is a map over 2. (The way things are set up the map 22 + 2 is the first co- 
ordinate projection.) Having defined.&_ 1: Si_ 1 + 2’, we define fi : Si + Zi+’ by 

where bi is 0 or 1 according as i is even or odd. From their construction the fi are a 
coherent family of maps. Suppose there were some mapg : 1 + 2 whose restriction 
to F& was FJi. Say that g is represented by some map g: 2” + 2”+l over 2n, and 
suppose, for the sake of argument, that n is even. Then let 

g(0, . . . . 0) = (0, . . . . 0, b), 

from which 

fn+l(l * 0, l m*, 0) = (1) 0, l *-, 0, b) = (I* 0, .*., 091). 

Hence b = 1. But also 

f,+&l, 0, . . . . 0) = (l,O, . ..? 0, b) = (1 ,O, . . . . 0), 

so that b = 0. Thus b cannot be chosen, and no such mapg exists, 
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