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0. Introduction

A topos - even a Grothendieck topos -- need not have any points. There is an
example due to P. Deligne in [10, 1V.7.4]. An even simpler example can be con-
structed as follows. Let B be a complete boolean algebra, considered as a partially
ordered set, considerad as a category, considered as a site with the canonical topol-
ogy (a cover of a b € B is a set of elements whose sup is b), and let F B be the cate-
gory of sheaves. The set of subobjects of 1 in FB is just B. A point of FB (a cocon-
tinuous, left exact functor to the category § of sets) takes 1 to 1, subobjects to sub-
objects and preserves sups. Hence it restricts to a complete boolean homomorphism
B - 2 whose kernel is a principal maximal ideal generated by the complement of an
atom. If B has no atoms, there are no points. (Conversely, each atom of B does in-
duce a point of ¥B.)

Since a complete atomic boolean algebra is just (the algebra of subsets of) a set,
a complete atomless boolean algebra may be thought of as a “set without points™
and more generally an arbitrary complete boolean algebra as a generalized set.

You can even talk about generalized topological spaces in this context. A topol-
ogy on the set X is an exact retract (inclusion has an exact right adjoint) of p2
Done more generally for a complete boolean algebra we arrive at the notion of com-
plete Heyting algebra. (Conversely, it can be shown that every complete Heyting al-
gebra arises in this way.) When X is a topological space and Top(X) is the category
of sheaves on X, the collection of points of Tep(X) gives rise to an exact cotriple-
able functor Top(X) = FB, where B is the algebra of subsets of X. This is because
FB is just SX, the X-indexed families of sets.

These considerations have led F.W. Lawvere to make the following conjecture:
“Every Grothendieck topos has an exact cotripleable functor to a topos F B for
some complete boolean algebra B.” It is this conjecture which we establish here.

Lawvere would add the following to the above abservations:

“A Grothendieck topos is of the form %B for some complete boolean algebra B
if and only if it satisfies the condition that every epimorphism splits (by [8} and un-
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published work of Diaconescu). Such toposes are thus a very natural class of exten-
sions of the category of sets and one is thus led to conjecture that any Grothendieck
topos has enough boolean-valued points. There is an analogy here with algebraic va-
rieties which may have no points defined over the ground field but always have
enough points defined over extension fields of the ground fields. Of course, unlike
fields, complete boolean algebras are closed with respect to infinite products so that
a “sufficient” set X of points valued in complete boolean algebras B, can be com-
bined into one “‘faithful point™ valued in a complete Boolean aigebra B. Thus the
conjecture takes the form [given above]. The result is closely related to a Boolean-
valued completeness theorem for suitable infinitary theories.”

In connection with the last remark, G. Reyes has recently informed me that a
new proof of Lawvere’s conjecture can be derived from such a completeness theo-
rem.

This conjecture could have been arrived at from an entirely different direction.
In the spatial case, Van Osdol [11] has used the induced exact triple in Top(X) to
carry over all the standard homological algebra (as in, for example, [3]) to the cate-
gory of sheaves. The existence of an analogous triple will permit these results to be
carried over to an arbitrary Grothendieck topos.

There are two points to observe in this connection. The first is that, since the
triple will preserve finite products, it will extend to any category of finitary alge-
bras over the topos. If E is the topos and T = (T, n, u) is an exact (or even finite-
product preserving) triple, then for any ring object R in E, TR isaringand nR is a
ring homomorphism. If M is an R-module, then TM is a TR-module which becomes an
R-module using nR to transport the structure. When this is done, nM becomes a
homomorphism of R-modules.

The second point is that neither B nor the cotripl=able functor is canonical and
hence neither is the triple. But by the dual of |3, (5.2)] the homological properties
of the triple will depend only on the injective class of objects which, in turn, de-
pends only on the injective class of maps. Adapting the discussion at the bottom of
p. 395 of [4] to the non-additive case, we see that the injective maps are those
which are sent to split monos in the underlying category. But regardless of B, a
morphism in FB is a split mono if and only if it is monomorphism between objects
of the same support (exercise: use the fact that FB is boolean and that supports
split). Since an exact functor preserves support, this means that for any T of the
type considered, the injective class of maps will be support preserving monomorphisms,
and hence that any such T's are nomologically equivaleat.

D. Van Osdnl has been using the resu'ts cf this paper to show that such things
as Verdier’s assumption {10, Exp. V] of enough points is not necessary to do homol-
ogical algebra in a topos.

I would like to thank A. Joyal for many valuable discussions and thank
B. Banaschewski and G. Gratzer fo- telling me how to embed complete Heyting alge-
bras into complete boolean algebras.
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After this paper was written, | received a reprint of [7] in which the idea of a com-
plete Heyting algebra (there called a complete Brouwerian lattice) as a generalized
topological space-without-points is developed at length. Included in that paper are
several further references to the same idea.

1. Topologies in an elementary topos

1.1. Let E be an elementary topos. There are many natural topologies on E, but in
this paper we will be considering primarily two. The first is the canonical topology
in which the covers are the universally regular epimorphic families (see [2, p. 106]
for the definition). The second, which for want of a better term I will call the strong
topology, has as covers all epimorphic families {F; -%i , E}. Of course such a sieve
is an epimorphic family if, givenf, f: E > E', fe; = f e, for all i implies f = f. It fol-
lows from elementary properties of toposes that such families are stable under pull-
back and are extremal (i.e. factor through no proper subobject of their common do-
main).

1.2. The canonical topology is usually described as the strongest topology for which
the representable functors are sheaves. The strong topology may be analogously de-
fined as the strongest topology for which the representable functors are separated
presheaves.

It is shown in {2, (A.23)] that in a Grothendieck topos the two topologies coin-
cide. We will investigate below a condition which guarantees that they do coincide.

L3. If Cis a site, we let P(C), S(C) and F(C) denote the categories of presheaves,
separated presheaves and sheaves, respectively. For an object C € C we will denote
the corresponding representable functor of P(C) by ( - , C) and the sheaf associated
to ( -, C) by €(C). Provided that representable functors are separated (which will
always be the case), the functor € is faithful, being the composite

C -+ (0)~> F(O)
in which the first is full and faithful and the second is (as always) faithful.
1.4. Theorem. Suppose C is a site for which every cover is an extremal epimorphic
family. Suppose also that given any cover {C; > C} which can be factored {C ->C' ->C},

then the sieve {C; ~ c } covers some (neces arily umque ) subobject C* > C'. Then
the strong topology is the canonical one.

Remark. C” is necessarily unique because the covers are extremal epimorphic families.

Proof. This amounts to showing that every representable functor is a sheaf in the
strong topology. Or equivalently that given a cover {C; —L— C: i € It and 1 family
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of maps g, : C; » C such that C; X¢» C; D C; X Cj for all i, j € 1, then there is a map
h : C - C' such that hf; =g;, ¥i €I (h is necessarily unique because we are supposing
covers to ve epimorphic families). This is not the way the sheaf condition is norm-
ally phrased, but it is easily seen to be equivalent, and is the form most convenient
for the proof. g

Now consider the family of maps {C; —---—— C X C'}, which when followed
by the projection C X C’ -» C is a cover of C. Hence by our condition this family
covers a unique subobject R = C X C’. We will show that R is the graph of a func-
tion i: C = C' which can easily be shown to have the desired property. This is equiv-
alent to showing that the composite R = C X C’ - C is an isomorphism. It is cer-
tainly an extremal epimorphism since if it factored through any subobject of C, so
would every f;. To see that it is a monomorphism, observe that Vi, j € /,

C; Xg C} =C; Xex e Cj =C; )(CCj NEC; X C,. =C; XCC]..
Thus for any sheaf F we have a commutative diagram

T

FC —— HFC, ——1 IIF(C, XC C,)

with both lines equalizers, which implies that FR —=— FC.
But both the Yoneda embedding and sheaf reflection preserve finite limits, so
that if
&
R XC R ——=3R->C
dl

is a kernel pair diagram, it remains so when ¢ is applied. Thus ed® = ed'. But as ob-
served in 1.2, € is faithful, hence d° =d!, and R - C is a monomorphism. CJ

1.5. Corollary (Joyal). If a category with pullbacks has the property that every map
factors uniquely as an epimorphism followed by a monomorphism and the epimorph-
isms are stable under pullbacks, then they are regular.

Proof. Simply take the topology ir which cover: are the epimorphisms. The unique-
ness of the factorization g :.arantees that the epimorphisms are extremal, O

Remark. This corollary is rather easy to prove if you assume that coequalizers exist
but becomes remarkably more delicate without that assumption.

1.6. Corollary. If E is an elementary topos in which the subobject lattices of each
object are complete, then the strong topology is the same as the canonical one.
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Proof. For then one can satisfy the hypothesis of 1.4 by taking C” to be the union
of the images of the C;. U

Of course these lattices are always internally complete but as observed, e.g., in
[5,(2.7)], the internal union just will not necessarily work.

2. Staunch functors

2.1. Definition. Let E and E’ be elementary toposes. A functor F : E - E' is called
a logical morphism if it preserves finite limits, finite colimits, £2 and exponentiation.
(Actually, following the work of Christian Juul Mikkelsen, it is unnecessary to sup-
pose that it preserve the finite colimits.)* A functor F : E - E s called strong if it
preserves epimorphic families. Finally, we shall call a functor F : E - E’ staunch if
it is faithful, strong and logical.

2.2. Proposition. For every object E of an elementary topos E, the functor
E X - E ~ E/E is a strong logical morphism. It is staunch if and only if in addition
E has support 1.

Having support 1 means that the (unique) map £ — 1 is an epimorphism.

Proof. The first part follows directly from [5, (2.31)]. Since E X - reflects isomor-
phisms if and only if £ has support 1 [2, [11 (2.11)], the second part follows from:

2.3. Lemma. Let X and Y be balanced categories. A functor F : X = Y which pre-
serves finite limits and colimits is faithful if and only if it reflects isomorphisms.

Balanced is a practically archaic word used to describe categories in which maps
that are simultaneously mono and epi are isomorphisms.

Proof. Let F reflect isomorphisms and £, g: X - X’ with Ff = Fg. This implies that
the equalizer of f and g becomes an isomorphism, herce is une, hence f=g¢. To go
the other way, let Ff be an isomorphism. This means that the two maps in the
kernel pair of f are equal, hence f is moro. Similarly it is epi. O

2.4. Theorem. Let A be a directed set, and let D : A - Comp Top be a functor into

the category of small toposes and staunch morphisms. Then for each a € A the tran-
sition map Da—~limE isa staunch functor.

* This has been beautifully simplified in a forthcoming paper of R. Paré.
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Remark. Something of this sort is implicit in the proof [S, (3.211)]. The only trouble
is that the part of the proof asserting that T is strong is based on his offhand assump-
tion that a colimit of strong functors is strong. We show by counter-example later
that this assertion is false. (The correction, including a complete revision of his Sec-
tion 5.6, is available from Freyd.)

Proof. Let us denote Da by E, and for a < the value of D(a <) by F, : E, = E.
Let E be the direct limit and F,, : E, = E the canonical map. The argument of [§,
(3.211)}], dependent on the “‘essentially algebraic™ nature of toposes, can be readily
repeated to show that E is a topos and that the F, are logical morphisms. That they
are faithful is completely trivial. The only point at issue is whether or not they are
strong. This is based on:

2.5. Lemma. Suppose F : E - E' is staunch and [ : E ~ E a map in E which does
not factor through a given subobject Ey - E. Then Ff does not factor through
FEy ~ FE.

Proof. The map f factors through £ if and only if Im f C E|, if and only if
ImfNE, =Imf. Alogical morphism preserves images, so that we want to show
that Im f " £} Z Im [ implies that

F(im f) N FE, G F(Im /),

or, since F preserves finite intersections, that E» S E, implies FE, & FE . But since
monos are regular, there is an equalizer diagram

do .
E,~E, '-**”:::dl E 4p E,|
with d, #d, and, since F is faithful, Fd, # Fd,, and hence FE, gFEl .

To continue the vroof of 2.3, let {£; = E: i €I}, be an epimorphic family in E .
A map in E whose codomain is FF is represented ty a § > aand amap f : E' > Fg F
in Eg. If this is not a monomorphism in Ej, then since F is faithful we can repeat the
above argument with the cokernel pair of /' to conclude that the map Fyf which fis
representing is not mono either. Thus a proper subobject of F_E is represented by a
subobject, evidently proper, E' = F gok for some § > a. Since F, is assumed to be
staunch, {Fg E; > FoE} is a cover in Eg, and hence there is some i € I such that
FgE;— Fg,E does not factor through E'. By (2.4), F, ,E; - F. ,E does not factor
through F, ;E" = F. £ for any ¥ > §. Hence FE; - F E does not factor through
F4E' > F,E.O '

The following seems to be the best substitute for [S, (3.21)] available.

2.7. Theorem. For every small boolean topos E there is a boolean topos B in which
supports split and a staunch functor T : B - B.
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Proof. Follow the *proof™ offered by Freyd [S] except stick to those 4 whose sup-
port is 1. The result will be a B and a staunch 7 : B~ 8 in which 1 is projective. Be-
ing boolean, all its subobjects are summands and are hence projective as well. O

By dropping the hypothesis of being boolean we obtain the following theorem,
originally due to André Joyal (unpublished, but with substantially the same proof).

2.8. Theorem. For every small topos B there is a topos B in which 1 is projective to-
gether with a staunch T : B =+ B.

2.9. Remarks. Note that 1 being projective is equivalent to all its complemented
subobjects being projective. In the boolean case, of course, this means that all sub-
objects of 1 are projective, in which case they can easily be seen to also generate.
(Given E' — E a proper subobject, split the map frosn T1E 1o its support.) If (and
only if) it is also complete, then such a category is FB, the category of sheaves for
the canonical topology on the complete boolean algebra B. Needless to say, B =(1,£2)
is the lattice of subobjects of 1.

Note also that if a topos is complete (and then, evidently, not small), a logical
functor is strong if and only if it is cocontinuous. For let £ = UE;. Then {E; > £}
is an epimorphic family, which implies the same for {TE; = TE}. Furthermore,

TE, Xy TE; = T(E, X E)) = T, E;) = 8, TE,,

so that in fact TE = UTE;. If, additionally, £ is a Grothendieck topos, then the spe-
cial adjoint functor implies that T has a right adjoint R which is obviously a geome-
tric morphism. Lawvere calls a geometric morphism whose left adjoint is logical a
local homeomorphism, presumably because, as is easily shown, the geometric mor-
phism induced by a local homeomorphism between topological spaces does not have
that property.

3. Induced functors on sheaf categories

A sieve {E; - E} in a category is called an extremal epimorpiic family if no pro-
per subobject of £ factors all the E;. It is universal if it remains extremal when pulled
back with any £’ - E. In an elementary topos every epimorphic family is extremal
and universal, the first because all monos are regular and the second because pull-
backs have right adjoints. In a partially ordered set an extremal farily s a family
{b; < b} whose sup is b. In a Heyting algebra every such family is universal, aain
since A has a right adjoint.

All the categories we consider in this section will have the property that extremal
epimorphic families are universal, and we consider them as sites with those families
as covers. We let, for such a category E, PE, SE and FE denote the categories of
set-valued presheaves on E (functors E°P + S), separated presheaves and sheaves,
respectively.
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A functor is called conservative if it reflects isomorphisms. A functor between
toposes is conservative if and only if it is faithful. A functor between lattices is con-
servative if and only if it is mono.

3.1. Theorem. Let F : E -~ D be continuous and exact. Then F extends to an exact
functor FS : FE - FD. F* has a right adjoint F : ¥D ~ FE. [ f F is conservative
and C has complete subobject lattices, then F is also conservative.

Proof. Everything except the last sentence follows from [10, Exp. I, 5.4(4)], to-
gether with [10, Exp. 11, 1.2, 1.3, 1.6]. To show the last line, it will be necessary
to analyse the proofs of these propositions more carefully. The functor F induces a
functor PF : PD - PE which has a left adjoint F, : PE -+ PD (as well as a right
adjoint F'). When E has and F preserves finite limits, so does F\. The continuity of
F (in the topology) implies (rather easily) that PF takes sheaves to sheaves, so that
we have a commutative diagram

025 L E
A
FD " %E

from which it follows that F* = I'F o is left adjoint to Fg [1, Theorem 3, dual]. Here,
of ¢ oursc,l is the associated . heaf functor well known to be exact. Since all three
I #y and / are exact, so is FS. The rub is that I' is not faithful, so we cannot use the
sare argument to show that F® is.

3.2. Proposition. Under the hypotheses of Theorem 3.1, F\\SE is faithful.

Proof. It is clearly sufficient to show that if R : E°P =+ § is a separated presheaf and
R : D°P - S is its left Kan extension, , then the natural map R - RF is a monomor-
phism. If D € D, then an element of RDisa pair (f, x), where f : D - FE and x EFE.
If f; : D~ FE\ and f; : D > FE, are maps in E, then (f}, x;) ~ (f3, x,), provided
there is an object £ € E and maps g, : E > E\, g5 : E > E3 and h : D - FE such that

D
/ e
! ~.
FE| «——p— FE ——p—— FE,

commutes and such that x| |E = x, |E. Note that we will often write things like
x, |E instead of the cumbersome Rg;(x) when the functor and morphism are clear.
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The fact that E has and F preserves finite limits implies that this defines an equival-
ence relation. The contravariant functor defined by R takesa pair (x, f) and a map
g:D' = Dto(x, fg). The map R - RF takes an element x € RE to (FE, x). In order
that (FE, x|) ~ (FE, x,), we need a commutative diagram

FE
FE‘// i FE
FE « FE' — FE
Fgy Fgy

such that Rg(x,) = Rgy(x,). Since Fgy * h = Fg, * h, h factors chrough the equalizer
of Fgy and Fg,. Since F preserves equalizers. h factors through Fg', where

. 141
E" --—g«---—» E M*T*.,:tE
2

is an equalizer. This gives, with g =g, 2" =g,¢’, the diagram

FE
FE / FE
g R

/'
FEw— T pmr B S

with x| lE” =x,|E”. But Fg is a split, hence extremal epi, and since F is conservative,
this implies that g is an extremal epi as well and, since R is a separated presheaf that
Rg is mono. But Rg(x,) = Rg(x,), and hence x; =x,. [}

3.3. Proposition. Under the hypotheses of the theorem, F\((SE) CSD.

Proof. In other words, we are claiming that if R € JE, its left Kan extension
RedD.If (f}, x,), (5, x3) represent two elements of RD, we can represent them
both with the same map, using

D
fl ” fl-fz f2

!

FE, X FE, ——————FFE,

FE —n

Thus we can suppose we are given (f, x,),(f, x;) € RX and an extremal epimorphic
family {D; —&— D : i €1} such that for all i €1,

U: xl)ng‘ = (f! xz)lD,--

The definition of equality means that we have a commutative disgram
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D, -
1z I 7 N/ £
FE « Py FEi iy » FE

such that Rh;;(x,) = Rh;5(x;). By replacing E; by the equalizer of h;; and h;5, we
may, in fact, suppose that h;; = h;5 = h; and that we have a commutative diagram

D‘.,_,._.__f';._m_.,p

If
Fhy

— FE

5

FEJ P

such that x |E; = x,1Z;. Now let E' E be the union ?_f the images of the E;.
Clearly we have an extremal epimorphic family {E; —*— E'} which gets sent to

an extrema! epimorphic family {FE; {__» FE'} since F is continuous. Next |
claim that D - FE factors through FE'. To see this, consider the pullback diagram
FE Xgg D D
FE' ~ > FE

One easily sees that every D; - D factors through FE' Xg D — D, and then extrem-
ality implies that the top arrow is an isomorphism. This gives the desired map

D - FE . Since x| |E; = x,|E; for ali i, {E; =+ E'} is a cover, and R is separated,

x) lE’ =x,|E’, which then implies that (f; x,) and (f; x,) represent the same ele-
ment of KD. O

Now to return to the proof of Thecrem 3.1. What we have shown is that there is
a commutative diagram

F
PE— ' PD
SE— T 4p

and that F is faithful. This means that we could have as‘ well defined F* as the com-
posite

SE Fa oD

| I

FE FD
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each of which is faithful, and hence so is F°. Notice that the associated sheaf functor
is faithful when restricted to separated presheaves, since such a presheaf is contained
in its associated sheaf. F* is then a faithful functor between toposes and, as we noted
above, this implies that it is conservative. O

Note that F is a geometric morphism. A geometric morphism whose left adjoint
is faithful is described by Lawvere as “surjective”. It is an easy consequence of Beck’s
tripleableness criteria (actually the co-CTT, see [9, p. 151, excercises 6, 7]) that £°
is cotriplezble if and only if it is conservative if and only if it is faithful. Thus we
have:

3.4. Corollary. Let F : E - D be a strong exact faithful functor, and suppose that
the subobject lattices of objects of E are complete. Then F* : FE — FD is cotriple-
able.

4. The main theorem

4.1. Theorem. Let E be a Grothendieck topos. Ti:en there is a complete boolean
algebra B and an exact cotripleable functor E - FB.

The proof will be divided into two parts. First we shall find such a functor
E = FH for a complete Heyting algebra H and then use a known theorem of lattice
theory which provides an embedding H — B with suitable properties.

The first question to settle is when a Grothens:eck topos is of the form FH. The
answer seems to be widely known, but I have not reer able to find a direct reference
in print.

4.2. Proposition. A Grothendieck topos E is equivalent to an FH if and only if the
subobjects of 1 are a set of generators of E in which case H is the subobject lattice
of V. If C is a site (with finite limits) in which every object has a cover by subobjects
of 1, then the subobjects of | are a set of generators in FC.

Proof. It is shown in [2, (A.22)] that if £ is a Grothendieck topos and C is any sub-
category of E containing 2 set of generators for E and closed under finite products
and subobjects, then E = FC for the canonical topology on C. Note that by being
closed under subobjects, C will have complete subobject lattices and the strong to-
pology is the same as the canonical one. In particular, if the Heyting algebra H of
subobjects of 1 contains a set of generators, it certainly satisfies the other condi-
tions, so that E = FH. The converse is a special case of the second sentence of the
proposition, to whose proof we now turn. Let F » G be sheaves such that F$ =GS
forall § = 1. Let C € C, and choose a cover {S; > C}, where the §; = 1. Then con-
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sider the commutative diagram

FC ——— TS, === [IF(S, X 5)
GC » 1GS; ===—== [1G(S; X S))

whose rows are equalizers. An easy diagram chase shows that FC = GC. O

We leave to the reader the statement of the more general proposition contained
in the above proof.

Now let E be an arbitrary Grothendieck topos. Let G be an object of E (the sum
of a set of generators will do). Let C be a small subcategory of E which is closed
under finite products and sums, subobjects and quotient objects, and exponentiation,
and which contains both G and €. Such a subcategory certainly exists, for you can
begin with G and {2, repeatedly close up under all those operations, and take a count-
able union. Clearly C is a small topos whose objects have complete subot ; sct lattices.
This implies, in particular, that the strong topology on C is the canonical vae. Ob-
serve also that the object G must have support 1, otherwise its subobjects could not
generate 1. Hence by 2.2 the functor G X - : C - C/G is staunch, and similarly for

G Xy -=G X - CIG" > 16",

Here G"*!1 = G" is projection on the last 7 coordinates. Hence if we let D be the
direct limit of the sequence

C-C/G~>..~CIG" ~ ...,

the induced map C - D is competent by 2.4. From 3.4, we see that the induced
functor FC - FD is cotripleable. From [2, (A.22)], we infer that E = FC.

4.3. Proposition. The subobjects of 1 generate D.

Pronf{. An object of D is a map C - G" for some n, subject to the identification of
C-G" withG X C-»G". Amap C + G" to C' - G™ consists of a 3-tuple (i, /. /),
where i and j are integers such thati+n=j+ mand f : G' X C = GI X C’' over GI*7,
subject to the identification of (i, j, f) with (i + 1,j + 1,G X /). The map (i, j, f) re-
presents a monomorphism in D if and only if f is a monomorphism in C (this de-
pends on the fact that the transition functors are faithful; see the proof of 2.4 for
details). In particular, a subobject of f : C = G" is a subobject of G' X C thought of
as the object G* X C - G™*" of E/G™*. Let C’ » G' X C. Since the subobjects of G
generate C, thereisau : S Ganda mipg : S = G' X C which does not factor
through C'. In CjG1*#*" we have the diagram
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S

u,g)

i
GCXC o Gl X C

Gxf

:

Glﬂ'm

and it follows from 2.5 that (1, g) does not factor through G XC in D. The structure
map of S as an object of C/G1**7 is

(G X1+ (. g)=(u fo),

which is a monomorphism since its first coordinate is, and hence, as noted above, is
a monomorphism in D. Thus (u, /g) : § = C I+i+m is a subobject of the terminal ob-
ject of D, which has a map to G**! X C that does not factor through ihe subobject
GxC.0

4.4. Corollary. Every object of D has a cover by subobjects of 1. Hence ¥D = FH
Jor a complete Heyting algebra H.

Proof. What we have shown is that for all D € D, and proper subobject D’ » D,
thereis an § » | and a map § - D which does not factor through D'. Hence the
family {S,- - D} of all maps to D whose domain is a subobject of 1 is an extremal
epimorphic family. The last sentence follows from 4.2. O

4.5. Corollary. Every Grothendieck topos E has an exact cotripleable functor
E - FH for some complete Heyting algebra H.

I am indebted to B. Banaschewski and G. Gratzer for pointing out the following.

4.6. Proposition. Let H be a complete Heyting algebra. Then there is a boolean alge-
bra B and an embedding H - B which preserves finite infs and arbitrary sups.

Proof. For details refer to Gratzer 6, Section 10]. In that section he shows how
every distributive lattice L has a standard embedding into a boolean algebra B(L).
He then states (his Lemma 13) that if the complete distributive lattice L has both
infinite distributivities — of finite infs over all sups and of finite sups over all infs —
then this embedding preserves all sups as well as all infs. But in fact the two parts are
separate. He actually proves that if finite infs distribute over all sups, then this stan-
dard embedding preserves all sups, and this is exactly the result we need. I
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4.7. Corollary. For every complete Heyting algebra H, there is a complete boolean
algebra B and an exact cotripleable functor FH - FB.

Proof. Use the embedding above followed by the embedding of B(L) into its com-
pletion. This gives a faithful funcior H — B betw een complete categories which pre-
serves finite limits and epimorphic families, and hence, by 3.4, an exact cotriple-
able functor FH - FB. Note than an exact tripleable functor is co-CTT (see [9]).

5. Some counter-examples
In this section we give a few assorted counter-examples.

5.1. Example to show that 2.4 may fail if “’faithful” is omitted (from both hypo-
thesis and conclusion); that is, if “‘staunch’’ is replaced by strong and logical. Re-
ferring to the notation used in the proof of 2.4, let 4 =1 be the set of positive in-
tegers and £; be the category of sheaves on the open interval (0, 1/i) (in the usual
topology on R). For i </, the functor E; - E; is just restriction to that subinterval
which of course is an instance of [5, (2.31)] and therefore strong and logical. Let
E; € E; be the functor represented by the open interval (1/(i + 2), 1/i). Then it is
clear that {E; = 1} is an epimorphic family (1 is the functor represented by the
interval (0, 1)) while the inclusion 0 - E; becomes an isomorphism in E, ,, so that
FE; = 0. On the other hand, 0 - 1 never becomes an isomorphism at any stage
and hence does not in the limit. One way of looking at this is to observe that the
two maps 1 3 1 + 1 remain distinct at every step and hence in the limit. Thus

{0 - 11 is not a cover and the epimorphic family is not preserved.

Actually the exister.ce of an example of this kind is implicit in the next example,
but we included it anyway because it is so simple and direct.

5.2. Example to show that |5, Theorem 3.21] is wrong. (As mentioned above, a
correction to this effect is available from Freyd, but it is hard to figure out from
that an explicit counter-example.) Let B be a complete atomless boolean algebra.
Let C C FB be a subcategory closed under finite products and sums, equalizers

and coequalizers, 2 and exponentiation, just as in the proof of 4.1, Then it is evi-
dent that C is a topos and that FC = FB. If there were a topos C, generated by 1
and a strong logical T : C ~» ¢, we would get functors TS: FC - FC and its right
adjoint Tg: FC - FC just as in the first part of the proof of 3.1, where faithful-
tiess is not used. From 4.2 it follows readily that FC is a Grothendieck topos in
which 1 is a generator. The object 1 can have no proper subebjects because it could
not generate them. More precisely, if S»5 1, then no map 1 - § exists to distinguish
0 > S. Hence by 4.2, FC = FH, where H is the Heyting-algebra {0, 1};i.e. FH =§.
But then TS is a point of B, which is a contradiction.
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5.3. An example of a topos in which the strong topology is stronger than the cano-
nical topology. Let E be the category of finite sets, and let E; = 75 /2. Then we
have a sequence of toposes and staunch functors

Ey~E ~E,~..>E,~ ..,

in each case the functor describable as 2 X - . Let E be the direct limit and F; : E;+E
be the canonical functor. The terminal object of E; is 2, which can be thought of as
i-tuples of 0's and 1's. Let S; »> 2/ be the set of all i-tuples except (0, ..., 0). Then I
claim first that {F;S; - 1} is an epimorphic family and second that it is not regular.

To see the first claim, let S = | be a proper subobject of 1 in E. Then S is repre-
sented in some £,, say by the subobject 4 = 2", which is the same as 2 X 4 »> 21*7,
Or, more precisely,

F(4)=F,,2 X A4)=S5. :

Now #(A4) < 2"--1, since A4 is proper, so that #(2 X 4) < 2"*1_2 which means
that S, ,; € 2X 4, and hence that

Fn+lsn+l ¢ Fnﬂ(Z X A) =S.

This shows that the family is extremal epimorphic. To see that it is not regular, de-
fine a sequence of maps f; : §; = 2/ X 2, which represent maps F;S; > F2 in E.
Sp =0, so we need not worry about it. f; : $) > 22 is defined by fi(1)=(1,1),
which is a map over 2. (The way things are set up the map 22 - 2 is the first co-
ordinate projection.) Having defined f; _: §;_; - 2, we define f;:S;~>2"*!by

fla,,....a)= (al, fibl(az, '8))
unless (ay, ..., a;) =(0,..,0) & S;,and
fi(l ,0,..,0)=(1,0,..,0,b;,

where b; is O or 1 according as i is even or odd. From their construction the f; are a
coherent family of maps. Suppose there were some map g : 1 = 2 whose restriction
to F,S; was Ff;. Say that g is represented by some map g: 2" - 2"*! over 2", and
suppose, for the sake of argument, that n is even. Then let

£, ..., 0)=(0, ..., 0,d),
from which
fna1,0,..,0)=(1,0,..,0,6)=(1,0, ..,0, 1).
Hence b = 1. But also
fr42(1,0,..,0)=(1,0,..,0,6)=(1,0, .., 0),

so that b = 0. Thus b cannot be chosen, and no such map g exists.
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