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0. Introduction

Let X be a category with finite limits. We say that X is exact if:
(1) whenever

X1_’g X2
lfl
X3_" X4

is a pullback diagram and f is a regular epimorphism (the coequalizer of some pair
of maps), so is g;

(2) wheneverE C X X X is an equivalence relation (see Section 1 below), then
the two projection mapsE 3 X have a coequalizer; moreover, E is its kernel pair.

When X lacks all finite limits, a somewhat finer definition can be given. We refer
to [3, I(1.3)] for details.

In this note, we explore some of the properties of right exact functors — those
which preserve the coequalizers of equivalence relations. For functors which pre-
serve kernel pairs, this is equivalent (provided that the domain is an exact category)
to preserving regular epimorphisms. I had previously tried — in vain — to show that
functors which preserve regular epirnorphisms have some of the nice properties
which right exact functors do have. For example, what do you need to assume
about a triple on an exact category to insure that the category of algebras is exact?
The example of the torsion-free-quotient triple on abelian groups shows that pre-
serving regular epimorphisms is not enough. On the other hand, as I showed in [3,
1.5.11], the algebras for a finitary theory in any exact category do form an exact
category. And that will remain true for any theory if the nth ‘power functor pre-
serves regular epirnorphisms for all cardinals n. The missing link which connects all
these disparate results is that the nth power functor preserves kernel pairs (in fact all
limits) and is (right) exact as soon as it preserves regular epirnorphisms.
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We say that a category is EXS if it is exact, if it has all finite inverse limits and
filtered direct limits, and if finite inverse limits commute with filtered direct limits.
We say that a sequence of objects and maps

X’gXéXll

is exact in some category if it is simultaneously a coequalizer and a kernel pair. A
functor is right exact if it takes such a sequence into a coequalizer. A functor is
called finitary if it commutes with filtered direct limits.

In an exact category, every map has a canonical factorization as a regular epi-
morphism followed by a monomorphism (see [3, 1.2.3] ). When we speak of image,
we mean in terms of this factorization. We will say that a pair of maps

Y3X

in a category is a reflexive pair if the image of Y in X X X contains the diagonal
AX C X X X. This is rather weaker than the usual definition, in which one supposes
the two maps to have a common right inverse. However, it will be a useful notion in
this paper.

The most surprising consequence of right exactness is that a finitary right exact
functor whose domain is EXS preserves the coequalizers of reflexive pairs. From
this we derive the fact that under the same conditions, pushout diagrams consisting
of regular epimorphisms (regular co-intersections) are also preserved. Finally we use
that to give a very general solution to a problem arising in the theory of automata —
the existence of minimal machines.

As usual, a map denoted ->-> is assumed to be a regular epimorphism; a map de-
noted >—> is assumed to be a monomorphism.

1. Reflexive relations

In an exact (or just regular) category we define a (binary) relation on an object
X to be a subobject ofX X X. More generally, one can define a relation between X
and Y as a subobject of X X Y. In Grillet [4, 1.4] an efficient calculus of relations
is developed. IfR and S are relations, he defines R o S as the image in XXX of a
pullback R X X S and shows that this rule of composition is associative (here is
where regularity comes in) and unitary (the diagonal subobject AX is the unit) and
satisfies

(R o S)—1=S—1oR—1
(inverse defined in the usual way via the switching map X X X -> X X X). The rela-
tion R is an equivalence relation if and only if
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(i) R is reflexive, i.e. AXCR;
(ii) R is symmetric, i.e. R"1 CR;
(iii) R is transitive, i.e. R o R CR.

We let R(”) = R o R o o R denote the n-fold iterated circle composite of R.

1.1. Theorem. Let X be an EXS category with exact direct limits. Then for any re-
flexive relation R on X, the smallest equivalence relation containingR is

E=SUS°SUS(3) u us‘mu ..,

whereS=R o R'l.

Proof (compare the proof of [4, I.6.8] ). Since AX CR, AX C R‘l, and then

R=R OAXCROR‘l = .

It is evident that S is reflexive and symmetric, and then so is any power of S, so that
E is reflexive and symmetric. Since direct limits are exact, E XX E is a direct limit
of S“) X X S0) whose image is contained in S0”). ThusE is also transitive. Conver-
sely, ifF is an equivalence relation containing R, it is clear thatR'l C F‘1 C F,

S=R oR-l CFoFCF

and inductively that S‘") C F, whence E C F.

1.2. Proposition. Let U : X -> Y be an exact functor between exact categories. Then
Upreserves the calculus ofrelations.

Proof. An exact functor preserves finite limits, hence products and subobjects and
hence relations. Furthermore, it preserves pullbacks and regular epirnorphisms, hence
images, and so preserves composition of relations. It is trivial that it preserves inverses
of relations.

1.3. Theorem. Let X be an EXS category, Yan exact category, and U : X -> Y a fini-
tary exact functor. Then Upreserves the coequalizer ofany reflexive pair ofmaps.

Proof. Let Y3 X be a reflexive pair and R be the image of Y in X X X, Since
Y-»R, R 3Xhas the same coequalizer as Y3X. Since also UY-» UR, UY3 UX
has the same coequalizer as UR 3 UX. Hence it suffices to prove this for a reflexive
relation. As above, let S = R o R‘1 and

E=Sus(2)us(3)u...us(")u....
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Then US = UR o (UR)“1, and

UE = US u (US) 0 (US) u L) (US)(") u .

Just as in the proof of Theorem 1.1, UE must be contained in any equivalence re-
lation containing UR. But now if

R 3 X -> Z

is the coequalizer,

E 3 X -> Z

is exact and hence so is

UE 3 UX -> UZ .

This shows that UE is an equivalence relation and is the smallest one containing UR
Hence

UR 3 UX -> UZ

must also be exact.

1.4. Remark. Both the hypotheses that X have exact filtered direct limits and that R
be reflexive are necessary. The underlying functor from compact Hausdorff spaces
to sets does not preserve the coequalizer of

(10,011 : [0, 1] u [0, 1] —> [0, 1] ,

where each map is the identity on the first component, while on the second d0 is
the identity and d1 is multiplication by an irrational t < 1. The underlying functor
from groups to sets does not preserve the coequalizer of

do, d1 : z -> z ,

where d0 is the zero map and d1 is multiplication by 2. This second example is
especially interesting: of the three conditions defining an equivalence relation, that
of being reflexive seems the most negligible.

1.5. Corollary. Suppose U, X, Yare as in the theorem. Then Upreserves pushout
diagrams in which every map is a regular epimorphism.
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Proof. Let

X _) X1

l l
X2_’X3

be a commutative square with every map a regular epimorphism. Let E 3X be the
kernel pair ofX -> X1. Then one may easily show, using universal mapping proper-
ties, that the square is a pushout if and only if the sequence

E 3 X2 -> X3

is'a coequalizer. Then supposing the square is a pushout, the sequence is a coequa-
lizer. The maps E 3 X are a reflexive pair and since X —» X'2, the pair E 3 X2 is also
a reflexive pair. By the theorem,

UE 3 UX2 -> UX3

is also a coequalizer, whence

UX —>- UXl

is a pushout,

2. Right exact functors

A functor U : X -> Y is called right exact provided that whenever

X' 3 X -> X"

is exact in X,

UX' 3 UX—> UX"

is right exact, i.e. a coequalizer, in Y. A triple ET= (T, 1.2, u) is right exact provided
that T is.

2.1. Theorem. Let X be an exact category and ‘7 a right exact triple on X. Then the
category X g of Ef-algebras is exact; if ‘7 is finitary and X is EXS, then X 7 is EXS
as well as the underlying functor X 7 -> X is finitary. Hence it preserves the coequa-
lizers of reflexive pairs.
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Proof. If T is right exact, then it certainly preserves regular epimorphisms. Accord-
ing to [5, (2.8)] , X 7 is then regular. Now suppose that E —>A X A is an equivalence
relation onA in X 7. That is, A = (X, x) is an algebra, E = (Y, y) is a subalgebra, and
Y-> X X X is an equivalence relation. Let Z be the coequalizer, so that

Y 3 X —> Z

is exact. Apply T to get

TY_~,—" TX—>TZ

ylxll
1:“;'X ———> 2

Since the upper line is a coequalizer, there is a unique 2 : TZ ->Z making the dia-
gram commute. The argument that B = (Z, 2) is a E7-algebra is standard. Clearly

E3A->B

is a coequalizer,,and since U creates limits, it is also a kernel pair, and hence exact.
To finish the proof, we remark that one easily shows, in a way analogous to the
above, that U creates any direct limits which are preserved by T, in particular fil-
tered direct limits. It also creates inverse limits (always). Hence to show they com-
mute in X 7 it suffices to assume they do in X.

2.2. Corollary. Let X and 7 be as in the theorem. Suppose also that objects ofX
have only a set of regular quotients Letf : UA -> X be a morphism in X. Then there
is a smallest quotient g : A ->A' in X 7 such that there is a factorization

Ug ,
UA—> UA

X .

Proof. The functor U preserves pushouts of the form

1 “”11
A2—>-)A3

so that the family of all such quotients ofA which satisfy the conclusion is filtered.
Their direct limitA ->A' exists and is easily seen to be a regular quotient ofA. Since
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the direct limit is preserved, it has the requisite mapping property to have a map
UA' -> X with the desired property.

2.3. Remark. In the category of sets — indeed in any category in which every epi-
morphism splits — every exact sequence is a split coequalizer diagram. Hence every
functor with such a category as domain is right exact. As noted, this is a much
stronger condition than preservation of regular epirnorphisms. This seems to explain
much — if not all — of the nice structure possessed by categories tripleable over sets.

3. Application to categorical machines: the minimal'realizable problem

In [1] , the notion of a categorical machine is defined. The set-up is a category X
and an endofunctor T which generates a free triple $7 = (7*, n, u). A machine is
(roughly) a <Y-algebra Q equipped with a map — the output function — UQ -> Y in
X. The minimal realization problem boils down to this: given a map 7*] -> Y, find
a minimal (smallest, really) machine Q which “realizes” the given map; that is, a
minimal quotient of T"‘I which is still a 7-algebra and which factors the given map.
Evidently, this will always exist ifX and ‘7 satisfy the hypotheses of Theorem 2.1.

3.1. Theorem. Let X be an EX5 category. Let T be a finitary right exact endofunc-
tor. Then Tgenerates a free triple 7 = (7*, n, it) which is right exact and finitary.
Moreover the minimal realization problem for 7-machines is always solvable.

Proofs. The results of [2] apply here to get the free triple $7. The construction
there is based on the identification of the category of 7-algebras (whether or not
7 exists!) as the category of (T : X) whose objects are pairs (X, x), x : TX -> X,
satisfying no conditions, and maps commuting with the structure in the obvious
way. The underlying functor U : (T: X) -> X forgets the structure, and if it has a
left adjoint F, then 97 is the triple associated to the adjoint pair. (If U does not
have an adjoint, a free triple does not exist.) At any rate, I showed there that a
free triple exists if T has a rank, which it certainly does when T is finitary. More-
over, one easily shows, exactly as for X 9, that any direct limit preserved by T is
preserved by Y. But F preserves all direct limits. Hence any direct limit preserved
by T is preserved by UF = T*. In particular, when T is finitary, so is T*; when T is
right exact, so is T’". The last assertion then follows from the results of Section 2.

3.2. Remark. It is possible to generalize the notion of a machine so that the input
process is a triple 97 rather than an endofunctor. Then a machine is a V-algebra,
except that there is no need for a free triple to exist.
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