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Abstract

We show that for a large class of algebraic model categories, the compact algebraic model

categories, the projective model structure on the functor category of any diagram exists and is

an algebraic model category. For a large class of these compact algebraic model categories,

the projective algebraic model structures themselves will be compact. This generalizes a

result of [Rie11] for cofibrantly generated algebraic model categories. To prove our result,

we fix an issue with and generalize Garner’s construction of free algebraic weak factorization

systems [Gar08] and more fully develop the theory of algebraic model categories. We then

present an easy proof that the h-model structure on k-spaces is a compact algebraic model

structure. This gives a method for computing homotopy colimits of any shape of diagram

in the h-model structure.

We also define quasiaccessible categories, which both generalize locally presentable cate-

gories and include the categories of topological spaces and k-spaces. We define quasiaccessible

model structures on quasiaccessible categories, prove they have associated algebraic model

structures, and show how the Bousfield-Friedlander theorem can be applied to produce a

Bousfield localization of a quasiaccessible category that is itself an algebraic model cate-

gory. We then prove that the h-model structure on topological spaces is a quasiaccessible

model structure. We conclude with a characterization of certain accessible model categories

inspired by Smith’s theorem for combinatorial model categories.
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The results of this thesis provide general methods for dealing with large classes of non-

cofibrantly generated model structures on reasonably well-behaved categories.
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Chapter 1: Introduction

1.1 Neglected Model Categories on Spaces

The h-model structure on spaces, also called the Hurewicz model structure or the Strøm

model structure, has an advantage over the Quillen model structure in that every object

in the h-model category is both fibrant and cofibrant. Despite this fact, the Quillen model

structure on Top and the Quillen equivalent Quillen model structure on sSet are far more

widely used across homotopy theory. One reason for this is that the Quillen model structures

on Top and sSet are cofibrantly generated whereas the h-model structure is not. Another

reason, in the case of sSet, is that the category of simplicial sets has a lot of useful structure,

much of which is captured by the fact that it is a locally presentable category.

Cofibrant generation is a smallness condition that makes many manipulations of the weak

factorization systems (WFSs) in a model category possible. Among other things, cofibrantly

generated model categories can be lifted along certain right adjoints. When C is a cofibrantly

generated model category, this make it possible to define the projective model structure on

the functor category C D for any small category D . We can then compute the homotopy

colimit of a diagram D → C by taking its cofibrant replacement in the projective model

category.
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Cofibrantly generated WFSs were generalized by Garner in [Gar08] to cofibrantly gener-

ated algebraic weak factorization systems. Algebraic weak factorization systems (AWFSs),

introduced by Grandis and Tholen in [GT06] under the name natural weak factorization

systems, replace the property of having a lift in a WFS with the structure of a lift. More-

over, the functorial factorization of an AWFS on a category C naturally factors maps in

C into maps in the left class followed by maps in the right class. This gives us a sort of

generalized version of “reflections” and “coreflections” of arrows in C into the right and left

classes, respectively. The right class of a cofibrantly generated AWFS on a category C is

characterized by the structure of a natural right lift with respect to a diagram of arrows in

C , rather than the property of having a right lift with respect to a set of maps in C . Under

a mild condition on the category C , every cofibrantly generated WFS has an associated

cofibrantly generated AWFS. A few distinct technical advantages of AWFSs over WFSs are

the pointwise AWFSs of [Rie11, §4.2] and the lift of the (co)fibrant replacement functor to

a category of (co)cofibrant objects described in [Rie11, 3.5].

Not only does the structure of an AWFS have some technical advantages over that of

a WFS, but there are cofibrantly generated AWFSs which are not cofibrantly generated

WFSs. Riehl showed in [Rie11, §4.4] that when C has the structure of a cofibrantly generated

algebraic model category, the projective model structure on the functor category C D for any

small category D exists and is a cofibrantly generated algebraic model category. This makes

it possible to compute homotopy colimits for a larger class of model categories.

Both cofibrant generation with respect to a set and the more general cofibrant generation

with respect to a diagram can be thought of as smallness conditions on (algebraic) WFSs. In

this thesis, we introduce a much more general smallness condition on AWFSs and algebraic

model categories, which we call compactness. Both accessible WFSs and the WFSs of the
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h-model structure on spaces can be given the structure of a compact AWFS. We promote the

new perspective that compact AWFSs and algebraic model categories are a good setting to

do homotopy theory. In particular, we are able to show that compact AWFSs can be lifted

along certain right adjoints. We then show that when C has the structure of an algebraic

model category and D is small, the projective algebraic model structure on the functor

category C D exists and is algebraic. So we have a method for computing homotopy colimits

in this context. When the AWFSs of the algebraic model category on C satisfy the stronger

smallness condition of being E-compact, we can show that the projective algebraic model

structure is E-compact.

The compactness of an AWFS is a very general condition. A compact AWFS is one

satisfying a smallness condition about behaving well with respect to certain filtered colimits.

This is weaker than having to preserve filtered colimits and even weaker than preserving

certain filtered colimits of monomorphisms. As such, accessible WFSs are just one example

of compact AWFSs. The most well-behaved form of compactness is E-compactness. Rather

than requiring that the endofunctors of an AWFS preserve filtered colimits, E-compactness

only requires that they preserve filtered colimits “up to epimorphisms”, or at least some

class of epimorphisms. Examples of E-compact AWFSs are accessible AWFSs and the WFSs

of the h-model structure on k-spaces.

The fact that the h-model structure on k-spaces is an E-compact algebraic model category

is a major result of this thesis. Many of the constructions previously reserved for cofibrantly

generated categories can now be done for the h-model structure. In particular, we can

lift it along certain right adjoints and we are able to show that the projective algebraic

model structure exists for the h-model structure on any category of diagrams. Moreover the
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projective model structure is E-compact itself. This result could open the way for h-model

structures to have a more important role in modern homotopy theory.

By [Col06b], there is a mixed model structure on k-spaces whose weak equivalences are

weak homotopy equivalences and whose fibrations are Hurewicz fibrations. We call this the

m-model structure. We are able to use the E-compactness of the h-model structure to show

that the m-model structure is algebraic. Unfortunately, we are not able to show that the

m-model structure is compact.

It has come to the author’s attention that it is shown in [Gau19, §4] that the q-, h-,

and m-model structures on the locally presentable category of delta-generated spaces are

accessible model structures. So there is some precedent for the ideas presented here.

The category of simplicial sets has many nice properties that often make it the preferred

model for a category of spaces over topological spaces themselves. Many of these properties

are captured by the structure of a locally presentable category. The canonical counterexam-

ple to a locally presentable category is the category of topological spaces. The category Top

is too large to be able to express every object as a filtered colimit of spaces in a fixed set.

We present an alternative to this perspective as well. We define quasiaccessible categories,

which are, roughly, categories whose objects can be expressed as certain filtered colimits “up

to epimorphisms” of objects in a fixed set. Every locally presentable category is quasiacces-

sible. Moreover, we prove that the categories of topological spaces and k-spaces are both

quasiaccessible categories.

We are able to recover much of the theory of accessible categories in the context of quasi-

accessible categories. We define quasiaccessible WFSs and prove that every quasiaccessible

WFSs has an associated algebraic weak factorization system, an analog of a result of Rosický
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in [Ros17] for accessible WFSs. This allows us to show that every quasiaccessible model cat-

egory has an associated algebraic model category. We prove that the Bousfield-Friedlander

theorem can be used to localize quasiaccessible model categories and that the localized model

category we get from this process is a quasiaccessible model category. Then the localized

model category has an associated algebraic model category. Finally, we prove that the h-

model structure on topological spaces is quasiaccessible. So it is possible to Bousfield-localize

the h-model structure and get back an algebraic model category.

In the final section of this thesis, we give a characterization of accessible model categories

whose weak equivalences are accessible and accessibly embedded. This result was motivated

by Smith’s theorem for combinatorial model categories.

1.2 Organization of this Thesis

Chapter 2 serves the dual purpose of establishing the conventions and much of the no-

tation that we will use throughout this thesis and of presenting G. M. Kelly’s construction

of free monads and monoids in [Kel80]. Most of the important, nonstandard definitions and

notation are in sections 2.1.1 - 2.1.5 and section 2.4.1. We in particular want to point out

that in section 2.1.5 we commit to using the term “R-algebra” for the algebras of a pointed

endofunctor R. Even when R is a monad, the unqualified R-algebras will refer to the algebras

for the underlying pointed endofunctor. Likewise, the unqualified term “L-coalgebra” will

refer to a coalgebra for the copointed endofunctor L.

Our treatment of free monads closely follows the approach in [Kel80]. We prove some

of the results there in more detail. We also place an emphasis on free monad sequences

first, before the smallness condition on pointed endofunctors. If the free monad sequence

on a pointed endofunctor (T, τ) converges objectwise, then the free monad on (T, τ) exists

5



and is given on each object by the value the free monad sequence evaluated on that object

converges to. This is true even if the endofunctor T does not satisfy the smallness condition

of section 2.4. One departure from [Kel80] is our definition of weakly convergent free monad

sequences in section 2.3.4. Weak convergence is more general than objectwise convergence,

but it is still strong enough to prove that the free monad on a pointed endofunctor exists.

Weak convergence plays an important role in the proof in chapter 3 that free AWFSs on

certain left algebraic weak factorization systems (LAWFSs) exist. In fact, there was an issue

with Garner’s original proof of this result and weak convergence is what is necessary to make

his proof go through.

In section 2.4, we introduce a smallness condition on endofunctors that guarantees their

free monad sequences converge objectwise and therefore converge weakly. We also discuss a

special case of this smallness condition that is inherited by the free monad in section 2.4.4.

This is a new result, which makes many of the nice properties of E-compact AWFS possible

in later sections, including our proof in chapter 5 that the h-model structure on k-spaces is

an E-compact algebraic model category.

In section 2.5, we show that weak convergence of the free monoid sequence for pointed

objects in certain strict monoidal categories implies the existence of free monoids on those

objects.

In chapter 3, we present our correction of Garner’s construction of free AWFSs in [Gar08]

and [Gar07] alongside a few original results. We also generalize Garner’s construction to

make use of the full generality of Kelly’s paper in the process. After introducing AWFSs

and LAWSFs, we prove some results about how their categories of algebras and coalgebras

behave with respect to categorical lifts in 3.1.3. In 3.2.1, we present a variant of Garner’s

proof that the category of LAWFSs has the structure of a strict monoidal category and that

6



the monoids in this category are the AWFSs. This makes it possible to apply the results

of section 2.5 to the construction of free AWFSs on LAWFSs. We also define compact and

E-compact endofunctors, functorial factorization systems, and model categories in section

3.2.2. The notation and definitions we introduce in section 3.2.2 are important for the rest

of the chapters in this thesis. We show that the free monoid sequence on a compact LAWFSs

converges weakly. So free AWFSs exist on compact comonads and compact LAWFSs.

We prove some useful results in 3.3 about E-compact objects. Specifically, we show that

free AWFSs on E-compact LAWFSs are E-compact and that a model category whose weak

factorization systems have associated E-compact LAWFSs can be given the structure of an

E-compact algebraic model category.

In sections 4.1.1 and 4.1.2, we define compact adjunctions, show that it is possible to

transfer a compact AWFS along a compact right adjoint, and prove that when an acyclicity

condition is satisfied, we can transfer an algebraic model category along a compact right

adjoint. While this result is known for cofibrantly generated model categories [GS07, 3.6],

cofibrantly generated algebraic model categories [Rie11, §3.3], and for accessible model cat-

egories [GKR20], it has not been shown in this level of generality before. We use this to

prove in 4.1.3 that when C has the structure of a compact algebraic model category, the

projective model structure on the functor category C D exists and is algebraic for any small

category D . Furthermore, when the algebraic model structure on C is E-compact, then the

projective algebraic model structure is E-compact.

In chapter 5, we prove that the h-model structure on k-spaces has an associated E-compact

algebraic model structure and that the m-model structure on k-spaces has an associated

algebraic model structure. We reduce the existence of an E-compact algebraic h-model

structure on any topologically bicomplete category to the E-compactness of two LAWFSs.
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So this provides an entirely different condition for the existence of the h-model structure on

a topologically bicomplete category than the monomorphism hypothesis in [BR13]. So even

just the existence of an h-model structure in this case is a new result, but we also get that

the h-model structure is algebraic and E-compact. While [BR13] needed the monomorphism

hypothesis to prove the existence of the h-model structure and fix an issue with the proofs

in [Col06a] and [MS06, §4], the monomorphism hypothesis does not seem to be adequate

to show the h-model structure is algebraic. In [BR13] they could only show one of the

factorizations of the h-model structure was algebraic. In 5.1.4, we reduce our condition that

the two LAWFSs are E-compact to conditions on the topologically bicomplete category itself.

We then show in 5.1.5 that the category of k-spaces satisfies these conditions. Therefore the

h-model structure on k-spaces exists, is algebraic, and is E-compact.

We show in section 5.2.1 that under certain conditions a mixed model structure inherits

the structure of an algebraic model category. Under stricter conditions this mixed algebraic

model category will be E-compact. We show in section 5.2.2 that the m-model structure on

k-spaces has an associated algebraic model structure.

In chapter 6, we define quasiaccessible categories. These categories generalize locally

presentable categories and include the categories of topological spaces and of k-spaces. We

are able to prove an analog of a surprising number of results for accessible categories in this

more general context. We introduce quasiaccessible and weakly quasiaccessible functors in

6.2.1. Through some highly technical proofs in sections 6.2.2 and 6.2.3, we are able to show in

6.2.4 that the forgetful functor UL ∶ CoalgL → C for a quasiaccessible copointed endofunctor

L on C is a weakly quasiaccessible functor. This, along with our slight generalization of the

special adjoint functor theorem in A.3, is enough to show that UL has a right adjoint. It

then follows that the cofree comonad on L exists and is a compact endofunctor.
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We use our results on quasiaccessible copointed endofunctors to show that every quasiac-

cessible WFS has an associated compact LAWFS and an associated AWFS in section 6.3.1.

Therefore, every quasiaccessible model category has an associated algebraic model category.

Under some mild hypotheses, we show that the localized model category produced by the

Bousfield-Friedlander theorem is a quasiaccessible category when the original category is

quasiaccessible in 6.3.2. Therefore, in this case, the localized category has an associated

algebraic model category. We show in 6.3.3 that the h-model structure on Top is quasi-

accessible. The author has not yet been able to prove this for the h-model structure on

k-spaces.

In chapter 7, we discuss a characterization of accessible model categories whose weak

equivalences are accessible and accessibly embedded. Unlike in combinatorial model cate-

gories, it does not seem to be the case that the weak equivalences in an accessible category

must be accessible and accessibly embedded. Without this assumption on the weak equiv-

alences, the problem of characterizing accessible model categories seems intractable to the

author. Even giving ourselves this assumption, the characterization we do obtain is of

questionable utility. It certainly is nowhere near as easy to apply as Smith’s theorem for

combinatorial categories.

1.3 Contributions

Most of chapter 2 is expository. Our treatment of the weak convergence of free monad

sequences and free monoid sequences in sections 2.3.4 and 2.5.1 is original. Also the results

in 2.4.4 are new.

The definitions of the categorical lift operations (−)� and �(−) in section 3.1.3 are due

to Garner [Gar08]. While the author is aware of [BG16a, §2.7], the results about categorical
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lifts in the remainder of section 3.1.3 are more general, complete, and organized than what

currently exists in the literature. Our definitions of compact and E-compact endofunctors

are generalizations of ideas in [Gar08] and [BR13]. In section 3.2.3, we use weak convergence

to fix a mistake in Garner’s proof of the existence of free AWFSs on LAWFSs. In the process

we generalize his results. Our generalization is a straightforward application of the results

in [Kel80] and was no doubt known by Garner, although it is not present in his papers. The

result 3.2.19 (3.1.4) seems to be new and is enabled by our work on categorical lifts in section

3.1.3. The results in section 3.3 are all new.

The results in chapter 4 are original in the algebraic context. Special cases of 4.1.8 and

4.1.12 are known for cofibrantly generated algebraic model categories [Rie11, §3.3, §4.4] and

for accessible model categories [GKR20].

While the factorization system (Lt1,R1) in section 5.1.3 was constructed in [Col06a] and

its properties were shown in [BR13], as far as the author is aware, the factorization system

(L1,Rt1) is new. Theorem 5.1.9 is original. The results in sections 5.1.4 and 5.1.5 are all

new. The algebraic parts of section 5.2 are new.

The material in chapter 6 closely mirrors results in [AR94], but is all entirely new in this

context.

The results in section 7.2 are the author’s, except where otherwise indicated.

The propositions in A.3 are slight variations on more well-known results. Proposition

A.5.1 in A.5 may have been folklore, but we actually work out the proof. This result is not

used anywhere else in this thesis, but seemed interesting enough to include.
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1.4 Future Work

It is likely that many of the important concepts in this thesis are not in their correct

final form. Since it seems unlikely that the free AWFS on an (E ,M′)-compact LAWFS

will satisfies a version of compactness itself, it would probably be better to define compact

AMCs to be the ones freely generated by (E ,M′)-compact LAWFSs (Ct,F) and (C,Ft) with

∣AlgF∣ = F and ∣AlgFt ∣ = F ∩W. It would then likely be possible to transport these model

structures along adjunctions and show that the projective model structure on any diagram

category C D exists by transporting the compact LAWFSs. This perspective already seems

to be implicit in our proofs of 5.2.1 and 6.3.4.

Another concept that would likely benefit from reformulation is the notation of quasiac-

cessible functor. It seems that our current definition is too strict, since it does not apply

to accessible functors or to the h-model structure on k-spaces. It is the belief of the author

that all of the results will still go through if we only require that quasiaccessible functors

preserve E-tightness of (M, λ)-cocones and send objects in some sufficiently dense subcol-

lectionM′ ⊆M to objects inM. This subcollection should be the λ-pure morphisms in the

case of accessible functors and the closed subspace inclusions in the case of the factorizations

of the h-model structure on k-spaces. It may be easier to also include this weakening in the

definition of quasiaccessible categories.

It may be possible to prove that quasiaccessible model categories lift along certain left

adjoints. We would then be able to prove that the injective model structure exists on any

category of diagrams in a quasiaccessible model category. This would provide a method for

computing homotopy limits of arbitrary diagrams in the h-model structure.
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There is likely much more that can be said about Bousfield localization of compact alge-

braic model categories beyond the Bousfield-Friedlander theorem for quasiaccessible model

categories.
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Chapter 2: Free Monads and Monoids

The problem of the construction and existence of free monads on pointed endofunctors has

its origin in the orthogonal subcategory problem. Kelly’s paper [Kel80] is the culmination of

the work of many mathematicians in the 70’s on these problems. Kelly’s paper unified these

results, generalized them, and corrected some mistakes in the literature. The introduction

to [Kel80] provides a nice summary.

Our goals in this chapter are to establish the notation we will use throughout this thesis,

to give an exposition of the relevant results in [Kel80] about the existence of free monads on

pointed endofunctors, and to present a couple additions to Kelly’s work that will be useful

in later sections. Most of the definitions and notation that we need in later chapters that is

nonstandard or not well-known is concentrated in sections 2.1.1 - 2.1.5 and some in section

2.4.1. Section 2.2 is important for understanding what a free objects is and our approach to

the construction of free monads on pointed endofunctors. The reader who is not interested

in the intricate details of the free monad construction may skip much of the material in

sections 2.3 and 2.4. The important theorems from those sections are listed below. Section

2.5 shows how to apply our results on the existence of free monads to the existence of free

monoids.

Theorem 2.3.22. If the free monad sequence for (T, τ) converges weakly, then the free

monad on (T, τ) exists.
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Theorem 2.3.23. If the free monad sequence for (T, τ) converges objectwise, then it con-

verges weakly.

Theorem 2.4.23. Let C be a cocomplete category equipped with well-copowered, left proper,

orthogonal factorization systems (E ,M) and (E ′,M′). If (T, τ) is a pointed endofunctor on

C and T ∶ C → C preserves E-tightness of (M′, λ)-cocones for a regular cardinal λ, then the

free monad sequence on (T, τ) converges objectwise.

Proposition 2.4.25. Let C be a cocomplete category equipped with a well-copowered, left

proper, orthogonal factorization system (E ,M). If (T, τ) is a pointed endofunctor on C and

T ∶ C → C preserves E-tightness of λ-filtered cocones for a regular cardinal λ, then the free

monad on (T, τ) preserves E-tightness of λ-filtered cocones.

2.1 Category Theory

2.1.1 Preliminaries

We will work in a Grothendieck universe. In a few places we will need a second Grothendieck

universe that contains the first, so that we can speak of metacategories, like CAT and

CAT/C 2 in section 3.2.5. The terms small collection and large collection will refer to sets

and proper classes, respectively. A set X is λ-small for a cardinal λ if there are fewer than

λ elements in X .

In general, we will not require our categories to be locally small. When X and Y are two

objects in a category C , we will use the notation C (X,Y ) for the collection of homomor-

phisms in C from X to Y . The notation ob(C ) will be used for the collection of objects in

C .

A category C is λ-small for a cardinal λ if there are fewer than λ morphisms in C . A

category C is small if there is a cardinal λ such that C is λ-small. Equivalently, a category
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is small if it is locally small and the collection of its objects is a set. A category is large if

it is not small. We reserve the term diagram in a category C for a functor D ∶ D → C on a

small category D . We will specify that the functor D ∶ D → C is a large diagram in C when

D is a large category. A λ-small diagram is a diagram D ∶ D → C on a λ-small category D .

Let X be an object in a category C and let ∆D
X ∶ D → C be the constant diagram on

D valued at X. A cocone for a diagram D ∶ D → C is an object X and a natural transfor-

mation α ∶ D → ∆D
X . We will use the notation α ∶ DÐ→X for this natural transformation.

Dually, a cone α ∶ XÐ→D for a diagram D ∶ D → C consists of an object X and a natural

transformation α ∶ ∆D
X →D.

If X is a collection of objects in a category A , then Full(X ) and Disc(X ) will denote

the full and discrete subcategories of A on the objects in X , respectively. If F ∶ A → B

is a functor, we will use the notation F (X ) for the collection of objects {FX ∣ X ∈ X} in

B. If Y is a collection of objects in B, then F −1(Y) will denote the collection of objects

{X ∣ FX ∈ Y} in A . We extend this notation to subcategories X of A and Y of B as well.

So F (X ) = F (ob(X )) and F −1(Y ) = F −1(ob(Y )).

We will use the following notation.

• 2 for the category → freely generated by a single map with distinct domain and

codomain

• 3 for the category → → freely generated by two composable maps between 3 distinct

objects

• out for the category ← → freely generated by two maps with the same domain and

distinct codomains
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• in for the category → ← freely generated by two maps with the same codomain and

distinct domains

In general, when A and C are categories, then C A will denote the category whose objects

are functors A → C and whose morphisms are natural transformations.

The most important functor category in this thesis is C 2. We will represent a map

f

u

g

v

in C 2 from f to g by the pair (u, v). There is a functor dom ∶ C 2 → C that sends objects

f ∶ X → Y to X and morphisms (u, v) ∶ f → g to u. We also have a functor cod ∶ C 2 → C

that sends objects f ∶X → Y to Y and morphisms (u, v) ∶ f → g to v.

We will use the notation E↡, Es↡, M#, and Ms# for the collections of epimorphisms,

strong epimorphisms, monomorphisms, and strong monomorphisms, respectively, in a given

category.

2.1.2 Cardinals and Ordinals

We will identify small categories D satisfying the following conditions with partially

ordered sets.

• For any two objects X and Y in D , the cardinality of D(X,Y ) is at most 1.

• If there are maps X → Y and Y →X in D , then X = Y .

A small category D is equivalent to a partially ordered set when it satisfies the first condition

and X ≅ Y in the second condition.

Let Ord be the category of ordinal numbers. This is a large, locally small category whose

objects consist of all ordinal numbers. There is a unique morphism α → β in Ord from an
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ordinal α to an ordinal β exactly when α ≤ β. The ordinal 0 is the initial object of Ord. For

each ordinal α, let Ord<α be the full subcategory of Ord on the ordinal numbers smaller

than α. Then Ord<α is a small category which can be identified with the partially ordered

set α.

Definition 2.1.1. We will take a transfinite sequence in a category C to be a functor

F ∶ Ord→ C . For each ordinal α, an α-sequence in C is a functor F ∶ Ord<α → C .

Definition 2.1.2. A transfinite sequence F ∶ Ord→ C is cocontinuous if F (γ) ≅ colimα≤γ F (α)

for every limit ordinal γ. A transfinite sequence of ordinals F ∶ Ord → Ord is strictly in-

creasing if F (α) < F (β) whenever α < β.

Let α be an ordinal. We can extend the above definitions to α-sequences F ∶ Ord<α → C

and F ∶ Ord<α → Ord by restricting to ordinals less than α. Every strictly increasing

transfinite sequence (or α-sequence) in Ord is an injective functor on objects.

We can define a cocontinuous transfinite sequence F ∶ Ord→ C inductively by specifying

a value for F (0) and a rule that defines F (α+1) and F (α → α+1) whenever F (α) is defined.

The transfinite sequence is completely determined by these specifications.

In a category C , the term transfinite composition will refer to the constituent map α0 ∶

F (0) → colimF of the colimiting cocone α ∶ F Ð→ colimF of a cocontinuous α-sequence

F ∶ Ord<α → C .

Definition 2.1.3. An infinite ordinal α is regular if every final full subcategory of Ord<α is

isomorphic to Ord<α.

We will use the notation ∣α∣ for the cardinality of an ordinal α.

Definition 2.1.4. An ordinal α is initial if ∣β∣ < ∣α∣ for every ordinal β < α.
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For each cardinal λ, there is a unique initial ordinal α with ∣α∣ = λ. We will say α is the

initial ordinal of λ in this case.

Every regular ordinal is an initial ordinal, but not every infinite initial ordinal is regular.

Every infinite initial ordinal is a limit ordinal, but not every limit ordinal is initial.

Definition 2.1.5. An infinite cardinal λ is regular if

∑
i∈I
λi < λ

for every λ-small set {λi}i∈I of cardinals λi < λ.

Every infinite successor cardinal is a regular cardinal.

Proposition 2.1.6. An ordinal is regular if and only if it is the initial ordinal of a regular

cardinal.

Proof. Let α be a regular ordinal. Then it is an initial ordinal. Suppose there is an ∣α∣-small

set {λi}i∈I of cardinals λi < ∣α∣ such that ∑i∈I λi = ∣α∣. Let β be the initial ordinal of the

cardinality of I. Every element i ∈ I corresponds to a unique object βi in Ord<β We can

then construct a strictly increasing cocontinuous β-sequence of ordinals F ∶ Ord<β →Ord<α

such that ∣F (βi)∣ ≥ λi for each i ∈ I : If we run out of ordinals less than α at an ordinal

β′ < β, the first of the following contradictions holds with β′ in place of β. If the colimit of

F in Ord is equal to α, then Ord<β ≅ Ord<α and ∣α∣ = ∣β∣, which is a contradiction. If the

colimit of F in Ord is an ordinal ζ < α, then ∣ζ ∣ ≥ ∑i∈I λi = ∣α∣, which means α is not initial

which is another contradiction. So ∣α∣ must be a regular cardinal.

Conversely, suppose λ is a regular cardinal. Let α be the initial ordinal of λ. Suppose

D is a final full subcategory of Ord<α. Since the underlying set of D is well-ordered, there

is an isomorphism D ≅ Ord<β for some β ≤ α. If ∣β∣ < ∣α∣, then the equality ∑ζ∈ob(D) ∣ζ ∣ =
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∣ colimD ∣ = λ means λ is not regular, a contradiction. If β < α and ∣β∣ = ∣α∣, then α is not

initial, a contradiction. So β = α and α is a regular ordinal.

Example 2.1.7. The ordinal ω is the initial ordinal of ℵ0 and it is a regular ordinal. The

ordinal ω ⋅ 2 is a limit ordinal, but it is not initial, since ∣ω ⋅ 2∣ = ℵ0. Therefore it is also not

regular. The cardinal ℵ0 and its successors ℵ1,ℵ2,⋯ are regular cardinals. The limit cardinal

ℵω is not a regular cardinal. The initial ordinal of ℵω is not a regular ordinal.

Let λ be a regular cardinal. A λ-directed set is a partially ordered set X such that every

λ-small subset of X has an upper bound. A directed set is an ℵ0-directed set.

Definition 2.1.8. A regular cardinal κ is sharply smaller than a regular cardinal λ if for

every λ-directed set D, every κ-small subset of D is a subset of a κ-small λ-directed subset

of D.

We will use the notation κ ◁ λ when κ is sharply smaller than λ. The relation ◁ is

transitive on the regular cardinals. For every regular cardinal λ, λ◁λ+ and λ◁(2λ)+, where

λ+ is the successor cardinal of λ.

2.1.3 Cocones and Colimits

Let λ be a regular cardinal. A category is λ-directed if it is a λ-directed partially ordered

set. Some authors define λ-directed categories as λ-directed preordered sets rather than

partially ordered sets. As a consequence of proposition 2.1.14, this distinction is rarely

important. A category C is λ-filtered if every λ-small diagram in C has a cocone. Every

λ-directed category is a λ-filtered category. A category D is λ-sequential if D is equivalent

to Ord<α for some regular ordinal α with ∣α∣ ≥ λ. By the following proposition, every

λ-sequential category is λ-directed.
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Proposition 2.1.9. Let λ be a regular cardinal. For every regular ordinal α with ∣α∣ ≥ λ,

Ord<α is a λ-directed category.

Proof. Let D ∶ D ↪ Ord<α be the inclusion of a λ-small subcategory. Since the cardinality

of ob(D) is less than ∣α∣, D cannot be isomorphic to Ord<α. So D is not a final subcategory

of Ord<α. This means there is an object β in Ord<α that does not have a map to any object

in D . In other words, β > β′ for each object β′ in D . By uniqueness of maps in Ord<α,

there is a cocone DÐ→β. So β corresponds to an upper bound for the underlying partially

ordered set of D in the underlying partially ordered set of Ord<α.

Let λ be a regular cardinal. A diagram D ∶ D → C is λ-sequential, λ-directed, or λ-filtered

if D is a small λ-sequential, λ-directed, or λ-filtered category, respectively. When λ = ℵ0, we

call λ-directed and λ-filtered diagrams directed and finitely filtered diagrams, respectively. A

cocone α ∶DÐ→X is λ-sequential, λ-directed, or λ-filtered if D is a λ-sequential, λ-directed,

or λ-filtered diagram, respectively.

Remark 2.1.10. Whenever λ and κ are regular cardinals with κ > λ, then every κ-filtered di-

agram is λ-filtered. So every functor that preserves λ-filtered colimits in particular preserves

κ-filtered colimits.

The notation α ∶ DÐ→X for a cocone can at times be cumbersome to work with. For

this reason we will often instead use the notation {αd ∶ Yd → X}d for a cocone α ∶ DÐ→X,

where Yd = Dd and d ranges over the objects of D . The trade-off with this notation is that

the morphisms of the diagram D are implicit. Borrowing terminology from directed colimits,

when u ∶ d1 → d2 is a morphism in D , we will refer to Du ∶Dd1 →Dd2 as a connecting mor-

phism of the cocone {αd}d. Unlike in the case of a directed cocone, a connecting morphism

between objects d1 and d2 indexing a general cocone does not have to be unique.
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Let D ∶ D → C and let E ∶ E → C be diagrams. A map F ∶ α → β of cocones α ∶DÐ→X

and β ∶ EÐ→X is a functor F ∶ D → E such that EFd = Dd and βFd = αd for each object

d in D . The cocone α is a subcocone of β if F ∶ D → E is the inclusion of a subcategory. A

map F ∶ α → β of cocones α ∶DÐ→X and β ∶ EÐ→X is final if F ∶ D → E is a final functor.

Let X be an object in a category C and let D ∶ D → C be a diagram. Recall, the comma

category D ↓ X has an object for each pair (d, f) of an object d in D and a morphism

f ∶ Dd → X in C . A morphism u ∶ (d1, f) → (d2, g) in D ↓ X is a map u ∶ d1 → d2 in D

such that g ○Du = f . Often we can refer to just the map f ∶ Dd→ X as an object of D ↓ X

without confusion. The comma category comes with a functor Φ ∶ D ↓ X → C that sends

objects (d, f) to Dd and sends morphisms u ∶ (d1, f) → (d2, g) to Du ∶ Dd1 → Dd2. We

call Φ the canonical diagram of X relative to D. There is a cocone ϕ ∶ ΦÐ→X defined by

ϕ(d,f) = f ∶ Dd → X. The cocone ϕ ∶ ΦÐ→X is the canonical cocone of X relative to the

diagram D. If D is a subcategory of C and D ∶ D ↪ C is the subcategory inclusion functor,

then we will say ϕ is the canonical cocone of X relative to D . If D is a collection of objects

in C and D = Full(D), then we will say ϕ is the canonical cocone of X relative to D.

Let X be a collection of morphisms in a category C and let X be an object in C . An

X -map is a map in X .

Definition 2.1.11. We will say a cocone α ∶ DÐ→X is an X -cocone if αd ∶ Dd → X is an

X -map for each object d in D . When λ is a regular cardinal and α is both a λ-filtered cocone

and an X -cocone, we will say α is an (X , λ)-cocone.

For a diagram D ∶ D → C , let D ↓X X be the full subcategory of the comma category D ↓X

on the objects (d, f) such that f ∶Dd→X is an X -map in C .

Definition 2.1.12. Let D ∶ D → C be a diagram. The canonical X -diagram of X with

respect to D is the restriction Φ∣X ∶D ↓X X → C of the canonical diagram Φ ∶D ↓X → C to
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the subcategory D ↓X X. The canonical X -cocone of X with respect to D is the restriction

of the canonical cocone ϕ ∶ ΦÐ→X to the diagram Φ∣X .

By the universal property of colimits, a cocone {fd ∶ Xd → X}d defines a map g ∶

colimdXd → X. At times, we will write g as colimd fd, since the above cocone defines a

colimiting cocone {fd → g}d in the arrow category C 2.

Definition 2.1.13. Let X be a collection of maps in a category C and let D be a small

category.

• A cocone {fd ∶ Xd → X}d in C is X -tight if the colimit colimdXd exists and the map

g ∶ colimdXd →X defined by the cocone is an X -map.

• An endofunctor F ∶ C → C preserves X -tightness of cocones of shape D if whenever

α ∶DÐ→C is an X -tight cocone on a diagram D ∶ D → C , the cocone Fα ∶ FDÐ→FC

is X -tight.

We will sometimes use an analogous condition for a functor F ∶ A → B between cat-

egories. When X is a collection of maps in A , Y is a collection of maps in B, and D

is a small category, we say that F sends X -tight cocones of shape D to Y-tight cocones if

Fα ∶ FDÐ→FC is a Y-tight cocone whenever α ∶D → C is an X -tight cocone on a diagram

D ∶ D → A . Colimiting cocones in a category C are exactly the X -tight cocones for the

collection X of isomorphisms in C .

The following results show that λ-directed and λ-filtered diagrams are often interchange-

able.

Proposition 2.1.14 ([AR94, 1.21]). For every regular cardinal λ and every small λ-filtered

category C , there is a final functor D ∶ D → C on a λ-directed category D .

22



Corollary 2.1.15. Let λ be a regular cardinal. A category has λ-filtered colimits if and only

if it has λ-directed colimits.

Corollary 2.1.16. Let λ be a regular cardinal. A functor F ∶ A → B preserves λ-directed

colimits if and only if F preserves λ-filtered colimits.

Remark 2.1.17. Although it is true that a category has ℵ0-directed colimits if and only if it

has ℵ0-sequential colimits and that a functor preserves ℵ0-directed colimits if and only if it

preserves ℵ0-sequential colimits, this does not have to be true for regular cardinals λ > ℵ0.

[AR94, 1.7, 1.21].

2.1.4 Monads and Comonads

Definition 2.1.18.

• A pointed endofunctor on a category C is a pair (R, η) consisting of a functor R ∶ C → C

and a natural transformation η ∶ Id → R.

• A copointed endofunctor on a category C is a pair (L, ε) consisting of a functor L ∶

C → C and a natural transformation ε ∶ L→ Id .

We will call the natural transformations η and ε the unit and counit maps of R and L,

respectively. We will refer to an endofunctor F ∶ C → C itself as a (co)pointed endofunctor

when a (co)unit map for F exists.

A map θ ∶ (R, η)→ (R′, η′) of pointed endofunctors is a natural transformation θ ∶ R→ R′

such that η′ ○ θ = η. A map θ ∶ (L, ε) → (L′, ε′) of copointed endofunctors is a natural

transformation θ ∶ L→ L′ such that θ ○ ε = ε′.

Definition 2.1.19.
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• A monad on a category C is a triple (R, η, µ) consisting of a pointed endofunctor (R, η)

and a map µ ∶ RR→ R such that the following diagrams commute.

R RR R

R
id

ηR

µ

Rη

id

RRR RR

RR R

Rµ

µR µ

µ

• A comonad on a category C is a triple (L, ε, δ) consisting of a copointed endofunctor

(L, ε) and a map δ ∶ L→ LL such that the following diagrams commute.

L

L LL L

δ
idid

εL Lε

L LL

LL LLL

δ

δ δL

Lδ

We will call the natural transformations µ and δ the multiplication and comultiplication

maps of R and L, respectively. We will refer to an endofunctor F ∶ C → C itself as a

(co)monad when maps exist that give F the structure of a (co)monad.

A map θ ∶ (R, η, µ) → (R′, η′, µ′) of monads on C is a map of pointed endofunctors

θ ∶ (R, η)→ (R′, η′) such that the following diagram commutes.

RR RR′ R′R′

R R′

Rθ

µ

θR′

µ′

θ

A map θ ∶ (L, ε, δ) → (L′, ε′, δ′) of comonads on C is a map of copointed endofunctors

θ ∶ (L, ε)→ (L′, ε′) such that the following diagram commutes.

L L′

LL LL′ L′L′

θ

δ δ

Lθ θL′

Note that θR′ ○Rθ = R′θ ○ θR and θL′ ○ Lθ = L′θ ○ θL, since functor composition in End(C )

is monoidal.
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Let End(C ) be the functor category C C whose objects are endofunctors on C and whose

morphisms are natural transformations. Let pEnd(C ) be the category whose objects are

pointed endofunctors on C and whose morphisms are maps of pointed endofunctors. The

following observations will be useful.

Proposition 2.1.20. The forgetful functor pEnd(C ) → End(C ) creates large connected

colimits.

Proof. Given a connected, possibly large, diagram in End(C ) that factors through pEnd(C ),

we can create a new diagram of endofunctors by adding the point Id and all of the unit maps

to the original diagram. Then the original diagram is a final subdiagram of the new diagram.

When the colimit of the new diagram in End(C ) exists, the colimiting cocone includes a

map from Id to the colimit. Taking this as the unit for the colimiting endofunctor, we get

that the diagram is a colimiting diagram in pEnd(C ).

If D ∶ D → End(C ) is a diagram that factors through pEnd(C ) and if α ∶ DÐ→T

is a cocone in End(C ), then T must be a pointed endofunctor and α must be a cocone

in pEnd(C ). Therefore, if the colimit of D exists in pEnd(C ), then it is a colimit in

End(C ).

Let Cmd(C ) be the category whose objects are comonads on C and whose morphisms

are maps of comonads.

Proposition 2.1.21. The forgetful functor Cmd(C ) → End(C ) creates colimits of the

(possibly large) diagrams whose colimits exist in End(C ).

Proof. Let D ∶ D → End(C ) be a possibly large diagram that factors through Cmd(C )

whose colimit in End(C ) exists. Let (Dd, εd, δd) be the comonad structure on Dd for

each object d in D . Let L = colimD with colimiting cocone ζ ∶ DÐ→L. If we define
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θd ∶= ζdL ○Ddζd ○ δd ∶ Dd → LL on each object d, then the fact that the connecting maps

of the diagram D are maps of comonads implies that θ ∶ DÐ→LL is a cocone. This cocone

defines a map δ ∶ L → LL out of the colimit satisfying the relations δ ○ ζd = ζdL ○Ddζd ○ δd.

In the same way, we can define a map ε ∶ L → Id out of the colimit satisfying the relations

ε ○ ζd = εd. The fact that each Dd is a comonad and the universal property of the colimit

imply the comonad axioms hold for (L, ε, δ). So the colimit of D exists in Cmd(C ).

Corollary 2.1.22. The category Cmd(C ) is cocomplete when C is cocomplete.

Remark 2.1.23. With the operation ○ of endofunctor composition and the identity functor

Id ∶ C → C , (End(C ), ○, Id) is a strict monoidal category. A monad on C is a monoid in the

strict monoidal category (End(C ), ○, Id). Conversely, every monoid X in a strict monoidal

category (C ,⊗,I) defines an endofunctor X ⊗ (−) ∶ C → C which is a monad on C .

We will see in proposition 2.1.28 that monads and comonads always come from adjunc-

tions. Conversely, every adjunction has an associated monad and comonad.

Proposition 2.1.24 ([Bor94a, 4.2.1]). Suppose F ∶ A → B is the left adjoint of a functor

G ∶ B → A .

A B

F

G

⊺

Let ξ ∶ FG→ Id and ν ∶ Id → GF be the counit and unit maps, respectively, for the adjunction.

• The endofunctor GF ∶ A → A with the maps ν ∶ Id → GF and GξF ∶ GFGF → GF is

a monad (GF,ν,GξF ) on A .

• The endofunctor FG ∶ B →B with the maps ξ ∶ FG → Id and FνG ∶ FG → FGFG is

a comonad (FG, ξ,FνG) on B.
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2.1.5 Algebras and Coalgebras

A coalgebra for a copointed endofunctor (L, ε) on a category C is a pair ⟨X,k⟩ of an

object X and a morphism k ∶X → LX in C such that εX ○k = idX . An algebra for a pointed

endofunctor (R, η) on C is a pair ⟨Y, s⟩ of an object Y and a morphism s ∶ RY → Y such

that s ○ ηY = idY . We will call such pairs ⟨X,k⟩ and ⟨Y, s⟩ L-coalgebras and R-algebras,

respectively. We will also say an object X in C is an L-coalgebra if a map k ∶X → LX exists

such that ⟨X,k⟩ is an L-coalgebra. Similarly, we will use the term “R-algebra” to refer to

both the structure of an R-algebra and the property of having an R-algebra structure.

For a copointed endofunctor L on a category C , we have a category of L-coalgebras,

CoalgL, whose objects are pairs ⟨X,k⟩ such that X is an object in C and k ∶ X → LX is

a map exhibiting X as an L-coalgebra. A morphism ⟨X,k⟩ → ⟨Y, l⟩ in CoalgL is a map

f ∶X → Y in C such that the following diagram commutes.

X Y

LX LY

f

k l

Lf

(2.1)

Composition in CoalgL is determined by composition in C . The category CoalgL is usually

not a subcategory of C , since there may be multiple structure maps X → LX that make X

an L-coalgebra, but there is a forgetful functor UL ∶ CoalgL → C which sends a pair ⟨X,k⟩ to

X and a map f ∶ ⟨X,k⟩→ ⟨Y, l⟩ to f ∶X → Y . The category AlgR of R-algebras for a pointed

endofunctor R is defined dually. It too comes with a forgetful functor UR ∶ AlgR → C .

Proposition 2.1.25.

• The forgetful functor UL ∶ CoalgL → C creates colimits.

• The forgetful functor UR ∶ AlgR → C creates limits.

27



Proof. The proof is analogous to 2.1.28.

Corollary 2.1.26.

• If C is cocomplete, then CoalgL is cocomplete.

• If C is complete, then AlgR is complete.

In general, we will say that a category A is over a category C if there is a functor

A ∶ A → C . We will say a functor F ∶ A →B is over C if there is a functor B ∶ B → C such

that BF = A. We will use the notation ∣A∣ to denote the collection of objects in the image

of the functor A ∶ A → C . When the base category and the functor are clear from context,

we will use ∣A ∣ to denote the collection of objects in the image of A. With this notation,

viewing CoalgL and AlgR as categories over C via the forgetful functors, ∣CoalgL∣ is the

collection of L-coalgebras in C and ∣AlgR∣ is the collection of R-algebras in C .

Remark 2.1.27. If A and B are categories over C and F ∶ A →B is a functor over C , then

∣A ∣ ⊆ ∣B∣. If in addition G ∶ B → A is a functor over C , then ∣A ∣ = ∣B∣.

A map of copointed endofunctors α ∶ L → L′ on C induces a functor α∗ ∶ CoalgL →

CoalgL′ over C which sends objects ⟨X,k⟩ to ⟨X,αX ○ k⟩ and sends morphisms f ∶ ⟨X,k⟩→

⟨Y, l⟩ to f ∶ ⟨X,αX ○k⟩→ ⟨Y,αY ○ l⟩. A map of pointed endofunctors β ∶ R→ R′ on C induces

a functor β∗ ∶ AlgR′ →AlgR over C which sends objects ⟨Y, s⟩ to ⟨Y, s ○ βY ⟩ and morphisms

g ∶ ⟨Y, s⟩→ ⟨Z, t⟩ to g ∶ ⟨Y, s ○ βY ⟩→ ⟨Z, t ○ βZ⟩.

X LX L′X

Y LY L′Y

k

f

αX

Lf L′f

l αY

RY R′Y Y

RZ R′Z Z

βY

Rg

s

R′g g

βZ t

By regarding a comonad (L, ε, δ) on a category C as a copointed endofunctor, we of

course still have the category CoalgL described in the previous section, but we also have the
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Eilenberg-Moore category Coalgem
L . The objects in this category are again the pairs ⟨X,k⟩,

where k is a map X → LX. But we now require the structure maps to satisfy two relations.

Namely, we require that the following diagrams commute.

X

X LX

id
k

εX

X LX

LX LLX

k

k δX

Lk

A morphism ⟨X,k⟩ → ⟨Y, l⟩ in Coalgem
L is a map f ∶ X → Y in C making diagram

(2.1) commute. Imposing the second condition on k amounts to the requirement that the

coalgebra-structure map k ∶ X → LX of every object ⟨X,k⟩ in Coalgem
L is itself a map

k ∶ ⟨X,k⟩→ ⟨LX,δX⟩ in Coalgem
L .

We now have that there is a forgetful functor Coalgem
L → C and that Coalgem

L is a full

subcategory of CoalgL over C . Since the map δX ∶ LX → LLX makes LX a coalgebra for

the comonad L, every coalgebra X for the copointed endofunctor L is a retract of LX, which

is itself a coalgebra for the comonad L. Thus the retract closure of ∣Coalgem
L ∣ is equal to

∣CoalgL∣.

Dually, for any monad (R, η, µ), the Eilenberg-Moore category Algem
R exists, there is a

forgetful functor Algem
R → C , Algem

R is a full subcategory of AlgR over C , and the retract

closure of ∣Algem
R ∣ is equal to ∣AlgR∣.

Even when L is a comonad, we will use the phrases “L-coalgebra” and “coalgebra of L”

to refer to a coalgebra for the copointed endofunctor L. We will explicitly use the phrases

“coalgebra for the comonad L”, “comonad-coalgebra of L”, or “L-comonad-coalgebra” when-

ever we want to specify the stronger notion of L-coalgebra. As for the term “L-coalgebra”,

“coalgebra for the comonad L” can refer to an object ⟨X,k⟩ in Coalgem
L or to an object X

in ∣Coalgem
L ∣. We will use the same conventions for R-algebras.

Proposition 2.1.28.
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• The forgetful functor VL ∶ Coalgem
L → C creates colimits and has a right adjoint L̃ ∶ C →

Coalgem
L defined by sending objects X to ⟨LX,δX⟩ and sending morphisms f ∶ X → Y

to Lf ∶ ⟨LX,δX⟩→ ⟨LY, δY ⟩.

• The forgetful functor VR ∶ Algem
R → C creates limits and has a left adjoint R̃ ∶ C →

Algem
R defined by sending objects X to ⟨RX,µX⟩ and sending morphisms f ∶X → Y to

Rf ∶ ⟨RX,µX⟩→ ⟨RY,µY ⟩.

Proof. This is [Mac71, VI. §2, 1] along with an exercise in [Mac71, VI. §2].

Of course L = VLL̃ and R = VRR̃ in the above proposition.

Corollary 2.1.29.

• If C is cocomplete, then Coalgem
L is cocomplete.

• If C is complete, then Algem
R is complete.

A map of comonads α ∶ L → L′ on C induces a functor α∗ ∶ Coalgem
L → Coalgem

L′ over

C which sends objects ⟨X,k⟩ to ⟨X,αX ○ k⟩ and sends morphisms f ∶ ⟨X,k⟩ → ⟨Y, l⟩ to

f ∶ ⟨X,αX ○k⟩→ ⟨Y,αY ○l⟩. A map of monads β ∶ R→ R′ on C induces a functor β∗ ∶ Algem
R′ →

Algem
R over C which sends objects ⟨Y, s⟩ to ⟨Y, s ○ βY ⟩ and morphisms g ∶ ⟨Y, s⟩ → ⟨Z, t⟩ to

g ∶ ⟨Y, s ○ βY ⟩→ ⟨Z, t ○ βZ⟩.

Proposition 2.1.30.

• There is a bijective correspondence between maps of comonads α ∶ L→ C on a category

C and functors F ∶ Coalgem
L →Coalgem

C over C .

• There is a bijective correspondence between maps of monads β ∶ R → F on C and

functors G ∶ Algem
F →Algem

R over C .
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Proof. We will prove the statement about comonads. The proof for monads is dual. As we

saw above, a map of comonads α ∶ L → C on C defines a functor α∗ ∶ Coalgem
L → Coalgem

C

over C . Conversely, suppose F ∶ Coalgem
L →Coalgem

C is a functor over C . Then F sends an

object ⟨X,k⟩ in Coalgem
L to an object ⟨X,ϕF⟨X,k⟩⟩ in Coalgem

C . So ϕF⟨X,k⟩ is a map X → CX.

The functor F sends a map f ∶ ⟨X,k⟩ → ⟨Y, l⟩ to a map ⟨X,ϕF⟨X,k⟩⟩ → ⟨Y,ϕF⟨Y,l⟩⟩ in Coalgem
C .

Let βF ∶ L→ C be the natural transformation given by βFX = CεX ○ ϕF⟨LX,δX⟩.

We will show that the natural transformation βF is a map of comonads. Indeed, the

commutativity of the following diagram shows that β is a map of copointed endofunctors.

LX CLX CX

LX X

ϕF
⟨LX,δX ⟩

id
εLX

CεX

εX

εX

Since δX ∶ ⟨LX,δX⟩ → ⟨LLX,δLX⟩ is a map in Coalgem
L , the left diagram below commutes.

Since ⟨LX,ϕF⟨LX,δX⟩⟩ is an object in Coalgem
C , the right diagram below commutes.

LX LLX

CLX CLLX

CLX

ϕF
⟨LX,δX ⟩

δX

ϕF
⟨LLX,δLX ⟩

CδX

id
CεLX

LX CLX

CLX CCLX

CX CCX

ϕF
⟨LX,δX ⟩

ϕF
⟨LX,δX ⟩

CϕF
⟨LX,δX ⟩

δLX

CεX CCεX

δX

It follows that βF is a map of comonads.

When α ∶ L → C is a map of comonads and F = α∗ ∶ Coalgem
L → Coalgem

C , then ϕF⟨X,k⟩ =

αX ○k ∶X → CX. So βα∗X = CεX ○ϕF⟨LX,δX⟩ = CεX ○αLX ○ δX = αX ○LεX ○ δX = αX . Conversely,

if F ∶ Coalgem
L → Coalgem

C is a functor over C , then (βF )∗ ∶ Coalgem
L → Coalgem

L sends an

object ⟨X,k⟩ in Coalgem
L to the object ⟨X,βFX ○ k⟩ in Coalgem

C . The commutativity of the
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following diagram shows that βFX ○ k = ϕF⟨X,k⟩.

X LX

CX CLX CX

k

ϕF
⟨X,k⟩

ϕF
⟨LX,δX ⟩

βFX

Ck

id

CεX

So ⟨X,βFX ○ k⟩ = F ⟨X,k⟩. So the correspondence is bijective.

2.1.6 Monadic Functors

We’ve shown that every adjunction

A B

G

F

⊥ (2.2)

defines a monad GF on B and that every monad R can be recovered from the adjunction

VR ⊢ R̃. The adjunctions G ⊢ F for which A already looks like a category of algebras for a

monad are called monadic adjunctions.

Given the adjunction F ⊣ G of (2.2) with unit ν ∶ I → GF and counit ξ ∶ FG → I, there

is a comparison functor HGF ∶ A → Algem
GF defined by sending an object A to the object

⟨GA,GξA⟩ and sending a map f ∶ A1 → A2 to the map Gf ∶ ⟨GA1,GξA1⟩→ ⟨GA2,GξA2⟩. The

comparison functor is a functor over A because VGFHGF = G, where VGF ∶ Algem
GF → B is

the forgetful functor.

Definition 2.1.31. The adjunction (2.2) is monadic if the comparison functor HGF ∶ A →

Algem
GF is an equivalence of categories. A functor G ∶ A → B is monadic if it is the right

adjoint in a monadic adjunction.

There is a useful characterization of monadic functors. To state it, we need a definition.

Definition 2.1.32. A split coequalizer in a category C is a diagram

A B C
v

u

r

q

s
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such that q ○ u = q ○ v, q ○ s = id , u ○ r = id , and v ○ r = s ○ q.

We say that the diagram A B
v

u
has a split coequalizer in such a case. In the above

situation, q ∶ B → C is the coequalizer of u and v, and this colimit is absolute [Bor94b,

2.10.2].

Proposition 2.1.33 ([Bor94a, 4.4.4]). A functor G ∶ A →B is monadic if and only if the

following conditions are satisfied.

1. G has a left adjoint F ∶ B → A .

2. G reflects isomorphisms.

3. If u, v ∶ A→ B are parallel maps in A such that the diagram

GA GB
Gv

Gu

has a split coequalizer in B, then the diagram A B
v

u
has a coequalizer in A that

is preserved by G.

Using these conditions, it is easy to prove the following result.

Proposition 2.1.34. Let T be a pointed endofunctor on a category C . If the forgetful

functor UT ∶ AlgT → C has a left adjoint, then it is monadic.

Proof. We just need to verify that UT satisfies conditions (2) and (3) of 2.1.33. Suppose

f ∶ ⟨X,m⟩ → ⟨Y,n⟩ is a map in AlgT such that f ∶ X → Y has an inverse g ∶ Y → X in C .

Then f ○m○Tg = n○Tf ○Tg = n = f ○g○n. So m○Tg = g○n, which means g ∶ ⟨Y,n⟩→ ⟨X,m⟩

is a map in AlgT.

Now, let u, v ∶ ⟨X,m⟩→ ⟨Y,n⟩ be maps in AlgT and suppose

X Y C
v

u

r

q

s
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is a split coequalizer in C . Since split coequalizers are absolute colimits,

TX TY TC
Tv

Tu q

is a coequalizer diagram in C . Since q○n○Tu = q○u○m = q○v○m = q○n○Tv, there is a unique

map l ∶ TC → C such that l ○Tq = q ○ n. The fact that X Y C
v

u q
is a coequalizer

diagram in C then implies that l ○ ηC = id , where η ∶ Id → T is the unit map of T. Thus

q ∶ ⟨Y,n⟩ → ⟨C, l⟩ is a map in AlgT. It is easy to check that ⟨X,m⟩ ⟨Y,n⟩ ⟨C, l⟩
v

u q

is a coequalizer diagram in AlgT.

An important special case of a monadic functor is the inclusion of a reflective subcategory.

We take our reflective subcategories to be full subcategories whose inclusion functors have

a left adjoint. We call the left adjoint to the inclusion of a reflective subcategory A ↪ B

the reflection of B into A . The monad defined by a reflective subcategory adjunction is an

idempotent monad. Conversely, the Eilenberg-Moore category of an idempotent monad on

a category C is always equivalent to a reflective subcategory of C .

2.2 Free Objects

Let A and B be categories, let U ∶ A →B be a functor, and let X be an object in B.

A reflection of X into A (or along U) is an object Y in A with a map u ∶ X → UY such

that for every object A in A and every map v ∶ X → UA, there is a unique map f ∶ Y → A

in A making the following diagram commute.

X UY

UA

u

v
Uf

A reflection of an object X is unique up to unique isomorphism.
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We will often call an object Y satisfying the above conditions the free A -object on X.

In many applications, U will be a functor that forgets structure, so we can think of Y as the

object we get by freely adding the structure of an A -object to the less-structured B-object

X.

Remark 2.2.1. When R is a pointed endofunctor on a category C , we will specifically refer

to a reflection of on object X ∈ ob(C ) in AlgR as the free R-algebra on X. When R

is a monad, the reflection of X into Algem
R is equal to ⟨RX,µX⟩. So every object in the

image of R̃ ∶ C → Algem
R is a free R-monad-algebra. Continuing our convention of using the

same terms for structures and properties, we will sometimes call an object RX in C a free

R-monad-algebra.

By dualizing the above definitions, we get definitions for coreflections of objects, cofree

objects, and cofree coalgebras for comonads.

Unsurprisingly, reflections in A have a close relationship to the existence of a left adjoint

for U .

Proposition 2.2.2. A functor U ∶ A →B between categories has a left adjoint if and only

if every object B in B has a reflection in A .

Proof. If a left adjoint F ∶ B → A to U exists, then for each object X in B, the unit map

ηX ∶X → UFX of the adjunction at X satisfies the appropriate universal property. So FX is

a reflection of X. Conversely, if every object in B has a reflection, we can define a function

F ∶ ob(B) → ob(A ) that sends each object to its reflection. For each object X in B, let

ηX ∶ X → UFX be the universal map of the reflection. If f ∶ X → Y is a map in B, then

the universal property of ηX guarantees the existence of a unique map Ff ∶ FX → FY in A
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that makes the following diagram commute.

X UFX

Y UFY

ηX

f UFf

ηY

So in this way, we define a functor F ∶ B → A . By construction, F satisfies the universal

property of a left adjoint for U .

So in ideal conditions, we can construct a free A -object on a B-object by constructing a

left adjoint for U . When A and B are locally small and A is complete, the adjoint functor

theorems can be used for this purpose.

2.2.1 Free and Algebraically Free Monads

Many of the results in this section appear without detailed proof in [Kel80].

Let Mnd(C ) be the category whose objects are monads on C and whose morphisms are

maps of monads. The free monad on a pointed endofunctor (T, τ) is the reflection of (T, τ)

along the functor U ∶ Mnd(C ) → pEnd(C ) that forgets the structure of the multiplication

map on each monad. The remainder of this chapter is devoted characterizing endofunctors

that have reflections in Mnd(C ).

Since a left adjoint to U ∶ Mnd(C )→ pEnd(C ) rarely, if ever, exists, we cannot construct

free monads on pointed endofunctors by constructing a left adjoint to U . Instead, in the

main result of this section (2.2.8), we will show that to construct the free monad on a

pointed endofunctor (T, τ), it suffices to construct a left adjoint to the forgetful functor

UT ∶ AlgT → C . In section 2.4, we will discuss conditions on the endofunctor T that

guarantee such a left adjoint exists. In section 2.4.4, we restrict to subcategories of Mnd(C )

and pEnd(C ) such that a left adjoint to the restriction of U does exist.
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Remark 2.2.3. When C is a category with coproducts, the forgetful functor V ∶ pEnd(C )→

End(C ) from the category of pointed endofunctors to the category of endofunctors on C

has a left adjoint F ∶ End(C )→ pEnd(C ). The free pointed endofunctor on an endofunctor

T ∶ C → C is the objectwise coproduct X∐ IdC . Therefore, to construct free monads on

endofunctors, it suffices to construct them on pointed endofunctors.

An important special case of a free monad on a pointed endofunctor is that of an

algebraically-free monad. When θ ∶ T → R is a map from a pointed endofunctor on C

to a monad on C , there is a functor θ† ∶ Algem
R → AlgT over C defined as the subcategory

inclusion functor Algem
R ↪AlgR followed by θ∗ ∶ AlgR →AlgT.

Definition 2.2.4. Let C be a category and let (T, τ) be a pointed endofunctor on C .

An algebraically-free monad on (T, τ) is a pair (R, θ) of a monad (R, η, µ) on C and a map

θ ∶ T→ R of pointed endofunctors such that the functor θ† ∶ Algem
R →AlgT is an isomorphism

of categories.

Surprisingly, to show (R, θ) is an algebraically-free monad on (T, τ), it actually suffices

to show θ† ∶ Algem
R →AlgT is an equivalence of categories.

Lemma 2.2.5. If θ ∶ T → R is a map of pointed endofunctors on a category C to a monad

R and if the functor θ† ∶ Algem
R → AlgT is an equivalence of categories, then θ† is an

isomorphism of categories.

Proof. Since θ† is an equivalence, it must be full and faithful. So it suffices to show θ† is

bijective on objects. Let K ∶ AlgT →Algem
R be an up-to-natural-isomorphism inverse for θ†,

and let α ∶ θ†K → Id and β ∶ Id→Kθ† be the natural isomorphisms. Then K is also full and

faithful.
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Let ⟨X,m⟩ be an object in AlgT. Let ⟨Y,n⟩ =K⟨X,m⟩. Then θ†K⟨X,m⟩ = ⟨Y,n○θY ⟩ and

α⟨X,m⟩ ∶ ⟨Y,n○θY ⟩→ ⟨X,m⟩ is an isomorphism in AlgT. Let p = α⟨X,m⟩○n○Rα−1
⟨X,m⟩ ∶ RX →X.

Then p ○ θX ○Tα⟨X,m⟩ = α⟨X,m⟩ ○n ○ θY =m ○ Tα⟨X,m⟩. Thus m = p ○ θX . So θ†⟨X,p⟩ = ⟨X,m⟩.

Thus θ† is surjective on objects.

TY RY Y

TX RX X

≅Tα
⟨X,m⟩

θY n

Rα
⟨X,m⟩≅ α

⟨X,m⟩≅
θX

m

p

We note that if u ∶ ⟨S, q⟩ → ⟨S, q⟩ is a map in AlgT such that Ku is the identity map

on K⟨S, q⟩, then Ku = Kid . So the faithfulness of K implies u is the identity map. This

observation will help us prove that θ† is injective. Now, let ⟨X,m⟩ and ⟨Y,n⟩ be an objects

in Algem
R such that θ†⟨X,m⟩ = θ†⟨Y,n⟩. So X = Y and m ○ θX = n ○ θY as objects and maps

in C . Let ⟨Z, p⟩ = K⟨X,m ○ θX⟩. Then there is are isomorphisms β⟨X,m⟩ ∶ ⟨X,m⟩ → ⟨Z, p⟩

and β⟨X,n⟩ ∶ ⟨X,n⟩→ ⟨Z, p⟩. Let u = β−1
⟨X,n⟩ ○ β⟨X,m⟩. So u ∶ ⟨X,m⟩→ ⟨X,n⟩ is an isomorphism

in Algem
R . The naturality of β and the definition of u now imply that the following diagram

commutes.
⟨X,m⟩ ⟨X,n⟩

Kθ†⟨X,m⟩ Kθ†⟨X,n⟩

u

β
⟨X,m⟩ β

⟨X,n⟩

β
⟨X,n⟩

Kθ†u

It follows that Kθ†u is the identity map on ⟨Z, p⟩. So, by our comments at the beginning

of this paragraph, θ†u is the identity map on ⟨X,m ○ θX⟩. But this means u ∶ X → X is the

identity map in C . So ⟨X,m⟩ = ⟨X,n⟩ in Algem
R .

Proposition 2.2.6. An algebraically-free monad on a pointed endofunctor (T, τ) is a free

monad on (T, τ).

Proof. If (R, θ) is an algebraically-free monad on T, then for each map of pointed endofunc-

tors ψ ∶ T→ R′ to a monad (R′, η′, µ′), there is a unique functor K ∶ Algem
R′ →Algem

R over C 2
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making the following diagram commute.

Algem
R′ AlgR′

Algem
R AlgR AlgT

K∃!
ψ∗

≅

θ∗

By 2.1.30, there is a unique map of monads ρ ∶ R→ R′ such that ρ∗ =K.

So we have two maps ψ ∶ T → R′ and ρ ○ θ ∶ T → R′ of pointed endofunctors from T to

R′. Since the functors ψ∗ ∶ AlgR′ → AlgT and (ρ ○ θ)∗ ∶ AlgR′ → AlgT agree on Algem
R′ and

⟨R′X,µ′X⟩ is an object in Algem
R′ for each object X, µ′X ○ ψR′X = µ′X ○ ρR′X ○ θR′X .

TX TR′X

R′X R′R′X R′X

Tη′X

ψXρX○θX ψR′XρR′X○θR′X
R′η′X

id

µ′X

So

ψX = µ′X ○R′η′X ○ ψX = µ′X ○ ψR′X ○ Tη′X = µ′X ○ ρR′X ○ θR′X ○ Tη′X

= µ′X ○R′η′X ○ ρX ○ θX = ρX ○ θX .

Thus ψ = ρ○ θ and ρ ∶ R→ R′ is the unique map of monads for which this equality holds.

Frequently, the converse to 2.2.6 is also true.

Proposition 2.2.7 ([Kel80, 22.4]). If C is a locally small, complete category, then a free

monad R on a pointed endofunctor T is an algebraically-free monad.

Proposition 2.2.8. If (T, τ) is a pointed endofunctor on a category C and the forgetful

functor UT ∶ AlgT → C has a left adjoint F ∶ C → AlgT, then UTF is an algebraically-free

monad on (T, τ) whose unit and multiplication maps are determined by the adjunction, as

in 2.1.24.
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Proof. Let R = UTF with unit map ν ∶ Id → UTF and counit map ξ ∶ FUT → Id . There is a

natural transformation ψ ∶ TUT → UT that is defined on each object ⟨X,m⟩ by ψ⟨X,m⟩ = m ∶

TX →X. Then the natural transformation

T TR = TUTF UTF = RTν ψF

is a map of pointed endofunctors. Let θ = ψF ○Tν.

By 2.1.34, UT is a monadic functor. So there is an equivalence of categories H ∶ AlgT →

Algem
R that sends a T-algebra ⟨A,m⟩ to ⟨A,UTξ⟨A,m⟩⟩. Since the following diagram commutes,

θ†H = id .

TUT⟨A,m⟩ TUTFUT⟨A,m⟩ UTFUT⟨A,m⟩

A TUT⟨A,m⟩ UT⟨A,m⟩ = A

m

TνUT⟨A,m⟩

id TUTξ⟨A,m⟩

ψFUT⟨A,m⟩

UTξ⟨A,m⟩

id

ψ
⟨A,m⟩

Let Ĥ ∶ Algem
R → AlgT be an up-to-natural-isomorphism inverse for H. Then Hθ† ≅

Hθ†HĤ = HĤ ≅ Id. So θ† is an equivalence of categories. By 2.2.5, θ† is an isomorphism

and (R, θ) is the algebraically-free monad on (T, τ).

We note that a consequence of the above proof is that the map ψF ○Tν ∶ T → R is the

universal map of the free monad.

By 2.2.2, to construct a left adjoint to the forgetful functor UT ∶ AlgT → C , it suffices

to show that every object in C has a reflection along UT. So the free monad on a pointed

endofunctor T exists if and only if the free T-algebra exists on every object in C .

2.3 Free Algebra and Monad Sequences

In the previous section, we saw that a free monad on a pointed endofunctor (T, τ) exists

when the forgetful functor UT ∶ AlgT → C has a left adjoint. In this section, we will define
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a free monad sequence for a pointed endofunctor (T, τ) on a cocomplete category C . We

will show that when the free monad sequence is weakly convergent, every object in C has a

reflection in AlgT and thus UT has a left adjoint. The weak convergence of the free monad

sequence gives us more than just existence of the free monad on (T, τ) however. We actually

get that the free monad sequence weakly converges to the free monad on (T, τ). So the weak

convergence of the free monad sequence gives us the constructive existence of a free monad

on (T, τ).

The evaluation of the free monad sequence for (T, τ) on an object A is the free T-algebra

sequence for A. So the free monad sequence for (T, τ) converges objectwise if and only

if the free T-algebra sequence on each object A in C converges. We will prove in 2.3.18

that the objectwise convergence of the free monad sequence for (T, τ) implies its weakly

convergence. Proving this result takes some work. First we prove in 2.3.5 that for a well-

pointed endofunctor (S, σ), an object A has a reflection in AlgS if the free S-algebra sequence

for A converges. Then in section 2.3.2 we show that there is a well-pointed endofunctor (S, σ)

on the category T ↓ C and that we can translate between free T-algebra sequences in C and

free S-algebra sequences in T ↓ C . This translation preserves the property of convergence.

Furthermore, the existence of the reflection of an object in C into AlgT follows from the

existence of the reflection of a related object in T ↓ C into AlgS. Putting this all together,

an object A in C has a reflection in AlgT if the free T-algebra sequence for A converges.

This is exactly what we need to prove that the objectwise convergence of the free monad

sequence for (T, τ) implies its weak convergence.

Sections 2.3.1 and 2.3.2 work up to our main results in theorems 2.3.18 and 2.3.22, where

we prove that the objectwise convergence of the free monad sequence on (T, τ) implies the

weak convergence of the free monad sequence and that the weak convergence of the free
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monad sequence implies the constructive existence of the free monad on (T, τ). In section

2.4, we will describe a smallness condition on the endofunctor T that ensures the free monad

sequence for (T, τ) converges objectwise.

2.3.1 Free Algebra Sequences for Well-Pointed Endofunctors

We start this section by defining well-pointed endofunctors. We then define the free S-

algebra sequence on an object in a category C for a well-pointed endofunctor (S, σ) on C .

We conclude by showing that an object in C has a reflection in AlgS when the free S-algebra

sequence on the object converges.

Definition 2.3.1. A pointed endofunctor (S, σ) on a category C is well-pointed if the maps

Sσ ∶ S→ SS and σS ∶ S→ SS are equal.

If a well-pointed endofunctor (S, σ) extends to a monad (S, σ, µ), then (S, σ, µ) is an

idempotent monad and the maps σS ∶ S → SS and Sσ ∶ S → SS are natural isomorphisms

[Bor94a, 4.2.3]. When (S, σ) does not have a monad structure, we don’t know that σS and

Sσ are natural isomorphisms. We can however still prove the following result.

Lemma 2.3.2 ([Kel80, 5.2]). Let (S, σ) be a well-pointed endofunctor on a category C .

For every S-algebra ⟨X,m⟩, the maps m ∶ SX → X and σX ∶ X → SX are isomorphisms.

Therefore m = σ−1
X is the unique S-algebra structure map for X.

Proof. We know m○σX = idX . Since S is well-pointed, idSX = Sm○SσX = Sm○σSX = σX ○m.

So σX is the inverse of m.

Lemma 2.3.3. If (S, σ) is a well-pointed endofunctor on a category C , then the forgetful

functor US ∶ AlgS → C is the inclusion of a full subcategory.
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Proof. By 2.3.2, if X is an S-algebra, then its S-algebra structure map SX → X is unique.

So US is the inclusion of a subcategory. Suppose ⟨X,m⟩ and ⟨Y,n⟩ are objects in AlgS and

f ∶X → Y is a map in C . Then, by the naturality of σ, Sf ○σX = σY ○f . So σ−1
Y ○Sf = f ○σ−1

X .

But, since m and n are isomorphisms, m = σ−1
X and n = σ−1

Y . So f is a map ⟨X,m⟩ → ⟨Y,n⟩

in AlgS.

Let C be a cocomplete category and let (S, σ) be a well-pointed endofunctor on C .

We recall from 2.1.20 that pEnd(C ) is closed under connected colimits. The free monad

sequence for (S, σ) is the cocontinuous transfinite sequence S● ∶ Ord → pEnd(C ) given by

the following inductive definition. We will use the notation (Sα, σα) = S●(α) on objects of

Ord and Sβα = S●(α → β) on the maps of Ord. We set S0 equal to the identity functor

Id ∶ C → C , S1 equal to S and S1
0 equal to σ ∶ Id→ S. If the pointed endofunctor Sα ∶ C → C

is defined on an ordinal α, then Sα+1 ∶= SSα and we have a map Sα+1
α ∶= σSα ∶ Sα → SSα. If γ

is a limit ordinal and maps Sα+1
α ∶ Sα → Sα+1 are defined for all α < γ, then Sγ ∶= colimα<γ Sα

and we take Sγα to be the inclusion maps Sα → Sγ of the colimiting cocone. For each ordinal

α, the unit map σα ∶ Id→ Sα is the map Sα0 ∶ S
0 → Sα.

Id S ⋯ Sα SSα ⋯ colimα<γ Sα ⋯σ

Sα0

σSα

Sγα

Sγα+1

Definition 2.3.4. Let α be an ordinal. A transfinite sequence F ∶ Ord→ C converges at α

if for every ordinal β > α, F (α → β) ∶ F (α) → F (β) is an isomorphism. We will just say F

converges if it converges at α for some ordinal α.

The free monad sequence for a pointed endofunctor rarely converges, but, under mild

assumptions, we will be able to show that it converges objectwise. We have a special name

for the free monad sequence evaluated on an object. On an object X in C , we will use the
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notation S●X for the transfinite sequence that sends ordinals α to S(α)(X) = SαX and sends

maps α → β to S(α → β)X = SβαX ∶ SαX → SβX. The functor S●X ∶ Ord → C is the free

S-algebra sequence for X.

We will show in section 2.4.2 that, under a smallness condition on S, the free S-algebra

sequence S●X converges for each X in C . The convergence of the free S-algebra sequence on

an object X implies the existence of a reflection of X in AlgS. In fact, the object the free

S-algebra sequence converges to is the image of the reflection under US.

Proposition 2.3.5 ([Kel80, 5.3]). If the free S-algebra sequence S●X converges at the ordinal

β, then ⟨SβX, (Sβ+1
β X

)
−1
⟩ is the reflection of X in AlgS and Sβ0X ∶X → SβX is the universal

map of the reflection.

Proof. Suppose Y is an S-algebra and f ∶X → Y is a map in C . Then, by 2.3.2, σY ∶ Y → SY

is an isomorphism. So σ−1
Y ○Sf ∶ SX → Y is a map such that σ−1

Y ○Sf ○σX = f . If g ∶ SX → Y

is another map such that g ○σX = f , then the well-pointedness of S implies σY ○g = Sg ○σSX =

Sg ○ SσX = Sf . Since σY ○ σ−1
Y ○ Sf = Sf = σY ○ g and σY is an isomorphism, σ−1

Y ○ Sf = g. So

σ−1
Y ○ Sf is the unique map SX → Y such that σ−1

Y ○ Sf ○ σX = f .

It follows by induction that for every α, the map Sα0 Y ∶ Y → SαY is an isomorphism

and Sα0
−1
Y ○ Sαf is the unique map SαX → Y such that Sα0

−1
Y ○ Sαf ○ Sα0X = f . In particular,

this holds for α = β. Since SβX and Y can both be uniquely identified with objects in

the full subcategory AlgS of C , (Sβ0Y )
−1 ○ Sβf is the unique map of S-algebras such that

(Sβ0Y )
−1 ○ Sβf ○ Sβ0X = f .

2.3.2 Construction of a Well-Pointed Endofunctor

Let (T, τ) be a pointed endofunctor on a cocomplete category C . In section 2.3.3, we

will define the free T-algebra sequence on an object in C . Showing that an object A in C

44



has a reflection in AlgT when the free T-algebra sequence for A converges is much more

challenging than in the case of a well-pointed endofunctor. To handle this proof, we will

define a well-pointed endofunctor (S, σ) on T ↓ C and reduce the problem of constructing

a reflection for an object A ∈ ob(C ) along UT ∶ AlgT → C to the problem of constructing a

reflection of an object in T ↓ C along US ∶ AlgS → T ↓ C . Specifically, we will construct the

left adjoints in the following diagram.

AlgT AlgS T ↓ C C 2 C

US

⊥

τ∗

τ!

⊥

dom

∆

⊥ (2.3)

We will see in 2.3.12 that the composite map AlgT → C is equal to UT. So when τ!∆A has

a reflection in AlgS, then A has a reflection in AlgT.

As we saw in the previous section, the convergence of the free S-algebra sequence on the

object τ!∆A guarantees the existence of a reflection of τ!∆A in T ↓ C . To make this process

more direct, in section 2.3.3, we will translate the free S-algebra sequence on τ!∆A to the

free T-algebra sequence on A. We will then show that the free T-algebra sequence on A

converges if and only if the free S-algebra sequence on τ!∆A converges.

We also note that if the free S-algebra sequence on every object in T ↓ C converges, then

every object in T ↓ C has a reflection in AlgS and thus a left adjoint to US ∶ AlgS → C

exists. We then have that the composite map C →AlgT is a left adjoint to UT and so a free

monad on (T, τ) exists. We will not emphasize this result, however, because it is stronger

than necessary. The condition that the free S-algebra sequence on every object in T ↓ C

converges is stronger than the condition that the free S-algebra sequence on every object in

the image of τ!∆ converges. This latter convergence is sufficient to imply the existence of a

free monad on (T, τ). We will however see in section 2.4 that when T satisfies a smallness

condition, then we do get that the free monad sequence on (S, σ) converges objectwise.
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Now, let C be a cocomplete category and let (T, τ) be a pointed endofunctor on C . In

the next few sections, it will be convenient to represent the objects of the comma category

T ↓ C by triples (X,f, Y ) of objects X and Y and a map f ∶ TX → Y in C . The maps of

T ↓ C are pairs (x, y) ∶ (X,f, Y ) → (A,g,B) of maps x ∶ X → A and y ∶ Y → B such that

y ○ f = g ○Tx.

Let ∆ ∶ C → C be the functor that sends objects X to idX ∶ X → X and sends maps

f ∶X → Y to (f, f) ∶ idX → idY . Then dom ∶ C 2 → C is a right adjoint to ∆ and cod ∶ C 2 → C

is a left adjoint to ∆. We will name the unit map of the cod ⊣∆ adjunction ρ ∶ Id→∆ cod.

On each object f ∶ X → Y , ρf = (f, idY ) ∶ f → idY . Since cod ∆ = Id , (∆ cod, ρ) is a

well-pointed endofunctor on C 2.

Lemma 2.3.6. The category Alg∆ cod is the full subcategory of C 2 on the objects f ∶X → Y

that are isomorphisms in C .

Proof. A ∆ cod-algebra is an object f ∶ X → Y with a map (u, v) ∶ idY → f such that

(u, v) ○ (f, idY ) = (idX , idY ). But this means v = idY , u ○ f = idX , and f ○ u = v ○ idY . So

u is the inverse of f . Conversely, if f is an isomorphism, then (f−1, idY ) ∶ idY → f is a

∆ cod-algebra structure map for f .

The natural transformation τ ∶ Id → T defines two functors τ∗ ∶ T ↓ C → C 2 and

τ! ∶ C 2 → T ↓ C . The functor τ∗ ∶ T ↓ C → C 2 sends each object (X,f, Y ) to f ○ τX ∶ X → Y

and sends each morphism (u, v) ∶ (X,f, Y )→ (A,g,B) to (u, v) ∶ f ○τX → g ○τA. The functor

τ! ∶ C 2 → T ↓ C sends each object f ∶X → Y to the object (X,f ′, Y ′) defined by the following

cocartesian diagram in C .

X TX

Y Y ′
f

τX

f ′

f̂
⌜
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Since pushouts are natural and τ is a natural transformation, this definition extends to

morphisms. It is straightforward to check the following result.

Lemma 2.3.7. The functor τ! is the left adjoint of τ∗.

The unit of the τ! ⊣ τ∗ adjunction is the map ντ ∶ Id→ τ∗τ! given on each object f ∶X → Y

in C 2 by ντf = (idX , f̂) ∶ f → f ′ ○ τX . The counit of the adjunction is the map ξτ ∶ τ!τ∗ → Id

given on each object (X,f, Y ) in T ↓ C by ξτ(X,f,Y ) = (idX , g) ∶ (X, (f ○ τX)′, Y ′)→ (X,f, Y ),

where g is the map out of Y ′ defined by the cocone f ∶ TX → Y , id ∶ Y → Y .

X TX

TX

Y Y ′ Y

τX

τX

(f○τX)′
f

f

f̂○τX

id

g
⌜

Lemma 2.3.8 ([Kel80, §14.1]). The category T ↓ C is cocomplete.

Proof. Let {(Xα, fα, Yα)}α be a diagram in T ↓ C . Let c ∶ colimα TXα → T colimαXα be the

map defined by the cocone {TXα → T(colimαXα)}α in C . Let h and k be the colimiting

cocone maps in the following cocartesian diagram in C .

colimα TXα T colimαXα

colimα Yα Z

c

colimα fα h

k ⌜

The triple (colimαXα, h,Z) is the colimit of the diagram {(Xα, fα, Yα)}α in T ↓ C .

Since T ↓ C is cocomplete, the category End(T ↓ C ) is a cocomplete. Colimits are

computed objectwise. We can therefore define an endofunctor S on T ↓ C as the pushout

τ!τ∗ τ!∆ cod τ∗

Id S

ξτ

τ!ρτ∗

ζ

σ ⌜

(2.4)
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in End(T ↓ C ).

A direct application of A.1.1 yields the following result.

Lemma 2.3.9 ([Kel80, 14.4]). The pointed endofunctor (S, σ) on T ↓ C is well-pointed.

Therefore the forgetful functor US ∶ AlgS ↪ T ↓ C is the inclusion of a full subcategory.

We note that AlgT is also a full subcategory of T ↓ C , even though T is not a well-pointed

endofunctor.

Lemma 2.3.10 ([Kel80, 14.4]). The category AlgS is the repletion of AlgT in T ↓ C .

Proof. By A.1.2, an object (X,f, Y ) in T ↓ C is an S-algebra if and only if the object

f ○τX ∶X → Y in C 2 is a ∆ cod-algebra. In other words, by 2.3.6, (X,f, Y ) is an S-algebra if

and only if f ○ τX ∶X → Y is an isomorphism in C . But, if f ○ τX is an isomorphism, then X

is an T-coalgebra and Y ≅X. So there is an isomorphism in T ↓ C between (X,f, Y ) and an

object (X,g,X) = ⟨X,g⟩ in AlgT. Conversely, if there is an isomorphism (u, v) ∶ (X,f, Y )→

(Z, g,Z) in T ↓ C to an object ⟨Z, g⟩ in AlgT, then f ○ τX ○ u = f ○ Tu ○ τZ = v ○ g ○ τZ = v.

Since u and v are isomorphisms, f ○ τX is an isomorphism. So (X,f, Y ) is an S-algebra.

Lemma 2.3.11. The subcategory inclusion functor AlgT ↪AlgS is an equivalence of cate-

gories. In particular, it has a left adjoint.

Proof. Since AlgT and AlgS are both full subcategories of T ↓ C , AlgT is a full subcategory

of AlgS. So the inclusion A ↪ B is full and faithful. What it means for AlgS to be the

repletion of AlgT is that the inclusion AlgT ↪AlgS is essentially surjective. So the inclusion

is an equivalence of categories.

Lemma 2.3.12. The forgetful functor UT ∶ AlgT → C is equal to the composite map AlgT →

C in diagram (2.3).
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Proof. We know the subcategory inclusion functor AlgT ↪ T ↓ C factors through US ∶

AlgS ↪ T ↓ C . The subcategory inclusion functor AlgT ↪ T ↓ C sends an object ⟨X,m⟩ to

the object (X,m,X) and a map f ∶ ⟨X,m⟩→ ⟨Y,n⟩ to the map (f, f) ∶ (X,m,X)→ (Y,n, Y ).

Then τ∗(X,m,X) =m ○ τX = idX and τ∗(f, f) = (f, f) ∶ idX → idY . So cod τ∗(X,m,X) =X

and cod τ∗(f, f) = f ∶X → Y . This is exactly what UT does to objects and morphisms.

We are now able to show that the reflection of an object A ∈ ob(C ) along UT ∶ AlgT → C

exists when the free S-algebra sequence for (A, id ,TA) converges.

Proposition 2.3.13. Suppose the free S-algebra sequence for (A, id ,TA) converges at α.

Let (B,f,C) = Sα(A, id ,TA) and let (u, v) = σα(A,id ,TA) ∶ (A, id ,TA) → (B,f,C). Then

f ○ τB ∶ B → C is an isomorphism, ⟨B, (f ○ τB)−1 ○ f⟩ is the reflection of A in AlgT, and

u ∶ A→ B is the universal map of the reflection.

Proof. By 2.3.5 and 2.3.3, (B,f,C) can be identified with the reflection of (A, id ,TA) in

AlgS and (u, v) ∶ (A, id ,TA) → (B,f,C) is the universal map of this reflection. In 2.3.10,

we saw that the composition f ○ τB ∶ B → C is an isomorphism. So ⟨B,g ○ f⟩ is an object in

AlgT and (id , g) ∶ (B,f,C)→ (B,g ○f,B) is an isomorphism in T ↓ C , where g = (f ○ τB)−1.

Thus ⟨B,g ○ f⟩ is the reflection of (A, id ,A) in AlgT and the universal map is (u, g ○ v) ∶

(A, id ,A)→ (B,g ○f,B). By 2.3.12 and the observation that τ!∆A = (A, id ,TA), the object

⟨B,g ○ f⟩ is the reflection of A in AlgT. Since dom τ∗τ!∆ is the identity functor on C and

the unit of the adjunction dom τ∗ ⊢ τ!∆ is the identity map, u ∶ A → B is the universal map

of the reflection.

In particular, if the free S-algebra sequence on (A, id ,TA) converges for each object A

in A , then the left adjoint to UT ∶ AlgT → C exists.
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2.3.3 Free Monad Sequences for Pointed Endofunctors

Let (T, τ) be a pointed endofunctor on a cocomplete category C and let (S, σ) be the

well-pointed endofunctor on T ↓ C we defined in section 2.3.2. We were able to show in 2.3.13

that A has a reflection in AlgT when the free S-algebra sequence for (A, id ,TA) converges.

In this section, we will translate the free S-algebra sequence for an object (A,f,B) to a

transfinite sequence in C . We define the free T-algebra sequence for A to be the sequence

in C given by free S-algebra sequence for (A, id ,TA) under this translation. The free T-

algebra sequence for A converges exactly when the free S-algebra sequence for (A, id ,TA)

converges. So the convergence of the free T-algebra sequence for A guarantees that A has

a reflection in AlgT. Furthermore, as for the free S-algebra sequence, the object the free

T-algebra sequence for A converges to is the image of the reflection of A under UT.

Since the free T-algebra sequence is functorial, we will be able to use it to define a free

monad sequence on (T, τ). We will show in 2.3.22 that when the free monad sequence for

(T, τ) is weakly convergent, then the free monad on (T, τ) exists and it is given by the

endofunctor the free monad sequence weakly converges to. We will then show in 2.3.18 that

the convergence of the free T-algebra sequence on A for each A in C is enough to imply that

the free monad sequence for (T, τ) weakly converges. In section 2.4, we will give a condition

on the endofunctor T ∶ C → C that guarantees the convergence of the free T-algebra sequence

on each object A in C .

Lemma 2.3.14 ([Kel80, 17.1]). For each object (A,f,B) in T ↓ C , S(A,f,B) = (B,g,C),

where g ∶ TB → C is the coequalizer in C of the maps Tf ○TτA and Tf ○ τTA.

TA TTA TB C
τTA

TτA Tf g

The unit σ(A,f,B) ∶ (A,f,B)→ S(A,f,B) is equal to (f, g) ○ (τA, τB).
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Proof. Let (A,f,B) be an object in T ↓ C . The composite functor dom τ∗ ∶ T ↓ C → C

sends objects (X,h,Y ) to X and morphisms (p, q) ∶ (X,h,Y ) → (Z,k,W ) to p ∶ X → Z.

One can compute directly that dom τ∗S(A,f,B) = B and that evaluating diagram (2.4) on

(A,f,B) and then applying dom τ∗ yields the cocartesian square

TA TB

TA TB.

id

T(f○τA)

id

T(f○τA)
⌜

So S(A,f,B) = (B,g,C) for some map g ∶ TB → C in C and σ(A,f,B) = (f ○τA, z) ∶ (A,f,B)→

(B,g,C) for some map z ∶ B → C.

Let X be an object in C . There are bijective correspondences between the following

classes.

• Maps C →X in C .

• Pairs of objects (B,h,X) and maps (id , t) ∶ (B,g,C)→ (B,h,X) in T ↓ C .

• Triples of objects (B,h,X) in T ↓ C , maps s ∶ B → X in C , and maps u ∶ TB → X in

C such that the following diagram in T ↓ C commutes.

τ!τ∗(A,f,B) τ!∆ cod τ∗(A,f,B)

(A,f,B) (B,h,X)

ξτ
(A,f,B)

τ!ρτ∗(A,f,B)

(id ,u)
(f○τA,s)

• Triples of objects (B,h,X) in T ↓ C , maps s ∶ B →X in C , and maps v ∶ B →X in C

such that the following diagram in C 2 commutes.

τ∗(A,f,B) ∆ cod τ∗(A,f,B) τ∗(B,h,X)

τ∗(f○τA,s)

ρτ∗(A,f,B) (id ,v)
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The map ρτ∗(A,f,B) is equal to (f ○τA, id) ∶ f ○τA → idB. So there is a bijective correspondence

between the class in the last bullet point and triples of objects (B,h,X) in T ↓ C , maps

s ∶ B → X in C , and maps v ∶ B → X in C such that h ○T(f ○ τA) = v ○ f and the following

diagram commutes.

A B B

B B X

f○τA

f○τA id

id

h○τB
id

s

v

(2.5)

But then s = v = h ○ τB. So maps C → X in C are in bijective correspondence with maps

h ∶ TB → X such that h ○ T(f ○ τA) = h ○ τB ○ f = h ○ Tf ○ τTA. Thus g ∶ TB → C is the

coequalizer of the maps Tf ○TτA and Tf ○ τTA. By the relation in diagram (2.5) above, the

unit map (f ○ τA, z) ∶ (A,f,B)→ (B,g,C) must satisfy the equation z = g ○ τB.

Lemma 2.3.15. If ((Aα, fα,Bα))α is a sequence in T ↓ C , then dom τ∗( colimα(Aα, fα,Bα)) =

colimαAα.

Proof. We saw in 2.3.8 that the colimit of the (Aα, fα,Bα)’s in T ↓ C is equal to (colimAα, h,Z),

where h and Z are determined by a pushout square.

Now, using 2.3.14, and 2.3.15, we can describe Sβ(A,f,B) for any ordinal β as follows.

This construction takes place in the category C . Let X0 = A and X1 = B. Let π0 = f ∶ TX0 →

X1.

Suppose objects Xα and Xα+1 and a map πα ∶ TXα → Xα+1 are defined for an ordinal

α. Then the object Xα+2 with the map πα+1 ∶ TXα+1 → Xα+2 is the coequalizer of the maps

Tπα ○ τTXα and Tπα ○TτXα.

TXα TTXα TXα+1 Xα+2

τTXα

TτXα

Tπα πα+1 (2.6)
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Let γ be a limit ordinal and suppose Xα and πα are defined for each α < γ. We have

maps

xα+1
α ∶= πα ○ τXα ∶ Xα → Xα+1

for each ordinal α < γ. These maps make (Xα)α<γ a γ-sequence. Let Xγ be the colimit of

this γ-sequence and let {xγα ∶ Xα → Xγ}α<γ be the colimiting cocone. Similarly, the maps

Txα+1
α ∶ TXα → TXα+1

make (TXα)α<γ a γ-sequence with colimiting cocone {gα ∶ TXα → colimTxα+1α
TXα}α. But we

also have maps

yα ∶= Tπα ○ τTXα ∶ TXα → TXα+1.

So we get two induced maps from colimTxα+1α
TXα to itself. Let y be the map induced by

gα+1 ○ yα. The map induced by gα+1 ○ Txα+1
α = gα is the identity map. We also have a map

c ∶ colimTxα+1α
TXα → TXγ defined by the cocone {Txγα ∶ TXα → TXγ}α<γ. This is shown in

the below diagram.

TXα TTXα TXα+1

colim
Txα+1α

TXα colim
Txα+1α

TXα TXγ

τTXα

TτXα
gα

Tπα

gα+1

Txγα+1

y

id

c

(2.7)

We define πγ ∶ TXγ → Xγ+1 to be the coequalizer of the maps c ○ y and c in the bottom row.

The map πγ defines a map xγ+1
γ ∶= πγ ○ (τXγ) ∶ Xγ → Xγ+1.

By composing the successor maps xα+1
α ∶Xα →Xα+1 and colimiting cocone maps xγα ∶Xα →

Xγ, we get a map xα
′

α ∶ Xα → Xα′ for each pair of ordinals α ≤ α′. The maps xα
′

α ∶ Xα → Xα′

define a transfinite sequence (Xα)α. We have that Sβ(A,f,B) = (Xβ, πβ,Xβ+1) for each

ordinal β.
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Now, if we instead set X0 = A, X1 = TA, and π0 = id ∶ TX0 → X1 and then rerun the

above construction in the category C , the transfinite sequence (Xα)α with connecting maps

xβα ∶ Xα → Xβ is the free T-algebra sequence for A.

Remark 2.3.16. If (T, τ) is a well-pointed endofunctor, then on any object A, the free T-

algebra sequence on A defined above agrees with the one defined in section 2.3.1.

Proposition 2.3.17 ([Kel80, 17.3]). The free T-algebra sequence for A converges if and only

if the free S-algebra sequence for (A, id ,TA) converges.

Proof. We know Sα(A, id,TA) = (Xα, πα,Xα+1) and Sβα(A, id,TA) = (xβα, x
β+1
α+1) ∶ (Xα, πα,Xα+1)→

(Xβ, πβ,Xβ+1) for each α and β > α.

The free T-algebra sequence on an object of C is functorial. In fact, we can run the above

construction in the category of endofunctors on C . We set X0 = Id ∶ C → C , X1 = T ∶ C → C ,

and we let π0 ∶ TX0 → X1 be the identity natural transformation. We then rerun the above

construction in the category End(C ). We get a transfinite sequence (Xα)α of endofunctors

with connecting natural transformations xβα ∶ Xα → Xβ. We will write this sequence as a

functor XT● ∶ Ord → pEnd(C ), where XT● (α) = (Xα, xα0 ) on objects α and XT● (α → β) = xβα

on morphisms α → β. The transfinite sequence XT● is the free monad sequence for (T, τ).

If we evaluate each endofunctor in the free monad sequence for (T, τ) on an object A, then

we get the free T-algebra sequence for A. When the free T-algebra sequence for A converges

for each A, we will say that the free monad sequence for (T, τ) converges objectwise.

The objectwise convergence of the free monad sequence for (T, τ) implies that the free

monad on (T, τ) exists. We will show in section 2.4.3 that, under a smallness condition on

T, the free monad sequence XT● converges objectwise.
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Theorem 2.3.18. If the free monad sequence on (T, τ) converges objectwise, then the free

monad on (T, τ) exists.

Proof. Let A be an object in C . Then the free T-algebra sequence on A converges. By 2.3.17,

the free S-algebra sequence on the object (A, id ,TA) in T ↓ C converges. So, by 2.3.13, A

has a reflection in AlgT. Since this holds for each object in C , by 2.2.2, the forgetful functor

UT ∶ AlgT → C has a left adjoint.

2.3.4 Weakly Convergent Free Monad Sequences

Let C be a cocomplete category, let (T, τ) be a pointed endofunctor on C . Let (Xα)α

be the free monad sequence for (T, τ) with connecting maps xβα ∶ Xα → Xβ.

Even though End(C ) is a cocomplete category, since (Xα)α is a large diagram in

End(C ), its colimit does not have to exist. When the colimit R of (Xα)α does exist,

we will use the notation x∞α ∶ Xα → R for the maps in the colimiting cocone. We will use

the notation R′ for the colimit of the transfinite sequence (TXα)α with connecting maps

Txβα ∶ TXα → TXβ when this colimit exists. The cocone {Tx∞α ∶ TXα → TR}α defines a map

c′ ∶ R′ → TR. The cocone {x∞α+1 ○ πα ∶ TXα → R}α defines a map π′ ∶ R′ → R.

Definition 2.3.19. The free monad sequence (Xα)α is weakly convergent if the colimits

R = colimα Xα and R′ = colimα TXα exist and are objectwise colimits in C and if there is a

map m ∶ TR→ R satisfying the following conditions.

1. The map m ∶ TR → R is the coequalizer in End(C ) of the maps Tm ○ τTR and

Tm ○TτR in the following diagram.

TR TTR TR
τTR

TτR

Tm
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2. The following diagram in End(C ) is cocartesian.

R′ TR

R R

c′

π′ m

id ⌜

Proposition 2.3.20. If the free monad sequence for (T, τ) weakly converges, then the equa-

tions m ○ τR = id and m ○Tx∞0 = x∞1 hold.

Proof. An inductive argument proves that the following diagram commutes for each ordinal

α.

T TXα Xα

Xα+1

xα+11

Txα0

πα

τXα

xα+1α

Then the following diagram commutes, where i ∶ T→ R′ is the inclusion map of the colimiting

cocone for R′ = colimα TXα.

T R′ R

R

i

x∞1
π′

colimα τXα

id

It is easy to check that c′ ○ i = Tx∞0 ∶ T → TR and that c′ ○ colimα τXα is the map defined

by the cocone {Tx∞α ○ τXα = τR ○ x∞α ∶ Xα → TR}α. So c′ ○ colimα τXα = τR. By 2.3.19 (2),

m ○Tx∞0 =m ○ c′ ○ i = π′ ○ i = x∞1 and m ○ τR =m ○ c′ ○ colimα τXα = π′ ○ colimα τXα = id .

We have the following adaptation of 2.3.5 to weak convergence.

Proposition 2.3.21. If (T, τ) is a well-pointed endofunctor on C and if the free monad

sequence for (T, τ) converges weakly to R, then for each object A in C , τRA is an isomor-

phism, ⟨RA, τ−1
RA⟩ is the reflection of A in AlgT and x∞0 A ∶ A → RA is the universal map of

the reflection.
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Proof. Let A be an object in C . As we saw in the proof of 2.3.5, for each map f ∶ A→ B in

C to an T-algebra B and each ordinal α, there is a unique map gα ∶= (xα0 )
−1
B ○Xαf ∶ XαA→ B

such that gα ○ xα0A = f . It follows that the colimit g = colimα gα of the sequence (gα)α is the

unique map RA→ B such that g ○ x∞0 A = f .

By 2.3.2 and 2.3.20, τRA is an isomorphism. Also by 2.3.2, τB is an isomorphism. It

follows that g is a map of T-algebras. So g ∶ RA→ B must be the unique map of T-algebras

such that g ○ x∞0 A = f .

Theorem 2.3.22. If the free monad sequence for (T, τ) converges weakly, then there is

a map µ ∶ RR → R such that (R, x∞0 , µ) is the free monad on (T, τ) with universal map

x∞1 ∶ T→ R.

Proof. First, we note that if {(Xα, fα, Yα)}α is a large diagram in T ↓ C and the colimit of

(fα)α in C 2 exists, then the colimit of {(Xα, fα, Yα)}α exists and is given by (colimαXα, h,Z)

in the following cocartesian square, where c ∶ colimα TXα → T colimαXα is the map defined

by the cocone {TXα → T(colimαXα)}α in C .

colimα TXα T colimαXα

colimα Yα Z

c

colimα fα h

k ⌜

Let (S, σ) be the well-pointed endofunctor on the comma category T ↓ C constructed

in section 2.3.2. Let A be an object in C . The sequence ((XαA,παA,Xα+1A))
α

is the free

S-algebra sequence on (A, id ,TA). The colimit of the transfinite sequence (παA)α in C 2

with connecting maps (TxβαA, x
β+1
α+1A) ∶ παA → πβA exists and is equal to π′A ∶ R′A → RA.

By our comments above and by (2) of definition 2.3.19, (RA,mA,RA) is the colimit of

((XαA,παA,Xα+1A))
α

in T ↓ C .
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By 2.3.14 and 2.3.19 (1), S(RA,mA,RA) = (RA,mA,RA) and the unit map σ(RA,mA,RA) ∶

(RA,mA,RA)→ S(RA,mA,RA) is the composition

(RA,mA,RA) (TRA,TmA,TRA) (RA,mA,RA)
(τRA,τRA) (mA,mA)

So, by 2.3.20, σ(RA,mA,RA) = id ∶ (RA,mA,RA) → (RA,mA,RA). Thus (RA,mA,RA) is an

S-algebra.

By 2.3.21, (x∞0 A, x
∞
1 A) ∶ (A, id ,TA)→ (RA,mA,RA) is the universal map of the reflection

of (A, id ,TA) into AlgS. Let ⟨X,n⟩ be an object in AlgT and let f ∶ A → X be a map in

C . We will show that x∞0 A ∶ A → RA is the universal map of the reflection of A into AlgT.

By 2.3.10, (X,n,X) is an S-algebra. Since (f, n ○Tf) ∶ (A, id ,TA) → (X,n,X) is a map in

T ↓ C , there is a unique map (u, v) ∶ (RA,mA,RA)→ (X,n,X) which is a map of S-algebras

such that (u, v) ○ (x∞0 A, x
∞
1 A) = (f, n ○Tf). Because (u, v) is a map in AlgS between objects

in AlgT and AlgT is a full subcategory of AlgS, u = v. Because AlgS is a full subcategory

of T ↓ C , (u,u) is the unique map in T ↓ C such that (u,u) ○ (x∞0 A, x
∞
1 A) = (f, n ○Tf). But

this is exactly the condition that u ∶ ⟨RA,mA⟩ → ⟨X,n⟩ is a unique map in AlgT such that

u ○ x∞1 A = n ○Tf . If s ∶ ⟨RA,mA⟩→ ⟨X,n⟩ is a map in AlgT such that s ○ x∞0 A = f , then the

commutativity of the following diagram and the uniqueness of u shows that s = u.

TA TRA RA

TX X
Tf

Tx∞0 A

x∞1 A

Ts

mA

s

n

So ⟨RA,mA⟩ is the reflection of A in AlgT and x∞0 A ∶ A → RA is the universal map of the

reflection.

Since this holds for every object A, by 2.2.2, the functor A↦ ⟨RA,mA⟩ is the left adjoint

to UT ∶ AlgT → C with unit x∞0 ∶ Id → R. So there is a map µ ∶ RR→ R such that (R, x∞0 , µ)
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is the free monad on (T, τ). By the proof of 2.2.8, the universal map of the free monad is

m ○Tx∞0 = x∞1 .

When the free monad sequence for (T, τ) is weakly convergent, we will say the free monad

on (T, τ) exists constructively.

Theorem 2.3.23. If the free monad sequence for (T, τ) converges objectwise, then it con-

verges weakly.

Proof. For each A, let α(A) be the first ordinal at which the free T-algebra sequence for

A converges. We define a pointed endofunctor (R, η) on C as follows. On each object A,

let RA = Xα(A)A and let ηA = x
α(A)
0 A ∶ A → RA. Let f ∶ A → B be a map in C . Let

β = max{α(A), α(B)}. We define Rf ∶ RA → RB as the map Xβf ∶ XβA → XβB composed

with the isomorphisms Xα(A)A ≅ XβA and XβB ≅ Xα(B)B. Then R ∶ C → C is an endofunctor

and η ∶ Id → R is a natural transformation. If we definemA = (x
α(A)+1

α(A) )
−1

A
○πα(A)A ∶ TXα(A)A→

Xα(A)A on each object A, then m is a natural transformation TR→ R.

Just as for (small) diagrams, an endofunctor is the colimit of a large connected diagram

in pEnd(C ) if it is the objectwise colimit of the large diagram. So (R, η) = colim XT● . Then

η = x∞0 . Since the large diagram (TXα)α also converges objectwise, its colimit exists.

It is easy to check that conditions (1) and (2) of definition 2.3.19 hold on each object A.

Therefore they hold in End(C ).

2.4 Objectwise Convergence of Free Monad Sequences

In this section, we will describe a smallness condition that we can place on a pointed

endofunctor to guarantee that its free monad sequence converges objectwise. This main

result is theorem 2.4.23. The variations of this smallness condition play a central role in

nearly all of the results in this thesis.
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Because left proper orthogonal factorization systems are key to defining the smallness

condition, we spend section 2.4.1 defining them and reviewing key facts about them. We

then proceed in a similar manner to section 2.3. It is much easier to show that the small-

ness condition on a pointed endofunctor (S, σ) implies the free monad sequence for (S, σ)

converges objectwise when we know that (S, σ) is well-pointed. So we handle this case first

in section 2.4.2. Section 2.4.3 then uses the same reduction we used in sections 2.3.2 and

2.3.3. We show that when (T, τ) is a pointed endofunctor on a category C that satisfies the

smallness condition, then the well-pointed endofunctor (S, σ) on T ↓ C that we constructed

in section 2.3.2 satisfies a related smallness condition. So the free monad sequence for (S, σ)

converges objectwise and thus the free monad sequence for (T, τ) converges objectwise.

Finally, in section 2.4.4, we describe a particular subcategory of small endofunctors in

pEnd(C ). Not only do all of the objects in this subcategory have reflections in Mnd(C ),

but their reflections are themselves endofunctors that satisfy the same smallness condition.

So the forgetful functor U ∶ Mnd(C ) → pEnd(C ) restricts to a functor that has a left

adjoint. This fact will play an important role in some results in later chapters.

2.4.1 Orthogonal Factorization Systems

Let X be a collection of maps in a category C . A map f in C has the left lifting property

with respect to X if for each g ∈ X , there is a map l ∶ Y → A that makes the following

diagram commute. A map g in C has the right lifting property with respect to X if for each

f ∈ X , there is a map l ∶ Y → A that makes the following diagram commute.

X A

Y B

f

u

g

v

l (2.8)
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When a lift l in diagram (2.8) exists, we will say l is a solution to the lifting problem (u, v) ∶

f → g. We will use the notation ◻X for the collection of maps in C with the left lifting

property with respect to X and X ◻ for the collection of maps with the right lifting property

with respect to X .

For any collection of maps X , X ◻ = (◻(X ◻))◻ and ◻X = ◻((◻X )◻). We also have the

following properties.

• Every isomorphism in C is contained in both X ◻ and ◻X .

• The collections X ◻ and ◻X are stable under retracts in the arrow category C 2.

• The collection X ◻ is stable under composition and the collection ◻X is stable under

transfinite composition in C .

• The collection X ◻ is stable under pullbacks and the collection ◻X is stable under

pushouts in C .

• The collection X ◻ is stable under products and the collection ◻X is stable under co-

products in the arrow category C 2.

Definition 2.4.1. An orthogonal factorization system on a category C is a pair (L,R) of

collections of maps in C such that

• L◻ =R and L = ◻R,

• if f ∈ L and g ∈R, then the lift l in diagram (2.8) is unique, and

• every map f in C factors as f = i ○ p, where i ∈R and p ∈ L.

The factorization f = i ○ p in an orthogonal factorization system is always functorial.

Indeed, in the commutative square on the left, if f and g factor as f = if ○ pf and g = ig ○ pg
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for if , ig ∈R and pf , pg ∈ L, then there is a unique lift in the right rectangle.

X A

Y B

f

u

g

v

X A Eg

Ef Y B

if

u ig

pg

pf

∃!

v

When D is a small category and X is a collection of maps in C , we will use the notation

XD for the collection of maps in the functor category C D that are objectwise X -maps. Using

the functoriality of orthogonal factorization systems and the uniqueness of lifts in orthogonal

factorization systems, it is easy to prove the following.

Proposition 2.4.2. If (E ,M) is an orthogonal factorization system on C and D is a small

category, then (ED ,MD) is an orthogonal factorization system on C D .

Proposition 2.4.3. Let (L,R) be an orthogonal factorization system on a category C .

• If D ∶ D → C 2 is a diagram whose objects are in L, then colimD ∈ L when it exists.

• If D ∶ D → C 2 is a diagram whose objects are in R, then limD ∈R when it exists.

Proof. The proof is somewhat similar to the proof of 2.1.25.

Definition 2.4.4. An orthogonal factorization system (E ,M) on a category C is left proper

if every map in E is an epimorphism, right proper if every map in M is a monomorphism,

and proper if it is both left proper and right proper.

Proposition 2.4.5. Let (E ,M) be an orthogonal factorization system on C and let h = g○f .

• If (E ,M) is right proper and h ∈ E , then g ∈ E .

• If (E ,M) is left proper, h ∈ E , and f ∈ E , then g ∈ E .

• If (E ,M) is left proper and h ∈M, then f ∈M.
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• If (E ,M) is right proper, h ∈M, and g ∈M, then f ∈M.

An easy example of a left proper orthogonal factorization system that exists on any

category C is when E is the collection of all isomorphisms in C and M is the collection

of all maps in C . Dually, when M is the collection of all isomorphisms in C and E is the

collection of all maps in C , then (E ,M) is a right proper orthogonal factorization system.

Under fairly weak conditions on C , we can get less trivial proper orthogonal factorization

systems on C . To state this result, we will need some definitions.

Definition 2.4.6. A map f in a category C is a strong epimorphism if it is an epimorphism

and a lift l exists in diagram (2.8) whenever g is a monomorphism. A map g in C is a strong

monomorphism if it is a monomorphism and a lift l exists in diagram (2.8) whenever f is an

epimorphism.

In a given category C , we will use the notation M#, Ms#, E↡, and Es↡ for the classes of

monomorphisms, strong monomorphisms, epimorphisms, and strong epimorphisms, respec-

tively.

Definition 2.4.7. Let M be a subcollection of the monomorphisms in a category C . An

M-subobject of an object X is an M-map Y → X. Two M-subobjects f ∶ Y → X and

g ∶ Z →X of X are in the same isomorphism class if there is an isomorphism h ∶ Y → Z such

that f = g ○ h. The category C is M-well-powered if for each object X in C , the collection

of M-subobjects of X has only a set of isomorphism classes.

Definition 2.4.8. Let E be a subcollection of the epimorphisms in a category C . An E-

quotient of an object X is an E-map X → Y . Two E-quotients f ∶ X → Y and g ∶ X → Z of

X are in the same isomorphism class if there is an isomorphism h ∶ Y → Z such that g = h○f .
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The category C is E-well-copowered if for each object X in C , the collection of E-quotients

of X has only a set of isomorphism classes.

We will say a left proper orthogonal factorization system (E ,M) on a category C is

well-copowered if C is E-well-copowered.

As we already saw, we will say a category is well-powered when it is M#-well-powered.

Similarly, we will say a category is well-copowered when it is E↡-well-copowered.

Proposition 2.4.9 ([Bor94b, 4.4.3]).

• If C is a complete well-powered category, then (Es↡,M#) is a proper orthogonal factor-

ization system on C .

• If C is a cocomplete well-copowered category, then (E↡,Ms#) is a proper orthogonal

factorization system on C .

Dualizing the notation in section 2.1.3, for any object X in C and any collection X of

maps in C , X ↓X C will denote the full subcategory of the comma category X ↓ C on the

objects (f, Y ) such that f ∶X → Y is an X -map in C .

Lemma 2.4.10. Let (E ,M) be a left proper strong factorization system on a well-copowered

category C . For each object X in C , the category X ↓E C is equivalent to a partially ordered

set.

Proof. Since X has only a set’s worth of E-quotients, X ↓E C only has a set of isomorphism

classes of objects. Let u, v ∶ (f,C1)→ (g,C2) be parallel maps in X ↓E C . Since u○f = g = v○f

and f is an epimorphism, u = v. So whenever there is a map (C1, f) → (C2, g) between two

objects, this map is unique.
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We can now identify the existence of a map (f,C1)→ (g,C2) with the relation (f,C1) ≤

(g,C2). The fact that X ↓E C is a category means that ≤ is reflexive and transitive. It

remains to show that ≤ is antisymmetric. If there is a map u ∶ (f,C1) → (g,C2) and a map

v ∶ (g,C2)→ (f,C1), then v ○ u ○ f = f and u ○ v ○ g = g. So v ○ u = id and u ○ v = id .

Remark 2.4.11. If C is E-well-copowered, then every transfinite sequence X ∶ Ord → C

whose maps X(0 → α) ∶ X(0) → X(α) are E-maps must converge. Indeed, by 2.4.10, X

can be identified with a large sequence in a partially ordered set. Since this sequence will

exhaust all possible values in the partially ordered set otherwise, it must converge.

2.4.2 Convergence Results for Well-Pointed Endofunctors

Our goal in this section is to describe conditions under which the free monad sequence

on a well-pointed endofunctor (S, σ) converges objectwise. As we saw in section 2.3.3, the

objectwise convergence of this sequence implies the free monad on (S, σ) exists.

Let (S, σ) be a well-pointed endofunctor on a cocomplete category C . Suppose (E ,M)

and (E ′,M′) are left proper orthogonal factorization systems on C and that C is both

E-well-copowered and E ′-well-copowered.

To construct the free monad on (S, σ), we will need a sort of smallness condition on the

functor S ∶ C → C . Let λ be a regular cardinal. For the remainder of this section, we require

that

S ∶ C → C preserves E-tightness of (M′, λ)-cocones.

Refer to section 2.1.3 for the definitions of these terms. This is the most general smallness

condition we work with.

Remark 2.4.12. We could actually be a little bit more general by only requiring that S

preserves E-tightness of λ-sequential M′-cocones. This condition will be sufficient to prove
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objectwise convergence of the free monad sequence and by 2.1.17, this condition is more

general than the one above. Since we wish to keep notation consistent throughout this

thesis, and since filtered cocones are essential to the content of chapters 6 and 7, we choose

to use the stronger condition.

We will use various strengthenings of the smallness condition throughout this thesis. One

strengthening is the condition that S ∶ C → C preserves E-tightness of all λ-filtered cocones.

A special case is when S preserves colimits of λ-filtered cocones. Another is that S ∶ C → C

sends E-tight (M, λ)-cocones to E-tight M-cocones.

The following proposition gives a condition for the convergence of the free S-algebra

sequence on an object X. As we saw in 2.3.5, when this sequence converges, it converges to

a free S-algebra on X.

Proposition 2.4.13 ([Kel80, 6.1]). Let X be an object in C . Suppose there is a limit

ordinal γ such that the following condition is satisfied: For every ordinal β ≥ γ, if the cocone

{SβαX ∶ SαX → SβX}
α<γ is E-tight, then the cocone {SSβαX ∶ SSαX → SSβX}

α<γ is E-tight.

Then the free S-algebra sequence for X converges.

Proof. Since S●X ∶ Ord→ C is cocontinuous, {SγαX ∶ SαX → SγX}
α<γ is a colimiting cocone.

So it is an E-tight cocone in particular. By our hypothesis, the cocone {Sγ+1
α+1X ∶ Sα+1X →

SSγ+1X}
α<γ is E-tight. But this cocone is a final subcocone of {Sγ+1

α X ∶ SαX → SSγ+1X}
α<γ.

So {Sγ+1
α X}α<γ is an E-tight cocone. Continuing in this way, a transfinite inductive argument

shows that {SβαX ∶ SαX → SβX}
α<γ is an E-tight cocone for each β ≥ γ. In other words,

SβγX ∶ SγX → SβX is an E-map for each β ≥ γ.

We’ve shown that for each β ≥ γ, the transfinite sequence S●X ∶ Ord→ C , sends the map

γ → β to an E-map. So after reindexing, our remarks in 2.4.11 apply to S●X. So the free

S-algebra sequence for X converges.
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If S ∶ C → C preserves E-tightness of all λ-filtered cocones, then it is easy to see that

the hypothesis of the above proposition holds. Indeed, we can take γ to be a regular ordinal

with ∣γ∣ > λ to ensure that any cocone indexed by Ord<γ is λ-filtered. If we only know that

S preserves E-tightness of (M′, λ)-cocones, then we will need to do some more work to show

the hypothesis of proposition 2.4.13 holds. The following two technical lemmas make use of

our smallness condition on S to show exactly that.

Remark 2.4.14. If Λ ∶ Ord → Ord is a strictly increasing cocontinuous functor, then the

restriction Λ ∶ Ord<γ → Ord<Λ(γ) is a final functor for every limit ordinal γ. Since Λ is

strictly increasing, Λ(α) < Λ(γ) for every ordinal α < γ. Since Λ is also cocontinuous,

α ≤ Λ(α) for every ordinal α < Λ(γ). The result is then an immediate consequence of A.2.3.

We will use the successor functor + ∶ Ord →Ord that sends each ordinal α to α + 1 and

sends each map α → β to the map α+ 1→ β + 1. There is a natural transformation ς ∶ Id→ +

defined on each ordinal α as the map α → α + 1. We will abbreviate α + 1 as α+ so that

+(α) = α+.

Lemma 2.4.15 ([Kel80, 4.1]). For every functor F ∶ Ord→ C , there is a strictly increasing

cocontinuous functor Λ ∶ Ord→Ord, a functor G ∶ Ord→ C , and a natural transformation

θ ∶ G→ FΛ+ such that the following conditions hold.

1. For every ordinal β > Λ(α+), the map

F (Λ(α+)→ β) ○ θα ∶ G(α)→ F (β)

is an M′-map.

2. For any endofunctor T ∶ C → C and any limit ordinal γ, the map

colim
α<γ Tθα ∶ colim

α<γ TG(α)→ colim
α<γ TFΛ(α+)
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is an isomorphism.

Proof. We will define Λ ∶ Ord → Ord inductively. Let Λ(0) = 0. Since we want Λ to

be cocontinuous, it is enough to define it on successor ordinals. Let α be an ordinal and

suppose Λ(α) is defined. For each β > Λ(α), we apply the (E ′,M′) factorization to the map

F (Λ(α) → β) ∶ FΛ(α) → F (β). We end up with a large sequence of E ′-quotients of FΛ(α)

indexed by β > Λ(α). By our observation in 2.4.11, this sequence converges. Let Λ(α + 1)

be the first β at which this happens. So there is a factorization

FΛ(α) G(α) FΛ(α + 1)
ψα

FΛ(α→α+1)

θα

with ψα ∈ E ′ and θα ∈M′.

The convergence of the sequence of E ′-quotients of FΛ(α) implies that F (Λ(α+1)→ β)○

θα ∶ G(α)→ F (β) is anM′-map for each β > Λ(α+1). The maps ψα+1 ○θα ∶ G(α)→ G(α+1)

and ψγ ○ F (Λ(α) → Λ(γ)) ○ θα ∶ G(α) → G(γ) for a limit ordinal γ make G a functor

G ∶ Ord→ C . Then ψ ∶ FΛ→ G and θ ∶ G→ FΛ+ are natural transformations.

The following diagram of natural transformations commutes.

G G+

FΛ+ FΛ++

θ

Gς

θ+

FΛ+ς

ψ+

We apply T to the above diagram, restrict to Ord<γ for a limit ordinal γ, and then take the

colimit of the entire diagram over Ord<γ. Since

colim
α<γ TGς ∶ colim

α<γ TG(α)→ colim
α<γ TG(α)

and

colim
α<γ TFΛ+ς ∶ colim

α<γ TFΛ(α)→ colim
α<γ TFΛ(α)
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are identity maps, we know that colimα<γ Tψ is an inverse for colimα<γ Tθ.

Lemma 2.4.16 ([Kel80, 4.2]). Let F ∶ Ord → C be a functor. There is a limit ordinal γ

such that for each β ≥ γ, if the cocone

{F (α → β) ∶ F (α)→ F (β)}
α<γ

is E-tight, then the cocone

{SF (α → β) ∶ SF (α)→ SF (β)}
α<γ

is E-tight.

Proof. Let Λ, G, and θ ∶ G → FΛ+ be the objects defined in 2.4.15. Let γ0 be a regular

ordinal with ∣γ0∣ > λ. Then γ0 and Λ(γ0) are limit ordinals.

Suppose {F (α → β) ∶ F (α)→ F (β)}
α<Λ(γ0) is E-tight. Then by our observation in 2.4.14,

{F (Λ(α) → β) ∶ FΛ(α) → F (β)}
α<γ0 is E-tight. So the cocone {F (Λ(α+) → β) ∶ FΛ(α+) →

F (β)}
α<γ0 is also E-tight. An application of 2.4.15 (2) with T = Id to this cocone now tells

us that the cocone

{F (Λ(α+)→ β) ○ θα ∶ G(α)→ F (β)}
α<γ0

is E-tight. We know this last cocone is an M′-cocone. Furthermore, since γ0 is a regular

ordinal with ∣γ0∣ > λ, no λ-small diagram in Ord<γ0 is final. So the last cocone is a λ-filtered

cocone.

By our assumption on S, the cocone

{SF (Λ(α+)→ β) ○ Sθα ∶ SG(α)→ SF (β)}
α<γ0

is E-tight. Now 2.4.15 (2) with T = S tells us that {SF (Λ(α+)→ β) ∶ SFΛ(α+)→ SF (β)}
α<γ0

and therefore {SF (Λ(α) → β) ∶ SFΛ(α) → SF (β)}
α<γ0 is E-tight. So by 2.4.14, {SF (α →

β) ∶ SF (α)→ SF (β)}
α<Λ(γ0) is an E-tight cocone.
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We now have all of the prerequisites for the proof of our main result of this section.

Proposition 2.4.17. On each object X in C , the free S-algebra sequence for X converges.

Proof. By lemma 2.4.16, S satisfies the hypothesis of proposition 2.4.13 for every object X

in C .

Remark 2.4.18. It is easy to check that all of the above propositions go through under the

weaker assumption that S preserves E-tightness of λ-sequential M′-cocones.

2.4.3 Convergence Results for Pointed Endofunctors

Let (T, τ) be a pointed endofunctor on a cocomplete category C . We will show in 2.4.23

that the smallness condition of the previous section on the endofunctor T guarantees the

objectwise converges of the free monad sequence on (T, τ). Our method for showing this

result is to reduce it to the case of a well-pointed endofunctor.

Let (S, σ) be the well-pointed endofunctor on T ↓ C constructed in the section 2.3.2.

We need to show that the free monad sequence on (S, σ) converges objectwise. Then by

2.3.17, the free monad sequence on (T, τ) converges objectwise. We already saw that T ↓ C

is a cocomplete category. So, by 2.4.17, to construct a free monad on (S, σ), we only need

that S ∶ T ↓ C → T ↓ C satisfies the smallness condition with respect to two orthogonal

factorization systems on T ↓ C .

In 2.4.21 we will see how an orthogonal factorization system (E ,M) on C defines an

orthogonal factorization system (ET,MT) on T ↓ C . We will then show in 2.4.22 that

when T ∶ C → C preserves E-tightness of (M′, λ)-cocones for a regular cardinal λ and two

orthogonal factorization systems (E ,M) and (E ′,M′) on C , then S ∶ T ↓ C → T ↓ C preserves

ET -tightness of (M′
T, λ)-cocones.
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Let (E ,M) be an orthogonal factorization system on a category C and let (T, τ) be a

pointed endofunctor on C . We will use the notation MT for the class of maps (u, v) in

T ↓ C such that both u and v are in M. We will use the notation ET for the class of maps

(u, v) ∶ (X,f, Y )→ (A,g,B) in T ↓ C such that u ∈ E and v factors as the map p defined by

the pushout in C of Tu along f followed by a map r ∈ E , as shown in the following diagram.

TX TA

Y Z B

f

Tu

⌜

g

h

p

v

r

(2.9)

Lemma 2.4.19 ([Kel80, 15.3]). If the orthogonal factorization system (E ,M) is a left proper,

then every map in ET is an epimorphism in T ↓ C .

Proof. Let (u, v) ∶ (X,f, Y )→ (A,g,B) be a map in ET. We will factor (u, v) as in diagram

(2.9). Suppose (a, b) and (c, d) are parallel maps (A,g,B) → (C,k,D) in T ↓ C such that

(a, b)○(u, v) = (c, d)○(u, v). Then a○u = c○u ∶X → C and b○v = d○v ∶ Y →D as maps in C .

Since u ∈ E , it is an epimorphism and a = c. So it remains to show that b = d. Since r is an

epimorphism, it suffices to show b○r = d○r. Since Z is a colimit, two maps b○r and d○r out

of Z agree if and only if b○r○p = d○r○p and b○r○h = d○r○h. We’ve already determined that

the first equality holds. Since a = c, we know b○r○h = b○g = k○Ta = k○Tc = d○g = d○r○h.

Lemma 2.4.20 ([Kel80, 15.2]). Every map in T ↓ C factors as a map (u, v) ∶ (X,f, Y ) →

(A,g,B) in ET followed by a map (s, t) ∶ (A,g,B)→ (C,k,D) in MT.

Proof. Let (x, y) ∶ (X,f, Y ) → (C,k,D) be a map in T ↓ C First, we factor x ∶ X → C in C

as a map u ∶ X → A in E followed by a map s ∶ A → X in M. Next, we factor v as in the
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following diagram.

TX TA

Y Z D

f

Tu

h

k○Ts

p

v

q⌜

Then we factor q as a map r ∶ Z → B in E followed by a map t ∶ B → D in M. So

(u, r ○ p) ∶ (X,f, Y ) → (A, r ○ h,B) is a map in ET and (s, t) ∶ (A, r ○ h,B) → (C,k,D) is a

map in MT.

Proposition 2.4.21 ([Kel80, 15.1, 15.2]). If the orthogonal factorization system (E ,M) is

left proper, then the pair (ET,MT) is a left proper orthogonal factorization system on T ↓ C .

Proof. By lemmas 2.4.19 and 2.4.20, we only need to check ET = ◻MT and E◻T = MT.

Actually, since 2.4.20 tells us a factorization for (ET,MT) exists, it suffices to show ET ⊆ ◻MT.

Consider the following commutative diagram in T ↓ C .

(X,f, Y ) (U, j, V )

(A,g,B) (C,k,D)

(u,v)

(a,b)

(s,t)
(c,d)

(2.10)

Suppose (u, v) ∈ ET and (s, t) ∈ MT. Then a solution l ∶ A → U to the lifting problem

(a, c) ∶ u → s exists. Using the notation of diagram (2.9), the maps j ○ Tl ∶ TA → V and

b ∶ Y → V define a map m ∶ Z → V such that m ○ h = j ○ Tl and the following diagram

commutes.

Y V

Z B D

p

b

t
m

r d

Since r ∈ E and t ∈M, a solution n ∶ B → V to the lifting problem (m,d) ∶ r → t exists. So

(l, n) ∶ (A,g,B)→ (U, j, V ) is a lift in diagram (2.10).
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Proposition 2.4.22 ([Kel80, 15.5]). Let (T, τ) be a pointed endofunctor on a category C .

Let (E ,M) and (E ′,M′) be left proper orthogonal factorization systems on C . If there is a

regular cardinal λ such that T ∶ C → C preserves E-tightness of (M′, λ)-cocones, then the

well-pointed endofunctor (S, σ) on T ↓ C constructed in section 2.3.2 preserves ET-tightness

of (M′
T, λ)-cocones.

Proof. By 2.4.3 and the fact that colimits commute with each other, to show that S ∶ T ↓

C → T ↓ C preserves ET-tightness of (M′
T, λ)-cocones, it suffices to show that each of the

endofunctors Id, τ!τ∗, and τ!∆ cod τ∗ on T ↓ C have this property. This is trivial for Id.

Let E2 be the collection of maps (u, v) in C 2 such that u ∈ E and v ∈ E . Similarly, let

M2 be the collection of maps (u, v) in C 2 such that both u and v are in M.

First, we note that τ! ∶ C 2 → T ↓ C sends E2-tight (M′2, λ)-cocones in C 2 to ET-tight

cocones in T ↓ C . Indeed, let {(uα, vα) ∶ fα → f}α be an E2-tight (M′2, λ)-cocone in C 2.

Let Xα = dom fα, Yα = cod fα, X = dom f and Y = cod f . Let (u, v) ∶ colimα fα → f be

the map defined by the cocone {(uα, vα)}α. Then the smallness condition on T means that

the map colimα TXα → TX defined by the cocone {Tuα ∶ TXα → TX}α is in E . Also

2.4.5 implies that the colimiting cocone {Xα → colimαXα}α is an E-tight (M′, λ)-cocone.

So colimα TXα → T(colimα TXα) is an E-map and therefore an epimorphism. By 2.4.5,

the map Tu ∶ T colimαXα → TX is in E . It now follows from 2.4.3 that, as a map in C 2,

τ!(u, v) ∶ τ! colim fα → τ!f is an E2-map. It follows from 2.4.3, 2.4.5, and the fact that colimits

commute that {τ!(uα, vα)}α is an ET-tight cocone.

Now we know it is sufficient to show that the functors τ∗ ∶ T ↓ C → C 2 and ∆ cod τ∗ ∶ T ↓

C → C 2 send ET-tight (M′
T, λ)-cocones to E2-tight (M′2, λ)-tight cocones. Clearly, estab-

lishing this fact for the former functor is enough to show it holds for the latter. Let {(uα, vα) ∶

(Xα, fα, Yα)→ (X,f, Y )}α be an ET-tight (M′
T, λ)-cocone in T ↓ C . Then, in particular, the
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maps uα ∶ Xα → X are in M′. Let u ∶ colimαXα → X and v ∶ colimα Yα → Y be the maps

in C defined by the cocones {uα}α and {vα}α, respectively. The map colimα(Xα, fα, Yα) →

(X,f, Y ) in T ↓ C defined by the cocone {(uα, vα) ∶ (Xα, fα, Yα) → (X,f, Y )}α is the pair

(u, k) shown in the following diagram, where g = colimα(Xα, fα, Yα).

colimα TXα T(colimαXα) TX

colimα Yα Z Y

c

colimα fα

Tu

g f

h

v

k⌜

So the fact that this cocone is ET-tight means that u ∈ E and k factors as k = r ○ p, where

r ∈ E and p is the pushout of Tu along g. So we now know that {uα ∶ Xα → X}α is an

E-tight (M′, λ)-cocone in C . Thus Tu ○ c ∶ colim TXα → TX is in E . Since E is stable under

pushouts, p ○ h must be an E-map. Thus v = r ○ p ○ h ∈ E . So (u, v) ∈ E2.

We now have all of the components for the proof of our main theorem.

Theorem 2.4.23 ([Kel80, 15.6]). Let C be a cocomplete category equipped with well-copowered,

left proper, orthogonal factorization systems (E ,M) and (E ′,M′). If (T, τ) is a pointed end-

ofunctor on C and T ∶ C → C preserves E-tightness of (M′, λ)-cocones for a regular cardinal

λ, then the free monad sequence on (T, τ) converges objectwise and thus the free monad on

(T, τ) exists.

Proof. By 2.3.8 and 2.4.21, T ↓ C is a cocomplete category with well-copowered, left proper,

orthogonal factorization systems (ET,MT) and (E ′T,M
′
T) By 2.4.22, (S, σ) preserves ET-

tightness of (M′
T, λ)-cocones. So, by 2.4.17, the free monad sequence for (S, σ) converges

objectwise. Thus, by 2.3.17, the free monad sequence for (T, τ) converges objectwise, and

so the free monad on (T, τ) exists by 2.3.18.
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Remark 2.4.24. If T preserves E-tightness of λ-sequentialM′-cocones, then the proof of 2.4.22

shows that S preserves ET-tightness of λ-sequential M′
T-cocones. Then theorem 2.4.23 can

be adapted to show that the free monad sequence on (T, τ) converges objectwise.

2.4.4 A Special Case of the Smallness Condition on Endofunctors

Let (E ,M) be a left proper orthogonal factorization system on C . Let (E , λ)-pEnd(C )

and (E , λ)-Mnd(C ) be the full subcategories of pEnd(C ) and Mnd(C ), respectively, on

the endofunctors that preserve E-tightness of λ-filtered cocones.

Proposition 2.4.25. If there is a regular cardinal λ such that the functor T ∶ C → C

preserves E-tightness of λ-filtered cocones, then the free monad on T preserves E-tightness of

λ-filtered cocones.

Proof. First, we will show that the category (E , λ)-pEnd(C ) is closed under connected

colimits. Since C is cocomplete, pEnd(C ) is closed under connected colimits and the

colimits are computed objectwise. Let D ∶ D → pEnd(C ) be a connected diagram such

that for each object d in D , Dd ∶ C → C preserves E-tightness of λ-filtered cocones. Let

{fα ∶ Yα → Z}α be an E-tight λ-filtered cocone in C . For each object d in D , {Dd(fα) ∶

Dd(Yα) → Dd(Z)}α is an E-tight cocone in C . Since E is the left class of an orthogonal

factorization system, it is closed under colimits. Therefore {colimdDd(fα) ∶ colimdDd(Yα)→

colimdDd(Z)}α is an E-tight cocone in C . So the endofunctor colim D in pEnd(C ) preserves

E-tightness of λ-filtered cocones. Since (E , λ)-pEnd(C ) is a full subcategory of pEnd(C ),

colim D is the colimit of D as a diagram in (E , λ)-pEnd(C ).

Next, we note that the composition of two endofunctors in (E , λ)-pEnd(C ) is an end-

ofunctor in (E , λ)-pEnd(C ). Indeed, the composition AB of two pointed endofunctors

(A,α) and (B,β) is pointed by Aβ ○ αB ∶ Id → AB. Suppose A and B are endofunctors
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on C that preserve E-tightness of λ-filtered cocones. Let {fα ∶ Yα → Z}α be an E-tight

λ-filtered cocone in C . Then {B(fα) ∶ SYα → SZ}α is an E-tight λ-filtered cocone in C . So

{AB(fα) ∶ SYα → SZ}α is an E-tight λ-filtered cocone in C .

The free monad sequence of T starts with an endofunctor T in (E , λ)-pEnd(C ). If for

an ordinal α the endofunctors Xα and Xα+1 are in (E , λ)-pEnd(C ), then diagram (2.6) is in

(E , λ)-pEnd(C ). If γ is a limit ordinal and Xα is in (E , λ)-pEnd(C ) for each α < γ, then

Xγ must be in (E , λ)-pEnd(C ), since the diagram of Xα’s is connected.

Now, let R ∶ C → C be the free monad on T, which exists by 2.4.23. As we saw in the

proof of 2.3.18, on each object Y , there is an ordinal βY such that the transfinite sequence

(XαY )α converges at βY and RY = XβY Y . Let {fα ∶ Yα → Z}α be an E-tight λ-filtered

cocone in C and let β′ = sup{βZ , βYα ∣α}. Then the cocone {Rfα ∶ RYα → RZ}α is equal to

the cocone {Xβ′fα ∶ Xβ′Yα → Xβ′Z}α, which must be E-tight, since Xβ′ is an endofunctor in

(E , λ)-pEnd(C ).

Let G ∶ (E , λ)-Mnd(C )→ (E , λ)-pEnd(C ) be the functor that forgets the multiplication

map. By the above proposition and theorem 2.4.23, every endofunctor in (E , λ)-pEnd(C )

has a reflection in (E , λ)-Mnd(C ). So, by 2.2.2, there is an adjunction

(E , λ)-Mnd(C ) (E , λ)-pEnd(C ).

G

F

⊥ (2.11)

Note that because (E , λ)-Mnd(C ) is not a coreflective subcategory of Mnd(C ), the

above adjunction does not on its own imply that free monads exist on the objects of

(E , λ)-pEnd(C ). We still need the fact that the endofunctors in pEnd(C ) that preserve

E-tightness of λ-filtered cocones have reflections in Mnd(C ).
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2.5 Free Monoids

Typically, the existence of free monoids on objects in a strict monoidal category (C ,⊗, I)

requires some strong assumptions on how the functors (−)⊗X ∶ C → C and X⊗(−) ∶ C → C

behave with respect to certain colimits. The classic result that the free monoid on an object

exists when (−) ⊗X ∶ C → C and X ⊗ (−) ∶ C → C preserve coproducts for each object X

in C is an example. For the application we are interested in, the functors (−)⊗X ∶ C → C

preserve connected colimits, but not coproducts. This is the case in the strict monoidal

category of endofunctors under composition. We will prove that a free monoid on a pointed

object (T, τ) in a strict monoidal category (C ,⊗, I) exists when the functor (−)⊗X ∶ C → C

preserves connected colimits for each object X and the free monoid sequence for (T, τ) weakly

converges.

Let (C ,⊗, I) be a monoidal category. For us, a pointed object in (C ,⊗, I) is a pair (T, τ)

of an object T and a map τ ∶ I → T in C . We note that I is usually not the terminal object

in C . A map f ∶ (X,ηX) → (Y, ηY ) of pointed objects is a map f ∶ X → Y in C such that

f ○ηX = ηY . A map f ∶ (X,ηX , µX)→ (Y, ηY , µY ) of monoids in C is defined in the same way

as a map of monads. So f is a map that satisfies the equations µY ○(Y ⊗f)○(f⊗X) = f○µX and

f ○ηX = ηY . Let pObj(C ) be the category whose objects are pointed objects in (C ,⊗,I) and

whose morphisms are maps of pointed objects. Let Mon(C ) be the category whose objects

are monoids and whose morphisms are maps of monoids. The free monoid on a pointed

object (T, τ) is the reflection of (T, τ) along the forgetful functor U ∶ Mon(C )→ pObj(C ).

2.5.1 Weakly Convergent Free Monoid Sequences

Let (C ,⊗, I) be a cocomplete strict monoidal category and let (T, τ) be a pointed object

in (C ,⊗, I). We will define a free monoid sequence on (T, τ) in a similar way to the free
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monad sequence in section 2.3.3. We will also define weak convergence of free monoid se-

quences in an analogous way to the weak convergence of free monad sequences. We will then

show that, when the free monoid sequence on (T, τ) weakly converges and (−)⊗X ∶ C → C

preserves certain large connected colimits for each object X in C , then the free monoid on

(T, τ) exists.

The construction of the free monoid sequence takes place in (C ,⊗, I). Let X0 = I, let

X1 = T , and let π0 = τ ∶ I → T . Suppose objects Xα and Xα+1 and a map πα ∶ T ⊗Xα →Xα+1

are defined for an ordinal α. We define πα+1 ∶ T ⊗Xα+1 → Xα+2 to be the coequalizer of the

maps (T ⊗ πα) ○ (τ ⊗ T ⊗Xα) and (T ⊗ πα) ○ (T ⊗ τ ⊗Xα).

T ⊗Xα T ⊗ T ⊗Xα T ⊗Xα+1 Xα+2

τ⊗T⊗Xα
T⊗τ⊗Xα

T⊗πα πα+1

If γ is a limit ordinal and Xα and πα are defined for each α < γ, then we define {xγα ∶

Xα →Xγ}α<γ to be the colimiting cocone of the γ-sequence (Xα)α<γ with connecting maps

xα+1
α ∶= πα ○ (τ ⊗Xα) ∶Xα →Xα+1.

The two maps

T ⊗Xα T ⊗ T ⊗Xα T ⊗Xα+1 T ⊗Xγ

τ⊗T⊗Xα
T⊗τ⊗Xα

T⊗πα xγα+1

from T ⊗Xα to T ⊗Xγ define two maps

colim
T⊗xα+1α

(T ⊗Xα) colim
T⊗xα+1α

(T ⊗Xα) T ⊗Xγ,
y

id

c

where c is the map defined by the cocone {T ⊗ xγα ∶ T ⊗Xα → T ⊗Xγ}α<γ. And we define

πγ ∶ T ⊗Xγ →Xγ+1 to be the colimit of this last diagram.

By composing the maps xα+1
α and xγα, we get a unique map xβα ∶ Xα → Xβ for each pair

of ordinals with α ≤ β. The transfinite sequence (Xα)α with connecting maps xβα is the free

monoid sequence or free ⊗-monoid sequence on (T, τ).
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Lemma 2.5.1. Suppose for each object A in C , the endofunctor (−)⊗A ∶ C → C preserves

connected colimits. If (Xα)α is the free monoid sequence on (T, τ), then (Xα ⊗ (−))α is the

free monad sequence on the pointed endofunctor (T ⊗ (−), τ ⊗ (−)).

Proof. Let End⊗(C ) be the subcategory of End(C ) whose objects and morphisms are in the

image of the functor C → End⊗(C ) defined on objects by X ↦ X ⊗ (−) and on morphisms

by f ↦ f ⊗ (−). The composition A ⊗ (−) ○B ⊗ (−) of two endofunctors A ⊗ (−) ∶ C → C

and B ⊗ (−) ∶ C → C in End⊗(C ) is the endofunctor (A ⊗B)⊗ (−) ∶ C → C in End⊗(C ).

Since (−) ⊗X ∶ C → C preserves connected colimits for each object X in C and colimits

of endofunctors are computed objectwise, the colimit in End(C ) of a connected diagram of

functors in End⊗(C ) is in End⊗(C ). So End⊗(C ) is closed under connected colimits that

exist in End(C ).

In a similar manner to the proof of 2.4.25, an inductive argument now shows that the free

monad sequence on the pointed endofunctor T ⊗ (−) is a transfinite sequence in End⊗(C ).

Let (Xα ⊗ (−))α be this transfinite sequence. This is the image of the free monoid sequence

(Xα)α on (T, τ) under the functor X ↦X ⊗ (−).

When the colimit Y of the free monoid sequence (Xα)α does exist, we will use the notation

x∞α ∶ Xα → Y for the maps in the colimiting cocone. We will use the notation Y ′ for the

colimit of the transfinite sequence (T ⊗Xα)α with connecting maps T ⊗xβα ∶ T ⊗Xα → T ⊗Xβ

when this colimit exists. The cocone {T ⊗x∞α ∶ T ⊗Xα → T ⊗Y }α defines a map c′ ∶ Y ′ → TY .

The cocone {x∞α+1 ○ πα ∶ T ⊗Xα → Y }α defines a map π′ ∶ Y ′ → Y .

Definition 2.5.2. The free monoid sequence (Xα)α is weakly convergent if the colimit Y =

colimαXα exists, the colimit Y ′ = colimα T ⊗Xα exists, and there is a map m ∶ T ⊗ Y → Y

satisfying the following conditions.
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1. The map m ∶ T ⊗ Y → Y is the coequalizer of the maps (T ⊗m) ○ (τ ⊗ T ⊗ Y ) and

(T ⊗m) ○ (T ⊗ τ ⊗ Y ) in the following diagram.

T ⊗ Y T ⊗ T ⊗ Y T ⊗ Y
τ⊗T⊗Y
T⊗τ⊗Y

T⊗m

2. The following diagram is cocartesian.

Y ′ T ⊗ Y

Y Y

c′

π′ m

id ⌜

Lemma 2.5.3. Let (Xα)α be the free monoid sequence on (T, τ). Suppose for each object

A in C , the endofunctor (−) ⊗ A ∶ C → C preserves connected colimits and preserves the

colimits of the large diagrams (Xα)α and (T ⊗ Xα)α. Then the free monoid sequence on

(T, τ) is weakly convergent if and only if the free monad sequence for the pointed endofunctor

T ⊗ (−) ∶ C → C is weakly convergent.

Proof. By 2.5.1, (Xα ⊗ (−))α is the free monad sequence on the pointed endofunctor (T ⊗

(−), τ ⊗ (−)).

Suppose the free monad sequence (Xα ⊗ (−))α converges weakly. By evaluating the

endofunctors on I, we get that colimαXα exists, colimα(T ⊗Xα) exists, and, since connected

colimits of pointed endofunctors are computed objectwise, conditions (1) and (2) of definition

2.5.2 hold.

Conversely, suppose the free monoid sequence (Xα)α is weakly convergent. Then the

endofunctor R ∶= colimα(Xα⊗ (−)) exists and equals (colimαXα)⊗ (−) and the endofunctor

R′ ∶= colimα ((T ⊗Xα)⊗ (−)) exists and equals ( colimα(T ⊗Xα))⊗ (−). Both of the endo-

functor colimits are computed objectwise. Since (−) ⊗A preserves colimits for each object

A, conditions (1) and (2) of definition 2.3.19 hold.
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Theorem 2.5.4. Let (Xα)α be the free monoid sequence on (T, τ). Suppose for each object

A in C , the endofunctor (−) ⊗ A ∶ C → C preserves connected colimits and preserves the

colimits of the large diagrams (Xα)α and (T ⊗Xα)α. If the free monoid sequence on (T, τ)

is weakly convergent, then the free monoid on (T, τ) exists and is equal to the object the free

monoid sequence weakly converges to.

Proof. By 2.5.1, (Xα ⊗ (−))α is the free monad sequence on the pointed endofunctor (T ⊗

(−), τ⊗(−)). By 2.5.3, the free monad sequence (Xα⊗(−))α weakly converges. Furthermore,

as we saw in the proof of 2.5.3, colimα(Xα ⊗ (−)) = (colimαXα) ⊗ (−). So the free monad

(R, η, µ) on the pointed endofunctor (T ⊗ (−), τ ⊗ (−)) exists and R = colimα(Xα ⊗ (−)) =

(colimαXα)⊗ (−). So (RI, ηI, µI) is the free monoid on (T, τ).
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Chapter 3: Algebraic Weak Factorization Systems and Algebraic

Model Categories

Algebraic weak factorization systems (AWFSs) were introduced in [GT06] under the

name natural weak factorization systems as a generalization to WFSs of structure present in

orthogonal factorization systems. AWFSs replace a WFSs (L,R) with a choice of functorial

factorization (L,R) and place the structure of a comonad on L and the structure of a monad

on R. In [Gar08] and [Gar07], Garner applied the results of [Kel80] to the construction of

free AWFSs on left algebraic weak factorization systems. Some other sources that discuss

algebraic weak factorization systems and related topics are [Rie11], [BG16a], and [BG16b].

Garner’s method for constructing AWFSs can be thought of as an adaptation of the small

object argument for sets to a version of the small object argument for diagrams. Previous

work in the thesis [RB99] showed how to place the structure of a comonad on the cofibrant

replacement functor and the structure of a monad on the fibrant replacement functor in a

model category. Interestingly, both sources get monad structures by eliminating redundancy

in the small object argument. But, while [RB99] eliminates redundancy by manually omitting

redundant cells, [Gar07] eliminates redundancy by taking coequalizers and forcing redundant

cells to be equal.

Some useful properties of algebraic weak factorization systems come from the fact that

they encode the structure of lifts in a weak factorization system, rather than just property
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of having a lift. We then have categories of algebras and coalgebras for the right and left

endofunctors in an AWFS that lift the right and left classes of the underlying model category.

As we saw in 2.1.25, these categories have forgetful functors that create limits and colimits,

respectively. So in this sense, if (L,R) is the underlying weak factorization system (WFS),

then we have a cocomplete category of objects in L and a complete category of objects in

R. Furthermore, by keeping track of the structure of lifts, we can show that diagrams in the

category of coalgebras have natural lifts with respect to diagrams in the category of algebras

for an AWFS. We give a more rigorous introduction to the basic properties of AWFSs in 3.1.

In the rest of this chapter, we give an exposition of Garner’s construction of free AWFSs,

along with some original results. We prove a more general version of Garner’s result and

also fix an issue with his argument. Garner’s approach is to put a monoidal structure on the

category of left algebraic weak factorization systems (LAWFSs) such that the AWFSs are

exactly the monoids in the category of LAWFSs. Garner then claims that that when (L1,R1)

satisfies a smallness condition, then by [Kel80], the free monad sequence for R1 converges.

If we give ourselves this result, then the free monoid sequence for (L1,R1) converges. So

another result of [Kel80] shows that the free monoid (aka AWFS) on the LAWFS (L1,R1)

exists. The problem with this argument is that the smallness condition on (L1,R1) implies

objectwise convergence, not convergence. Since there isn’t really an analog of objectwise

convergence for a free monoid sequence, the argument does not go through. To fix this, we

use our definitions of weakly convergent free monad sequences and free monoid sequences in

chapter 2. The objectwise convergence of the free monad sequence on R1 implies the weak

convergence of this sequence. We show in 3.2.15 that the weak convergence of the free monad

sequence for R1 implies the weak convergence of the free monoid sequence for (L1,R1). We

then can apply 2.5.4 to show that the free monoid on (L1,R1) exists.
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We call the smallness condition we place on our LAWFSs compactness. The surprising

fact that we only need to look at E/≅-tight M′
/≅-cocones, rather than E2-tight M′2-cocones

to get the existence of free AWFSs is mentioned in [Gar07, p 31] and is similar to the

monomorphism hypothesis of [BR13]. Our definition of compactness generalizes the small-

ness conditions considered by Garner, since compactness only requires that the right functor

R of a LAWFS (L,R) preserves E/≅-tightness of (M′
/≅, λ)-cocones, rather than preserving

colimits of (M′
/≅, λ)-cocones. This extra leeway in what counts as a compact functor ends

up being very useful for later results.

Our result for the existence of free AWFSs on compact comonads is in some sense a sort of

generalization of the functorial version of Chorny’s generalized small object argument [Cho06,

1.1]. We fall short of a true generalization, since we work with a comonad instead of a pointed

endofunctor and since our compactness condition involves the entire category C , rather than

just domains of the maps in the colimiting class. However, we are substantially more general

in that Chorny’s condition corresponds to (E ,M′)-compactness, when (E ,M) and (E ′,M′)

are both the (isomorphism, any map) orthogonal factorization systems. With some effort,

one could make our compactness conditions more closely resemble a true generalization of

Chorny’s condition.

After reviewing Garner’s algebraic small object argument, we prove some results in section

3.3 specific to E-compact LAWFSs. We are able to show that the free AWFS on an E-compact

LAWFS is E-compact. We then show that the reflections of Garner’s algebraic small object

argument can be replaced with fully-defined left adjoints in this context. We show in 3.3.4

that a model category with E-compact LAWFSs is an E-compact algebraic model category,

getting the map of AWFSs required in the definition of an algebraic model category for free.
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The most important results in this section are 3.2.16, 3.2.18, 3.2.19, 3.3.3, and 3.3.4, but

we will also frequently use results from sections 3.1.3 and 3.2.5 in later chapters.

3.1 Properties of Algebraic Weak Factorization Systems

3.1.1 Functorial Factorizations

Recall, in the notation of section 2.1.1, C 2 is the arrow category of C and C 3 is the

category of composable arrows in C . As we noted in section 2.1.1, maps f → g in C 2 are

pairs (u, v) of maps u ∶ dom f → dom g and v ∶ cod f → cod g in C such that v ○ f = g ○ u. At

times, it will be convenient to use the notation r⃗ ∶ f → g for a map from f to g in C 2, rather

than representing the map by a pair.

A functorial factorization on C is a section for the composition functor comp ∶ C 3 → C 2.

More explicitly, a functorial factorization on C consists of three functors L ∶ C 2 → C 2,

R ∶ C 2 → C 2, and E ∶ C 2 → C such that dom L = dom, cod L = E = dom R, and cod R = cod.

So, to a map (u, v) ∶ f → g, this functorial factorization assigns a map

A C

Ef Eg

B D

Lf

u

Lg

Rf

E(u,v)

Rg

v

in C 3. We will write a functorial factorization as a pair (L,R), where E is understood. We

will refer to the functor E as the middomain functor associated to (L,R).

A map of functorial factorizations ζ ∶ (L,R) → (L′,R′) with middomain functors E and

E′, respectively, is a natural transformation ζ ∶ E → E′ such that the following diagram
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commutes for each object f ∶X → Y in C 2.

X

Ef E′f

Y

Lf L′f

ζf

Rf R′f

Every functorial factorization (L,R) comes equipped with an counit map ε⃗ for L and a

unit map η⃗ for R. The natural transformations ε⃗ ∶ L → I and η⃗ ∶ I → R are defined on each

f by the following diagrams.

Lf

id

ε⃗f f

Rf

f

Lf

η⃗f Rf

id

(3.1)

So L is a copointed endofunctor and R is a pointed endofunctor on C 2.

A map f is an L-coalgebra with structure map k⃗ ∶ f → Lf if and only if a lift exists in the

right square of diagram (3.1). A map f is an R-algebra with structure map s⃗ ∶ Rf → f if and

only if a lift exists in the left square of diagram (3.1). Indeed, since L is a domain-preserving

functor and R is a codomain-preserving functor, the maps k⃗ and s⃗ each consist of only one

nonidentity map in C . We will refer to these maps as k and s, so that k⃗ = (id , k) and

s⃗ = (s, id) are described on each f by the following commutative diagrams.

f

id

k⃗ Lf

k

Rf

s

s⃗ f

id

We assume all weak factorization systems are functorial. Specifically, a weak factorization

system (L,R) is a pair of collections L and R of objects in C 2 such that the following

conditions hold.

1. L◻ =R and L = ◻R.
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2. There is a functorial factorization system (L,R) on C such that Lf ∈ L and Rf ∈ R

for each object f in C 2.

If (L,R) is a weak factorization system and (L,R) is a functorial factorization satisfying

condition (2), then we will say (L,R) is an associated functorial factorization of (L,R). In

fact, we show in 3.1.2 that condition (1) of the definition is redundant.

We recall the notation ∣F ∣ or ∣A ∣ of section 2.1.5 for the collection of objects in the image

of a functor F ∶ A →B.

Proposition 3.1.1. If (L,R) is a functorial factorization, then ∣AlgR∣ ⊆ ∣CoalgL∣
◻ and

∣CoalgL∣ ⊆
◻∣AlgR∣.

Proof. Let ⟨f, k⃗⟩ be an L-coalgebra and let ⟨g, s⃗⟩ be an R-algebra. If (u, v) ∶ f → g is a

map in C 2, then the map s ○ E(u, v) ○ k shown below is a solution to the lifting problem

(u, v) ∶ f → g.

f
Lf

u

Lg
id

k

id
Rf

E(u,v)

Rg

s

g
v

(3.2)

Proposition 3.1.2. If (L,R) is a functorial factorization on C such that Lf ∈ ∣CoalgL∣ and

Rf ∈ ∣AlgR∣ for each object f in C 2, then ∣AlgR∣ = ∣CoalgL∣
◻ and ∣CoalgL∣ =

◻∣AlgR∣.

Proof. By 3.1.1, ∣AlgR∣ ⊆ ∣CoalgL∣
◻ and ∣CoalgL∣ ⊆

◻∣AlgR∣. If f ∈ ◻∣AlgR∣ and Rf ∈ ∣AlgR∣,

then a lift exists in the right square of diagram (3.1). Similarly, if f ∈ ∣CoalgL∣
◻ and

Lf ∈ ∣CoalgL∣, then a lift exists in the left square of diagram (3.1).
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Therefore a functorial factorization system (L,R) satisfying the hypothesis of 3.1.2 defines

a weak factorization system (L,R) with L = ∣CoalgL∣ and R = ∣AlgR∣. Conversely, if (L,R)

is a weak factorization system and (L,R) is a choice of functorial factorization for (L,R),

then ∣CoalgL∣ = L and ∣AlgR∣ = R. The inclusion ∣CoalgL∣ ⊆ L holds because Lf ∈ L for

each f and L is retract-closed. For each f ∈ L, since Rf ∈R, a lift exists in the right square

of diagram (3.1) and thus f ∈ ∣CoalgL∣. A similar argument shows ∣AlgR∣ =R.

When a functorial factorization system (L,R) satisfies the hypothesis of 3.1.2, we will call

(L,R), with L = ∣CoalgL∣ and R = ∣AlgR∣, the associated weak factorization system of (L,R).

In definition 3.1.5, we will put additional algebraic structure on a functorial factorization

that in particular guarantees it satisfies the hypothesis of 3.1.2.

Remark 3.1.3. The lift constructed in proposition 3.1.1 is natural with respect to maps of

L-coalgebras and maps of R-algebras. Let (a, b) ∶ ⟨f, k⃗⟩ → ⟨g, l⃗⟩ be a map of L-coalgebras,

let (c, d) ∶ ⟨p, s⃗⟩ → ⟨q, t⃗⟩ be a map of R-algebras. Suppose (u, v) ∶ f → p and (x, y) ∶ g →

q are maps in C 2 such that (x, y) ○ (a, b) = (c, d) ○ (u, v). Of course E(x, y) ○ E(a, b) =

E(c, d) ○E(u, v). Furthermore, what it means for (a, b) to be a map of L-coalgebras is that

E(a, b) ○ k = l ○ b. Similarly, t ○E(c, d) = c ○ s. Therefore c ○ s ○E(u, v) ○ k = t ○E(x, y) ○ l ○ b.

We will make frequent use of the following proposition.

Proposition 3.1.4. Let L and R be classes of maps in C such that L = ◻R. If (L,R) is a

functorial factorization on C such that Lf ∈ L for each f and ∣AlgR∣ ⊆R, then ∣AlgR∣ =R.

Proof. If f ∈R, then a solution to the lifting problem (id ,Rf) ∶ Lf → f exists. So f ∈ ∣AlgR∣.

Thus R ⊆ ∣AlgR∣.
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3.1.2 Algebraic Weak Factorization Systems

When L is a domain-preserving comonad on C 2, then the comultiplication map δ⃗ ∶ L→ LL

can be expressed as δ⃗ = (id , δ), where δ is a natural transformation obj(C 2) → morph(C ).

Similarly, when R is a codomain-preserving monad on C 2, we can express the multiplication

map µ⃗ ∶ RR→ R as µ⃗ = (µ, id).

Definition 3.1.5. An algebraic weak factorization system (AWFS) on C is a functorial fac-

torization (L,R) on C such that (L, ε⃗) is equipped with the structure of a comonad (L, ε⃗, δ⃗),

(R, η⃗) is equipped with the structure of a monad (R, η⃗, µ⃗), and the following distributivity

condition is satisfied.

Let Ξ ∶ LR → RL be the natural transformation that assigns the map (δf , µf) ∶ LRf →

RLf to each f . We require that the following diagrams commute.

LR RL

LLR LRL RLL

δ⃗R

Ξ

Rδ⃗

LΞ ΞL

LRR RLR RRL

LR RL

Lµ⃗

ΞR RΞ

µ⃗L

Ξ

Remark 3.1.6. The two distributivity conditions in the definition of an algebraic weak fac-

torization system are equivalent. Indeed, the equation ΞL○LΞ○ δ⃗R = Rδ⃗ ○Ξ encodes the two

equations δLf ○δf = E(id , δf)○δf and δf ○µf = µLf ○E(δf , µf)○δRf for each f ∈ ob(C 2), where

E be the middomain functor of the AWFS (L,R). The first of the two equations is equivalent

to δ⃗L ○ δ⃗ = Lδ⃗ ○ δ⃗, which is already the associativity condition on the comultiplication of the

comonad (L, ε⃗, δ⃗). Similarly, the equation Ξ ○ Lµ⃗ = µ⃗L ○RΞ ○ ΞR encodes the two equations

δf ○ µf = µLf ○E(δf , µf) ○ δRf and µf ○ µRf = µf ○E(µf , id) for each f ∈ ob(C 2), the second

of which is equivalent to the associativity of multiplication for (R, η⃗, µ⃗).
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Remark 3.1.7. We will see in proposition 3.2.3 that the distributivity condition naturally

arises from considering the structure of a RAWFS (L,R) on a LAWFS such that (L,R) is

still a LAWFS.

We will also need to work with the following weakenings of an AWFS.

1. A functorial factorization (L,R) is a left algebraic weak factorization system (LAWFS)

on C if (L, ε⃗) is equipped with the structure of a comonad (L, ε⃗, δ⃗).

2. A functorial factorization (L,R) is a right algebraic weak factorization system (RAWFS)

on C if (R, η⃗) is equipped with the structure of a monad (R, η⃗, µ⃗).

In section 3.1.3 we work out various relations between L-coalgebras and R-algebras when we

only have the structure of an LAWFS or RAWFS, rather than a full AWFS.

In the case of a full AWFS (L,R), we note that because δ⃗f ∶ Lf → LLf makes Lf an

L-coalgebra and µ⃗f ∶ RRf → Rf makes Rf and R-algebra, (L,R) satisfies the hypothesis of

3.1.2. This proves the following.

Proposition 3.1.8. If (L,R) is an AWFS on C , then (∣CoalgL∣, ∣AlgR∣) is a weak factor-

ization system on C .

An AWFS has more structure than just that of a weak factorization system, however.

As remark 3.1.3 makes clear, for any diagrams DL ∶ D → C 2 and DR ∶ D → C 2, which factor

through CoalgL and AlgR, respectively, and any natural transformation θ⃗ ∶DL →DR, there

is natural transformation λ ∶ cod DL → dom DR which encodes a lift in each diagram of the

following form, where θ⃗d = (θ0
d, θ

1
d).

DLd

θ0d

DRd

θ1d

λd
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So we have natural lifts rather than only knowing that a solution to each lifting problem

(u, v) ∶ f → g exists independently when f is an L-coalgebra and g is an R-algebra.

Definition 3.1.9. Let (L,R) and (L′,R′) be AWFSs with middomain functors E and E′,

respectively. A map of algebraic weak factorization systems ζ ∶ (L,R)→ (L′,R′) is a map of

functorial factorizations such that (id , ζ) ∶ L→ L′ is a map of comonads and (ζ, id) ∶ R→ R′

is a map of monads.

A map of LAWFSs ζ ∶ (L,R) → (L′,R′) is a map of functorial factorizations such that

(id , ζ) ∶ L → L′ is a map of comonads. A map of RAWFSs ζ ∶ (L,R) → (L′,R′) is a map of

functorial factorizations such that (ζ, id) ∶ R→ R′ is a map of monads.

Definition 3.1.10. Let C be a bicomplete category and let W be a collection of maps

in C that satisfies the 2 out of 3 property. An algebraic model category on C with weak

equivalencesW is a map of AWFSs (Ct,F)→ (C,Ft) on C such that ∣CoalgCt ∣ = ∣CoalgC∣∩W

and ∣AlgFt ∣ = ∣AlgF∣ ∩W .

From the definition it is clear that the underlying weak factorization systems (∣CoalgCt ∣, ∣AlgF∣)

and (∣CoalgC∣, ∣AlgFt ∣) of an algebraic model category on C are the weak factorization sys-

tems of a model category on C .

To better describe the structure of algebraic weak factorization systems and algebraic

model categories, we will need to define categorical lifts. Similar to how the operations (−)◻

and ◻(−) on collections describe the relations between the left and right classes in a weak

factorization system, we will define operations (−)� and �(−) on categories that describe

the relations between categories of algebras and coalgebras for an AWFS.
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3.1.3 Categorical Lifts

Let A be a category over C 2. So there is a functor A ∶ A → C 2. We will define a new

category A� over C2. When the context is clear, we will also use the notation A �.

An object in A � is a pair ⟨p,ϕ⟩, where p is an object in C 2 and ϕ is a coherent choice of

lift in the following square for every object f in A and every map (u, v) ∶ A(f)→ p in C 2.

A(f)

u

p

v

ϕ(f,u,v)

The coherence condition on ϕ specifies that ϕ(g, s, t) ○ b = ϕ(f, u, v) for every map (a′, b′) ∶

f → g in A and every commutative diagram of the following form, where (a, b) = A(a′, b′) ∶

A(f)→ A(g).

A(f)

a

u

p

s

A(g)
b

v

t

A morphism ⟨p,ϕ⟩ → ⟨q,ψ⟩ in A � is a map (x, y) ∶ p → q in C 2 such that for every

commutative diagram of the following form, x ○ ϕ(f, u, v) = ψ(f, s, t).

A(f)

u

x

p

q

s

v

t

y

By forgetting the choice of natural lift, we get a forgetful functor A � → C 2.

We define the category �A over C 2 dually. Namely, an object in �A is a pair ⟨f,ϕ⟩,

where f is an object in C 2 and ϕ is coherent choice of lift in each diagram of the following
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form.

f

u

A(p)
v

ϕ(u,v,p)

A morphism ⟨f,ϕ⟩ → ⟨g,ψ⟩ in �A is a map (a, b) ∶ f → g in C 2 compatible with the lifts ϕ

and ψ.

Proposition 3.1.11. Let A be a category over C 2.

1. The forgetful functor �A → C 2 creates colimits.

2. The forgetful functor A � → C 2 creates limits.

Proof. Let A be the functor A → C 2 and let U ∶ �A → C 2 be the forgetful functor.

Let D ∶ D → �A be a diagram such that the colimit of UD exists in C 2. Let (α,β) ∶

UDÐ→ colimUD be the colimiting cocone in C 2. By the definition of �A , there is a coher-

ent lift ϕd such that Dd = ⟨UDd,ϕd⟩ for each object d in D .

Suppose p is an object in A and (u, v) ∶ colimUD → Ap is a map in C 2. For each d, the

lifting problem (u ○ αd, v ○ βd) ∶ UDd → Ap has the solution ϕd(u ○ αd, v ○ βd, p). These lifts

are natural with respect to morphisms in the image of D by the definition of morphisms in

�A . So d↦ ϕd(u ○αd, v ○ βd, p) defines a cocone cod UDÐ→ dom Ap. Therefore there is an

induced map

ψ(u, v, p) ∶ cod (colimUD) ≅ colim(cod UD)→ dom Ap

out of the colimit, which is a solution to the lifting problem (u, v) ∶ colimUD → Ap. If

(x, y) = A(x′, y′) ∶ Ap → Aq for a map (x′, y′) ∶ p → q in A , then for each d, x ○ ϕd(u, v, p) =

ϕd(xu, yv, q). Thus x ○ ψ(u, v, p) = ψ(xu, yv, q). So ⟨colimUD,ψ⟩ is an object in �A and

(α,β) ∶DÐ→ ⟨colimUD,ψ⟩ is a cocone in �A . The uniqueness of maps out of the colimiting

cocone colimUD in C 2 shows that the cocone (α,β) in �A is a colimiting cocone.
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The proof of (2) is dual.

Corollary 3.1.12. Let A be a category over C 2.

1. If C 2 is cocomplete, then �A is cocomplete.

2. If C 2 is complete, then A � is complete.

Proposition 3.1.13.

1. If (L,R) is an LAWFS on C , then AlgR is a retract of Coalg�
L over C 2.

2. If (L,R) is an RAWFS on C , then CoalgL is a retract of �AlgR over C 2.

Proof. We will construct the first retraction. The second one is dual. Let E ∶ C 2 → C be

the middomain functor of (L,R). Suppose ⟨f, k⃗⟩ is an R-algebra. We define a natural lift

φ⟨f,k⃗⟩ for ⟨f, k⃗⟩ as follows. If ⟨h, m⃗⟩ is an L-coalgebra and (a, b) ∶ h→ f is a morphism of C 2,

then φ⟨f,k⃗⟩(⟨h, m⃗⟩, a, b) ∶= k ○E(a, b) ○m, where k⃗ = (k, id) and m⃗ = (id ,m). We now define

the functor F as follows.

F ∶ AlgR Coalg�
L

⟨f, k⃗⟩ ⟨f, φ⟨f,k⃗⟩⟩

⟨g, l⃗⟩ ⟨g, φ⟨g,l⃗⟩⟩

(u,v) (u,v)

Let G be the functor defined as below

G ∶ Coalg�
L AlgR

⟨f,ϕ⟩ ⟨f, ϕ⃗(⟨Lf, δ⃗f ⟩, id ,Rf)⟩

⟨g,ψ⟩ ⟨g, ψ⃗(⟨Lg, δ⃗g⟩, id ,Rg)⟩,

(u,v) (u,v)
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where ϕ⃗(⟨Lf, δ⃗f ⟩, id ,Rf) = (ϕ(⟨Lf, δ⃗f ⟩, id ,Rf), id) ∶ Rf → f and we use the same convention

for ψ⃗.

Clearly, G ○ F sends morphisms to themselves. Let ⟨f, k⃗⟩ be an R-algebra. Then G ○

F (⟨f, k⃗⟩) = ⟨f, φ⃗⟨f,k⃗⟩(⟨Lf, δ⃗f ⟩, id ,Rf)⟩ = ⟨f, (k○E(id ,Rf)○δf , id)⟩. But E(id ,Rf)○δf = idEf .

So G ○ F (⟨f, k⃗⟩) = ⟨f, k⃗⟩.

From our definitions of F and G, it is clear that they are functors over C 2.

Corollary 3.1.14.

1. If (L,R) is an LAWFS on C , then ∣Coalg�
L ∣ = ∣AlgR∣.

2. If (L,R) is an RAWFS on C , then ∣�AlgR∣ = ∣CoalgL∣.

Proof. This is just an application of 2.1.27 to the result in 3.1.13.

Proposition 3.1.15.

1. If (L,R) is an LAWFS on C , then there is an isomorphism of categories Coalgem
L

�
≅

AlgR over C 2.

2. If (L,R) is an RAWFS on C , then there is an isomorphism of categories �Algem
R ≅

CoalgL over C 2.

Proof of (1). Consider the functors F and G from the proof of proposition 3.1.13. We

have a restriction functor Coalg�
L → Coalgem

L
�

. Composing with F gives a functor F ′ ∶

AlgR →Coalgem
L

�
. Since ⟨Lf, δ⃗f ⟩ is a coalgebra for the comonad L, G extends to a functor

G′ ∶ Coalgem
L

�
→AlgR.

Just as in the previous proof, F ′ and G′ are functors over C 2 and G′ ○ F ′ = IdAlgR
.
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Note that on morphisms, F ′ ○G′ agrees with the identity functor. Suppose ⟨f,ψ⟩ is an

object in Coalgem
L

�
. Let

χ = φ
⟨f,ψ⃗(⟨Lf,δ⃗f ⟩,id ,Rf)⟩

.

So F ′ ○G′(⟨f,ψ⟩) = ⟨f,χ⟩. Let VL ∶ Coalgem
L → C 2 be the forgetful functor. On a square

(a, b) ∶ VL(⟨g, l⃗⟩)→ f ,

χ(⟨g, l⃗⟩, a, b) = ψ(⟨Lf, δ⃗f ⟩, id ,Rf) ○E(a, b) ○ l

Because ⟨g, l⃗⟩ is an object in Coalgem
L , l⃗ = (id , l) ∶ ⟨g, l⃗⟩ → ⟨Lg, δ⃗g⟩ is a map in Coalgem

L .

Therefore (a,E(a, b) ○ l) ∶ g → Lf is a map in Coalgem
L . Since ψ is a natural lift with respect

to maps in Coalgem
L ,

ψ(⟨Lf, δ⃗f ⟩, id ,Rf) ○E(a, b) ○ l = ψ(⟨g, l⃗⟩, a, b).

So χ = ψ and F ′ ○G′ = IdCoalgem
L

� .

The proof of (2) is dual.

A much weaker version of the above proposition is given in [BG16a, §2.7].

Proposition 3.1.16.

1. If (L,R) is a LAWFS on C , then ∣Coalg�
L ∣ = ∣CoalgL∣

◻.

2. If (L,R) is a RAWFS on C , then ∣�AlgR∣ =
◻∣AlgR∣.

Proof. (1) Suppose f ∈ ∣CoalgL∣
◻. Since L is a comonad, Lf ∈ ∣CoalgL∣ and a solution

exists to the lifting problem (id ,Rf) ∶ Lf → f . Thus f ∈ ∣AlgR∣. The reverse inclusion is

immediate. The second case is dual.
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3.2 Free AWFSs

Let AWFS(C ) be the category whose objects are AWFSs and whose maps are maps of

AWFSs. Let LAWFS(C ) be the category whose objects are LAWFSs and whose maps are

maps of LAWFSs. There is a functor

AWFS(C ) LAWFS(C )
G1 (3.3)

that forgets the multiplicative structure and distributivity rules of AWFSs and forgets that

a map ζ ∶ (L,R) → (C,F) of AWFSs is a map (ζ, id) ∶ R → F of monads. A free AWFS on

a LAWFS (L1,R1) is a reflection of (L1,R1) along G1. In section 3.2.3, we will see how to

apply the results of section 2.5 to the construction of free AWFSs on LAWFSs. We will see

that when (L,R) is the free AWFS on the LAWFS (L1,R1), then AlgR1
≅ Algem

R over C 2

and ∣AlgR1
∣ = ∣Algem

R ∣ = ∣AlgR∣.

In section 3.2.4, we will see how to construct free LAWFSs on comonads. Let Cmd(C 2)

be the category whose objects are comonads on C 2 and whose morphisms the maps of

comonads. Let G2 ∶ LAWFS(C ) → Cmd(C 2) be the forgetful functor that sends each

LAWFS (L,R) to the comonad L and sends each map ζ ∶ (L,R) → (C,F) of LAWFSs to

the map (id , ζ) ∶ L → C of comonads. The free LAWFS (L1,R1) on a comonad L0 is the

reflection of L0 along the functor G2. When (L1,R1) is the free LAWFS on a comonad L0,

we have that Coalgem
L0

�
≅ AlgR1

and ∣Coalg�
L0
∣ = ∣AlgR1

∣.

Finally, in section 3.2.5, we show how to construct free comonads on diagrams in C 2. Let

CAT be the metacategory whose objects are the categories in our Grothendieck universe

and whose morphisms are functors. Then CAT/C2 is the metacategory whose objects are

functors F ∶ A → C 2 and whose morphisms K from F ∶ A → C 2 to G ∶ B → C 2 are functors

K ∶ A → B such that GK = F . There is a functor G3 ∶ Cmd(C 2) → CAT/C 2 that sends
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each comonad L on C 2 to the forgetful functor VL ∶ Coalgem
L → C 2 and sends each map of

comonads ζ⃗ ∶ L→ C to the functor ζ⃗∗ ∶ Coalgem
L →Coalgem

C over C 2. A free comonad LI0 on

a diagram I ∶ I → C 2 is the reflection of I along G3. When LI0 is the free comonad on I,

I� ≅ Coalgem
LI0

�
over C 2.

Putting this all together, we will have a method for constructing free AWFSs on diagrams

I ∶ I → C 2. This is the reflection of I along the composite functor G3G2G1.

AWFS(C ) LAWFS(C ) Cmd(C 2) CAT/C 2G1 G2 G3

The free AWFS (LI ,RI) on I ∶ I → C 2 can be viewed as a categorical analog to the small

object argument on a set of maps in C . We have in this case that I� ≅ Algem
RI over C 2 and

that ∣I�∣ = ∣AlgRI ∣.

3.2.1 Monoidal Structure on the Category of LAWFSs

In order to apply our results for the existence of free monads on pointed endofunctors

to the existence of free AWFSs on LAWFSs, we need to define a strict monoidal structure

on the category left algebraic weak factorization systems. We will describe the monoidal

structure in this section.

Let C be a category. It will often be convenient to represent an object of LAWFS(C )

by a letter X rather than a pair (L,R). When we want to specify the left and right factors

of a LAWFS X, we will often use the notation X = (LX ,RX).

Given two LAWFSs (L,R) and (C,F) on C with middomain functors E and E′, re-

spectively, let (L,R) ⊛ (C,F) be the functorial factorization on C defined on each object

f ∶X → Y as the object

X EFf Y
LFf○Cf RFf
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in C 3 and on each morphism (u, v) ∶ f → g from f ∶X → Y to g ∶ Z →W as the map

X EFf Y

Z EFg W

LFf○Cf

u

RFf

E(E′(u,v),v) v

LFg○Cg RFg

in C 3.

Let I ∶ C 2 → C 3 be the functorial factorization defined on objects f ∶X → Y in C 2 by

X X Yid f

Then (L,R)⊛ I = (L,R) and I⊛ (L,R) = (L,R). The equality I⊛ I = I makes I a LAWFS.

There is a unit map η ∶ I → X defined on each f by ηf = Lf ∶ dom f → Ef and it is easy to

check that this is a map of LAWFSs.

Proposition 3.2.1 ([Gar07, §3.2]). The operation ⊛ defines a bifunctor

⊛ ∶ LAWFS(C ) ×LAWFS(C )Ð→ LAWFS(C ).

Proof. Let (L,R) and (C,F) be LAWFSs on C with middomain functors E and E′, re-

spectively. We will show that the functorial factorization (L,R) ⊛ (C,F) is a LAWFS.

Let Sf = LFf ○ Cf . Then S is a domain-preserving endofunctor on C 2 with counit map

ε⃗S = (id ,RFf) ∶ Sf → f . It suffices to show that (S, ε⃗S) extends to a comonad. Let

δ⃗L = (id , δL) and δ⃗C = (id , δC) be the comultiplication maps of L and C, respectively. The

comultiplication map for S is the map δ⃗S
f = (id , δS

f ) ∶ LFf ○Cf → LF(LFf ○Cf)○C(LFf ○Cf),

where

δS
f = E(E′(id ,LFf) ○ δC

f , id) ○ δL
Ff (3.4)
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is the map shown in the following diagram.

Cf

id

Cf

id

CCf

id

C(LFf○Cf)

LFf

id

LLFf

δCf E′(id ,LFf)

LF(LFf○Cf)
δLFf

id

RLFf

E(E′(id ,LFf)○δCf ,id)

RF(LFf○Cf)
id

From the diagram, RF(LFf ○ Cf) ○ δS
f = id . So ε⃗S

Sf ○ δ⃗
S
f = idSf . Applying E′ to the map

ε⃗S
f = (id ,RFf) ∶ Sf → f in C 2 gives a map E′(id ,RFf) ∶ E′Sf → E′f in C . Then

E′(id ,RFf) ○E′(id ,LFf) ○ δC
f = E′(id ,Ff) ○ δC

f = id .

Now, applying E to the map (E′(id ,RFf),RFf) ∶ FSf → Ff gives us

E(E′(id ,RFf),RFf) ○E(E′(id ,LFf) ○ δC
f , id) ○ δL

Ff = E(id ,RFf) ○ δL
Ff = id .

So Sε⃗S
f ○ δ⃗

S
f = idSf .

One can check that a map of LAWFSs ζ ∶ (C,F) → (C′,F′) defines a map of LAWFSs

(L,R)⊛ζ ∶ (L,R)⊛(C,F)→ (L,R)⊛(C′,F′) and that a map of LAWFSs θ ∶ (L,R)→ (L′,R′)

defines a map of LAWFSs θ ⊛ (C,F) ∶ (L,R)⊛ (C,F)→ (L′,R′)⊛ (C,F).

Corollary 3.2.2. The category (LAWFS(C ),⊛,I) is strict monoidal.

Proof. Since functor composition is a strict monoidal product, (RXRY)RZf = RX(RYRZf)

on each object f . So (X⊛Y)⊛ Z = X⊛ (Y ⊛ Z).

Proposition 3.2.3 ([Gar07, §3.2]). There is an isomorphism of categories

Mon⊛(LAWFS(C )) ≅ AWFS(C ).
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Proof. A monoid in (LAWFS(C ),⊛,I) is an object X = (L,R) with maps η ∶ I → X and

µ ∶ X ⊛ X → X in LAWFS(C ) satisfying the monoid equations. The monoid equations

translate exactly to the requirement that (R, η⃗, µ⃗) is a monad. As we already noted, the

unit map I → X is a map in LAWFS(C ). Requiring that the multiplication map µ ∶

X ⊛ X → X is a map in LAWFS(C ) is equivalent to the requirement that X satisfy the

distributivity conditions of an AWFS. To see this, we will need some notation. Let Sf =

LRf ○ Lf and let Tf = RRf on each object f in C 2. Then (S,T) = X ⊛ X is a LAWFS.

The comultiplication map δS
f ∶ Sf → SSf of (S,T) is defined by equation (3.4) of proposition

3.2.1, with (C,F) = (L,R). The middomain functor of (S,T) sends maps (u, v) ∶ f → g in

C 2 to maps E(E(u, v), id) ∶ ERf → ERg in C . Then the requirement that µ ∶ X⊛X→ X is

a map in LAWFS(C ) is the requirement that the following diagram commutes for each f .

(Sf,Tf) (Lf,Rf)

(SSf,Tf ○TSf) (SLf,Rf ○TLf) (LLf,Rf ○RLf)

µf

δSf δf

E(E(id ,µf ),µf) µLf

We note that

E(E(id , µf), µf) ○ δ
S
f = E(E(id , µf), µf) ○E(E(id ,LRf) ○ δf , id) ○ δRf

= E(δf , µf) ○ δRf

So the above requirement is equivalent to the condition δf ○µf = µLf ○E(δf , µf)○ δRf , which,

by 3.1.6, is equivalent to the distributivity conditions.

A map of monoids in (LAWFS(C ),⊛,I) is a map in LAWFS(C ) that respects the

multiplication maps of the monoids. In other words, it is a map of LAWFSs and a map of

RAWFSs. So it must be a map of AWFSs and vice versa.
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Remark 3.2.4. Dually, we can define an operation ⊙ that sends functorial factorizations

(L,R) and (C,F), with middomain functors E and E′ respectively, to the functorial factor-

ization (L,R)⊙ (C,F) defined on each object f ∶X → Y in C 2 as the object

X ECf Y
LCf Ff○RCf

in C 3 and defined on each morphism (u, v) ∶ f → g in C 2 from f ∶ X → Y to g ∶ Z → W as

the morphism

X ECf Y

Z ECg W

LCf

u

Ff○RCf

E(u,E′(u,v)) v

LCg Fg○RCg

in C 3.

The dual of 3.2.1 shows that (L,R) ⊙ (C,F) of two RAWFSs (L,R) and (C,F) is a

RAWFS. So the category RAWFS(C ) of RAWFSs and maps of RAWFSs has a strict

monoidal structure (RAWFS(C ),⊙,⊥), where ⊥ is the functorial factorization that sends

an object f ∶X → Y in C 2 to the object

X Y Y
f id

in C 3.

We do not have that the ⊛-product of two RAWFSs is a RAWFS or that the ⊙-product

of two LAWFSs is a LAWFS.

Remark 3.2.5. In [Gar07, §3.2], Garner shows the operations ⊛ and ⊙ above define a two-fold

monoidal structure in the sense of [BFSV03, 1.3] on the category FF(C ) whose objects are

functorial factorizations on C and whose morphisms are maps of functorial factorizations.

This means in particular that (FF(C ),⊛,I) is a strict monoidal category and that there is
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a natural transformation

zA,B,C,D ∶ (A⊙B)⊛ (C ⊙D)→ (A⊛C)⊙ (B ⊛D)

satisfying some coherence conditions.

Then the LAWFSs in FF(C ) are the comonoids with respect to (⊙,⊥) and the RAWFSs

are the monoids with respect to (⊛,I). Although showing the axioms of a two-fold monoidal

category are satisfied takes more work, the proof of 3.2.1 becomes easier in this context. It

is just a matter of proving that, for comonoids (X,εX , δX) and (Y, εY , δY ), the map

εX ⊛ εY ∶X ⊛ Y → ⊥⊛⊥ = ⊥

and the composition

X ⊛ Y (X ⊙X)⊛ (Y ⊙ Y ) (X ⊛ Y )⊙ (X ⊛ Y )
δX⊛δY zX,X,Y,Y

make X ⊛ Y a comonoid with respect to (⊛,I).

The main part of the proof of 3.2.3 was unpacking the requirement that µ ∶ X ⊛X → X

is a map in LAWFS(C ). This is easily stated in this context as the requirement that the

following diagram commutes.

X ⊛X (X ⊙X)⊛ (X ⊙X) (X ⊛X)⊙ (X ⊛X)

X X ⊙X

µ

δ⊙δ zX,X,X,X

µ⊙µ
δ

This doesn’t give us a shortcut for proving the equivalence though.

Let CDP(C 2) be the full subcategory of End(C 2) on the codomain-preserving endo-

functors.

Proposition 3.2.6.
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1. The subcategory inclusion functor K1 ∶ CDP(C 2) ↪ End(C 2) creates colimits of the

possibly large connected diagrams in CDP(C 2) whose colimits exist in End(C 2).

2. The functor K2 ∶ FF(C )→CDP(C 2) that sends each functorial factorization (L,R) to

R and sends each map of functorial factorizations ζ ∶ (L,R)→ (C,F) to (ζ, id) ∶ R→ F

creates colimits of the possibly large connected diagrams in FF(C ) whose colimits exist

in CDP(C 2).

3. The forgetful functor K3 ∶ LAWFS(C )→ FF(C ) creates colimits of the possibly large

connected diagrams in LAWFS(C ) whose colimits exist in FF(C ).

Proof. (1) If D ∶ D → End(C 2) is a possibly large, connected diagram of codomain-

preserving endofunctors whose colimit exists, then the colimit must be a codomain-preserving

endofunctor. The colimit is a colimit in CDP(C 2) since CDP(C 2) is a full subcategory of

End(C 2).

(2) If ((Lα,Rα))α is a possibly large connected diagram in FF(C ) such that the colimit R

of (Rα)α exists in CDP(C 2), then the inclusion map Rα → R of the colimiting cocone along

with Lα for any α defines a left factor L for R so that (L,R) is a functorial factorization.

Different choices of α will yield the same L. It easily follows that (L,R) is the colimit of

((Lα,Rα))α in FF(C ).

(3) This is an immediate consequence of 2.1.21.

So the functor K = K1K2K3 ∶ LAWFS(C ) → End(C 2) creates colimits of the possibly

large connected diagrams in LAWFS(C ) whose colimits exist in End(C 2).

Proposition 3.2.7 ([Gar08, 4.18]). When C is a cocomplete category, the categories FF(C )

and LAWFS(C ) are cocomplete.
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Proof. As we saw in 3.2.6 (2), the colimit of a connected diagram in FF(C ) is the objectwise

colimit, which must exist, since C is cocomplete. We can get the colimit of any diagram

D ∶ D → FF(C ) of functorial factorizations as follows. Create a new diagram D′ ∶ D ′ →

FF(C ) by adding the object I to D and adding the unit map η ∶ I→Dd for each functorial

factorization Dd in the diagram. The diagram D′ is connected, so the objectwise colimit is

a functorial factorization. It is easy to check that this object is the colimit of the original

diagram in FF(C ).

The above paragraph along with 3.2.6 (3) implies that LAWFS(C ) is cocomplete.

Proposition 3.2.8 ([Gar08, 4.18]). For each LAWFS Y , the endofunctor (−)⊛Y ∶ LAWFS(C )→

LAWFS(C ) preserves colimits of the possibly large connected diagrams D ∶ D → LAWFS(C )

such that the colimit of the diagram KD in End(C 2) exists objectwise.

Proof. Let D ∶ D → LAWFS(C ) be a possibly large diagram such that the colimit of KD in

End(C 2) exists. By 3.2.6, the colimit of D in LAWFS(C ) exists. Let θ ∶DÐ→ colimD be

the colimiting cocone. We will use the notation Dd = (LDd,RDd) and colimD = (L,R). Let

Y = (LY ,RY ) be a LAWFS. The cocone {θd ⊛ Y ∶Dd⊛ Y → (colimD)⊛ Y }d is sent by K to

the cocone {(θdRY , id) ∶ RDdRY → (colimd RDd)RY }d in End(C ). Since the colimit of KD is

computed objectwise, (colimd RDd)RY = colimd(RDdRY ). Therefore the cocone {(θdRY , id) ∶

RDdRY → (colimd RDd)RY }d is colimiting. Because by 3.2.6, the functor K ∶ LAWFS(C )→

End(C ) reflects the colimit of D, the cocone {θd ⊛ Y ∶ Dd⊛ Y → (colimD)⊛ Y }d must be

a colimiting cocone in LAWFS(C ).

3.2.2 Compact Objects

This section will make frequent use of the definitions and notation in 2.1.3 and 2.4.1 so

the reader may wish to review these sections.
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To show that an object (L,R) in LAWFS(C ) has a reflection in AWFS(C ), we need to

show that (L,R) satisfies a smallness condition. The smallness condition on (L,R) is just a

smallness condition on R. The smallness condition on R, which we call strong compactness,

is more general than the smallness condition introduced in 2.4.2. To describe this condition,

it will be useful to have some notation.

Definition 3.2.9. Let X be a collection of maps in a category C .

• Let X 2 be the collection of maps (u, v) in C 2 such that u ∈ X and v ∈ X .

• Let X/≅ be the collection of maps (u, v) in C 2 such that u ∈ X and v is an isomorphism.

• Let

A

/≅ be the collection of maps (u, v) in C 2 such that v is an isomorphism

Definition 3.2.10 (Compact Functors). Let λ be a regular cardinal and let C be a category

equipped with left proper, orthogonal factorization systems (E ,M) and (E ′,M′).

• An endofunctor F ∶ C 2 → C 2 is (E ,M′, λ)-compact if F sends E/≅-tight (M′
/≅, λ)-

filtered cocones to E2-tight cocones.

• An endofunctor F ∶ C 2 → C 2 is strongly (E ,M′, λ)-compact if F sends E/≅-tight

(M′
/≅, λ)-filtered cocones to E/≅-tight cocones.

An endofunctor F ∶ C 2 → C 2 is (strongly) (E ,M′)-compact if it is (strongly) (E ,M′, λ)-

compact for some regular cardinal λ.

When (E ′,M′) is the (isomorphism, any map) left proper, orthogonal factorization system

on C , then we will say an endofunctor F on C 2 is (strongly) (E , λ)-compact if it is (strongly)

(E ,M′, λ)-compact. It is E-compact if it is (E , λ)-compact for some regular cardinal λ.

Remark 3.2.11. If a functor F ∶ C → C preserves E -tightness of λ-filtered cocones for a

regular cardinal λ, then the functor F 2 ∶ C 2 → C 2 is strongly (E , λ)-compact.
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Definition 3.2.12. Let (E ,M) and (E ′,M′) be left proper, orthogonal factorization systems

on a category C .

• A functorial factorization (L,R) on C is (E ,M′)-compact if L ∶ C 2 → C 2 is an (E ,M′)-

compact functor.

• A map q ∶ (L,R) → (L′,R′) of functorial factorizations is (E ,M′)-compact if both

(L,R) and (L′,R′) are (E ,M′)-compact.

As for endofunctors, we say a functorial factorization or map of functorial factorizations is

E-compact when (E ′,M′) is the (isomorphism, any map) orthogonal factorization system.

The above definitions apply to AWFSs, LAWFSs, and algebraic model categories, so it

makes sense to talk about these things being (E ,M′)-compact.

Remark 3.2.13. The functor R in a functorial factorization (L,R) is strongly (E ,M′)-

compact if and only if L is (E ,M′)-compact. So we could just as well define an (E ,M′)-

compact functorial factorization (L,R) to be one for which R is strongly (E ,M′)-compact.

3.2.3 Free AWFSs on LAWFSs

We are now ready to prove that free AWFSs exist on certain compact LAWFSs. We will

also show that free AWFSs on compact LAWFSs are algebraically free.

We will now start adding the assumption that C is a locally small category. Let C be

a cocomplete, locally small category equipped with well-copowered, left proper, orthogonal

factorization systems (E ,M) and (E ′,M′).

Proposition 3.2.14. If (T, τ⃗) is a strongly (E ,M′)-compact, codomain-preserving endo-

functor on C 2, then the free monad sequence on (T, η⃗) converges objectwise.
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Proof. We will show that the free T-algebra sequence on each object f in C 2 converges. Let

f ∶ A→ B be an object in C 2. Let (Xα)α be the free monad sequence on (T, τ⃗). So (Xαf)α

is the free T-algebra sequence on f .

By 3.2.6 (1), the colimit in End(C 2) of a connected diagram of codomain-preserving end-

ofunctors is a codomain-preserving endofunctor. Since compositions of codomain-preserving

endofunctors are also codomain-preserving endofunctors, the free monad sequence on (T, τ⃗)

is a sequence of codomain-preserving endofunctors. Every codomain-preserving endofunctor

F on C 2 restricts to an endofunctor F̂ on the comma category C ↓ B. So (X̂α)α is a sequence

of endofunctors on C ↓ B. When (F, η⃗) is a pointed endofunctor with η⃗ = (η, id), (F̂, η) is a

pointed endofunctor on C ↓ B. Then (X̂α)α is the free monad sequence for (T̂, τ) on C ↓ B

and (X̂αf)α is the free T-algebra sequence on the object f in C ↓ B.

We note that the category C ↓ B is cocomplete and that the well-copowered, left proper,

orthogonal factorization systems (E ,M) and (E ′,M′) lift to well-copowered, left proper,

orthogonal factorization systems (Ê ,M̂) and (Ê ′,M̂′), respectively, on C ↓ B. Then our

assumption that T is strongly (E ,M′)-compact is exactly the requirement that T̂ preserves

Ê-tightness of (M̂′, λ)-cocones for some regular cardinal λ. Therefore, by 2.4.23, the free

T̂-algebra sequence (X̂αf)α on f converges. But this means the free T-algebra sequence

(Xαf)α on f converges.

The basic argument for the above proof is outlined in [Gar07, p31].

Proposition 3.2.15. If (L,R) is an (E ,M′)-compact LAWFS, then the free ⊛-monoid se-

quence on (L,R) is weakly convergent.

Proof. Let (Xα)α be the free monoid sequence on (T, η), where T = (L,R) and Xα =

(LXα ,RXα) for each α. From the definition of the monoid product ⊛, it is clear that (RXα)α
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is the free monad sequence on (R, η⃗), where η⃗ = (η, id). Since R is strongly (E ,M′)-compact,

by 3.2.14, the free monad sequence (RXα)α converges objectwise and by 2.3.23, (RXα)α is

weakly convergent. So the objectwise colimits F = colimα RXα and F′ = colimα RXα exist and

there is a map (m, id) ∶ RF → F such that conditions (1) and (2) of 2.3.19 hold. By 3.2.6,

the colimits (C,F) = colimαXα and (C′,F′) = colimα T⊛Xα exist in LAWFS(C ). If we can

show that m ∶ T ⊛ (C,F) → (C,F) is a map in LAWFS(C ), then it will follow from 3.2.6

that (Xα)α is a weakly convergent free monoid sequence in (LAWFS,⊛,I).

To show that m ∶ T ⊛ (C,F) → (C,F) is a map in LAWFS(C ), it suffices to show on

each object f in C 2 that the following diagrams commute

I

Sf Cf

(id ,Sf) (id ,Cf)

mf

Sf Cf

SSf SCf CCf,

δ⃗Sf

mf

δ⃗Cf

Smf mCf

where Sf = LFf ○ Cf and δ⃗S is the comultiplication map of S defined in 3.2.1. Because

(RXα)α converges objectwise, there is an ordinal β such that Xβf = (LXβf,RXβf) = (Cf,Ff)

and, as we saw in 2.3.23, (mf , id) = (πβf , id) ∶ RLXβf → LXβf . But πβ ∶ T ⊛ Xβ → Xβ is a

map in LAWFS(C ), since it is a map in the free monoid sequence for (T, τ). Therefore

πβf =mf satisfies the relations in the above diagrams.

Theorem 3.2.16. If (L,R) is an (E ,M′)-compact LAWFS, then the free AWFS on (L,R)

exists and is equal to the colimit of the free monoid sequence for (L,R).

Proof. We know from 3.2.15 that the free monoid sequence (Xα)α for (L,R) is weakly

convergent. We know from 3.2.8 and the fact that the free monad sequence on R con-

verges objectwise that for every LAWFS Y, the endofunctor (−) ⊛ Y ∶ LAWFS(C ) →

LAWFS(C ) preserves connected colimits and preserves the colimits of the large diagrams

(Xα)α and (T ⊛ Xα)α. Thus, by 2.5.4, (L,R) has a reflection along the forgetful functor
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Mon⊛(LAWFS(C )) → LAWFS(C ). This reflection is the colimit of the free monoid se-

quence for (L,R). By 3.2.3, this is equivalent to (L,R) having a reflection along the forgetful

functor G1 ∶ AWFS(C )→ LAWFS(C ).

Remark 3.2.17. By remark 2.4.24, we could have gotten the same result in theorem 3.2.16

if we replaced (E ,M′)-compactness of (L,R) with the condition that R ∶ C 2 → C 2 preserves

E/≅-tightness of λ-sequential M′
/≅-cocones for some regular cardinal λ.

We will say an AWFS (L,R) is an algebraically free AWFS on an LAWFS (L1,R1) if

there is a map ζ ∶ (L1,R1) → (L,R) of LAWFSs such that (ζ, id)† ∶ Algem
R → AlgR1

is

an isomorphism of categories over C 2. Since the functor (ζ, id)† ∶ Algem
R → AlgR1

factors

through AlgR over C 2, a consequence of algebraic freeness is that ∣AlgR∣ = ∣Algem
R ∣.

Unlike in section 2.2.1, we will not be able to show that every free AWFS on a locally

small cocomplete category is algebraically free. We will, however, be able to show that

whenever (L1,R1) is an (E ,M′)-compact LAWFS on a locally small cocomplete category,

the free AWFS on (L1,R1) is algebraically free.

Proposition 3.2.18. The free AWFS on an (E ,M′)-compact LAWFS on C is algebraically

free.

Proof. Let (L1,R1) be an (E ,M′)-compact LAWFS on C . Let (L,R) be the free AWFS on

(L1,R1) with universal map ζ ∶ (L1,R1)→ (L,R). As we saw in the proof of 3.2.15, applying

the functor K ∶ LAWFS(C ) → End(C 2) to the free monoid sequence on (L1,R1) yields

the free monad sequence on R1. Since R1 is strongly (E ,M′)-compact, by 3.2.14, the free

monad sequence converges objectwise. So R is the free monad on R1 with universal map

(ζ, id) ∶ R1 → R. The result follows from 2.2.7.
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We have the following important consequence of the existence of free AWFSs and their

algebraic-freeness. We will often use this in combination with 3.1.4.

Proposition 3.2.19. Let L and R be classes of maps in C such that L = ◻R. If (L1,R1) is

an (E ,M′)-compact LAWFS on C such that ∣AlgR1
∣ =R, then ∣CoalgL∣ = L and ∣AlgR∣ =R

for the free AWFS (L,R) on (L1,R1).

Proof. Existence of the free AWFS (L,R) on (L1,R1) is 3.2.16. The equality ∣AlgR∣ =

∣AlgR1
∣ = R comes from 3.2.18. Then by 3.1.13 and 3.1.16, ∣CoalgL∣ = ∣�AlgR∣ =

◻∣AlgR∣ =

◻R = L.

3.2.4 Free LAWFSs on Comonads

Let C be a cocomplete category. We will show that every comonad on C 2 has a reflection

along the forgetful functor G2 ∶ LAWFS(C )→Cmd(C 2).

Lemma 3.2.20. Let (L0, ε⃗L0 , δ⃗L0) be a comonad on C 2 and let (εt, εb) = ε⃗L0. The endofunctor

L1 ∶ C 2 → C 2 defined on each object f as the pushout of L0f along εtf has the structure of a

comonad.

Proof. Let (δt, δb) = δ⃗L0 . On each object f in C 2, let R1f be the map, shown in the below

left diagram, defined by the cocone consisting of the maps εbf and f . Since pushouts are

functorial, (L1,R1) is a functorial factorization. Let E1 ∶ C 2 → C be the middomain functor

for (L1,R1). Let δf be the map, shown in the below right diagram, defined by the cocone of

maps E1(εtf , αf) ○ αL0f ○ δ
b
f and L1L1f .

L0f

εtf

⌜
L1f

id

f

αf

εbf

R1f

L0f

εtf

⌜
L1f

id

L1L1f

αf

E1(εtf ,αf )○αL0f
○δbf

δf
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Using the universal property of pushouts and the comonad structure on (L0, ε⃗L0 , δ⃗L0),

the reader can check that the endofunctor L1 ∶ C 2 → C 2 is a comonad with counit map

ε⃗f = (id ,R1f) and comultiplication map δ⃗f = (id , δf) on each object f in C 2.

An immediate consequence of the above proof is that the maps (εtf , αf) ∶ L0f → L1f

define a map of comonads L0 → L1.

We define F2(L0) to be the LAWFS (L1,R1) with comonad structure (L1, ε⃗, δ⃗). It is easy

to check the following result.

Proposition 3.2.21 ([Gar08, 4.7]). The LAWFS F2(L0) is the reflection of L0 along G2.

The universal map of this reflection is given by (εtf , αf) ∶ L0f → L1f on each object f in C 2.

So every comonad on C 2 has a reflection in LAWFS(C ) and thus F2 ∶ Cmd(C 2) →

LAWFS(C ) is the left adjoint to G2.

When we want to combine 3.2.16 and 3.2.21 to construct a free AWFS on a comonad, we

need to know that the free LAWFS of 3.2.21 is a compact LAWFS. Suppose C is equipped

with well-copowered, left proper, orthogonal factorization systems (E ,M) and (E ′,M′).

Proposition 3.2.22. If L0 is an (E ,M′)-compact comonad on C 2, then F2(L0) is an

(E ,M′)-compact LAWFS on C .

Proof. Let P ∶ C out → C be the functor that sends a span in C to its colimit. Because

colimits commute, P preserves colimits. By 2.4.3, using the notation of 2.4.2, P sends Eout-

maps to E-maps. Thus P sends Eout-tight cocones to E-tight cocones. If {(uα, vα) ∶ fα → f}α

is an E/≅-tight (M′
/≅, λ)-cocone for some regular cardinal λ, then {L0(uα, vα) ∶ L0fα → L0f}α

is an E2-tight cocone. It follows that {L1(uα, vα) ∶ L1fα → L1f}α is an E2-tight cocone. So

L1 is (E ,M′)-compact and thus (L1,R1) is (E ,M′)-compact.

112



Proposition 3.2.23. If (L1,R1) is the free LAWFS on the comonad L0, then there is an

isomorphism of categories Coalgem
L0

�
≅ Coalgem

L1

�
.

Proof. Let VL0 ∶ Coalgem
L0
→ C 2 be the forgetful functor and let ψ ∶ VL0 → L0VL0 be the

natural transformation defined by ψ⟨f,k⃗⟩ = k⃗ on each object ⟨f, k⃗⟩ in Coalgem
L0

. Let p be an

object in ∣Coalgem
L0

�
∣ and let θ ∶ VL0

Ð→p be the canonical cocone of p relative to VL0 .

The fact that ⟨L0p, δ⃗p⟩ is an object in Coalgem
L0

and the commutativity of the following

diagram shows that there is a bijective correspondence between solutions to the lifting prob-

lem ε⃗p ∶ L0p → p and natural solutions to the lifting problem θ ∶ VL0
Ð→p. Furthermore, this

correspondence respects the naturality of maps in Coalgem
L0

�
.

VL0 L0VL0 L0p

VL0 p

ψ L0θ

ε⃗VL0 ε⃗p

θ

The same is true of Coalgem
L1

. Since there is a bijective correspondence between the lifts

in the following diagrams, this means there is a bijective correspondence between the objects

of the categories Coalgem
L0

�
and Coalgem

L1

�
.

L0p

εtp

p

εbp

sp
L1p

id

p

R1p

tp

This bijection extends to morphisms as well and defines inverse functors Coalgem
L0

�
→

Coalgem
L1

�
and Coalgem

L1

�
→ Coalgem

L0

�
over C 2. In fact, the latter functor is defined by

the map Coalgem
L0
→Coalgem

L1
of categories over C 2 that is defined by the map of comonads

L0 → L1.
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3.2.5 The Algebraic Small Object Argument

The small object argument begins with a set I of morphisms in a category C and con-

structs a weak factorization system (L,R) on C such that I◻ = R. We will use theorem

3.2.16 and proposition 3.2.21 to define a similar construction on diagrams in the arrow cat-

egory C 2. When I ∶ I → C 2 is a functor on a small category and C satisfies a certain

smallness property, we will show how to construct a free AWFS (LI ,RI) on I such that

I� ≅ Algem
RI and ∣I�∣ = ∣AlgRI ∣.

Let C be a cocomplete, locally small category equipped with well-copowered, left proper,

orthogonal factorization systems (E ,M) and (E ′,M′). The reflection (LI ,RI) of a functor

I ∶ I → C 2 along G3G2G1 is the free AWFS on I when it exists.

AWFS(C ) LAWFS(C ) Cmd(C 2) CAT/C 2G1 G2 G3

We handled reflections along G1 in section 3.2.3. The reflection of a LAWFS X along

G1 is given by the colimit of the free monoid sequence for X when the free monoid sequence

is weakly convergent. We will use the notation F1(X) for this reflection when it exists. By

theorem 3.2.16, the reflection F1(X) exists when X is an (E ,M′)-compact LAWFS.

We defined reflections along G2 in section 3.2.4. We saw in 3.2.20 and 3.2.21 that the

reflection of a comonad L0 along G2 is determined objectwise by a cocartesian square. We

use the notation (L1,R1) = F2(L0) for the reflection of L0 and since C is cocomplete, this

reflection always exists.

The reflection of I ∶ I → C 2 along G3 is given by the density comonad. The density

comonad on I is the left Kan extension of I along itself. We will use the notation F3(I) = LI0

for the codensity comonad on I when it exists. Explicitly, on each object f in C 2,

LI0f = colim
I(i)→f

I(i),
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where the colimit is indexed by the comma category I ↓ f . We present the details of this

construction and prove that it is actually a comonad in A.4. Because C 2 is a locally small,

cocomplete category, we have the following existence result.

Proposition 3.2.24. When I is a small category, the density comonad on I exists.

Proposition 3.2.25 ([Gar08, 4.6]). The density comonad LI0 is the reflection of I along G3.

Proof. The universal natural transformation of the left Kan extension α ∶ I → LI0I defines

a functor Ĩ ∶ I → Coalgem
LI0

such that VLI0
Ĩ = I. We will show that Ĩ is the universal map

of the reflection. Let (C, ε, δ) be a comonad on C 2 and let VC ∶ Coalgem
C → C 2 be the

forgetful functor. Suppose K ∶ I → Coalgem
C is a functor such that VCK = I. The unit

map ν of the C̃ ⊣ VC adjunction gives a natural transformation VCν ∶ VC → VC ○ C̃VC. So

VCνK is a natural transformation I → CVCK = CI and one can check that εI ○VCν = id and

δI ○ VCν = CVCν ○ VCν. By A.4.4, there is a unique map γ ∶ LI0 → C of comonads such that

γI ○ α = VCνK. The reader can check that this means γ∗Ĩ =K.

Proposition 3.2.26. Let I ∶ I → C 2 be a small category over C 2 with a reflection LI0 = F3(I)

in Cmd(C 2). There is an isomorphism I� ≅ Coalgem
L0

�
of categories over C 2.

Proof. Let θ ∶ IÐ→ f be the canonical cocone of f relative to I. Since LI0f is by definition

the colimit of the canonical diagram I ↓ f → C 2, a solution to the natural lifting problem θ

is exactly the data of a solution to the lifting problem ε⃗f ∶ LI0f → f . It is easy to check that

this correspondence extends to a bijection of morphisms and is functorial. In other words,

it defines inverse functors I� →Coalgem
L0

�
and Coalgem

L0

�
→ I�.

To construct a free AWFS on a functor I ∶ I → C 2, we need all of the reflections to exist

in succession. So we need I to be a small category and we need an additional condition
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that will guarantee that the LAWFS F2F3(I) is (E ,M′)-compact. A sufficient condition is

that the category C permits the algebraic small object argument. We say this is the case

when for each object X in C , there is a regular cardinal λ such that the functor

C (X,−) ∶ C → Set

sends E-tight (M′, λ)-cocones to E↡-tight cocones, where E↡ is the collection of epimorphisms

in the category Set.

Proposition 3.2.27. If (E ,M) is either proper or the (isomorphism, any map) orthogonal

factorization system and if C permits the algebraic small object argument, then the reflection

F3(I) of a diagram I ∶ I → C 2 is an (E ,M′)-compact comonad.

Proof. Before proving the result, we make the following observation. The natural isomor-

phism C (A ⋅C1,C2) ≅ Set(A,C (C1,C2)) implies that for each object C in C , the copower

functor (−) ⋅C ∶ Set → C preserves colimits. So if {xα ∶ Aα → A}α is a colimiting cocone of

sets, then {xα ⋅ C ∶ Aα ⋅ C → A ⋅ C}α is a colimiting cocone in C . Now, suppose (E ,M) is

a proper orthogonal factorization system on C . If C is an object in C and p ∶ A → B is a

surjection of sets, then the map p ⋅C ∶ A ⋅C → B ⋅C is a split epimorphism. Indeed, there is

a map s ∶ B → A such that p ○ s = id . Thus (p ⋅C) ○ (s ⋅C) = id . Since every left class E of a

proper orthogonal factorization system (E ,M) contains all split epimorphisms, p ⋅C ∈ E . It

follows that if {xα ∶ Aα → A}α is an E↡-tight cocone of sets, then {xα ⋅C ∶ Aα ⋅C → A ⋅C}α is

an E-tight cocone in C .

The comonad LI0 = F3(I) is described on each object f by the coend formula LI0f =

∫
i∈I

C (I(i), f) ⋅ I(i). Because I is a small category, there is a regular cardinal λ such

that for every object X in the image of dom I ∶ I → C , the functor C (X,−) sends E-tight

(M′, λ)-cocones to E↡-tight cocones. Let {u⃗α ∶ fα → f}α be an E/≅-tight (M′
/≅, λ)-cocone in
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C 2. Then the cocone {(u⃗α)∗ ∶ C 2(I(i), fα) → C 2(I(i), f)}α is E↡-tight for each object i in

I . By our remarks in the previous paragraph, the cocone

{(u⃗α)∗ ⋅ I(i) ∶ C 2(I(i), fα) ⋅ I(i)→ C 2(I(i), f) ⋅ I(i)}α

is E2-tight for each object i in I . By 2.4.3, the cocone {LI0u⃗α ∶ L
I
0fα → LI0f}α is E2-tight.

Now, putting everything together, we can identify a large class of functors I ∶ I → C 2

that have reflections in AWFS(C ).

Theorem 3.2.28. If C permits the algebraic small object argument and the orthogonal

factorization system (E ,M) is proper or equal to the (isomorphism, any map) orthogonal

factorization system, then every functor I ∶ I → C 2 on a small category I has a reflection

(LI ,RI) = F1F2F3(I) in AWFS(C ) such that I� ≅ Algem
RI .

Proof. By 3.2.25 and 3.2.27, the reflection LI0 = F3(I) of I exists and is (E ,M′)-compact. By

3.2.21 and 3.2.22, the reflection (LI1,R
I
1) = F2(LI0) exists and is (E ,M′)-compact. By 3.2.16,

the reflection (LI ,RI) = F1((LI1,R
I
1)) exists.

By 3.2.26, 3.2.23, 3.1.15, and 3.2.18,

I� ≅ Coalgem
LI0

�
≅ Coalgem

LI1

�
≅ AlgRI1

≅ Algem
RI

In particular, in the above theorem, when R is a class of maps in C such that ∣I�∣ =

R, then (◻R,R) is a weak factorization system and (LI ,RI) is an associated functorial

factorization.
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3.3 E-Compactness

When our LAWFSs are E-compact, rather than the full generality of being (E ,M′)-

compact, there are additional results we can prove. The main advantage of this case is that

the composition of strongly E-compact endofunctors is a strongly E-compact endofunctor.

This means that the ⊛-product of two E-compact LAWFSs is an E-compact LAWFSs. Using

2.4.25, this allows us to prove that the free monad on an E-compact LAWFS is E-compact. We

will then show how to replace the forgetful functors G1, G2, and G3 with forgetful functors

that have left adjoints. We will also be able to show that when the weak factorization

systems of a model category have associated E-compact AWFSs, then the model category is

an algebraic model category.

3.3.1 Free AWFSs on E-Compact LAWFSs

Let C be a cocomplete, locally small category equipped with well-copowered, left proper,

orthogonal factorization systems (E ,M) and (E ′,M′).

Proposition 3.3.1. If X is an E-compact LAWFS and Y is an (E ,M′)-compact LAWFS,

then X⊛Y is an (E ,M′)-compact LAWFS.

Proof. Let (LX,RX) = X and (LY,RY) = Y. There are regular cardinals λ and κ such that RX

preserves E/≅-tightness of (

A

/≅, λ)-cocones and RY preserves E/≅-tightness of (M′
/≅, κ)-cocones.

Let ι be regular cardinal larger that λ and κ. Since every ι-filtered diagram is λ-filtered, RX

preserves E/≅-tightness of (

A

/≅, ι)-cocones. Similarly, RY preserves E/≅-tightness of (M′
/≅, ι)-

cocones. Thus RXRY preserves E/≅-tightness of (M′
/≅, ι)-cocones.

Corollary 3.3.2. If X and Y are E-compact LAWFSs, then X⊛Y is an E-compact LAWFS.
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Proposition 3.3.3. Let λ be a regular cardinal. The free AWFS on an (E , λ)-compact

LAWFS is (E , λ)-compact.

Proof. Let (L1,R1) be an (E , λ)-compact LAWFS. By 3.2.16, the free AWFS (L,R) on

(L1,R1) exists and is equal to the colimit of the free monoid sequence on (L1,R1). We’ve seen

that applying the large-connected-colimit-preserving functor K to the free monoid sequence

on (L1,R1) gives us the free monad sequence on R1. Let (Xα)α be the free monad sequence

on (R1, η⃗R1). Then the colimit of this sequence exists and is equal to R.

We will mirror the proof of 3.2.14. Let B be an object in C . The free monad sequence on

(R1, η⃗R1) is a sequence of codomain-preserving endofunctors and R is a codomain-preserving

endofunctor. Every codomain-preserving endofunctor F on C 2 restricts to an endofunctor F̂

on the comma category C ↓ B. So (X̂α)α is a sequence of endofunctors on C ↓ B. It follows

that (X̂α)α is the free monad sequence for (R̂1, ηR1) on C ↓ B and that the colimit of this

sequence is R̂.

As we mentioned in 3.2.14, the category C ↓ B is cocomplete and the well-copowered,

left proper, orthogonal factorization system (E ,M) lifts to a well-copowered, left proper,

orthogonal factorization system (Ê ,M̂) on C ↓ B. Then the fact that R1 is strongly (E , λ)-

compact implies that R̂1 preserves Ê-tightness of λ-filtered cocones. So, by 2.4.23, R̂ is the

free monad on R̂1. By 2.4.25, R̂ preserves Ê-tightness of λ-filtered cocones. Since this holds

for every object B in C , R must preserve E/≅-tightness of (

A

/≅, λ)-cocones. So R is strongly

(E , λ)-compact and thus (L,R) is (E , λ)-compact.

Let AWFSEλ(C ) be the full subcategory of AWFS(C ) on the AWFSs that are (E , λ)-

compact. Similarly, let LAWFSEλ(C ) be the full subcategory of LAWFS(C ) on the LAWFSs

that are (E , λ)-compact. Then the forgetful functor G1 ∶ AWFS(C )→ LAWFS(C ) restricts

to a forgetful functor AWFSEλ(C ) → LAWFSEλ(C ), which, by abuse of notation, we will
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still call G1. Because AWFSEλ(C ) is a full subcategory of AWFS(C ), 3.3.3 implies that

every object in LAWFSEλ(C ) has a reflection in AWFSEλ(C ) given by F1. So F1 is the left

adjoint to G1.

AWFSEλ(C ) LAWFSEλ(C )

G1

�

F1

We know from 3.3.3 that every object in the image of F1 is a free AWFS, but as we noted

at the end of section 2.4.4, the existence of the above adjunction on its own is not enough

to imply that fact.

Let CmdEλ(C 2) be the full subcategory of Cmd(C 2) on (E , λ)-compact comonads. It

follows from 3.2.22 that the functors G2 and F2 restrict to functors G2 ∶ LAWFSEλ(C ) →

CmdEλ(C 2) and F2 ∶ CmdEλ(C )→ LAWFSEλ(C ) of the same name. It is easy to check that

the new F2 is a left adjoint to the new G2.

Let CAT/LKE
λ
C 2 be the full sub-metacategory of CAT/C 2 on the functors A ∶ A → C 2

such that the left Kan extension LanA(A) ∶ C 2 → C 2 of A along itself exists and is an (E , λ)-

compact comonad. Not only is A an object in CAT/LKE
λ
C 2 when A is small and C permits

the algebraic small object argument, but also the forgetful functor VL ∶ Coalgem
L → C 2 of an

(E , λ)-compact comonad L ∶ C 2 → C 2 is an object in the category. This follows from A.4.4,

using a similar approach to the proof of 3.2.25. So G3 and F3 restrict to adjunctions on

CmdEλ(C ) and CAT/LKE
λ
C 2, which, by abuse of notation, we call by the same names. So

we get the following adjunctions.

AWFSEλ(C ) LAWFSEλ(C ) CmdEλ(C 2) CAT/LKE
λ
C 2

G1

�

G2

F1

�

G3

F2

�

F3
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3.3.2 Maps of E-Compact AWFSs

Let C be a bicomplete, locally small category equipped with a well-copowered, left proper,

orthogonal factorization system (E ,M). We will also assume C is a model category with weak

equivalences W, cofibrations C, and fibrations F .

Proposition 3.3.4. If the weak factorization systems (C ∩W ,F) and (C,F ∩W) each have

an associated functorial factorization that is an E-compact LAWFS, then there is an E-

compact algebraic model category on C whose underlying model category is the one with

weak equivalences W, cofibrations C, and fibrations F .

Proof. Let X = (Lt,R) and Y = (L,Rt) be the E-compact LAWFSs associated to the weak

factorization systems (C ∩W,F) and (C,F ∩W), respectively. As we mentioned in section

3.2.1, there is a unit map η ∶ I → Y in the category LAWFS(C ). By 3.2.1, the map

X ⊛ η ∶ X = X ⊛ I → X ⊛ Y is a map in LAWFS(C ). Since the ⊛-product of two E-

compact LAWFSs is E-compact, X ⊛ η ∶ X → X ⊛ Y is a map in LAWFSEλ(C ). Thus

F1(X⊛ η) ∶ F1(X)→ F1(X⊛Y) is a map in AWFSEλ(C ).

We know that for each object f in C 2, Ltf ∈ C ∩W , Rf ∈ F , Lf ∈ C, and Rtf ∈ F ∩W.

Since X ⊛ Yf = (LtRtf ○ Lf,RRtf), X ⊛ Y is an associated functorial factorization for the

weak factorization system (C,F ∩W). Now, by 3.1.2, ∣CoalgS∣ = C and ∣AlgT∣ = F ∩W ,

where (S,T) = X⊛Y. Also ∣CoalgLt ∣ = C ∩W and ∣AlgR∣ = F .
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Chapter 4: Transferring Algebraic Model Structures

We prove two major results in this chapter, theorem 4.1.8 and theorem 4.1.12. Theo-

rem 4.1.8 states that we can lift a compact algebraic model structure along a right adjoint

when the adjunction is compact and when an acyclicity condition is satisfied. We use these

conditions to prove in theorem 4.1.12 that the projective model structure on C D exists and

is algebraic when D is small and the model category on C is a compact algebraic model

category. When these theorems are applied to E-compact algebraic model categories, the

algebraic model categories they produce are E-compact.

We prove a few results about transferring model structures in the enriched context in

section 4.2. We were not able to prove that the model structure constructed in 4.2.3 is an

enriched model structure.

4.1 Transferring Algebraic Model Structures

4.1.1 Compact Adjunctions

We will be able to lift an AWFS along a right adjoint when both the original the adjunc-

tion and the original AWFS satisfy compactness conditions. We will use this result to prove

that compact algebraic model categories lift along compact right adjoints when an acyclicity

condition is satisfied.
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Definition 4.1.1 (Compact Adjunctions). Let A be a cocomplete category equipped with

well-copowered, left proper, orthogonal factorization systems (E1,M1) and (E ′1,M
′
1). Let B

be a cocomplete category equipped with well-copowered, left proper, orthogonal factorization

systems (E2,M2) and (E ′2,M
′
2). Let F ∶ A →B be a functor with a right adjoint G ∶ B → A .

The adjunction F ⊣ G is (E1,M′
1;E2,M′

2)-compact if the following conditions are satisfied.

1. There is a regular cardinal λ such that G sends E2-tight (M′
2, λ)-cocones to E1-tight

cocones.

2. G(M′
2) ⊆M

′
1 and F (E1) ⊆ E2.

The following result shows that when (E1,M1) = (E ′1,M
′
1) and (E2,M2) = (E ′2,M

′
2),

condition (2) can be reduced to only checking one of the subset inclusions.

Proposition 4.1.2. Let A and B be categories equipped with orthogonal factorization sys-

tems (E1,M1) and (E2,M2), respectively. Let G ∶ A → B be a functor with a left adjoint

F ∶ B → A .

F (E2) ⊆ E1 if and only if G(M1) ⊆M2

While this result is well-known for adjunctions between the categories A and B, a similar

proof shows that it holds for adjunctions between the arrow categories.

Proposition 4.1.3. Let A and B be categories equipped with orthogonal factorization sys-

tems (E1,M1) and (E2,M2), respectively. Let G ∶ A 2 →B2 be a functor with a left adjoint

F ∶ B2 → A 2. Then

F (E2) ⊆ E1 if and only if G(M1) ⊆M2,

where we now view E1, E2, M1, and M2 as collections of objects.
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Proof. Let ν⃗ ∶ I → GF and ξ⃗ ∶ FG → I be the unit and counit maps, respectively, for the

adjunction. Suppose F (E2) ⊆ E1. Let g ∈M1. Suppose f ∈ E2 and (u, v) ∶ f → Gg is a map in

B2. Then a solution to the lifting problem ξ⃗g ○F (u, v) ∶ Ff → g exists. Therefore, a solution

to the lifting problem Gξ⃗g ○ GF (u, v) ○ ν⃗f ∶ f → Gg exists. But the commutativity of the

following diagram shows that the lifting problem (u, v) ∶ f → Gg has a solution.

f Gg

GFf GFGg Gg

ν⃗f

(u,v)

ν⃗Gg

id

GF (u,v) Gξ⃗g

The proof of the converse is similar.

The following proposition can be used to prove condition (2) of the definition holds for

the most common proper orthogonal factorization systems.

Proposition 4.1.4 ([Bor94b, 4.3.9]). A left adjoint preserves epimorphisms and strong epi-

morphisms. A right adjoint preserves monomorphisms and strong monomorphisms.

4.1.2 Lifting an Algebraic Model Structure Along a Right Adjoint

A cofibrantly generated model category can be lifted along a right adjoint when the

right adjoint satisfies a colimit-preservation condition and an acyclicity condition is satisfied

[GS07, 3.6]. We extend this result to compact algebraic model categories in this section.

Our work also generalizes a result of [GKR20].

Let A be a cocomplete category equipped with well-copowered, left proper, orthogonal

factorization systems (E1,M1) and (E ′1,M
′
1). Let B be a cocomplete category equipped

with well-copowered, left proper, orthogonal factorization systems (E2,M2) and (E ′2,M
′
2).

Let F ∶ A → B be a functor with a left adjoint G ∶ B → A and let ν ∶ I → GF and

ξ ∶ FG → I be the unit and counit maps of this adjunction. Suppose that F ⊣ G, is an

(E1,M′
1;E2,M′

2)-compact adjunction.
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We will abuse notation and also refer to the functor F 2 ∶ A 2 → B2 that sends objects

f to Ff and maps (u, v) ∶ f → g to (Fu,Fv) ∶ Ff → Fg as F . We will similarly use G for

both the functor B → A and the functor B2 → A 2 between arrow categories. As functors

between the arrow categories, F is still left adjoint to G.

A 2 B2

F

⊥

G

Let ν⃗ = (ν dom, ν cod) ∶ I → GF and ξ⃗ = (ξ dom, ξ cod) ∶ FG→ I be the unit and counit maps

of the adjunction between arrow categories.

Let (L,R) be an (E1,M′
1)-compact AWFS on A . We will use the factorization (L,R) to

construct a new AWFS (X,Y) on B. We start with the endofunctor FLG ∶ B2 →B2. This

is a comonad with comultiplication and counit maps given by

FLG FLLG FLGFLGF δ⃗G FLν⃗LG

and

FLG FG I.F ε⃗G ξ⃗

Lemma 4.1.5. The comonad FLG ∶ B2 →B2 is (E2,M′
2)-compact.

Proof. There is a regular cardinal λ such that the adjunction F ⊣ G ∶ A →B is (E1,M′
1;E2,M′

2, λ)-

compact and the comonad L ∶ A 2 → A 2 is (E1,M′
1, λ)-compact. Let {(pα, qα) ∶ fα → g} be

an E2/≅-tight (M′
2/≅, λ)-cocone in B2. Since G ∶ B → A sends E2-tight (M′

2, λ)-filtered

cocones to E1-tight λ-filtered cocones and since G(M′
2) ⊆ M′

1, {G(pα, qα) ∶ Gfα → Gg}

is an E1/≅-tight (M′
1/≅, λ)-cocone. Therefore {LG(pα, qα) ∶ LGfα → LGg} is an E21 -tight

cocone. The functor F preserves colimits since it is a left adjoint. Because F (E1) ⊆ E2,

{FLG(pα, qα) ∶ FLGfα → FLGg} is an E22 -tight cocone.
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By 3.2.21, there is a reflection (X1,Y1) ∶= F2(FLG) of FLG in LAWFS(B). Since FLG

is an (E2,M′
2)-compact functor, by 3.2.22, (X1, Y1) is an (E2,M′

2)-compact LAWFS. Thus

by 3.2.16, the reflection (X,Y ) ∶= F1(X1, Y1) of (X1, Y1) in AWFS(B) exists.

Remark 4.1.6. When (E ′1,M
′
1) and (E ′2,M

′
2) are the (isomorphism, any map) orthogonal

factorization systems, the comonad FLG and the LAWFS (X1,Y1) are E2-compact. Then,

by 3.3.3, the AWFS (X,Y) is E2-compact.

Proposition 4.1.7. G−1∣AlgR∣ = ∣AlgY∣.

Proof. We know from 3.2.18 that ∣AlgY∣ = ∣Algem
Y ∣ = ∣AlgY1

∣. Therefore it suffices to show

that G−1∣AlgR∣ = ∣AlgY1
∣.

Let E ∶ A 2 → A and E1 ∶ B2 → B be the middomain functors for (L,R) and (X1, Y1),

respectively. Note that on each object f ∶ A → B in C 2, the counit map ξ⃗f = (ξA, ξB) ∶

FGf → f has the “vertical factorization” show below, where (ξA, a) ∶ FLGf → X1f is the

universal map of the F2-reflection.

FGA A

FE(Gf) E1f

FGB B

ξA

FLGf

⌜
X1f

a

FRGf Y1f

ξB

Suppose f ∶ A → B is in ∣AlgY1
∣. Then there is a solution l to the lifting problem

(id , Y1f) ∶X1f → f . After applying G, we get that the following diagram is commutative.

GA GFGA GA GA

E(Gf) GFE(Gf) GE1f GB

GB GFGB

νGA

LGf

GξA

GFLGf

id

GX1f Gf

νEGf

RGf

Ga

GFRGf

GY1f

Gl

νGB
GξB
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Since Gξ ○ νG = idG, this means there is a solution to the lifting problem (idGA,RGf) ∶

LGf → Gf . So Gf is an object in ∣AlgR∣.

Suppose conversely, that Gf is an object in ∣AlgR∣. Then there is a solution k to the

lifting problem (idGA,RGf) ∶ LGf → Gf . From the below diagram we see that ξA ○ Fk is a

solution to the lifting problem (ξA, ξB ○ FRGf) ∶ FLGf → f .

FGA FGA A

FE(Gf) FGB B

id

FLGf

ξA

FGf f

FRGf

Fk

ξB

But the universal property of cocartesian squares then implies there is a solution to the

lifting problem (id , Y1f) ∶X1f → f .

Theorem 4.1.8. Suppose the categories A and B are complete in addition to being cocom-

plete. If ζ ∶ (Lt,R) → (L,Rt) is an (E1,M′
1)-compact algebraic model category on A with

weak equivalences W, then there is a map θ ∶ (Xt, Y ) → (X,Yt) of AWFSs on B such that

∣AlgY∣ = G−1∣AlgR∣ and ∣AlgYt ∣ = G
−1∣AlgRt ∣. If the acyclicity condition, ∣CoalgXt ∣ ⊆ G

−1W,

is satisfied, then θ is an algebraic model category with weak equivalences G−1W.

Proof. Let (Xt, Y ) and (X,Yt) be the LAWFSs F1F2(FLtG) and F1F2(FLG), respectively.

To get a map θ ∶ (Xt, Y ) → (X,Yt) of AWFSs, it suffices to produce a map of comonads

FLtG → FLG, which we can then apply the reflection F1F2 to. The map F ζ⃗G ∶ FLtG →

FLG, with ζ⃗ ∶= (id , ζ), will do, since the following diagrams commute.

FLtG

FG I

FLG

F ζ⃗G

F ε⃗G

ξ

F ε⃗G

FLtG FLtLtG FLtGFLtG

FLG FLLG FLGFLG

F δ⃗G

F ζ⃗G F ζ⃗ζ⃗G

FLtν⃗LtG

Fζ⃗GF ζ⃗G

F δ⃗G FLν⃗LG

It therefore remains to show that, with weak equivalences G−1W, θ is an algebraic model

structure. The 2-out-of-3 property onW implies that G−1W has the 2-out-of-3 property. We

127



know

∣AlgYt ∣ = G
−1∣AlgRt ∣ = G

−1(∣AlgR∣ ∩W) = G−1∣AlgR∣ ∩G
−1W .

So ∣AlgYt ∣ = ∣AlgY∣ ∩G−1W. By the acyclicity condition and the existence of θ, ∣CoalgXt ∣ ⊆

∣CoalgX∣ ∩ G−1W . Now, suppose g ∈ ∣CoalgX∣ ∩ G−1W . Factoring g as Xtg followed by

Y g, the 2-out-of-3 property of G−1W implies that Y g is in G−1W. But this means Y g is in

G−1∣AlgR∣ ∩G
−1W = ∣AlgYt ∣. So the lifting problem (Xtg, id) ∶ g → Y g has a solution. Thus

∣CoalgXt ∣ = ∣CoalgX∣ ∩G−1W .

Proposition 4.1.9 (Acyclicity Condition). Assuming the hypotheses of theorem 4.1.8 and

defining (Xt, Y ) = F1F2(FLtG), the following conditions are equivalent.

1. ∣CoalgXt ∣ ⊆ G
−1W.

2. There is a model category on B with weak equivalences G−1W and fibrations G−1∣AlgR∣.

3. ◻(G−1∣AlgR∣) ⊆ G
−1W.

Proof. (1)⇒ (2) is theorem 4.1.8. (2)⇒ (3). If Ct is the class of maps in a model category

with the left lifting property with respect to the fibrations, then Ct ⊆W. So ◻(G−1∣AlgR∣) ⊆

G−1W . (3) ⇒ (1). Suppose ◻G−1∣AlgR∣ ⊆ G−1W . Since G−1∣AlgR∣ = ∣AlgY∣, we know

∣CoalgXt ∣ =
◻∣AlgY∣ ⊆ G−1W.

Remark 4.1.10. With the model structure constructed on B in theorem 4.1.8, F ⊣ G is a

Quillen adjunction.

Remark 4.1.11. When (E ′1,M
′
1) and (E ′2,M

′
2) are the (isomorphism, any map) orthogonal

factorization systems, by 4.1.6, the algebraic model category θ of theorem 4.1.8 is E2-compact.
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4.1.3 Projective Algebraic Model Structures

Riehl proved in [Rie11, 4.5] that when D is small and C has a cofibrantly generated alge-

braic model structure, then the projective model structure on C D exists and is a cofibrantly

generated algebraic model category. We generalize this result to compact algebraic model

categories in this section.

Let C be a bicomplete category with well-copowered, left proper, orthogonal factorization

systems (E ,M) and (E ′,M′). Let ζ ∶ (Lt,R) → (L,Rt) be an (E ,M′)-compact algebraic

model category with weak equivalences W . Let D be a small category.

Theorem 4.1.12 (Projective Algebraic Model Structure). There is an induced algebraic

model category on the functor category C D whose underlying model structure is the projective

model structure.

Proof. We follow the proof of [Rie11, 4.5] closely until the last few paragraphs. Because

AWFSs are functorial factorizations, the AWFS (Lt,R) defines a functorial factorization

(LD
t ,R

D) on the functor category C D . The functorial factorization (LD
t ,R

D) is the objectwise

(Lt,R)-factorization. In fact, we can describe LD
t ∶ (C D)2 → (C D)2 by the composition

(C D)2 (C 2)D (C 2)D (C D)2,≅ Lt∗ ≅

where Lt
∗(α) = Ltα for each functor α ∶ D → C 2. If ε⃗ ∶ Lt → Id is the counit map, then

ε⃗α ∶ Ltα → α defines a counit map for LD
t . In a similar way, the comultiplication map of

Lt defines a comultiplication map for LD
t which makes it a comonad. The endofunctor RD

has a similar description and has the structure of a monad [Rie11, §4.2]. Although these

factorizations are objectwise, the LD
t -coalgebras do not need to be objectwise Lt-coalgebras.

Let D0 be the discrete category on the objects of D . As we saw above, the AWFSs

(Lt,R) and (L,Rt) define AWFSs (LD0
t ,R

D0) and (LD0 ,RD0
t ) on C D0 . It is straightforward to
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check that the objectwise map ζD0 ∶ (LD0
t ,R

D0)→ (LD0 ,RD0
t ) is a map of AWFSs. Unlike for

the category D , since D0 is discrete, LD0
t -coalgebras are exactly the objectwise Lt-coalgebras

and likewise for RD0 , LD0 , and RD0
t . Thus ζD0 is an algebraic model category whose weak

equivalences, fibrations, and cofibrations are the objectwise weak equivalences, fibrations,

and cofibrations.

As discussed in 2.4.2, we get objectwise well-copowered, left proper, orthogonal factor-

ization systems (ED0 ,MD0) and (E ′D0 ,M′D0) on C D0 and objectwise well-copowered, left

proper, orthogonal factorization systems (ED ,MD) and (E ′D ,M′D) on C D . There is a

regular cardinal λ such that Lt and L are (E ,M′, λ)-compact. Clearly, LD0
t and LD0 send

(E/≅)D0-tight ((M′
/≅)

D0 , λ)-cocones to (E/≅)D0-tight cocones, since they both do so on each

object d in D0. So ζD0 is an (ED0 ,M′D0)-compact algebraic model category.

Let N ∶ D0 ↪ D be the subcategory inclusion functor. Let LanN(−) ∶ C D0 → C D be the

functor defined by taking left Kan extensions along N . As described in [Rie11, 4.5], the

functor LanN(−) has a right adjoint which is the restriction functor N∗ ∶ C D → C D0 . We will

use theorem 4.1.8 to transfer the objectwise model structure on C D0 to a model structure on

C D . Because a map α ∶ F → G in C D is an objectwise fibration if and only if N∗(α) = αN is

an objectwise fibration in C D0 and because the same is true for weak equivalences, this new

model structure on C D will be the desired projective model structure.

First we will show that the LanN(−) ⊣ N∗ adjunction is (ED0 ,M′D0 ;ED ,M′D)-compact.

Since the aforementioned orthogonal factorization systems are just objectwise collections

N∗(MD) ⊆MD0 and N∗(M′D) ⊆M′D0 . So, by 4.1.2, condition (2) of definition 4.1.1 holds.

We also have that N∗(ED) ⊆ ED0 . Since colimits are computed objectwise in both functor

categories, N∗ preserves colimits. Thus N∗ sends ED -tight (M′D , κ)-cocones to ED0-tight

cocones for some regular cardinal κ.
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It remains to show that the LanN(−) ⊣ N∗ adjunction satisfies the acyclicity condition.

We will prove condition 4.1.9 (3) holds. Let R = ∣AlgRD0 ∣. As we’ve already noted, R is

the collection of objectwise R-algebras in C D0 . Let ρ ∶ F → G be a map in C D that is in

◻(N∗−1R). Since RDρ is an objectwise R-algebra, the lifting problem (LD
t ρ, id) ∶ ρ → RDρ

has a solution. So ρ is a retract of the objectwise Lt-coalgebra LD
t ρ. But an objectwise

Lt-coalgebra is in particular an objectwise weak equivalence. Since N∗−1W is closed under

retracts, ρ must be in N∗−1W.

Remark 4.1.13. When (E ′,M′) is the (isomorphism, any map) orthogonal factorization sys-

tem, by 4.1.11, the projective algebraic model category on C D is ED -compact.

4.2 Enriched Algebraic Model Structures

4.2.1 Monoidal Projective Algebraic Model Structures

Let (V ,⊗, I) be a bicomplete closed symmetric monoidal category. We will use the

notation V (a, b) for the internal hom objects of V .

Suppose (E ,M) and (E ′,M′) are well-copowered, left proper, orthogonal factorization

systems on V . Let ζ ∶ (Lt,R) → (L,Rt) be an (E ,M′)-compact algebraic model category

with weak equivalences W whose underlying model category is monoidal with respect to ⊗.

Let D be a small V -enriched category.

Proposition 4.2.1. There is an induced algebraic model category on the functor category

V D which is a V-model category and whose underlying model structure is the projective model

structure.

Proof. By 4.1.12, there is an algebraic model category on V D whose underlying model struc-

ture is the projective model structure. The category V D is V -enriched and V powered and
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copowered [Kel05, ch 2]. The enriched hom functor (V D)op × V D → V is determined by a

V -powering V op ×V D → V D . This V -powering on V D is defined as follows. Let S ∶ D → V

be a functor and let a be an object in V . Then we define Sa to be the functor D → V

defined on objects by d↦ V (a,S(d)) and extended naturally to morphisms.

Let i ∶ a→ b be a cofibration in V . Let f ∶ S → T be a fibration in V D . For each d in D ,

(i∗, fd∗) ∶ V (b, S(d))→ V (a,S(d)) ×V (a,T (d)) V (b, T (d)) is a fibration in V , since the model

category on V is monoidal. Thus (i∗, f∗) ∶ Sb → Sa ×Ta T b is an objectwise fibration. So it is

a fibration in the projective model structure on V D . If either i or f is acyclic, then (i∗, f∗)

is also acyclic. So by [Hov99, 4.2.2], V D is a V -model category.

Remark 4.2.2. We can of course get a projective algebraic model structure on Pre(D ,V )

by applying the above theorem to Fun(Dop,V ).

4.2.2 A Lifting of a Projective Algebraic Model Structure

Let (V ,⊗, I) be a bicomplete closed symmetric monoidal category. Suppose (EV ,MV )

is a well-copowered, left proper, orthogonal factorization systemon V . Let D be a small

V -enriched category.

Suppose C is a bicomplete V -enriched category that is powered and copowered over V

and that is equipped with a V -functor λ ∶ D → C . Let C (−,−) ∶ C op×C → V be the enriched

hom functor and let ⊙ ∶ V ×C → C be the copowering. In [GM11, §5.1], a V -adjunction

Pre(D ,V ) C

T

⊥

U

is described. The functor U sends an object A in C to the presheaf d ↦ C (λ(d),A).

The functor T sends a presheaf B to the object B ⊙D λ, which is defined as the following
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coequalizer.

∐d,eB(e)⊗D(d, e)⊙ λ(d) ∐dB(d)⊙ λ(d) B ⊙D λ

Let ζ ∶ (Ct,F) → (C,Ft) be an EV -compact algebraic model category on V with weak

equivalences W . We assume Pre(D ,V ) is equipped with the projective algebraic model

structure in the following theorem. By 4.1.13, this algebraic model structure is E D
V -compact.

We will further assume that C has a well-copowered, left proper, orthogonal factorization

system (EC ,MC ).

Proposition 4.2.3. If the adjunction T ⊣ U is (EC ;ED
V )-compact and satisfies the acyclicity

condition of proposition 4.1.9, then C has the structure of an EC -compact algebraic model

category. A morphism f in C is a fibration (respectively weak equivalence) if and only if

C (λ(d), f) is a fibration (weak equivalence) in V for each object d in D .

Proof. Consider the projective algebraic model structure on Pre(D ,V ) described in propo-

sition 4.1.12. Let Wpre and Fpre denote the weak equivalences and fibrations of this model

category, respectively. Using the T ⊣ U adjunction and theorem 4.1.8, we have an EC -compact

algebraic model structure θ ∶ (Ct,F) → (C,Ft) on C with weak equivalences U−1Wpre and

fibrations ∣AlgF∣ = U−1Fpre.

This is a partial version of [GM11, 1.17]. We know that U is a right Quillen functor. So

T ⊣ U is a Quillen adjunction. We also know by [GM11] that T ⊣ U is a V -adjunction. So if

we could show that the underlying model category is a V -model category, then T ⊣ U would

be a Quillen V -adjunction. The author is not sure how to show this.
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Chapter 5: Algebraic h-Model and m-Model Structures

5.1 Algebraic h-Model Structures

The h-model structure on topological spaces was first described in [Str72]. In [Col06a],

it was shown that the h-model structure exists on topologically bicomplete categories when

a minor condition is satisfied. In particular, this condition is satisfied in the category of

k-spaces. There was a subtle mistake in Cole’s proof, however, which was repeated in

[MS06, §4]. This was rectified by the paper [BR13]. By proving one of the factorizations in

the h-model structure is algebraic, Barthel and Riehl were able to prove that the h-model

structure on a topologically bicomplete category exists when a condition, the monomorphism

hypothesis, is satisfied. Riehl and Barthel did not prove that the second factorization is

algebraic and so did not prove that the h-model structure is algebraic.

In this chapter, we prove that the h-model structure is algebraic. The monomorphism

hypothesis is too restrictive to make this proof go through. We instead show that there are

E-compact factorizations for both of the WFSs of the h-model structure on k-spaces. So

the h-model structure on k-spaces is an E-compact algebraic model category. Not only does

E-compactness make this proof possible, but it also makes the proofs a lot easier. Verifying

conditions (1)-(3) of 5.1.11 is very easy.
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In the process of proving the result for the h-model structure on k-spaces, we get con-

ditions under which the h-model structure on any topologically bicomplete category exists,

is algebraic, and is E-compact. In section 5.2, we use the E-compactness of the algebraic

h-model structure on k-spaces to show that the mixed model structure is an algebraic model

structure on k-spaces.

It should be noted that it is shown in [Gau19, §4] that the q-, h-, and m-model structures

on the locally presentable category of delta-generated spaces are accessible. Our results

generalize Gaucher’s results to more general categories of spaces.

5.1.1 Topologically Bicomplete Categories

We begin by summarizing some results about k-spaces and topologically bicomplete cat-

egories and fixing some notation. Most of these results are in [Rez18] and [MS06, §1.1,

1.2].

We begin by recalling colimits and limits in Top. The final topology on a set Y relative

to a cocone {θα ∶ Xα → Y }α of spaces Xα is the finest topology that makes all of the maps

θα continuous. The colimit of a diagram in Top is the space X whose underlying set is the

colimit of the diagram in Set and whose topology is the final topology with respect to this

colimiting cocone. The initial topology on a set Y relative to a cone {θα ∶ Y → Xα}α of

spaces Xα is the coarsest topology that makes all of the maps θα continuous. The limit of a

diagram in Top is the space X whose underlying set is the limit of the diagram in Set and

whose topology is the initial topology with respect to this limiting cone.

A subset U of a topological space X is k-open if for every compact space K and every

continuous map f ∶ K → X, f−1(U) is open. Of course every open subset of X is k-open.

When every k-open subset of X is open, we say that X is a k-space. The collection of k-open
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subsets in a topological space X form a topology on the underlying set of X. We will use

the notation kX for this new topological space. The identity map on sets is a continuous

function kX → X. The underlying map of sets of any continuous function f ∶ X → Y is a

continuous function kX → kY , which we call kf .

Let kTop be the full subcategory of Top on the k-spaces. The subcategory inclusion

functor kTop ↪ Top is the inclusion of a coreflective subcategory. The right adjoint k ∶

Top→ kTop is the functor that sends spaces X to kX and maps f ∶X → Y to kf ∶ kX → kY .

kTop Top⊺

k

A consequence of this adjunction is that the category kTop is bicomplete. The colimit of a

diagram in kTop is formed by taking the colimit of the diagram in Set and endowing this

set with the final topology. The limit of a diagram in kTop is formed by taking the limit of

the diagram in Set, endowing this set with the initial topology, and applying the functor k

to this space.

We will use the notation ×k for the product of two spaces in kTop to avoid confusion with

the product of the spaces in Top. If X and Y are k-spaces in Top, then X ×k Y = k(X ×Y ).

The category kTop is ×k-cartesian closed. For a space X in kTop, the right adjoint to the

functor (−)×kX ∶ kTop→ kTop is the functor (−)X ∶ kTop→ kTop defined as follows. For

spaces X and Y in kTop, let Top(X,Y ) be the set of maps X → Y in Top equipped with

the compact-open topology. Since kTop is a full subcategory of Top, this is the same as

the set of maps X → Y in kTop. The functor

(−)X ∶ kTop→ kTop,

sends a space Y to the space kTop(X,Y ) and extends naturally to morphisms.
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A category C is topologically bicomplete if C is bicomplete and is enriched, powered, and

copowered over kTop. So we have bifunctors

C (−,−) ∶ C op ×C → kTop

(−)⊗ (−) ∶ C × kTop→ C

(−)(−) ∶ kTopop ×C → C

with natural bijections

C (X ⊗K,Y ) ≅ kTop(K,C (X,Y )) ≅ C (X,Y K).

Some consequences of the natural bijections are that X⊗∗ ≅X and Y ∗ ≅ Y for the singleton

space ∗ and that C (∅,X) ≅ ∗, C (X,∗) ≅ ∗, and (∗)K ≅ ∗, where ∅ is the initial object of C

and the ∗ in C is the terminal object of C .

Every compact space in Top is a k-space. So the interval object I is a space in kTop.

We call the objects X ⊗ I in a topologically bicomplete category cylinder objects. We will

use the notation i0 or i0(X) for the map X ≅ X ⊗ ∗ → X ⊗ I in C defined by the map

0 ∶ ∗ → I in kTop whose image is 0. Similarly, the map 1 ∶ ∗ → I whose image is 1 defines a

map i1 ∶ X ≅ X ⊗ ∗ → X ⊗ I or i1(X) in C for each object X. Dually, we have a cocylinder

object XI for each object X in C . The maps 0 ∶ ∗ → I and 1 ∶ ∗ → I define a restriction

maps p0 = p0(X) ∶ XI → X∗ ≅ X and p1 = p1(X) ∶ XI → X∗ ≅ X, respectively. Every

space X has a map con ∶ X → XI that sends points to the constant map valued at that

point and a projection map col ∶ X ⊗ I → X. The adjunction (−) ⊗ I ⊣ (−)I has unit map

coevX ∶X → (X ⊗ I)I and counit map evX ∶XI ⊗ I →X.
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For each map f ∶ A → B in C , we define the mapping cylinder Mf by the following

cocartesian square.

A A⊗ I

B Mf

f

i0

s(f)

t(f)
⌜

For each map f ∶ X → Y , we will need two versions of the mapping path space Nf and N1f

defined by the cartesian squares below.

Nf Y I

X Y

u(f)

v(f) p0

f

⌟
N1f Y I

X Y

u1(f)

v1(f) p1

f

⌟

The mapping cylinder and mapping path space constructions are functorial. So M , N , and

N1 are functors C 2 → C .

5.1.2 The h-Fibrations, h-Cofibrations, and h-Equivalences

Let C be a topologically bicomplete category equipped with a well-copowered, left proper,

orthogonal factorization system (E ,M). The h-equivalences in C are the homotopy equiv-

alences relative to the cylinder objects X ⊗ I. A map f ∶ X → Y in C is an h-fibration if it

has the right lifting property with respect to i0 ∶ A → A⊗ I for each object A in C . A map

f ∶ A→ B in C is a h-cofibration if it has the left lifting property with respect to p0 ∶XI →X

for each object X in C .

In general, the h-fibrations, h-cofibrations and h-equivalences do not have have the lifting

properties required for the fibrations, cofibrations, and weak equivalences of a model category.

To get the correct lifting properties, we need to use strong cofibrations in place of cofibrations.

We can characterize these maps as follows. For each g ∶ X → Y , let r(g) ∶ XI → Ng be the
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map into the pullback defined by the maps gI ∶XI →X and p0(X) ∶XI →X.

XI Ng Y I

X Yp0(X)

gI

r(g) u(g)

v(g) p0(Y )
g

⌟

A strong h-cofibration is a map f ∶ A→ B that has the left lifting property with respect r(g)

for every h-fibration g ∶X → Y .

Let W , C and F be the collections of homotopy equivalences, strong h-cofibrations, and

h-fibrations in C , respectively.

Proposition 5.1.1 ([MS06, 4.3.3]). (C ∩W)◻ = F , C ∩W = ◻F , C◻ = F ∩W, and C =

◻(F ∩W).

Proposition 5.1.2 ([MS06, 4.3.1]). The class W of h-equivalences is closed under pushouts

along maps in C and pullbacks along maps in F .

We define functorial factorizations (m,mw) and (nw, n) by the following diagrams.

X

X X ⊗ I X

Y Mf Y

i1

f

i0

⌜
s(f)

col

f

t(f)

id

mw(f)

m(f)
X N1f X

Y Y I Y

Y

id

f

nw(f) v1(f)

u1(f) f

con p1

p0

⌟

n(f)

Proposition 5.1.3 ([MS06, 4.3.1]).

• For each f , m(f) is a strong h-cofibration and mw(f) is a homotopy equivalence.

• For each f , n(f) is an h-fibration and nw(f) is a homotopy equivalence.
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5.1.3 The Construction of AWFSs

Let (Lt1,R1) be the functorial factorization defined by the following diagram.

Y I Nf Nf ⊗ I Y I ⊗ I

Y X Et1f Y

p0

u(f)

v(f)

i0

⌜
s(v(f))

u(f)⊗I

evY
⌞

f Lt1f

f

R1f

Lemma 5.1.4. The endofunctor Lt1 ∶ C 2 → C 2 is a comonad.

Proof. Fix a space X and a map f ∶ Y → Z. There are bijective correspondences between the

following sets, where the unlabeled maps are free to vary, but the diagrams must commute.

{maps X → Nf} ≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

squares

X Y

ZI Z

f

p0(Z)

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

squares

X Y

X ⊗ I Z

i0(X) f

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

In other words, there is a natural bijection

C (X,Nf) ≅ C 2(i0(X), f).

So N ∶ C 2 → C is a right adjoint to i0 ∶ C → C 2. Thus i0 ○N ∶ C 2 → C 2 is a comonad. Since

Lt1f is the pushout of i0(Nf) along v(f), Lt1 is a comonad.

Lemma 5.1.5 ([BR13, 5.10]). ∣AlgR1
∣ = F

Proposition 5.1.6. If the functorial factorization (Lt1,R1) is E-compact, then there is a

E-compact AWFS (Lt,R) ∶= F1(Lt1,R1) on C such that ∣CoalgLt ∣ = C ∩W and ∣AlgR∣ = F .

Proof. A direct application of lemmas 5.1.4, 5.1.5, and 5.1.1 show that the conditions of

proposition 3.2.19 are satisfied. By 3.3.3, the AWFS (Lt,R) is E-compact.
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Let (L1,Rt1) be the functorial factorization defined by the following diagram.

N1f M(n(f))

X E1f Y

v1(f)

m(n(f))

⌜

mw(n(f))

L1f

f

Rt1f

(5.1)

Lemma 5.1.7. The endofunctor L1 ∶ C 2 → C 2 is a comonad on C 2.

Proof. Fix maps f ∶ A → B and g ∶ X → Y in C . There are bijections between the following

sets, where the unlabeled maps are free to vary within the constraint that the diagrams

commute.

{maps m(f)→ g} ≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

diagrams

A A⊗ I A

B Y X

f

i0 i1

g

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

≅

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

diagrams

B A X

Y Y I Y

f

g

p0 p1

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

≅ {maps f → n(g)}

So there is a natural bijection C 2(m(f), g) ≅ C 2(f, n(g)). Thus m is a left adjoint to n.

Therefore m ○ n ∶ C 2 → C 2 is a comonad. Since the pushout of a comonad is a comonad, L1

is a comonad.

Lemma 5.1.8. For every map f in C , L1f is a strong h-cofibration and Rt1f is a homotopy

equivalence.

Proof. By lemma 5.1.3, m(n(f)) is a strong h-cofibration. By lemma 5.1.1, C is closed under

pushouts. Thus L1f is a strong h-cofibration.

Since v1(f) is a homotopy equivalence, the map M(n(f)) → E1f in diagram (5.1) is a

homotopy equivalence by lemma 5.1.2. From lemma 5.1.3 we know mw(n(f)) is a homotopy

equivalence. Therefore Rt1f is a homotopy equivalence.
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Theorem 5.1.9. If the factorizations (L1,Rt1) and (Lt1,R1) are both E-compact, then there

is an E-compact algebraic model category ζ ∶ (Ct,F)→ (C,Ft) on C whose underlying model

category has weak equivalences W, cofibrations C, and fibrations F .

Proof. We will use a similar approach to that of 3.3.4. Let X = (Lt,R) be the E-compact

AWFS from proposition 5.1.6 and let Y = (L1,Rt1). By 3.2.1, (LAWFS(C ),⊛,I) is a strict

monoidal category. Since there is a unit map η ∶ I→ Y in LAWFS(C ), X⊛ η ∶ X = X⊛ I→

X⊛Y is a map in LAWFS(C ). By 3.3.2, X⊛ η ∶ X→ X⊛Y is a map of LAWFSs between

E-compact LAWFSs. Thus by 3.3.3, F1(X ⊛ η) ∶ F1(X) → F1(X ⊛ Y) is a map of AWFSs

between E-compact AWFSs.

Explicitly, on f , X ⊛ Y (f) = (LtRt1f ○ L1f,RRt1f). By lemma 5.1.8 and proposition

5.1.6, LtRt1f ○ L1f ∈ C and RRt1f ∈ F ∩W for each f . Thus, by 3.1.4, ∣AlgRRt1 ∣ = F ∩W.

Let (Ct,F) = F1(X), let (C,Ft) = F1(X ⊛ Y ), and let ζ ∶= F1(X ⊛ η) ∶ (Ct,F) → (C,Ft). By

3.2.19, (C,Ft) is an AWFS with ∣CoalgC∣ = C and ∣AlgFt ∣ = F ∩W and (Ct,F) is an AWFS

with ∣CoalgCt ∣ = C ∩W and ∣AlgF∣ = F .

5.1.4 The Compactness Condition

Proposition 5.1.10. If the comonad i0 ○N ∶ C 2 → C 2 is E-compact, then the factorizations

(L1,Rt1) and (Lt1,R1) are both E-compact.

Proof. Let λ be a regular cardinal such that i0○N is (E , λ)-compact. Let {(cα, dα) ∶ fα → g}α

be an E/≅-tight (

A

/≅, λ)-cocone. Let (c, d) ∶ colimα fα → g be the map defined by the cocone.

The cocone {N(cα, dα) ∶ Nfα → Ng}α defines a map b ∶ colimαNfα → Ng.
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From the (E , λ)-compactness of i0 ○N , we know each of the vertical maps in the following

diagram are in E .

colimα dom fα colimαNfα (colimαNfα)⊗ I

dom g Ng Ng ⊗ I

c

colimα v(fα) i0(colimαNfα)

b b⊗I
v(g) i0(Ng)

Since colimits commute, the colimit of the top row is colimαEt1fα. The colimit of the bottom

row is Et1g and the map colimαEt1fα → Et1g defined by the above diagram is in E by 2.4.3.

So colimα Lt1fα → Lt1g is in E2. Thus (Lt1,R1) is E-compact.

If we can show that m ○ n ∶ C 2 → C 2 is (E , λ)-compact, then the same method we used

above will prove (L1,Rt1) is (E , λ)-compact. It suffices to prove the following.

1. n ∶ C 2 → C 2 is strongly (E , λ)-compact.

2. m ∶ C 2 → C 2 is (E , λ)-compact.

Note that there is a homeomorphism ς ∶ I
≅
Ð→ I such that p0 ○ Y ς ∶ Y I → Y is equal to

p1 ∶ Y I → Y . So there is a natural isomorphism N1 ≅ N . Therefore N1 ∶ C 2 → C sends

E/≅-tight (

A

/≅, λ)-cocones to E-tight cocones. But, since n is codomain-preserving, that is all

that is required to show (1).

Let ∗ be the terminal object in C . As we noted in section 5.1.1, ∗I ≅ ∗. So if x ∶ X → ∗

is the map to the terminal object, then Nx ≅ X. Let xα ∶ dom fα → ∗ and y ∶ dom g → ∗

be the maps to the terminal object from the domains of the cocone {(cα, dα) ∶ fα → g}α.

So {(cα, id∗) ∶ xα → y}α is an E/≅-tight (

A

/≅, λ)-cocone. But applying i0 ○N to this cocone

yields the same cocone as applying i0 ○ dom to the original cocone {(cα, dα) ∶ fα → g}α. In

other words, i0 ○ dom ∶ C 2 → C 2 is an (E , λ)-compact functor. Applying the same method

we used in the second paragraph of this proof to i0 ○ dom proves that M ∶ C 2 → C sends

143



E/≅-tight (

A

/≅, λ)-cocones to E-tight cocones. Since m ∶ C 2 → C 2 is domain-preserving, (2)

now follows.

Proposition 5.1.11. Let λ be a regular cardinal. If the following conditions are satisfied,

then i0 ○N ∶ C 2 → C 2 is an (E , λ)-compact comonad.

1. The functor (−)⊗ I ∶ C → C sends every map in E to a map in E .

2. If f ∈ E and g and h are isomorphisms, then the limit in C 2 of any diagram f → h← g

is in E .

3. For every diagram D ∶ A × in→ C on a λ-filtered category A , the canonical map

colim
α

lim
β
D(α,β)Ð→ lim

β
colim
α

D(α,β)

is in E .

Remark 5.1.12. By proposition 4.1.2, condition (1) is equivalent to the requirement that the

functor (−)I ∶ C → C sends every map in M to a map in M. If E = E↡, the collection of

epimorphisms, then (1) holds by lemma 4.1.4. If in addition, C is a concrete category with

a realization functor C → Set that preserves limits, then (2) also holds.

Proof. Let {(cα, dα) ∶ fα → g}α be an E/≅-tight (

A

/≅, λ)-cocone. Let (c, d) ∶ colimα fα → g be

the map defined by the cocone. Since dα ∶ cod fα → cod g is an isomorphism for each α, each

map dIα ∶ (cod fα)I → (cod g)I is an isomorphism. Therefore the map b ∶ colimα(cod fα)I →

(cod g)I defined by the cocone {dIα ∶ (cod fα)I → (cod g)I}α is an isomorphism. So, in the

following diagram, c ∈ E and d and b are isomorphisms.

colimα(cod fα)I colimα cod fα colimα dom fα

(cod g)I cod g dom g

b≅

colimα p0

d≅ c

colimα fα

p0 g

144



Let P be the limit of the top row. By (2), the map P → Ng induced by the above diagram is

in E . By (3), the map colimαNfα → P is in E . Therefore the map colimαNfα → Ng defined

by the cocone {N(cα, dα) ∶ Nfα → Ng}α is in E . Since (−)⊗I preserves colimits and maps in

E , the map colimα(Nfα⊗I)→ Ng⊗I defined by the cocone {N(cα, dα)⊗I ∶ Nfα⊗I → Ng⊗I}

is in E .

5.1.5 An Algebraic h-Model Structure on k-Spaces

The epimorphisms in kTop are exactly the (continuous) surjective maps. Indeed, if f is

an epimorphism, one only needs to consider the cocartesian square

X Y

Y Z.

f

f
⌜

g

h

If y ∈ Y is not in the image of f , then g(y) ≠ h(y), so g ≠ h and thus gf ≠ hf , a contradic-

tion. Since the spaces themselves are sets and the possible topologies on a set are limited

by its cardinality, there can only be a set’s worth of isomorphism classes of epimorphism

quotients for each object. So by 2.4.9, (E↡,Ms#) is a well-copowered, left-proper, orthogonal

factorization system on kTop.

Definition 5.1.13. An injective map f ∶ X → Y in the category kTop is a k-inclusion if

X = k(f(X)), where f(X) has the same underlying set as X, but has the subspace topology

from Y .

We can of course factor each map f ∶X → Y as a map f̂ ∶X → kf(X) in E followed by a

k-inclusion i ∶ kf(X)→ Y .

Proposition 5.1.14. The collectionMs# of strong monomorphisms in kTop is the collection

of k-inclusions.
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Proof. We will show that the class of k-inclusions is equal to (E↡)◻. Let f ∶ X → Y be a

k-inclusion, let p ∶ A→ B be a map in E↡, and let (u, v) ∶ p→ f be a map in kTop2. Since the

image of v is contained in the image of f , v lifts to a map v′ ∶ B → f(X). For every k-open

set U in f(X) and every continuous map l ∶ L → B on a compact space L, l−1(v′−1(U)) is

open. So v′−1(U) is a k-open set in B. Thus the map of sets defined by v′ is continuous as

a map to kf(X). So a solution to the lifting problem (u, v) ∶ p→ f exists.

Conversely, suppose f ∶ X → Y is a map in (E↡)◻. Then a lift l exists in the following

diagram, where f̂ ∈ E↡ and i is a k-inclusion.

X X

kf(X) Y

f̂

id

f

i

l

So f̂ is a bijection and l ○ f̂ = id . Therefore f̂ ○ l = id . Since f is isomorphic to i, f must be

a k-inclusion.

Theorem 5.1.15 (The Algebraic h-Model Structure on k-Spaces). There is an E-compact

algebraic model category q ∶ (Ct,F)→ (C,Ft) on kTop whose underlying model category has

weak equivalences W, cofibrations C, and fibrations F .

Proof. We will prove conditions (1)-(3) of 5.1.11 hold. Since (−) ⊗ I is a left adjoint, it

preserves epimorphisms (4.1.4). So (1) holds.

Let f ∈ E , let g and h be isomorphisms, and let (x, y) ∶ f → h and (u, v) ∶ g → h be maps

in kTop2. The functor k ∶ Top → kTop only changes the topology of each space, but does

not change the underlying set or map of sets. Since the map f ×h g ∶ dom f ×domh dom g →

cod f ×codh cod g is surjective, the map k(f ×h g) must also be surjective. So condition (2)

holds.
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Finally, let D ∶ A × in→ C be a diagram of the shape described in (3). Since finite limits

commute with filtered colimits in Set, the map

colim
α

lim
β
D(α,β)Ð→ lim

β
colim
α

D(α,β)

in kTop is bijective. So in particular, it is in E . The above map is in general not an

isomorphism in kTop.

The above proof is more elementary than [Col06a, §4] and [Lew78, 9.5], showing the

benefits of using E-compactness.

5.2 Mixed Algebraic Model Structures

It was shown in [Col06b, 2.1] that when a category has two model structures, one of

which has larger classes of both weak equivalences and fibrations, then there is a third

model structure on the category whose weak equivalences are from the larger class and

whose fibrations are from the smaller class. The third model structure is called the mixed

model structure.

When we mix the h-model structure on k-spaces with the classical Quillen model structure

(or q-model structure), we get a new model structure which we call the m-model structure.

The weak equivalences of the m-model structure are the weak homotopy equivalences and

the fibrations are the h-fibrations. We will show that the m-model structure is an algebraic

model structure. Unfortunately, we are not able to show it is E-compact.

5.2.1 Mixing Model Structures

Let C be a bicomplete category with well-copowered proper orthogonal factorization

systems (E ,M) and (E ′,M′). Suppose ζ ∶ (Ct,F)→ (C,Ft) is an E-compact algebraic model

category on C with weak equivalences W1. We will use the notation C1 = ∣CoalgC∣ and
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F1 = ∣AlgF∣. Suppose there is a second model category on C with weak equivalences W2,

fibrations F2, and cofibrations C2 such that W1 ⊆W2 and F1 ⊆ F2.

Theorem 5.2.1 (Mixed Model Structure). If there is an (E ,M′)-compact LAWFS (L,Rt)

on C such that ∣CoalgL∣ ⊆ C2 and ∣AlgRt ∣ ⊆ F2∩W2, then there is an algebraic model category

ρ ∶ (Xt,Y)→ (X,Yt) on C with weak equivalences W2 such that ∣AlgY∣ = F1.

Proof. Let Cm = ◻(W2 ∩ F1). If f ∈ Cm ∩W2, then Ff ∈ W2 ∩ F1. So a solution to the

lifting problem (Ctf, id) ∶ f → Ff exists. Thus f ∈ ∣CoalgCt ∣ = C1 ∩W1. Conversely, if

f ∈ C1 ∩W1 = ∣CoalgCt ∣, then f ∈ W2 and a solution to any lifting problem (u, v) ∶ f → g

with g ∈ F1 exists. So f ∈ Cm ∩W2. Since (C1 ∩W1,F1) is a weak factorization system,

(Cm ∩W2,F1) is a weak factorization system with an associated E-compact AWFS (Ct,F).

Let (X1,Yt1) = (Ct,F) ⊛ (L,Rt). So (X1,Yt1) is functorial factorization with X1f =

CtRtf ○Lf on each object f in C 2. By 3.3.1, (X1,Yt1) is an (E ,M′)-compact LAWFS. Since

F1 ⊆ F2, we know ∣CoalgL∣ ⊆ C2 = ◻(F2∩W2) ⊆ ◻(F1∩W2) = Cm. Therefore X1f ∈ Cm and thus

∣CoalgX1
∣ ⊆ Cm. Since Yt1f = FRtf and the unit map for FRt is F η⃗Rt ○ η⃗F = η⃗FRt ○ η⃗Rt , every

Yt1-algebra is both an F-algebra and an Rt-algebra. So ∣AlgYt1 ∣ ⊆ ∣AlgF∣∩ ∣AlgRt ∣ = F1∩W2.

Since the unit map η ∶ I→ (L,Rt) is a map in LAWFS(C ), by 3.2.1, the map

(Ct,F)⊛ η ∶ (Ct,F) = (Ct,F)⊛ I→ (Ct,F)⊛ (L,Rt) = (X1,Yt1)

is a map in LAWFS(C ). Since (Ct,F) is E-compact and (X1,Yt1) is (E ,M′)-compact,

both LAWFSs have reflections in AWFS(C ). Let (Xt,Y) = F1((Ct,F)) and let (X,Yt) =

F1((X1,Yt1)). It follows that the reflection of the map (Ct,F)⊛ η in AWFS(C ) exists. So

ρ ∶= F1((Ct,F)⊛ η) ∶ (Xt,Y)→ (X,Yt) is a map in AWFS(C ).

Since (Ct,F) is a LAWFS associated to the weak factorization system (Cm ∩W2,F1), by

3.2.19 (3.1.4), (Xt,Y) is an AWFS associated to the weak factorization system (Cm∩W2,F1).
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Since (X1,Yt1) is a LAWFS with ∣CoalgX1
∣ ⊆ Cm and ∣AlgYt1 ⊆ F1 ∩W2, by 3.1.4 and 3.2.19,

(X,Yt) is an AWFS associated to the weak factorization system (Cm,F1 ∩W2).

Corollary 5.2.2. If the LAWFS (L,Rt) of theorem 5.2.1 is an E-compact, then the algebraic

model category ρ ∶ (Xt,Y)→ (X,Yt) is E-compact.

5.2.2 An Algebraic m-Model Structure on k-Spaces

We now return to the category kTop of k-spaces. As we saw, kTop is a bicomplete closed

monoidal category with a well-copowered proper orthogonal factorization system (E↡,Ms#).

We will now use the notation Wh, Fh, and Ch for the homotopy equivalences, h-fibrations,

and strong h-cofibrations in kTop, respectively.

LetWq be the collection of weak homotopy equivalences in kTop, let Fq be the collection

of Serre fibrations in kTop, and let Cq be the collection of retracts of inclusions of cell

complexes in kTop. By [Hov99, 2.4.23], kTop is a model category with weak equivalences

Wq, fibrations Fq, and cofibrations Cq. We will refer to this model structure as the q-model

structure on kTop.

Since Wh ⊆ Wq and Fh ⊆ Fq, the h- and q-model structures on kTop mix to produce

a model structure on kTop with weak equivalences Wq, fibrations Fh, and cofibrations

Cm ∶= ◻(Fh ∩Wq) ([Col06b, 2.1]). We will show that this model structure has an associated

algebraic model structure. First we need the following lemma.

Lemma 5.2.3. For each space X in kTop, there is a regular cardinal λ such that the functor

kTop(X,−) ∶ kTop→ Set

preserves E↡-tightness of (Ms#, λ)-cocones.

Proof. Let X be a space in kTop and let λ be a regular cardinal greater than ∣X ∣. Let

{iα ∶ Yα → Y } be an E↡-tight (Ms#, λ)-cocone in kTop. Let f be a map X → Y . Every point
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in X is in the image of an iα. So there is a collection of fewer than λ distinct Yα whose

images under the iα’s collectively contain the image of f . Since {iα ∶ Yα → Y } is λ-filtered,

there is a single Yβ such that the image of f is contained in the image of iβ. Because iβ(Yβ)

has the subspace topology, f ∶ X → Y lifts to a continuous map f ′ ∶ X → iβ(Yβ). For every

k-open set U in iβ(Yβ), the set f ′−1(U) is k-open in X. So f ′ lifts to a map X → Yβ. Thus

the induced map

colim
α

kTop(X,Yα)→ kTop(X,Y )

is a surjection.

Theorem 5.2.4 (Algebraic m-Model Structure). There is an algebraic model category θ ∶

(Xt,Y)→ (X,Yt) on kTop with weak equivalences Wq such that ∣CoalgX∣ = Cm and ∣AlgY∣ =

Fh.

Proof. By 5.2.1, it suffices to show that there is an (E↡,Ms#)-compact LAWFS (LI1,R
I
1) such

that ∣CoalgLI1
∣ ⊆ Cq and ∣AlgRI1

∣ ⊆ Fq ∩Wq.

Let I be the collection of boundary inclusions Sn−1 → Dn for all n, where Dn is the

n-disk and Sn is the n-sphere with S−1 = ∅. Then I◻ = Fq ∩Wq. Let I = Disc(I), viewed

as a discrete subcategory of kTop2, and let I ∶ I → kTop2 be the subcategory inclusion

functor. By 5.2.3 and 3.2.27, the reflection LI0 = F3(I) of J and I in Cmd(kTop2) exists

and is (E↡,Ms#)-compact. By 3.2.22, the reflection (LI1,R
I
1) = F2(LI0) in LAWFS(kTop)

exists and is (E↡,Ms#)-compact.

By 3.2.26, 3.2.23, and 3.1.15, I� ≅ Coalgem
LI0

�
≅ Coalgem

LI1

�
≅ AlgRI1

. But we also know

∣I�∣ = I◻ = Fq ∩Wq. So ∣AlgRI1
∣ = ∣I�∣ = Fq ∩Wq. Since Coalgem

LI1
is a subcategory of

�(Coalgem
LI1

�
), ∣Coalgem

LI1
∣ ⊆ ∣�(J�)∣ ⊆ ◻∣J�∣ = ◻(Fq ∩Wq) = Cq. Since Cq is retract closed,

∣CoalgLI1
∣ ⊆ Cq.
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Remark 5.2.5. If for each X, there is a regular cardinal λ such that the functor kTop(X,−) ∶

kTop→ Set preserves E↡-tightness of λ-filtered cocones then the m-model structure will be

E↡-compact.
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Chapter 6: Quasiaccessible Categories

Quasiaccessible categories both generalize locally presentable categories and include the

category of topological spaces and the category of k-spaces. An impressive amount of the

theory of accessible categories still applies to quasiaccessible categories.

Showing that when L is a “small” copointed endofunctor on Top, the forgetful functor

UL ∶ CoalgL → Top has a right adjoint was one of the motivating problems for developing

the theory of quasiaccessible categories. By the special adjoint functor theorem, the only

obstruction to showing the right adjoint to UL exists is showing that the category CoalgL

has a family of generators. This result would be true if CoalgL were in some sense accessible

“up to epimorphisms”.

Being accessible “up to epimorphisms” is roughly the requirement for a category to be

quasiaccessible. Even though Set is accessible and colimits in Top are found by topologizing

the colimit in Set, the topologies on the spaces in Top prevent the category from being

accessible. It is, however, easy to show that Top is accessibility “up to epimorphisms”.

Once we have the sought after result 6.2.20 for quasiaccessible copointed endofunctors,

we are able to prove that every quasiaccessible functorial factorization associated to a WFS

(L,R) can be replaced by an associated compact LAWFS. So (L,R) has an associated

AWFS. Thus every quasiaccessible model category can be given the structure of an algebraic

model category.
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Since, under mild assumptions, the Bousfield-Friedlander theorem outputs a localized

quasiaccessible model category when the input is a quasiaccessible model category, one ap-

plication of our results is a proof that the localized model category output by the Bousfield-

Friedlander theorem can be given the structure of an algebraic model category.

In section 6.3.3, we prove that the h-model structure on Top is quasiaccessible. We have

not yet been able to show that the h-model structure on k-spaces is quasiaccessible. The

author believes it may be possible to modify the definition of quasiaccessible functors so that

all the proofs go through, but so that it is also possible to prove that the h-model structure

on k-spaces is quasiaccessible.

Many of the theorems in this chapter are analogs of results in [AR94] for locally pre-

sentable and accessible categories. This material bears an even stronger resemblance to the

equivalent locally generated categories of [GU71] which are summarized in [AR94, §1.E].

6.1 Quasiaccessible Categories

6.1.1 Presentable Objects

Recall, in a given category, E↡, Es↡, M#, and Ms# are the collections of epimorphisms,

strong epimorphisms, monomorphisms, and strong monomorphisms, respectively.

Definition 6.1.1. Let C be a category with a proper orthogonal factorization system

(E ,M). An object K in C is (E ,M, λ)-presentable for a regular cardinal λ if the func-

tor C (K,−) ∶ C → Set sends E ∩M#-tight (M, λ)-cocones to colimiting cocones.

Proposition 6.1.2. Let C be a category with a proper orthogonal factorization system

(E ,M) and let λ be a regular cardinal. Let X be an object in C with an E ∩M#-tight

(M, λ)-cocone {xα ∶Xα →X}α.
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1. If f ∶ L → X is map on an (E ,M, λ) presentable object L, then there is an α and a

map f ′ ∶ L→Xα such that xα ○ f ′ = f .

2. If {fβ ∶ Lβ → X}β is a λ-small cocone of (E ,M, λ)-presentable objects over X, then

there is an α and a cocone {f ′β ∶ Lβ →Xα}β such that xα ○ f ′β = fβ.

Proof. (1) For every (E ,M, λ)-presentable object L in C , the map of sets colimαC (L,Xα)→

C (L,X) induced by the cocone maps xα∗ ∶ C (L,Xα) → C (L,X) is an isomorphism. So

f ∶ L→X lifts to a map f ′ ∶ L→Xα.

(2) By (1), for every map fβ ∶ Lβ →X, there is an αβ and a map gβ ∶ Lβ →Xαβ such that

xαβ ○gβ = fβ. Since {xαβ ∶Xαβ →X}β is a λ-small set of maps, there is an α′ such that every

map xαβ factors through xα′ ∶ Xα′ → X via a connecting map xα
′

αβ
∶ Xαβ → Xα′ in the cocone

{xα}α. Let f ′β = x
α′
αβ
○gβ ∶ Lβ →Xα′ for each β. Then xα′ ○f ′β = fβ for each β. Furthermore, if

l ∶ Lβ1 → Lβ2 is a connecting map of the cocone {fβ}β, then xα′ ○f ′β2 ○l = fβ2 ○l = fβ1 = xα′ ○f
′
β1

.

Since xα′ is an M-map, it is a monomorphism. Therefore f ′β2 ○ l = f
′
β1

. So {f ′β ∶ Lβ → Xα′}β

is a cocone over Xα′ .

Proposition 6.1.3. Let C be a category with a proper orthogonal factorization system

(E ,M). Let λ and κ be regular cardinals with λ ≤ κ.

1. Every (E ,M, λ)-presentable object is (E ,M, κ)-presentable.

2. An E-quotient of an (E ,M, λ)-presentable object is (E ,M, λ)-presentable.

3. A retract of an (E ,M, λ)-presentable object is (E ,M, λ)-presentable.

4. A κ-small colimit of (E ,M, λ)-presentable objects, when it exists, is an (E ,M, κ)-

presentable object.
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5. If {Kα →X} is a κ-small E-tight cocone of (E ,M, λ)-presentable objects over X, then

X is an (E ,M, κ)-presentable object.

Proof. (1) is immediate.

(2) Let K be an (E ,M, λ)-presentable object and let g ∶ K → L be a map in E . Let

{xα ∶ Xα → X}α be an E ∩M#-tight (M, λ)-cocone and let h ∶ L → X be a map. Then by

6.1.2, there is an α and a map k ∶K →Xα such that xα ○k = h○g. Since xα ∈M and g ∈ E , a

solution to the lifting problem (k, h) ∶ g → xα exists. So the map colimαC (L,Xα)→ C (L,X)

defined by the cocone {xα∗ ∶ C (L,Xα)→ C (L,X)}α is surjective. Since each map xα is inM,

each map xα∗ is injective. It follows that the map colimαC (L,Xα)→ C (L,X) is injective.

(3) Let K be an (E ,M, λ)-presentable object and let L be a retract of K. Let {xα ∶Xα →

X}α be an E ∩M#-tight (M, λ)-cocone. Since the map colimα xα∗ ∶ colimαC (L,Xα) →

C (L,X) is a retract in Set2 of the map colimα xα∗ ∶ colimαC (K,Xα) → C (K,X) and the

latter map is a bijection, the former map is bijective.

(4) Let colimiKi be the colimit of a κ-small diagram of (E ,M, λ)-presentable objects in

C . Let {xα ∶Xα →X}α be an E ∩M#-tight (M, κ)-cocone in C . This cocone is in particular

λ-filtered. Since κ-small limits commute with κ-filtered colimits in Set,

colim
α

C (colim
i

Ki,Xα) ≅ colim
α

lim
i

C (Ki,Xα)

≅ lim
i

colim
α

C (Ki,Xα)

≅ lim
i

C (Ki,X)

≅ C (colim
i

Ki,X)

and this isomorphism is the map determined by the cocone maps xα ∶Xα →X.

(5) is an immediate consequence of (4) and (2).
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6.1.2 Quasiaccessible Categories

Definition 6.1.4. A category C is (E ,M, λ)-quasiaccessible if the following conditions are

satisfied.

1. (E ,M) is a proper orthogonal factorization system on C and λ is a regular cardinal.

2. C is E-well-copowered.

3. C is closed under λ-filtered colimits.

4. There is a small set S of (E ,M, λ)-presentable objects such that every object X in C

has an E ∩M#-tight (M, λ)-cocone {Sα →X}α of objects in S over X.

The category C is (E ,M)-quasiaccessible if it is (E ,M, λ)-quasiaccessible for some regular

cardinal λ. A category C is quasiaccessible if it is (E ,M)-quasiaccessible for some proper

orthogonal factorization system (E ,M) in C .

Before developing the theory of quasiaccessible categories, we will look at some examples.

The category of topological spaces is our motivating example.

The only thing preventing Top from being an accessible category is the topologies on

its sets. Indeed, Set is an ℵ0-accessible category and the colimit of a diagram in Top

is the colimit of the underlying diagram of sets equipped with the final topology. So in

particular, every discrete space is the colimit of a finitely-filtered diagram of discrete spaces.

Furthermore, each topological space X has a bijective map X0 → X from a discrete space

X0. So Top is “accessible up to bijective maps”.

For every topological space X, there is only a small collection of isomorphism classes of

topological spaces of cardinality at most ∣X ∣. So Top is well-copowered. Since Top is also

cocomplete, by 2.4.9, (E↡,Ms#) is a proper orthogonal factorization system on Top. For the
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same reason we saw in section 5.1.5, the epimorphisms in Top are exactly the (continuous)

surjections. A similar argument to the one in 5.1.14, shows that E↡ is the collection of

surjective continuous maps and Ms# is the collection of subspace inclusions. Condition (4)

of definition 6.1.4 is all that remains to be checked.

Remark 6.1.5. If {xα ∶ Xα → X}α is an Ms#-cocone in Top, then, as a set, colimαXα is the

union ⋃αXα in X. In general, the space colimαXα will have more open subsets than the

set ⋃αXα with the subspace topology from X. So the map colimαXα → X defined by the

cocone {xα}α is not necessarily a subspace inclusion.

A good example to keep in mind is R. The canonical cocone {yα ∶ Yα → R}α of discrete

subspaces of R is a finitely filteredMs#-cocone. As a set, R is the colimit of {yα}α. However,

any colimit in Top of discrete spaces must be a discrete space. So the colimit colimα Yα does

not have the subspace topology from R.

If all of the xα’s in anMs#-cocone {xα ∶Xα →X}α in Top are open maps, then the map

colimαXα → X defined by the cocone {xα}α is a subspace inclusion. But the requirement

that the subspaces are open places some lower bound on their cardinalities. Open subsets

of R have to have the same cardinality as R.

Proposition 6.1.6. Let λ be a regular cardinal. The (E↡,Ms#, λ)-presentable objects in Top

are exactly the spaces with cardinality less than λ.

Proof. Let {fα ∶Xα →X}α be an E↡∩M#-tight (Ms#, λ)-cocone in Top. Let g ∶K →X be a

map on a space K with ∣K ∣ < λ. Because the cocone {fα}α is E↡-tight, for every point x ∈X,

there is an α′ and x′ ∈ Xα′ such that fα′(x′) = x. So every point in the image of g is in the

image of an fα. Because ∣K ∣ < λ, there is a λ small collection of Xα’s that cover K. Since

the cocone {fα}α is λ-filtered, there is an index αg such that the image of g is contained in

the image of fαg . So g lifts to a map g′ ∶ K → Xαg . Thus Top(K,−) ∶ Top → Set sends
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E↡ ∩M#-tight (Ms#, λ)-cocones to E↡-tight (M#, λ)-cocones. Since a λ-filtered colimit of

injections is Set is an injection, K is (E↡,Ms#, λ)-presentable.

Conversely, suppose K is an (E↡,Ms#, λ)-presentable object in Top. Let {fα ∶Kα →K}α

be the canonical Ms#-cocone of K with respect to the Kα with ∣Kα∣ < λ. For every λ-small

subcocone {fα}α∈A0 , the underlying set of colimαα∈A0 Kα has cardinality less than λ, since it

is a λ-small union of sets of cardinality less than λ. Let r ∶ colimα∈A0 Kα → K be the map

defined by the λ-small cocone {fα}α∈A0 . We can factor r as r = p○q, where q ∈ E↡ and p ∈Ms#.

Since an E↡-quotient of a space with cardinality less than λ is a space with cardinality less

than λ, p is equal to fα for some α. Thus {fα}α is a λ-filtered cocone. For every point k ∈K,

{k} is a set of cardinality less than λ and {k} → K is a subspace inclusion. Thus on the

level of sets, colimα fα = ∪αKα =K. So {fα}α is an E↡ ∩M#-tight (Ms#, λ)-cocone. Thus the

identity map id ∶ K → K lifts to a map i ∶ K → Kα′ for some α′ such that fα′ ○ i = id . Since

Kα′ has cardinality less than λ, K must have cardinality less than λ.

Theorem 6.1.7. The category Top is (E↡,Ms#, λ)-quasiaccessible for every regular cardinal

λ.

Proof. Condition (4) of definition 6.1.4 is the only condition that needs to be checked. If X

is a space in Top and if {fα ∶Kα →X}α is the canonicalMs#-cocone of X with respect to the

Kα with ∣Kα∣ < λ, then our proof of 6.1.6 shows that {fα}α is λ-filtered and E↡-tight. Since a

λ-filtered colimit of monomorphisms in Top is a monomorphism, {fα}α is E↡∩M#-tight.

We can also prove that the category kTop of k-spaces is a quasiaccessible category. Just

like Top, kTop is cocomplete and well-copowered and has a proper orthogonal factorization

system (E↡,Ms#). As we saw in section 5.1.5, E↡ is the collection of surjective maps andMs#

is the collection of k-inclusions (see definition 5.1.13).
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Proposition 6.1.8. Let λ be a regular cardinal. The (E↡,Ms#, λ)-presentable objects in

kTop are exactly the spaces with cardinality less than λ.

Proof. This proof is very similar to 6.1.6. We let {fα ∶ Xα → X}α be an E↡ ∩M#-tight

(Ms#, λ)-cocone in kTop and let g ∶ K → X be a map on a space K with ∣K ∣ < λ. Then

every point in the image of g is in the image of an fα and because ∣K ∣ < λ, there is a λ small

collection of Xα that cover K. Since the cocone {fα}α is λ-filtered, there is an index αg such

that the image of g is contained in the image of fαg . So g lifts to a map g′ ∶ K → fαg(Xαg)

in Top, where fαg(Xαg) has the subspace topology from X. Since, for every k-open set U

in fαg(Xαg), g
′−1(U) is k-open in K, g′ lifts to a map g′ ∶ K → Xαg . It follows that K is

(E↡,Ms#, λ)-presentable.

Conversely, supposeK is an (E↡,Ms#, λ)-presentable object in kTop. Let {fα ∶Kα →K}α

be the canonical Ms#-cocone of K with respect to the Kα with ∣Kα∣ < λ. Then {fα}α is a

λ-filtered cocone. For every point k ∈K, {k} is a set of cardinality less than λ and {k}→K

is a k-inclusion. So as sets, colimα fα = ∪αKα =K. Thus {fα}α is an E↡ ∩M#-tight (Ms#, λ)-

cocone. So the identity map id ∶ K → K lifts to a map i ∶ K → Kα′ for some α′ such that

fα ○ i = id . Since Kα′ has cardinality less than λ, K must have cardinality less than λ.

Theorem 6.1.9. The category kTop is (E↡,Ms#, λ)-quasiaccessible for every regular cardi-

nal λ.

Proof. Just as in 6.1.7, we only need to check condition (4) of the definition and this follows

from the proof of 6.1.8.

Quasiaccessible categories are a generalization of locally presentable categories.

Proposition 6.1.10. A cocomplete category is accessible if and only if it is (Es↡,M#)-

quasiaccessible.
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Proof. Let C be an accessible category. By [AR94, 1.56], C is complete, well-powered,

and well-copowered. So by 2.4.9, (Es↡,M#) is a proper orthogonal factorization system

on C . Since every Es↡ ∩M#-map is an isomorphism, every λ-presentable object in C is an

(Es↡,M#, λ)-presentable object. By [AR94, 2.29, 2.34], there is a regular cardinal λ such that

C is closed under λ-filtered colimits and every object in C is the colimit of an (M#, λ)-cocone

of λ-presentable objects. So C satisfies conditions 6.1.4 (3) and (4).

Conversely, suppose C is an (Es↡,M#, λ)-quasiaccessible category. Since every Es↡ ∩M#-

map is an isomorphism, the (Es↡,M#, λ)-presentable objects in C are exactly the λ-generated

objects [AR94, 1.67]. Furthermore, there is a regular cardinal λ such that every object in

C is the colimit of an (M#, λ)-cocone of λ-generated objects. Therefore there is a regular

cardinal κ such that C is κ-accessible [AR94, 1.70].

Categories of presheaves are quasiaccessible in two different ways. By the above propo-

sition they are (Es↡,M#)-quasiaccessible and by the following proposition, they are also

(E↡,Ms#)-quasiaccessible.

Proposition 6.1.11. Every category of presheaves is (E↡,Ms#)-quasiaccessible.

Proof. Let A be a small category. Since Set is well-copowered, the category of presheaves

SetA op

is well-copowered. The category SetA op

is also accessible [AR94, 1.46]. By 2.4.9,

(E↡,Ms#) is a proper orthogonal factorization system on SetA op

. Since every monomorphism

in a category of presheaves is an objectwise injection and every epimorphism in a category

of presheaves is an objectwise surjection, every E↡ ∩M#-map in SetA op

is an isomorphism.

Therefore every λ-presentable object in SetA op

is an (E↡,Ms#, λ)-presentable object. By

[AR94, 2.31, 2.34], there is a regular cardinal λ such that SetA op

is closed under λ-filtered

colimits and every object in SetA op

is the colimit of an (Ms#, λ)-cocone of λ-presentable
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objects. So every object has an E↡ ∩Ms#-tight (Ms#, λ)-presentable cocone of (E↡,Ms#, λ)-

presentable objects.

6.1.3 Basic Properties of Quasiaccessible Categories

Proposition 6.1.12. Let C be an (E ,M, λ)-quasiaccessible category.

1. If g ○ f ∈M, then f ∈M. If g ○ f ∈ E , then g ∈ E .

2. A map f ∶ X → Y is a monomorphism in C if and only if a = b for each (E ,M, λ)-

presentable object K and each pair of maps a, b ∶K →X with f ○ a = f ○ b.

3. If {xα ∶ fα → f}α is an E ∩M#-tight (M, λ)-cocone in C ↓ Y of monomorphisms

fα ∶Xα → Y , then f ∶X → Y is a monomorphism.

4. Every (M, λ)-cocone DÐ→Y factors as an E ∩M#-tight (M, λ)-cocone DÐ→X fol-

lowed by an M-map X → Y .

5. Every E-tight (M, λ)-cocone in C is an E ∩M#-tight cocone.

Proof. (1) This is a restatement of 2.4.5.

(2) Suppose f is a monomorphism relative to (E ,M, λ)-presentable objects. Let Z be an

object in C and let u ∶ Z → dom f and v ∶ Z → dom f be two maps such that f ○ u = f ○ v.

There is an E-tight (M, λ)-cocone {kα ∶ Kα → Z}α of (E ,M, λ)-presentable objects over Z.

So the map h ∶ colimαKα → Z defined by the cocone {kα}α is an E-map. For each α, since

f ○u ○kα = f ○ v ○kα, u ○kα = v ○kα. Therefore u ○h = v ○h. Since h is an epimorphism, u = v.

(3) Now suppose a ∶K → X and b ∶K → X are maps on an (E ,M, λ)-presentable object

K such that f ○a = f ○ b. There are indices α1 and α2 such that a lifts to a map a′ ∶K →Xα1

and b lifts to a map b′ ∶ K → Xα2 . Since the cocone {xα}α is λ-filtered, there is an index α3
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such that a and b lift to maps a′′ ∶K →Xα3 and b′′ ∶K →Xα3 . Since

fα3 ○ a
′′ = f ○ xα3 ○ a

′′ = f ○ a = f ○ b = f ○ xα3 ○ b
′′ = fα3 ○ b

′′,

a′′ = b′′. But this means a = b.

(4) By (1), the cocone θ ∶ DÐ→ colimD is an (M, λ)-cocone. Of course this cocone

is E ∩M#-tight, since it is colimiting. So by (3), the induced map f ∶ colimD → Y is

a monomorphism. By applying the (E ,M)-factorization to f , we get f = p ○ q, where

q ∶ colimD → X is a map in E ∩M# and p ∶ X → Y is a map in M. Another application of

(1) shows that q ○ θ ∶DÐ→X is an M-cocone.

(5) Let {xα ∶ Xα → X}α be an E-tight (M, λ)-cocone. Let f ∶ colimαXα → X be

the map defined by the cocone {xα}α. Taking fα = xα in part (3), we get that f is a

monomorphism.

Proposition 6.1.13. Every object X in an (E ,M, λ)-quasiaccessible category C is (E ,M, κ)-

presentable for some regular cardinal κ.

Proof. This is an immediate consequence of 6.1.4 (4) and 6.1.3 (5).

Proposition 6.1.14. The collection of isomorphism classes of (E ,M, λ)-presentable objects

in an (E ,M, λ)-quasiaccessible category C is a set.

Proof. LetK be an (E ,M, λ)-presentable object in C . Let S be a set of (E ,M, λ)-presentable

objects in C that satisfies 6.1.4 (4). There is an E ∩M#-tight (M, λ)-cocone {kα ∶Kα →K}α

of S-objects over K. By remark 6.1.2, the identity map id ∶ K → K factors through some

kα ∶ Kα → K. Since kα is a split monomorphism, it is an E-map. So K is an E-quotient

of Kα. Since C is E-well-copowered, there can only be a set of isomorphism classes of such

objects.
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Definition 6.1.15. Let C be an (E ,M, λ)-quasiaccessible category. Let PresEM, λ(C ) be

the full subcategory of C on a set of representatives for the isomorphism classes of the

(E ,M, λ)-presentable objects in C .

In the following proposition, we make use of definition 2.1.12.

Proposition 6.1.16. Let C be an (E ,M, λ)-quasiaccessible category. Every canonical M-

cocone with respect to PresEM, λ(C ) is λ-filtered and E ∩M#-tight.

Proof. Let X be an object in C . By 6.1.4 (4), there is an E ∩M#-tight (M, λ)-cocone

{kα ∶Kα →X}α of (E ,M, λ)-presentable objects over X.

Let {lβ ∶ Lβ → X}β be a λ-small M-cocone of (E ,M, λ)-presentable objects over X. By

6.1.2 (2), there is an α0 such that {lβ}β lifts to a cocone {l′β ∶ Lβ →Kα0}β. Since kα0 ∶Kα0 →X

is an M-map on an (E ,M, λ)-presentable object Kα0 , the category PresEM, λ(C ) ↓M X is

λ-filtered.

Now let {lβ ∶ Lβ → X}β be the canonical M-cocone for X relative to PresEM, λ(C ). Let

f ∶ colimαKα → X and g ∶ colimβ Lβ → X be the maps defined by the cocones {kα}α and

{lβ}β, respectively. Since {kα}α is a subcocone of {lβ}β, there is a map h ∶ colimαKα →

colimβ Lβ such that g ○ h = f . By 6.1.12 (1), g ∈ E . We also know by 6.1.12 (1) that each

map in the colimiting cocone {Lβ → colimβ Lβ}β is an M-map. Since the colimiting cocone

{Lβ → colimβ Lβ}β is an E ∩M#-tight (M, λ)-cocone, we know by 6.1.12 (3) that g is a

monomorphism. So {lβ ∶ Lβ →X}β is an E ∩M#-tight cocone.

Proposition 6.1.17. If C is an (E ,M, λ)-quasiaccessible category and κ is a regular cardinal

such that λ◁ κ, then C is (E ,M, κ)-quasiaccessible.

Proof. Since every κ-filtered diagram is in particular λ-filtered, we only need to prove con-

dition (4) of 6.1.4. Let X be an object in C . Let TX be the set of all objects in C with an
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M-map to X that are E ∩M#-quotients of colimits of κ-small (M, λ)-cocones of (E ,M, λ)-

presentable objects over X. In other words, an object T is in TX if the following conditions

hold.

• There is a map t ∶ T →X which is in M.

• There is a κ-small, E ∩M#-tight, (M, λ)-cocone θ ∶ DÐ→T of (E ,M, λ)-presentable

objects.

• The cocone t ○ θ ∶DÐ→X is an M-cocone.

By 6.1.12 (4), every κ-small (M, λ)-cocone of (E ,M, λ)-presentable objects over X factors

through an object in TX . The set TX is small and every object in TX is (E ,M, κ)-presentable

by 6.1.3 (5).

Let {kα ∶Kα →X}α∈A be an E ∩M#-tight λ-directed M-cocone of (E ,M, λ)-presentable

objects. Let Dλ(A) be the poset of λ-directed subsets of A, ordered by inclusion, and let Â

be the subposet of Dλ(A) on the λ-directed subsets of A that are κ-small. A κ-small union U

of elements of Â is a κ-small subset of A. Since λ◁κ, U is contained in a κ-small λ-directed

subset V of A. So V is an element of Â and thus Â is κ-directed. Let F ∶ Â → C be the

diagram that sends each λ-filtered poset X in Â to the object colimα∈X Kα and sends an

inclusion X ⊆ Y of posets in Â to the induced map of colimits colimα∈X Kα → colimα∈YKα.

There are of course also compatible maps ϕX ∶ colimα∈X Kα → X that define a κ-filtered

cocone ϕ ∶ F Ð→X. By the proof of 6.1.12 (4), this cocone factors as a natural transformation

ρ ∶ F → F ′ of E ∩M#-maps followed by an M-cocone ϕ′ ∶ F ′Ð→X and the objects of F ′ are

in TX .

Since colimits commute, colimαKα ≅ colimF . So ϕ ∶ F Ð→X is E ∩M#-tight and the

map f ∶ colimF → X defined by ϕ factors through the map f ′ ∶ colimF ′ → X defined by ϕ′.
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Therefore by 6.1.12 (1), f ′ is in E . The colimiting cocone F ′Ð→ colimF ′ is an M-cocone

by 6.1.12 (1). So 6.1.12 (3) tells us that, f ′ ∶ colimF ′ → X is in M#. So ϕ′ ∶ F ′Ð→X is an

E ∩M#-tight (M, κ)-cocone of objects in TX .

Corollary 6.1.18. Let C be an (E ,M, λ)-quasiaccessible category. Let κ be a regular car-

dinal with λ◁κ. Every (E ,M, κ)-presentable object K in C is a retract of an object T with

a κ-small E ∩M#-tight (M, λ)-cocone {Kα → T}α of (E ,M, λ)-presentable objects.

Proof. The proof of proposition 6.1.17 shows that there is an E ∩M#-tight (M, κ)-cocone

{tβ ∶ Tβ → K}β of objects Tβ in TK . By 6.1.2, there is a β such that the identity map

id ∶K →K factors through tβ ∶ Tβ →K.

6.2 Quasiaccessible Functors

6.2.1 Quasiaccessible and Weakly Quasiaccessible Functors

Definition 6.2.1. Let A and B be (E1,M1, λ)-quasiaccessible and (E2,M2, λ)-quasiaccessible

categories, respectively. A functor F ∶ A → B is (E1,E2;M1,M2;λ)-quasiaccessible if it

sends E1 ∩M#-tight (M1, λ)-cocones to E2-tight (M2, λ)-cocones.

Usually, once we specify that A is (E1,M1, λ)-quasiaccessible and that B is (E2,M2, λ)-

quasiaccessible, then we can refer to an (E1,E2;M1,M2;λ)-quasiaccessible functor F ∶ A →

B as a just a λ-quasiaccessible functor without confusion. We will say F is quasiaccessible

if it is λ-quasiaccessible for some regular cardinal λ.

By 6.1.12 (5), the functor F ∶ A →B in the definition is λ-quasiaccessible if and only if

it sends E1 ∩M#-tight (M1, λ)-cocones to E2 ∩M#-tight (M2, λ)-cocones.

Remark 6.2.2. Let A and B be (E1,M1, λ)-quasiaccessible and (E2,M2, λ)-quasiaccessible

categories, respectively. A λ-quasiaccessible functor F ∶ A →B in particular sends maps in
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M1 to maps in M2. Indeed, if f ∶X → Y is an M1-map, then the cocone

X

Y

Y

f

f

id

over Y is a colimiting (M1, λ)-cocone. So Ff ∈M2.

Remark 6.2.3. If F ∶ A →B is a λ-quasiaccessible functor between quasiaccessible categories,

and λ◁ κ, then, by 6.1.17, F is κ-quasiaccessible.

Theorem 6.2.4. Let A be an (E1,M1)-quasiaccessible category and let B be an (E2,M2)-

quasiaccessible category. For every quasiaccessible functor F ∶ A → B, there is a regular

cardinal λ such that for every regular cardinal κ with λ◁κ, F is κ-quasiaccessible and sends

(E1,M1, κ)-presentable objects to (E2,M2, κ)-presentable objects.

Proof. Let λ1 be a regular cardinal such that F is λ1-quasiaccessible. By 6.1.13, 6.1.3 (1),

and 6.1.14, there is a regular cardinal λ2 such that FK is (E2,M2, λ2)-presentable for every

(E1,M1, λ1)-presentable object K in A . We can further arrange for λ1 ◁ λ2. Let κ be

a regular cardinal with λ2 ◁ κ and let K be an (E1,M1, κ)-presentable object in A . By

6.1.18, K is a retract of an object T , which has an E1 ∩M#-tight κ-small (M1, λ1)-cocone

{Kα → T}α of (E1,M1, λ1)-presentable objects. Then {FKα → FT}α is a E2 ∩M#-tight

κ-small (M2, λ1)-cocone of (E ,M, λ2)-presentable objects. So in particular, by 6.1.3 (5),

FT is a κ-presentable object. Since FK is a retract of FT , FK is κ-presentable by 6.1.3

(3).

Proposition 6.2.5. Let C be a (E ,M, λ)-quasiaccessible category and let f ∶ X → Y be a

map in C . If the map of sets f∗ ∶ C (K,X) → C (K,Y ) is a bijection for every (E ,M, λ)-

presentable object K, then f is an E ∩M#-map.
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Proof. By 6.1.12 (2), a map in C is a monomorphism if and only if it is a monomorphism

relative to each (E ,M, λ)-presentable object K. So f is a monomorphism.

Let {kα ∶ Kα → Y }α be an E ∩M#-tight (M, λ)-cocone of (E ,M, λ)-presentable objects.

Every map kα ∶ Kα → Y has a unique lift lα ∶ Kα → X. If kβα ∶ Kα → Kβ is a connecting map

of the {kα}α-cocone, then the uniqueness of the lifts lα means that lβ ○ k
β
α = lα. The maps lα

therefore define a cocone {lα ∶Kα →X}α which lifts the cocone {kα}. So if h ∶ colimαKα → Y

is the map defined by the cocone {kα}α and if g ∶ colimαKα → X is the map defined by the

cocone {lα}α, then f ○ g = h. Since h ∈ E , f ∈ E by 6.1.12 (1).

Proposition 6.2.6. Let A be an (E1,M1)-quasiaccessible category and let B be an (E2,M2)-

quasiaccessible category. Let F ∶ A → B be a quasiaccessible functor with a right adjoint

G ∶ B → A . If F (E1) ⊆ E2 or if G(M2) ⊆M1, then G is quasiaccessible.

Remark 6.2.7. The conditions F (E1) ⊆ E2 and G(M2) ⊆M1 are equivalent by 4.1.2. If E1

and E2 are both the collection of epimorphisms or if they are both the collection of strong

epimorphisms in their respective categories, then the conditions hold by 4.1.4.

Proof. By 6.2.4, there is a regular cardinal λ such that F is λ-quasiaccessible and sends

(E1,M1, λ)-presentable objects to (E2,M2, λ)-presentable objects. Let {xα ∶ Xα → X}α be

an E2 ∩M#-tight (M2, λ)-cocone in B. Then the colimiting cocone {GXα → colimαGXα}α

is an E1∩M#-tight (M1, λ)-cocone by 6.1.12 (1). So, for each (E1,M1, λ)-presentable object

K in A ,

A (K, colim
α

GXα) ≅ colim
α

A (K,GXα)

≅ colim
α

B(FK,Xα)

≅ B(FK,X)

≅ A (K,GX)
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By 6.2.5, the map colimαGXα → X defined by the cocone {Gxα}α is in E1 ∩M#. So the

cocone {Gxα}α is an E1 ∩M#-tight (M1, λ)-cocone.

Definition 6.2.8. A functor A ∶ A → C is weakly (E ,M, λ)-quasiaccessible relative to a set

S of objects in A if the following conditions are satisfied.

1. C is an (E ,M, λ)-quasiaccessible category.

2. A sends objects in S to (E ,M, λ)-presentable objects in C .

3. For every object X in A , the canonical A−1(M)-cocone {sα ∶ Sα → X}α of X relative

to S is sent by A to an E ∩M#-tight (M, λ)-cocone {Asα ∶ ASα → AX}α in C .

We will say that A ∶ A → C is weakly (E ,M, λ)-quasiaccessible when a set S of objects in

A exists such that A is weakly (E ,M, λ)-quasiaccessible relative to S.

Proposition 6.2.9. Let A ∶ A → C be a weakly (E ,M, λ)-quasiaccessible functor relative to

a set S. If B is a full subcategory of A that is closed under A−1(M)-subobjects, then the

restriction functor A∣B ∶ B → C is weakly (E ,M, λ)-quasiaccessible relative to the subset of

S on the objects in B.

Proof. Let S be a set of objects in A such that A is weakly (E ,M, λ)-quasiaccessible relative

to S, let X be an object in B, and let {sα ∶ Sα → X}α be the canonical A−1(M)-cocone of

X with respect to S. By definition, {Asα ∶ ASα → AX}α is an E ∩M#-tight (M, λ)-cocone

in C . Since the maps sα are all in A−1(M), every Sα is an object in B. So the subset SB

of S on the objects in B satisfies conditions (2) and (3) of 6.2.8 with respect to A∣B.

Proposition 6.2.10. Let A ∶ A → C be a weakly (E ,M, λ)-quasiaccessible functor with

respect to a set S of objects in A and let f ∶ X → Y be a map in A . If the map of sets

f∗ ∶ A (K,X)→ A (K,Y ) is a surjection for each K ∈ S, then Af is an E-map.
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Proof. Let {xα ∶ Kα → X}α be the canonical A−1(M)-cocone for X with respect to S

and let {yβ ∶ Lβ → Y }β be the canonical A−1(M)-cocone for Y with respect to S. Let

x ∶ colimαAKα → AX and y ∶ colimβ ALβ → AY be the maps defined by the cocones {Axα}α

and {Ayβ}β, respectively. Then x and y are E ∩M#-maps. Every map Af ○Axα ∶ AKα → AY

factors through some Ayβ ∶ ALβ → AY . So it factors through y ∶ colimβ ALβ → AY in

particular. Because y is a monomorphism, we get a cocone {AKα → colimβ ALβ}β that lifts

the cocone {Af ○Axα}α. Therefore, there is a map d ∶ colimαAKα → colimβ ALβ such that

y ○ d = Af ○ x.

We will show d is an E-map. Let g be an M-map and let (u, v) ∶ d → g be a map in C 2.

Because g is a monomorphism, to get a lift of the cocone {v ○Ayβ ∶ ALβ → cod g}α along g, it

is sufficient to lift each map v ○Ayβ individually. These individual lifts are defined by using

the fact that f∗ ∶ A (K,X) → A (K,Y ) is a surjection on K ∈ S. Indeed, there is a map

mβ ∶ Lβ → X such that f ○mβ = yβ. So there is an αβ and an m′
β ∶ ALβ → AKαβ such that

Af ○Axαβ ○m
′
β = Af ○Amβ = Ayβ. If kαβ ∶ AKαβ → colimαAKα and lβ ∶ ALβ → colimβ ALβ

are the maps in the colimiting cocone, then

y ○ d ○ kαβ ○m
′
β = Af ○Axαβ ○m

′
β = Ayβ = y ○ lβ.

AKαβ colimαAKα AX

ALβ colimβ ALβ AY

kαβ

Axαβ

d

x

Af
m′

β

lβ

Ayβ

y

Since y is a monomorphism, d ○ kαβ ○m
′
β = lβ. Therefore u ○ kαβ ○m

′
β is a map ALβ → dom g

such that g ○ u ○ kαβ ○m
′
β = v ○ lβ. So the cocone {v ○Ayβ}β lifts along g. Therefore, there

is a map s ∶ colimβ ALβ → dom g such that g ○ s = v. Since g ○ s ○ d = v ○ d = g ○ u and g is a
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monomorphism, s is a solution to the lifting problem (u, v) ∶ d→ g. So d is in ◻M = E . Since

d ∈ E and y ∈ E , Af ∈ E by 6.1.12 (1).

Corollary 6.2.11. If f ∶ X → Y is a map in an (E ,M, λ)-quasiaccessible category C such

that the map of sets f∗ ∶ C (K,X) → C (K,Y ) is a surjection for each (E ,M, λ)-presentable

object K, then f is an E-map.

Proof. Since Id ∶ C → C is weakly (E ,M, λ)-quasiaccessible relative to Presλ(C ), this is an

immediate consequence of 6.2.10.

Proposition 6.2.12. Let C be an (E ,M, λ)-quasiaccessible category. Let D be a small λ-

filtered category, let E be a λ-small category, and let F ∶ D × E → C be a diagram in C

such that limeF (d, e) and lime colimdF (d, e) exist. If the colimiting cocone {fd,e ∶ F (d, e) →

colimd′ F (d′, e)}d is an M-cocone for each object e, then the canonical map

colim
d

lim
e
F (d, e)→ lim

e
colim

d
F (d, e)

is an E-map.

Proof. The E -limit of the maps fd,e ∶ F (d, e) → colimd′ F (d′, e) is a map hd = lime fd,e ∶

limeF (d, e)→ lime colimd′ F (d′, e). The maps {hd}d define the canonical map h ∶ colimd limeF (d, e)→

lime colimdF (d, e). By taking the E -limit first, we also get maps gd ∶ limeF (d, e)→ colimd′ limeF (d′, e).

For each (E ,M, λ)-presentable objectK in C , the maps hd∗ ∶ C (K, limeF (d, e))→ C (K, lime colimd′ F (d′, e))

define an isomorphism

colim
d

C (K, lim
e
F (d, e)) ≅ colim

d
lim
e

C (K,F (d, e))

≅ lim
e

colim
d

C (K,F (d, e))

≅ lim
e

C (K, colim
d

F (d, e))

≅ C (K, lim
e

colim
d

F (d, e)).
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Since the following diagram commutes, h∗ is a surjection.

colimdC (K, limeF (d, e)) C (K, colimd′ limeF (d′, e))

C (K, lime colimd′ F (d′, e))

colimd gd∗

≅
colimd hd∗

h∗

By 6.2.11, h is an E-map.

6.2.2 Comma Categories

Let F ∶ A → C and G ∶ B → C be functors. Recall, we use the notation (A,f,B) for an

object and (u, v) ∶ (A,f,B)→ (A′, g,B′) for a morphism in the comma category F ↓ G, where

f ∶ FA→ GB and g ∶ FA′ → GB′ are maps in C and u ∶ A→ A′ is a map in A and v ∶ B → B′

is a map in B. We often refer to f ∶ FA→ GB itself as an object in F ↓ G. We will use the

notation P1 ∶ F ↓ G→ A for the projection of the comma category onto A . In other words,

P1(A,f,B) = A and P1(u, v) = u. Similarly, P2 ∶ F ↓ G →B will denote the projection onto

B. The projection functors P1 and P2 define a functor P1×2 ∶ F ↓ G → A ×B which sends

object (A,f,B) to (A,B) and sends morphisms (u, v) ∶ (A,f,B)→ (A′, g,B′) to morphisms

(u, v) ∶ (A,B) → (A′,B′). We will use the notation PC 2 ∶ F ↓ G → C 2 for the forgetful

functor that sends objects (A,f,B) to f and sends morphisms (u, v) ∶ (A,f,B)→ (A′, g,B′)

to (u, v) ∶ f → g.

Let A , B, and C be (E1,M1)-quasiaccessible, (E2,M2)-quasiaccessible, and (E3,M3)-

quasiaccessible categories, respectively. Let F ∶ A → C and G ∶ B → C be functors. The

following collection of objects in F ↓ G

{f ∶ FK → GL ∣
K is (E1,M1, λ)-presentable in A and
L is (E2,M2, λ)-presentable in B

}

has only a set of isomorphism classes in F ↓ G by 6.1.14. We will use the notation SF ↓Gλ for a

set of representatives for the isomorphism classes of the objects in the above collection. We

note that the pair (E1 ×E2,M1 ×M2) is a proper orthogonal factorization system on A ×B.
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Theorem 6.2.13. If F ∶ A → C and G ∶ B → C are quasiaccessible functors, then there is

a regular cardinal λ0 such that for every regular cardinal λ with λ0◁λ, the functor P1×2 ∶ F ↓

G→ A ×B is weakly (E1×E2,M1×M2, λ)-quasiaccessible with respect to SF ↓Gλ . Furthermore,

the functor PC 2 ∶ F ↓ G→ C 2 satisfies conditions (2) and (3) of 6.2.8 with respect to SF ↓Gλ .

Proof. By 6.1.17 and 6.2.4, there is a regular cardinal λ0 such that for every regular cardinal

λ with λ0 ◁ λ, the following conditions hold.

• A , B, and C are, respectively, (E1,M1, λ)-quasiaccessible, (E2,M2, λ)-quasiaccessible,

and (E3,M3, λ)-quasiaccessible categories.

• F is a λ-quasiaccessible functor that sends (E1,M1, λ)-presentable objects to (E3,M3, λ)-

presentable objects.

• G is a λ-quasiaccessible functor that sends (E2,M2, λ)-presentable objects to (E3,M3, λ)-

presentable objects.

(I) Clearly, the (E1 × E2,M1 ×M2, λ)-presentable objects in A ×B are exactly the pairs

(A,B) such that A is (E1,M1, λ)-presentable and B is (E2,M2, λ)-presentable. So P1×2 sends

every object in SF ↓Gλ is to a λ-presentable object in A ×B.

Let f ∶ FX → GY be any object in F ↓ G. Let {(uγ, vγ) ∶ fγ → f}γ∈A be the canonical

P −1
1×2((M1 ×M2)2)-cocone of f relative to Full(SF ↓Gλ ) in the category F ↓ G. So (uγ, vγ) ∶

fγ → f is a map in the cocone if fγ ∈ S
F ↓G
λ , uγ ∈M1, and vγ ∈M2. We will start by showing

that {(uγ, vγ)}γ∈A is λ-filtered. To show that {P1×2(uγ, vγ)} is an E1 × E2 ∩M#-tight cocone

in A ×B, it suffices to show that {P1(uγ, vγ)}γ∈A is an E1 ∩M#-tight cocone in A and that

{P2(uγ, vγ)}γ∈A is an E2 ∩M#-tight cocone in B. For each γ, let Kγ and Lγ be objects in A

and B, respectively, such that fγ is a map FKγ → GLγ.
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Let {xα ∶ Xα → X}α be the canonical M1-cocone of X relative to PresE1M1, λ
(A ) and let

{yβ ∶ Yβ → Y }β be the canonicalM2-cocone of Y relative to PresE2M2, λ
(B). We will use these

cocones in our proof. We will also make use of the observation that {Fxα ∶ FXα → FX}α and

{Gyβ ∶ GYβ → GY }β are E3 ∩M#-tight (M3, λ)-cocones on (E3,M3, λ)-presentable objects

in C .

(I a) λ-Filtered. Let A0 be a λ-small subset of A. By 6.1.2 (2), there is an α1 such

that the cocone {uγ ∶ Kγ → X}γ∈A0 factors through the map xα1 ∶ Xα1 → X. So there is a

cocone {u′γ ∶Kγ → Xα1}γ∈A0 such that xα1 ○ u
′
γ = uγ. Similarly, the cocone {vγ ∶ Lγ → Y }γ∈A0

factors through yβ1 ∶ Yβ1 → Y for some β1. So there is a cocone {v′γ ∶ Lγ → Yβ1}γ∈A0 such

that yβ1 ○ v
′
γ = vγ. Since f ○Fxα ∶ FXα1 → GY is a map on an (E3,M3, λ)-presentable object

FXα1 it factors through Gyβ2 ∶ GYβ2 → GY for some β2. Therefore, there is an index β3 such

that f ○ Fxα1 ∶ FXα1 → GY factors through Gyβ3 ∶ GYβ3 → GY and yβ1 ∶ Yβ1 → Y factors

through yβ3 ∶ Yβ3 → Y . So in particular, there is a map h ∶ FXα1 → GYβ3 in SF ↓Gλ such that

Gyβ3 ○ h = f ○ Fxα1 and there is a map yβ3β1 ∶ Yβ1 → Yβ3 which is a connecting map of the

cocone {yβ}β. Note that for each γ ∈ A0,

Gyβ3 ○Gy
β3
β1
○Gv′γ ○ fγ = Gvγ ○ fγ = f ○ Fuγ = f ○ Fxα1 ○ Fu

′
γ = Gyβ3 ○ h ○ Fu

′
γ.

FKγ FXα1 FX

GYβ2

GLγ GYβ1 GYβ3 GY

fγ

Fu′γ

Fuγ

h

Fxα1

f

Gvγ

Gv′γ Gy
β3
β1

Gyβ3

Since Gyβ3 is in M3, it is a monomorphism. So G(yβ3β1 ○ v
′
γ) ○ fγ = h ○ Fu

′
γ for each γ ∈ A0.

Since h ∈ SF ↓Gλ , Fxα1 ∈M3, and Gyβ3 ∈M3, the cocone {(uγ, vγ)}γ is λ-filtered.
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(I b) (E1 × E2)∩M#-Tight. To show that {(uγ, vγ)}γ is ((E1 × E2)∩M#)2-tight, it suffices

to show that the functor P1, when restricted to {(uγ, vγ)}γ, defines a final functor from the

indexing category of {(uγ, vγ)}γ to the indexing category of {xα}α and that the functor P2

restricted to {(uγ, vγ)}γ defines a final functor from the indexing category of {(uγ, vγ)}γ to

the indexing category of {yβ}β. We will use proposition A.2.4 for this purpose.

We will first prove the result for the functor P1. Note that since {xα ∶ Xα → X}α is

an M1-cocone, it is a cocone of monomorphisms. Fix an index α and consider the map

xα ∶ Xα → X. Since f ○ Fxα ∶ FXα → GY is a map on an (E3,M3, λ)-presentable object, it

factors through Gyβ ∶ GYβ → GY for some β. So there is a an object h ∈ SF ↓Gλ and a map

(xα, yβ) ∶ h → f in F ↓ G such that P1(xα, yβ) = xα ∶ Xα → X. Finality now follows from

A.2.4. So {P1(uγ, vγ)}γ is an E1 ∩M#-tight (M1, λ)-cocone in A .

It remains to prove the result for P2. Fix indices β1 and γ1. Since vγ1 ∶ Lγ1 → Y is equal to

yβ2 ∶ Yβ2 → Y for some β2, there is an index β3 such that yβ1 ∶ Yβ1 → Y and yβ2 = vγ1 ∶ Lγ1 → Y

both factor through yβ3 ∶ Yβ3 → Y . Let yβ3β2 ∶ Yβ2 → Yβ3 be a connecting map of the cocone

{yβ}β. Then Gyβ3β2 ○ fγ1 ∶ FKγ1 → GYβ3 is an object in SF ↓Gλ and (uγ1 , yβ3) ∶ Gy
β3
β2
○ fγ1 → f is

a map in F ↓ G.

Lγ1 = Yβ2

Yβ3 Y

Yβ1

y
β3
β2

vγ1=yβ2

yβ3

yβ1

FKγ1 FX

GLγ1

GYβ3 GY

Fuγ1

fγ1

f

Gy
β3
β2

Gvγ1

Gyβ3

So we’ve shown that yβ1 ∶ Yβ1 → Y factors through the map P2(uγ1 , yβ3), where (uγ1 , yβ3) is

a map in the cocone {(uγ, vγ)}γ. Finality now follows from A.2.4. So {P2(uγ, vγ)}γ is an

E1 ∩M#-tight (M1, λ)-cocone in A .
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(II a) Let {(aτ , bτ) ∶ hτ → f}τ be the canonical P −1
C 2(M

2
3)-cocone of f relative to Full(SF ↓Gλ )

in the category F ↓ G. So (aτ , bτ) ∶ hτ → f is a map in the cocone if hτ ∈ S
F ↓G
λ , Faγ ∈M3, and

Gbγ ∈M3. An identical proof to the one in part (I a) shows that this sequence is λ-filtered.

An identical proof to the one in part (I b) shows that {P1(aτ , bτ)}τ is an E1∩M#-tight cocone

in A and that {P2(aτ , bτ)}τ is an E2 ∩M#-tight cocone in B. So {Faτ}τ and {Gbτ}τ are

E3 ∩M#-tight cocones in C . Thus

{PC 2(aτ , bτ) = (Faτ ,Gbτ) ∶ hτ → f}
τ

is (E3 ∩M#)2-tight cocone in C 2.

(II b) We will conclude by showing that every f ∶ FK → GL in SF ↓Gλ is an (E23 ,M
2
3 , λ)-

presentable object in C 2. Let {(uα, vα) ∶ gα → g}α be an (E3 ∩M#)2-tight (M2
3 , λ)-cocone

and let (s, t) ∶ f → g be a map. Since FK and GL are (E3,M3, λ)-presentable, there are lifts

s′ ∶ FK → dom gα1 and t′ ∶ GL → cod gα2 such that s = uα1 ○ s
′ and t = vα2 ○ t

′. There is an

α3 such that (uα1 , vα1) ∶ gα1 → g and (uα2 , vα2) ∶ gα2 → g factor through (uα3 , vα3) ∶ gα3 → g.

So there are maps s′′ ∶ FK → dom gα3 and t′′ ∶ GL → cod gα3 such that s = uα3 ○ s
′′ and

t = vα3 ○ t
′′. Since vα3 is a monomorphism and

vα3 ○ gα3 ○ s
′′ = g ○ uα3 ○ s

′′ = g ○ s = t ○ f = vα3 ○ t
′′ ○ f,

(s′′, t′′) ∶ f → gα3 is a map in C 2. It follows that f is (E23 ,M
2
3 , λ)-presentable.

Corollary 6.2.14. If C is an (E ,M, λ)-quasiaccessible category, then C 2 is an (E2,M2, λ)-

quasiaccessible category.

Proof. Since C has λ-filtered colimits, the category C 2 will also have λ-filtered colimits. The

category C 2 will also inherit well-copoweredness from C . The proper orthogonal factorization

system (E ,M) defines a proper orthogonal factorization system (E2,M2) on C 2. So the
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only thing left to verify is condition (4) of definition 6.1.4. Let F and G in theorem 6.2.13

both be the identity functor on C . Then SF ↓Gλ is just a set of maps f ∶ K → L between

(E ,M, λ)-presentable objects in C . We know from the theorem that the objects of SF ↓Gλ

are (E2,M2, λ)-presentable objects in C 2 and that for every object g in C 2 there is an

(E ∩M#)-tight (M, λ)-cocone of objects in SF ↓Gλ over g.

Corollary 6.2.15. If F ∶ A → C and G ∶ B → C are quasiaccessible functors, then there is

a regular cardinal λ0 such that for every regular cardinal λ with λ0 ◁ λ, PC 2 ∶ F ↓ G→ C 2 is

weakly (E23 ,M
2
3 , λ)-quasiaccessible relative to SF ↓Gλ .

6.2.3 Inserter Categories

Given functors F ∶ A →B and G ∶ A →B, the inserter category for F and G, Ins(F,G),

is the subcategory of the comma category F ↓ G whose objects are the objects are triples

(A,f,A) and whose morphisms are the maps (u,u) ∶ (A,f,A)→ (A′, g,A′).

FA FA′

GA GA′
f

Fu

g

Gu

We will use the notation PA ∶ Ins(F,G) → A for the projection functor to A that sends

objects (A,f,A) to A and sends morphisms (u, v) ∶ (A,f,A)→ (A′, g,A′) to u ∶ A→ A′. Let

S
Ins(F,G)
λ be the subset of SF ↓Gλ on the objects in Ins(F,G).

Theorem 6.2.16. Let A be an (E1,M1)-quasiaccessible category and let B be an (E2,M2)-

quasiaccessible category. If F,G ∶ A →B are quasiaccessible functors, then there is a regular

cardinal λ such that the functor PA ∶ Ins(F,G) → A is weakly (E1,M1, λ)-quasiaccessible

relative to S
Ins(F,G)
λ .

Proof. By 6.2.4 and 6.2.15, there are a regular cardinals λ0 and λ with λ0 ◁λ such that the

following hold.

176



1. A is (E1,M1, λ0)-quasiaccessible and (E1,M1, λ)-quasiaccessible.

2. B is (E2,M2, λ0)-quasiaccessible and (E2,M2, λ)-quasiaccessible.

3. F andG are both λ0-quasiaccessible and λ-quasiaccessible functors that send (E1,M1, λ0)-

presentable objects to (E2,M2, λ0)-presentable objects and that send (E1,M1, λ)-presentable

objects to (E2,M2, λ)-presentable objects.

4. P1×2 ∶ F ↓ G→ A ×A is weakly (E1 × E1,M1 ×M1, λ)-quasiaccessible relative to SF ↓Gλ .

Let f ∶ FX → GX be an object in Ins(F,G).

(I) Let g ∶ FA → GB be an object in SF ↓Gλ , and let (u, v) ∶ g → f be a map in F ↓ G.

We will show that, in the category F ↓ G, (u, v) factors through a map (q, q) ∶ h → f

on an object h ∈ S
Ins(F,G)
λ . We do this by first selecting an E1 ∩M#-tight λ-directed M1-

cocone {kβ ∶ Kβ → X}β of (E1,M1, λ)-presentable objects in A and then constructing a

λ-small λ0-filtered cocone {(kβι , kβι+1) ∶ hι → f}ι in F ↓ G such that {kβι}ι is a subcocone

of {kβ}β. The desired object h will then be a particular E22 -quotient of the colimit of the

cocone {(Fkβι ,Gkβι+1) ∶ hι → f}ι in B2.

(I a) Initial Step. There is a β0 such that u ∶ A → X factors through kβ0 ∶ Kβ0 → X. Let

u′ ∶ A→Kβ0 be the lift of u. Since {Gkβ ∶ GKβ → GX}β is an E2 ∩M#-tight (M2, λ)-cocone,

there is a β′0 such that f ○ Fkβ0 ∶ FKβ0 → GX factors through Gkβ′0 ∶ GKβ′0
→ GX in B. It

follows that there is an β1, β0 ≤ β1, β′0 ≤ β1 such that B → X factors through kβ1 ∶Kβ1 → X.

So there is a map h0 ∶ FKβ0 → GKβ1 in B and v′ ∶ B →Kβ1 in A such that f ○Fkβ0 = Gkβ1○h0

and kβ1 ○ v
′ = v. Thus

Gkβ1 ○Gv
′ ○ g = Gv ○ g = f ○ Fu = f ○ Fkβ0 ○ Fu

′ = Gkβ1 ○ h0 ○ Fu
′.

Since Gkβ1 is in M2, it is a monomorphism. So (u′, v′) ∶ g → h0 is a map in F ↓ G.
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(I b) Successor Step. Suppose the following hold for an ordinal ι.

• There is a map hι ∶ FKβι → GKβι+1 in B.

• (kβι , kβι+1) ∶ hι → f is a map in F ↓ G.

• There is a connecting map kβι+1βι
∶Kβι →Kβι+1 in the cocone {kβ}β.

There is a βι+2 such that f ○ Fkβι+1 ∶ FKβι+1 → GX factors through Gkβι+2 ∶ GKβι+2 → GX

via a map hι+1 ∶ FKβι+1 → GKβι+2 in B. In other words, (kβι+1 , kβι+2) ∶ hι+1 → f is a map in

F ↓ G. Without loss of generality, we can assume βι+2 ≥ βι+1. So there is a connecting map

kβι+2βι+1
∶Kβι+1 →Kβι+2 in the cocone {kβ}β. Since

Gkβι+2 ○ hι+1 ○ Fk
βι+1
βι

= f ○ Fkβι = Gkβι+1 ○ hι = Gkβι+2 ○Gk
βι+2
βι+1

○ hι

and since Gkβι+2 ∶ GKβι+2 → GX is a monomorphism, the following diagram commutes.

FKβι FKβι+1 FX

GKβι+1 GKβι+2 GX

hι

Fk
βι+1
βι

Fkβι

hι+1

Fkβι+1

f

Gk
βι+2
βι+1

Gkβι+1

Gkβι+2

So (kβι+1βι
, kβι+2βι+1

) ∶ hι → hι+1 is a map in F ↓ G.

(I c) Limit Step. Suppose κ is a limit ordinal with ∣κ∣ ≤ λ and the following hold for every

ordinal ι < κ.

• hι ∶ FKβι → GKβι+1 is a map in B.

• (kβι , kβι+1) ∶ hι → f is a map in F ↓ G.

• kβι+1βι
∶Kβι →Kβι+1 is a connecting map in the cocone {kβ}β.
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• (kβιβι−1 , k
βι+1
βι

) ∶ hι−1 → hι is a map in F ↓ G.

Since {(kβι , kβι+1) ∶ hι → f}ι<κ is a λ-small subcocone of the λ-filtered cocone {kβ}β, there is

an index βκ with βκ > βι for every ι < κ. There is then an index βκ+1, βκ+1 ≥ βκ, and a map

hκ ∶ FKβκ → GKβκ+1 in B such that f ○ Fkβκ = Gkβκ+1 ○ hκ. So (kβκ , kβκ+1) ∶ hκ → f is a map

in F ↓ G and there is a connecting map kβκ+1βκ
∶ Kβκ → Kβκ+1 in the cocone {kβ}β. For each

ι < κ,

Gkβκ+1 ○ hκ ○ Fk
βκ
βι

= f ○ Fkβι = Gkβι+1 ○ hι = Gkβκ+1 ○Gk
βκ+1
βι+1

○ hι,

Since Gkβκ+1 ∶ GKβκ+1 → GX is a monomorphism, (kβκβι , k
βκ+1
βι+1

) ∶ hι → hκ is a map in F ↓ G for

each ι < κ.

(I d) Final Step. Let κ be the initial ordinal for the cardinal λ. Since λ is a regular

cardinal, κ is a regular ordinal. So κ is, in particular, a limit ordinal. Since ∣κ∣ = λ, the

cocone {(kβι , kβι+1) ∶ hι → f}ι<κ is defined. The fact that λ is a regular cardinal means that

no λ0-small subposet of κ is final. So, viewed as a totally ordered set, κ is λ0-filtered. Thus

{(kβι , kβι+1) ∶ hι → f}ι<κ is a λ-small λ0-filtered cocone.

Because the cocone {kβι}ι<κ is a subcocone of {kβ}β, kβι ∶ Kβι → X is an M1-map for

each ι. By 6.1.12 (4), there is an object T with anM1-map q ∶ T →X and an E1 ∩M#-tight

(M1, λ0)-cocone {tι ∶ Kβι → T}ι<κ such that q ○ tι = kβι for each ι < κ. By 6.1.3 (5), T is an

(E1,M1, λ)-presentable object.

By our assumptions on F and G, the cocones {Fkβι ∶ FKβι → FT}ι<κ and {Gkβι ∶

GKβι → GT}ι<κ are E2 ∩M#-tight cocones in B. Furthermore, by 6.2.2, Fq ∶ FT → FX and

Gq ∶ GT → GX are M2-maps. So we have the following commutative diagram, where r and
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s are the maps defined by the cocones {Ftι}ι<κ and {Gtι}ι<κ, respectively.

colimι<κFKβι FT FX

colimι<κGKβι+1 GT GX

colimhι

r

h

Fq

f

s Gq

Since r ∈ E2 and Gq ∈M2, there is a unique map h ∶ FT → GT making the above diagram

commute.

(II) Let {(xα, xα) ∶ fα → f}α∈A be the canonical P −1
1×2(M1 ×M1)-cocone of f with respect

to S
Ins(F,G)
λ in Ins(F,G). We will denote the objects PA fα in A by Xα. So fα is a map

fα ∶ FXα → GXα. Showing that the cocone {P1×2(xα, xα)}α∈A is an (E1 × E1) ∩M#-tight

λ-filtered cocone in A ×A is equivalent to showing that {xα ∶ Xα → X}α∈A is an E1-tight

λ-filtered cocone.

(II a) λ-Filtered. Let {xα}α∈A0 be a λ-small subcocone of {xα}α∈A. We know that there is

an E1 ∩M#-tight (M1, λ)-cocone {kβ ∶Kβ →X}β of (E1,M1, λ)-presentable objects over X.

Therefore, by 6.1.2 (2), the cocone {xα ∶ Xα → X}α∈A0 lifts to a cocone {yα ∶ Xα →Kβ′}α∈A0

for some β′. Since {Gkβ ∶ GKβ → GX}β is an E2 ∩M#-tight (M2, λ)-cocone, the map

f ○Fkβ′ ∶ FKβ′ → GX factors through a map Gkβ′′ ∶ GKβ′′ → GX. We can choose β′′ > β′ so

that there is a map kβ
′′

β′ ○ yα ∶Xα →Kβ′′ with xα = k
β′′

β′ ○ yα for each α ∈ A0. So there is a map

g ∶ FKβ′ → FKβ′′ in B and a map (kβ′ , kβ′′) ∶ g → f in F ↓ G and

Gkβ′′ ○ g ○ Fyα = f ○ Fxα = Gxα ○ fα = Gkβ′′ ○G(kβ
′′

β′ ○ yα) ○ fα.

Since Gkβ′′ is a monomorphism the following diagram commutes for every α ∈ A0.

FXα FKβ′ FX

GXα GKβ′′ GX

Fxα

fα

Fyα

g

Fkβ′

f

G(kβ′′
β′
○yα)

Gxα

Gkβ′′
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But by our work in (I), we know that, in F ↓ G, the map (kβ′ , kβ′′) ∶ g → f factors through a

map (q, q) ∶ h → f , where h ∈ S
Ins(F,G)
λ and q ∈M1. Let (a, b) ∶ g → h be the map such that

(q, q) ○ (a, b) = (kβ′ , kβ′′). We now know that the following diagram in A commutes for each

α ∈ A0.

Kβ′ Xα Kβ′′

X
q○a=kβ′

yα

xα

kβ
′′

β′
○yα

q○b=kβ′′

Since q is a monomorphism, a ○ yα = b ○ k
β′′

β′ ○ yα. So (a ○ yα, b ○ k
β′′

β′ ○ yα) ∶ fα → h is a map in

Ins(F,G). Since h ∈ S
Ins(F,G)
λ , (q, q) ∶ h→ f is equal to (xα′ , xα′) ∶ fα′ → f for some α′. Thus

{(xα, xα)}α∈A is λ-filtered.

(II b) E1 ∩M#-Tight. In the category F ↓ G, let {(uγ, vγ) ∶ gγ → f}γ be the canonical

P −1
1×2((M1 ×M1)2)-cocone of f relative to maps gγ ∶ FAγ → GBγ in SF ↓Gλ . By (4), {uγ}γ

and {vγ}γ are E1 ∩M#-tight (M1, λ)-cocones in A . We will apply A.2.4 to show that

{(xα, xα) ∶ fα → f}α is a final subcocone of {(uγ, vγ) ∶ gγ → f}γ in B2. By (I), each

map (uγ, vγ) ∶ gγ → f factors through some (xα, xα) ∶ fα → f in F ↓ G. Since the maps

(uγ, vγ) ∶ gγ → f are all monomorphisms in F ↓ G, A.2.4 applies. Thus {xα ∶Xα →X}α is an

E1 ∩M#-tight (M1, λ)-cocone in A .

6.2.4 Categories of Coalgebras

Let ϕ ∶ F → G and ψ ∶ F → G be natural transformations between functors F,G ∶ A →B.

The equifier category, Eq(ϕ,ψ), of ϕ and ψ is the full subcategory of A on the objects A

such that ϕA = ψA ∶ FA→ GA.

Proposition 6.2.17. Let F ∶ A →B be a weakly (E ,M, λ)-quasiaccessible functor relative

to a set Sλ of objects in A . Let G ∶ A →B be a functor such that F −1(M) ⊆ G−1(M). If ϕ ∶
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F → G and ψ ∶ F → G are natural transformations, then the functor F ∣Eq(ϕ,ψ) ∶ Eq(ϕ,ψ)→B

we get by restricting F to Eq(ϕ,ψ) is a weakly (E ,M, λ)-quasiaccessible functor relative to

the subset S
Eq(ϕ,ψ)
λ of Sλ on the objects in Eq(ϕ,ψ).

Proof. By 6.2.9, it is sufficient to show that Eq(ϕ,ψ) is closed under F −1(M)-subobjects.

Let X be an object in Eq(ϕ,ψ) and let f ∶ K → X be a map A such that Ff ∈M. Then,

since F −1(M) ⊆ G−1(M), Gf ∈M. Because Gf ○ ϕK = ϕX ○ Ff = ψX ○ Ff = Gf ○ ψK and

Gf is a monomorphism, ϕK = ψK .

Theorem 6.2.18. Let A be a (E ,M)-quasiaccessible category. If (L, ε) is a quasiaccessible

pointed endofunctor on A , then the forgetful functor UL ∶ CoalgL → A is weakly (E ,M, λ)-

quasiaccessible for some regular cardinal λ.

Proof. By 6.2.16, there is a regular cardinal λ such that the functor PA ∶ Ins(Id ,L) →

A is (E ,M, λ)-quasiaccessible relative to S
Ins(Id ,L)
λ and the functor L ∶ A → A is λ-

quasiaccessible. There is a natural transformation ζ ∶ PA → LPA with ζ(X,f,X) = f ∶X → LX

on each object (X,f,X) in Ins(Id ,L). Let ψ = εPA ○ ζ ∶ PA → PA and let id ∶ PA → PA

be the identity natural transformation. Then CoalgL is the category Eq(id , ψ). Since L

is λ-quasiaccessible, L(M) ⊆ M. So P −1
A (M) ⊆ P −1

A (L−1(M)). Thus, by 6.2.17, the for-

getful functor UL ∶ CoalgL → A is weakly (E ,M, λ)-quasiaccessible relative to a set of

representatives for the isomorphism classes of (E ,M, λ)-presentable objects in A that are

L-coalgebras.

The following result uses definition A.3.5.

Corollary 6.2.19. If A is a quasiaccessible category and (L, ε) is a quasiaccessible pointed

endofunctor on A , then the category CoalgL has a U−1
L (E)-strong family of generators.
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Proof. By 6.2.18, there is a set S of objects in CoalgL such that for every object ⟨X,k⟩

in CoalgL, there is a cocone {sα ∶ ⟨Sα, lα⟩ → ⟨X,k⟩}α of objects ⟨Sα, lα⟩ ∈ S such that

{sα ∶ Sα →X}α is an E ∩M#-tight (M, λ)-cocone. Let

s ∶∐
α

⟨Sα, lα⟩→ ⟨X,k⟩

be the map defined by the maps sα ∶ ⟨Sα, lα⟩ → ⟨X,k⟩. We need to show s is in U−1
L (E). By

proposition 6.2.11, to show s ∶∐α Sα →X is an E-map, it suffices to show s∗ ∶ C (K,∐α Sα)→

C (K,X) is an epimorphism for each (E ,M, λ)-presentable object K.

Let k ∶ K → X be a map on a (E ,M, λ)-presentable object K. Then there is an α′ such

that k factors through sα′ . Let inS′α →∐α Sα be the inclusion of Sα′ into the α′ copy of the

coproduct. Then s ○ inS′α = sα′ . So k factors through s. Thus s∗ ∶ C (K,∐α Sα) → C (K,X)

is an epimorphism.

Proposition 6.2.20. If A is a cocomplete (E ,M)-quasiaccessible category and (L, ε) is an

(E ,M)-quasiaccessible pointed endofunctor on A , then the forgetful functor UL ∶ CoalgL →

A has a right adjoint.

Proof. We will verify that UL ∶ CoalgL → A satisfies the conditions of the generalized

special adjoint functor theorem in appendix A.3. Since A is cocomplete, the category

CoalgL is cocomplete and the forgetful functor UL ∶ CoalgL → A preserves colimits. Since

A is (E ,M)-quasiaccessible, it is E-well-copowered. There can only be a set of lifts ⟨X,k⟩ in

CoalgL for each object X in A , so CoalgL is U−1
L (E)-well-copowered. By 6.2.19, CoalgL has

a U−1
L (E)-strong family of generators. Because E is stable under pushouts and UL preserves

colimits, the collection U−1
L (E) is stable under pushouts. The existence of the right adjoint

now follows from A.3.6.
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Theorem 6.2.21. Let A be a cocomplete (E ,M)-quasiaccessible category and let (L, ε) be

an (E ,M)-quasiaccessible pointed endofunctor on A . There is a comonad (L′, ε, δ) on A

such that ∣CoalgL′ ∣ = ∣CoalgL∣ and L′ ∶ A → A preserves E-tightness of (M, λ)-cocones.

Proof. Let G ∶ A → CoalgL be the right adjoint to the forgetful functor UL ∶ CoalgL → A .

Let ν ∶ I → GUL and ξ ∶ ULG→ I be the unit and counit maps for the adjunction, respectively.

Let L′ ∶ A → A be the endofunctor L′ = ULG. Then L′ is a comonad with counit map

ε = ξ ∶ ULG→ I and comultiplication map δ = ULνG ∶ ULG→ ULGULG. Since L′X ∈ ∣CoalgL∣

for every object X in A , ∣CoalgL′ ∣ ⊆ ∣CoalgL∣. Now let X be an object in ∣CoalgL∣. So

X has a lift ⟨X,k⟩ in CoalgL. The commutativity of the following diagram shows that

X ∈ ∣CoalgL′ ∣.

UL⟨X,k⟩ ULGUL⟨X,k⟩ UL⟨X,k⟩
ULν⟨X,k⟩

id

ξUL⟨X,k⟩

By 6.2.18, there is a regular cardinal λ and a set Sλ of objects in CoalgL such that UL ∶

CoalgL → A is an (E ,M, λ)-quasiaccessible category relative to Sλ. Specifically, by 6.2.16

and 6.2.17, Sλ is the collection of objects in CoalgL that forget to (E ,M, λ)-presentable

objects in A . Let X be an object in A and let {xα ∶Xα →X}α be an E-tight (M, λ)-cocone.

By 6.1.12 (5), {xα}α is E∩M#-tight. The cocone {Gxα}α defines a map g ∶ colimαGXα → GX.

Let {cα ∶ GXα → colimαGXα}α be the colimiting cocone. Then the following diagram

commutes for each ⟨K,k⟩ in CoalgL.

colimαCoalgL(⟨K,k⟩,GXα) CoalgL(⟨K,k⟩, colimαGXα)

CoalgL(⟨K,k⟩,GX)

colim cα∗

colimGxα∗
g∗
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For each ⟨K,k⟩ in Sλ,

colim
α

CoalgL(⟨K,k⟩,GXα) ≅ colim
α

A (UL⟨K,k⟩,Xα)

≅ A (UL⟨K,k⟩,X)

≅ CoalgL(⟨K,k⟩,GX),

and this bijection is the map colimαGxα∗ defined by the cocone {Gxα∗}α. So, in particular,

the map g∗ is a surjection on the objects ⟨K,k⟩ in Sλ. By 6.2.10, the map ULg is in E . Since

UL commutes with colimits, ULg is the map colimαULGXα → ULGX defined by the cocone

{ULGxα ∶ ULGXα → ULGX}α.

Proposition 6.2.22. If α ∶ L → C is a map of (E ,M, λ)-quasiaccessible copointed endo-

functors, then there is a map α′ ∶ L′ → C′ of comonads, where L′ and C′ are the comonads

constructed in theorem 6.2.21.

Proof. There is a functor α∗ ∶ CoalgL →CoalgC such that UCα∗ = UL, where UL ∶ CoalgL →

C and UC ∶ CoalgC → C are the forgetful functors. By 6.2.20, the forgetful functors UL and

UC both have right adjoints. Therefore, by the dual of 2.1.34, UL and UC are comonadic

functors. The result now follows from A.3.2.

6.3 Quasiaccessible Model Categories

6.3.1 Quasiaccessible Model Categories are Algebraic Model Cat-
egories

Definition 6.3.1. Let C be an (E ,M, λ)-quasiaccessible category.

• A functorial factorization (L,R) on C is (E ,M, λ)-quasiaccessible if L ∶ C 2 → C 2 is an

(E2,M2, λ)-quasiaccessible functor.
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• A weak factorization system (L,R) is (E ,M, λ)-quasiaccessible if it has an associated

functorial factorization that is (E ,M, λ)-quasiaccessible.

• A model category on C is (E ,M, λ)-quasiaccessible if both of its weak factorization

systems are (E ,M, λ)-quasiaccessible.

• An algebraic model category ζ ∶ (Ct,F) → (C,Ft) on C with weak equivalences W

is (E ,M, λ)-quasiaccessible if (Ct,F) and (C,Ft) are both (E ,M, λ)-quasiaccessible

functorial factorizations.

A functorial factorization, weak factorization system, model category, or algebraic model

category is (E ,M)-quasiaccessible if it is (E ,M, λ)-quasiaccessible for some regular cardinal

λ.

Remark 6.3.2. A functorial factorization (L,R) is (E ,M, λ)-quasiaccessible if and only if

R ∶ C 2 → C 2 is (E2,M2, λ)-quasiaccessible.

Theorem 6.3.3. Every (E ,M)-quasiaccessible weak factorization system on an (E ,M)-

quasiaccessible category C has an associated AWFS.

Proof. Let (L,R) be an (E ,M)-quasiaccessible weak factorization system on C . There is

a λ regular cardinal such that C and (L,R) are (E ,M, λ)-quasiaccessible. Let (L1,R1)

be an (E ,M)-quasiaccessible functorial factorization associated to (L,R). By our remarks

following proposition 3.1.2 in section 3.1.1, ∣CoalgL1
∣ = L. By 6.2.21, there is a comonad

L′
1 ∶ C 2 → C 2 such that ∣CoalgL′1

∣ = L and L′
1 preserves E2-tightness of (M2, λ)-cocones.

By 3.1.13 and 3.1.16, L = ∣CoalgL′1
∣ = ∣�AlgR′

1
∣ = ◻∣AlgR′

1
∣. Thus ∣AlgR′

1
∣ ⊆ (◻∣AlgR′

1
∣)◻ =

L◻ = R. By 3.1.4, ∣AlgR′

1
∣ = R. So, by 3.2.19, (L′,R′) ∶= F1((L′

1,R
′
1)) is an AWFS such

that ∣CoalgL′ ∣ = L and ∣AlgR′ ∣ = R. Of course the monad structure on R′ and the comonad

structure on L′ tell us that for each object f in C 2, L′f ∈ L and R′f ∈R.
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Theorem 6.3.4. Every (E ,M, λ)-quasiaccessible model category is the underlying model

category of an algebraic model category.

Proof. Let C be a bicomplete (E ,M, λ)-quasiaccessible category. Let W, C, and F be the

collections of weak equivalences, cofibrations, and fibrations, respectively, for an (E ,M, λ)-

quasiaccessible model category on C . There are (E ,M, λ)-quasiaccessible functorial factor-

izations (Ct,F) and (C,Ft) for the weak factorization systems (C ∩W,F) and (C,F ∩W),

respectively.

Let (Lt,R) be the factorization (C,Ft) ⊙ (Ct,F). Explicitly, Ltf = CCtf and Rf =

Ff ○ FtCtf . So (Lt,R) is an associated factorization for (C ∩W,F). Since the composition

of (E ,M, λ)-quasiaccessible functors is (E ,M, λ)-quasiaccessible, the functorial factorization

(Lt,R) is (E ,M, λ)-quasiaccessible. The counit map ε ∶ Ct → Id defines a map of copointed

endofunctors Cε ∶ Lt = CCt → C.

By the remarks following proposition 3.1.2, ∣CoalgLt ∣ = C ∩W and ∣CoalgC∣ = C. So by

6.2.21, there are comonads L′
t and C′ that preserve E2-tightness of (M2, λ)-cocones such that

∣CoalgL′t
∣ = C∩W, ∣CoalgC′ ∣ = C. By 6.2.22, there is a map of these comonads α ∶ L′

t → C′. By

3.2.22, F2α ∶ F2L′
t → F2C′ is a map of (E ,M)-compact LAWFSs. By 3.2.16, F1F2α ∶ F1F2L′

t →

F1F2C′ is a map of AWFSs. Let (L′′
t ,R

′′) = F1F2L′
t and let (L′′,R′′

t ) = F1F2C′. Using the

remarks following proposition 3.1.2 and the facts that C ∩W = ◻F and C = ◻(F ∩W), we

can show that F2(L′
t) and F2(C′) are functorial factorizations associated to (C ∩W) and

(C,F ∩W), respectively. Then, by 3.2.19 and 3.1.4, ∣CoalgL′′t
∣ = C ∩W , ∣CoalgL′′ ∣ = C,

∣AlgR′′ ∣ = F , and ∣AlgR′′

t
∣ = F ∩W. So F1F2α ∶ (L′′

t ,R
′′) → (L′′,R′′

t ) is the desired algebraic

model category.

187



6.3.2 The Bousfield-Friedlander Theorem

To get an algebraic model category after applying the Bousfield-Friedlander theorem to

an (E ,M)-quasiaccessible model category we will need to place the following restriction on

the collection E .

If f ∈ E and g, h ∈ E ∩M#, then the limit of any diagram f → h← g in C 2 is in E . (6.1)

Let C be a bicomplete (E ,M, λ)-quasiaccessible category such that E satisfies condition

(6.1). Suppose there is an (E ,M, λ)-quasiaccessible model structure on C with cofibrations C,

fibrations F , and weak equivalences W. Let (Ct,F) and (C,Ft) be (E ,M, λ)-quasiaccessible

functorial factorizations associated to the weak factorization systems (C ∩W,F) and (C,F ∩

W), respectively. Let (Q,α) be a pointed endofunctor on C .

Definition 6.3.5. An object f in C 2 is a Q-equivalence if Q(f) is a weak equivalence. An

object f in C 2 is a Q-fibration if it has the right lifting property with respect to cofibrations

which are Q-equivalences. An object X in C is Q-fibrant if the map X → ∗ to the terminal

object is a Q-fibration.

We will use the notationWQ = {f ∣ Q(f) ∈W} for the Q-equivalences and FQ = (C∩WQ)◻

for the Q-fibrations.

The endofunctor Q on C defines an endofunctor Q2 ∶ C 2 → C which sends objects

f ∶ A → B to Qf ∶ QA → QB and morphisms (u, v) ∶ f → g to (Qu,Qv) ∶ Qf → Qg. The

functor is pointed by α⃗ = (α,α) ∶ Id → Q2.

Theorem 6.3.6. If the following conditions on Q2 are satisfied, then there is an (E ,M, λ)-

quasiaccessible model category on C with weak equivalences WQ and fibrations FQ.

1. Q2 ∶ C 2 → C 2 is an (E2,M2, λ)-quasiaccessible endofunctor.
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2. Q2 preserves weak equivalence objects.

3. The maps α⃗Q2 ∶ Q2 → Q2Q2 and Q2α⃗ ∶ Q2 → Q2Q2 are natural W2-maps.

4. The collection WQ is stable under pullbacks along the fibrations f ∶ X → Y between

fibrant objects for which α⃗f ∶ f → Q2f is a W2-map.

Proposition 6.3.7 ([Sta08]). Assuming conditions (2) - (4) of theorem 6.3.6, the following

hold.

1. A map in C is an F ∩W-map if and only if it is an FQ ∩WQ-map.

2. A map f ∶X → ∗ is an FQ-map if α⃗f ∶ f → Q2f is a W2-map.

3. A map between Q-fibrant objects is an FQ-map if and only if it is an F-map.

Proof of Theorem 6.3.6. We will construct an (E ,M, λ)-quasiaccessible functorial factoriza-

tion (LQ,RQ) such that LQf ∈ C ∩WQ and RQf ∈ FQ for each map f in C . Let Et be the

middomain functor of (Ct,F). Let f ∶ X → Y be a map in C and let x′ ∶ QX → ∗ and

y′ ∶ QY → ∗ be maps to the terminal object. Consider the following diagram.

X QX Etx′ EtEtQf

Y QY Ety′ Ety′

f

αX

Qf

Ctx′

EtQf

CtEtQf

FEtQf

αY Cty′ id

Let R1f ∶ E1f → Y be the pullback of FEtQf along Cty′ ○ αY . Let L1f ∶ X → E1f be the

map into the pullback defined by the maps f ∶X → Y and CtEtQf ○Ctx′ ○αX ∶X → EtEtQf .

Let (LQ,RQ) = (C,Ft)⊙ (L1,R1). So RQf = R1f ○ FtL1f and LQf = CL1f .

By 6.3.6 (3), α⃗Qf is a W2-map. So αQX and αQY are in W2. Since Cty′ is in W ,

Q(Cty′) ∶ QQY → QEty′ is in W . Thus αEty′ ∶ Ety
′ → QEty′ is in W. Similarly, since

CtEtQf ○ Ctx′ is in W , Q(CtEtQf ○ Ctx′) is in W and thus αEtEtQf is in W. Therefore,

189



by 6.3.7 (2), EtEtQf and Ety′ are Q-fibrant objects. So by 6.3.7 (3), FEtQf is an FQ-

map. Therefore R1f is an FQ-map. By 6.3.7 (1), RQf ∈ FQ. Since the maps Cty′ ○ αY and

CtEtQf ○ Ctx′ ○ αX are Q-weak equivalences, the 2-out-of-3 property of WQ and 6.3.6 (4)

imply that L1f is an C ∩WQ-map. So CL1f ∈ C ∩WQ.

Let {(uα, vα) ∶ fα → f}α be an E2-tight (M2, λ)-cocone in C 2. By 6.3.6 (1), {(Quα,Qvα) ∶

Qfα → Qf}α is an E2-tight (M2, λ)-cocone. Let Xα = dom fα and Yα = cod fα. So

{(Quα, id∗) ∶ x′ ○Quα → x′}α and {(Qvα, id∗) ∶ y′ ○Qvα → y′}α are E2-tight (M2, λ)-cocones.

Since {Ct(Quα, id∗) ∶ Ct(x′ ○Quα) → Ctx′}α is an E2-tight (M2, λ)-cocone, it follows that

{Et(Quα,Qvα) ∶ EtQfα → EtQf}α is an E2-tight (M2, λ)-cocone. Thus {FEt(Quα,Qvα) ∶

FEtQfα → FEtQf}α is an E2-tight (M2, λ)-cocone. Because M is stable under pullbacks,

{R1(uα, vα) ∶ R1fα → R1f}α is an (M2, λ)-cocone. By 6.1.12 (5), the cocones {(uα, vα)}α

and {FEtQ(uα, vα)}α are (E ∩M#)2-tight. It follows from condition (6.1) and proposition

6.2.12 that the cocone {L1(uα, vα)}α is E2-tight. Therefore {CL1(uα, vα) ∶ CL1fα → CL1f}α

is an E2-tight (M2, λ)-cocone. So (LQ,RQ) is an (E ,M, λ)-quasiaccessible functorial fac-

torization.

Corollary 6.3.8. If the conditions of 6.3.6 are satisfied, then there is an algebraic model

category on C with weak equivalences WQ and fibrations FQ.

Proof. This is just an application of theorem 6.3.4 to theorem 6.3.6.

6.3.3 A Quasiaccessible h-Model Structure

Let W, C, and F be the collections of homotopy equivalences, closed h-cofibrations, and

h-fibrations in Top, respectively. By [Str72], Top is a model category with weak equivalences

W, cofibrations C, and fibrations F . In fact, the only results we need from [Str72] are that
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(C∩W)◻ = F , C∩W = ◻F , C◻ = F ∩W, and C = ◻(F ∩W). We will use different factorizations

than those used by Strøm.

Following [BR13], we will use the Moore path space factorization (Lt,R) to factor a map

f ∶ X → Y into a map Ltf ∈ C ∩W followed by a map in Rf ∈ F . The space ΠY of Moore

paths on Y is given by the pullback square, where R≥0 = [0,∞) and shift ∶ Y R≥0 ×R≥0 → Y R≥0

is the map that sends (p, t) to the path x↦ p(x + t).

ΠY Y R≥0 ×R≥0

Y Y R≥0

evend

⌟
shift

const

On the point-set level, ΠY is the set of triples (p, t, y) ∈ Y R≥0 ×R≥0 × Y such that p(x) = y

for all x ≥ t. This set can be identified with triples (p, t, y) of paths p ∶ [0, t] → Y such that

p(t) = y. The map evend sends a triple (p, t, y) to the point p(t) = y.

The factorization f ↦ Rf ○Ltf is given by the following pullback diagram. The space Γf

consists of the triples (p, t, x) such that p is a path p ∶ [0, t] → Y and p(0) = f(x). The map

Ltf sends a point x to the point (p, t, x) consisting of the constant path p ∶ [0, t]→ Y valued

at f(x) and Rf sends a triple (p, t, x) to the point p(t) in Y .

X Γf ΠY Y

X Y

Ltf

id

⌟

Rf

ev0

evend

f

It is shown in [BR13] that Ltf ∈ C ∩W and that Rf ∈ F . Although [BR13] worked in a

convenient category of spaces, the proof transfers seamlessly to Top. The proof that Rf is

an h-fibration relies on the fact that composition of paths in the Moore path space is strictly

associative. This fact makes it possible to put a monad structure on R ∶ Top2 → Top2,

which implies that Rf ∈ F . Beyond establishing that (Lt,R) is a factorization associated to

(C ∩W,F), we will not use the monad structure on R.
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We will now describe our factorization of a map f ∶ X → Y into a map in C followed

by a map in F ∩W . We will start with the functorial factorization (m,mw) defined by the

following diagram. The maps i0 and i1 send x to (x,0) and (x,1), respectively, s(f) and

t(f) are the colimiting cocone maps, and m(f) = s(f)○ i1. The collapse map col ∶X ×I →X

is just the projection onto X. The map mw(f) is the map out of the colimit defined by the

cocone maps id ∶ Y → Y and f ○ col ∶X × I → Y .

X

X X × I X

Y Mf Y

i1

f

i0

⌜

s(f)

col

f

t(f)

id

mw(f)

m(f)

Since i0 is in C ∩W, t(f) ∈ C ∩W. Therefore mw(f) ∈ W. Standard arguments show that

m(f) is a closed h-cofibration. Now, the functorial factorization (L,Rt) ∶= (Lt,R)⊛ (m,mw)

given by f ↦ (Rmw(f),Ltmw(f) ○m(f)) factors f into a map in C followed by a map in

F ∩W.

The remainder of this section is devoted to the proof of the following result.

Theorem 6.3.9. The functorial factorizations (Lt,R) and (L,Rt) are (E↡,Ms#, λ)-quasiaccessible

for every regular cardinal λ > 2ℵ0.

For spaces A and X, let XA be the set Top(A,X) equipped with the compact-open

topology. For a compact subset K of A and an open subset U of X, we will use the notation

VX(K,U) = {f ∶ A→X ∣ f(K) ⊆ U}.

The collection of all such VX(K,U) is a subbase for the compact-open topology on Top(A,X).

Even though Top is not cartesian closed, we can still prove the following result.
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Lemma 6.3.10. If f ∶ X → Y is an Ms#-map, then for every A, fA ∶ XA → Y A is an

Ms#-map.

Proof. Since f is a monomorphism, fA ∶XA → Y A is a monomorphism. Let K be a compact

subset of A and let U be an open subset of X. Let U ′ be an open subset of Y such that

U ′∩X = U . Then VY (K,U ′)∩XA = VX(K,U). It follows that fA is a subspace inclusion.

Lemma 6.3.11. If (u, v) ∶ f → g is an (Ms#)2-map in Top2, then Γ(u, v) ∶ Γf → Γg is an

Ms#-map.

Proof. By 6.3.10, the map vR≥0 ∶ (cod f)R≥0 → (cod g)R≥0 is a subspace inclusion. Since

(E↡,Ms#) is a orthogonal factorization system, the limit of a diagram in Top2 of objects in

Ms# is an object in Ms#. So the map

vR≥0 ×R≥0 ∶ (cod f)R≥0 ×R≥0 → (cod g)R≥0 ×R≥0

is a subspace inclusion and the map Πv ∶ Π(cod f) → Π(cod g) is a subspace inclusion.

Therefore Γ(u, v) ∶ Γf → Γg is a subspace inclusion.

Proposition 6.3.12. The functorial factorization (Lt,R) is (E↡,Ms#, λ)-quasiaccessible for

every regular cardinal λ > 2ℵ0.

Proof. We know from 6.3.11 that Lt sends (Ms#)2-cocones to (Ms#)2-cocones. Let λ be

a regular cardinal with λ > ∣R≥0∣ = 2ℵ0 and let {(uα, vα) ∶ fα → f}α be an (E↡)2-tight

((Ms#)2, λ)-cocone in Top2. By 6.1.6, R≥0 is an (E↡,Ms#, λ)-presentable object in Top.

So by 6.3.10, {vR≥0α ∶ (cod fα)R≥0 → (cod f)R≥0}α is an E↡-tight (Ms#, λ)-cocone. By 6.1.12

(5), {vR≥0α }α is in particularM#-tight. From proposition 6.2.12 and the fact that E↡ satisfies

condition (6.1), we can conclude in order that each of the following cocones are E↡-tight.

{vR≥0α ×R≥0 ∶ (cod fα)
R≥0 ×R≥0 → (cod f)R≥0 ×R≥0}α
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{Πvα ∶ Π(cod fα)→ Π(cod f)}α

{Γ(uα, vα) ∶ Γfα → Γf}α

Therefore Lt preserves (E↡)2-tightness of ((Ms#)2, λ)-cocones.

Lemma 6.3.13. Consider the following pushout square and cocone in Top.

A C

B B∐AC

D

f

g

⌜
f ′

h
g′

k

l

If f , g, h, and k are subspace inclusions, then l is a subspace inclusion.

Proof. The set B∐AC is just the union B ∪C in D. So l is an injection. Let L be a closed

set in B∐AC. Then L∩B is a closed set in B and L∩C is a closed set in C. But that means

l(L)∩B = L∩B and l(L)∩C = L∩C. So l(L)∩ (B∐AC) = (l(L)∩B)∪ (l(L)∩C) = L.

Lemma 6.3.14. Consider the following map of pushout squares in Top.

A1 C1

A2 C2

B1 B1∐A1
C1

B2 B2∐A2
C2

f1

a

g1

f ′1

c

g2

f ′2

g′1

b d

g′2

f2

Suppose g1 and g2 are subspace inclusions such that c(C1 ∖ g1(A1)) ⊆ C2 ∖ g2(A2).

1. If a, b, and c are injections, then d is an injection.

2. If a, b, and c are subspace inclusions, then d is a subspace inclusion.

194



Proof. (1) It is easy to check that g′2 is an injection and that the restriction of f ′2 to C2∖g2(A2)

is an injection. Every point in B1∐A1
C1 either lifts to a point in C1 ∖ g1(A1) or to a point

in B1. Let x and y be distinct points in B1∐A1
C1. If both x and y have lifts in B1, then

the injectivity of b and g′2 imply that d(x) ≠ d(y). If both x and y have lifts in C1 ∖ g1(A1),

then the fact that c(C1∖g1(A1)) ⊆ C2∖g2(A2), the injectivity of c, and the injectivity of the

restriction of f ′2 to C2 ∖ g2(A2) imply that d(x) ≠ d(y). Suppose x has a lift x̃ ∈ C1 ∖ g1(A1)

and y has a lift ỹ ∈ B1. Since c(x̃) ∈ C2 ∖ g2(A2), f ′2(c(x̃)) ≠ g
′
2(b(ỹ)). So d is an injection.

(2) Recall that B2∐A2
C2 has the final topology. So a subset V is open if and only if

V ∩B2 and f ′2
−1(V ) are open. Let U be an open set in B1∐A1

C1. Then U ∩B1, f ′1
−1(U),

and f−1
1 (U ∩B1) are open. There is an open set VB in B2 such that VB ∩B1 = U ∩B1. Let

VA = f−1
2 (VB). Then VA ∩ A1 = f−1

1 (U ∩ B1). Since f ′1
−1(U) ∩ A1 = f−1

1 (U ∩ B1) = VA ∩ A1,

the set VD ∶= f ′1
−1(U) ∪ VA in A2∐A1

C1 is open. By 6.3.13, there is an open set VC in C2

such that VC ∩ (A2∐A1
C1) = VD. So in particular, VC ∩ C1 = f ′1

−1(U) and VC ∩ A2 = VA.

By (1), VB∐VA VC is a subset of B2∐A2
C2. Let V = VB∐VA VC . Since V ∩ B2 = VB and

f ′2
−1(V ) = VC , V is an open subset of B2∐A2

C2. Since VB∩B1 = U∩B1, VA∩A1 = f−1(U∩B1),

and VC ∩C1 = f ′1
−1(U), we must have that d−1(V ) = U .

Proposition 6.3.15. The functorial factorization (m,mw) is (E↡,Ms#, λ)-quasiaccessible

for every regular cardinal λ.

Proof. Let λ be a regular cardinal. Let {(uα, vα) ∶ fα → f}α be an (E↡)2-tight ((Ms#)2, λ)-

cocone in Top2, where f and the fα are maps f ∶ X → Y and fα ∶ Xα → Yα. It suffices to

show the cocone {M(uα, vα) ∶Mfα →Mf}α in Top is an E↡-tight Ms#-cocone. The cocone

{M(uα, vα)}α is E↡-tight because colimits commute and the colimit of any diagram in Top2

whose objects are in E↡ is in E↡.
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Of course, the functor (−)× I ∶ Top→ Top preserves subspace inclusions. So the vertical

arrows in the following diagram are all subspace inclusions.

Yα Xα Xα × I

Y X X × I

vα

fα i0

uα uα×I
f i0

Both of the maps i0 ∶ Xα → Xα × I and i0 ∶ X → X × I are subspace inclusions, and

Xα × (0,1] ⊆X × (0,1]. Thus, by 6.3.14, M(uα, vα) ∶Mfα →Mf is a subspace inclusion. So

m(uα, vα) is an (Ms#)2-map for each α.

We can now prove the following restatement of theorem 6.3.9.

Theorem 6.3.16. The h-model structure on Top is (E↡,Ms#)-quasiaccessible.

Proof. Let λ be a regular cardinal larger than 2ℵ0 . The functorial factorization (Lt,R)

is an (E↡,Ms#, λ)-quasiaccessible functorial factorization for the weak factorization system

(C ∩W,F). By 6.3.15 and 6.3.2, mw ∶ Top2 → Top2 is an ((E↡)2, (Ms#)2, λ)-quasiaccessible

functor. Since the composition of functors preserves ((E↡)2, (Ms#)2, λ)-quasiaccessibility,

Rt = Rmw ∶ Top2 → Top2 is ((E↡)2, (Ms#)2, λ)-quasiaccessible. So (L,Rt) is an (E↡,Ms#, λ)-

quasiaccessible functorial factorization for the weak factorization system (C,F ∩W).
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Chapter 7: A Characterization of Accessible Model Categories

with Accessible Weak Equivalences

A model structure on a category C is combinatorial if it is cofibrantly generated and

if C is a locally presentable category. Smith’s theorem for combinatorial model categories

provides a complete characterization of combinatorial model categories. It in particular

produces an (acyclic cofibration, fibration) factorization for the model category when only

given the data of the (cofibration, acyclic fibration) WFS. There are many references for

this material. Beke’s paper [Bek00] is the earliest source that contains many of the relevant

ideas. Summaries can also be found in [Ros09] and [Lur09, §A.2.6].

We attempt to prove a version of Smith’s theorem for accessible model categories. Unfor-

tunately, it does not seem to be the case that the weak equivalences in an accessible model

category have to be accessible and accessibly embedded. Without this assumption, any

characterization of accessible model categories seems hopeless. We instead only attempt to

classify the accessible model categories whose weak equivalences are accessible and accessibly

embedded. The classification we get is much harder to work with than Smith’s theorem and

likely of limited utility.

The papers [BG19] and [Bou20] outline alternative incomplete, but potentially pro-

ductive, approaches towards Bousfield localizations, which could provide an alternative to

Smith’s theorem for accessible categories.
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7.1 Accessible Model Categories

7.1.1 Properties of Accessible Categories

We will assume the reader is familiar with the definitions of accessible categories and

accessible functors. A good summary can be found in [AR94]. If C is a λ-accessible category

for a regular cardinal λ, then the λ-presentable objects in C only have a set of isomorphism

classes. We will use the notation Presλ(C ) the full subcategory of C on such a set of

representatives.

We will state a few of the important results and definitions in [AR94].

Proposition 7.1.1. Let λ and κ be regular cardinals with λ◁ κ.

1. [AR94, 2.11] Every λ-accessible category is κ-accessible.

2. [AR94, 2.18] Every λ-accessible functor is κ-accessible.

3. [AR94, 2.20] If a functor preserves λ-presentable objects, then it preserves κ-presentable

objects.

Definition 7.1.2. A subcategory B of an accessible category C is accessibly embedded in

C if B is a full subcategory of C and there is a regular cardinal λ such that B is closed

under λ-filtered colimits in C .

Definition 7.1.3. Let λ be a regular cardinal. A map f ∶X → Y in a category A is λ-pure

if for every map a ∶ A1 → A1 between λ-presentable objects and every commutative square

of the following form

A1 X

A2 Y,

a

u

f

v

there is a map s ∶ A2 →X such that s ○ a = u.

198



Proposition 7.1.4. Let λ and κ be a regular cardinals with κ ≥ λ.

1. If f ∶X → Y and g ∶ Y → Z are λ-pure then g ○ f is λ-pure.

2. If g ○ f is λ-pure, then f is λ-pure.

3. If f is κ-pure, then f is λ-pure.

4. If D ∶ D → A 2 is a κ-filtered diagram whose objects are λ-pure morphisms in A , then

colimD is a λ-pure morphism in A .

Proof. (1) and (2) are immediate. Since κ-filtered diagrams are λ-filtered, every λ-presentable

object is κ-presentable. So (3) holds. (4) Every map a ∶ A1 → A2 between λ-presentable ob-

jects in A is λ-presentable. Every map a → colimD from a λ-presentable object a in A 2

factors through Dd for some d. Since Dd is a λ-pure map in A , the result holds.

Proposition 7.1.5. [AR94, 2.31] Let λ be a regular cardinal and let A be a cocomplete

λ-accessible category. If f is a λ-pure map in A , then it is a regular monomorphism.

Definition 7.1.6. Let A be a category and let λ be a regular cardinal. We define Pureλ(A )

to be the subcategory A whose objects are the objects of A and whose morphisms are the

λ-pure morphisms in A .

Remark 7.1.7. To check that a subcategory B of a κ-accessible category A is κ-accessible,

it is sufficient to show the following.

1. B is closed under κ-filtered colimits.

2. The inclusion B ↪ A preserves κ-filtered colimits.

3. There is a set B0 of κ-presentable objects in A that are also objects in B such that

every object in B is a κ-filtered colimit in B of the objects in B0.
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In this case, the κ-presentable objects of B are the κ-presentable objects of A that are in

B.

Proposition 7.1.8. Let λ be a regular cardinal and let A be a λ-accessible category. The

category Pureλ(A ) is accessible and the subcategory inclusion functor Pureλ(A ) ↪ A is

accessible.

Proof. By [AR94, 2.34], there is a regular cardinal κ, λ ◁ κ, such that Pureλ(A ) is κ-

accessible. Since λ is strictly less than κ, A is also κ-accessible. Let D ∶ D → Pureλ(A ) be

a κ-filtered diagram. Let C be the colimit of D in A and let α ∶ DÐ→C be the colimiting

cocone. For each object d and each map f ∶ d → d′ in D , the map Df ∶ Dd → Dd′ in A is

λ-pure. Furthermore, for a fixed object d, the colimit of the κ-filtered diagram {Dd→Dd′}d′

indexed by d ↓ D is the map αd ∶ Dd → C. So by proposition 7.1.4 (4), αd is λ-pure. So the

cocone α is a cocone in Pureλ(A ). Suppose β ∶ DÐ→C ′ is another cocone in Pureλ(A ).

Let k ∶ C → C ′ be the map in A out of the colimit defined by this cocone. Then k is the

colimit in A 2 of the κ-filtered diagram {βd}d. So another application of proposition 7.1.4

(4) tells us that k is λ-pure.

Proposition 7.1.9. Let λ be a regular cardinal. Let F ∶ A →B be a λ-accessible functor that

preserves λ-presentable objects. Then F restricts to an accessible functor Fλ ∶ Pureλ(A ) →

Pureλ(B).

Proof. By proposition 7.1.8 and uniformization, there is a regular cardinal κ, λ◁κ, such that

A , B, Pureλ(A ), and Pureλ(B) are κ-accessible categories, F is a κ-accessible functor,

and the subcategory inclusion functors Pureλ(A )↪ A and Pureλ(B)↪B are κ-accessible

functors. By theorem [AR94, 2.38], F preserves λ-pure morphisms. A κ-filtered colimit in
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Pureλ(A ) is a κ-filtered colimits in A . So F preserves this colimit, the colimiting cocone

is a cocone in Pureλ(B), and this cocone must be a colimiting cocone in Pureλ(B).

7.1.2 Accessible Model Categories

Definition 7.1.10. Let λ be a regular cardinal.

1. A functorial factorization (L,R) on C is λ-accessible if L ∶ C 2 → C 2 is a λ-accessible

functor.

2. A weak factorization system (L,R) is λ-accessible if it has an associated functorial

factorization (L,R) that is λ-accessible.

3. A model category is λ-accessible if both of its weak factorization systems are λ-

accessible.

4. An algebraic model category is λ-accessible if both of its AWFSs are λ-accessible

functorial factorizations.

Note that for a functorial factorization (L,R), L is λ-accessible if and only if R is λ-

accessible.

A functorial factorization, weak factorization system, model category, or algebraic model

category is accessible if it is λ-accessible for some regular cardinal λ.

Accessible comonads, LAWFSs, and AWFSs are in particular E-compact comonads,

LAWFSs, and AWFSs, where (E ,M) is the (isomorphism, any map) left proper orthog-

onal factorization system. So the results of section 3.3 apply to accessible objects.
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In particular, when C is a cocomplete λ-accessible category for some regular cardinal λ,

then there are adjunctions

AWFSλ(C ) LAWFSλ(C ) Cmdλ(C 2) CAT/LKλC
2,

G1

�

G2

F1

�

G3

F2

�

F3

where AWFSλ(C ), LAWFSλ(C ), and Cmdλ(C 2) are the categories of λ-accessible AWFSs,

λ-accessible LAWFSs, and λ-accessible comonads, respectively, and where CAT/LKλC
2 is the

metacategory of functors A ∶ A → C 2 for which the left Kan extension of A along itself exists

and is a λ-accessible functor on C 2. Every cocomplete λ-accessible category C permits the

algebraic small object argument, so every small category over C 2 is an object in CAT/LKλC
2.

In other words, we have the following specializations of 3.3.3, 3.2.22 and 3.2.27.

Proposition 7.1.11.

• A free AWFS on an accessible LAWFS is accessible.

• Every cofibrantly generated AWFS on an accessible category is accessible.

Proposition 7.1.12 ([Ros17]). A weak factorization system is accessible if and only if it

has an associated functorial factorization which is a cofibrantly generated AWFS.

Although a cofibrantly generated AWFS is accessible, an accessible functorial factoriza-

tion associated to a weak factorization system is not guaranteed to be a cofibrantly generated

AWFS by the proposition. We may have to make a different choice of associated functorial

factorization.

Remark 7.1.13. As the above proposition makes clear, for every accessible AWFS (L,R),

there is a cofibrantly generated AWFS (LI ,RI) such that ∣CoalgLI ∣ = ∣CoalgL∣ and ∣AlgRI ∣ =
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∣AlgR∣. However, the AWFS (L,R) does not have to be cofibrantly generated. So the term

“accessible AWFS” is more general than “cofibrantly generated AWFS”.

The definition of an accessible model category differs from the definition of an algebraic

model category in two ways. First of all, passing to an algebraic model category requires

making a choice of AWFS associated to each accessible weak factorization system. As we

just discussed, an arbitrary choice of associated functorial factorization will not do. We have

to choose one that is both accessible and algebraic. Secondly, an algebraic model category

comes with the structure of a map of AWFSs. While it is not clear a priori that the AWFSs

associated to the accessible weak factorization systems can be chosen in such a way that there

is a map of AWFSs between them, proposition 3.3.4 tells us that this is indeed possible.

Proposition 7.1.14. Every accessible model category is the underlying model category of a

cofibrantly generated algebraic model category.

The following technical result can be proven for more general cofibrantly generated

LAWFSs, but the hypotheses rarely holds for nonaccessible categories. It will be useful

in our characterization of accessible model categories with accessible weak equivalences.

Proposition 7.1.15. Let C be an accessible cocomplete category. Let L0 be a collection of

objects in C 2 and let L be the retract closure of L0. Suppose I ∶ I ↪ C 2 is a small category

over C 2 satisfying the following conditions.

1. Every object in L0 is the colimit of a diagram that factors through I

2. For every object f in C 2, the colimit of the diagram (I ↓ f)→ C 2 is an object in L

Then ∣CoalgLI0
∣ = L, where LI0 = F3(I). If in addition L = ◻(L◻), then ∣CoalgLI ∣ = L, where

(LI ,RI) = F1F2F3(I).
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Proof. Since LI0 ∶ C → C is the left Kan extension of I along I, there is a natural transfor-

mation α ∶ I → LI0I. By definition, ε⃗ ∶ LI0 → id is the unique map such that ε⃗I ○α = id ∶ I → I.

Therefore, there is a map of categories N ∶ I →CoalgLI0
over C . So, if UI ∶ CoalgLI0

→ C is

the forgetful functor, then UIN = I.

Let f be an object in L. Then f is a retract of a g ∈ L0. By (1), there is a diagram

D ∶ D →I such that g = colim ID. Since colim ID = colimUIND = UI(colimND), g is in the

image of UI . Since ∣CoalgLI0
∣ is closed under retracts, f must be in the collection ∣CoalgLI0

∣.

Now, let f be an object in ∣CoalgLI0
∣. Since LI0f is defined as the colimit of the diagram

I ↓ f → C 2, by (2), LI0f ∈ L. But f is a retract of LI0f . So f ∈ L. Thus ∣CoalgLI0
∣ = L.

Now suppose in addition to (1) and (2), we also know L = ◻(L◻). Then L is closed

under cobase change. So LI1f ∈ L for each f in C 2. So ∣CoalgLI1
∣ ⊆ L. Since there is

a map of comonads LI0 → LI1, there is a functor CoalgLI0
→ CoalgLI1

over C 2 and thus

L = ∣CoalgLI0
∣ ⊆ ∣CoalgLI1

∣ ⊆ L. So ∣CoalgLI1
∣ = L. Now, by propositions 3.1.13 and 3.1.16,

L◻ = ∣CoalgLI1
∣◻ = ∣Coalg�

LI1
∣ = ∣AlgRI1

∣. But, by the construction of F1((LI1,R
I
1)) = (LI ,RI),

∣AlgRI1
∣ = ∣Algem

RI ∣. So L = ◻∣AlgRI1
∣ = ◻∣Algem

RI ∣ = ∣�Algem
RI ∣ = ∣CoalgLI ∣.

Remark 7.1.16. An easy modification of the above proof shows that when L0 in the above

proposition is retract closed, so that L = L0, then ∣Coalgem
LI0

∣ = ∣CoalgLI0
∣ = L. It can then

easily be shown that ∣Coalgem
LI1

∣ = ∣CoalgLI1
∣ too. However, it does not follow that ∣Coalgem

LI ∣ =

∣CoalgLI ∣.

7.2 Characterizing Accessible Model Categories

7.2.1 Constructing Accessible Weak Factorization Systems

We will need the following nonstandard definition.
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Definition 7.2.1. Let λ be a regular cardinal. A collection of objects X in a λ-accessible

category C is λ-preaccessible if for every regular cardinal κ with κ = λ or κ▷λ, every object

in X is a κ-filtered colimit of κ-presentable objects in X .

A collection of objects X in an accessible category is preaccessible if it is λ-preaccessible

for some regular cardinal λ. The following result is immediate.

Proposition 7.2.2. The collection of objects in the image of an accessible functor F ∶ A →

B is a preaccessible collection in B.

Let C be a bicomplete accessible category. Suppose W, C, and F are collections of maps

in C that satisfy the following conditions.

1. Full(W) is accessible and accessibly embedded in C 2

2. C ∩W = ◻F and F = (C ∩W)◻

3. F is preaccessible

We will describe for arbitrarily large regular cardinals λ the construction of an accessible

algebraic weak factorization system (LJλ ,RJλ) on C such that CoalgLJλ ⊆ C ∩W. If we

were able to prove the equality CoalgLJλ = C ∩W , then we would have that (C ∩W,F)

is an accessible weak factorization system. However, with the above assumptions, it does

not seem possible to prove equality. Although not useful as a condition for constructing

accessible weak factorization systems, we do get CoalgLJλ = C ∩W for arbitrarily large

regular cardinals λ when we know that (C∩W,F) is an accessible weak factorization system.

Since our construction of LJλ did not rely on this assumption, this fact at least serves as

a reassurance that our construction is correct. We only need to find an additional, useful

condition to add to those above that will guarantee that CoalgLJλ = C∩W. We will describe
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such a condition in the following section and we will prove in section 7.2.3 that our conditions

fully characterize the (C ∩W,F) weak factorization system of an accessible model categories

with accessible weak equivalences.

Let λ be a regular cardinal. Let Fλ be the collection of objects that are in Presλ(C )

and in F . Let Kλ ∶ Disc(Fλ)↪ C 2 be the inclusion of the discrete subcategory of C 2 on the

objects of Fλ. Let V ∶ �Kλ → C 2 be the forgetful functor. Let Jλ be the full subcategory of

�Kλ on the objects in V −1(Presλ(C 2)) and let N ∶ Jλ ↪ �Kλ be the subcategory inclusion

functor. Then Jλ is a small category. Let Jλ ∶ Jλ → C 2 be the restriction of V to Jλ.

Jλ
�Kλ

C 2

N

Jλ
V

Lemma 7.2.3. The functor V is surjective on objects in C ∩W.

Proof. Indeed, if f is an object in C ∩W , then a solution exists to every lifting problem

(u, v) ∶ f → p when p ∈ Fλ. By choosing a single solution to each such problem, we get a lift

⟨f,ϕ⟩ of f in �Kλ. We are able to make these choices independently because the discrete

category Disc(Fλ) does not impose any coherence conditions on the lifts.

To prove more about Jλ, we will need to be more specific about the cardinal λ. Specif-

ically, let λ be a regular cardinal that satisfies the following conditions.

• The collection F is λ-preaccessible.

• The subcategory inclusion functor Full(W)↪ C 2 is a λ-accessible functor.

Note that whenever κ is a regular cardinal with κ▷ λ, the above conditions hold for κ.

Lemma 7.2.4. Every object in Jλ forgets to an object in C ∩W.
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Proof. Let ⟨f,ϕ⟩ be an object in Jλ. Let p ∈ F and let (u, v) ∶ f → p be a map in C 2. By

(3), p is the colimit of a λ-filtered cocone {(sα, tα) ∶ pα → p} of objects pα in Fλ. Since f is λ-

presentable, there is an index α and a map (x, y) ∶ f → pα such that (u, v) = (sα, tα) ○ (x, y).

So the map ϕ(x, y, pα) ∶ cod f → dompα is a solution to the lifting problem (x, y). So

sα ○ϕ(x, y, pα) ∶ cod f → domp is a solution to the lifting problem (u, v). Thus f has the left

lifting property with respect to every object in F .

We will show condition (2) of proposition 7.1.15 holds with respect to the collection C∩W.

Lemma 7.2.5. The category Jλ has λ-small colimits.

Proof. Let D ∶ D → Jλ be a λ-small diagram. Since �Kλ is cocomplete, colimND exists.

Since V preserves colimits, V (colimND) = colimV ND = colimJλD. Because JλD is a

λ-small diagram of λ-presentable objects in C 2, colimJλD is a λ-presentable object. So

colimND is an object in Jλ. Since Jλ is a full subcategory of �Kλ, colimD exists in Jλ

and N(colimD) = colimND.

Lemma 7.2.6. For every object f in C 2, the colimit of the canonical cocone of f with respect

to Jλ is in C ∩W.

Proof. Let {(uα, vα) ∶ Jλ⟨fα, ϕα⟩ → f}α be the canonical cocone of f with respect to Jλ. By

7.2.5, every λ-small subdiagram factors through a (uα, vα). So the cocone {(uα, vα)}α is

λ-filtered. By condition (1) and the fact that colimα fα is the colimit of a λ-filtered diagram

of objects in C ∩W, colimα fα must be in W.

Lemma 7.2.7. The collection ∣CoalgLJλ ∣ is a subset of C ∩W.

Proof. By 7.2.6, LJλ0 f ∈ C ∩ W for every object f in C 2. Since C ∩ W is stable under

pushouts, LJλ1 f ∈ C ∩W. So ∣Coalg
L
Jλ
1

∣ ⊆ C ∩W . By propositions 3.1.13 and 3.1.16, (C ∩

207



W)◻ ⊆ ∣Coalg
L
Jλ
1

∣◻ = ∣Coalg�
L
Jλ
1

∣ = ∣Alg
R
Jλ
1

∣. By the freeness of F1((L
Jλ
1 ,R

Jλ
1 )) = (LJλ ,RJλ),

∣Alg
R
Jλ
1

∣ = ∣Algem
RJλ ∣. So ∣CoalgLJλ ∣ = ∣�Algem

RJλ ∣ =
◻∣Algem

RJλ ∣ =
◻∣Alg

R
Jλ
1

∣ ⊆ C ∩W .

Since LJλ is a comonad, LJλf ∈ C ∩W for every object f in C 2. Also, we know the AWFS

(LJλ ,RJλ) = F1F2F3(Jλ) is accessible by 7.1.11.

Lemma 7.2.8. If (C ∩W ,F) is an accessible weak factorization system, then there is a

regular cardinal κ such that every object f ∈ C ∩W is the colimit of a diagram that factors

through Jκ.

Proof. By 7.1.11, there is an accessible algebraic weak factorization system (Ct,F) such that

∣CoalgCt ∣ = C ∩W and ∣AlgF∣ = F . Let κ be a regular cardinal such that the forgetful

functor UCt ∶ CoalgCt → C 2 is κ-accessible and preserves κ-presentable objects. We will

choose Presκ(CoalgCt) and Presκ(C 2) so that UCt restricts to a functor Presκ(CoalgCt)→

Presκ(C 2). Since every object in Fκ is in the image of UF ∶ AlgF → C 2 and there are no

nonidentity morphisms in Disc(Fκ), the subcategory inclusion functor Kκ ∶ Disc(Fκ)↪ C 2

has a lift K̃κ ∶ Disc(Fκ) → AlgF such that UFK̃κ = Kκ. By 3.1.13, there is a functor

F ∶ CoalgCt →
�AlgF over C 2. Let G be the following composite functor over C 2

CoalgCt
�AlgF

�Kκ.
F

G

�K̃κ

Then V G = UCt , where V ∶ �Kκ → C 2 is the forgetful functor.

Let f be an object in C ∩W and let ⟨f, k⃗⟩ be a lift in CoalgCt . Since CoalgCt is

κ-accessible, there is a colimiting κ-filtered cocone {(uα, vα) ∶ ⟨fα, k⃗α⟩ → ⟨f, k⃗⟩}α of κ-

presentable objects ⟨fα, k⃗α⟩ in CoalgCt . Since UCt preserves colimits and V reflects col-

imits, {G(uα, vα) ∶ G⟨fα, k⃗α⟩ → G⟨f, k⃗⟩}α is a colimiting cocone in �Kκ. Since UC preserves

κ-presentable objects, {G(uα, vα)}α is a κ-filtered cocone of objects G⟨fα, k⃗α⟩ in Jκ. Of
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course V G⟨f, k⃗⟩ = UCt⟨f, k⃗⟩ = f . Along with the facts that V preserves colimits and Jκ is

a full subcategory of �Kκ, this means f is the colimit of a diagram that factors through

Jκ.

If (C ∩W ,F) is an accessible weak factorization system, then whenever κ is a regular

cardinal that satisfies all of the following conditions, results 7.2.3 through 7.2.8 hold.

• The collection F is κ-preaccessible.

• The subcategory inclusion functor Full(W)↪ C 2 is a κ-accessible functor.

• The forgetful functor UCt ∶ CoalgCt → C 2 is κ-accessible and preserves κ-presentable

objects.

From 7.1.15, it then follows that (LJκ ,RJκ) is a κ-accessible algebraic weak factorization

system such that ∣CoalgLJκ ∣ = C ∩W and ∣AlgRJκ ∣ = F .

7.2.2 Dense Pairs

The codensity monad on Kλ ∶ Disc(Fλ)↪ C 2 provides an alternative description of the

category �Kλ. Unfortunately, unlike density comonads, a codensity monad on an accessible

category does not have to be accessible.

Let C be a complete category. Let K ∶ K → C 2 be a small category. We define an

endofunctor KR0 ∶ C 2 → C 2 as the right Kan extension of K along itself. So on an object f

in C 2,

KR0f = lim
f→fα

fα,

where the limit is indexed by the comma category f ↓ K. By definition, there is a natural

transformation α⃗ ∶ KR0K → K such that for any functor S ∶ C 2 → C 2 and any natural

transformation β⃗ ∶ SK → K, there is a unique natural transformation γ⃗ ∶ S → R such that
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α⃗K γ⃗K = β⃗K . The universal property defines a unit map η⃗ ∶ Id → KR0 and a multiplication

map µ⃗ ∶ KR0
KR0 → KR0 that make KR0 a monad.

Let η⃗ = (η0, η1) be the components of the unit map. We define a functorial factorization

(KL1,KR1) objectwise by taking the pullback of KR0f against η0
f .

f

KL1f

η0f

KR1f

σf

KR0f

id η1f

⌟

KL1f is the map into the limit defined by the cocone maps η0
f and f . Dualizing the our

discussion of the reflection G2 in section 3.2.5, we get that (KL1,KR1) is a RAWFS.

Proposition 7.2.9. Let K ∶ K → C 2 be a small category over C 2. Then �K ≅ CoalgKL1
.

Proof. This is dual to 3.2.26.

If K is a set of objects, then we will use the notation KL for KL when K ∶ Disc(K)→ C 2

is the subcategory inclusion functor.

Definition 7.2.10. Let L be a collection of morphisms in a category C . We will say a pair

(J ,K) of subsets J ⊆ L and K ⊆ L◻ is a dense pair if every object f in L is the colimit of a

diagram of objects in J that factors through the forgetful functor UKL1
∶ CoalgKL1

→ C 2.

7.2.3 Smith’s Theorem for a Class of Accessible Model Categories

The following theorem is our attempt at a version of Smith’s theorem for accessible

model categories with accessible and accessibly embedded weak equivalences. While the

weak equivalences in combinatorial model categories are always accessible and accessibly

embedded, this is not the case for accessible model categories. We only attempt to charac-

terize the accessible model categories whose weak equivalences are accessible and accessibly
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embedded. The author does not know whether this is an assumption that holds in all rea-

sonable, well-behaved accessible model categories, or if it is a very restrictive assumption

that doesn’t often apply beyond combinatorial model categories.

Theorem 7.2.11. Let C be a λ-accessible bicomplete category and letW and C be collections

of morphisms in C 2 that satisfy the following conditions.

• W has the 2-out-of-3 property.

• Full(W) is accessible and accessibly embedded in C 2.

• (C,C◻) is an accessible weak factorization system on C .

• C◻ ⊆W.

Then there is an accessible model category on C with weak equivalences W and cofibrations

C if and only if the following conditions are satisfied.

1. C ∩W = ◻((C ∩W)◻)

2. (C ∩W)◻ is preaccessible

3. There is a regular cardinal λ0 such that for every regular cardinal λ ▷ λ0, the sets

Cλt = ∣Presλ(C 2)∣∩C ∩W and Fλ = ∣Presλ(C 2)∣∩ (C ∩W)◻ form a dense pair (Cλt ,F
λ)

for (C ∩W , (C ∩W)◻)

Proof. Suppose C is an accessible model category with weak equivalencesW and cofibrations

C. Then (C ∩W, (C ∩W)◻) is an accessible weak factorization system. So condition (1)

holds. By 7.1.12, there is an accessible algebraic weak factorization system (Ct,F) such that

∣CoalgCt ∣ = C ∩W and ∣AlgF∣ = (C ∩W)◻. The category AlgF and the forgetful functor
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AlgF → C 2 are accessible [AR94, 2.76]. Since the full image of an accessible functor is

preaccessible 7.2.2, condition (2) holds. Condition 3 holds by 7.2.8

Conversely, suppose conditions (1) - (3) hold. Let λ be a regular cardinal that satisfies

the following conditions.

• The collection (C ∩W)◻ is λ-preaccessible.

• The subcategory inclusion functor Full(W)↪ C 2 is λ-accessible.

• λ▷ λ0 for some regular cardinal λ0 that satisfies (3).

Using the construction of section 7.2.1, we know from 7.2.6 that Jλ ∶ Jλ → C 2 satisfies

condition (2) of 7.1.15 for the collection C ∩W . Condition 3 is the equivalent to every

f ∈ C ∩W being a colimit of a diagram that factors through Jλ. So condition (1) of 7.1.15

for the collection C ∩ W is satisfied. Thus (LJλ ,RJλ) is an accessible AWFS such that

∣CoalgLJλ ∣ = C ∩W and, necessarily, ∣AlgRJλ ∣ = (C ∩W)◻. So (C ∩W , (C ∩W)◻) is an

accessible weak factorization system. Since (C,C◻) is an accessible weak factorization system

by assumption, it remains to show that C◻ = (C∩W)◻∩W. Let f ∈ (C∩W)◻∩W and let (C,Ft)

be a functorial factorization associated to (C,C◻). Since W has the 2-out-of-3 property and

Ftf ∈ C◻ ⊂W, Cf ∈ C ∩W . So a solution exists to the lifting problem (id ,Ftf) ∶ Cf → f and

f ∈ C◻. Thus (C ∩W)◻ ∩W ⊆ C◻. The reverse inclusion is immediate.

We conclude with some facts we do know about the weak equivalences in an accessible

model category.

Proposition 7.2.12. Suppose C is an accessible model category with weak equivalences W,

cofibrations C, and fibrations F . The following are equivalent.

1. The category Full(F ∩W) is accessible and accessibly embedded in C 2.
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2. The category Full(F ∩W) is a small injectivity class in C 2.

3. The weak factorization system (C,F ∩W) is cofibrantly generated by a set.

Proof. (1)⇔ (2) is [AR94, 4.8]. (2)⇔ (3) is easy. See the proof of [Ros09, 3.3].

Proposition 7.2.13. Suppose C is an accessible model category with weak equivalences W,

cofibrations C, and fibrations F . The following are equivalent.

1. The category Full(W) is accessible and accessibly embedded in C 2.

2. There is an accessible copointed endofunctor C with ∣CoalgC∣ = C such that the category

CoalgCW
= Full(U−1

C (W)) is accessible and accessibly embedded in CoalgC.

3. There is an accessible pointed endofunctor F with ∣AlgF∣ = F such that the category

AlgFW
= Full(U−1

F (W)) is accessible and accessibly embedded in AlgF.

Proof. These all follow from [AR94, 2.50].

Lemma 7.2.14. If a map of monads (α, id) ∶ R → R′ is an epimorphism on objects in the

image of VR′ ∶ Algem
R′ →M 2, then the functor α∗ ∶ Algem

R′ → Algem
R is the inclusion of a full

subcategory.

Proof. Suppose ⟨f, k⃗⟩ and ⟨f, l⃗⟩ are objects in Algem
R′ such that α∗⟨f, k⃗⟩ = α∗⟨f, l⃗⟩. Then

k⃗ ○ (αf , id) = l⃗ ○ (αf , id). Since f = U⟨f, k⃗⟩, (αf , id) is an epimorphism. So k⃗ = l⃗. Thus α∗ is

injective on objects.

We already know α∗ is a faithful functor, so it remains to show that it is full. Let ⟨f, k⃗⟩

and ⟨g, m⃗⟩ be objects in Algem
R′ and let u⃗ ∶ α∗⟨f, k⃗⟩ → α∗⟨g, m⃗⟩ be a map in Algem

R . This

means the outer rectangle in the following diagram must commute.

Rf R′f f

Rf R′g g

(αf ,id)

Ru⃗ R′u⃗

k⃗

u⃗

(αg ,id) m⃗
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Since f is in the image of U , (αf , id) is an epimorphism. Thus the right square in the above

diagram commutes. So u⃗ is a map ⟨f, k⃗⟩→ ⟨g, m⃗⟩ in Algem
R′ .

Proposition 7.2.15. Let ζ ∶ (Ct,F) → (C,Ft) be an accessible algebraic model category on

an accessible bicomplete category M with weak equivalences W. There is an AWFS (C′,F′
t)

on M and a map of AWFSs ζ ′ ∶ (Ct,F) → (C′,F′
t) such that ζ ′∗ ∶ Algem

F′t
→ Algem

F is an

accessible embedding of an accessible category.

Proof. Let C = ∣CoalgC∣ and let F = ∣AlgF∣. Let X be the AWFS (C,Ft). Let Xt be

the AWFS (Ct,F). We define a new functorial factorization Xt ⊙X on M by sending an

object f in M 2 to the object (CtCf,Ftf ○ FCf) in M 3. We will also use the notation

(Lf,Rf) ∶= (CtCf,Ftf ○FCf) =Xt⊙Xf . The operation (Xt,X)↦Xt⊙X preserves monad

structure. So Xt ⊙X is a RAWFS. The functorial factorization ⊥ defined by ⊥f = (f, id) is

a unit for the operation ⊙. There is a counit map Xt → ⊥ defined by the horizontal arrows

in the following commutative diagram.

Ctf

id

f
Ff

Ff id
id

The counit map is a map of AWFSs. We therefore get that Xt ⊙X → ⊥⊙X ≅ X is a map

of RAWFSs.

Let f ∈ F ∩W be given. Then Cf ∈ C ∩W . So the map ε⃗Cf = (id ,FCf) ∶ CtCf → Cf

is an epimorphism. But FCf is the counit map Xt ⊙ X → ⊥ ⊙ X ≅ X. In other words,

the map of monads (FCf, id) ∶ Rf → Ftf is an epimorphism. Since this holds for every

f ∈ F ∩W = ∣AlgFt ∣, the functor

(FCf)∗ ∶ Algem
Ft →Algem

R
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is the inclusion of a full subcategory. Since (FCf)∗ is an accessible functor and Algem
Ft is an

accessible category, Algem
Ft is accessibly embedded in Algem

R .

Proposition 7.2.16. Let M be an accessible model category with weak equivalences W,

cofibrations C, and fibrations F . There is an algebraic model category ζ ∶ (Ct,F) → (C,Ft)

on M whose underlying model category has weak equivalences W and cofibrations C such

that ζ∗ ∶ Coalgem
Ct →Coalgem

C′ is an accessible embedding of an accessible category.

Proof. This is dual to 7.2.15.

An attempt at a version of Smith’s theorem was made in [Ros17, 5.3]. The claim in that

paper that the weak equivalences are accessible and accessibly embedded is a major error,

which was recently corrected in [Ros20]. Some other issues with [Ros17, 5.3] are that it is not

a complete characterizations and that condition (5) is likely almost never true. In [Ros20] it

is shown that the weak equivalences in an accessible model category are preaccessible. The

author is not sure if the definition of preaccessible collections there agrees with the one in

this paper.
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Appendix A: Appendix 1

A.1 Well-Pointed Endofunctor Construction

Let G ∶ C → B be a functor with a left adjoint F ∶ B → C and let ξ ∶ FG → Id

and ν ∶ Id → GF be the counit and unit maps of the adjunction. Let (R, ρ) be a pointed

endofunctor on B and suppose C is cocomplete. Then End(C ) is cocomplete and we can

define an endofunctor S ∶ C → C by the following pushout diagram in End(C ).

FG FRG

Id S

ξ

FρG

ζ

σ ⌜

Proposition A.1.1 ([Kel80, 9.2]). If (R, ρ) is a well-pointed endofunctor, then (S, σ) is

well-pointed.

Proof. We know Sσ ○ σ = σS ○ σ, so it suffices to show Sσ ○ ζ = σS ○ ζ. Let ϕ = Gζ ○ νRG ∶

RG→ GS. The commutativity of the left diagram below shows that the equality Gσ = ϕ○ρG

holds. Therefore the right diagram commutes.

G RG

GFG GFRG

G GS

id

νG

ρG

νRG

ϕ

Gξ

GFρG

Gζ

Gσ

RG RRG RG

GS RGS GS

GSS

ρRG

ϕ Rϕ

RρG

ϕ

RGσ

GσS

ρGS

ϕS
GSσ
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Since (R, ρ) is well-pointed, ρRG = RρG. Thus GσS ○ ϕ = GSσ ○ ϕ. Applying F to this

equality and composing with ξSS ∶ FGSS→ SS gives the desired equality.

Sσ ○ ζ = Sσ ○ ξS ○ Fϕ = ξSS ○ FGSσ ○ Fϕ = ξSS ○ FGσS ○ Fϕ

= σS ○ ξS ○ Fϕ = σS ○ ζ.

Proposition A.1.2 ([Kel80, 9.2]). An object X in C is an S-algebra if and only if GX is

an R-algebra.

Proof. We have bijective correspondences between the following classes.

• Maps m ∶ SX →X such that m ○ τX = idX .

• Maps n ∶ FRGX →X such that n ○ FρGX = ξX .

• Maps p ∶ RGX → GX such that p ○ ρGX = idGX .

A.2 Final Functors

Definition A.2.1. A functor F ∶ E → D is final if for every object d in D , d ↓ F is nonempty

and connected.

If E ∶ E → D and D ∶ D → C are diagrams, then any cocone α ∶ D → ∆D
X determines

a cocone αE ∶ DE → ∆D
XE = ∆E

X . So we get a map colimDE → X. In particular, when

α ∶ DÐ→ colimD is the colimiting cocone of D, then we get a cocone αE ∶ DEÐ→ colimD

and a map colimDE → colimD. The following result is well-known.
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Proposition A.2.2 ([Mac71, IX. §3]). If E ∶ E → D and D ∶ D → C are diagrams and E is a

final functor, then the cocone DEÐ→ colimD defines an isomorphism colimDE ≅ colimD.

It will be useful to have a couple of shortcuts for checking that a functor is final. In

certain situations we only need to check the nonemptiness condition to guarantee finality.

Proposition A.2.3. Let D be a finitely filtered category and let F ∶ E ↪ D be the inclusion

of a full subcategory. If d ↓ F is nonempty for each object d in D , then F is a final functor.

Proof. Let d be an object in D . We only need to show d ↓ F is connected. Let u1 ∶ d → e1

and u2 ∶ d → e2 be two maps in D to objects e1 and e2 in E . Since D is finitely-filtered,

there are maps v1 ∶ e1 → d1 and v2 ∶ e2 → d1 in D such that v1 ○ u1 = v2 ○ u2. Since d1 ↓ D

is nonempty, there is a map u3 ∶ d1 → e3. Because E is a full subcategory of D , the maps

u3 ○ v1 and u3 ○ v2 are maps in E .

Proposition A.2.4. Let D ∶ D → C be a diagram in C , let M be some collection of

monomorphisms in C , and let X be an object in C . A finitely filtered diagram E ∶ E →

D ↓M X is final if for every object (d, f) in D ↓M X, the category (d, f) ↓ E is nonempty.

Proof. Let f ∶ Dd → X be an object in D ↓M X. It suffices to check that (d, f) ↓ E is

connected. Suppose u1 ∶ (d, f)→ Ee1 and u2 ∶ (d, f)→ Ee2 are maps in D ↓M X. Since E is

finitely filtered, there are maps x1 ∶ e1 → e3 and x2 ∶ e2 → e3 in E . So Ex1 ∶ Ee1 → Ee3 and

Ex2 ∶ Ee2 → Ee3 are maps in D ↓M X. Thus, as maps in C ,

Ee3 ○Ex1 ○ u1 = Ee1 ○ u1 = f = Ee2 ○ u2 = Ee3 ○Ex2 ○ u2.

But Ee3 is a monomorphism in C . So Ex1 ○ u1 = Ex2 ○ u2.
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A.3 Adjunctions

Given an adjunction

A C

F

G

⊺

with unit ν ∶ I → GF and counit ξ ∶ FG → I, there is a comparison functor HFG ∶ A →

Coalgem
FG defined by sending an object A to the object ⟨FA,FνA⟩ and sending a map f ∶ A→

B to the map Ff ∶ ⟨FA,FνA⟩→ ⟨FB,FνB⟩. Then UFGHFG = F , where UFG ∶ Coalgem
FG → C

is the forgetful functor.

Definition A.3.1. An adjunction

A C

F

G

⊺

is comonadic if the comparison functor HFG ∶ A →Coalgem
FG is an equivalence of categories.

A functor F ∶ A → C is comonadic if it is the left adjoint in a comonadic adjunction.

Proposition A.3.2. Let

A C

F1

G1

⊺ and B C

F2

G2

⊺

be comonadic adjunctions. Every map of comonads α ∶ F1G1 → F2G2 defines a functor

K ∶ A → B with a natural isomorphism F2K → F1. Conversely, every functor K ∶ A → B

with a natural isomorphism F2K → F1 defines a map of comonads α ∶ F1G1 → F2G2.

Proof. Suppose α ∶ F1G1 → F2G2 is a map of comonads. There is a functor α∗ ∶ Coalgem
F1G1

→

Coalgem
F2G2

defined by sending an object ⟨X,k⟩ in Coalgem
F1G1

to the object ⟨X,αX ○ k⟩ in

Coalgem
F2G2

and sending a map f ∶ ⟨X,k⟩→ ⟨Y, l⟩ to the map f ∶ ⟨X,αX ○k⟩→ ⟨Y,αY ○l⟩. So in

particular, UF2G2α∗ = UF1G1 , where UF1G1 ∶ Coalgem
F1G1

→ C and UF2G2 ∶ Coalgem
F2G2

→ C are
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the forgetful functors. Let ĤF2G2 ∶ Coalgem
F2G2

→B be an up-to-natural-isomorphism inverse

for the comparison functor HF2G2 ∶ B → Coalgem
F2G2

. We define K to be the composition of

the functors in the top row of the following diagram.

A Coalgem
F1G1

Coalgem
F2G2

B

C C C

HF1G1

F1

UF1G1

α∗

UF2G2

ĤF2G2

F2

Id ≅

Then

F2K = F2ĤF2G2α∗HF1G1 = UF2G2HF2G2ĤF2G2α∗HF1G1

≅ UF2G2α∗HF1G1 = UF1G1HF1G1 = F1.

Conversely, suppose K ∶ A →B is a functor with a natural isomorphism β ∶ F2K → F1.

We will use ν for both of the adjunction unit maps ν ∶ Id → G1F1 and ν ∶ Id → G2F2 and ξ

for both of the counit maps ξ ∶ F1G1 → Id and ξ ∶ F2G2 → Id. Which unit and counit maps

we are using should be clear from context. Let α be the composite natural transformation

F1G1 F2KG1 F2G2F2KG1 F2G2F1G1 F2G2.
β−1G1

≅
F2νKG1 F2G2βG1

≅
F2G2ξ

It is easy to check that ξ ○ α = ξ ∶ F1G1 → Id. A diagram chase shows that the following

diagram commutes.

F1G1 F2KG1 F2G2F2KG1 F2G2F1G1

F1G1F1G1

β−1G1

≅
F1νG1

F2νKG1 F2G2βG1

≅

αF1G1

We can also show that

F2KG1 F2G2F2KG1 F2G2F1G1 F2G2

F2G2F2KG1 F2G2F1G1 F2G2F2G2

F2νKG1

F2νKG1 F2G2βG1 F2G2ξ

F2νG2

F2G2βG1 F2G2α

commutes. Therefore F2νG2 ○ α = F2G2α ○ αF1G1 ○ F1νG1. So α is a map of comonads.
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Definition A.3.3 (Cosolution Set Condition). A functor F ∶ A →B between locally small

categories satisfies the cosolution set condition relative to an object B in B if there is a set

SB of objects in A such that for every object A in A and every map f ∶ FA → B in B,

there is an object A′ in SB and maps a ∶ A→ A′ and f ′ ∶ FA′ → B such that f ′ ○ Fa = f .

A FA B

A′ FA′

a

f

Fa
f ′

Proposition A.3.4. If A is cocomplete, then a colimit-preserving functor F ∶ A → B

between locally small categories has a right adjoint if and only if it satisfies the cosolution

set condition with respect to each object B in B.

Proof. This is dual to [Bor94b, 3.3.3].

Definition A.3.5. Let E be some collection of epimorphisms in a category A . An E-strong

family of generators for A is a set of objects {Gi}i∈I such that for each object X, the map

∐i∈I∐A (Gi,X)Gi →X is an E-map.

Proposition A.3.6. Let A be a category and let E be some collection of epimorphisms in

A that is stable under pushouts. A functor F ∶ A →B between locally small categories has

a right adjoint if the following conditions are satisfied.

1. A is cocomplete

2. F preserves colimits

3. A is E-well-copowered

4. A has an E-strong family of generators
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Proof. We will closely follow the proof of [Bor94b, 3.3.4]. Let B be an object in B. It suffices

to show that F satisfies the cosolution set condition with respect to B. Let {Gi}i∈I be an E-

strong family of generators for A . Since A is E-well-copowered, the collection of E-quotients

of the object ∐i∈I∐B(FGi,B)Gi in A has only a set of isomorphism classes. Recall from

definition 2.4.8 that two E-quotients p ∶ ∐i∈I∐B(FGi,B)Gi → X and q ∶ ∐i∈I∐B(FGi,B)Gi →

X are in the same isomorphism class if there is an isomorphism g ∶ X → Y such that

g ○ p = q. Let Smor
B be a set of representatives for the isomorphism classes of E-quotients of

∐i∈I∐B(FGi,B)Gi. Let SB = {X ∣X = codp, p ∈ Smor
B }.

Let A be an object in A and let f ∶ FA → B be a map in B. We will refer to the

below diagrams. Let ing be the inclusion map into the term of the coproduct indexed by g.

The map τ is determined by the inclusion maps. Let q be the map defined by the canonical

cocone {Gi → A}i∈I of A with respect to Disc({Gi}i∈I). The maps p and a are the cocone

maps of the pushout square. Since E is closed under pushouts, p ∈ E . Thus A′ ∈ SB.

Gi

∐i∈I∐A (Gi,A)Gi A

∐i∈I∐B(FGi,B)Gi A′

ing

inf○Fg

g

q

τ

⌜
a

p

∐i∈I∐A (Gi,A)FGi FA

∐i∈I∐B(FGi,B)FGi FA′

FGi B

Fq

Fτ

⌜

Fa

f

Fp

u

f ′

g

ing

Because F preserves colimits, the top rectangle of the diagram on the right is cocartesian.

The map u is defined by the discrete canonical cocone {FGi → B}i∈I . So there is a map

f ′ ∶ FA′ → B making the right diagram commute.
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A.4 Density Comonad

The density comonad is obtained from a left Kan extension. Let K ∶ I → C and

L ∶ I → C be functors between locally small categories.

Definition A.4.1. The left Kan extension of L along K is a functor LanK(L) ∶ C → C with

a natural transformation α ∶ L → LanK(L)K such that for any other functor F ∶ C → C

with a natural transformation β ∶ L → FK, there is a unique natural transformation γ ∶

LanK(L)→ F such that γK ○ α = β.

I C

C

K

L

LanK(L)
ù

L LanK(L)K

FK

α

β
γK

LanK(L)

F

∃! γ

When it exists, the left Kan extension of L along K is unique up to unique natural

isomorphism.

Proposition A.4.2 ([Bor94b, 3.7.2]). When C is a locally small cocomplete category and

I is a small category, the left Kan extension of L along K exists.

Suppose C is a cocomplete locally small category and I is a small category. Recall

that C I is the locally small category whose objects are functors from I to C and whose

morphisms are natural transformations. Fix a functor K ∶ I → C . There is a functor

evK(−) ∶ End(C ) → C I that sends an endofunctor F ∶ C → C to the functor FK ∶ I → C .

If ι ∶ J → I is a natural transformation of functors in C I , then the universal property

of the left Kan extension of J along K implies the existence of a natural transformation

LanK(J)→ LanK(I) of endofunctors on C .

J LanK(J)K

I LanK(I)K

ι

αJ

γK

αI

LanK(J)

LanK(I)

∃! γ
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So LanK(−) ∶ C I → End(C ) is a functor. Furthermore, the universal property of LanK(J)

implies that there is a bijection

End(C )(LanK(J), F ) ≅ C I (J, evK(F )) (A.1)

which is natural over F in End(C ) and J in C I . So LanK(−) is a left adjoint to evK , which

proves the following result.

Proposition A.4.3. The endofunctor LanK(K) ∶ C → C is a comonad on C .

We call LanK(K) the density comonad on K.

Lemma A.4.4. Let α ∶ K → LanK(K)K be the universal natural transformation of the left

Kan extension.

• If (L, ε) is a copointed endofunctor on C , then for every natural transformation β ∶

K → LK such that εK ○ β = id, there is a unique map of copointed endofunctors

γ ∶ LanK(K)→ L such that γK ○ α = β.

• If (L, ε, δ) is a comonad on C , then for every natural transformation β ∶K → LK such

that εK○β = id and δK○β = Lβ○β, there is a unique map of comonads γ ∶ LanK(K)→ L

such that γK ○ α = β.

Proof. We will prove the second result. By the universal property of the left Kan extension,

there is a unique natural transformation γ ∶ LanK(K) → L such that γK ○ α = β. We only

need to show that γ is a map of comonads. Let ε0 ∶ LanK(K) → Id and δ0 ∶ LanK(K) →

LanK(K)LanK(K) be the counit and comultiplication maps of the comonad LanK(K). Then

ε0K ○ α = id and δK ○ α = LanK(K)α ○ α.
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By definition, ε0 ∶ LanK(K)→ Id is the unique natural transformation such that ε0K○α =

id . But ε○γ ∶ LanK(K)→ Id is a natural transformation such that εK ○γK ○α = ε0K ○α = id .

So ε ○ γ = ε0. So γ is a map of copointed endofunctors.

By the universal property of the left Kan extension, there is a unique map θ ∶ LanK(K)→

LL such that Lβ ○ β = θK ○ α. Since δ ○ γ ∶ LanK(K) → LL is a natural transformation such

that δK ○ γK ○α = δK ○β = Lβ ○β, δ ○ γ = θ. Since γL ○LanK(K)γ ○ δ0 ∶ LanK(K)→ LL is a

natural transformation that makes the following diagram commute, γL ○LanK(K)γ ○ δ0 = θ.

LanK(K)K K

LanK(K)LanK(K)K LanK(K)K LK

LanK(K)LK LLK

δ0K

α

α
β

LanK(K)γK

LanK(K)α

LanK(K)β

γK

Lβ

γLK

Therefore γ ∶ LanK(K)→ L is a map of comonads.

A.5 Maps of AWFSs are AWFSs

We prove the folklore result that there is a bijective correspondence between maps of

AWFSs on C and maps of AWFSs on C 2. In fact, we can show that this correspondence is

functorial. We do not use this result anywhere else in this thesis.

Proposition A.5.1. There is an isomorphism of categories Φ ∶ AWFS(C )2 →AWFS(C 2).

Proof. We will begin with an object α in AWFS(C )2. This is a map of algebraic weak

factorization systems α ∶ (Cl,Fl) → (Cr,Fr) on C . Let E ∶ C 2 → C be the middomain

functor of (Cl,Fl) and let E′ ∶ C 2 → C be the middomain functor of (Cr,Fr). We will define

an algebraic weak factorization system Φ(α) = (Lα,Rα) on C 2. Let (Lα,Rα) ∶ (C 2)2 → (C 2)3

be the functorial factorization given by

f g
(u,v)

z→ f αv ○E(f, g) g
(Clu,Crv) (Flu,Frv)
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on the objects of (C 2)2 and by

f g

h k

(u,v)

(a,b) (c,d)
(s,t)

z→

f αv ○E(f, g) g

h αt ○E(h, k) k

(Clu,Crv)

(a,b) (E(a,c),E′(b,d))

(Flu,Frv)

(c,d)

(Cls,Crt) (Fls,Frt)

on morphisms of (C 2)2. Let E∗
α ∶ (C

2)2 → C 2 be the middomain functor of (Lα,Rα).

We can define a counit map ε⃗ Lα
(u,v) and a comultiplication map δ⃗ Lα

(u,v) for the endofunctor

Lα by

f αv ○E(f, g)

f g

(Clu,Crv)

(id ,id) εLα
(u,v)

(u,v)

and

f αv ○E(f, g)

f αCrv ○E(f,αv○E(f, g))

(Clu,Crv)

(id ,id) δLα
(u,v)

(ClClu,CrCrv)

respectively, where εLα
(u,v) = (εCl

u , ε
Cr
v ) = (Flu,Frv) and where δLα

(u,v) = (δCl
u , δ

Cr
v ). It is easy to

check that Lαε⃗Lα ○ δ⃗Lα = id = ε⃗LαLα ○ δ⃗Lα and δ⃗LαLα ○ δ⃗Lα = Lαδ⃗Lα ○ δ⃗Lα , since these coherence

conditions hold for Cl and Cr. Thus Lα is a comonad. Similarly, the endofunctor Rα is a

monad with unit map η⃗ Rα
(u,v) and multiplication map µ⃗ Rα

(u,v) given by

f g

αv ○E(f, g) g

(u,v)

ηRα
(u,v) (id ,id)

(Flu,Frv)

and

αFrv ○E(αv○E(f, g), g) g

αv ○E(f, g) g

(FlFlu,FrFrv)

µRα
(u,v) (id ,id)

(Flu,Frv)

respectively, where ηRα
(u,v) = (ηFl

u , η
Fr
v ) = (Clu,Crv) and where µRα

(u,v) = (µFl
u , µ

Fr
v ). The map

(δLα , µRα) ∶ LαRα → RαLα satisfies the distributivity axioms, since the component maps

(δCl , µFl) ∶ ClFl → FlCl and (δCr , µFr) ∶ CrFr → FrCr do. Therefore (Lα,Rα) is an algebraic

weak factorization system on C 2.

Consider the following morphism in AWFS(C )2 from α to β.

(Cl,Fl) (Cr,Fr)

(Xl,Yl) (Xr,Yr)

α

ζ θ

β
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Let E′′ and E′′′ be the functors C 2 → C associated to the factorizations (Xl,Yl) and (Xr,Yr),

respectively. Define Φ((ζ, θ)) as the natural transformation E∗
α → E∗

β given by (ζu, θv) ∶

αv ○E(f, g)→ βv ○E′′(f, g) on the objects (u, v) ∶ f → g of (C 2)2. Since (id , ζ) ∶ Cl → Xl and

(id , θ) ∶ Cr → Xr are maps of comonads, the map Lα → Lβ given by (id f , (ζu, θv)) ∶ Lα(u, v)→

Lβ(u, v) on (u, v) ∶ f → g is a map of comonads. Similarly, the natural transformation

Rα → Rβ given by (u, v)↦ ((ζu, θv), id g) is a map of monads on C 2. Since Φ commutes with

composition of morphisms and Φ of the identity morphism in AWFS(C )2 is the identity

morphism in AWFS(C 2), Φ is a functor AWFS(C )2 →AWFS(C 2).

Now suppose (L,R) is an object in AWFS(C 2). We will produce a map of algebraic

weak factorization systems Ψ((L,R)) on C . Let E∗ ∶ (C 2)2 → C 2 be the middomain functor

of (L,R). Consider the objects (u,u) ∶ idA → idB, (v, v) ∶ idC → idD and the morphism

((f, f), (g, g)) ∶ (u,u) → (v, v) in (C 2)2. We will define two endofunctors on C 2, Ll and

Lr. Since L(u,u) is an object in (C 2)2, we define (Llu,Lru) ∶= L(u,u) on the objects u of

C 2. Since L((f, f), (g, g)) = ((f, f),E∗((f, f), (g, g))) is a morphism in (C 2)2, there are

functors C 2 → C , El and Er, such that E∗((f, f), (g, g)) = (El(f, g),Er(f, g)). So we define

Ll(f, g) ∶= (f,El(f, g)) and Lr(f, g) ∶= (f,Er(f, g)) on the morphisms of C 2. Similarly,

we define endofunctors Rl and Rr on C 2. On objects u in C 2, (Rlu,Rru) ∶= R(u,u). On

morphisms, Rl(f, g) ∶= (El(f, g), g) and Rr(f, g) ∶= (Er(f, g), g). This gives us two functorial

factorizations (Ll,Rl) and (Lr,Rr) on C with associated functors El and Er, respectively.

We get counit and comultiplication maps for Ll and Lr from the counit and comultiplica-

tion maps of L. Namely, (εLl
u , ε

Lr
u ) ∶= εL

(u,u) and (δLl
u , δ

Lr
u ) ∶= δL

(u,u), where ε⃗L
(u,u) = (id idA , ε

L
(u,u))

and δ⃗ L
(u,u) = (id idA , δ

L
(u,u)). Similarly, (ηRl

u , η
Rr
u ) ∶= ηR

(u,u) and (µRl
u , µ

Rr
u ) ∶= µR

(u,u), where

η⃗R
(u,u) = (ηR

(u,u), id idB) and µ⃗R
(u,u) = (µR

(u,u), id idB). With these maps, Ll and Lr are comonads,
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while Rl and Rr are monads. Because (δL, µR) ∶ LR → RL satisfies the distributivity ax-

ioms, the component maps (δLl , µRl) ∶ LlRl → RlLl and (δLr , µRr) ∶ LrRr → RrLr each satisfy

distributivity of the comonad over the monad.

Define ξ
(L,R)
f as E∗(f, f) on each object f in C 2. Let (u, v) be a map f → g in C 2.

Consider the following map from (u, v) to (v, v) in (C 2)2.

f g

idB idD

(u,v)

(f,idB) (g,idD)
(v,v)

Applying E∗ to this map gives us the map E∗((f, idB), (g, idD)) = (El(f, g),Er(idB, idD)) ∶

E∗(u, v) → E∗(v, v) in C 2. Since Er(idB, idD) = idErv, this map expresses the relation

E∗(u, v) = E∗(v, v) ○El(f, g) = ξ
(L,R)
v ○El(f, g). Now the existence of δ⃗ L

(f,f) tells us that the

following square commutes.

Elf ElLlf

Erf ErLrf

E∗(f,f)

δL
l

f

E∗(Llf,Lrf)
δL
r

f

But this means that δLr

f ○ ξ
(L,R)
f = ξ

(L,R)
Lrf ○ El(idA, ξ

(L,R)
f ) ○ δLl

f . Thus (id , ξ(L,R)) ∶ Ll → Lr

is a map of comonads. Similarly, the existence of µ⃗R
(f,f) tells us that µRr

f ○ E∗(Rrf,Rlf) =

E∗(f, f) ○ µRl

f . So µRr

f ○ ξ
(L,R)
Rrf ○El(ξ

(L,R)
f , idB) = ξ

(L,R)
f ○ µRl

f and thus (id , ξ(L,R)) ∶ Rl → Rr is

a map of monads. So ξ(L,R) defines a map (Ll,Rl)→ (Lr,Rr) of algebraic weak factorization

systems on C . We therefore take Ψ((L,R)) to be ξ(L,R).

Let ρ ∶ (L,R) → (S,T) be a map of algebraic weak factorization systems on (C 2)2. Let

F ∗ be the middomain functor of (S,T). Since E∗ and F ∗ are functors (C 2)2 → C 2, they

can be decomposed as pairs of functors C 2 → C . So E∗ = (El,Er) and F ∗ = (F l, F r). The

natural transformation ρ ∶ E∗ → F ∗ also decomposes as a pair of natural transformations
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ρ = (ρl, ρr), where ρl is a natural transformation El → F l and ρr is a natural transformation

Er → F r. Since (id , ρ) ∶ L → S is a map of comonads, (id , ρl) ∶ Ll → Sl and (id , ρr) ∶ Lr → Sr

are both maps of comonads. Similarly, (ρl, id) ∶ Rl → Tl and (ρr, id) ∶ Lr → Tr are maps of

monads. Thus ρl ∶ (Ll,Rl)→ (Sl,Tl) and ρr ∶ (Lr,Rr)→ (Sr,Tr) are maps of algebraic weak

factorization systems on C . Define Ψ(ρ) to be the morphism

(Ll,Rl) (Lr,Rr)

(Sl,Tl) (Sr,Tr)

ξ(L,R)

ρl ρr

ξ(S,T)

in AWFS(C )2 from ξ(L,R) to ξ(S,T). We then have Ψ(ρ ○ σ) = Ψ(ρ) ○Ψ(σ) and Ψ(id) = id .

So Ψ is a functor AWFS(C 2)→AWFS(C )2. It is easy to see that Ψ is an inverse functor

for Φ.
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