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Abstract

We show that for a large class of algebraic model categories, the compact algebraic model
categories, the projective model structure on the functor category of any diagram exists and is
an algebraic model category. For a large class of these compact algebraic model categories,
the projective algebraic model structures themselves will be compact. This generalizes a
result of [Riell] for cofibrantly generated algebraic model categories. To prove our result,
we fix an issue with and generalize Garner’s construction of free algebraic weak factorization
systems [Gar08] and more fully develop the theory of algebraic model categories. We then
present an easy proof that the h-model structure on k-spaces is a compact algebraic model
structure. This gives a method for computing homotopy colimits of any shape of diagram
in the h-model structure.

We also define quasiaccessible categories, which both generalize locally presentable cate-
gories and include the categories of topological spaces and k-spaces. We define quasiaccessible
model structures on quasiaccessible categories, prove they have associated algebraic model
structures, and show how the Bousfield-Friedlander theorem can be applied to produce a
Bousfield localization of a quasiaccessible category that is itself an algebraic model cate-
gory. We then prove that the h-model structure on topological spaces is a quasiaccessible
model structure. We conclude with a characterization of certain accessible model categories

inspired by Smith’s theorem for combinatorial model categories.
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The results of this thesis provide general methods for dealing with large classes of non-

cofibrantly generated model structures on reasonably well-behaved categories.
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Chapter 1: Introduction

1.1 Neglected Model Categories on Spaces

The h-model structure on spaces, also called the Hurewicz model structure or the Strom
model structure, has an advantage over the Quillen model structure in that every object
in the h-model category is both fibrant and cofibrant. Despite this fact, the Quillen model
structure on Top and the Quillen equivalent Quillen model structure on sSet are far more
widely used across homotopy theory. One reason for this is that the Quillen model structures
on Top and sSet are cofibrantly generated whereas the h-model structure is not. Another
reason, in the case of sSet, is that the category of simplicial sets has a lot of useful structure,
much of which is captured by the fact that it is a locally presentable category.

Cofibrant generation is a smallness condition that makes many manipulations of the weak
factorization systems (WFSs) in a model category possible. Among other things, cofibrantly
generated model categories can be lifted along certain right adjoints. When % is a cofibrantly
generated model category, this make it possible to define the projective model structure on
the functor category €7 for any small category 2. We can then compute the homotopy
colimit of a diagram ¥ — ¥ by taking its cofibrant replacement in the projective model

category.



Cofibrantly generated WFSs were generalized by Garner in [Gar08] to cofibrantly gener-
ated algebraic weak factorization systems. Algebraic weak factorization systems (AWFSs),
introduced by Grandis and Tholen in [GT06] under the name natural weak factorization
systems, replace the property of having a lift in a WFS with the structure of a lift. More-
over, the functorial factorization of an AWFS on a category ¢ naturally factors maps in
% into maps in the left class followed by maps in the right class. This gives us a sort of
generalized version of “reflections” and “coreflections” of arrows in ¢ into the right and left
classes, respectively. The right class of a cofibrantly generated AWFS on a category ¥ is
characterized by the structure of a natural right lift with respect to a diagram of arrows in
%, rather than the property of having a right lift with respect to a set of maps in 4. Under
a mild condition on the category %, every cofibrantly generated WFES has an associated
cofibrantly generated AWFS. A few distinct technical advantages of AWFSs over WFESs are
the pointwise AWFSs of [Riell, §4.2] and the lift of the (co)fibrant replacement functor to
a category of (co)cofibrant objects described in [Riell, 3.5].

Not only does the structure of an AWFS have some technical advantages over that of
a WFS, but there are cofibrantly generated AWFSs which are not cofibrantly generated
WFSs. Riehl showed in [Riell, §4.4] that when % has the structure of a cofibrantly generated
algebraic model category, the projective model structure on the functor category €7 for any
small category & exists and is a cofibrantly generated algebraic model category. This makes
it possible to compute homotopy colimits for a larger class of model categories.

Both cofibrant generation with respect to a set and the more general cofibrant generation
with respect to a diagram can be thought of as smallness conditions on (algebraic) WFSs. In
this thesis, we introduce a much more general smallness condition on AWFSs and algebraic

model categories, which we call compactness. Both accessible WFSs and the WFSs of the



h-model structure on spaces can be given the structure of a compact AWFS. We promote the
new perspective that compact AWFSs and algebraic model categories are a good setting to
do homotopy theory. In particular, we are able to show that compact AWFSs can be lifted
along certain right adjoints. We then show that when % has the structure of an algebraic
model category and Z is small, the projective algebraic model structure on the functor
category €7 exists and is algebraic. So we have a method for computing homotopy colimits
in this context. When the AWFSs of the algebraic model category on % satisfy the stronger
smallness condition of being £-compact, we can show that the projective algebraic model
structure is £-compact.

The compactness of an AWFS is a very general condition. A compact AWFS is one
satisfying a smallness condition about behaving well with respect to certain filtered colimits.
This is weaker than having to preserve filtered colimits and even weaker than preserving
certain filtered colimits of monomorphisms. As such, accessible WFSs are just one example
of compact AWFSs. The most well-behaved form of compactness is £-compactness. Rather
than requiring that the endofunctors of an AWFS preserve filtered colimits, £-compactness
only requires that they preserve filtered colimits “up to epimorphisms”, or at least some
class of epimorphisms. Examples of £-compact AWFSs are accessible AWFSs and the WFSs
of the h-model structure on k-spaces.

The fact that the h-model structure on k-spaces is an £-compact algebraic model category
is a major result of this thesis. Many of the constructions previously reserved for cofibrantly
generated categories can now be done for the h-model structure. In particular, we can
lift it along certain right adjoints and we are able to show that the projective algebraic

model structure exists for the h-model structure on any category of diagrams. Moreover the



projective model structure is £-compact itself. This result could open the way for h-model
structures to have a more important role in modern homotopy theory.

By [Col06b], there is a mixed model structure on k-spaces whose weak equivalences are
weak homotopy equivalences and whose fibrations are Hurewicz fibrations. We call this the
m-model structure. We are able to use the £-compactness of the h-model structure to show
that the m-model structure is algebraic. Unfortunately, we are not able to show that the
m-model structure is compact.

It has come to the author’s attention that it is shown in [Gaul9, §4] that the q-, h-,
and m-model structures on the locally presentable category of delta-generated spaces are
accessible model structures. So there is some precedent for the ideas presented here.

The category of simplicial sets has many nice properties that often make it the preferred
model for a category of spaces over topological spaces themselves. Many of these properties
are captured by the structure of a locally presentable category. The canonical counterexam-
ple to a locally presentable category is the category of topological spaces. The category Top
is too large to be able to express every object as a filtered colimit of spaces in a fixed set.
We present an alternative to this perspective as well. We define quasiaccessible categories,
which are, roughly, categories whose objects can be expressed as certain filtered colimits “up
to epimorphisms” of objects in a fixed set. Every locally presentable category is quasiacces-
sible. Moreover, we prove that the categories of topological spaces and k-spaces are both
quasiaccessible categories.

We are able to recover much of the theory of accessible categories in the context of quasi-
accessible categories. We define quasiaccessible WFSs and prove that every quasiaccessible

WEFSs has an associated algebraic weak factorization system, an analog of a result of Rosicky



in [Ros17] for accessible WFSs. This allows us to show that every quasiaccessible model cat-
egory has an associated algebraic model category. We prove that the Bousfield-Friedlander
theorem can be used to localize quasiaccessible model categories and that the localized model
category we get from this process is a quasiaccessible model category. Then the localized
model category has an associated algebraic model category. Finally, we prove that the h-
model structure on topological spaces is quasiaccessible. So it is possible to Bousfield-localize
the h-model structure and get back an algebraic model category.

In the final section of this thesis, we give a characterization of accessible model categories
whose weak equivalences are accessible and accessibly embedded. This result was motivated

by Smith’s theorem for combinatorial model categories.

1.2 Organization of this Thesis

Chapter 2 serves the dual purpose of establishing the conventions and much of the no-
tation that we will use throughout this thesis and of presenting G. M. Kelly’s construction
of free monads and monoids in [Kel80]. Most of the important, nonstandard definitions and
notation are in sections 2.1.1 - 2.1.5 and section 2.4.1. We in particular want to point out
that in section 2.1.5 we commit to using the term “R-algebra” for the algebras of a pointed
endofunctor R. Even when R is a monad, the unqualified R-algebras will refer to the algebras
for the underlying pointed endofunctor. Likewise, the unqualified term “L-coalgebra” will
refer to a coalgebra for the copointed endofunctor L.

Our treatment of free monads closely follows the approach in [Kel80]. We prove some
of the results there in more detail. We also place an emphasis on free monad sequences
first, before the smallness condition on pointed endofunctors. If the free monad sequence

on a pointed endofunctor (T, 7) converges objectwise, then the free monad on (T, 7) exists



and is given on each object by the value the free monad sequence evaluated on that object
converges to. This is true even if the endofunctor T does not satisfy the smallness condition
of section 2.4. One departure from [Kel80] is our definition of weakly convergent free monad
sequences in section 2.3.4. Weak convergence is more general than objectwise convergence,
but it is still strong enough to prove that the free monad on a pointed endofunctor exists.
Weak convergence plays an important role in the proof in chapter 3 that free AWFSs on
certain left algebraic weak factorization systems (LAWFSs) exist. In fact, there was an issue
with Garner’s original proof of this result and weak convergence is what is necessary to make
his proof go through.

In section 2.4, we introduce a smallness condition on endofunctors that guarantees their
free monad sequences converge objectwise and therefore converge weakly. We also discuss a
special case of this smallness condition that is inherited by the free monad in section 2.4.4.
This is a new result, which makes many of the nice properties of £-compact AWFS possible
in later sections, including our proof in chapter 5 that the h-model structure on k-spaces is
an £-compact algebraic model category.

In section 2.5, we show that weak convergence of the free monoid sequence for pointed
objects in certain strict monoidal categories implies the existence of free monoids on those
objects.

In chapter 3, we present our correction of Garner’s construction of free AWFSs in [Gar(§]
and [Gar(07] alongside a few original results. We also generalize Garner’s construction to
make use of the full generality of Kelly’s paper in the process. After introducing AWFSs
and LAWSF's, we prove some results about how their categories of algebras and coalgebras
behave with respect to categorical lifts in 3.1.3. In 3.2.1, we present a variant of Garner’s

proof that the category of LAWFSs has the structure of a strict monoidal category and that



the monoids in this category are the AWFSs. This makes it possible to apply the results
of section 2.5 to the construction of free AWFSs on LAWFSs. We also define compact and
E-compact endofunctors, functorial factorization systems, and model categories in section
3.2.2. The notation and definitions we introduce in section 3.2.2 are important for the rest
of the chapters in this thesis. We show that the free monoid sequence on a compact LAWFSs
converges weakly. So free AWFSs exist on compact comonads and compact LAWFSs.

We prove some useful results in 3.3 about £-compact objects. Specifically, we show that
free AWFSs on £-compact LAWFSs are £-compact and that a model category whose weak
factorization systems have associated £-compact LAWFSs can be given the structure of an
E-compact algebraic model category.

In sections 4.1.1 and 4.1.2, we define compact adjunctions, show that it is possible to
transfer a compact AWFS along a compact right adjoint, and prove that when an acyclicity
condition is satisfied, we can transfer an algebraic model category along a compact right
adjoint. While this result is known for cofibrantly generated model categories [GS07, 3.6],
cofibrantly generated algebraic model categories [Riell, §3.3], and for accessible model cat-
egories [GKR20], it has not been shown in this level of generality before. We use this to
prove in 4.1.3 that when % has the structure of a compact algebraic model category, the
projective model structure on the functor category €7 exists and is algebraic for any small
category Z. Furthermore, when the algebraic model structure on ¢ is £-compact, then the
projective algebraic model structure is £-compact.

In chapter 5, we prove that the h-model structure on k-spaces has an associated £-compact
algebraic model structure and that the m-model structure on k-spaces has an associated
algebraic model structure. We reduce the existence of an &£-compact algebraic h-model

structure on any topologically bicomplete category to the £-compactness of two LAWFSs.



So this provides an entirely different condition for the existence of the h-model structure on
a topologically bicomplete category than the monomorphism hypothesis in [BR13]. So even
just the existence of an h-model structure in this case is a new result, but we also get that
the h-model structure is algebraic and £-compact. While [BR13] needed the monomorphism
hypothesis to prove the existence of the h-model structure and fix an issue with the proofs
in [Col06a] and [MS06, §4], the monomorphism hypothesis does not seem to be adequate
to show the h-model structure is algebraic. In [BR13] they could only show one of the
factorizations of the h-model structure was algebraic. In 5.1.4, we reduce our condition that
the two LAWFSs are £-compact to conditions on the topologically bicomplete category itself.
We then show in 5.1.5 that the category of k-spaces satisfies these conditions. Therefore the
h-model structure on k-spaces exists, is algebraic, and is £-compact.

We show in section 5.2.1 that under certain conditions a mixed model structure inherits
the structure of an algebraic model category. Under stricter conditions this mixed algebraic
model category will be £-compact. We show in section 5.2.2 that the m-model structure on
k-spaces has an associated algebraic model structure.

In chapter 6, we define quasiaccessible categories. These categories generalize locally
presentable categories and include the categories of topological spaces and of k-spaces. We
are able to prove an analog of a surprising number of results for accessible categories in this
more general context. We introduce quasiaccessible and weakly quasiaccessible functors in
6.2.1. Through some highly technical proofs in sections 6.2.2 and 6.2.3, we are able to show in
6.2.4 that the forgetful functor Uy, : Coalg; — % for a quasiaccessible copointed endofunctor
L on ¥ is a weakly quasiaccessible functor. This, along with our slight generalization of the
special adjoint functor theorem in A.3, is enough to show that Up, has a right adjoint. It

then follows that the cofree comonad on L exists and is a compact endofunctor.



We use our results on quasiaccessible copointed endofunctors to show that every quasiac-
cessible WF'S has an associated compact LAWFS and an associated AWFS in section 6.3.1.
Therefore, every quasiaccessible model category has an associated algebraic model category.
Under some mild hypotheses, we show that the localized model category produced by the
Bousfield-Friedlander theorem is a quasiaccessible category when the original category is
quasiaccessible in 6.3.2. Therefore, in this case, the localized category has an associated
algebraic model category. We show in 6.3.3 that the h-model structure on Top is quasi-
accessible. The author has not yet been able to prove this for the h-model structure on
k-spaces.

In chapter 7, we discuss a characterization of accessible model categories whose weak
equivalences are accessible and accessibly embedded. Unlike in combinatorial model cate-
gories, it does not seem to be the case that the weak equivalences in an accessible category
must be accessible and accessibly embedded. Without this assumption on the weak equiv-
alences, the problem of characterizing accessible model categories seems intractable to the
author. FEven giving ourselves this assumption, the characterization we do obtain is of
questionable utility. It certainly is nowhere near as easy to apply as Smith’s theorem for

combinatorial categories.

1.3 Contributions

Most of chapter 2 is expository. Our treatment of the weak convergence of free monad
sequences and free monoid sequences in sections 2.3.4 and 2.5.1 is original. Also the results
in 2.4.4 are new.

The definitions of the categorical lift operations (-)2 and 2(-) in section 3.1.3 are due

to Garner [Gar08]. While the author is aware of [BG16a, §2.7], the results about categorical



lifts in the remainder of section 3.1.3 are more general, complete, and organized than what
currently exists in the literature. Our definitions of compact and £-compact endofunctors
are generalizations of ideas in [Gar08] and [BR13]. In section 3.2.3, we use weak convergence
to fix a mistake in Garner’s proof of the existence of free AWFSs on LAWFSs. In the process
we generalize his results. Our generalization is a straightforward application of the results
in [Kel80] and was no doubt known by Garner, although it is not present in his papers. The
result 3.2.19 (3.1.4) seems to be new and is enabled by our work on categorical lifts in section
3.1.3. The results in section 3.3 are all new.

The results in chapter 4 are original in the algebraic context. Special cases of 4.1.8 and
4.1.12 are known for cofibrantly generated algebraic model categories [Riell, §3.3, §4.4] and
for accessible model categories [GKR20].

While the factorization system (L4, Ry) in section 5.1.3 was constructed in [Col06a] and
its properties were shown in [BR13], as far as the author is aware, the factorization system
(L1,R41) is new. Theorem 5.1.9 is original. The results in sections 5.1.4 and 5.1.5 are all
new. The algebraic parts of section 5.2 are new.

The material in chapter 6 closely mirrors results in [AR94], but is all entirely new in this
context.

The results in section 7.2 are the author’s, except where otherwise indicated.

The propositions in A.3 are slight variations on more well-known results. Proposition
A.5.1 in A.5 may have been folklore, but we actually work out the proof. This result is not

used anywhere else in this thesis, but seemed interesting enough to include.
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1.4 Future Work

It is likely that many of the important concepts in this thesis are not in their correct
final form. Since it seems unlikely that the free AWFS on an (£, M’)-compact LAWFS
will satisfies a version of compactness itself, it would probably be better to define compact
AMC s to be the ones freely generated by (€, M’)-compact LAWFSs (C;, F) and (C, F;) with
|Algg| = F and |Algg,| = F n W. It would then likely be possible to transport these model
structures along adjunctions and show that the projective model structure on any diagram
category €7 exists by transporting the compact LAWFSs. This perspective already seems
to be implicit in our proofs of 5.2.1 and 6.3.4.

Another concept that would likely benefit from reformulation is the notation of quasiac-
cessible functor. It seems that our current definition is too strict, since it does not apply
to accessible functors or to the h-model structure on k-spaces. It is the belief of the author
that all of the results will still go through if we only require that quasiaccessible functors
preserve E-tightness of (M, \)-cocones and send objects in some sufficiently dense subcol-
lection M’ ¢ M to objects in M. This subcollection should be the A-pure morphisms in the
case of accessible functors and the closed subspace inclusions in the case of the factorizations
of the h-model structure on k-spaces. It may be easier to also include this weakening in the
definition of quasiaccessible categories.

It may be possible to prove that quasiaccessible model categories lift along certain left
adjoints. We would then be able to prove that the injective model structure exists on any
category of diagrams in a quasiaccessible model category. This would provide a method for

computing homotopy limits of arbitrary diagrams in the h-model structure.
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There is likely much more that can be said about Bousfield localization of compact alge-
braic model categories beyond the Bousfield-Friedlander theorem for quasiaccessible model

categories.
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Chapter 2: Free Monads and Monoids

The problem of the construction and existence of free monads on pointed endofunctors has
its origin in the orthogonal subcategory problem. Kelly’s paper [Kel80] is the culmination of
the work of many mathematicians in the 70’s on these problems. Kelly’s paper unified these
results, generalized them, and corrected some mistakes in the literature. The introduction
to [Kel80] provides a nice summary.

Our goals in this chapter are to establish the notation we will use throughout this thesis,
to give an exposition of the relevant results in [Kel80] about the existence of free monads on
pointed endofunctors, and to present a couple additions to Kelly’s work that will be useful
in later sections. Most of the definitions and notation that we need in later chapters that is
nonstandard or not well-known is concentrated in sections 2.1.1 - 2.1.5 and some in section
2.4.1. Section 2.2 is important for understanding what a free objects is and our approach to
the construction of free monads on pointed endofunctors. The reader who is not interested
in the intricate details of the free monad construction may skip much of the material in
sections 2.3 and 2.4. The important theorems from those sections are listed below. Section
2.5 shows how to apply our results on the existence of free monads to the existence of free

monoids.

Theorem 2.3.22. If the free monad sequence for (T,T) converges weakly, then the free

monad on (T,7) exists.
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Theorem 2.3.23. If the free monad sequence for (T,T) converges objectwise, then it con-

verges weakly.

Theorem 2.4.23. Let € be a cocomplete category equipped with well-copowered, left proper,
orthogonal factorization systems (£, M) and (£',M"). If (T,7) is a pointed endofunctor on
€ and T : € - € preserves E-tightness of (M, X)-cocones for a reqular cardinal X, then the

free monad sequence on (T,T) converges objectwise.

Proposition 2.4.25. Let € be a cocomplete category equipped with a well-copowered, left
proper, orthogonal factorization system (€, M). If (T,T) is a pointed endofunctor on € and
T :% — € preserves E-tightness of M-filtered cocones for a regqular cardinal X\, then the free

monad on (T,T) preserves E-tightness of A-filtered cocones.

2.1 Category Theory

2.1.1 Preliminaries

We will work in a Grothendieck universe. In a few places we will need a second Grothendieck
universe that contains the first, so that we can speak of metacategories, like CAT and
CAT/%? in section 3.2.5. The terms small collection and large collection will refer to sets
and proper classes, respectively. A set X is A-small for a cardinal X if there are fewer than
A elements in &

In general, we will not require our categories to be locally small. When X and Y are two
objects in a category %, we will use the notation ¢’ (X,Y") for the collection of homomor-
phisms in ¢ from X to Y. The notation 0b(%") will be used for the collection of objects in
.

A category € is A-small for a cardinal X if there are fewer than A morphisms in €. A
category € is small if there is a cardinal A such that % is A-small. Equivalently, a category
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is small if it is locally small and the collection of its objects is a set. A category is large if
it is not small. We reserve the term diagram in a category % for a functor D : Z - % on a
small category 2. We will specify that the functor D : ¥ - € is a large diagram in € when
2 is a large category. A A-small diagram is a diagram D : 2 — € on a A-small category Z.

Let X be an object in a category € and let AZ : 2 — € be the constant diagram on
2 valued at X. A cocone for a diagram D : & — € is an object X and a natural transfor-
mation o : D - A%. We will use the notation o : D= X for this natural transformation.
Dually, a cone o : X — D for a diagram D : & — % consists of an object X and a natural
transformation a: A% — D.

If X is a collection of objects in a category &7, then Full(X) and Disc(X) will denote
the full and discrete subcategories of .7 on the objects in X, respectively. If F': &/ — A
is a functor, we will use the notation F'(X) for the collection of objects {F X | X € X'} in
A. 1f Y is a collection of objects in &, then F~1()) will denote the collection of objects
{X|FX e)Y}in o/. We extend this notation to subcategories 2" of &/ and # of £ as well.
So F(Z')=F(ob(Z")) and F-Y(#) = F-Y(ob(%)).

We will use the following notation.

e 2 for the category . — . freely generated by a single map with distinct domain and

codomain

e 3 for the category . —.—. freely generated by two composable maps between 3 distinct

objects

e out for the category .« .—. freely generated by two maps with the same domain and

distinct codomains
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e in for the category .—. <. freely generated by two maps with the same codomain and

distinct domains

In general, when &7 and € are categories, then 4 will denote the category whose objects
are functors & - % and whose morphisms are natural transformations.

The most important functor category in this thesis is 2. We will represent a map

1. b

—
in €2 from f to g by the pair (u,v). There is a functor dom : €2 - % that sends objects
f:X =Y to X and morphisms (u,v) : f - g to u. We also have a functor cod : €2 - €
that sends objects f: X =Y to Y and morphisms (u,v): f - g to v.

We will use the notation &%, 5%, MY, and M=' for the collections of epimorphisms,
strong epimorphisms, monomorphisms, and strong monomorphisms, respectively, in a given

category.
2.1.2 Cardinals and Ordinals

We will identify small categories & satisfying the following conditions with partially

ordered sets.
e For any two objects X and Y in 2, the cardinality of Z(X,Y) is at most 1.
o [f there are maps X - Y and Y - X in &, then X =Y.

A small category Z is equivalent to a partially ordered set when it satisfies the first condition
and X 2 Y in the second condition.

Let Ord be the category of ordinal numbers. This is a large, locally small category whose
objects consist of all ordinal numbers. There is a unique morphism « —  in Ord from an
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ordinal « to an ordinal 5 exactly when o < 5. The ordinal 0 is the initial object of Ord. For
each ordinal «, let Ord., be the full subcategory of Ord on the ordinal numbers smaller
than «. Then Ord., is a small category which can be identified with the partially ordered

set «.

Definition 2.1.1. We will take a transfinite sequence in a category % to be a functor

F :0rd —» €. For each ordinal o, an a-sequence in € is a functor F : Ord., - %.

Definition 2.1.2. A transfinite sequence F': Ord — € is cocontinuous if F'(y) 2 colimge, F'()
for every limit ordinal +. A transfinite sequence of ordinals F': Ord — Ord is strictly in-

creasing if F'(a) < F(f) whenever a < 3.

Let a be an ordinal. We can extend the above definitions to a-sequences F': Ord., - €
and F': Ord., — Ord by restricting to ordinals less than «. Every strictly increasing
transfinite sequence (or a-sequence) in Ord is an injective functor on objects.

We can define a cocontinuous transfinite sequence F': Ord — % inductively by specifying
a value for F'(0) and a rule that defines F'(a+1) and F'(ov > av+1) whenever F'(«) is defined.
The transfinite sequence is completely determined by these specifications.

In a category €, the term transfinite composition will refer to the constituent map «y :

F(0) - colim F' of the colimiting cocone « : F'— colim F' of a cocontinuous a-sequence

F:0Ord., ~ %.

Definition 2.1.3. An infinite ordinal « is reqular if every final full subcategory of Ord.,, is

isomorphic to Ord.,.
We will use the notation |a| for the cardinality of an ordinal .

Definition 2.1.4. An ordinal « is initial if || < || for every ordinal 5 < av.
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For each cardinal A, there is a unique initial ordinal o with || = A. We will say « is the
wnitial ordinal of X in this case.
Every regular ordinal is an initial ordinal, but not every infinite initial ordinal is regular.

Every infinite initial ordinal is a limit ordinal, but not every limit ordinal is initial.

Definition 2.1.5. An infinite cardinal \ is regular if
Z /\z <A
€L

for every A-small set {)\;};cz of cardinals \; < A.
Every infinite successor cardinal is a regular cardinal.

Proposition 2.1.6. An ordinal is reqular if and only if it is the initial ordinal of a reqular

cardinal.

Proof. Let a be a regular ordinal. Then it is an initial ordinal. Suppose there is an |a|-small
set {\; }iez of cardinals \; < |a] such that Y.z \; = |a|. Let 8 be the initial ordinal of the
cardinality of Z. Every element ¢ € Z corresponds to a unique object 3; in Ord.z We can
then construct a strictly increasing cocontinuous 3-sequence of ordinals F': Ord.s - Ord.,
such that |F(5;)| > A\; for each i € Z : If we run out of ordinals less than « at an ordinal
5" < B, the first of the following contradictions holds with £’ in place of 8. If the colimit of
F in Ord is equal to a, then Ord.s = Ord., and |a| = ||, which is a contradiction. If the
colimit of ' in Ord is an ordinal ¢ < «, then [(| > ¥ ;.7 A; = ||, which means « is not initial
which is another contradiction. So |« must be a regular cardinal.

Conversely, suppose A is a regular cardinal. Let a be the initial ordinal of \. Suppose
2 is a final full subcategory of Ord.,. Since the underlying set of & is well-ordered, there

is an isomorphism & ¢ Ord.s for some 3 < a. If || < |af, then the equality ¥ .c,p2)[C] =
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|colim 2| = X means A is not regular, a contradiction. If § < a and |3] = |, then « is not

initial, a contradiction. So 8 =« and « is a regular ordinal. O

Example 2.1.7. The ordinal w is the initial ordinal of R and it is a regular ordinal. The
ordinal w-2 is a limit ordinal, but it is not initial, since |w - 2| = ®y. Therefore it is also not
regular. The cardinal Ry and its successors Ry, Rq, --- are regular cardinals. The limit cardinal

R, is not a regular cardinal. The initial ordinal of &, is not a regular ordinal.

Let X\ be a regular cardinal. A \-directed set is a partially ordered set X such that every

A-small subset of X has an upper bound. A directed set is an Rg-directed set.

Definition 2.1.8. A regular cardinal x is sharply smaller than a regular cardinal \ if for
every A-directed set D, every k-small subset of D is a subset of a k-small A-directed subset

of D.

We will use the notation x < A when x is sharply smaller than A. The relation < is
transitive on the regular cardinals. For every regular cardinal A\, A< A* and A< (2*)*, where

A" is the successor cardinal of .
2.1.3 Cocones and Colimits

Let A be a regular cardinal. A category is \-directed if it is a A-directed partially ordered
set. Some authors define \-directed categories as A-directed preordered sets rather than
partially ordered sets. As a consequence of proposition 2.1.14, this distinction is rarely
important. A category ¥ is A-filtered if every A-small diagram in % has a cocone. Every
A-directed category is a A-filtered category. A category Z is A-sequential if & is equivalent
to Ord., for some regular ordinal o with || > A\. By the following proposition, every

A-sequential category is A-directed.
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Proposition 2.1.9. Let A be a regular cardinal. For every reqular ordinal o with |of > A,

Ord., s a A-directed category.

Proof. Let D : 2 < Ord., be the inclusion of a A-small subcategory. Since the cardinality
of 0b(2) is less than |a|, 2 cannot be isomorphic to Ord.,. So Z is not a final subcategory
of Ord.,. This means there is an object § in Ord., that does not have a map to any object
in 4. In other words, 8 > 3’ for each object 3’ in . By uniqueness of maps in Ord.,,
there is a cocone D — 3. So 3 corresponds to an upper bound for the underlying partially

ordered set of & in the underlying partially ordered set of Ord.,. O]

Let X be a regular cardinal. A diagram D : ¥ — € is \-sequential, A-directed, or \-filtered
if 7 is a small A\-sequential, A-directed, or A-filtered category, respectively. When A\ = R, we
call A-directed and M-filtered diagrams directed and finitely filtered diagrams, respectively. A
cocone a : D —— X is A-sequential, \-directed, or \-filtered if D is a A-sequential, A-directed,

or Mfiltered diagram, respectively.

Remark 2.1.10. Whenever A and k are regular cardinals with x > A, then every r-filtered di-
agram is A-filtered. So every functor that preserves A-filtered colimits in particular preserves

k-filtered colimits.

The notation a : D= X for a cocone can at times be cumbersome to work with. For
this reason we will often instead use the notation {ay: Yy - X}, for a cocone a: D —> X
where Y; = Dd and d ranges over the objects of . The trade-off with this notation is that
the morphisms of the diagram D are implicit. Borrowing terminology from directed colimits,
when u : d; — dy is a morphism in 4, we will refer to Du: Dd; - Dds as a connecting mor-
phism of the cocone {agy}y4. Unlike in the case of a directed cocone, a connecting morphism

between objects d; and ds indexing a general cocone does not have to be unique.
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Let D: 9 - % and let E: & - € be diagrams. A map F : a — 8 of cocones av: D —— X
and f: F—— X is a functor F': ¥ — & such that EFd = Dd and fBrq = a4 for each object
d in 2. The cocone « is a subcocone of § if F': 9 — & is the inclusion of a subcategory. A
map F':a — § of cocones a: D—— X and f: E—— X is final if F': 2 - & is a final functor.

Let X be an object in a category € and let D : & — € be a diagram. Recall, the comma
category D | X has an object for each pair (d, f) of an object d in & and a morphism
f:Dd—- X in €. A morphism u : (dy,f) = (ds,g9) in D | X isamap u:d; - dy in &
such that go Du = f. Often we can refer to just the map f: Dd - X as an object of D | X
without confusion. The comma category comes with a functor ® : D | X - % that sends
objects (d, f) to Dd and sends morphisms u : (dy, f) = (ds,9) to Du : Ddy - Dds. We
call ® the canonical diagram of X relative to D. There is a cocone ¢ : ® — X defined by
0@, = f+Dd— X. The cocone ¢ : &= X is the canonical cocone of X relative to the
diagram D. If & is a subcategory of € and D : ¥ — € is the subcategory inclusion functor,
then we will say ¢ is the canonical cocone of X relative to Z. If D is a collection of objects
in ¢ and 2 = Full(D), then we will say ¢ is the canonical cocone of X relative to D.

Let X be a collection of morphisms in a category % and let X be an object in €. An
X-map is a map in X.

Definition 2.1.11. We will say a cocone o : D — X is an X'-cocone if ag: Dd - X is an

X-map for each object d in . When ) is a regular cardinal and « is both a A-filtered cocone

and an X-cocone, we will say « is an (X', \)-cocone.

For a diagram D : 9 - €, let D |x X be the full subcategory of the comma category D | X

on the objects (d, f) such that f: Dd - X is an X-map in %.

Definition 2.1.12. Let D : 4 - % be a diagram. The canonical X-diagram of X with
respect to D is the restriction ®|y : D |y X — € of the canonical diagram ®: D | X - % to
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the subcategory D |y X. The canonical X-cocone of X with respect to D is the restriction

of the canonical cocone ¢ : ® = X to the diagram ®|y.

By the universal property of colimits, a cocone {f; : X4 - X}4 defines a map g¢ :
colimy Xy — X. At times, we will write g as colimy f4, since the above cocone defines a

colimiting cocone {f; - g}4 in the arrow category %2.

Definition 2.1.13. Let X be a collection of maps in a category % and let 2 be a small

category.

e A cocone {f;: Xy > X}y in € is X-tight if the colimit colimy Xy exists and the map

g :colimy X4 - X defined by the cocone is an X-map.

e An endofunctor F' : € — € preserves X-tightness of cocones of shape & if whenever
a: D—>(C'is an X-tight cocone on a diagram D : ¥ — €, the cocone Fa: FD —— F(C

is X-tight.

We will sometimes use an analogous condition for a functor F': .o/ — % between cat-
egories. When X is a collection of maps in 7, ) is a collection of maps in 4, and ¥
is a small category, we say that F' sends X-tight cocones of shape & to Y-tight cocones if
Fa:FD— F(C'is a Y-tight cocone whenever a: D — (' is an X-tight cocone on a diagram
D : 9 - &/. Colimiting cocones in a category % are exactly the X-tight cocones for the
collection X of isomorphisms in €.

The following results show that A-directed and A-filtered diagrams are often interchange-

able.

Proposition 2.1.14 ([AR94, 1.21]). For every regular cardinal X\ and every small \-filtered

category €, there is a final functor D : 9 — € on a \-directed category 9.
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Corollary 2.1.15. Let A be a reqular cardinal. A category has A-filtered colimits if and only

iof it has A-directed colimits.

Corollary 2.1.16. Let A be a reqular cardinal. A functor F : of — AB preserves \-directed

colimits if and only if F' preserves \-filtered colimits.

Remark 2.1.17. Although it is true that a category has Ry-directed colimits if and only if it
has Rg-sequential colimits and that a functor preserves Ry-directed colimits if and only if it

preserves Ro-sequential colimits, this does not have to be true for regular cardinals A > R.

[AR94, 1.7, 1.21].
2.1.4 Monads and Comonads

Definition 2.1.18.

e A pointed endofunctor on a category € is a pair (R,n) consisting of a functor R: ¢ - €

and a natural transformation 7 : Id - R.

e A copointed endofunctor on a category % is a pair (L,¢) consisting of a functor L :

% — € and a natural transformation € : L — Id.

We will call the natural transformations 7 and e the unit and counit maps of R and L,
respectively. We will refer to an endofunctor F : ¢ — € itself as a (co)pointed endofunctor
when a (co)unit map for F exists.

A map 0: (R,n) - (R',n') of pointed endofunctors is a natural transformation 6 : R - R/
such that n”’ o0 =n. A map 0 : (L,e) - (L',¢') of copointed endofunctors is a natural

transformation 0 : L — I/ such that §oe =¢’.

Definition 2.1.19.
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e A monad on a category % is a triple (R, 7, ) consisting of a pointed endofunctor (R, 7)

and a map p: RR - R such that the following diagrams commute.

R ", RR <R RRR —*5 RR
k ”ﬁ x| I
R RR —2 3 R

e A comonad on a category % is a triple (L,e,d) consisting of a copointed endofunctor

(L,e) and a map ¢ : . > LL such that the following diagrams commute.

L L — 5 LL
A T S
L+~ LL 4> L LL —— LLL

We will call the natural transformations p and 6 the multiplication and comultiplication
maps of R and L, respectively. We will refer to an endofunctor F : € — % itself as a
(co)monad when maps exist that give F the structure of a (co)monad.

A map 6 : (R,n,pn) - (R,n',i') of monads on € is a map of pointed endofunctors

0:(R,n) — (R/,n’) such that the following diagram commutes.

RR —25 RR’ —®°5 R'R/

g L

R 0 s R/

A map 0 : (L,e,0) — (L',&,0") of comonads on € is a map of copointed endofunctors

0:(L,e) —» (L', &") such that the following diagram commutes.

L 0 s L

L s

LL 2 o 22 1y

Note that R’ o RO = R0 0 R and 0L/ o L = 1’6 o 0L, since functor composition in End(%)

1s monoidal.
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Let End(%’) be the functor category ¢ whose objects are endofunctors on ¢ and whose
morphisms are natural transformations. Let pEnd(%) be the category whose objects are
pointed endofunctors on ¥ and whose morphisms are maps of pointed endofunctors. The

following observations will be useful.

Proposition 2.1.20. The forgetful functor pEnd(%) — End(%) creates large connected

colimits.

Proof. Given a connected, possibly large, diagram in End (%) that factors through pEnd(%),
we can create a new diagram of endofunctors by adding the point Id and all of the unit maps
to the original diagram. Then the original diagram is a final subdiagram of the new diagram.
When the colimit of the new diagram in End(%) exists, the colimiting cocone includes a
map from Id to the colimit. Taking this as the unit for the colimiting endofunctor, we get
that the diagram is a colimiting diagram in pEnd(%).

If D: 2 - End(%) is a diagram that factors through pEnd(%¢) and if « : DT
is a cocone in End(%’), then T" must be a pointed endofunctor and o must be a cocone
in pEnd(%). Therefore, if the colimit of D exists in pEnd(%), then it is a colimit in

End(%). 0

Let Cmd(%) be the category whose objects are comonads on % and whose morphisms

are maps of comonads.

Proposition 2.1.21. The forgetful functor Cmd(%¢) — End(%) creates colimits of the

(possibly large) diagrams whose colimits ezist in End(%).

Proof. Let D : 2 — End(%) be a possibly large diagram that factors through Cmd(%)
whose colimit in End(%) exists. Let (Dd,e? %) be the comonad structure on Dd for
each object d in . Let L = colim D with colimiting cocone ( : D—=L. If we define
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04 := (4L o Dd(400%: Dd - LL on each object d, then the fact that the connecting maps
of the diagram D are maps of comonads implies that 6 : D — LL is a cocone. This cocone
defines a map 0 : L - LL out of the colimit satisfying the relations d o {4 = (4L o Dd(; o 6°.
In the same way, we can define a map € : L > Id out of the colimit satisfying the relations
go(y =e% The fact that each Dd is a comonad and the universal property of the colimit

imply the comonad axioms hold for (L,e,0). So the colimit of D exists in Cmd(%). O
Corollary 2.1.22. The category Cmd(%’) is cocomplete when € is cocomplete.

Remark 2.1.23. With the operation o of endofunctor composition and the identity functor
Id:€ - €, (End(%),0, Id) is a strict monoidal category. A monad on % is a monoid in the
strict monoidal category (End(%),o, Id). Conversely, every monoid X in a strict monoidal

category (%¢,®,1I) defines an endofunctor X ® (=) : ¢ — % which is a monad on %

We will see in proposition 2.1.28 that monads and comonads always come from adjunc-

tions. Conversely, every adjunction has an associated monad and comonad.

Proposition 2.1.24 ([Bor94a, 4.2.1)). Suppose F': o/ — A is the left adjoint of a functor

G:AB -~ .
a

75 1 O3
~_ "

F

Leté: FG — Id and v : Id - GF be the counit and unit maps, respectively, for the adjunction.

e The endofunctor GF : &/ - o/ with the maps v:Id - GF and GEF : GFGF - GF is

a monad (GF,v,GEF) on o .

e The endofunctor FG : 8 - B with the maps £ : FG - Id and FvG: FG - FGFG is

a comonad (FG,&, FvG) on A.
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2.1.5 Algebras and Coalgebras

A coalgebra for a copointed endofunctor (L,¢) on a category % is a pair (X, k) of an
object X and a morphism k: X - LX in % such that exok =idx. An algebra for a pointed
endofunctor (R,n) on % is a pair (Y,s) of an object Y and a morphism s : RY - Y such
that s ony = idy. We will call such pairs (X, k) and (Y,s) L-coalgebras and R-algebras,
respectively. We will also say an object X in % is an L-coalgebra if a map k: X - LX exists
such that (X, k) is an L-coalgebra. Similarly, we will use the term “R-algebra” to refer to
both the structure of an R-algebra and the property of having an R-algebra structure.

For a copointed endofunctor L. on a category %, we have a category of L-coalgebras,
Coalg;,, whose objects are pairs (X, k) such that X is an object in ¢ and k: X - LX is
a map exhibiting X as an L-coalgebra. A morphism (X, k) - (Y,l) in Coalg; is a map
f: X =Y in ¥ such that the following diagram commutes.

x L5y

[ 21)

LX 51y

Composition in Coalg; is determined by composition in €. The category Coalg; is usually
not a subcategory of %, since there may be multiple structure maps X — LX that make X
an L-coalgebra, but there is a forgetful functor Uy, : Coalg; — % which sends a pair (X, k) to
X and amap f: (X, k) > (Y,l) to f: X - Y. The category Algy of R-algebras for a pointed

endofunctor R is defined dually. It too comes with a forgetful functor Ug : Algg - €.
Proposition 2.1.25.

e The forgetful functor Uy : Coalg; — € creates colimits.

o The forgetful functor Ug : Algp — € creates limits.
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Proof. The proof is analogous to 2.1.28. [
Corollary 2.1.26.

o [f € is cocomplete, then Coalg; is cocomplete.

o If € is complete, then Algy is complete.

In general, we will say that a category < is over a category ¥ if there is a functor
A:of - €. We will say a functor F': of — A is over € if there is a functor B : 8 — € such
that BF = A. We will use the notation |A| to denote the collection of objects in the image
of the functor A: .o/ - ¥. When the base category and the functor are clear from context,
we will use |#7| to denote the collection of objects in the image of A. With this notation,
viewing Coalg; and Algy as categories over € via the forgetful functors, |Coalg; | is the

collection of L-coalgebras in € and |Algg| is the collection of R-algebras in %

Remark 2.1.27. If o/ and % are categories over ¢ and F : .o/ - A is a functor over €, then

|oZ| €| 4. If in addition G : BB — & is a functor over ¢, then || = | 4.

A map of copointed endofunctors o : L - L/ on ¥ induces a functor a, : Coalg; —
Coalg;, over € which sends objects (X, k) to (X, ax o k) and sends morphisms f: (X, k) —
(Y1) to f:(X,axok) - (Y,ayol). A map of pointed endofunctors 5 : R - R’ on ¥ induces
a functor 8* : Algg, - Algy over ¥ which sends objects (Y, s) to (Y, so fy) and morphisms

g:{Y,s) > (Z,t) to g:(Y,s08y) > (Z,to ).

X ko Lx 2, RY 25 RY S5y
oo e e e s
Y — L LYy - Ly RZ PSRz s 7

By regarding a comonad (L,e,d) on a category € as a copointed endofunctor, we of
course still have the category Coalg; described in the previous section, but we also have the
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Eilenberg-Moore category Coalg™. The objects in this category are again the pairs (X, k),
where k is a map X — LX. But we now require the structure maps to satisfy two relations.

Namely, we require that the following diagrams commute.

X X —F 5 1Lx
y lk lk l&x
X X LX LX 25 LLX

A morphism (X, k) - (Y,l) in Coalg" is a map f : X - Y in ¢ making diagram
(2.1) commute. Imposing the second condition on k& amounts to the requirement that the
coalgebra-structure map &k : X — LX of every object (X, k) in Coalg;" is itself a map
k:(X, k) - (LX,dx) in Coalg".

We now have that there is a forgetful functor Coalg;" - ¢ and that Coalg;" is a full
subcategory of Coalg; over ¢. Since the map dx : LX — LLX makes LX a coalgebra for
the comonad L, every coalgebra X for the copointed endofunctor L is a retract of LX, which
is itself a coalgebra for the comonad L. Thus the retract closure of |Coalg™| is equal to
|Coalg; |.

Dually, for any monad (R,n,u), the Eilenberg-Moore category Algp" exists, there is a
forgetful functor Algy" — €, Algy" is a full subcategory of Algy over €, and the retract
closure of |[AlgR"| is equal to |Algg|.

Even when L is a comonad, we will use the phrases “L-coalgebra” and “coalgebra of L”
to refer to a coalgebra for the copointed endofunctor L. We will explicitly use the phrases
“coalgebra for the comonad L”, “comonad-coalgebra of L, or “L-comonad-coalgebra” when-
ever we want to specify the stronger notion of L-coalgebra. As for the term “L-coalgebra”,

“coalgebra for the comonad L7 can refer to an object (X, k) in Coalg™ or to an object X

in |Coalg™|. We will use the same conventions for R-algebras.

Proposition 2.1.28.
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e The forgetful functor Vi, : Coalg™ — € creates colimits and has a right adjoint L: € —
Coalg™ defined by sending objects X to (LX,d0x) and sending morphisms f: X -Y

to Lf : (LX, 5x> g (L}/, (5y)

o The forgetful functor Vg : Algg' — € creates limits and has a left adjoint R:%¢ -
Algy" defined by sending objects X to (RX, ux) and sending morphisms f: X - Y to

Rf:+(RX, ux) = (RY, py).
Proof. This is [Mac71, VI. §2, 1] along with an exercise in [Mac71, VI. §2]. O
Of course L = VI and R = VxR in the above proposition.
Corollary 2.1.29.
e If ¢ is cocomplete, then Coalg;" is cocomplete.

o If € is complete, then Algr" is complete.

A map of comonads «a : L » L/ on ¢ induces a functor a, : Coalg[™ — Coalg])' over

% which sends objects (X, k) to (X,ax o k) and sends morphisms f : (X, k) - (Y,l) to
(X, axok) - (Y,ayol). A map of monads 8: R — R/ on € induces a functor 8* : Algp, —
Algy" over € which sends objects (Y, s) to (Y, s o By) and morphisms g : (Y,s) - (Z,t) to

g: <Y>SOBY> - (Z’toﬁz>.
Proposition 2.1.30.

e There is a bijective correspondence between maps of comonads o : L - C on a category

€ and functors F : Coalg;" — Coalg" over €.

e There is a bijective correspondence between maps of monads 5 : R - F on € and
functors G : Algg" — AlgR" over €.
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Proof. We will prove the statement about comonads. The proof for monads is dual. As we

saw above, a map of comonads « : L > C on ¢ defines a functor a, : Coalg;" - Coalgg"

over €. Conversely, suppose F': Coalg;" — Coalg" is a functor over 4. Then F sends an
object (X, k) in Coalg™ to an object (X, @fo) in Coalgg". So SO{X,I@) is a map X - CX.

The functor F' sends a map f: (X, k) — (Y,[) to a map (X, prx,k)) - (Y, (pr,l)> in Coalg(,".

F

Let 5 : L — C be the natural transformation given by ¥ = Cey o P bx)

We will show that the natural transformation Sf is a map of comonads. Indeed, the

commutativity of the following diagram shows that § is a map of copointed endofunctors.

F
PLX,5x

LooLX —&X X

S Lo [

LX —X s X

LX

Since dx : (LX,0x) — (LLX,drx) is a map in Coalgy", the left diagram below commutes.

Since (LX, gpg X, §X>) is an object in Coalgg", the right diagram below commutes.
5x P(Lx.sx)
LX —— LLX LX ——— CLX
ng,éx)l iﬂong,aLx) ¢gx,5x)l \Lcng,éx)
CLX —2 CLLX CLX — 4 COLX
. CeLx Cex CCex
S | L
CLX CX —— CCX

It follows that 8% is a map of comonads.

When « : L —» C is a map of comonads and F = a, : Coalg" - Coalg’, then QDfX,k) =
axok:X - CX. So % =Cey ocprXﬁx) =Cexoarxodyx =axoLexody = ay. Conversely,
if F': Coalg;™ — Coalgd" is a functor over €, then (3¥), : Coalg;" - Coalg;" sends an

object (X, k) in Coalgy™ to the object (X, 3% o k) in Coalgg'. The commutativity of the
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following diagram shows that 5% o k = (pF Xy

X —F 5 1LX

L"(x " l%m

cx — % L onx — X L ox

\M

So (X, 8% o k) = F(X, k). So the correspondence is bijective. O

2.1.6 Monadic Functors

We’ve shown that every adjunction

F

71 O ® (2.2)
~_

G

defines a monad GF on Z and that every monad R can be recovered from the adjunction
Vi + R. The adjunctions G ~ F for which 7 already looks like a category of algebras for a
monad are called monadic adjunctions.

Given the adjunction F' 4 G of (2.2) with unit v: I - GF and counit £ : FG — I, there
is a comparison functor Hgp : & — Alggy defined by sending an object A to the object
(GA,GE4) and sending a map f: Ay — Ay to the map Gf : (GA1,GE4,) > (GAz, GE4,). The
comparison functor is a functor over &7 because VorHgr = G, where Vgr : Alggp — A is

the forgetful functor.

Definition 2.1.31. The adjunction (2.2) is monadic if the comparison functor Hgp : & —
Alg/ is an equivalence of categories. A functor G : & — £ is monadic if it is the right

adjoint in a monadic adjunction.
There is a useful characterization of monadic functors. To state it, we need a definition.

Definition 2.1.32. A split coequalizer in a category % is a diagram

)/;\ /q\
A———B——C
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such that gou=qov, gos=1d, uor=1id, and vor=sogq.

We say that the diagram A #; B has a split coequalizer in such a case. In the above
situation, ¢ : B — C' is the coequalizer of u and v, and this colimit is absolute [Bor94b,

2.10.2)].

Proposition 2.1.33 ([Bor%4a, 4.4.4]). A functor G : & - A is monadic if and only if the

following conditions are satisfied.

1. G has a left adjoint F: B — o .
2. G reflects isomorphisms.
3. If u,v: A— B are parallel maps in </ such that the diagram
Gu
GA ?; GB
has a split coequalizer in A, then the diagram A #; B has a coequalizer in </ that

1s preserved by G.
Using these conditions, it is easy to prove the following result.

Proposition 2.1.34. Let T be a pointed endofunctor on a category €. If the forgetful

functor Ut : Algy — € has a left adjoint, then it is monadic.

Proof. We just need to verify that Ur satisfies conditions (2) and (3) of 2.1.33. Suppose
f:(X,m) > (Y,n) is a map in Alg such that f: X — Y has an inverse g: Y - X in ¥.
Then fomoTg=noTfoTg=n=fogon. So moTg = gon, which means ¢:(Y,n) - (X, m)
is a map in Algy.

Now, let u,v: (X, m) - (Y,n) be maps in Alg and suppose

)/u\ /q\
X—=Y——C
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is a split coequalizer in €. Since split coequalizers are absolute colimits,
Tu
TX — = TY ——— TC
Tv

is a coequalizer diagram in €. Since gonoTu = gouom = govom = gonoTwv, there is a unique
map [ : TC - C such that [ o Tq = gon. The fact that X #; Y —1 C is a coequalizer
diagram in % then implies that [ o ne = id, where n : Id - T is the unit map of T. Thus
q:(Y,n) - (C,l) is a map in Algy. It is easy to check that (X, m) # (Y,n) —= (C.1)

is a coequalizer diagram in Alg. ]

An important special case of a monadic functor is the inclusion of a reflective subcategory.
We take our reflective subcategories to be full subcategories whose inclusion functors have
a left adjoint. We call the left adjoint to the inclusion of a reflective subcategory &/ — %
the reflection of % into /. The monad defined by a reflective subcategory adjunction is an
idempotent monad. Conversely, the Eilenberg-Moore category of an idempotent monad on

a category € is always equivalent to a reflective subcategory of €.

2.2 Free Objects

Let .« and % be categories, let U : &/ — % be a functor, and let X be an object in 4.
A reflection of X into o/ (or along U) is an object Y in &/ with a map u: X - UY such
that for every object A in &/ and every map v: X — UA, there is a unique map f:Y - A
in .o/ making the following diagram commute.
X > UY
N e
UA

A reflection of an object X is unique up to unique isomorphism.
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We will often call an object Y satisfying the above conditions the free < -object on X.
In many applications, U will be a functor that forgets structure, so we can think of Y as the
object we get by freely adding the structure of an .o/-object to the less-structured Z-object

X.

Remark 2.2.1. When R is a pointed endofunctor on a category €, we will specifically refer
to a reflection of on object X € ob(%) in Algy as the free R-algebra on X. When R
is a monad, the reflection of X into Algg" is equal to (RX, ux). So every object in the
image of R: ¢ —» Algy” is a free R-monad-algebra. Continuing our convention of using the

same terms for structures and properties, we will sometimes call an object RX in € a free

R-monad-algebra.

By dualizing the above definitions, we get definitions for coreflections of objects, cofree
objects, and cofree coalgebras for comonads.
Unsurprisingly, reflections in .o/ have a close relationship to the existence of a left adjoint

for U.

Proposition 2.2.2. A functor U : of — A between categories has a left adjoint if and only

if every object B in % has a reflection in < .

Proof. 1f a left adjoint F' : 8 - &7 to U exists, then for each object X in %, the unit map
nx : X - UF X of the adjunction at X satisfies the appropriate universal property. So F' X is
a reflection of X. Conversely, if every object in 4 has a reflection, we can define a function
F : 0b(A) - ob(«/) that sends each object to its reflection. For each object X in A, let
nx : X - UFX be the universal map of the reflection. If f: X - Y is a map in A, then

the universal property of ny guarantees the existence of a unique map Ff: FX - FY in o
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that makes the following diagram commute.

X 25 UFX

b

Y 5 UFY
So in this way, we define a functor F' : # — /. By construction, F' satisfies the universal

property of a left adjoint for U. [

So in ideal conditions, we can construct a free .7-object on a %-object by constructing a
left adjoint for U. When & and % are locally small and &7 is complete, the adjoint functor

theorems can be used for this purpose.
2.2.1 Free and Algebraically Free Monads

Many of the results in this section appear without detailed proof in [Kel80].

Let Mnd (%) be the category whose objects are monads on % and whose morphisms are
maps of monads. The free monad on a pointed endofunctor (T, 7) is the reflection of (T, 7)
along the functor U : Mnd(%) — pEnd(%) that forgets the structure of the multiplication
map on each monad. The remainder of this chapter is devoted characterizing endofunctors
that have reflections in Mnd(%).

Since a left adjoint to U : Mind (%) — pEnd (%) rarely, if ever, exists, we cannot construct
free monads on pointed endofunctors by constructing a left adjoint to U. Instead, in the
main result of this section (2.2.8), we will show that to construct the free monad on a
pointed endofunctor (T,7), it suffices to construct a left adjoint to the forgetful functor
Ur : Algy - . In section 2.4, we will discuss conditions on the endofunctor T that
guarantee such a left adjoint exists. In section 2.4.4, we restrict to subcategories of Mnd (%)

and pEnd(%) such that a left adjoint to the restriction of U does exist.
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Remark 2.2.3. When % is a category with coproducts, the forgetful functor V : pEnd (%) —
End(%) from the category of pointed endofunctors to the category of endofunctors on &
has a left adjoint F': End(%") - pEnd(%). The free pointed endofunctor on an endofunctor
T :% — € is the objectwise coproduct X [[Idy. Therefore, to construct free monads on

endofunctors, it suffices to construct them on pointed endofunctors.

An important special case of a free monad on a pointed endofunctor is that of an
algebraically-free monad. When 6 : T — R is a map from a pointed endofunctor on ¢

EM

to a monad on %, there is a functor 67 : Algy" — Algy over € defined as the subcategory

EM

inclusion functor Algy" — Algy followed by 6* : Algy - Algy.

Definition 2.2.4. Let % be a category and let (T,7) be a pointed endofunctor on %.
An algebraically-free monad on (T, 7) is a pair (R,#) of a monad (R, 7, ) on ¢ and a map
6 : T - R of pointed endofunctors such that the functor 6t : AlgR" - Algy is an isomorphism

of categories.

Surprisingly, to show (R, #) is an algebraically-free monad on (T, ), it actually suffices

to show 0t : AlgR" - Algy is an equivalence of categories.

Lemma 2.2.5. If : T - R is a map of pointed endofunctors on a category € to a monad
R and if the functor 0 : Algp"' — Algy is an equivalence of categories, then 07 is an

1somorphism of categories.

Proof. Since 07 is an equivalence, it must be full and faithful. So it suffices to show 0 is
bijective on objects. Let K : Algy - Algp" be an up-to-natural-isomorphism inverse for 61,
and let a: 0TK - Id and 8 :Id - K6t be the natural isomorphisms. Then K is also full and

faithful.
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Let (X, m) be an object in Algy. Let (Y,n) = K(X,m). Then 0T K(X,m) = (Y,nofy) and
a(xmy : (Y,nobfy) - (X, m) is an isomorphism in Algy. Let p = a<X,m)on0Ra<‘}(’m> :RX - X.
Then po Oy o Toyx my = ax,myonoby =moTax . Thus m=pobx. So §7(X,p)=(X,m).
Thus 61 is surjective on objects.

TY by RY LN Ve

Ta(x,m)ls ElRO‘(X,m) 2| YX,m)

~

We note that if u : (S,q) - (S,¢) is a map in Alg such that Ku is the identity map
on K(S,q), then Ku = Kid. So the faithfulness of K implies u is the identity map. This
observation will help us prove that 01 is injective. Now, let (X, m) and (Y,n) be an objects
in Algy" such that 01(X,m) = 61(Y,n). So X =Y and mo6x =nofy as objects and maps
in €. Let (Z,p) = K(X,mo0x). Then there is are isomorphisms 3(x .y : (X,m) = (Z,p)
and fixn) : (X,n) = (Z,p). Let u= 5()1(’”) o Bix,my- S0 u:{X,m) - (X,n) is an isomorphism
in Algy". The naturality of 8 and the definition of v now imply that the following diagram

commutes.
(Xa m) % (X,TL)

ﬁ(X,n)
ﬁ<x,m>l i@x,n)

KOH(X,m) —5%% s Kot(X,n)

It follows that K6'u is the identity map on (Z,p). So, by our comments at the beginning
of this paragraph, ftu is the identity map on (X, m o fx). But this means u: X — X is the
identity map in €. So (X, m) = (X,n) in Algy". O
Proposition 2.2.6. An algebraically-free monad on a pointed endofunctor (T,T) is a free
monad on (T,7).

Proof. 1f (R, 0) is an algebraically-free monad on T, then for each map of pointed endofunc-
tors ¢ : T - R/ to a monad (R/,n’, i’), there is a unique functor K : Algg' — Algp" over €2
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making the following diagram commute.

Algl —— Algy,

a!iK K
Alg? — 5 Alg, —%— Alg,

By 2.1.30, there is a unique map of monads p: R — R/ such that p* = K.

So we have two maps ¢ : T - R/ and pof:T - R’ of pointed endofunctors from T to

EM

R’. Since the functors ¢* : Algg, - Algy and (po0)* : Algr — Alg agree on Algp, and

(R'X, pt) is an object in Algp; for each object X, p'y o Yrix = pily 0 prix © Orix.

T17X

> TR'X

' 09qux PR X °9R’Xu¢R’)\

> R'R'X * R'X

id

So

Yy = MS{ ° R’US( ox = M'X o YRrx 0 TUS( = HS( o prrx ©Orrx © Tﬁ}g
=y oR'nx o px oblx = px o bx.
Thus ¢ = pof and p: R - R’ is the unique map of monads for which this equality holds. [

Frequently, the converse to 2.2.6 is also true.

Proposition 2.2.7 ([Kel80, 22.4]). If € is a locally small, complete category, then a free

monad R on a pointed endofunctor T is an algebraically-free monad.

Proposition 2.2.8. If (T,7) is a pointed endofunctor on a category € and the forgetful
functor Uy : Algy — € has a left adjoint F : € — Algy, then UrF is an algebraically-free
monad on (T,T) whose unit and multiplication maps are determined by the adjunction, as
n 2.1.24.
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Proof. Let R = UpF with unit map v : Id - UpF' and counit map & : FUp — Id. There is a
natural transformation ¢ : TUp - Up that is defined on each object (X, m) by ©(xm) =m:

TX — X. Then the natural transformation
Tv YF
T —— TR=TUrF —— UrF =R

is a map of pointed endofunctors. Let 8 = ¢ F o Tv.
By 2.1.34, Uy is a monadic functor. So there is an equivalence of categories H : Alg —
Algy" that sends a T-algebra (A, m) to (A, Uré(amy). Since the following diagram commutes,

OtH = id.
UT(A m) 7wZ’FUT(A m)

TUT(A m) — A DU FUR (A, m) 2™ U FUR( A, m)

\ lTUTg A,m) lUT§ A,m)

A TUT(A,m) —> Ur(A,m)=A
w
Let H : Algl — Alg, be an up-to-natural-isomorphism inverse for H. Then HO!
HOTHH = HH = 1d. So 61 is an equivalence of categories. By 2.2.5, 6 is an isomorphism

and (R, #) is the algebraically-free monad on (T, 7). O

We note that a consequence of the above proof is that the map Y F oTv : T - R is the
universal map of the free monad.

By 2.2.2, to construct a left adjoint to the forgetful functor Ur : Alg, — €, it suffices
to show that every object in % has a reflection along Ur. So the free monad on a pointed

endofunctor T exists if and only if the free T-algebra exists on every object in €.

2.3 Free Algebra and Monad Sequences

In the previous section, we saw that a free monad on a pointed endofunctor (T, 7) exists

when the forgetful functor Ur : Alg — € has a left adjoint. In this section, we will define
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a free monad sequence for a pointed endofunctor (T,7) on a cocomplete category €. We
will show that when the free monad sequence is weakly convergent, every object in € has a
reflection in Alg, and thus Ut has a left adjoint. The weak convergence of the free monad
sequence gives us more than just existence of the free monad on (T, 7) however. We actually
get that the free monad sequence weakly converges to the free monad on (T, 7). So the weak
convergence of the free monad sequence gives us the constructive existence of a free monad
on (T,7).

The evaluation of the free monad sequence for (T, 7) on an object A is the free T-algebra
sequence for A. So the free monad sequence for (T,7) converges objectwise if and only
if the free T-algebra sequence on each object A in & converges. We will prove in 2.3.18
that the objectwise convergence of the free monad sequence for (T,7) implies its weakly
convergence. Proving this result takes some work. First we prove in 2.3.5 that for a well-
pointed endofunctor (S, o), an object A has a reflection in Algg if the free S-algebra sequence
for A converges. Then in section 2.3.2 we show that there is a well-pointed endofunctor (S, o)
on the category T | ¢ and that we can translate between free T-algebra sequences in ¢ and
free S-algebra sequences in T | ¥. This translation preserves the property of convergence.
Furthermore, the existence of the reflection of an object in € into Alg, follows from the
existence of the reflection of a related object in T | € into Algg. Putting this all together,
an object A in € has a reflection in Alg if the free T-algebra sequence for A converges.
This is exactly what we need to prove that the objectwise convergence of the free monad
sequence for (T, 7) implies its weak convergence.

Sections 2.3.1 and 2.3.2 work up to our main results in theorems 2.3.18 and 2.3.22, where
we prove that the objectwise convergence of the free monad sequence on (T, 7) implies the

weak convergence of the free monad sequence and that the weak convergence of the free
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monad sequence implies the constructive existence of the free monad on (T, 7). In section
2.4, we will describe a smallness condition on the endofunctor T that ensures the free monad

sequence for (T, 7) converges objectwise.
2.3.1 Free Algebra Sequences for Well-Pointed Endofunctors

We start this section by defining well-pointed endofunctors. We then define the free S-
algebra sequence on an object in a category € for a well-pointed endofunctor (S,o) on €.
We conclude by showing that an object in € has a reflection in Algg when the free S-algebra

sequence on the object converges.

Definition 2.3.1. A pointed endofunctor (S,0) on a category ¢ is well-pointed if the maps

So:S - SS and 6S: S — SS are equal.

If a well-pointed endofunctor (S,o) extends to a monad (S,o,u), then (S,o,u) is an
idempotent monad and the maps ¢S : S - SS and So : S - SS are natural isomorphisms
[Bor94a, 4.2.3]. When (S, o) does not have a monad structure, we don’t know that oS and

So are natural isomorphisms. We can however still prove the following result.

Lemma 2.3.2 ([Kel80, 5.2]). Let (S,0) be a well-pointed endofunctor on a category €.
For every S-algebra (X, m), the maps m : SX - X and ox : X - SX are isomorphisms.

Therefore m = 03} is the unique S-algebra structure map for X.

Proof. We know moox =idx. Since S is well-pointed, idgsx = SmoSox = Smoogx = ox om.

So ox is the inverse of m. O

Lemma 2.3.3. If (S,0) is a well-pointed endofunctor on a category €, then the forgetful

functor Us : Algg — € is the inclusion of a full subcategory.
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Proof. By 2.3.2, if X is an S-algebra, then its S-algebra structure map SX — X is unique.

So Us is the inclusion of a subcategory. Suppose (X, m) and (Y,n) are objects in Algg and

f:X - Y isamapin €. Then, by the naturality of o, Sfoox =oyof. SooyloSf = fool.
-1

But, since m and n are isomorphisms, m = o3} and n = oy}, So f is a map (X, m) - (Y,n)

in Algg. ]

Let ¢ be a cocomplete category and let (S,0) be a well-pointed endofunctor on %.
We recall from 2.1.20 that pEnd(%) is closed under connected colimits. The free monad
sequence for (S,o) is the cocontinuous transfinite sequence S* : Ord — pEnd (%) given by
the following inductive definition. We will use the notation (S 0%) = S*(«) on objects of
Ord and S8 = S*(a - () on the maps of Ord. We set S° equal to the identity functor
Id: € - €, S! equal to S and S} equal to o : Id — S. If the pointed endofunctor S®: € — €
is defined on an ordinal «, then Se*! := SS® and we have a map Sa*! := ¢S®: S — SS@. If ~
is a limit ordinal and maps S2*!: 5@ — So*! are defined for all o <, then S7 := colim,, S*
and we take S} to be the inclusion maps S - S7 of the colimiting cocone. For each ordinal

@, the unit map o :Id - S¢ is the map S§ : S - S«.

Sas1
Id ‘T> S S e y Qo osa> SSe —» ... — COlimaq,SO‘ —_— ..

Sa
Definition 2.3.4. Let a be an ordinal. A transfinite sequence F': Ord — € converges at «
if for every ordinal § > a, F(a - () : F(a) - F(p) is an isomorphism. We will just say F

converges if it converges at « for some ordinal a.

The free monad sequence for a pointed endofunctor rarely converges, but, under mild
assumptions, we will be able to show that it converges objectwise. We have a special name
for the free monad sequence evaluated on an object. On an object X in €, we will use the
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notation S*X for the transfinite sequence that sends ordinals « to S(a)(X) = S*X and sends
maps a > f to S(a - fB)x = Sy :S°X - SAX. The functor S*X : Ord — € is the free
S-algebra sequence for X.

We will show in section 2.4.2 that, under a smallness condition on S, the free S-algebra
sequence S*X converges for each X in ¥. The convergence of the free S-algebra sequence on
an object X implies the existence of a reflection of X in Algg. In fact, the object the free

S-algebra sequence converges to is the image of the reflection under Us.

Proposition 2.3.5 ([Kel80, 5.3]). If the free S-algebra sequence S*X converges at the ordinal
-1
B, then <SﬁX7 (SgHX) > 18 the reflection of X in Alggy and SgX : X - SBX is the universal

map of the reflection.

Proof. Suppose Y is an S-algebra and f: X — Y is amap in €. Then, by 2.3.2, oy : Y - SY
is an isomorphism. So o' oSf:SX - Y is a map such that 03! oSfoox = f. If g: SX > Y
is another map such that goox = f, then the well-pointedness of S implies oy 0og = Sgoogx =
SgoSox =Sf. Since oy ooyt oSf =Sf =0y o g and oy is an isomorphism, o3t o Sf = g. So
oyt o Sf is the unique map SX — Y such that oy! oSfoox = f.

It follows by induction that for every «, the map Sf, : Y — 5%Y is an isomorphism
and Sg;l o S« f is the unique map S®*X — Y such that Sg‘;,l 0S*f oSy = f. In particular,
this holds for @ = 8. Since S#X and Y can both be uniquely identified with objects in
the full subcategory Algg of €, (Sgy)‘1 o SAf is the unique map of S-algebras such that

(Sgy)‘loSBfOSgX:f. [
2.3.2 Construction of a Well-Pointed Endofunctor

Let (T,7) be a pointed endofunctor on a cocomplete category 4. In section 2.3.3, we

will define the free T-algebra sequence on an object in €. Showing that an object A in &
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has a reflection in Alg, when the free T-algebra sequence for A converges is much more
challenging than in the case of a well-pointed endofunctor. To handle this proof, we will
define a well-pointed endofunctor (S,0) on T | ¥ and reduce the problem of constructing
a reflection for an object A € ob(%) along Ut : Alg — € to the problem of constructing a
reflection of an object in T | ¢ along Us : Algg — T | €. Specifically, we will construct the

left adjoints in the following diagram.

il A
/\ )/\
Alg, 1L Algg T 1L ¢? \ﬂ_/{ 3 (2.3)
~_ "
S~ 7 \Es/ — -

We will see in 2.3.12 that the composite map Alg, — % is equal to Ur. So when 1A A has
a reflection in Algg, then A has a reflection in Algy.

As we saw in the previous section, the convergence of the free S-algebra sequence on the
object mAA guarantees the existence of a reflection of nAA in T | €. To make this process
more direct, in section 2.3.3, we will translate the free S-algebra sequence on AA to the
free T-algebra sequence on A. We will then show that the free T-algebra sequence on A
converges if and only if the free S-algebra sequence on A A converges.

We also note that if the free S-algebra sequence on every object in T | % converges, then
every object in T | € has a reflection in Algg and thus a left adjoint to Us : Algg — ¢
exists. We then have that the composite map 4 - Alg is a left adjoint to Ur and so a free
monad on (T,7) exists. We will not emphasize this result, however, because it is stronger
than necessary. The condition that the free S-algebra sequence on every object in T | &
converges is stronger than the condition that the free S-algebra sequence on every object in
the image of mA converges. This latter convergence is sufficient to imply the existence of a
free monad on (T,7). We will however see in section 2.4 that when T satisfies a smallness
condition, then we do get that the free monad sequence on (S, o) converges objectwise.
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Now, let € be a cocomplete category and let (T,7) be a pointed endofunctor on €. In
the next few sections, it will be convenient to represent the objects of the comma category
T | € by triples (X, f,Y) of objects X and Y and a map f: TX - Y in ¥. The maps of
T | € are pairs (z,y) : (X, f,Y) > (A,9,B) of maps x : X - A and y : Y - B such that
yof=goTux.

Let A : € - % be the functor that sends objects X to idx : X - X and sends maps
f: X ->Yto(f,f):idx » idy. Then dom: €2 — % is a right adjoint to A and cod : €2 - €
is a left adjoint to A. We will name the unit map of the cod 4 A adjunction p:Id - A cod.
On each object f: X = Y, py = (f,idy) : f - idy. Since codA = Id, (Acod,p) is a

well-pointed endofunctor on €2.

Lemma 2.3.6. The category Alga ..q 1S the full subcategory of €2 on the objects f: X -»Y

that are isomorphisms in € .

Proof. A Acod-algebra is an object f : X - Y with a map (u,v) : idy — f such that
(u,v) o (f,idy) = (idx,idy). But this means v = idy, uo f = idx, and fou =wvoidy. So
u is the inverse of f. Conversely, if f is an isomorphism, then (f~',idy) : idy — f is a

A cod-algebra structure map for f. O]

The natural transformation 7 : Id - T defines two functors 7* : T | € — %2 and
n:%2%2->T|] €. The functor 7 : T | € - €2 sends each object (X, f,Y) to forx: X ->Y
and sends each morphism (u,v) : (X, f,Y) = (A, g, B) to (u,v) : forx — go7Ta. The functor
7 : %62 - T | € sends each object f: X - Y to the object (X, f/,Y”) defined by the following

cocartesian diagram in €.
X =5 TX

1 b

Y — Y
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Since pushouts are natural and 7 is a natural transformation, this definition extends to

morphisms. It is straightforward to check the following result.
Lemma 2.3.7. The functor n is the left adjoint of T*.

The unit of the 77 + 7* adjunction is the map v” : Id - 7*7; given on each object f: X - Y
in €2 by Vi = (idx,f) : f > f'o7x. The counit of the adjunction is the map &7 : n7* - Id
given on each object (X, f,Y)in T | € by §ix.y) = (idx,g9): (X, (forx),Y") > (X, f,Y),
where ¢ is the map out of Y’ defined by the cocone f: TX - Y, id:Y - Y.

X —X s TX

Txl ;

TX (forx)'
o
y I sy Sy
id
Lemma 2.3.8 ([Kel80, §14.1)). The category T | € is cocomplete.

Proof. Let {(Xa, fa,Ya)}a be a diagram in T | €. Let c: colim, TX, - T colim, X,, be the
map defined by the cocone {TX, — T(colim, X,)}, in €. Let h and k be the colimiting

cocone maps in the following cocartesian diagram in €.

colim, TX, —= T colim, X,

colimg fal lh
=

colim, Y, —k sz

The triple (colim, X, h, Z) is the colimit of the diagram {(X,, fa,Ya)}a in T | €. O

Since T | € is cocomplete, the category End(T | %) is a cocomplete. Colimits are
computed objectwise. We can therefore define an endofunctor S on T | € as the pushout

T pT,
nt — nAcodT*

le s (2.4)

Id ————S
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in End(T | 7).

A direct application of A.1.1 yields the following result.
Lemma 2.3.9 ([Kel80, 14.4]). The pointed endofunctor (S,o) on T | € is well-pointed.

Therefore the forgetful functor Us : Algg < T | € is the inclusion of a full subcategory.
We note that Alg is also a full subcategory of T | €, even though T is not a well-pointed

endofunctor.
Lemma 2.3.10 ([Kel80, 14.4]). The category Algg is the repletion of Algy in T | F.

Proof. By A.1.2, an object (X, f,Y) in T | % is an S-algebra if and only if the object
forx : X =Y in ¥? is a A cod-algebra. In other words, by 2.3.6, (X, f,Y") is an S-algebra if
and only if fo7x : X - Y is an isomorphism in €. But, if f o7x is an isomorphism, then X
is an T-coalgebra and Y 2 X. So there is an isomorphism in T | ¢ between (X, f,Y") and an
object (X, g,X) =(X,g) in Algy. Conversely, if there is an isomorphism (u,v): (X, f,Y) —
(Z,9,Z) in T | € to an object (Z,¢g) in Algy, then forxou=foTuorz;=vogoTy="0.

Since u and v are isomorphisms, f o 7x is an isomorphism. So (X, f,Y’) is an S-algebra. [J

Lemma 2.3.11. The subcategory inclusion functor Alg, < Algg is an equivalence of cate-

gories. In particular, it has a left adjoint.

Proof. Since Alg and Algg are both full subcategories of T | €, Algy is a full subcategory
of Algg. So the inclusion &/ — % is full and faithful. What it means for Algg to be the
repletion of Alg is that the inclusion Alg — Algg is essentially surjective. So the inclusion

is an equivalence of categories. O

Lemma 2.3.12. The forgetful functor Uy : Algy — € is equal to the composite map Algr —
€ in diagram (2.3).

48



Proof. We know the subcategory inclusion functor Alg, < T | € factors through Us :
Algg > T | €. The subcategory inclusion functor Alg = T | € sends an object (X, m) to
the object (X, m, X)) and amap f: (X, m) - (Y,n) tothemap (f, f) : (X,m, X) - (Y,n,Y).
Then 7(X,m, X)) =mory =idx and 7*(f, f) = (f, f) 1 idx = idy. So cod7*(X,m, X) = X

and cod7*(f, f) = f: X = Y. This is exactly what Ur does to objects and morphisms. [J

We are now able to show that the reflection of an object A € ob(%’) along Ur : Alg, — €

exists when the free S-algebra sequence for (A, id, TA) converges.

Proposition 2.3.13. Suppose the free S-algebra sequence for (A, id, TA) converges at «.

Let (B, f,C) = S*(A,id, TA) and let (u,v) = : (A,id, TA) - (B, f,C). Then

OCaia,mA)
forg: B — C is an isomorphism, (B,(f o)™ o f) is the reflection of A in Algy, and

u:A— B is the universal map of the reflection.

Proof. By 2.3.5 and 2.3.3, (B, f,C) can be identified with the reflection of (A,id, TA) in
Algg and (u,v) : (A,id, TA) - (B, f,C) is the universal map of this reflection. In 2.3.10,
we saw that the composition fo7p: B — C is an isomorphism. So (B, go f) is an object in
Alg; and (id,g) : (B, f,C) - (B, go f, B) is an isomorphism in T | ¢, where g = (fo7g)!.
Thus (B, go f) is the reflection of (A,id, A) in Alg; and the universal map is (u,gov) :
(A,id, A) - (B,go f,B). By 2.3.12 and the observation that nAA = (A, id, TA), the object
(B,go f) is the reflection of A in Algy. Since dom 7*nA is the identity functor on ¢ and
the unit of the adjunction dom7* + 1A is the identity map, u: A — B is the universal map

of the reflection. O

In particular, if the free S-algebra sequence on (A, id, TA) converges for each object A

in &7, then the left adjoint to Uy : Alg — € exists.
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2.3.3 Free Monad Sequences for Pointed Endofunctors

Let (T,7) be a pointed endofunctor on a cocomplete category ¢ and let (S,o) be the
well-pointed endofunctor on T | € we defined in section 2.3.2. We were able to show in 2.3.13
that A has a reflection in Algy when the free S-algebra sequence for (A, id, TA) converges.

In this section, we will translate the free S-algebra sequence for an object (A, f, B) to a
transfinite sequence in . We define the free T-algebra sequence for A to be the sequence
in € given by free S-algebra sequence for (A,id, TA) under this translation. The free T-
algebra sequence for A converges exactly when the free S-algebra sequence for (A, id, TA)
converges. So the convergence of the free T-algebra sequence for A guarantees that A has
a reflection in Alg,. Furthermore, as for the free S-algebra sequence, the object the free
T-algebra sequence for A converges to is the image of the reflection of A under Ur.

Since the free T-algebra sequence is functorial, we will be able to use it to define a free
monad sequence on (T,7). We will show in 2.3.22 that when the free monad sequence for
(T, 7) is weakly convergent, then the free monad on (T,7) exists and it is given by the
endofunctor the free monad sequence weakly converges to. We will then show in 2.3.18 that
the convergence of the free T-algebra sequence on A for each A in % is enough to imply that
the free monad sequence for (T, 7) weakly converges. In section 2.4, we will give a condition
on the endofunctor T : 4 — ¥ that guarantees the convergence of the free T-algebra sequence

on each object A in %.

Lemma 2.3.14 ([Kel80, 17.1]). For each object (A, f,B) in T | €, S(A, f,B) =(B,g,C),

where g: TB — C is the coequalizer in € of the maps Tf oT7y and Tfo7ry.
TT
TA —= TTA — TB --%-» C
TTA

The unit o(a s,y : (A, f,B) = S(A, f,B) is equal to (f,g) o (7a,7B).
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Proof. Let (A, f,B) be an object in T | ¥. The composite functor dom7* : T | € - &
sends objects (X, h,Y) to X and morphisms (p,q) : (X,h,Y) - (Z,k,W) top: X - Z.
One can compute directly that dom7*S(A, f, B) = B and that evaluating diagram (2.4) on

(A, f, B) and then applying dom7* yields the cocartesian square

TA Y R

4

SoS(A, f,B) =(B,g,C) forsomemap g: TB - C'in € and o4 r,5) = (fo1a,2): (A, f,B) >
(B,g,C) for some map z: B - C.
Let X be an object in 4. There are bijective correspondences between the following

classes.
e Maps C —» X in %.
e Pairs of objects (B, h, X) and maps (id,t): (B,g,C) - (B,h,X)in T | €.

e Triples of objects (B,h,X) in T | ¢, maps s: B— X in ¢, and maps v: TB - X in
% such that the following diagram in T | 4 commutes.

P74 (A, f,B)

nt* (A, f, B) nAcod7*(A, f,B)
5<TA,f,B>i i(id,u)
(A, f,B) — L™ (B h, X)

e Triples of objects (B,h,X) in T| %, maps s: B— X in ¢, and mapsv: B—- X in ¢

such that the following diagram in %2 commutes.

id,v)

(A, f, B) TP A cod (A, £, B) — s 4B, h, X)
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The map p-+(a,7,5) is equal to (fo7a,id) : fory — idg. So there is a bijective correspondence
between the class in the last bullet point and triples of objects (B,h,X) in T | €, maps
s:B— X in %, and maps v: B > X in € such that ho T(fo74) =vo f and the following

diagram commutes.

B B
foml iid ihOTB (2.5)
' X

But then s = v = ho7g. So maps C' - X in % are in bijective correspondence with maps
h : TB - X such that ho T(fo14) =hotgof=hoTforrs. Thus g: TB - C is the
coequalizer of the maps TfoT7y and Tf o7r4. By the relation in diagram (2.5) above, the

unit map (fo7a,z): (A, f,B) - (B,g,C) must satisfy the equation z = g o 7. ]

Lemma 2.3.15. ]f((Aa, fous Ba))a is a sequence in'T | €, then domT*( colim, (Ay, fao, Ba)) =

colim,, A,,.

Proof. We saw in 2.3.8 that the colimit of the (Aq, fo, Bo)’sin T | € is equal to (colim A, h, Z),

where h and Z are determined by a pushout square. O

Now, using 2.3.14, and 2.3.15, we can describe S?(A, f, B) for any ordinal /3 as follows.
This construction takes place in the category €. Let Xg=A and X; = B. Let mp = f : TXg —
Xj.

Suppose objects X, and X,;; and a map w, : TX, - X,41 are defined for an ordinal

«. Then the object X,,o with the map 7,1 : TXo11 = Xaso is the coequalizer of the maps

Tr, o7TX, and Tw, o TTX,,.

TTXa e Ta+l
TXo — 3 TTX, — Ty TX gy -2 > X2 (2.6)
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Let v be a limit ordinal and suppose X, and 7, are defined for each a < v. We have
maps
a+l ._

Ty =Tao TXa : Xa - Xa+1

for each ordinal v < 7. These maps make (X,)a<y & 7-sequence. Let X, be the colimit of

this y-sequence and let {z7, : X, - X, }a<y be the colimiting cocone. Similarly, the maps
Tz TX, - TX i1

make (TX,)a<y @ 7-sequence with colimiting cocone {g, : TX, = colimmpyan TX, }o. But we
also have maps

Yo =T To o TTX, : TX, = TX41.

So we get two induced maps from colimry,a+1TX, to itself. Let y be the map induced by
Ja+1 © Yo The map induced by go41 © Tz2* = g, is the identity map. We also have a map
c: colimrpgen TX, - TX, defined by the cocone {Tx, : TX, - TX,}4cy. This is shown in

the below diagram.

7TTXa -
TXo ——2 TTX, — TXou

T7Xa Tz,
b o N 21)

colimTX,, § coliwll X, — TX,

a+1 ; a+
Txg id Tz

We define 7, : TX,, - X,,; to be the coequalizer of the maps coy and ¢ in the bottom row.
The map 7, defines a map 22" =71, 0 (7X,) : X, = X,,1.

By composing the successor maps 21 : X, > X,,1 and colimiting cocone maps =/, : X, -
X, we get a map 22 : X,, > X, for each pair of ordinals o < o’. The maps 22 : X, - X,

define a transfinite sequence (X,),. We have that SP(A, f,B) = (Xg,7s, Xgs1) for each

ordinal f3.
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Now, if we instead set Xo = A, X; = TA, and 7y = id : TXy — X; and then rerun the
above construction in the category €, the transfinite sequence (X, ), with connecting maps

25X, > Xp is the free T-algebra sequence for A.

Remark 2.3.16. If (T,7) is a well-pointed endofunctor, then on any object A, the free T-

algebra sequence on A defined above agrees with the one defined in section 2.3.1.

Proposition 2.3.17 ([Kel80, 17.3]). The free T-algebra sequence for A converges if and only

if the free S-algebra sequence for (A,id, TA) converges.

Proof. We know S¢(A,id, TA) = (X, T, Xos1) and S5(A,id, TA) = (25, 2771) 1 (X0, T, Xoa1) =

a+l

(X, 78, Xp41) for each o and > a. H

The free T-algebra sequence on an object of € is functorial. In fact, we can run the above
construction in the category of endofunctors on . Weset Xg=1d: ¢ - €¢,X,=T:¢ - €,
and we let my : TXy — X; be the identity natural transformation. We then rerun the above
construction in the category End(%). We get a transfinite sequence (X, ), of endofunctors
with connecting natural transformations xg : Xo = Xpg. We will write this sequence as a
functor XT : Ord - pEnd(%), where XT(a) = (X,,z¢) on objects a and XTI (a - ) = 2
on morphisms o - 3. The transfinite sequence X} is the free monad sequence for (T,T).

If we evaluate each endofunctor in the free monad sequence for (T, 7) on an object A, then
we get the free T-algebra sequence for A. When the free T-algebra sequence for A converges
for each A, we will say that the free monad sequence for (T, 7) converges objectwise.

The objectwise convergence of the free monad sequence for (T,7) implies that the free
monad on (T, 7) exists. We will show in section 2.4.3 that, under a smallness condition on

T, the free monad sequence X converges objectwise.
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Theorem 2.3.18. If the free monad sequence on (T,T) converges objectwise, then the free

monad on (T,T) exists.

Proof. Let A be an object in 4. Then the free T-algebra sequence on A converges. By 2.3.17,
the free S-algebra sequence on the object (A, id, TA) in T | € converges. So, by 2.3.13, A
has a reflection in Algy. Since this holds for each object in €, by 2.2.2, the forgetful functor

Ur : Alg — € has a left adjoint. O
2.3.4 Weakly Convergent Free Monad Sequences

Let € be a cocomplete category, let (T,7) be a pointed endofunctor on €. Let (X,)q
be the free monad sequence for (T,7) with connecting maps x5 : Xo - Xg.

Even though End(%) is a cocomplete category, since (X,), is a large diagram in
End(%), its colimit does not have to exist. When the colimit R of (X,), does exist,
we will use the notation x2° : X, - R for the maps in the colimiting cocone. We will use
the notation R’ for the colimit of the transfinite sequence (TX,), with connecting maps
Tzl : TX, — TXg when this colimit exists. The cocone {Tz% : TX, - TR}, defines a map

¢’ : R’ - TR. The cocone {x% , o7, : TX, - R}, defines a map ' : R’ > R.

a+1

Definition 2.3.19. The free monad sequence (X,), is weakly convergent if the colimits
R = colim, X, and R’ = colim,, TX,, exist and are objectwise colimits in ¢ and if there is a

map m : TR - R satisfying the following conditions.

1. The map m : TR - R is the coequalizer in End(%) of the maps Tm o 7TR and

Tm oTTR in the following diagram.

7TR
TR T:R; TTR —™% TR
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2. The following diagram in End(%’) is cocartesian.

R —<3 TR

- lm

R—>R

Proposition 2.3.20. If the free monad sequence for (T,7) weakly converges, then the equa-

tions mo TR =id and mo Txf = x3° hold.

Proof. An inductive argument proves that the following diagram commutes for each ordinal

Q.

T 2, x, e x

DN

a+1

Then the following diagram commutes, where 7 : T'— R/ is the inclusion map of the colimiting

cocone for R’ = colim, T X,.

cohma 7Xa

It is easy to check that ¢’o¢ =Tz : T — TR and that ¢’ o colim, 7X, is the map defined

by the cocone {Tz o 7X, = TR oz : X, - TR},. So ¢ o colim, 7X, = 7R. By 2.3.19 (2),

moTx® =moc oi=n"o0i=a{ and moTR =moc ocolim,7X, =7"ocolim, 7X, =id. [
We have the following adaptation of 2.3.5 to weak convergence.

Proposition 2.3.21. If (T,7) is a well-pointed endofunctor on € and if the free monad
sequence for (T, T) converges weakly to R, then for each object A in €, Tra s an isomor-
phism, (RA,3Y) is the reflection of A in Algy and z° ,: A - RA is the universal map of

the reflection.
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Proof. Let A be an object in €. As we saw in the proof of 2.3.5, for each map f: A - B in
% to an T-algebra B and each ordinal «, there is a unique map g, := (25)5 o Xof : X0 4 > B
such that g, o 2§ , = f. It follows that the colimit g = colim, g, of the sequence (g.)q is the
unique map RA — B such that goxy , = f.

By 2.3.2 and 2.3.20, g4 is an isomorphism. Also by 2.3.2, 7 is an isomorphism. It
follows that ¢ is a map of T-algebras. So g: RA - B must be the unique map of T-algebras

such that goz§° , = f. m

Theorem 2.3.22. If the free monad sequence for (T,T) converges weakly, then there is
a map p: RR - R such that (R,z§, ) is the free monad on (T,T) with universal map

T - R.

Proof. First, we note that if {(X,, fa,Ya)}e is a large diagram in T | € and the colimit of
(fa)a in €2 exists, then the colimit of {(X,, fa, Ya) }o exists and is given by (colim, X, h, Z)
in the following cocartesian square, where ¢ : colim, TX, — T colim,, X, is the map defined

by the cocone {TX, - T(colim, X,)}, in €.

colim, TX, —— T colim, X,

colimg fal lh
r

colim, Y, —k 7
Let (S,0) be the well-pointed endofunctor on the comma category T | € constructed
in section 2.3.2. Let A be an object in . The sequence (()(afl,7rcm,XQHA))CY is the free

S-algebra sequence on (A, id,TA). The colimit of the transfinite sequence (7my4)q in €2

B

aﬁA) t Taa — g, exists and is equal to 7y : R’A — RA.

with connecting maps (Txg A,T
By our comments above and by (2) of definition 2.3.19, (RA,m4,RA) is the colimit of

(Xad, T, Xa:1A)), in T E.
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By 2.3.14 and 2.3.19 (1), S(RA,m4,RA) = (RA,m4,RA) and the unit map o(gam,ra):

RA,m4,RA) - S(RA,m4,RA) is the composition
( ) b b b p
(RA,ma, RA) T4 (TR A Ty, TRA) A7 (RA m4, RA)

So, by 2.3.20, 0(ra,m 4 ra) = id : (RA,ma,RA) - (RA,ma,RA). Thus (RA,m4,RA) is an
S-algebra.

By 2.3.21, (x5 4, 25° 4) : (A, id, TA) - (RA, m4,RA) is the universal map of the reflection
of (A,id, TA) into Algg. Let (X,n) be an object in Algy and let f: A - X be a map in
¢. We will show that z° , : A - RA is the universal map of the reflection of A into Algr.
By 2.3.10, (X,n,X) is an S-algebra. Since (f,noTf):(A,id,TA) - (X,n,X) is a map in
T | €, there is a unique map (u,v) : (RA, ma, RA) — (X,n, X) which is a map of S-algebras
such that (u,v)o (z§ 4,27 4) = (f,noTf). Because (u,v) is a map in Algg between objects
in Alg; and Alg; is a full subcategory of Algg, u = v. Because Algg is a full subcategory
of T'| €, (u,u) is the unique map in T | € such that (u,u)o (§ ,,25°,) = (f,noTf). But
this is exactly the condition that u: (RA, m4) — (X,n) is a unique map in Alg such that
uox® ,=noTf If s:(RA,ma) - (X,n) is a map in Algy such that soz, = f, then the
commutativity of the following diagram and the uniqueness of u shows that s = u.

T 4

Tz 4 maA
TA ——— TRA ——— RA

S I I

X —— X
So (RA,m,) is the reflection of A in Algy and z§° , : A - RA is the universal map of the
reflection.
Since this holds for every object A, by 2.2.2, the functor A — (RA, my) is the left adjoint
to Ur : Alg - € with unit 23 : Id - R. So there is a map p: RR — R such that (R, z§°, 1)
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is the free monad on (T,7). By the proof of 2.2.8, the universal map of the free monad is

mo Tx = z{°. [

When the free monad sequence for (T, ) is weakly convergent, we will say the free monad

on (T, 7) exists constructively.

Theorem 2.3.23. If the free monad sequence for (T,T) converges objectwise, then it con-

verges weakly.

Proof. For each A, let a(A) be the first ordinal at which the free T-algebra sequence for
A converges. We define a pointed endofunctor (R,7n) on % as follows. On each object A,
let RA = X,4)A and let ny = xg(A)A :A > RA. Let f: A— Bbeamapin %. Let
f = max{a(A),a(B)}. We define Rf : RA - RB as the map Xzf : X3A - X3B composed
with the isomorphisms X,4)A & XgA and XgB = Xy(pyB. Then R: ¢ — ¢ is an endofunctor

and 7 : Id - R is a natural transformation. If we define m 4 = (xggﬁiﬂ):

OTa(A) 4 T Xa(a)A —
Xa(a)A on each object A, then m is a natural transformation TR — R.

Just as for (small) diagrams, an endofunctor is the colimit of a large connected diagram
in pEnd (%) if it is the objectwise colimit of the large diagram. So (R,7) = colim XT. Then
n =xg. Since the large diagram (TX,), also converges objectwise, its colimit exists.

It is easy to check that conditions (1) and (2) of definition 2.3.19 hold on each object A.

Therefore they hold in End(%). O

2.4 Objectwise Convergence of Free Monad Sequences

In this section, we will describe a smallness condition that we can place on a pointed
endofunctor to guarantee that its free monad sequence converges objectwise. This main
result is theorem 2.4.23. The variations of this smallness condition play a central role in
nearly all of the results in this thesis.
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Because left proper orthogonal factorization systems are key to defining the smallness
condition, we spend section 2.4.1 defining them and reviewing key facts about them. We
then proceed in a similar manner to section 2.3. It is much easier to show that the small-
ness condition on a pointed endofunctor (S,o) implies the free monad sequence for (S, o)
converges objectwise when we know that (S,0) is well-pointed. So we handle this case first
in section 2.4.2. Section 2.4.3 then uses the same reduction we used in sections 2.3.2 and
2.3.3. We show that when (T, 7) is a pointed endofunctor on a category % that satisfies the
smallness condition, then the well-pointed endofunctor (S,0) on T | € that we constructed
in section 2.3.2 satisfies a related smallness condition. So the free monad sequence for (S, o)
converges objectwise and thus the free monad sequence for (T, 7) converges objectwise.

Finally, in section 2.4.4, we describe a particular subcategory of small endofunctors in
pEnd(%’). Not only do all of the objects in this subcategory have reflections in Mnd(%),
but their reflections are themselves endofunctors that satisfy the same smallness condition.
So the forgetful functor U : Mnd(%) - pEnd(%) restricts to a functor that has a left

adjoint. This fact will play an important role in some results in later chapters.
2.4.1 Orthogonal Factorization Systems

Let X be a collection of maps in a category €. A map f in € has the left lifting property
with respect to & if for each g € X', there is a map [ : Y - A that makes the following
diagram commute. A map ¢ in € has the right lifting property with respect to X if for each

f e X, there is a map [: Y — A that makes the following diagram commute.

X~ A

lf /l,/x ig (2.8)

Yy Y~ B
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When a lift [ in diagram (2.8) exists, we will say [ is a solution to the lifting problem (u,v) :
f = g. We will use the notation "X for the collection of maps in € with the left lifting
property with respect to X and XF for the collection of maps with the right lifting property
with respect to X.

For any collection of maps X', X% = (°(X?))? and 9 = 9((°X)7). We also have the

following properties.
e Every isomorphism in % is contained in both AP and "X.
e The collections X and "X are stable under retracts in the arrow category %2.

e The collection AP is stable under composition and the collection PX" is stable under

transfinite composition in %

e The collection A" is stable under pullbacks and the collection "X is stable under

pushouts in .

e The collection X" is stable under products and the collection "X is stable under co-

products in the arrow category 2.

Definition 2.4.1. An orthogonal factorization system on a category % is a pair (£, R) of

collections of maps in € such that
e LP=TR and L =R,
o if f e L and g € R, then the lift [ in diagram (2.8) is unique, and
e every map f in % factors as f =iop, where 1 € R and p e L.

The factorization f = 7o p in an orthogonal factorization system is always functorial.
Indeed, in the commutative square on the left, if f and ¢ factor as f =ifop; and g =1440p,
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for iy,1, € R and py,p, € £, then there is a unique lift in the right rectangle.

X —“ s A X —— A Zg/% Eg
lf g lif 3/!/// lpg
Y > B Ef ==Y —— B

When Z is a small category and X is a collection of maps in ¢, we will use the notation
X7 for the collection of maps in the functor category €7 that are objectwise X-maps. Using
the functoriality of orthogonal factorization systems and the uniqueness of lifts in orthogonal

factorization systems, it is easy to prove the following.

Proposition 2.4.2. If (£, M) is an orthogonal factorization system on € and 2 is a small

category, then (£7, M?) is an orthogonal factorization system on €.
Proposition 2.4.3. Let (L,R) be an orthogonal factorization system on a category € .

o If D:9 — €2 is a diagram whose objects are in L, then colim D € L when it exists.

o [fD:9 - %€? is a diagram whose objects are in R, then lim D € R when it exists.
Proof. The proof is somewhat similar to the proof of 2.1.25. m

Definition 2.4.4. An orthogonal factorization system (€, M) on a category € is left proper
if every map in £ is an epimorphism, right proper if every map in M is a monomorphism,

and proper if it is both left proper and right proper.

Proposition 2.4.5. Let (£, M) be an orthogonal factorization system on € and let h = go f.
o If (£, M) is right proper and h € &, then ge&.
o If (£, M) is left proper, he &, and f €&, then ge&.

o If (E, M) is left proper and h € M, then f e M.
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o If (£, M) is right proper, he M, and g € M, then f e M.

An easy example of a left proper orthogonal factorization system that exists on any
category % is when & is the collection of all isomorphisms in ¥ and M is the collection
of all maps in €. Dually, when M is the collection of all isomorphisms in % and £ is the
collection of all maps in &, then (£, M) is a right proper orthogonal factorization system.
Under fairly weak conditions on %, we can get less trivial proper orthogonal factorization

systems on %. To state this result, we will need some definitions.

Definition 2.4.6. A map f in a category ¥ is a strong epimorphism if it is an epimorphism
and a lift [ exists in diagram (2.8) whenever ¢ is a monomorphism. A map g in € is a strong
monomorphism if it is a monomorphism and a lift [ exists in diagram (2.8) whenever f is an

epimorphism.

In a given category &, we will use the notation MY, Ms¥, £¢, and £ for the classes of
monomorphisms, strong monomorphisms, epimorphisms, and strong epimorphisms, respec-

tively.

Definition 2.4.7. Let M be a subcollection of the monomorphisms in a category %. An
M-subobject of an object X is an M-map Y - X. Two M-subobjects f : Y - X and
g:Z — X of X are in the same isomorphism class if there is an isomorphism h :Y — Z such
that f = goh. The category € is M-well-powered if for each object X in €, the collection

of M-subobjects of X has only a set of isomorphism classes.

Definition 2.4.8. Let £ be a subcollection of the epimorphisms in a category 4. An &-
quotient of an object X is an &-map X - Y. Two &-quotients f: X - Y and g: X - Z of

X are in the same isomorphism class if there is an isomorphism A : Y — Z such that g = ho f.
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The category € is E-well-copowered if for each object X in €, the collection of £-quotients

of X has only a set of isomorphism classes.

We will say a left proper orthogonal factorization system (€, M) on a category € is
well-copowered if € is E-well-copowered.
As we already saw, we will say a category is well-powered when it is M¥-well-powered.

Similarly, we will say a category is well-copowered when it is £¥-well-copowered.
Proposition 2.4.9 ([Bor94b, 4.4.3]).

o If % is a complete well-powered category, then (€5, MY) is a proper orthogonal factor-

ization system on € .

e If € is a cocomplete well-copowered category, then (€%, M%) is a proper orthogonal

factorization system on € .

Dualizing the notation in section 2.1.3, for any object X in ¥ and any collection X" of
maps in ¢, X |x € will denote the full subcategory of the comma category X | € on the

objects (f,Y) such that f: X - Y is an X-map in €.

Lemma 2.4.10. Let (€, M) be a left proper strong factorization system on a well-copowered
category €. For each object X in €, the category X g € is equivalent to a partially ordered

set.

Proof. Since X has only a set’s worth of £-quotients, X |g € only has a set of isomorphism
classes of objects. Let u,v : (f,C1) — (g,C>) be parallel mapsin X |¢ €. Since uof = g=wvof
and f is an epimorphism, u = v. So whenever there is a map (C1, f) - (Cs, g) between two

objects, this map is unique.
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We can now identify the existence of a map (f,C) - (g,Cs) with the relation (f,C) <
(g,C3). The fact that X |¢ @ is a category means that < is reflexive and transitive. It
remains to show that < is antisymmetric. If there is a map u: (f,C1) — (¢,C%) and a map

v:(g,Cs) = (f,C1), then vouo f=fand uovog=g. Sovou=id and uowv = id. O

Remark 2.4.11. If € is E-well-copowered, then every transfinite sequence X : Ord - &
whose maps X (0 - «) : X(0) - X(«) are E&-maps must converge. Indeed, by 2.4.10, X
can be identified with a large sequence in a partially ordered set. Since this sequence will

exhaust all possible values in the partially ordered set otherwise, it must converge.
2.4.2 Convergence Results for Well-Pointed Endofunctors

Our goal in this section is to describe conditions under which the free monad sequence
on a well-pointed endofunctor (S,o) converges objectwise. As we saw in section 2.3.3, the
objectwise convergence of this sequence implies the free monad on (S, o) exists.

Let (S,0) be a well-pointed endofunctor on a cocomplete category €. Suppose (£, M)
and (&', M") are left proper orthogonal factorization systems on % and that % is both
E-well-copowered and &’-well-copowered.

To construct the free monad on (S, o), we will need a sort of smallness condition on the
functor S: ¥ - €. Let X be a regular cardinal. For the remainder of this section, we require
that

S:% — € preserves E-tightness of (M’, X)-cocones.

Refer to section 2.1.3 for the definitions of these terms. This is the most general smallness

condition we work with.

Remark 2.4.12. We could actually be a little bit more general by only requiring that S

preserves E-tightness of A-sequential M’-cocones. This condition will be sufficient to prove
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objectwise convergence of the free monad sequence and by 2.1.17, this condition is more
general than the one above. Since we wish to keep notation consistent throughout this
thesis, and since filtered cocones are essential to the content of chapters 6 and 7, we choose

to use the stronger condition.

We will use various strengthenings of the smallness condition throughout this thesis. One
strengthening is the condition that S: 4 — € preserves E-tightness of all A-filtered cocones.
A special case is when S preserves colimits of A-filtered cocones. Another is that S: 4 - €
sends E-tight (M, X)-cocones to E-tight M-cocones.

The following proposition gives a condition for the convergence of the free S-algebra
sequence on an object X. As we saw in 2.3.5, when this sequence converges, it converges to

a free S-algebra on X.

Proposition 2.4.13 ([Kel80, 6.1]). Let X be an object in €. Suppose there is a limit
ordinal v such that the following condition is satisfied: For every ordinal 5 > v, if the cocone
{ng 159X — SBX}MA/ is E-tight, then the cocone {SSQX 1SS X — SSfBX}a<7 is E-tight.

Then the free S-algebra sequence for X converges.

Proof. Since S*X : Ord — % is cocontinuous, {SXX 5o X — SVX}CWI is a colimiting cocone.
So it is an &-tight cocone in particular. By our hypothesis, the cocone {ngll 19X -
SS"YJle}a<7 is £-tight. But this cocone is a final subcocone of {nglx 159X - SS“/“X}CKW.
So {SZfl X fa<y 1s an E-tight cocone. Continuing in this way, a transfinite inductive argument
shows that {SQX 52X - SﬂX}aq is an &-tight cocone for each 8 > 7. In other words,
ng :S7X - SPX is an E-map for each 3 > .

We’ve shown that for each 8 > v, the transfinite sequence S*X : Ord — %, sends the map
v = [ to an £&-map. So after reindexing, our remarks in 2.4.11 apply to S*X. So the free

S-algebra sequence for X converges. m
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If S: ¢ - € preserves E-tightness of all Mfiltered cocones, then it is easy to see that
the hypothesis of the above proposition holds. Indeed, we can take v to be a regular ordinal
with |y| > A to ensure that any cocone indexed by Ord., is A-filtered. If we only know that
S preserves E-tightness of (M’ \)-cocones, then we will need to do some more work to show
the hypothesis of proposition 2.4.13 holds. The following two technical lemmas make use of

our smallness condition on S to show exactly that.

Remark 2.4.14. If A : Ord - Ord is a strictly increasing cocontinuous functor, then the
restriction A : Ord., - Ord.,(,) is a final functor for every limit ordinal . Since A is
strictly increasing, A(a) < A(7) for every ordinal a < . Since A is also cocontinuous,

a < A(«) for every ordinal o < A(7y). The result is then an immediate consequence of A.2.3.

We will use the successor functor *: Ord — Ord that sends each ordinal a to v+ 1 and
sends each map a — ( to the map a+1 — S+ 1. There is a natural transformation ¢ :Id — *
defined on each ordinal « as the map o - a+ 1. We will abbreviate a + 1 as a* so that

() =at.

Lemma 2.4.15 ([Kel80, 4.1]). For every functor F': Ord — €, there is a strictly increasing
cocontinuous functor A : Ord - Ord, a functor G : Ord - €, and a natural transformation

0:G — FA* such that the following conditions hold.
1. For every ordinal > A(a*), the map
F(Aa™) = B) 0 bs: G(a) ~ F(B)
s an M’-map.
2. For any endofunctor T : € — € and any limit ordinal v, the map

colim T4, : colim TG(a) — colim TFA(a™")
a<y

a<y a<y
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s an isomorphism.

Proof. We will define A : Ord — Ord inductively. Let A(0) = 0. Since we want A to
be cocontinuous, it is enough to define it on successor ordinals. Let « be an ordinal and
suppose A(a) is defined. For each > A(«), we apply the (£, M") factorization to the map
F(A(a) = B) : FA(a) = F(B). We end up with a large sequence of £’-quotients of FA(«)
indexed by § > A(a). By our observation in 2.4.11, this sequence converges. Let A(a + 1)

be the first 8 at which this happens. So there is a factorization

FA(a—a+l)

/—\

FA(a) -2 G(a) —2 FA(a+1)

with ¢, € £ and 6, € M'.

The convergence of the sequence of £’-quotients of FA(«) implies that F(A(a+1) — )0
0, : G(a) > F(B) is an M'-map for each > A(a+1). The maps ¥441 06, : G(a) > G(a+1)
and 1, o F(A(a) > A(y)) 0 b, : G(a) - G(v) for a limit ordinal v make G a functor
G:0rd > %. Then ¢: FA - G and 0 : G — FA* are natural transformations.

The following diagram of natural transformations commutes.
G — Gy
Pk
FA+ A o ppss
We apply T to the above diagram, restrict to Ord., for a limit ordinal 7, and then take the

colimit of the entire diagram over Ord.,. Since

colim TG : colim TG(«) — colim TG(«)
<y

a<ry a<y e’

and

colimTFA*¢: colim TFA(a) - colim TFA(«)
B as<y

a<y a
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are identity maps, we know that colim,., T% is an inverse for colim,., T0. O]

Lemma 2.4.16 ([Kel80, 4.2]). Let F': Ord — € be a functor. There is a limit ordinal y

such that for each B >, if the cocone

{F(a~p):F(a) > F(8)]

a<y

1s E-tight, then the cocone

{SF(a - B):SF(a)~ SF(B)}

a<y

i1s E-tight.

Proof. Let A, G, and 6 : G - FA* be the objects defined in 2.4.15. Let =y be a regular
ordinal with |yo| > A\. Then 7o and A(y) are limit ordinals.

Suppose {F(a = f8) : F(a) - F(ﬁ)}MA(WO) is £-tight. Then by our observation in 2.4.14,
{F(A(a) > B) : FA(a) > F(ﬁ)}a«m is £-tight. So the cocone {F(A(a*) —» ) : FA(a*) -
F(B)}aq0 is also &-tight. An application of 2.4.15 (2) with T =1d to this cocone now tells

us that the cocone

{F(Ma*) = 8) 08, Gla) > F(8)]

a<yo

is £-tight. We know this last cocone is an M’-cocone. Furthermore, since 7, is a regular
ordinal with |yo| > A, no A-small diagram in Ord.., is final. So the last cocone is a A-filtered
cocone.

By our assumption on S, the cocone

[SF(A(a") > §) 0 50 : SG(a) - SF(5)}

a<yo

is £-tight. Now 2.4.15 (2) with T = S tells us that { SF(A(a*) —» B8) : SFA(a*) > SF(B)}(MO
and therefore {SF(A(a) - [): SFA(a) - SF(ﬂ)}OMO is E-tight. So by 2.4.14, {SF(a -
B):SF(a) — SF(/B)}MA(%) is an £-tight cocone. O

69



We now have all of the prerequisites for the proof of our main result of this section.
Proposition 2.4.17. On each object X in €, the free S-algebra sequence for X converges.

Proof. By lemma 2.4.16, S satisfies the hypothesis of proposition 2.4.13 for every object X

in €. O

Remark 2.4.18. It is easy to check that all of the above propositions go through under the

weaker assumption that S preserves £-tightness of A-sequential M’-cocones.
2.4.3 Convergence Results for Pointed Endofunctors

Let (T, 7) be a pointed endofunctor on a cocomplete category €. We will show in 2.4.23
that the smallness condition of the previous section on the endofunctor T guarantees the
objectwise converges of the free monad sequence on (T,7). Our method for showing this
result is to reduce it to the case of a well-pointed endofunctor.

Let (S,0) be the well-pointed endofunctor on T | 4" constructed in the section 2.3.2.
We need to show that the free monad sequence on (S,0) converges objectwise. Then by
2.3.17, the free monad sequence on (T, 7) converges objectwise. We already saw that T | ¢
is a cocomplete category. So, by 2.4.17, to construct a free monad on (S, ), we only need
that S: T | € - T | € satisfies the smallness condition with respect to two orthogonal
factorization systems on T | €.

In 2.4.21 we will see how an orthogonal factorization system (£, M) on & defines an
orthogonal factorization system (Ep, Mt) on T | ¥. We will then show in 2.4.22 that
when T : € — € preserves E-tightness of (M’ X)-cocones for a regular cardinal A and two
orthogonal factorization systems (£, M) and (€', M") on €, then S: T | € - T | € preserves

Er-tightness of (M, \)-cocones.
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Let (£, M) be an orthogonal factorization system on a category € and let (T,7) be a
pointed endofunctor on €. We will use the notation Mt for the class of maps (u,v) in
T | € such that both v and v are in M. We will use the notation &r for the class of maps
(u,v): (X, f,Y) > (A,g,B) in T | € such that u € £ and v factors as the map p defined by

the pushout in € of Tu along f followed by a map r € £, as shown in the following diagram.

TX —/5 TA __,

r N (29)
p r r

y 2L — 7 -1 » B

v

Lemma 2.4.19 ([Kel80, 15.3]). If the orthogonal factorization system (€, M) is a left proper,

then every map in Er is an epimorphism in T | €.

Proof. Let (u,v): (X, f,Y) - (A, g,B) be amap in . We will factor (u,v) as in diagram
(2.9). Suppose (a,b) and (c,d) are parallel maps (A, g,B) - (C,k,D) in T | € such that
(a,b)o(u,v) = (¢,d)o(u,v). Then aou=cou: X - C and bov =dov:Y - D as maps in €.
Since u € £, it is an epimorphism and a = ¢. So it remains to show that b = d. Since r is an
epimorphism, it suffices to show bor = dor. Since Z is a colimit, two maps bor and dor out
of Z agree if and only if borop =dorop and boroh = doroh. We've already determined that

the first equality holds. Since a = ¢, we know boroh =bog =koTa =koTc=dog=doroh. [

Lemma 2.4.20 ([Kel80, 15.2]). Every map in T | € factors as a map (u,v) : (X, f,Y) >

(A,g,B) in &r followed by a map (s,t):(A,g,B) > (C,k,D) in Mr.

Proof. Let (z,y): (X, f,Y) - (C,k,D) be amap in T | ¢ First, we factor z: X - C in ¢

as amap u: X - A in &£ followed by a map s: A - X in M. Next, we factor v as in the
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following diagram.

TX 5 TA ..
1L l"\
N q
Y —2— 7 - » D

v

Then we factor ¢ as a map r : Z - B in & followed by a map t : B - D in M. So
(u,rop): (X, f,Y)— (A, roh,B)is amap in & and (s,t): (A,roh,B) - (C,k,D) is a

map in Mr. H

Proposition 2.4.21 ([Kel80, 15.1, 15.2]). If the orthogonal factorization system (£, M) is

left proper, then the pair (Ev, Mr) is a left proper orthogonal factorization system on T | €.

Proof. By lemmas 2.4.19 and 2.4.20, we only need to check & = ®Mry and EF = M.
Actually, since 2.4.20 tells us a factorization for (&, M) exists, it suffices to show & € M.
Consider the following commutative diagram in T | €.

(X, £,Y) =25 (U,5,V)

()| Jo (2.10)

(4,9,B) 225 (C,k, D)
Suppose (u,v) € Er and (s,t) € Mrp. Then a solution [ : A - U to the lifting problem
(a,c) : u - s exists. Using the notation of diagram (2.9), the maps jo Tl : TA - V and
b:Y — V define a map m : Z — V such that moh = j o Tl and the following diagram

commutes.

Y b X

b
/ D

Z" B —

~

Since r € £ and t € M, a solution n: B — V to the lifting problem (m,d) : r — t exists. So

(I,n):(A,g,B) - (U,5,V) is a lift in diagram (2.10). O
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Proposition 2.4.22 ([Kel80, 15.5]). Let (T,7) be a pointed endofunctor on a category € .
Let (£, M) and (E', M") be left proper orthogonal factorization systems on €. If there is a
reqular cardinal \ such that T : € — € preserves E-tightness of (M, X)-cocones, then the

well-pointed endofunctor (S,0) on T | € constructed in section 2.3.2 preserves Er-tightness

of (M%, X)-cocones.

Proof. By 2.4.3 and the fact that colimits commute with each other, to show that S: T |
¢ — T | € preserves Ep-tightness of (M, A)-cocones, it suffices to show that each of the
endofunctors Id, n7*, and A cod7* on T | € have this property. This is trivial for Id.

Let £2 be the collection of maps (u,v) in €2 such that u € £ and v € £. Similarly, let
M?2 be the collection of maps (u,v) in €2 such that both u and v are in M.

First, we note that 7 : €2 - T | € sends £2-tight (M2, \)-cocones in €2 to Ep-tight
cocones in T | €. Indeed, let {(us,vs) : fa = f}a be an E2-tight (M2, \)-cocone in €2.
Let X, = dom f,, Y, = cod fo, X =dom f and Y = cod f. Let (u,v) : colim, f, = f be
the map defined by the cocone {(uy,vq)}o. Then the smallness condition on T means that
the map colim, TX, - TX defined by the cocone {Tu, : TX, - TX}, is in £. Also
2.4.5 implies that the colimiting cocone {X, — colim, X, }, is an E-tight (M’, \)-cocone.
So colim, TX, — T(colim, TX,) is an £&-map and therefore an epimorphism. By 2.4.5,
the map Tu : Tcolim, X, —» TX is in £. It now follows from 2.4.3 that, as a map in €2,
n(u,v) : mycolim f, - 7 f is an E2-map. It follows from 2.4.3, 2.4.5, and the fact that colimits
commute that {71(ua,va)}a is an Ep-tight cocone.

Now we know it is sufficient to show that the functors 7*: T | € — €2 and Acod7*:T |
€ — €2 send Ep-tight (M, \)-cocones to E2-tight (M’? \)-tight cocones. Clearly, estab-
lishing this fact for the former functor is enough to show it holds for the latter. Let {(uq,vq) :

(X far Yo) = (X, f,Y)}a be an Ep-tight (M7, A)-cocone in T | €. Then, in particular, the

73



maps u, : X, - X are in M’. Let u : colim, X, - X and v : colim, Y, — Y be the maps
in ¢ defined by the cocones {u,}q and {v,}a, respectively. The map colim, (X, fo,Ya) =
(X, f,Y) in T | € defined by the cocone {(un,vs) : (Xa, fa, Ya) = (X, f,Y )} is the pair

(u, k) shown in the following diagram, where g = colim, (X, fa, Ya)-

colimg, TX, —< T(colim, X,) — TX

colimg fal \Lg lf

colim,, Y,

So the fact that this cocone is Ep-tight means that u € £ and k factors as k£ = r o p, where
r € £ and p is the pushout of Tu along g. So we now know that {u, : X, - X}, is an
E-tight (M’; X)-cocone in €. Thus Tuoc:colimTX, — TX isin €. Since & is stable under

pushouts, p o h must be an E&-map. Thus v=ropohe&. So (u,v) € E2. H
We now have all of the components for the proof of our main theorem.

Theorem 2.4.23 ([Kel80, 15.6]). Let € be a cocomplete category equipped with well-copowered,
left proper, orthogonal factorization systems (€, M) and (€', M"). If (T, 7) is a pointed end-
ofunctor on € and T : € — € preserves E-tightness of (M', X)-cocones for a reqular cardinal
A, then the free monad sequence on (T,T) converges objectwise and thus the free monad on

(T, 7) exists.

Proof. By 2.3.8 and 2.4.21, T | % is a cocomplete category with well-copowered, left proper,
orthogonal factorization systems (&p, M) and (&5, M%) By 2.4.22, (S,0) preserves Er-
tightness of (M/, X)-cocones. So, by 2.4.17, the free monad sequence for (S,0) converges
objectwise. Thus, by 2.3.17, the free monad sequence for (T, 7) converges objectwise, and

so the free monad on (T, 7) exists by 2.3.18. O
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Remark 2.4.24. If T preserves E-tightness of Ad-sequential M’-cocones, then the proof of 2.4.22
shows that S preserves Ep-tightness of A-sequential M7.-cocones. Then theorem 2.4.23 can

be adapted to show that the free monad sequence on (T, 7) converges objectwise.
2.4.4 A Special Case of the Smallness Condition on Endofunctors

Let (£, M) be a left proper orthogonal factorization system on €. Let (€, \)-pEnd(%)
and (£, \)-Mnd(%) be the full subcategories of pEnd(%) and Mnd(%), respectively, on

the endofunctors that preserve £-tightness of M-filtered cocones.

Proposition 2.4.25. If there is a regular cardinal \ such that the functor T : € - €
preserves E-tightness of A-filtered cocones, then the free monad on T preserves €-tightness of

A-filtered cocones.

Proof. First, we will show that the category (€,\)-pEnd(%’) is closed under connected
colimits. Since % is cocomplete, pEnd(%) is closed under connected colimits and the
colimits are computed objectwise. Let D : 2 - pEnd(%) be a connected diagram such
that for each object d in &, Dd : € - € preserves E-tightness of A-filtered cocones. Let
{fa : Yo = Z}, be an E-tight A-filtered cocone in €. For each object d in 2, {Dd(f,) :
Dd(Y,) = Dd(Z)}, is an E-tight cocone in €. Since £ is the left class of an orthogonal
factorization system, it is closed under colimits. Therefore {colimy Dd( f,,) : colimg Dd(Y,) —
colimy Dd(Z)}, is an E-tight cocone in €. So the endofunctor colim D in pEnd(%) preserves
E-tightness of Mfiltered cocones. Since (£, \)-pEnd(%) is a full subcategory of pEnd(%),
colim D is the colimit of D as a diagram in (€, \)-pEnd(%).

Next, we note that the composition of two endofunctors in (£, \)-pEnd(%) is an end-
ofunctor in (£,\)-pEnd(%). Indeed, the composition AB of two pointed endofunctors

(A,a) and (B,[3) is pointed by A oaB :1d - AB. Suppose A and B are endofunctors
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on € that preserve E-tightness of A-filtered cocones. Let {f, : Y, - Z}, be an E-tight
Mfiltered cocone in €. Then {B(f,):SY, = SZ}, is an E-tight M-filtered cocone in €. So
{AB(f.):SY, - SZ}, is an &-tight A-filtered cocone in €.

The free monad sequence of T starts with an endofunctor T in (£, \)-pEnd(%). If for
an ordinal « the endofunctors X,, and X,,1 are in (£, \)-pEnd (%), then diagram (2.6) is in
(€, \)-pEnd(%). If v is a limit ordinal and X, is in (&, \)-pEnd(%) for each «a < 7, then
X, must be in (€, \)-pEnd(%), since the diagram of X,’s is connected.

Now, let R: % — % be the free monad on T, which exists by 2.4.23. As we saw in the
proof of 2.3.18, on each object Y, there is an ordinal 8y such that the transfinite sequence
(XaY)o converges at fy and RY = X3, Y. Let {f, : Yo > Z}, be an E-tight A-filtered
cocone in ¢ and let ' = sup{fz, By, |a}. Then the cocone {Rf, : RY, - RZ}, is equal to
the cocone {Xg f, : Xg'Yy - XpZ},, which must be £-tight, since Xp is an endofunctor in

(€, \)-pEnd(%). O

Let G: (E,\)-Mnd(%) - (£,\)-pEnd(%) be the functor that forgets the multiplication
map. By the above proposition and theorem 2.4.23, every endofunctor in (£, \)-pEnd(%)

has a reflection in (£, \)-Mnd(%’). So, by 2.2.2, there is an adjunction

(E0)-Mnd(¢) 1 (£,2)-pEnd(%). (2.11)
\?/‘r

Note that because (£,1)-Mnd(%) is not a coreflective subcategory of Mnd(%), the
above adjunction does not on its own imply that free monads exist on the objects of
(£,))-pEnd(%). We still need the fact that the endofunctors in pEnd(%’) that preserve

E-tightness of M-filtered cocones have reflections in Mnd(%).
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2.5 Free Monoids

Typically, the existence of free monoids on objects in a strict monoidal category (¢, ®, 1)
requires some strong assumptions on how the functors (-)® X : 4 - % and X®(-): ¢ - ¢
behave with respect to certain colimits. The classic result that the free monoid on an object
exists when (=) ® X : ¢ - ¢ and X ® (=) : € — € preserve coproducts for each object X
in ¢ is an example. For the application we are interested in, the functors (-)® X : ¢ - ¢
preserve connected colimits, but not coproducts. This is the case in the strict monoidal
category of endofunctors under composition. We will prove that a free monoid on a pointed
object (7, 7) in a strict monoidal category (%, ®, ) exists when the functor (-)® X : ¢ - ¢
preserves connected colimits for each object X and the free monoid sequence for (T, 7) weakly
converges.

Let (¢, ®,1) be a monoidal category. For us, a pointed object in (¢,®,1) is a pair (T,7)
of an object T"and a map 7: 1 - T in €. We note that [ is usually not the terminal object
in €. Amap f:(X,n%)—> (Y,nY) of pointed objects is a map f: X - Y in € such that
fonX=n¥Y. Amap f:(X,n%, 1) = (Y,nY, 1Y) of monoids in € is defined in the same way
as a map of monads. So f is a map that satisfies the equations ¥ o(Y®f)o(f®X) = foux and
fonX =nY. Let pObj(%) be the category whose objects are pointed objects in (%, ®,1) and
whose morphisms are maps of pointed objects. Let Mon(%") be the category whose objects
are monoids and whose morphisms are maps of monoids. The free monoid on a pointed

object (T',7) is the reflection of (7, 7) along the forgetful functor U : Mon (%) — pObj(%).
2.5.1 Weakly Convergent Free Monoid Sequences

Let (¢, ®,1) be a cocomplete strict monoidal category and let (7', 7) be a pointed object

in (¢,®,1). We will define a free monoid sequence on (T,7) in a similar way to the free
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monad sequence in section 2.3.3. We will also define weak convergence of free monoid se-
quences in an analogous way to the weak convergence of free monad sequences. We will then
show that, when the free monoid sequence on (7', 7) weakly converges and (-)® X : 4 - &
preserves certain large connected colimits for each object X in €, then the free monoid on
(T,7) exists.

The construction of the free monoid sequence takes place in (¢,®,1). Let Xo = I, let
Xy =T, and let mo=7:1 - T. Suppose objects X, and X,,; and a map m,: T ® X, - Xo41
are defined for an ordinal a. We define m,,1: T ® X1 = X2 to be the coequalizer of the

maps (T ®7m,) o (7®T® X,) and (T ®7,) o (T®T® X,).

TRT®X,
TO®Xye —XTOT®Xo —23 T® Xgu1 ——-22-% Xoi

TRT®Xo
If v is a limit ordinal and X, and 7, are defined for each « < v, then we define {z, :

Xo = X, }a<y to be the colimiting cocone of the y-sequence (X, )a<, With connecting maps

a+l ._ .
28 =m0 (1@ Xy) : Xy = Xoyr-

The two maps

TRTR®X o T $Z+1
T X, :X; TeT®X, — > T®Xos1 —> T®X,
TOTR®X o

from T'® X, to T'® X, define two maps

colim (T'® X,,) ﬁ colim (T ® X,) — T® X,

Tezyt+! id * Tezy*!
where ¢ is the map defined by the cocone {T @z} : T ® X, > T ® X, }0<y. And we define
Ty T ® X, — X, 1 to be the colimit of this last diagram.
By composing the maps z¢*! and z7, we get a unique map X, - X 5 for each pair
of ordinals with a < 8. The transfinite sequence (X, ), with connecting maps 25 is the free
monoid sequence or free ®-monoid sequence on (T, 7).
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Lemma 2.5.1. Suppose for each object A in €, the endofunctor (=) ® A:€ — € preserves
connected colimits. If (Xo)a is the free monoid sequence on (T, 1), then (X, ® (=))a is the

free monad sequence on the pointed endofunctor (T ® (=), 7 ® (-)).

Proof. Let Endg (%) be the subcategory of End(%’) whose objects and morphisms are in the
image of the functor ¥ - Endg (%) defined on objects by X — X ® (-) and on morphisms
by f~ f®(-). The composition A® (-) o B® (-) of two endofunctors A® (=) : € - ¢
and B® (-): ¢ — ¢ in Endg (%) is the endofunctor (A® B) ® (=) : € - ¢ in Endg(%).
Since (=) ® X : ¥ - € preserves connected colimits for each object X in % and colimits
of endofunctors are computed objectwise, the colimit in End(%’) of a connected diagram of
functors in Endg(%) is in Endg(%). So Endg (%) is closed under connected colimits that
exist in End(%).

In a similar manner to the proof of 2.4.25, an inductive argument now shows that the free
monad sequence on the pointed endofunctor T'® (-) is a transfinite sequence in Endg(%).
Let (X, ® (-))a be this transfinite sequence. This is the image of the free monoid sequence

(Xa)a on (T,7) under the functor X » X ® (-). O

When the colimit Y of the free monoid sequence (X, ), does exist, we will use the notation
x : X, = Y for the maps in the colimiting cocone. We will use the notation Y’ for the
colimit of the transfinite sequence (T'® X, ), with connecting maps T®x§ TeX, >TeXs
when this colimit exists. The cocone {T'®z> : T® X, > T®Y }, definesamap ¢’ : Y’ > TY.

The cocone {z2,,0omy: T ® X, > Y}, defines a map n/: Y’ > Y.

Definition 2.5.2. The free monoid sequence (X, ), is weakly convergent if the colimit Y =
colim,, X, exists, the colimit Y’ = colim, T ® X, exists, and thereisamap m:T®Y - Y

satisfying the following conditions.
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1. The map m: T ®Y — Y is the coequalizer of the maps (T ® m)o (71® T ®Y') and

(Tem)o(T®7T®Y) in the following diagram.

TTRY
TeY &; TeTeY 2% Tey

TRTRY

2. The following diagram is cocartesian.

C

YV —C s TeY

‘"

y 4 5y
Lemma 2.5.3. Let (X,)a be the free monoid sequence on (T,7). Suppose for each object
A in €, the endofunctor (=) ® A : € — € preserves connected colimits and preserves the
colimits of the large diagrams (Xa)a and (T ® X,)a. Then the free monoid sequence on

(T, 1) is weakly convergent if and only if the free monad sequence for the pointed endofunctor

T®(-):% — € is weakly convergent.

Proof. By 2.5.1, (X, ® (-))a is the free monad sequence on the pointed endofunctor (7' ®
(=), 7e(-)).

Suppose the free monad sequence (X, ® (-)). converges weakly. By evaluating the
endofunctors on I, we get that colim, X, exists, colim, (7 ® X, ) exists, and, since connected
colimits of pointed endofunctors are computed objectwise, conditions (1) and (2) of definition
2.5.2 hold.

Conversely, suppose the free monoid sequence (X, ), is weakly convergent. Then the
endofunctor R := colim, (X, ® (-)) exists and equals (colim, X, ) ® (=) and the endofunctor
R’ := colim, ((T ®X,)® (—)) exists and equals (colima(T ® Xa)) ® (-). Both of the endo-
functor colimits are computed objectwise. Since (—) ® A preserves colimits for each object

A, conditions (1) and (2) of definition 2.3.19 hold. O
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Theorem 2.5.4. Let (X,)a be the free monoid sequence on (T,7). Suppose for each object
A in €, the endofunctor (=) ® A : € — € preserves connected colimits and preserves the
colimits of the large diagrams (Xa)a and (T ® X4)a. If the free monoid sequence on (T, T)
is weakly convergent, then the free monoid on (T,7) exists and is equal to the object the free

monoid sequence weakly converges to.

Proof. By 2.5.1, (X, ® (—))a is the free monad sequence on the pointed endofunctor (7' ®
(=), 7®(-)). By 2.5.3, the free monad sequence (X, ®(-)), weakly converges. Furthermore,
as we saw in the proof of 2.5.3, colim, (X, ® (=)) = (colim, X,) ® (-). So the free monad
(R,n, 1) on the pointed endofunctor (7' ® (-),7 ® (-)) exists and R = colim, (X, ® (-)) =

(colim, X,) ® (=). So (RI,nr, pr) is the free monoid on (T, 7). O
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Chapter 3: Algebraic Weak Factorization Systems and Algebraic
Model Categories

Algebraic weak factorization systems (AWFSs) were introduced in [GT06] under the
name natural weak factorization systems as a generalization to WFSs of structure present in
orthogonal factorization systems. AWFSs replace a WFSs (£,R) with a choice of functorial
factorization (L, R) and place the structure of a comonad on L and the structure of a monad
on R. In [Gar08] and [Gar07], Garner applied the results of [Kel80] to the construction of
free AWFSs on left algebraic weak factorization systems. Some other sources that discuss
algebraic weak factorization systems and related topics are [Riell], [BG16a], and [BG16b].

Garner’s method for constructing AWFSs can be thought of as an adaptation of the small
object argument for sets to a version of the small object argument for diagrams. Previous
work in the thesis [RB99] showed how to place the structure of a comonad on the cofibrant
replacement functor and the structure of a monad on the fibrant replacement functor in a
model category. Interestingly, both sources get monad structures by eliminating redundancy
in the small object argument. But, while [RB99] eliminates redundancy by manually omitting
redundant cells, [Gar07] eliminates redundancy by taking coequalizers and forcing redundant
cells to be equal.

Some useful properties of algebraic weak factorization systems come from the fact that

they encode the structure of lifts in a weak factorization system, rather than just property
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of having a lift. We then have categories of algebras and coalgebras for the right and left
endofunctors in an AWFS that lift the right and left classes of the underlying model category.
As we saw in 2.1.25, these categories have forgetful functors that create limits and colimits,
respectively. So in this sense, if (£,R) is the underlying weak factorization system (WFS),
then we have a cocomplete category of objects in £ and a complete category of objects in
R. Furthermore, by keeping track of the structure of lifts, we can show that diagrams in the
category of coalgebras have natural lifts with respect to diagrams in the category of algebras
for an AWFS. We give a more rigorous introduction to the basic properties of AWFSs in 3.1.

In the rest of this chapter, we give an exposition of Garner’s construction of free AWFSs,
along with some original results. We prove a more general version of Garner’s result and
also fix an issue with his argument. Garner’s approach is to put a monoidal structure on the
category of left algebraic weak factorization systems (LAWFSs) such that the AWFSs are
exactly the monoids in the category of LAWFSs. Garner then claims that that when (L, Ry)
satisfies a smallness condition, then by [Kel80], the free monad sequence for R; converges.
If we give ourselves this result, then the free monoid sequence for (L;,Ry) converges. So
another result of [Kel80] shows that the free monoid (aka AWFS) on the LAWFS (L1, R;)
exists. The problem with this argument is that the smallness condition on (L;,R;) implies
objectwise convergence, not convergence. Since there isn’t really an analog of objectwise
convergence for a free monoid sequence, the argument does not go through. To fix this, we
use our definitions of weakly convergent free monad sequences and free monoid sequences in
chapter 2. The objectwise convergence of the free monad sequence on R; implies the weak
convergence of this sequence. We show in 3.2.15 that the weak convergence of the free monad
sequence for Ry implies the weak convergence of the free monoid sequence for (Li,Ry). We

then can apply 2.5.4 to show that the free monoid on (L;,R;) exists.
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We call the smallness condition we place on our LAWFSs compactness. The surprising
fact that we only need to look at &£.-tight M/ _-cocones, rather than £2-tight M'2-cocones
to get the existence of free AWFSs is mentioned in [Gar07, p 31] and is similar to the
monomorphism hypothesis of [BR13]. Our definition of compactness generalizes the small-
ness conditions considered by Garner, since compactness only requires that the right functor
R of a LAWFS (L,R) preserves &.-tightness of (M/_, \)-cocones, rather than preserving
colimits of (M_, A)-cocones. This extra leeway in what counts as a compact functor ends
up being very useful for later results.

Our result for the existence of free AWFSs on compact comonads is in some sense a sort of
generalization of the functorial version of Chorny’s generalized small object argument [Cho06,
1.1]. We fall short of a true generalization, since we work with a comonad instead of a pointed
endofunctor and since our compactness condition involves the entire category %', rather than
just domains of the maps in the colimiting class. However, we are substantially more general
in that Chorny’s condition corresponds to (&£, M’)-compactness, when (£, M) and (&', M)
are both the (isomorphism, any map) orthogonal factorization systems. With some effort,
one could make our compactness conditions more closely resemble a true generalization of
Chorny’s condition.

After reviewing Garner’s algebraic small object argument, we prove some results in section
3.3 specific to £-compact LAWFSs. We are able to show that the free AWFS on an £-compact
LAWES is £-compact. We then show that the reflections of Garner’s algebraic small object
argument can be replaced with fully-defined left adjoints in this context. We show in 3.3.4
that a model category with £-compact LAWFSs is an £-compact algebraic model category,

getting the map of AWFSs required in the definition of an algebraic model category for free.
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The most important results in this section are 3.2.16, 3.2.18, 3.2.19, 3.3.3, and 3.3.4, but

we will also frequently use results from sections 3.1.3 and 3.2.5 in later chapters.

3.1 Properties of Algebraic Weak Factorization Systems

3.1.1 Functorial Factorizations

Recall, in the notation of section 2.1.1, €2 is the arrow category of & and %3 is the
category of composable arrows in %. As we noted in section 2.1.1, maps f — ¢ in €2 are
pairs (u,v) of maps u:dom f - domg and v:cod f - codg in € such that vo f=gou. At
times, it will be convenient to use the notation 7 : f — g for a map from f to g in €2, rather
than representing the map by a pair.

A functorial factorization on € is a section for the composition functor comp : 63 — €2.
More explicitly, a functorial factorization on % consists of three functors L : €2 —» €2,
R:%?% - €2, and £ : €2 - € such that dom L = dom, cod L = E' = dom R, and cod R = cod.

So, to a map (u,v) : f — g, this functorial factorization assigns a map

A——C
Lf Lg
E\Lf E(uv E\Lg

Ry Jra

B—— D
in ¢3. We will write a functorial factorization as a pair (L., R), where F is understood. We
will refer to the functor E as the middomain functor associated to (L, R).
A map of functorial factorizations ¢ : (L,R) — (L/,R’) with middomain functors E and

E’, respectively, is a natural transformation ¢ : E — E’ such that the following diagram
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commutes for each object f: X - Y in €2.

/\f

Ef —Y Ry

RN R'f
Y

Every functorial factorization (L, R) comes equipped with an counit map & for L and a
unit map 7} for R. The natural transformations £: L — [ and 77: I - R are defined on each

f by the following diagrams.

id Lf
e —
Lfl Ey lf fl al lRf (3.1)
T R

So L is a copointed endofunctor and R is a pointed endofunctor on %72.

A map [ is an L-coalgebra with structure map & : f — Lf if and only if a lift exists in the
right square of diagram (3.1). A map f is an R-algebra with structure map §: Rf — f if and
only if a lift exists in the left square of diagram (3.1). Indeed, since L is a domain-preserving
functor and R is a codomain-preserving functor, the maps k and § each consist of only one
nonidentity map in 4. We will refer to these maps as k and s, so that k = (id, k) and

§ = (s,1d) are described on each f by the following commutative diagrams.

—d —
fl k lLf Rfl 3 lf
k id

We assume all weak factorization systems are functorial. Specifically, a weak factorization
system (L,R) is a pair of collections £ and R of objects in €% such that the following

conditions hold.

1. LP=R and L ="R.
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2. There is a functorial factorization system (L,R) on % such that Lf € £ and Rf e R

for each object f in €2.

If (£,R) is a weak factorization system and (I, R) is a functorial factorization satisfying
condition (2), then we will say (L,R) is an associated functorial factorization of (£,R). In
fact, we show in 3.1.2 that condition (1) of the definition is redundant.

We recall the notation |F| or |«7] of section 2.1.5 for the collection of objects in the image

of a functor F: &/ — 4.

Proposition 3.1.1. If (I,R) is a functorial factorization, then |Algg| ¢ |Coalg,|” and

|Coalgy | < °|Algg].

Proof. Let (f,k) be an L-coalgebra and let (g,5) be an R-algebra. If (u,v): f — g is a

map in €2, then the map so E(u,v) o k shown below is a solution to the lifting problem

(u,v): f - g.

—

/ lLf ng <
k N E(u,v) N S \
Rg
— v

Proposition 3.1.2. If (I, R) is a functorial factorization on € such that Lf € |Coalg; | and

Rf € |Algg| for each object f in €2, then |Algg| = |Coalg | and |Coalg, | = P|Algg|.

Proof. By 3.1.1, |Algg| ¢ |Coalg; |° and |Coalg; | c P|Algg|. If f € P|Algg|and Rf € |Algg],
then a lift exists in the right square of diagram (3.1). Similarly, if f € |Coalg|” and

Lf €|Coalg; |, then a lift exists in the left square of diagram (3.1). O
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Therefore a functorial factorization system (L, R) satisfying the hypothesis of 3.1.2 defines
a weak factorization system (£, R) with £ = |Coalg;| and R = |Algg|. Conversely, if (£, R)
is a weak factorization system and (L,R) is a choice of functorial factorization for (£,R),
then |Coalg;| = £ and |Algg| = R. The inclusion |Coalg; | € £ holds because Lf € £ for
each f and L is retract-closed. For each f € £, since Rf € R, a lift exists in the right square
of diagram (3.1) and thus f €|Coalg;|. A similar argument shows |Algg| =R.

When a functorial factorization system (L, R) satisfies the hypothesis of 3.1.2, we will call
(L,R), with £ = |Coalg; | and R = |Algg|, the associated weak factorization system of (L, R).
In definition 3.1.5, we will put additional algebraic structure on a functorial factorization

that in particular guarantees it satisfies the hypothesis of 3.1.2.

Remark 3.1.3. The lift constructed in proposition 3.1.1 is natural with respect to maps of
L-coalgebras and maps of R-algebras. Let (a,b) : (f,k) - (g,I) be a map of L-coalgebras,
let (c,d) : (p,5) = {q,t) be a map of R-algebras. Suppose (u,v) : f = p and (z,y) : g >
q are maps in €2 such that (z,y) o (a,b) = (¢,d) o (u,v). Of course E(z,y) o E(a,b) =
E(c,d) o E(u,v). Furthermore, what it means for (a,b) to be a map of L-coalgebras is that

E(a,b) ok =10b. Similarly, to E(c,d) = cos. Therefore coso E(u,v)ok=to E(x,y)olob.

We will make frequent use of the following proposition.

Proposition 3.1.4. Let L and R be classes of maps in € such that L ="R. If (L,R) is a

functorial factorization on € such that Lf € L for each f and |Algg| < R, then |Algg|=R.

Proof. If f € R, then a solution to the lifting problem (id,Rf) : Lf — f exists. So f € |Algg]|.

Thus R ¢ |Algg|. O
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3.1.2 Algebraic Weak Factorization Systems

When L is a domain-preserving comonad on €2, then the comultiplication map ¢ : L - LL
can be expressed as 6 = (id,d8), where 4 is a natural transformation obj(42) - morph(%).
Similarly, when R is a codomain-preserving monad on %2, we can express the multiplication

map ji: RR - R as i = (u, id).

Definition 3.1.5. An algebraic weak factorization system (AWFS) on € is a functorial fac-
torization (L, R) on € such that (L, &) is equipped with the structure of a comonad (L, &, 6),
(R, 1) is equipped with the structure of a monad (R,7j, i), and the following distributivity
condition is satisfied.

Let =: LR - RL be the natural transformation that assigns the map (7, p¢) : LRf —

RLf to each f. We require that the following diagrams commute.

LR = s RL LRR —=%5 RLR —£55 RRL
| o | o
LLR =5 LRL —=X3 RLL LR = s RL

Remark 3.1.6. The two distributivity conditions in the definition of an algebraic weak fac-
torization system are equivalent. Indeed, the equation ZLoL=o OR = Rd o = encodes the two
equations 0r,pody = E(id,0s)0dy and dpopup = pr,po E(0y, puy) o gy for each f € ob(€2), where
E be the middomain functor of the AWFS (L, R). The first of the two equations is equivalent
todLod=Ldod , which is already the associativity condition on the comultiplication of the
comonad (L, &, 5) Similarly, the equation Zo Lji = fil. o R= o ZR encodes the two equations
dpopr=prroE(0f, py)oors and iy o pury = piyo E(uy, id) for each f e ob(€?), the second

of which is equivalent to the associativity of multiplication for (R, 7, fi).

89



Remark 3.1.7. We will see in proposition 3.2.3 that the distributivity condition naturally
arises from considering the structure of a RAWFS (L,R) on a LAWFS such that (L,R) is

still a LAWE'S.

We will also need to work with the following weakenings of an AWFS.

1. A functorial factorization (L, R) is a left algebraic weak factorization system (LAWES)

on € if (L, &) is equipped with the structure of a comonad (L, &,6).

2. A functorial factorization (L, R) is a right algebraic weak factorization system (RAWFS)

on ¥ if (R,7) is equipped with the structure of a monad (R, 7}, j1).

In section 3.1.3 we work out various relations between L-coalgebras and R-algebras when we
only have the structure of an LAWFS or RAWFS, rather than a full AWFS.

In the case of a full AWFS (L, R), we note that because 5f : Lf - LLf makes Lf an
L-coalgebra and fif : RRf - Rf makes Rf and R-algebra, (L,R) satisfies the hypothesis of

3.1.2. This proves the following.

Proposition 3.1.8. If (L,R) is an AWFS on €, then (|Coalg|, |Algg|) is a weak factor-

ization system on € .

An AWFS has more structure than just that of a weak factorization system, however.
As remark 3.1.3 makes clear, for any diagrams Dy, : 2 - €2 and Dy : Z — %2, which factor
through Coalg; and Algy, respectively, and any natural transformation 6: Dy, - Dy, there
is natural transformation A :cod Dy, — dom Dg which encodes a lift in each diagram of the

following form, where 6, = (69, 61).



So we have natural lifts rather than only knowing that a solution to each lifting problem

(u,v) : f > g exists independently when f is an L-coalgebra and g is an R-algebra.

Definition 3.1.9. Let (L,R) and (L/,R’) be AWFSs with middomain functors £ and E’,
respectively. A map of algebraic weak factorization systems ¢ : (L, R) - (L/,R’) is a map of
functorial factorizations such that (id,¢) : L > L/ is a map of comonads and ((,id) : R = R/

is a map of monads.

A map of LAWFSs ¢ : (L,R) — (L/,R’) is a map of functorial factorizations such that
(id,¢) : L > L’ is a map of comonads. A map of RAWFSs ¢ : (L,R) - (L/,R/) is a map of

functorial factorizations such that (¢, id) : R = R’ is a map of monads.

Definition 3.1.10. Let % be a bicomplete category and let W be a collection of maps
in € that satisfies the 2 out of 3 property. An algebraic model category on ¢ with weak
equivalences W is a map of AWFSs (Cy, F) — (C, F;) on € such that |Coalg,| = |Coalgq|nWV

and |Algg,| = |[Algg| nW.

From the definition it is clear that the underlying weak factorization systems (|Coalg,|, |Algg|)
and (|Coalg|,|Algg,|) of an algebraic model category on € are the weak factorization sys-
tems of a model category on % .

To better describe the structure of algebraic weak factorization systems and algebraic
model categories, we will need to define categorical lifts. Similar to how the operations (-)°
and P(-) on collections describe the relations between the left and right classes in a weak
factorization system, we will define operations (-)2 and @(-) on categories that describe

the relations between categories of algebras and coalgebras for an AWFS.
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3.1.3 Categorical Lifts

Let o7 be a category over 2. So there is a functor A : & - 2. We will define a new
category A2 over C2. When the context is clear, we will also use the notation «72.
An object in &/ is a pair (p, ), where p is an object in €2 and ¢ is a coherent choice of

lift in the following square for every object f in & and every map (u,v): A(f) — p in €2.

u

- =

A(f)l o(fru0) lp

g ;
The coherence condition on ¢ specifies that ¢(g,s,t) ob = (f,u,v) for every map (a’,0") :

f — g in & and every commutative diagram of the following form, where (a,b) = A(a’,b’) :

A(f) = A(g). )
S
k(f) '

\

N //
t

A morphism (p,¢) - (¢,¢) in &2 is a map (x,y) : p - ¢ in €2 such that for every

commutative diagram of the following form, z o o(f,u,v) = ¥(f,s,t).

A(S)

By forgetting the choice of natural lift, we get a forgetful functor &/@ — €¢2.
We define the category 2e7 over €2 dually. Namely, an object in Z¢7 is a pair (f,p),

where f is an object in €% and ¢ is coherent choice of lift in each diagram of the following
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form.
u

//
fl p(u,v.p) lA(p)
A morphism (f,p) = (g,7) in 8¢/ is a map (a,b) : f - g in €2 compatible with the lifts ¢

and 1.

Proposition 3.1.11. Let & be a category over €2.
1. The forgetful functor Be/ — €2 creates colimits.
2. The forgetful functor /2 — €2 creates limits.

Proof. Let A be the functor &/ — 2 and let U : B/ — %2 be the forgetful functor.
Let D : 9 - 2o/ be a diagram such that the colimit of UD exists in €2. Let («, () :
UD —— colimUD be the colimiting cocone in €2. By the definition of @¢7, there is a coher-
ent lift ¢, such that Dd = (UDd, ¢4) for each object d in 2.

Suppose p is an object in & and (u,v) : colimUD — Ap is a map in ¢2. For each d, the
lifting problem (u o g, v o0 33) : UDd — Ap has the solution pg(u o g, v o Bg,p). These lifts
are natural with respect to morphisms in the image of D by the definition of morphisms in
A7 . So d — pg(uo ag,vo By, p) defines a cocone cod UD - dom Ap. Therefore there is an
induced map

(u,v,p) :cod (colimUD) 2 colim(cod UD) - dom Ap

out of the colimit, which is a solution to the lifting problem (u,v) : coimUD - Ap. If
(z,y) = A(z',y") : Ap - Aq for a map (2',y') : p — ¢ in &7, then for each d, x o py(u,v,p) =
wa(xu,yv,q). Thus z o Y(u,v,p) = Y(xu,yv,q). So (colimUD,1)) is an object in Be/ and
(o, 8) : D= {colimU D, 1) is a cocone in Z¢7. The uniqueness of maps out of the colimiting
cocone colimUD in €2 shows that the cocone («, 5) in B¢/ is a colimiting cocone.
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The proof of (2) is dual. O
Corollary 3.1.12. Let o/ be a category over €2.

1. If €2 is cocomplete, then 2af is cocomplete.

2. If €2 is complete, then /2 is complete.

Proposition 3.1.13.

1. If (L,R) is an LAWFS on €, then Algy is a retract of Coalg? over €2.

2. If (L,R) is an RAWFS on €, then Coalgy is a retract of “Algy over €2.

Proof. We will construct the first retraction. The second one is dual. Let E : €2 - % be
the middomain functor of (L,R). Suppose (f,k) is an R-algebra. We define a natural lift
Gy for (f, k) as follows. If (h,7m) is an L-coalgebra and (a,b): h — f is a morphism of €2,
then ¢, ;5 ((h, 1), a,b) = k o E(a,b) om, where k = (k,id) and 1 = (id,m). We now define
the functor F' as follows.
F:  Algg —— Coalg{
(f,]z’) — <fa¢<f,fc)>

\L(u,v) \L(u,v)
<ga l) —_ (qus(gj))

Let G be the functor defined as below

G: Coalg? > Algp

(f.0) —— (£.6((Lf,8;), id, RF))
i(“’”) L)
(g,v) —— {9,9((Lg.d,), id, Rg)),
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where @((Lf, Sf), id, Rf) = (cp((Lf, Sf)7 id, Rf), id) :Rf — f and we use the same convention
for @/3

Clearly, G o F' sends morphisms to themselves. Let (f,k) be an R-algebra. Then G o
F({f,k)) = <f, iy ((Lf,05), z’d,Rf)) =(f,(koE(id,Rf)ody,id)). But E(id,Rf)od; = idpy.
So Go F((f,k)) = (f.F).

From our definitions of F' and G, it is clear that they are functors over €2. m

Corollary 3.1.14.

1. If (L,R) is an LAWFS on €, then |Coalg?| = |Algg|.
2. If (L,R) is an RAWES on €, then |2Algg| = |Coalg, |.
Proof. This is just an application of 2.1.27 to the result in 3.1.13. m

Proposition 3.1.15.

1. If (L,R) is an LAWES on €, then there is an isomorphism of categories Coalgi™”

112

Algy, over €2.

2. If (L,R) is an RAWFS on €, then there is an isomorphism of categories 2 Algg"

IR

Coalg;, over €2.

Proof of (1). Consider the functors F' and G from the proof of proposition 3.1.13. We

have a restriction functor Coalg? — Coalg™”. Composing with F gives a functor F” :

Algy — Coalgi™?. Since (Lf,d;) is a coalgebra for the comonad L, G extends to a functor
G’ : Coalgf™” - Alg.

Just as in the previous proof, F’ and G’ are functors over 2 and G’ o F’ = Id pg,, -
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Note that on morphisms, F’ o G’ agrees with the identity functor. Suppose (f, 1) is an

object in Coalg™”. Let
X= 0 (i iars))
So F"o G'((f,¥)) = (f,x). Let Wi, : Coalg{" — €2 be the forgetful functor. On a square

(a,):Vi({g.0)) — f,

x({g,0),a,0) = ((Lf,05),id,Rf) o E(a,b) ol

-

Because (g,[) is an object in Coalg™, [ = (id,1) : (g,1) - (Lg,d,) is a map in Coalgf".

Therefore (a, E(a,b)ol): g — Lf is a map in Coalg]". Since v is a natural lift with respect

to maps in Coalg;",

W((Lf,ds),id,Rf) o E(a,b) ol =v({g,1),a,b).

Sox=v and F'oG'=1d

Coalg g.

The proof of (2) is dual. O
A much weaker version of the above proposition is given in [BG16a, §2.7].

Proposition 3.1.16.
1. If (L,R) is a LAWFS on €, then |Coalg?| = |Coalg; |°.

2. If (L,R) is a RAWFS on €, then |2Algg| = °|Algg|.

Proof. (1) Suppose f € |[Coalg|P. Since L is a comonad, Lf € |Coalg;| and a solution
exists to the lifting problem (id,Rf) : Lf — f. Thus f € |Algg|. The reverse inclusion is

immediate. The second case is dual. L]
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3.2 Free AWFSs

Let AWFS(%) be the category whose objects are AWFSs and whose maps are maps of
AWFSs. Let LAWFS(%) be the category whose objects are LAWFSs and whose maps are

maps of LAWFSs. There is a functor
AWFS(%) —1 LAWFS(%) (3.3)

that forgets the multiplicative structure and distributivity rules of AWFSs and forgets that
amap (: (L,R) - (C,F) of AWFSs is a map ((,id) : R - F of monads. A free AWFS on
a LAWFS (L1, R;) is a reflection of (L1,R;) along G;. In section 3.2.3, we will see how to
apply the results of section 2.5 to the construction of free AWFSs on LAWFSs. We will see
that when (L,R) is the free AWFS on the LAWFS (Ly,R;y), then Algg = Algy" over 62
and [Algg, | = |Algy"| = |Algg|.

In section 3.2.4, we will see how to construct free LAWFSs on comonads. Let Cmd(%?)
be the category whose objects are comonads on % and whose morphisms the maps of
comonads. Let Gy : LAWFS(%) — Cmd(%2) be the forgetful functor that sends each
LAWFS (L,R) to the comonad L and sends each map ¢ : (L,R) - (C,F) of LAWFSs to
the map (id,() : L - C of comonads. The free LAWFS (L;,Ry) on a comonad L is the
reflection of Ly along the functor Go. When (L1, Ry) is the free LAWFS on a comonad Ly,
we have that Coalg]"~ = Algy, and |Coalg? | =|Algy,|.

Finally, in section 3.2.5, we show how to construct free comonads on diagrams in €2. Let
CAT be the metacategory whose objects are the categories in our Grothendieck universe
and whose morphisms are functors. Then CAT/C? is the metacategory whose objects are
functors F': &/ - €2 and whose morphisms K from F': &/ - €2 to G : 8 - €2 are functors

K : of - % such that GK = F. There is a functor Gz : Cmd(¢?) - CAT/%? that sends
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each comonad L on €2 to the forgetful functor V4, : Coalg;" — €2 and sends each map of
comonads ¢ : L - C to the functor ¢, : Coalgf™ — Coalg®" over €2. A free comonad L{ on
a diagram [ : .¢ — €2 is the reflection of I along G3. When L{ is the free comonad on I,
1?2~ Coalgi}fz over 2.

Putting this all together, we will have a method for constructing free AWFSs on diagrams

I:.9 - €2, This is the reflection of I along the composite functor G3G,G;.
AWFS(%) —s LAWFS(%) —25 Cmd(¢?) —2 CAT/%?

The free AWFS (L/,Rf) on I : & — €2 can be viewed as a categorical analog to the small

object argument on a set of maps in ¥. We have in this case that I? = Algpr over €2 and

that [I2] = |Algg:]|.
3.2.1 Monoidal Structure on the Category of LAWEF'Ss

In order to apply our results for the existence of free monads on pointed endofunctors
to the existence of free AWFSs on LAWFSs, we need to define a strict monoidal structure
on the category left algebraic weak factorization systems. We will describe the monoidal
structure in this section.

Let € be a category. It will often be convenient to represent an object of LAWFS(%)
by a letter X rather than a pair (L,R). When we want to specify the left and right factors
of a LAWFS X, we will often use the notation X = (LX,RX).

Given two LAWFSs (L,R) and (C,F) on ¢ with middomain functors E and E’, re-
spectively, let (L,R) ® (C,F) be the functorial factorization on & defined on each object

f:X =Y as the object

LF foC
foCf f

X EFf — vy
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in 43 and on each morphism (u,v): f - g from f: X - Y to g: Z - W as the map

X LFfoCf EFf RFf v

|
J/U E(E'(u,v),v) lﬂ
B

4 LFgoCg EFg RFg W

in €3.

Let I:%? — %3 be the functorial factorization defined on objects f: X - Y in ¥2 by

X —“ yx_ 1 oy

Then (L,R)®I=(L,R) and I® (L,R) = (L,R). The equality I® I =I makes I a LAWFS.
There is a unit map 7: I - X defined on each f by ny =Lf :dom f - Ef and it is easy to

check that this is a map of LAWFSs.

Proposition 3.2.1 ([Gar07, §3.2]). The operation & defines a bifunctor
® : LAWFS(%) x LAWFS(%) — LAWFS(%).

Proof. Let (L,R) and (C,F) be LAWFSs on ¥ with middomain functors F and E’, re-
spectively. We will show that the functorial factorization (L,R) @ (C,F) is a LAWFS.
Let Sf = LFf o Cf. Then S is a domain-preserving endofunctor on 4?2 with counit map
&S = (id,RFf) : Sf — f. Tt suffices to show that (S,&5) extends to a comonad. Let
oL = (id,6v) and 6C€ = (id,6C) be the comultiplication maps of L and C, respectively. The
comultiplication map for S is the map 5? = (z’d,éjsc) :LEfoCf - LF(LEfoCf)oC(LFfoCf),
where

87 = E(E'(id,LF f) 0 6% id) o 6 (3.4)
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is the map shown in the following diagram.

id . id . id .
7 7 7
Cfl cf . CCfl C(LF foCf)
. 5 .
id 07  E'GdLFf) |
7 7 7
LFf LLFf LE(LFfoCf)
L 1(; C ;
l ok 1 E(E (id,LF f)od$ ,zd) o
7 7
RLFf RF(LFfoCf)
id ~N id a2
7

From the diagram, RF(LFf o Cf) 0 4% = id. So £, o SJ% = idss. Applying E’ to the map

5?0 = (id,RFf):Sf - f in €2 gives a map E'(id, RFf): E'Sf - E'f in €. Then
E'(id,RF f) o E'(id,LF f) 0 6% = E'(id,F f) 0 6% = id.
Now, applying F to the map (E’(id,RFf),RFf) :FSf - Ff gives us
E(E'(id,RFf),RF f) o E(E'(id,LF f) 0 67, id) o 65 = E(id, RF f) 0 ¢ = id.

So ngsc o (S:? = stf.
One can check that a map of LAWFSs ¢ : (C,F) —» (C',F’) defines a map of LAWFSs
(L,R)®¢: (L,R)®(C,F) - (L,R)®(C’,F’) and that a map of LAWFSs ¢ : (L,R) - (L', R’)

defines a map of LAWFSs 0 & (C,F): (L,R) ® (C,F) - (L',R") ® (C,F). O
Corollary 3.2.2. The category (LAWFS(%),®,1) is strict monoidal.

Proof. Since functor composition is a strict monoidal product, (RXRY)R%f = RX(RYR?f)

on each object f. So (X®Y)eZ=X& (Y ®Z). O

Proposition 3.2.3 ([Gar07, §3.2]). There is an isomorphism of categories

Mong(LAWFS(%)) = AWFS(%).
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Proof. A monoid in (LAWFS(%),®,1I) is an object X = (L,R) with maps n: I - X and
p:XeX - X in LAWFS(%) satisfying the monoid equations. The monoid equations
translate exactly to the requirement that (R,7,/i) is a monad. As we already noted, the
unit map I — X is a map in LAWFS(%). Requiring that the multiplication map pu :
X®X - X is a map in LAWFS(%) is equivalent to the requirement that X satisfy the
distributivity conditions of an AWFS. To see this, we will need some notation. Let Sf =
LRfoLf and let Tf = RRf on each object f in €2. Then (S,T) = X ® X is a LAWFS.
The comultiplication map 5? :Sf = SSf of (S,T) is defined by equation (3.4) of proposition
3.2.1, with (C,F) = (I,R). The middomain functor of (S, T) sends maps (u,v) : f - g in
%2 to maps E(E(u,v), z'd) : ERf - ERg in €. Then the requirement that p: X ® X - X is

a map in LAWFS(%) is the requirement that the following diagram commutes for each f.

(Sf,Tf) - > (Lf.Rf)
I Js
E(E(id,pug)ps) s
(SSf,TfoTSf) ——— > (SLf,RfoTLf) —— (LLf,Rf o RLf)

We note that

= E(dy, pu5) o Ory

So the above requirement is equivalent to the condition d oy = pr,ro E(S¢, pis) o Orys, which,
by 3.1.6, is equivalent to the distributivity conditions.

A map of monoids in (LAWFS(%),®,I) is a map in LAWFS(%’) that respects the
multiplication maps of the monoids. In other words, it is a map of LAWFSs and a map of

RAWFSs. So it must be a map of AWFSs and vice versa. n
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Remark 3.2.4. Dually, we can define an operation ® that sends functorial factorizations
(L,R) and (C,F), with middomain functors E and E’ respectively, to the functorial factor-

ization (L,R) ® (C,F) defined on each object f: X — Y in ¢? as the object

FfoRC
! foRCf

X —* 5 poy Y

in 3 and defined on each morphism (u,v): f - ¢gin €2 from f: X > Y tog: Z - W as

the morphism

X LCf BCY FfoRCS

Y
|
J/u E(u,E'(u,v)) J’U
1
Z LCg ECg FgoRCg W
in ¢73.

The dual of 3.2.1 shows that (L,R) ® (C,F) of two RAWFSs (L,R) and (C,F) is a
RAWFS. So the category RAWFS(%) of RAWFSs and maps of RAWFSs has a strict
monoidal structure (RAWFS(%),®, 1), where L is the functorial factorization that sends

an object f: X — Y in €2 to the object

X y 4 vy

~
~

in ¢3.
We do not have that the ®-product of two RAWFSs is a RAWFS or that the ®-product

of two LAWFSs is a LAWFS.

Remark 3.2.5. In [Gar07, §3.2], Garner shows the operations ® and ® above define a two-fold
monoidal structure in the sense of [BFSV03, 1.3] on the category FF(%") whose objects are
functorial factorizations on ¥ and whose morphisms are maps of functorial factorizations.

This means in particular that (FF(%),®,I) is a strict monoidal category and that there is
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a natural transformation
zapcep:(AoB)e(CoD)-»(AeC)o(Be D)

satisfying some coherence conditions.

Then the LAWFSs in FF(%) are the comonoids with respect to (®, L) and the RAWFSs
are the monoids with respect to (®,I). Although showing the axioms of a two-fold monoidal
category are satisfied takes more work, the proof of 3.2.1 becomes easier in this context. It

is just a matter of proving that, for comonoids (X,e%,6%) and (Y,&¥,0Y), the map
Heos : XeY »1lel=1

and the composition

ZX,X,Y,Y

Xoy &0, (XoX)e(YoY) —— (XeY)o(XeoY)

make X @ Y a comonoid with respect to (&, I).
The main part of the proof of 3.2.3 was unpacking the requirement that p: X @ X - X
is a map in LAWFS(%). This is easily stated in this context as the requirement that the

following diagram commutes.

ZX,X,X,X

XoX 225 (XoX)e(XoX) 2% (Xo X))o (X & X)

! Jpor

X 9 s XX

This doesn’t give us a shortcut for proving the equivalence though.

Let CDP(%2) be the full subcategory of End(%?2) on the codomain-preserving endo-

functors.

Proposition 3.2.6.
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1. The subcategory inclusion functor Ky : CDP(%?) - End(%?) creates colimits of the

possibly large connected diagrams in CDP(%62) whose colimits exist in End(%?).

2. The functor Ky : FF(%) - CDP(%?) that sends each functorial factorization (L, R) to
R and sends each map of functorial factorizations ¢ : (L,R) - (C,F) to (¢,id): R - F
creates colimits of the possibly large connected diagrams in FF (%) whose colimits exist

in CDP(%2).

3. The forgetful functor K : LAWFS(%) - FF(%€) creates colimits of the possibly large

connected diagrams in LAWFS(€) whose colimits exist in FF(€).

Proof. (1) If D : 92 — End(%?) is a possibly large, connected diagram of codomain-
preserving endofunctors whose colimit exists, then the colimit must be a codomain-preserving
endofunctor. The colimit is a colimit in CDP(%?2) since CDP(%2) is a full subcategory of
End(%?).

(2) If ((La, Ra))a is a possibly large connected diagram in FF(%) such that the colimit R
of (Ry )« exists in CDP(%?), then the inclusion map R, = R of the colimiting cocone along
with L, for any a defines a left factor L for R so that (L,R) is a functorial factorization.
Different choices of a will yield the same L. It easily follows that (L,R) is the colimit of
((La, Ra))a in FF(%).

(3) This is an immediate consequence of 2.1.21. O

So the functor K = K;KyK3 : LAWFS(%) — End(%?) creates colimits of the possibly

large connected diagrams in LAWFS(%) whose colimits exist in End(%2).

Proposition 3.2.7 ([Gar08, 4.18]). When € is a cocomplete category, the categories FF(€)

and LAWFS(€) are cocomplete.
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Proof. As we saw in 3.2.6 (2), the colimit of a connected diagram in FF (%) is the objectwise
colimit, which must exist, since € is cocomplete. We can get the colimit of any diagram
D : 2 - FF(%) of functorial factorizations as follows. Create a new diagram D’ : 2’ —
FF(%) by adding the object I to 2 and adding the unit map 7 : I - Dd for each functorial
factorization Dd in the diagram. The diagram D’ is connected, so the objectwise colimit is
a functorial factorization. It is easy to check that this object is the colimit of the original
diagram in FF(%).

The above paragraph along with 3.2.6 (3) implies that LAWFS(%) is cocomplete. [

Proposition 3.2.8 ([Gar08, 4.18]). For each LAWFS Y, the endofunctor (-)®Y : LAWFS(%) —
LAWFS(¥) preserves colimits of the possibly large connected diagrams D : 9 - LAWFS(%)

such that the colimit of the diagram KD in End(%?) exists objectwise.

Proof. Let D : 9 - LAWFS(%) be a possibly large diagram such that the colimit of KD in
End(%?) exists. By 3.2.6, the colimit of D in LAWFS(%) exists. Let #: D —— colim D be
the colimiting cocone. We will use the notation Dd = (LP4 RP?) and colim D = (L,R). Let
Y = (LY,RY) be a LAWFS. The cocone {#;®Y : Dd®Y — (colim D) @Y}, is sent by K to
the cocone {(§;RY,id) : RPIRY - (colimy RP4)RY },; in End(%). Since the colimit of KD is
computed objectwise, (colimy RP?)RY = colimy(RPIRY’). Therefore the cocone {(6,RY,id) :
RPIRY - (colimy RPY)RY }, is colimiting. Because by 3.2.6, the functor K: LAWFS(%) —
End (%) reflects the colimit of D, the cocone {;®Y : Dd®Y — (colim D) ® Y}, must be

a colimiting cocone in LAWFS(%). O
3.2.2 Compact Objects

This section will make frequent use of the definitions and notation in 2.1.3 and 2.4.1 so

the reader may wish to review these sections.
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To show that an object (L,R) in LAWFS(%) has a reflection in AWFS(%’), we need to
show that (L,R) satisfies a smallness condition. The smallness condition on (L, R) is just a
smallness condition on R. The smallness condition on R, which we call strong compactness,
is more general than the smallness condition introduced in 2.4.2. To describe this condition,

it will be useful to have some notation.
Definition 3.2.9. Let X be a collection of maps in a category % .

e Let X2 be the collection of maps (u,v) in €2 such that u e X and v e X.
o Let X). be the collection of maps (u,v) in €2 such that u € X and v is an isomorphism.

e Let ¥}~ be the collection of maps (u,v) in €2 such that v is an isomorphism

Definition 3.2.10 (Compact Functors). Let A be a regular cardinal and let € be a category

equipped with left proper, orthogonal factorization systems (£, M) and (&', M').

e An endofunctor F : €2 — €2 is (£, M’,X)-compact if I sends &j-tight (M_, \)-

filtered cocones to £2-tight cocones.

e An endofunctor F' : €2 — €2 is strongly (£, M’,\)-compact if F sends &.-tight

(M, M)-filtered cocones to &--tight cocones.

An endofunctor F : €2 — €2 is (strongly) (£, M’")-compact if it is (strongly) (€, M’ \)-
compact for some regular cardinal .

When (&', M) is the (isomorphism, any map) left proper, orthogonal factorization system
on %, then we will say an endofunctor F' on €2 is (strongly) (£, \)-compact if it is (strongly)

(&, M, X)-compact. It is E-compact if it is (£, X)-compact for some regular cardinal A.

Remark 3.2.11. If a functor F' : € — % preserves &-tightness of A-filtered cocones for a

regular cardinal \, then the functor F'?: €2 — €2 is strongly (&, \)-compact.
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Definition 3.2.12. Let (£, M) and (&', M") be left proper, orthogonal factorization systems

on a category % .

e A functorial factorization (L, R) on € is (£, M")-compact if L : €2 - €2 is an (£, M')-

compact functor.

e A map ¢q: (I,R) —» (L/,R’) of functorial factorizations is (€, M’)-compact if both

(L,R) and (L/,R’) are (£, M’)-compact.

As for endofunctors, we say a functorial factorization or map of functorial factorizations is

E-compact when (€', M") is the (isomorphism, any map) orthogonal factorization system.

The above definitions apply to AWFSs, LAWFSs, and algebraic model categories, so it

makes sense to talk about these things being (£, M')-compact.

Remark 3.2.13. The functor R in a functorial factorization (L,R) is strongly (&, M’)-
compact if and only if L is (£, M’)-compact. So we could just as well define an (€, M’)-

compact functorial factorization (L, R) to be one for which R is strongly (£, M’)-compact.

3.2.3 Free AWFSs on LAWFSs

We are now ready to prove that free AWFSs exist on certain compact LAWFSs. We will
also show that free AWFSs on compact LAWFSs are algebraically free.

We will now start adding the assumption that % is a locally small category. Let & be
a cocomplete, locally small category equipped with well-copowered, left proper, orthogonal

factorization systems (€, M) and (&', M').

Proposition 3.2.14. If (T,7) is a strongly (€, M")-compact, codomain-preserving endo-

functor on €2, then the free monad sequence on (T,7) converges objectwise.
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Proof. We will show that the free T-algebra sequence on each object f in €2 converges. Let
f:A— B be an object in 2. Let (X,), be the free monad sequence on (T,7). So (Xof)a
is the free T-algebra sequence on f.

By 3.2.6 (1), the colimit in End(%?) of a connected diagram of codomain-preserving end-
ofunctors is a codomain-preserving endofunctor. Since compositions of codomain-preserving
endofunctors are also codomain-preserving endofunctors, the free monad sequence on (7, 7)
is a sequence of codomain-preserving endofunctors. Every codomain-preserving endofunctor
F on €2 restricts to an endofunctor F on the comma category ¢ | B. So ()?a)a is a sequence
of endofunctors on 4 | B. When (F, ) is a pointed endofunctor with 7j = (n,id), (F,n) is a
pointed endofunctor on ¢ | B. Then (Xa)a is the free monad sequence for (T, T)on% | B
and (Ka f)a is the free T-algebra sequence on the object f in ¢ | B.

We note that the category € | B is cocomplete and that the well-copowered, left proper,
orthogonal factorization systems (£, M) and (&', M’) lift to well-copowered, left proper,
orthogonal factorization systems (€, M) and (&, M"), respectively, on ¢ | B. Then our
assumption that T is strongly (£, M’)-compact is exactly the requirement that T preserves
E-tightness of (M’,\)-cocones for some regular cardinal A. Therefore, by 2.4.23, the free
T-algebra sequence (Ka f)a on f converges. But this means the free T-algebra sequence

(Xof)a on f converges. O
The basic argument for the above proof is outlined in [Gar07, p31].

Proposition 3.2.15. If (L,R) is an (€, M")-compact LAWES, then the free ®-monoid se-

quence on (L, R) is weakly convergent.

Proof. Let (X,)a be the free monoid sequence on (7,7), where T = (L,R) and X, =

(LXa,RXa) for each a. From the definition of the monoid product @, it is clear that (RX«),
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is the free monad sequence on (R, 7}), where 7j = (n, id). Since R is strongly (£, M')-compact,
by 3.2.14, the free monad sequence (R*«), converges objectwise and by 2.3.23, (RX<),, is
weakly convergent. So the objectwise colimits F = colim, R¥« and F’ = colim, R¥« exist and
there is a map (m,id) : RF - F such that conditions (1) and (2) of 2.3.19 hold. By 3.2.6,
the colimits (C, F) = colim,, X, and (C’,F’) = colim,, T ® X,, exist in LAWFS(%). If we can
show that m: T® (C,F) - (C,F) is a map in LAWFS(%), then it will follow from 3.2.6
that (X, )a is a weakly convergent free monoid sequence in (LAWFS, ®,1).

To show that m : T® (C,F) - (C,F) is a map in LAWFS(%), it suffices to show on

each object f in €2 that the following diagrams commute

my

Sf > Cf

I
id,S id,C
( y \ ) Sﬁi F?
St M s Cf

SSf My scf Mty oc,

where Sf = LFf o Cf and 65 is the comultiplication map of S defined in 3.2.1. Because
(RX«), converges objectwise, there is an ordinal 8 such that Xgf = (L*s f, RXs f) = (Cf,Ff)
and, as we saw in 2.3.23, (my,id) = (mg,4d) : RL*s f - L¥ f. But m5: T® X5 > Xp is a
map in LAWFS(%), since it is a map in the free monoid sequence for (T, 7). Therefore

TGy =My satisfies the relations in the above diagrams. O]

Theorem 3.2.16. If (L,R) is an (€, M")-compact LAWES, then the free AWES on (L,R)

exists and is equal to the colimit of the free monoid sequence for (L,R).

Proof. We know from 3.2.15 that the free monoid sequence (X,), for (L,R) is weakly
convergent. We know from 3.2.8 and the fact that the free monad sequence on R con-
verges objectwise that for every LAWFS Y, the endofunctor (-) @ Y : LAWFS(¥) —
LAWFS(%) preserves connected colimits and preserves the colimits of the large diagrams
(Xa)a and (T @ X,)q. Thus, by 2.54, (L,R) has a reflection along the forgetful functor
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Mong(LAWFS(%)) - LAWFS(%'). This reflection is the colimit of the free monoid se-
quence for (L, R). By 3.2.3, this is equivalent to (L, R) having a reflection along the forgetful

functor G, : AWFS(%) - LAWFS(%). O

Remark 3.2.17. By remark 2.4.24, we could have gotten the same result in theorem 3.2.16
if we replaced (&£, M’)-compactness of (L, R) with the condition that R : €2 — %2 preserves

&x-tightness of A-sequential M’_-cocones for some regular cardinal .

We will say an AWFS (L,R) is an algebraically free AWFS on an LAWFS (L, R;) if
there is a map ¢ : (Li,Ry) » (L,R) of LAWFSs such that ((,id)" : Algg" - Algy, is

an isomorphism of categories over €2. Since the functor (¢,id)" : Algy" - Algy, factors

through Algg over €2, a consequence of algebraic freeness is that |[Algg| = |AlgR".
Unlike in section 2.2.1, we will not be able to show that every free AWFS on a locally
small cocomplete category is algebraically free. We will, however, be able to show that

whenever (Li,Ry) is an (€, M')-compact LAWFS on a locally small cocomplete category,

the free AWFS on (L, R;) is algebraically free.

Proposition 3.2.18. The free AWFS on an (£, M")-compact LAWES on € is algebraically

free.

Proof. Let (Li,Ry) be an (£, M’)-compact LAWFS on €. Let (L,R) be the free AWFS on
(L1, R1) with universal map ¢ : (L1, R;) — (L, R). As we saw in the proof of 3.2.15, applying
the functor K : LAWFS(%) - End(%?) to the free monoid sequence on (L, R;) yields
the free monad sequence on R;. Since Ry is strongly (£, M')-compact, by 3.2.14, the free

monad sequence converges objectwise. So R is the free monad on R; with universal map

(¢,id) : Ry = R. The result follows from 2.2.7. O
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We have the following important consequence of the existence of free AWFSs and their

algebraic-freeness. We will often use this in combination with 3.1.4.

Proposition 3.2.19. Let L and R be classes of maps in € such that £L="R. If (L,Ry) is
an (€, M")-compact LAWES on € such that |Algg | =R, then |Coalgy| = L and |Algg| =R

for the free AWFS (L,R) on (Li,Ry).

Proof. Existence of the free AWFS (L,R) on (L;,Rq) is 3.2.16. The equality |Algg| =
|Algg, | = R comes from 3.2.18. Then by 3.1.13 and 3.1.16, |Coalg;| = |[?Algg| = °|Algg| =

OR=L. O]
3.2.4 Free LAWFSs on Comonads

Let € be a cocomplete category. We will show that every comonad on %2 has a reflection

along the forgetful functor G, : LAWFS(%) —» Cmd(%?).

Lemma 3.2.20. Let (Lo, &%, 0%0) be a comonad on €2 and let (t,e) = L. The endofunctor
Li: %62 - €2 defined on each object f as the pushout of Lof along 5? has the structure of a

comonad.

Proof. Let (8t,6°) = 6L. On each object f in €2, let Ry f be the map, shown in the below
left diagram, defined by the cocone consisting of the maps 8’} and f. Since pushouts are
functorial, (L, Ry) is a functorial factorization. Let E; : €2 — % be the middomain functor

for (Ly,Ry). Let §; be the map, shown in the below right diagram, defined by the cocone of

maps F1 (e}, ) o aypodf and LiLy f.
5 N id N e . id N

lLof lLlf lf JLof lLlf lLlLlf
ay T Rif ap T df
\8?

E1 (8?,0éf)004L0f05‘l;‘
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Using the universal property of pushouts and the comonad structure on (L0,§L0,5L0),
the reader can check that the endofunctor L; : €% — €2 is a comonad with counit map

£ =(id,R;1f) and comultiplication map Sf = (ud,dy) on each object f in €2. ]

An immediate consequence of the above proof is that the maps (5’},af) : Lof = Lif
define a map of comonads Lg — L.
We define Fy(Lg) to be the LAWFS (L;, Ry) with comonad structure (Ly, £,6). It is easy

to check the following result.

Proposition 3.2.21 ([Gar08, 4.7)). The LAWES Fy(Ly) is the reflection of Ly along Ga.

The universal map of this reflection is given by (61}, ayp):Lof - Lif on each object f in €2.

So every comonad on %2 has a reflection in LAWFS(%") and thus Fy : Cmd(%2) —
LAWFS(%) is the left adjoint to Go.

When we want to combine 3.2.16 and 3.2.21 to construct a free AWFS on a comonad, we
need to know that the free LAWFS of 3.2.21 is a compact LAWFS. Suppose % is equipped

with well-copowered, left proper, orthogonal factorization systems (£, M) and (&', M').

Proposition 3.2.22. If Ly is an (£, M")-compact comonad on €2, then Fo(Lg) is an

(&, M")-compact LAWFS on € .

Proof. Let P : €°" - % be the functor that sends a span in € to its colimit. Because
colimits commute, P preserves colimits. By 2.4.3, using the notation of 2.4.2, P sends £°ut-
maps to £-maps. Thus P sends £°U-tight cocones to E-tight cocones. If {(tqa,va) : fo = [}a
is an &.-tight (M., A)-cocone for some regular cardinal A, then {Lo(uqa,va) : Lofa = Lof}a
is an £2-tight cocone. It follows that {Li(ta,va) @ L1 fo = Lif}a is an E2-tight cocone. So

L, is (£, M")-compact and thus (Li,Ry) is (€, M')-compact. O
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Proposition 3.2.23. If (Li,Ry) is the free LAWFS on the comonad Lg, then there is an

. . : 1 2
isomorphism of categories Coalgy, ~ = Coalgy,

Proof. Let Vi, : Coalgr, — €2 be the forgetful functor and let ¢ : Vi, — LoVi, be the

EM

natural transformation defined by Vipky = k on each object (f, E) in Coalgy, . Let p be an
EMXA

object in |Coalgy, “| and let 0 : Vi, = p be the canonical cocone of p relative to Vi,.

—

The fact that (Lgp,d,) is an object in Coalgr, and the commutativity of the following
diagram shows that there is a bijective correspondence between solutions to the lifting prob-

lem &, : Lop = p and natural solutions to the lifting problem 6 : Vi, = p. Furthermore, this

correspondence respects the naturality of maps in Coalgﬂ\fZ

VLO L) LQVLO L;ﬂ) Lop
lgVLo lgp
VLo - 5 P

The same is true of Coalgy. Since there is a bijective correspondence between the lifts

in the following diagrams, this means there is a bijective correspondence between the objects

EME EMU

of the categories Coalgy,, ~ and Coalgy,

This bijection extends to morphisms as well and defines inverse functors CoalgiﬁIIZI -

EM

Coalg"® and Coalg” — Coalgifz over 2. In fact, the latter functor is defined by
EM EM

the map Coalg;, — Coalgy of categories over 42 that is defined by the map of comonads

L0—>L1. ]
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3.2.5 The Algebraic Small Object Argument

The small object argument begins with a set Z of morphisms in a category % and con-
structs a weak factorization system (£,R) on ¢ such that Z® = R. We will use theorem
3.2.16 and proposition 3.2.21 to define a similar construction on diagrams in the arrow cat-
egory €2. When [ : .# - %2 is a functor on a small category and % satisfies a certain
smallness property, we will show how to construct a free AWFS (L/,R’) on I such that
12 > Algpy and |19] = |Algg:|.

Let % be a cocomplete, locally small category equipped with well-copowered, left proper,
orthogonal factorization systems (€, M) and (&', M’). The reflection (L, R!) of a functor

I:.9 - €? along G3G,G; is the free AWFS on I when it exists.
AWFS(%) —s LAWFS(%) —25 Cmd(¢?) —2 CAT/%?

We handled reflections along G in section 3.2.3. The reflection of a LAWFS X along
G is given by the colimit of the free monoid sequence for X when the free monoid sequence
is weakly convergent. We will use the notation F;(X) for this reflection when it exists. By
theorem 3.2.16, the reflection F;(X) exists when X is an (£, M')-compact LAWFS.

We defined reflections along Gs in section 3.2.4. We saw in 3.2.20 and 3.2.21 that the
reflection of a comonad Ly along G, is determined objectwise by a cocartesian square. We
use the notation (Li,Ry) = Fo(Lg) for the reflection of Ly and since € is cocomplete, this
reflection always exists.

The reflection of I : & - €2 along Gj is given by the density comonad. The density
comonad on I is the left Kan extension of I along itself. We will use the notation F3(7) = L{

for the codensity comonad on I when it exists. Explicitly, on each object f in €2,

LLf = colim I(7),
b = colim 1(i)
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where the colimit is indexed by the comma category I | f. We present the details of this
construction and prove that it is actually a comonad in A.4. Because %2 is a locally small,

cocomplete category, we have the following existence result.
Proposition 3.2.24. When % is a small category, the density comonad on I exists.
Proposition 3.2.25 ([Gar08, 4.6]). The density comonad LY is the reflection of I along Gs.

Proof. The universal natural transformation of the left Kan extension « : I — LII defines
a functor T : .% — CoalgizI such that VLéT = J. We will show that T is the universal map
of the reflection. Let (C,e,d) be a comonad on €2 and let Vi : Coalgy’ — €2 be the
forgetful functor. Suppose K : .# — Coalgg" is a functor such that VoK = I. The unit
map v of the C 4 Ve adjunction gives a natural transformation Vv : Vo — Vo GVC. So
Vor K is a natural transformation I - CVK = CI and one can check that e/ o Vor = id and
61 o Vo = CVorv o Vorv. By A.4.4, there is a unique map 7 : Lf —» C of comonads such that

vl oo = Vev K. The reader can check that this means V*T =K. [

Proposition 3.2.26. Let I : .% — €2 be a small category over €2 with a reflection L, = F3(I)

in Cmd(%?). There is an isomorphism 2 = Coalgiﬁlz of categories over €2.

Proof. Let 6 : I = f be the canonical cocone of f relative to I. Since L f is by definition
the colimit of the canonical diagram I | f - €2, a solution to the natural lifting problem 6
is exactly the data of a solution to the lifting problem &; : L{f — f. Tt is easy to check that
this correspondence extends to a bijection of morphisms and is functorial. In other words,

it defines inverse functors 1% — Coalg"” and Coalg;)'® - I2. O

To construct a free AWFS on a functor [ : .¢ - €2, we need all of the reflections to exist

in succession. So we need .# to be a small category and we need an additional condition
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that will guarantee that the LAWFS FyF5(7) is (£, M’)-compact. A sufficient condition is
that the category € permits the algebraic small object argument. We say this is the case

when for each object X in €, there is a regular cardinal A\ such that the functor
¢ (X,-): % — Set

sends E-tight (M, \)-cocones to E¥-tight cocones, where ¥ is the collection of epimorphisms

in the category Set.

Proposition 3.2.27. If (£, M) is either proper or the (isomorphism, any map) orthogonal
factorization system and if € permits the algebraic small object argument, then the reflection

Fs(I) of a diagram I : % - €2 is an (€, M")-compact comonad.

Proof. Before proving the result, we make the following observation. The natural isomor-
phism €' (A-C1,Cy) = Set(A, € (C1,Cs)) implies that for each object C' in €, the copower
functor (-)-C': Set - € preserves colimits. So if {x, : A, = A}, is a colimiting cocone of
sets, then {z,-C: A, -C - A-C}, is a colimiting cocone in €. Now, suppose (£, M) is
a proper orthogonal factorization system on . If C' is an object in ¢ and p: A — B is a
surjection of sets, then the map p-C: A-C — B-C' is a split epimorphism. Indeed, there is
amap s: B — A such that pos=id. Thus (p-C)o (s-C) =id. Since every left class £ of a
proper orthogonal factorization system (£, M) contains all split epimorphisms, p-C' € &. It
follows that if {z : Ay = A} is an E¥-tight cocone of sets, then {x,-C: A, -C - A-C}, is
an £-tight cocone in €.

The comonad L{ = F5(I) is described on each object f by the coend formula L{f =
[iej €(1(1),f)-1(i). Because .# is a small category, there is a regular cardinal A such
that for every object X in the image of dom [ : .# - €, the functor ¢ (X, -) sends &-tight
(M, X)-cocones to E¥-tight cocones. Let {iq : fo = f}o be an £p.-tight (M., X)-cocone in

116



%2. Then the cocone {(ty). : €2(1(i), fo) = €2(1(i), f)}a is E¥-tight for each object 7 in

#. By our remarks in the previous paragraph, the cocone

{(to)s - 1(3) : G2(1(0), fa) - 1(1) > C2(1(3), f) - 1(i) }a
is £2-tight for each object i in .#. By 2.4.3, the cocone {Lii, : LL fo = L{f}a is E2-tight. O

Now, putting everything together, we can identify a large class of functors [ : .% — €2

that have reflections in AWFS(%).

Theorem 3.2.28. If € permits the algebraic small object argument and the orthogonal
factorization system (€, M) is proper or equal to the (isomorphism, any map) orthogonal

actorization system, then every functor I : & — on a small categor as a reflection
torization syst th Yy tor I : .9 - €2 Il category I h ti

(LI, RY) =1 FoF3(1) in AWFS(%) such that 12 = Algg;.

Proof. By 3.2.25 and 3.2.27, the reflection L = F3(I) of I exists and is (€, M’)-compact. By
3.2.21 and 3.2.22, the reflection (L{,R}) = Fo(L{) exists and is (£, M’)-compact. By 3.2.16,
the reflection (L, R!) = F; ((L,R)) exists.

By 3.2.26, 3.2.23, 3.1.15, and 3.2.18,
P> Coalgi%m = Coalgi?Z = Algp; = Algri
]

In particular, in the above theorem, when R is a class of maps in % such that |[2] =
R, then (°R,R) is a weak factorization system and (L!,R’) is an associated functorial

factorization.
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3.3 £&-Compactness

When our LAWFSs are £-compact, rather than the full generality of being (&, M’)-
compact, there are additional results we can prove. The main advantage of this case is that
the composition of strongly £-compact endofunctors is a strongly £-compact endofunctor.
This means that the @-product of two £-compact LAWFSs is an £-compact LAWFSs. Using
2.4.25, this allows us to prove that the free monad on an £-compact LAWES is £-compact. We
will then show how to replace the forgetful functors Gy, Gs, and G3 with forgetful functors
that have left adjoints. We will also be able to show that when the weak factorization
systems of a model category have associated £-compact AWFSs, then the model category is

an algebraic model category.
3.3.1 Free AWFSs on £-Compact LAWFSs

Let € be a cocomplete, locally small category equipped with well-copowered, left proper,

orthogonal factorization systems (€, M) and (€', M").

Proposition 3.3.1. If X is an E-compact LAWFES and Y is an (€, M")-compact LAWES,

then X®Y is an (£, M')-compact LAWFS.

Proof. Let (LX,RX) = X and (LY,RY) =Y. There are regular cardinals A and x such that RX
preserves &/.-tightness of (¥}, \)-cocones and RY preserves &/.-tightness of (M/’;, K)-cocones.
Let ¢ be regular cardinal larger that A and . Since every (-filtered diagram is M-filtered, RX
preserves &).-tightness of (V),¢)-cocones. Similarly, RY preserves &.-tightness of (/\/l/’g, L)-

cocones. Thus R*RY preserves &).-tightness of (/\/l/’;, L)-cocones. ]

Corollary 3.3.2. If X and Y are E-compact LAWFSs, then X®Y is an £-compact LAWFES.
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Proposition 3.3.3. Let A\ be a regular cardinal. The free AWFES on an (E,\)-compact

LAWES is (€, \)-compact.

Proof. Let (L.;,R;) be an (&, \)-compact LAWFS. By 3.2.16, the free AWFS (L,R) on
(L1, Rq) exists and is equal to the colimit of the free monoid sequence on (L, R;). We've seen
that applying the large-connected-colimit-preserving functor K to the free monoid sequence
on (L1,Rq) gives us the free monad sequence on Ry. Let (X,,), be the free monad sequence
on (Ry,7%1). Then the colimit of this sequence exists and is equal to R.

We will mirror the proof of 3.2.14. Let B be an object in ¥. The free monad sequence on
(Rq,7®1) is a sequence of codomain-preserving endofunctors and R is a codomain-preserving
endofunctor. Every codomain-preserving endofunctor F on €2 restricts to an endofunctor F
on the comma category € | B. So (Xa)a is a sequence of endofunctors on € | B. It follows
that (X,)q is the free monad sequence for (Ry,7%1) on € | B and that the colimit of this
sequence 1is R.

As we mentioned in 3.2.14, the category % | B is cocomplete and the well-copowered,
left proper, orthogonal factorization system (&, M) lifts to a well-copowered, left proper,
orthogonal factorization system (€, M) on € | B. Then the fact that Ry is strongly (€, \)-
compact implies that R; preserves &-tightness of A-filtered cocones. So, by 2.4.23, R is the
free monad on R;. By 2.4.25, R preserves g—tightness of M-filtered cocones. Since this holds
for every object B in ¢, R must preserve &.-tightness of ()=, A)-cocones. So R is strongly

(€, \)-compact and thus (L, R) is (£, \)-compact. O

Let AWFSS(%) be the full subcategory of AWFS(%) on the AWFSs that are (&, \)-
compact. Similarly, let LAWFSS (%) be the full subcategory of LAWFS(%) on the LAWFSs
that are (€, A\)-compact. Then the forgetful functor G; : AWFS(%) > LAWFS(%) restricts
to a forgetful functor AWFSS(%) - LAWFSS(%), which, by abuse of notation, we will
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still call G;. Because AWFSS(%) is a full subcategory of AWFS(%), 3.3.3 implies that
every object in LAWFSS (%) has a reflection in AWFS4(%) given by F;. So Fy is the left
adjoint to G;.

F1

/—\
AWFS{(¢) L LAWFS{(%)

\_/r

G1

We know from 3.3.3 that every object in the image of F; is a free AWFS, but as we noted
at the end of section 2.4.4, the existence of the above adjunction on its own is not enough
to imply that fact.

Let Cmd5(%2) be the full subcategory of Cmd(%2) on (&, \)-compact comonads. It
follows from 3.2.22 that the functors G, and F, restrict to functors G, : LAWFSS (%) —
Cmd5(%2) and F, : Cmd5 (%) - LAWFSS (%) of the same name. It is easy to check that
the new Fy is a left adjoint to the new Gs.

Let CAT/ ¢ be the full sub-metacategory of CAT/% on the functors A: & — ¢
such that the left Kan extension Lany(A) : €2 — €2 of A along itself exists and is an (£, \)-
compact comonad. Not only is A an object in CAT/, KE ¢? when & is small and € permits
the algebraic small object argument, but also the forgetful functor V4, : Coalg;™ — €2 of an
(€, \)-compact comonad L : 42 - €2 is an object in the category. This follows from A.4.4,
using a similar approach to the proof of 3.2.25. So G3 and Fj restrict to adjunctions on
Cmd$ (%) and CAT/ ¢ %, which, by abuse of notation, we call by the same names. So

we get the following adjunctions.

Fq Fa F3

AWFS{(%) 1 LAWFS{(%) L Cmd{(4?) 1 CAT/ %>

~_ T~ T~

Gq Go Gs
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3.3.2 Maps of £-Compact AWFSs

Let € be a bicomplete, locally small category equipped with a well-copowered, left proper,
orthogonal factorization system (£, M). We will also assume C is a model category with weak

equivalences W, cofibrations C, and fibrations F.

Proposition 3.3.4. If the weak factorization systems (CnW,F) and (C,F nW) each have
an associated functorial factorization that is an E-compact LAWFES, then there is an &-
compact algebraic model category on € whose underlying model category is the one with

weak equivalences W, cofibrations C, and fibrations F.

Proof. Let X = (L;,R) and Y = (L, R;) be the E-compact LAWFSs associated to the weak
factorization systems (CnW,F) and (C,F nW), respectively. As we mentioned in section
3.2.1, there is a unit map 7 : I - Y in the category LAWFS(%). By 3.2.1, the map
Xen:X=X®I->X®Y is a map in LAWFS(%). Since the ®-product of two &-
compact LAWFSs is £-compact, X &7 : X - X @Y is a map in LAWFS5(%). Thus
Fi(X®n):Fi(X) > F (X®Y) is a map in AWFSS(%).

We know that for each object f in €2, Lyf eCnW, Rf e F, Lf €C, and R;f ¢ FnW.
Since X @ Y f = (IR, f o Lf,RRsf), X® Y is an associated functorial factorization for the
weak factorization system (C,F nW). Now, by 3.1.2, |Coalgg| = C and |Algy| = Fn W,

where (S,T) =X @Y. Also |Coalgy,|=CnWW and |Algg| = F. O
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Chapter 4: Transferring Algebraic Model Structures

We prove two major results in this chapter, theorem 4.1.8 and theorem 4.1.12. Theo-
rem 4.1.8 states that we can lift a compact algebraic model structure along a right adjoint
when the adjunction is compact and when an acyclicity condition is satisfied. We use these
conditions to prove in theorem 4.1.12 that the projective model structure on ¢? exists and
is algebraic when & is small and the model category on % is a compact algebraic model
category. When these theorems are applied to £-compact algebraic model categories, the
algebraic model categories they produce are £-compact.

We prove a few results about transferring model structures in the enriched context in
section 4.2. We were not able to prove that the model structure constructed in 4.2.3 is an

enriched model structure.

4.1 Transferring Algebraic Model Structures
4.1.1 Compact Adjunctions

We will be able to lift an AWFS along a right adjoint when both the original the adjunc-
tion and the original AWFS satisfy compactness conditions. We will use this result to prove

that compact algebraic model categories lift along compact right adjoints when an acyclicity

condition is satisfied.
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Definition 4.1.1 (Compact Adjunctions). Let 7 be a cocomplete category equipped with
well-copowered, left proper, orthogonal factorization systems (&, M;) and (€], M}). Let £
be a cocomplete category equipped with well-copowered, left proper, orthogonal factorization
systems (&, M3) and (&5, M}). Let F : &/ - 9B be a functor with a right adjoint G : # - 7.

The adjunction F' 4 G is (&1, M{; E, MY)-compact if the following conditions are satisfied.

1. There is a regular cardinal A such that G sends &-tight (M), A)-cocones to & -tight

cocones.
2. G(MIQ) c Mll and F((gl) c 52.

The following result shows that when (&, M;) = (&, M}) and (&, My) = (€5, M),

condition (2) can be reduced to only checking one of the subset inclusions.

Proposition 4.1.2. Let o/ and A be categories equipped with orthogonal factorization sys-
tems (€1, M1) and (Ey, Ms), respectively. Let G : of — B be a functor with a left adjoint
F:%—d.

F(&) c & if and only if G(My) € My

While this result is well-known for adjunctions between the categories o/ and 4, a similar

proof shows that it holds for adjunctions between the arrow categories.

Proposition 4.1.3. Let o/ and A be categories equipped with orthogonal factorization sys-
tems (1, My) and (&3, M), respectively. Let G : @72 — B2 be a functor with a left adjoint
F:9%% > o/%2. Then

F(&) c & if and only if G(M;) € My,

where we now view &1, £, My, and My as collections of objects.
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Proof. Let v: 1 - GF and 5: FG — I be the unit and counit maps, respectively, for the
adjunction. Suppose F(&) € &;. Let g € My. Suppose f € & and (u,v) : f > Gg is a map in
2. Then a solution to the lifting problem ég o F(u,v): Ff — g exists. Therefore, a solution
to the lifting problem Ggg o GF(u,v)ovy: f - Gg exists. But the commutativity of the

following diagram shows that the lifting problem (u,v) : f — Gg has a solution.
(u,0)

—>
Vfl/ GF(u,v) \LVG\J

arf Sy arag —4 5 qg

The proof of the converse is similar. O

The following proposition can be used to prove condition (2) of the definition holds for

the most common proper orthogonal factorization systems.

Proposition 4.1.4 ([Bor94b, 4.3.9]). A left adjoint preserves epimorphisms and strong epi-

morphisms. A right adjoint preserves monomorphisms and strong monomorphisms.
4.1.2 Lifting an Algebraic Model Structure Along a Right Adjoint

A cofibrantly generated model category can be lifted along a right adjoint when the
right adjoint satisfies a colimit-preservation condition and an acyclicity condition is satisfied
[GS07, 3.6]. We extend this result to compact algebraic model categories in this section.
Our work also generalizes a result of [GKR20].

Let o7 be a cocomplete category equipped with well-copowered, left proper, orthogonal
factorization systems (&1, M;) and (&, M]). Let Z be a cocomplete category equipped
with well-copowered, left proper, orthogonal factorization systems (&2, Ms) and (&5, M}).
Let F': &/ - % be a functor with a left adjoint G : Z - &/ and let v : I - GF and
¢ : FG — I be the unit and counit maps of this adjunction. Suppose that F' - G, is an
(&1, M; &, MY))-compact adjunction.
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We will abuse notation and also refer to the functor F? : &/? — 22 that sends objects
f to Ff and maps (u,v): f - g to (Fu,Fv): Ff - Fg as F. We will similarly use G for
both the functor £ — & and the functor %2 — /% between arrow categories. As functors

between the arrow categories, F' is still left adjoint to G.

F

/\
o ? 1 B>
f\_/

G
Let 7 = (vdom, vcod) : I - GF and £ = (£ dom, € cod) : FG — I be the unit and counit maps
of the adjunction between arrow categories.
Let (L,R) be an (&, M})-compact AWFS on 7. We will use the factorization (L, R) to
construct a new AWFS (X,Y) on #. We start with the endofunctor FLG : 2 - %2. This

is a comonad with comultiplication and counit maps given by
FLG —2¢ FLLG Y5, FLGFLG

and

FLG £S5 rag —S5 1.

Lemma 4.1.5. The comonad FLG : 2% — %2 is (€2, M})-compact.

Proof. There is aregular cardinal A such that the adjunction F' 4 G : & - B is (€1, MY; Ey, MY, N)-
compact and the comonad L : @72 — @72 is (£, M], \)-compact. Let {(pa,qa) : fa = g} be
an & .-tight (/\/l’z/;,)\)—cocone in #2. Since G : B - o sends Ex-tight (M), N)-filtered
cocones to &-tight A-filtered cocones and since G(MY)) € M}, {G(Pa,qa) : Gfa = Gg}
is an &) .-tight (M’l/;,/\)—cocone. Therefore {LG(pa,qa) : LGf, - LGg} is an E2-tight
cocone. The functor F' preserves colimits since it is a left adjoint. Because F(&;) ¢ &,

{FLG(pa, o) : FLGf, - FLGg} is an E2-tight cocone. O
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By 3.2.21, there is a reflection (X1,Y:) := Fo(FLG) of FLG in LAWFS(4). Since FLG
is an (&2, M})-compact functor, by 3.2.22, (X1,Y7) is an (&, M})-compact LAWFS. Thus

by 3.2.16, the reflection (X,Y") :=F;(X1,Y)) of (X1,Y1) in AWFS(A) exists.

Remark 4.1.6. When (&, M}) and (&}, M}) are the (isomorphism, any map) orthogonal
factorization systems, the comonad FLG and the LAWFES (X;,Y;) are &-compact. Then,

by 3.3.3, the AWFS (X,Y) is &-compact.
Proposition 4.1.7. G71|Algg| = |Algy|.

Proof. We know from 3.2.18 that |[Algy| = |[Algy'| = |Algy,|. Therefore it suffices to show
that G~|Algg| = [Algy, |-

Let £ : @2 - o/ and E; : % - % be the middomain functors for (L,R) and (Xi,Y1),
respectively. Note that on each object f: A - B in 2, the counit map Ef = (€a4,¢B) :
FGf — f has the “vertical factorization” show below, where (£4,a) : FLGf — X, f is the

universal map of the Fao-reflection.

FGA — % . 4

iFLG f lX 1f

FE(Gf) —*— B/f

lFRG’ f lY1 f

FGB— B
Suppose f : A — B is in |Algy,|. Then there is a solution / to the lifting problem

(id,Y1f) : Xqf — f. After applying G, we get that the following diagram is commutative.

GA GA L GFGA — S s qgA 1 A
iLG f \LGFLG f ax, fl % lG 7
E(Gf) —2¢ s GFE(Gf) —S g f —< 5 6B
RGS GFRGf
| | »

GB rer sy GFGB
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Since G¢ o vG = idg, this means there is a solution to the lifting problem (idga, RGf) :
LGf - Gf. So Gf is an object in |Algg].

Suppose conversely, that G f is an object in |Algg|. Then there is a solution k to the
lifting problem (idga, RGf) : LGf — G f. From the below diagram we see that £4 o F'k is a

solution to the lifting problem ({4, 0 FRGf): FLGf — f.

FGA — s pgA — 4 4 4

ey |ras I

FEGf) —=2¢L s pGB —*2 4 B

But the universal property of cocartesian squares then implies there is a solution to the

lifting problem (id,Y1f): X1f - f. ]

Theorem 4.1.8. Suppose the categories &/ and A are complete in addition to being cocom-
plete. If ¢ : (Ly,R) — (L,Ry) is an (&1, M})-compact algebraic model category on </ with
weak equivalences W, then there is a map 6 : (X;,Y) - (X,Y;) of AWFSs on % such that
|Algy| = G| Algg| and [Algy,| = G Algg,|. If the acyclicity condition, |Coalgy,| € G'W,

is satisfied, then 6 is an algebraic model category with weak equivalences G='W.

Proof. Let (X:,Y) and (X,Y;) be the LAWFSs F Fo( FL,;G) and F1Fo( FLG), respectively.
To get a map 6 : (X;,Y) - (X,Y;) of AWFSs, it suffices to produce a map of comonads
FL,G - FLG, which we can then apply the reflection F{Fy to. The map FEG : FL,G —

FLG, with C := (id,¢), will do, since the following diagrams commute.

FL,G e FL,G —2¢ 5 pr,L,¢ Z2C P GFL,G
Ficl FG % I \LF&G iFfEG lF&GFEG
rLG ~ Fec FLG —2¢  pLLG S FLGFLG

It therefore remains to show that, with weak equivalences GV, 6 is an algebraic model

structure. The 2-out-of-3 property on W implies that G~'W has the 2-out-of-3 property. We
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know

|Algy | = G7'Algg,| = G (|Algg|n W) = GYAlgg|n GT'W.

So |Algy,| = |[Algy| n GT'W. By the acyclicity condition and the existence of 4, |Coalgy,|
|Coalgy| n G-'W. Now, suppose g € |[Coalgy| n G='W. Factoring g as X;g followed by
Yg, the 2-out-of-3 property of GV implies that Yg is in G=1. But this means Yg is in
G Algg|n G™'W = |Algy,|. So the lifting problem (X.g,id): g - Yg has a solution. Thus

|Coalgy, | = |Coalgy|n G'W. O

Proposition 4.1.9 (Acyclicity Condition). Assuming the hypotheses of theorem 4.1.8 and

defining (X, Y') = F1Fo( FL:G), the following conditions are equivalent.
1. |Coalgy,| € G™'W.
2. There is a model category on 9B with weak equivalences G-'W and fibrations G=1|Algg|.
3. B(G7YAlgg|) € G-'W.

Proof. (1) = (2) is theorem 4.1.8. (2) = (3). If C; is the class of maps in a model category
with the left lifting property with respect to the fibrations, then C; € W. So P(G~!|Algg]) €
G'W. (3) = (1). Suppose °G71Algg| € G™'W. Since G71|Algy| = |Algy|, we know

|Coalgy, | =°|Algy| c GT'W. O

Remark 4.1.10. With the model structure constructed on % in theorem 4.1.8, F' 4 G is a

Quillen adjunction.

Remark 4.1.11. When (&, M]) and (&), M}) are the (isomorphism, any map) orthogonal

factorization systems, by 4.1.6, the algebraic model category # of theorem 4.1.8 is s-compact.
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4.1.3 Projective Algebraic Model Structures

Riehl proved in [Riell, 4.5] that when & is small and € has a cofibrantly generated alge-
braic model structure, then the projective model structure on 7 exists and is a cofibrantly
generated algebraic model category. We generalize this result to compact algebraic model
categories in this section.

Let € be a bicomplete category with well-copowered, left proper, orthogonal factorization
systems (£, M) and (&',M’). Let ¢ : (L,R) - (L,R;) be an (£, M’)-compact algebraic

model category with weak equivalences WW. Let & be a small category.

Theorem 4.1.12 (Projective Algebraic Model Structure). There is an induced algebraic
model category on the functor category €7 whose underlying model structure is the projective

model structure.

Proof. We follow the proof of [Riell, 4.5] closely until the last few paragraphs. Because
AWFSs are functorial factorizations, the AWFS (L;,R) defines a functorial factorization
(L7,R?) on the functor category 7. The functorial factorization (L7, R?) is the objectwise

(L, R)-factorization. In fact, we can describe L7 : (67)% - (47)? by the composition

(67)2 =5 (€2)7 = (42)7 — (¢7)?,

where L;"(«) = Ly for each functor o : ¥ — ¢2. 1If £ : 1, - Id is the counit map, then
Ea : Lya - « defines a counit map for LY. In a similar way, the comultiplication map of
L; defines a comultiplication map for L7 which makes it a comonad. The endofunctor R?
has a similar description and has the structure of a monad [Riell, §4.2]. Although these
factorizations are objectwise, the L7-coalgebras do not need to be objectwise L;-coalgebras.

Let %, be the discrete category on the objects of 2. As we saw above, the AWFSs
(L;,R) and (L, R,) define AWFSs (L7°,R%) and (L%, R/°) on €. It is straightforward to
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check that the objectwise map (%0 : (L0, R%) — (L%, R/°) is a map of AWFSs. Unlike for
the category Z, since % is discrete, L? °-coalgebras are exactly the objectwise L;-coalgebras
and likewise for R%, L% and R/°. Thus (% is an algebraic model category whose weak
equivalences, fibrations, and cofibrations are the objectwise weak equivalences, fibrations,
and cofibrations.

As discussed in 2.4.2, we get objectwise well-copowered, left proper, orthogonal factor-
ization systems (£%0, M%) and (£'7°, M'??) on €% and objectwise well-copowered, left
proper, orthogonal factorization systems (€7, M?) and (§7,M'?) on €7. There is a
regular cardinal A such that L; and L are (£, M’, \)-compact. Clearly, Lt% and L% send
(&/)70-tight ((M;g)%,)\)—cocones to (£/=)70-tight cocones, since they both do so on each
object d in Z,. So (70 is an (8%,/\/1’9 %)-compact algebraic model category.

Let N : 9y = 2 be the subcategory inclusion functor. Let Lany(-) : €% — €7 be the
functor defined by taking left Kan extensions along N. As described in [Riell, 4.5], the
functor Lany (-) has a right adjoint which is the restriction functor N* : €7 — €¢%. We will
use theorem 4.1.8 to transfer the objectwise model structure on €% to a model structure on
€7. Because a map «: F' - G in €7 is an objectwise fibration if and only if N*(«a) = aN is
an objectwise fibration in 4% and because the same is true for weak equivalences, this new
model structure on 7 will be the desired projective model structure.

First we will show that the Lany (=) 4 N* adjunction is (£%0, M'?0; €7 M'?)-compact.
Since the aforementioned orthogonal factorization systems are just objectwise collections
N*(M?7) c MZ and N*(M'?) c M7 So, by 4.1.2, condition (2) of definition 4.1.1 holds.
We also have that N*(£7) c £%0. Since colimits are computed objectwise in both functor
categories, N* preserves colimits. Thus N* sends £7-tight (/\/l’9 , k)-cocones to E70-tight

cocones for some regular cardinal .
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It remains to show that the Lany(-) 4 N* adjunction satisfies the acyclicity condition.
We will prove condition 4.1.9 (3) holds. Let R = |Algga,|. As we've already noted, R is
the collection of objectwise R-algebras in €%. Let p: F - G be a map in €7 that is in
O(N*"'R). Since RZp is an objectwise R-algebra, the lifting problem (LZp,id) : p - RZp
has a solution. So p is a retract of the objectwise L;-coalgebra L7p. But an objectwise
L;-coalgebra is in particular an objectwise weak equivalence. Since N*'W is closed under

retracts, p must be in N*'W. O]

Remark 4.1.13. When (&', M) is the (isomorphism, any map) orthogonal factorization sys-

tem, by 4.1.11, the projective algebraic model category on €7 is £7-compact.

4.2 FEnriched Algebraic Model Structures

4.2.1 Monoidal Projective Algebraic Model Structures

Let (¥,®,I) be a bicomplete closed symmetric monoidal category. We will use the
notation ¥ (a,b) for the internal hom objects of ¥'.

Suppose (€, M) and (&', M") are well-copowered, left proper, orthogonal factorization
systems on ¥. Let ¢ : (L;,R) - (L,R;) be an (€, M’)-compact algebraic model category
with weak equivalences WW whose underlying model category is monoidal with respect to ®.

Let 2 be a small ¥ -enriched category.

Proposition 4.2.1. There is an induced algebraic model category on the functor category
V7 which is a V-model category and whose underlying model structure is the projective model

structure.

Proof. By 4.1.12, there is an algebraic model category on ¥ whose underlying model struc-

ture is the projective model structure. The category ¥? is ¥ -enriched and ¥ powered and
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copowered [Kel05, ch 2]. The enriched hom functor (¥ 7)° x ¥ — ¥ is determined by a
¥ -powering ¥°P x ¥? — ¥ 7 This ¥-powering on ¥ 7 is defined as follows. Let S: & — ¥
be a functor and let a be an object in #. Then we define S* to be the functor ¥ - ¥
defined on objects by d » ¥ (a,S(d)) and extended naturally to morphisms.

Let i:a — b be a cofibration in ¥. Let f:S — T be a fibration in ¥ 7. For each d in &,
(1%, fa.) : Z(b,S(d)) = ¥ (a,S(d)) xy a1y ¥ (b,T(d)) is a fibration in ¥, since the model
category on ¥ is monoidal. Thus (i, f,) : S®* > S xpa T? is an objectwise fibration. So it is
a fibration in the projective model structure on ¥?. If either i or f is acyclic, then (i*, f)

is also acyclic. So by [Hov99, 4.2.2], #“ is a #-model category. ]

Remark 4.2.2. We can of course get a projective algebraic model structure on Pre(Z,%")

by applying the above theorem to Fun(2,%).
4.2.2 A Lifting of a Projective Algebraic Model Structure

Let (7/,®,1) be a bicomplete closed symmetric monoidal category. Suppose (Ey, My )
is a well-copowered, left proper, orthogonal factorization systemon 7. Let & be a small
¥ -enriched category.

Suppose € is a bicomplete ¥ -enriched category that is powered and copowered over ¥
and that is equipped with a ¥-functor A: 2 — €. Let €(—,-) : €°Px% — ¥ be the enriched

hom functor and let ® : " x € - € be the copowering. In [GM11, §5.1], a ¥-adjunction

T
/\
Pre(2,7) L €
U

is described. The functor U sends an object A in € to the presheaf d —» € (\(d),A).

The functor T sends a presheaf B to the object B ®4 A, which is defined as the following
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coequalizer.
4. B(e) ® Z(d,e) @ \(d) —= [1;B(d) © \(d) ----» Bogy A

Let ¢ : (Cy,F) - (C,F;) be an Ey-compact algebraic model category on ¥ with weak
equivalences YW. We assume Pre(Z,7") is equipped with the projective algebraic model
structure in the following theorem. By 4.1.13, this algebraic model structure is ﬁ;? -compact.
We will further assume that ¢ has a well-copowered, left proper, orthogonal factorization

system (Ex, My).

Proposition 4.2.3. If the adjunction T 4 U is (E4; €} )-compact and satisfies the acyclicity
condition of proposition 4.1.9, then € has the structure of an Egz-compact algebraic model
category. A morphism f in € is a fibration (respectively weak equivalence) if and only if

E(A\(d), ) is a fibration (weak equivalence) in ¥ for each object d in 9.

Proof. Consider the projective algebraic model structure on Pre(Z2,¥") described in propo-
sition 4.1.12. Let W,,. and F,,. denote the weak equivalences and fibrations of this model
category, respectively. Using the T 4 U adjunction and theorem 4.1.8, we have an E4-compact
algebraic model structure 6 : (Cy, F) - (C,F;) on € with weak equivalences U"W,,. and

fibrations |Algg| = UL F,.. O

This is a partial version of [GM11, 1.17]. We know that U is a right Quillen functor. So
T - U is a Quillen adjunction. We also know by [GM11] that T < U is a #-adjunction. So if
we could show that the underlying model category is a #-model category, then T 4 U would

be a Quillen ¥ -adjunction. The author is not sure how to show this.
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Chapter 5: Algebraic h-Model and m-Model Structures

5.1 Algebraic h-Model Structures

The h-model structure on topological spaces was first described in [Str72]. In [Col06al,
it was shown that the h-model structure exists on topologically bicomplete categories when
a minor condition is satisfied. In particular, this condition is satisfied in the category of
k-spaces. There was a subtle mistake in Cole’s proof, however, which was repeated in
[MS06, §4]. This was rectified by the paper [BR13]. By proving one of the factorizations in
the h-model structure is algebraic, Barthel and Riehl were able to prove that the h-model
structure on a topologically bicomplete category exists when a condition, the monomorphism
hypothesis, is satisfied. Riehl and Barthel did not prove that the second factorization is
algebraic and so did not prove that the h-model structure is algebraic.

In this chapter, we prove that the h-model structure is algebraic. The monomorphism
hypothesis is too restrictive to make this proof go through. We instead show that there are
E-compact factorizations for both of the WFSs of the h-model structure on k-spaces. So
the h-model structure on k-spaces is an £-compact algebraic model category. Not only does
E-compactness make this proof possible, but it also makes the proofs a lot easier. Verifying

conditions (1)-(3) of 5.1.11 is very easy.
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In the process of proving the result for the h-model structure on k-spaces, we get con-
ditions under which the h-model structure on any topologically bicomplete category exists,
is algebraic, and is £-compact. In section 5.2, we use the £-compactness of the algebraic
h-model structure on k-spaces to show that the mixed model structure is an algebraic model
structure on k-spaces.

It should be noted that it is shown in [Gaul9, §4] that the g-, h-, and m-model structures
on the locally presentable category of delta-generated spaces are accessible. Our results

generalize Gaucher’s results to more general categories of spaces.
5.1.1 Topologically Bicomplete Categories

We begin by summarizing some results about k-spaces and topologically bicomplete cat-
egories and fixing some notation. Most of these results are in [Rez18] and [MS06, §1.1,
1.2].

We begin by recalling colimits and limits in Top. The final topology on a set Y relative
to a cocone {0, : X, - Y}, of spaces X, is the finest topology that makes all of the maps
0. continuous. The colimit of a diagram in Top is the space X whose underlying set is the
colimit of the diagram in Set and whose topology is the final topology with respect to this
colimiting cocone. The initial topology on a set Y relative to a cone {0, : Y - X,}, of
spaces X, is the coarsest topology that makes all of the maps 6, continuous. The limit of a
diagram in Top is the space X whose underlying set is the limit of the diagram in Set and
whose topology is the initial topology with respect to this limiting cone.

A subset U of a topological space X is k-open if for every compact space K and every
continuous map f: K - X, f~1(U) is open. Of course every open subset of X is k-open.

When every k-open subset of X is open, we say that X is a k-space. The collection of k-open
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subsets in a topological space X form a topology on the underlying set of X. We will use
the notation kX for this new topological space. The identity map on sets is a continuous
function kX — X. The underlying map of sets of any continuous function f: X - Y is a
continuous function kX — kY, which we call kf.

Let kTop be the full subcategory of Top on the k-spaces. The subcategory inclusion
functor kTop < Top is the inclusion of a coreflective subcategory. The right adjoint k :

Top — kTop is the functor that sends spaces X to kX and maps f: X - Y tokf: kX - kY.

k
J/\
kTop T Top

S~

A consequence of this adjunction is that the category kTop is bicomplete. The colimit of a
diagram in kTop is formed by taking the colimit of the diagram in Set and endowing this
set with the final topology. The limit of a diagram in kTop is formed by taking the limit of
the diagram in Set, endowing this set with the initial topology, and applying the functor k
to this space.

We will use the notation x;, for the product of two spaces in kTop to avoid confusion with
the product of the spaces in Top. If X and Y are k-spaces in Top, then X x, Y = k(X xY).
The category kTop is xj-cartesian closed. For a space X in kTop, the right adjoint to the
functor (=) x; X : kTop — kTop is the functor (-)X : kTop - kTop defined as follows. For
spaces X and Y in kTop, let @(X, Y) be the set of maps X - Y in Top equipped with
the compact-open topology. Since kTop is a full subcategory of Top, this is the same as

the set of maps X - Y in kTop. The functor
(-)* : kTop — kTop,
sends a space Y to the space kTop(X,Y’) and extends naturally to morphisms.
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A category € is topologically bicomplete if € is bicomplete and is enriched, powered, and

copowered over kTop. So we have bifunctors
C(-,-):€Px% - kTop

(-)®(-): ¥ xkTop - €
(=) : kTop® x € - €

with natural bijections
¢(X®K,Y)=kTop(K,€(X,Y)) 2¢(X,Y¥).

Some consequences of the natural bijections are that X @ * 2 X and Y* 2 Y for the singleton
space * and that € (@, X) 2, €(X,*) 2 *, and (%)X 2 *, where @& is the initial object of ¢
and the * in % is the terminal object of €.

Every compact space in Top is a k-space. So the interval object I is a space in kTop.
We call the objects X ® I in a topologically bicomplete category cylinder objects. We will
use the notation ig or 7o(X) for the map X 2 X ® » > X ® [ in € defined by the map
0:% — [ in kTop whose image is 0. Similarly, the map 1: * - I whose image is 1 defines a
map i1 : X 2 X ®* > X ® [ or i;(X) in € for each object X. Dually, we have a cocylinder
object X! for each object X in 4. The maps 0: * - I and 1: * - I define a restriction
maps pp = po(X) : X > X* =2 X and p; = p1(X) : X - X* = X, respectively. Every
space X has a map con : X — X! that sends points to the constant map valued at that
point and a projection map col : X ® [ - X. The adjunction (=) ® I 4 (-)! has unit map

coevy : X —» (X ®I)! and counit map evy : X/ @I - X.
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For each map f: A - B in ¥, we define the mapping cylinder M f by the following

cocartesian square.

ALA@I

1 o
B

t(f) M
For each map f: X - Y, we will need two versions of the mapping path space N f and N;f

defined by the cartesian squares below.

Nf u(f) YI le Ul(f) YI
1 _
v(f)i lpo vl(f)i lpl
x5y x5y

The mapping cylinder and mapping path space constructions are functorial. So M, N, and

N, are functors €2 - €.
5.1.2 The h-Fibrations, h-Cofibrations, and h-Equivalences

Let & be a topologically bicomplete category equipped with a well-copowered, left proper,
orthogonal factorization system (&, M). The h-equivalences in € are the homotopy equiv-
alences relative to the cylinder objects X ® I. A map f: X - Y in ¥ is an h-fibration if it
has the right lifting property with respect to 7o : A > A® I for each object A in €. A map
f:A— Bin % is a h-cofibration if it has the left lifting property with respect to pg: X - X
for each object X in %.

In general, the h-fibrations, h-cofibrations and h-equivalences do not have have the lifting
properties required for the fibrations, cofibrations, and weak equivalences of a model category.
To get the correct lifting properties, we need to use strong cofibrations in place of cofibrations.

We can characterize these maps as follows. For each g: X - Y let r(g) : X! - Ng be the
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map into the pullback defined by the maps ¢/ : X - X and po(X) : X! - X.

A strong h-cofibration is a map f: A - B that has the left lifting property with respect r(g)
for every h-fibration g: X - Y.
Let W, C and F be the collections of homotopy equivalences, strong h-cofibrations, and

h-fibrations in %, respectively.

Proposition 5.1.1 ([MS06, 4.3.3]). (CnW)2 =F, CnW =08F, C° = FnW, and C =
O(FnW).

Proposition 5.1.2 ([MS06, 4.3.1]). The class W of h-equivalences is closed under pushouts

along maps in C and pullbacks along maps in F.

We define functorial factorizations (m,m,,) and (n,,n) by the following diagrams.

1
|
\L“ m(f) lf \Lm(f) lf
X —% v X - C_Ol> X y —cn |yl p1 %
t(f) r mauw (f)
y 0y e 'Y v

Proposition 5.1.3 ([MS06, 4.3.1]).
e For each f, m(f) is a strong h-cofibration and m,(f) is a homotopy equivalence.

e For each f, n(f) is an h-fibration and n,(f) is a homotopy equivalence.
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5.1.3 The Construction of AWFSs

Let (L1, R1) be the functorial factorization defined by the following diagram.

yi "D Ny Nfer M0 yigy

L
lpo lv(f) lé’(v(f)) lew
r

L R
g X RN 5 oy

f

Lemma 5.1.4. The endofunctor Ly : €2 - €2 is a comonad.

Proof. Fix a space X and amap f:Y — Z. There are bijective correspondences between the

following sets, where the unlabeled maps are free to vary, but the diagrams must commute.

X —Y X —Y
{maps X » Nf} = {squares l lf ~ {squares liO(X) lf
JARLESIN Xol — Z

In other words, there is a natural bijection
C(XN ) = 62 (i0(X), f).

So N : 6?2 — € is a right adjoint to ig: € - ¢2. Thus igo N : 2 - €2 is a comonad. Since

Ly f is the pushout of ig(N f) along v(f), Ly is a comonad. O
Lemma 5.1.5 ([BR13, 5.10]). |Algy | = F

Proposition 5.1.6. If the functorial factorization (L, Ry) is E-compact, then there is a

E-compact AWFS (Ly,R) :=F(Ly,R1) on € such that |Coalgy,|=CnW and |Algg|=F

Proof. A direct application of lemmas 5.1.4, 5.1.5, and 5.1.1 show that the conditions of

proposition 3.2.19 are satisfied. By 3.3.3, the AWFS (L, R) is £-compact. ]
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Let (L1, Ry1) be the functorial factorization defined by the following diagram.
m(n(f))

N f 22220 M (n(f)) mw (n(f))
lmf) \ (5-1)

Lif R
X —1> E1 R oy

f

Lemma 5.1.7. The endofunctor Ly : €% - €2 is a comonad on €2.

Proof. Fix maps f: A—- B and g: X - Y in %. There are bijections between the following
sets, where the unlabeled maps are free to vary within the constraint that the diagrams

commute.

A2 Ael +2 4
{maps m(f) —>g} ~ {diagrams lf i i
B y Y 2 — X

1R

B+l 4 > X
diagrams l i lg ~ {maps f > n(g)}
Y < po YI 2N Y
So there is a natural bijection €2(m(f),g) = €*(f,n(g)). Thus m is a left adjoint to n.

Therefore mon : 62 - €2 is a comonad. Since the pushout of a comonad is a comonad, Ly

is a comonad. ]

Lemma 5.1.8. For every map f in €, Lif is a strong h-cofibration and Ry f is a homotopy

equivalence.

Proof. By lemma 5.1.3, m(n(f)) is a strong h-cofibration. By lemma 5.1.1, C is closed under
pushouts. Thus L, f is a strong h-cofibration.

Since vy (f) is a homotopy equivalence, the map M (n(f)) - Eif in diagram (5.1) is a
homotopy equivalence by lemma 5.1.2. From lemma 5.1.3 we know m,,(n(f)) is a homotopy
equivalence. Therefore Ry; f is a homotopy equivalence. n
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Theorem 5.1.9. If the factorizations (L1, Ry ) and (Ly,Ry) are both £-compact, then there
is an E-compact algebraic model category ¢ : (Cy, F) » (C,Fy) on € whose underlying model

category has weak equivalences W, cofibrations C, and fibrations F.

Proof. We will use a similar approach to that of 3.3.4. Let X = (L;,R) be the £-compact
AWF'S from proposition 5.1.6 and let Y = (L, Ry1). By 3.2.1, (LAWFS(%),®, 1) is a strict
monoidal category. Since there is a unit map 7:I - Y in LAWFS(%), X®n: X=X®1I -
X®Y is amap in LAWFS(%). By 3.3.2, X@n:X > X®Y is a map of LAWFSs between
E-compact LAWFSs. Thus by 3.3.3, Fi(X®n) : F1(X) - Fi(X®Y) is a map of AWFSs
between £-compact AWFSs.

Explicitly, on f, X ® Y(f) = (L;Ruf o L1f,RRsyf). By lemma 5.1.8 and proposition
5.1.6, LRy foLif € C and RRy f € FnW for each f. Thus, by 3.1.4, |Alggg,,| = F nW.
Let (Cy, F) =F(X), let (C,F;) =F1(X®Y), and let (:=F, (X ®n): (C,F) > (C,F;). By
3.2.19, (C,F;) is an AWFS with |Coalgg| =C and |Algg,| = F nW and (C;, F) is an AWFS

with |Coalgc,| =CnW and |Algg| = F. O
5.1.4 The Compactness Condition

Proposition 5.1.10. If the comonad igo N : €2 — €2 is E-compact, then the factorizations

(L1,Re1) and (L, Ry) are both E-compact.

Proof. Let A be a regular cardinal such that igo N is (€, A)-compact. Let {(ca,ds) : fo = 9}a
be an &.-tight (V)=, A\)-cocone. Let (c,d) : colim, fo = g be the map defined by the cocone.

The cocone {N(cq,dy) : N fo = Ng}, defines a map b: colim, N f, - Ng.
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From the (€, \)-compactness of igo N, we know each of the vertical maps in the following

diagram are in &.

colimq v(fa i0(colimgy N fo
S

colim, dom f, ) colim, N f, ) (colimy, Nf,)® I

de o Jvel

dom g < o9 Ng o(N9) > Ng I

Since colimits commute, the colimit of the top row is colim, E}; f,,. The colimit of the bottom
row is Fy g and the map colim, E}; f, = Fy1g defined by the above diagram is in £ by 2.4.3.
So colim,, Ly fo = Liig is in 2. Thus (L, Ry) is E-compact.

If we can show that mon : €2 - €2 is (£, \)-compact, then the same method we used

above will prove (Li,Ry1) is (€, \)-compact. It suffices to prove the following.
1. n:%?% - €2 is strongly (€, \)-compact.
2. m:6? - €?is (€, \)-compact.

Note that there is a homeomorphism ¢ : [ = I such that pooY<:Y! - Y is equal to
p1: YL - Y. So there is a natural isomorphism N; @ N. Therefore N; : €2 - % sends
&)=-tight (¥}, A)-cocones to E-tight cocones. But, since n is codomain-preserving, that is all
that is required to show (1).

Let * be the terminal object in €. As we noted in section 5.1.1, T 2 %, Soif z: X — *
is the map to the terminal object, then Nx = X. Let z, : dom f, - * and y : dom g — *
be the maps to the terminal object from the domains of the cocone {(c4,dn) : fo = 9}a-
So {(¢casidy) : ko = Y}a is an Epe-tight (¥}, A)-cocone. But applying ig o IV to this cocone
yields the same cocone as applying ig o dom to the original cocone {(ca,da) @ fo = gla. In
other words, igodom : 2 - €2 is an (&£, \)-compact functor. Applying the same method

we used in the second paragraph of this proof to iy o dom proves that M : 2 — € sends
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&=-tight (V)=, A)-cocones to E-tight cocones. Since m : €2 - €2 is domain-preserving, (2)

now follows. O

Proposition 5.1.11. Let X\ be a reqular cardinal. If the following conditions are satisfied,

then igo N : €2 - €2 is an (£, \)-compact comonad.
1. The functor (=) ® 1 :% — € sends every map in € to a map in £.

2. If f €& and g and h are isomorphisms, then the limit in €2 of any diagram f — h < g

s i &.
3. For every diagram D : &/ xin - € on a \-filtered category <f , the canonical map
colim lign D(a, B) — lign colim D(a, )
s in E.

Remark 5.1.12. By proposition 4.1.2, condition (1) is equivalent to the requirement that the
functor (=) : € - € sends every map in M to a map in M. If £ = £}, the collection of
epimorphisms, then (1) holds by lemma 4.1.4. If in addition, % is a concrete category with

a realization functor ¥ — Set that preserves limits, then (2) also holds.

Proof. Let {(ca,da) : fa = g}a be an &p-tight (V)=, A)-cocone. Let (c,d) : colim, fo = g be
the map defined by the cocone. Since d,, : cod f, = cod ¢ is an isomorphism for each «, each
map d., : (cod f,)! = (cod g)! is an isomorphism. Therefore the map b : colim,(cod f,)! —
(cod g)! defined by the cocone {df : (cod f,)! = (cod ¢g)'}, is an isomorphism. So, in the

following diagram, c € £ and d and b are isomorphisms.

colimg, po colimg, fo

colim,(cod f,)! —————— colim, cod f, ¢————— colim, dom f,

g\Lb ;\Ld \LC

(cod g)! £ > cod g < J dom g
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Let P be the limit of the top row. By (2), the map P - Ng induced by the above diagram is
in £. By (3), the map colim, N f, - P is in £. Therefore the map colim, N f, - Ng defined
by the cocone {N(cq,ds) : N fo = Ng}s isin €. Since (-) ® I preserves colimits and maps in
&, the map colim, (N f,®I) - Ng®I defined by the cocone {N(cq,dn)®I : Nf,® - Ng®I}

isin &. O
5.1.5 An Algebraic h-Model Structure on k-Spaces

The epimorphisms in kTop are exactly the (continuous) surjective maps. Indeed, if f is

an epimorphism, one only needs to consider the cocartesian square

X 15y

bl

y sz
If y € Y is not in the image of f, then g(y) # h(y), so g # h and thus gf # hf, a contradic-
tion. Since the spaces themselves are sets and the possible topologies on a set are limited
by its cardinality, there can only be a set’s worth of isomorphism classes of epimorphism
quotients for each object. So by 2.4.9, (¥, M#¥) is a well-copowered, left-proper, orthogonal

factorization system on kTop.

Definition 5.1.13. An injective map f : X — Y in the category kTop is a k-inclusion if
X =k(f(X)), where f(X) has the same underlying set as X, but has the subspace topology

from Y.

We can of course factor each map f: X - Y as a map f : X - kf(X) in &€ followed by a

k-inclusion i: kf(X) - Y.

Proposition 5.1.14. The collection M*¥ of strong monomorphisms in KTop is the collection
of k-inclusions.
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Proof. We will show that the class of k-inclusions is equal to (£¥)°. Let f: X - Y be a
k-inclusion, let p: A - B be a map in £¥, and let (u,v) : p — f be a map in kTop?. Since the
image of v is contained in the image of f, v lifts to a map v': B - f(X). For every k-open
set U in f(X) and every continuous map [ : L - B on a compact space L, [-}(v/"1(U)) is
open. So v/ }(U) is a k-open set in B. Thus the map of sets defined by v’ is continuous as
a map to kf(X). So a solution to the lifting problem (u,v):p - f exists.

Conversely, suppose f: X — Y is a map in (£¥)2. Then a lift [ exists in the following

diagram, where f € & and 7 is a k-inclusion.

X 25X

3
. L .-
lf lf

kf(X) ——Y

So f is a bijection and [ o f = id. Therefore fOZ =1d. Since f is isomorphic to i, f must be

a k-inclusion. O

Theorem 5.1.15 (The Algebraic h-Model Structure on k-Spaces). There is an E-compact
algebraic model category q: (C,F) — (C,F;) on kTop whose underlying model category has

weak equivalences VW, cofibrations C, and fibrations F.

Proof. We will prove conditions (1)-(3) of 5.1.11 hold. Since (-) ® I is a left adjoint, it
preserves epimorphisms (4.1.4). So (1) holds.

Let f €&, let g and h be isomorphisms, and let (z,y): f - h and (u,v) : g > h be maps
in kTop?. The functor k : Top - kTop only changes the topology of each space, but does
not change the underlying set or map of sets. Since the map f x; ¢g : dom f xgqomp domg —

cod f xcoqp cod g is surjective, the map k(f x; g) must also be surjective. So condition (2)

holds.
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Finally, let D : & xin - % be a diagram of the shape described in (3). Since finite limits

commute with filtered colimits in Set, the map
colim lign D(a, ) — lién colim D(«, ()

in kTop is bijective. So in particular, it is in £&. The above map is in general not an

isomorphism in kTop. O

The above proof is more elementary than [Col06a, §4] and [Lew78, 9.5], showing the

benefits of using £-compactness.

5.2 Mixed Algebraic Model Structures

It was shown in [Col06b, 2.1] that when a category has two model structures, one of
which has larger classes of both weak equivalences and fibrations, then there is a third
model structure on the category whose weak equivalences are from the larger class and
whose fibrations are from the smaller class. The third model structure is called the mized
model structure.

When we mix the h-model structure on k-spaces with the classical Quillen model structure
(or g-model structure), we get a new model structure which we call the m-model structure.
The weak equivalences of the m-model structure are the weak homotopy equivalences and
the fibrations are the h-fibrations. We will show that the m-model structure is an algebraic

model structure. Unfortunately, we are not able to show it is £-compact.
5.2.1 Mixing Model Structures

Let % be a bicomplete category with well-copowered proper orthogonal factorization
systems (£, M) and (€', M"). Suppose ( : (C;,F) - (C,Fy) is an E-compact algebraic model
category on % with weak equivalences W,. We will use the notation C; = |Coalg.| and

147



F1 = |Algg|. Suppose there is a second model category on ¢ with weak equivalences W,

fibrations F», and cofibrations Cy such that W; ¢ W, and F; ¢ F».

Theorem 5.2.1 (Mixed Model Structure). If there is an (€, M")-compact LAWFS (L,Ry)
on € such that |Coalgy| € Cy and |Algg,| € FonWs, then there is an algebraic model category

p:(Xe,Y) > (X,Y:) on € with weak equivalences Wy such that |Algy| = Fi.

Proof. Let C,, = "Won Fy). If f € CpnWs, then Ff € Won . So a solution to the
lifting problem (C,f,id) : f - Ff exists. Thus f € |Coalgc,| = C; n W;. Conversely, if
feCinW =|Coalgc,|, then f € W, and a solution to any lifting problem (u,v): f - g
with g € F; exists. So f € C,, n Wy, Since (C; n Wy, F1) is a weak factorization system,
(Cu " Wh, F1) is a weak factorization system with an associated £-compact AWFES (C,, F).
Let (X1,Yy) = (C,F) @ (L,Ry). So (Xy,Yy) is functorial factorization with X f =
C¢R;foLf on each object f in 2. By 3.3.1, (X1,Y) is an (€, M')-compact LAWFS. Since
F1 € F,, we know |Coalg; | € Cy = (FanWs) € B(F1nWs) = Cy. Therefore X f € C,,, and thus
|Coalgy, | € C,,. Since Yy f = FR,f and the unit map for FR; is F7j o it = 7} R, 0 iR, every
Yy -algebra is both an F-algebra and an Ry-algebra. So [Algy, | € |Algp|n|Algg,| = FinWs.

Since the unit map 7: I — (L,R;) is a map in LAWFS(%), by 3.2.1, the map
(Ci,F)en: (C,F) = (C,F) eI~ (C,F)e (L Ry) = (X4, Yu)

is a map in LAWFS(%). Since (Cy, F) is E-compact and (Xy,Y4) is (€, M')-compact,
both LAWFSs have reflections in AWFS(%). Let (X;,Y) = F1((Ct,F)) and let (X,Y;) =
Fy((X1,Y41)). It follows that the reflection of the map (Ci, F) @ n in AWFS(%) exists. So
p=F((C,,F)en): (X,Y) > (X,Y,) is a map in AWFS(%).

Since (Cy, F) is a LAWFS associated to the weak factorization system (C,, n Wh, F1), by
3.2.19 (3.1.4), (X;,Y) is an AWFS associated to the weak factorization system (C,,, "\Ws, F7).
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Since (X1, Y1) is a LAWFS with |Coalgy, | € C,, and |Algy,, € F1nW,, by 3.1.4 and 3.2.19,

(X,Y;) is an AWFS associated to the weak factorization system (C,,, F1 n Ws). O

Corollary 5.2.2. If the LAWFS (L,R;) of theorem 5.2.1 is an E-compact, then the algebraic

model category p: (X, Y) = (X, Yy) is E-compact.
5.2.2 An Algebraic m-Model Structure on k-Spaces

We now return to the category kTop of k-spaces. As we saw, kTop is a bicomplete closed
monoidal category with a well-copowered proper orthogonal factorization system (&¥, Ms%).
We will now use the notation W, Fj, and C;, for the homotopy equivalences, h-fibrations,
and strong h-cofibrations in kTop, respectively.

Let W, be the collection of weak homotopy equivalences in kTop, let F, be the collection
of Serre fibrations in kTop, and let C, be the collection of retracts of inclusions of cell
complexes in kTop. By [Hov99, 2.4.23|, kTop is a model category with weak equivalences
W,, fibrations F,, and cofibrations C,. We will refer to this model structure as the g-model
structure on kTop.

Since Wy, ¢ W, and Fj, ¢ F,, the h- and g-model structures on kTop mix to produce
a model structure on kTop with weak equivalences W,, fibrations F,, and cofibrations
Crn =" (FrnW,) ([Col06b, 2.1]). We will show that this model structure has an associated

algebraic model structure. First we need the following lemma.

Lemma 5.2.3. For each space X in kTop, there is a reqular cardinal A such that the functor
kTop(X,-) : kTop — Set

preserves E¥-tightness of (M=%, \)-cocones.

Proof. Let X be a space in kTop and let A be a regular cardinal greater than |X|. Let
{ig : Yo = Y} be an E¥-tight (M*¥, X)-cocone in kTop. Let f be a map X — Y. Every point
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in X is in the image of an i,. So there is a collection of fewer than A\ distinct Y, whose
images under the i,’s collectively contain the image of f. Since {i, : Y, - Y} is A-filtered,
there is a single Y} such that the image of f is contained in the image of iz. Because iz(Y})
has the subspace topology, f: X — Y lifts to a continuous map f’: X — ig(Ys). For every
k-open set U in ig(Y3), the set f/~'(U) is k-open in X. So f’ lifts to a map X — V3. Thus
the induced map

colimkTop(X,Y,) - kTop(X,Y)

is a surjection. O

Theorem 5.2.4 (Algebraic m-Model Structure). There is an algebraic model category 6 :
(X+,Y) = (X,Y}:) on kTop with weak equivalences W, such that |Coalgy| = C,, and |Algy| =

Fh.

Proof. By 5.2.1, it suffices to show that there is an (£¥, M*)-compact LAWFS (L{, Rl) such
that [Coalgy:| € C; and |Algg:| S Fy n W,

Let Z be the collection of boundary inclusions S™' — Dm for all n, where D" is the
n-disk and S™ is the n-sphere with S=! = @. Then Z° = F,nW,. Let .# = Disc(Z), viewed
as a discrete subcategory of kTop?, and let I : .# — kTop? be the subcategory inclusion
functor. By 5.2.3 and 3.2.27, the reflection L] = F3(I) of J and I in Cmd(kTop?) exists
and is (&%, M*Y)-compact. By 3.2.22, the reflection (LI, RI) = Fy(L!) in LAWFS(kTop)
exists and is (¥, M*')-compact.

By 3.2.26, 3.2.23, and 3.1.15, I? = Coalgiﬁ}fz > Coalgi?dZ = Algg;. But we also know
[19] = I° = Fyn W, So |Alggy| = |[I2] = FynW,. Since Coalgiﬂ}I is a subcategory of
ZI(Coalgiﬂ}lz), \Coalgiﬁf[ c [2(J9)| c 7|J9| = 8(F, nW,) = C,. Since C, is retract closed,

|Coalg, ;| < C,. O
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Remark 5.2.5. If for each X, there is a regular cardinal A such that the functor kTop(X,-) :
kTop — Set preserves E¥-tightness of M-filtered cocones then the m-model structure will be

E¥-compact.
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Chapter 6: Quasiaccessible Categories

Quasiaccessible categories both generalize locally presentable categories and include the
category of topological spaces and the category of k-spaces. An impressive amount of the
theory of accessible categories still applies to quasiaccessible categories.

Showing that when L is a “small” copointed endofunctor on Top, the forgetful functor
Uy, : Coalg;, — Top has a right adjoint was one of the motivating problems for developing
the theory of quasiaccessible categories. By the special adjoint functor theorem, the only
obstruction to showing the right adjoint to U, exists is showing that the category Coalg;,
has a family of generators. This result would be true if Coalg; were in some sense accessible
“up to epimorphisms”.

Being accessible “up to epimorphisms” is roughly the requirement for a category to be
quasiaccessible. Even though Set is accessible and colimits in Top are found by topologizing
the colimit in Set, the topologies on the spaces in Top prevent the category from being
accessible. It is, however, easy to show that Top is accessibility “up to epimorphisms”.

Once we have the sought after result 6.2.20 for quasiaccessible copointed endofunctors,
we are able to prove that every quasiaccessible functorial factorization associated to a WES
(L,R) can be replaced by an associated compact LAWFS. So (£,R) has an associated
AWFS. Thus every quasiaccessible model category can be given the structure of an algebraic

model category.
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Since, under mild assumptions, the Bousfield-Friedlander theorem outputs a localized
quasiaccessible model category when the input is a quasiaccessible model category, one ap-
plication of our results is a proof that the localized model category output by the Bousfield-
Friedlander theorem can be given the structure of an algebraic model category.

In section 6.3.3, we prove that the h-model structure on Top is quasiaccessible. We have
not yet been able to show that the h-model structure on k-spaces is quasiaccessible. The
author believes it may be possible to modify the definition of quasiaccessible functors so that
all the proofs go through, but so that it is also possible to prove that the h-model structure
on k-spaces is quasiaccessible.

Many of the theorems in this chapter are analogs of results in [AR94] for locally pre-
sentable and accessible categories. This material bears an even stronger resemblance to the

equivalent locally generated categories of [GU71| which are summarized in [AR94, §1.E].

6.1 Quasiaccessible Categories

6.1.1 Presentable Objects

Recall, in a given category, £, €5, MY, and M*' are the collections of epimorphisms,

strong epimorphisms, monomorphisms, and strong monomorphisms, respectively.

Definition 6.1.1. Let ¥ be a category with a proper orthogonal factorization system
(E,M). An object K in € is (€, M, \)-presentable for a regular cardinal A if the func-

tor €(K,-) : € — Set sends & n M?¥-tight (M, \)-cocones to colimiting cocones.

Proposition 6.1.2. Let € be a category with a proper orthogonal factorization system
(E,M) and let X be a reqular cardinal. Let X be an object in € with an & n MY-tight

(M, N)-cocone {x4: Xy > X}a.
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1. If f: L — X is map on an (€, M, \) presentable object L, then there is an « and a

map f': L - X, such that x, o f'=f.

2. If {fs: Lg > X}z is a A-small cocone of (€, M, \)-presentable objects over X, then

there is an o and a cocone {f}: Lg - Xo}p such that x40 fj = fs.

Proof. (1) For every (€, M, \)-presentable object L in €, the map of sets colim, ¢ (L, X,) >
% (L, X) induced by the cocone maps z,, : €(L,X,) - €(L,X) is an isomorphism. So
f+L— X lifts to amap f': L - X,.

(2) By (1), for every map fg: Lg — X, there is an ag and a map gg : Lg - X,, such that
Taz 09 = fa. Since {q, : Xo, - X} is a A-small set of maps, there is an o’ such that every
map T, factors through z, : X, > X via a connecting map a:g; : Xoy; > Xo in the cocone
{zata- Let fj= a:g; ogs: Lg — Xy for each 3. Then zoro f} = fp for each 8. Furthermore, if
l: Lg, — Lg, is a connecting map of the cocone { fs}g, then zor0 fj ol = fg, 0l = f5, =xaro f} .
Since o is an M-map, it is a monomorphism. Therefore f} ol = f; . So {f}: Ls —> Xar}s

is a cocone over X, . O

Proposition 6.1.3. Let € be a category with a proper orthogonal factorization system

(E,M). Let X\ and K be reqular cardinals with A < K.
1. BEvery (£, M, \)-presentable object is (€, M, k)-presentable.
2. An E-quotient of an (€, M, X)-presentable object is (€, M, \)-presentable.
3. A retract of an (£, M, \)-presentable object is (€, M, \)-presentable.
4. A k-small colimit of (£, M, \)-presentable objects, when it exists, is an (€, M,k)-

presentable object.
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5. If {K, — X} is a k-small E-tight cocone of (€, M, \)-presentable objects over X, then

X is an (£, M, k)-presentable object.

Proof. (1) is immediate.

(2) Let K be an (£, M, \)-presentable object and let g : K — L be a map in €. Let
{24 : Xy > X} be an & n M-tight (M, N)-cocone and let h: L — X be a map. Then by
6.1.2, there is an o and a map k: K — X, such that x,0k =hog. Since x, e Mand ge &, a
solution to the lifting problem (k, h) : g - x, exists. So the map colim, ¢ (L, X,) - € (L, X)
defined by the cocone {z,, : €(L, X,) - € (L, X)}, is surjective. Since each map x,, is in M,
each map z,, is injective. It follows that the map colim, € (L, X,) - € (L, X) is injective.

(3) Let K be an (£, M, X)-presentable object and let L be a retract of K. Let {z, : X, —
X}ao be an € n M¥-tight (M, \)-cocone. Since the map colim, x,, : colim, € (L, X,) -
€ (L,X) is a retract in Set® of the map colim, 7, : colim, € (K, X,) - € (K, X) and the
latter map is a bijection, the former map is bijective.

(4) Let colim; K; be the colimit of a k-small diagram of (€, M, A)-presentable objects in
€. Let {z,: X, = X}, be an €n M-tight (M, k)-cocone in €. This cocone is in particular

Mfiltered. Since x-small limits commute with k-filtered colimits in Set,

colim % (colim K;, X)) = colimlim % (K;, X,)

112

lim colim €' (K, X,,)

112

12

% (colim K;, X)

and this isomorphism is the map determined by the cocone maps z, : X, - X.

(5) is an immediate consequence of (4) and (2). O
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6.1.2 Quasiaccessible Categories

Definition 6.1.4. A category % is (£, M, \)-quasiaccessible if the following conditions are

satisfied.
1. (£, M) is a proper orthogonal factorization system on % and A is a regular cardinal.
2. € is E-well-copowered.
3. € is closed under M-filtered colimits.

4. There is a small set S of (£, M, \)-presentable objects such that every object X in &

has an € n M¥-tight (M, \)-cocone {S, - X}, of objects in S over X.

The category € is (£, M)-quasiaccessible if it is (€, M, \)-quasiaccessible for some regular
cardinal . A category € is quasiaccessible if it is (£, M)-quasiaccessible for some proper

orthogonal factorization system (£, M) in €.

Before developing the theory of quasiaccessible categories, we will look at some examples.
The category of topological spaces is our motivating example.

The only thing preventing Top from being an accessible category is the topologies on
its sets. Indeed, Set is an Rg-accessible category and the colimit of a diagram in Top
is the colimit of the underlying diagram of sets equipped with the final topology. So in
particular, every discrete space is the colimit of a finitely-filtered diagram of discrete spaces.
Furthermore, each topological space X has a bijective map Xg — X from a discrete space
Xop. So Top is “accessible up to bijective maps”.

For every topological space X, there is only a small collection of isomorphism classes of
topological spaces of cardinality at most |X|. So Top is well-copowered. Since Top is also
cocomplete, by 2.4.9, (£¥, M) is a proper orthogonal factorization system on Top. For the
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same reason we saw in section 5.1.5, the epimorphisms in Top are exactly the (continuous)
surjections. A similar argument to the one in 5.1.14, shows that &¥ is the collection of
surjective continuous maps and M*¥ is the collection of subspace inclusions. Condition (4)

of definition 6.1.4 is all that remains to be checked.

Remark 6.1.5. If {z, : X, - X}, is an M*¥-cocone in Top, then, as a set, colim, X, is the
union U, X, in X. In general, the space colim, X, will have more open subsets than the
set U, X, with the subspace topology from X. So the map colim, X, - X defined by the
cocone {4}, is not necessarily a subspace inclusion.

A good example to keep in mind is R. The canonical cocone {y, : Y, = R}, of discrete
subspaces of R is a finitely filtered M*'-cocone. As a set, R is the colimit of {y, },. However,
any colimit in Top of discrete spaces must be a discrete space. So the colimit colim,, Y, does
not have the subspace topology from R.

If all of the x,’s in an M*-cocone {x, : X, > X}, in Top are open maps, then the map
colim, X, - X defined by the cocone {z,}, is a subspace inclusion. But the requirement
that the subspaces are open places some lower bound on their cardinalities. Open subsets

of R have to have the same cardinality as R.

Proposition 6.1.6. Let \ be a reqular cardinal. The (¥, M*¥, \)-presentable objects in Top

are exactly the spaces with cardinality less than .

Proof. Let {fo: Xq > X}, be an E¥n M-tight (M3, X)-cocone in Top. Let g: K - X be a
map on a space K with |K| < \. Because the cocone { f,}, is E¥-tight, for every point z € X,
there is an o and x' € X such that f,(z’) = z. So every point in the image of ¢ is in the
image of an f,. Because |K| < A, there is a A small collection of X,’s that cover K. Since
the cocone {f,}, is AMfiltered, there is an index oy such that the image of ¢ is contained in
the image of f,,. So g lifts to a map ¢’ : K - X, . Thus Top(K,-) : Top - Set sends
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&Y n M -tight (M#¥, X)-cocones to E¥-tight (MY, X)-cocones. Since a A-filtered colimit of
injections is Set is an injection, K is (£¥, M*¥, \)-presentable.

Conversely, suppose K is an (£¥, M*¥, \)-presentable object in Top. Let {f,: K, - K},
be the canonical M*-cocone of K with respect to the K, with |K,| < A. For every A-small
subcocone { fo }aca,, the underlying set of colim,, e, K, has cardinality less than A, since it
is a A-small union of sets of cardinality less than A. Let 7 : colim,cq, Ko = K be the map
defined by the A-small cocone { f, }aes,- We can factor r as r = pog, where q € £ and p € M*.
Since an £¥-quotient of a space with cardinality less than ) is a space with cardinality less
than A, p is equal to f, for some a. Thus {f,}, is a Mfiltered cocone. For every point k € K,
{k} is a set of cardinality less than A\ and {k} — K is a subspace inclusion. Thus on the
level of sets, colimy, fo = Ua Ky = K. S0 {fa}a is an E¥n M-tight (M*, X)-cocone. Thus the
identity map id : K — K lifts to a map ¢ : K - K, for some o’ such that f, o7 =1d. Since

K, has cardinality less than A\, K must have cardinality less than . O

Theorem 6.1.7. The category Top is (E¥, M*¥, \)-quasiaccessible for every reqular cardinal
A

Proof. Condition (4) of definition 6.1.4 is the only condition that needs to be checked. If X
is a space in Top and if { f, : K, - X}, is the canonical M*¥-cocone of X with respect to the
K, with |K,| < A, then our proof of 6.1.6 shows that { f,}, is M-filtered and E¥-tight. Since a

Mfiltered colimit of monomorphisms in Top is a monomorphism, { f, }, is £¥n M¥-tight. [

We can also prove that the category kTop of k-spaces is a quasiaccessible category. Just
like Top, kTop is cocomplete and well-copowered and has a proper orthogonal factorization
system (E¥, M), As we saw in section 5.1.5, ¥ is the collection of surjective maps and M*¥

is the collection of k-inclusions (see definition 5.1.13).
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Proposition 6.1.8. Let A\ be a regular cardinal. The (E¥, M3¥, \)-presentable objects in

kTop are exactly the spaces with cardinality less than .

Proof. This proof is very similar to 6.1.6. We let {f, : X4 > X}, be an £ n M -tight
(M=%, X)-cocone in kTop and let g : K — X be a map on a space K with |K| < A. Then
every point in the image of ¢ is in the image of an f, and because |K| < A, there is a A small
collection of X, that cover K. Since the cocone { f,}, is Mfiltered, there is an index a, such
that the image of ¢ is contained in the image of f,,. So g lifts to a map ¢’ : K - f,, (Xa,)
in Top, where f,, (X,,) has the subspace topology from X. Since, for every k-open set U
in fo,(Xa,), ¢""(U) is k-open in K, ¢’ lifts to a map ¢’ : K > X,,. It follows that K is
(£, Ms¥, \)-presentable.

Conversely, suppose K is an (£¥, M, \)-presentable object in kTop. Let {f,: Ky > K }4
be the canonical M*¥-cocone of K with respect to the K, with |K,| < A. Then {f.}, is a
A-filtered cocone. For every point k € K, {k} is a set of cardinality less than A and {k} - K
is a k-inclusion. So as sets, colim, f, = Uy K, = K. Thus {f,} is an ¥ n M¥-tight (M=%, \)-
cocone. So the identity map id : K - K lifts to a map ¢ : K - K, for some o' such that

faoi=1d. Since K, has cardinality less than A\, K must have cardinality less than \. [

Theorem 6.1.9. The category kTop is (E%, M5, \)-quasiaccessible for every reqular cardi-

nal \.

Proof. Just as in 6.1.7, we only need to check condition (4) of the definition and this follows

from the proof of 6.1.8. O]
Quasiaccessible categories are a generalization of locally presentable categories.

Proposition 6.1.10. A cocomplete category is accessible if and only if it is (%, MY)-
quasiaccessible.
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Proof. Let € be an accessible category. By [AR94, 1.56], € is complete, well-powered,
and well-copowered. So by 2.4.9, (%%, M") is a proper orthogonal factorization system
on €. Since every £% n M¥-map is an isomorphism, every A-presentable object in € is an
(£, MY, \)-presentable object. By [AR94, 2.29, 2.34], there is a regular cardinal \ such that
% is closed under M-filtered colimits and every object in €’ is the colimit of an (MY, A)-cocone
of A-presentable objects. So € satisfies conditions 6.1.4 (3) and (4).

Conversely, suppose € is an (€%, MY, \)-quasiaccessible category. Since every £5¢ n M-
map is an isomorphism, the (€%, MY, \)-presentable objects in ¢ are exactly the \-generated
objects [AR94, 1.67]. Furthermore, there is a regular cardinal A such that every object in
% is the colimit of an (MY, \)-cocone of A-generated objects. Therefore there is a regular

cardinal k such that ¢ is k-accessible [AR94, 1.70]. O

Categories of presheaves are quasiaccessible in two different ways. By the above propo-
sition they are (€%, M¥)-quasiaccessible and by the following proposition, they are also

(E¥, M#")-quasiaccessible.
Proposition 6.1.11. Every category of presheaves is (€%, M) -quasiaccessible.

Proof. Let </ be a small category. Since Set is well-copowered, the category of presheaves
Set”” is well-copowered. The category Set”" is also accessible [AR94, 1.46]. By 2.4.9,
(€4, M%) is a proper orthogonal factorization system on Set”" . Since every monomorphism
in a category of presheaves is an objectwise injection and every epimorphism in a category
of presheaves is an objectwise surjection, every & n M¥-map in Set”"" is an isomorphism.
Therefore every A-presentable object in Set”” is an (E¥, MY, \)-presentable object. By
[AR94, 2.31, 2.34], there is a regular cardinal X such that Set”" is closed under A-filtered

colimits and every object in Set”" is the colimit of an (M=t X)-cocone of A-presentable
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objects. So every object has an ¥ n M -tight (M?*¥, \)-presentable cocone of (£¥, M¥, \)-

presentable objects. O]
6.1.3 Basic Properties of Quasiaccessible Categories

Proposition 6.1.12. Let € be an (€, M, \)-quasiaccessible category.
1. If gofeM, then fe M. If gofe&, thengef.

2. A map f: X =Y is a monomorphism in € if and only if a = b for each (£, M,\)-

presentable object K and each pair of maps a,b: K — X with foa= fob.

3. If {za * fo = f}a is an € 0 M¥-tight (M, X)-cocone in € | Y of monomorphisms

fa: Xoa =Y, then f: X =Y is a monomorphism.

4. Every (M, \)-cocone D—>Y factors as an &n M¥-tight (M, \)-cocone D —— X fol-

lowed by an M-map X =Y.
5. Every E-tight (M, \)-cocone in € is an En M¥-tight cocone.

Proof. (1) This is a restatement of 2.4.5.

(2) Suppose f is a monomorphism relative to (£, M, \)-presentable objects. Let Z be an
object in ¥ and let u: Z -— dom f and v : Z — dom f be two maps such that fou = fouw.
There is an E-tight (M, \)-cocone {k, : K, - Z}, of (£, M, \)-presentable objects over Z.
So the map h : colim, K, — Z defined by the cocone {k,}, is an E-map. For each «, since
fouok,=fovok,, uok, =vok,. Therefore uoh =voh. Since h is an epimorphism, u = v.

(3) Now suppose a: K - X and b: K — X are maps on an (£, M, \)-presentable object
K such that foa= fob. There are indices a; and as such that a lifts to a map o' : K - X,

and b lifts to a map o' : K - X,,. Since the cocone {z,}, is Mfiltered, there is an index as
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such that @ and b lift to maps a” : K - X,, and b": K - X,,. Since

fagoad” = forg,0a" = foa=fob=fomryob"=fu,0l",

a” =0b". But this means a = b.

(4) By (1), the cocone 6 : D—> colim D is an (M, \)-cocone. Of course this cocone
is &€ n M¥-tight, since it is colimiting. So by (3), the induced map f : coimD — Y is
a monomorphism. By applying the (£, M)-factorization to f, we get f = po g, where
g:colimD — X isamap in En MY and p: X — Y is a map in M. Another application of
(1) shows that go#: D — X is an M-cocone.

(5) Let {z, : Xo —» X}, be an E-tight (M, \)-cocone. Let f : colim, X, — X be
the map defined by the cocone {z,},. Taking f, = x, in part (3), we get that f is a

monomorphism. O

Proposition 6.1.13. Every object X in an (€, M, \)-quasiaccessible category € is (€, M, k)-

presentable for some reqular cardinal k.
Proof. This is an immediate consequence of 6.1.4 (4) and 6.1.3 (5). O

Proposition 6.1.14. The collection of isomorphism classes of (€, M, \)-presentable objects

in an (€, M, \)-quasiaccessible category € is a set.

Proof. Let K be an (€, M, \)-presentable object in €. Let S be a set of (£, M, \)-presentable
objects in € that satisfies 6.1.4 (4). There is an £nM?¥-tight (M, A)-cocone {k, : K, > K},
of S-objects over K. By remark 6.1.2, the identity map id : K — K factors through some
k. : K, - K. Since k, is a split monomorphism, it is an &-map. So K is an &-quotient
of K,. Since % is £-well-copowered, there can only be a set of isomorphism classes of such

objects. 0
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Definition 6.1.15. Let & be an (€, M, \)-quasiaccessible category. Let Presi/h/\(%) be
the full subcategory of € on a set of representatives for the isomorphism classes of the

(€, M, \)-presentable objects in €.
In the following proposition, we make use of definition 2.1.12.

Proposition 6.1.16. Let € be an (€, M, \)-quasiaccessible category. Every canonical M-

cocone with respect to Presfvm(‘ﬁ) is A-filtered and & n MY -tight.

Proof. Let X be an object in ¥. By 6.1.4 (4), there is an & n M¥-tight (M, X)-cocone
{ko: Ko = X} of (€, M, \)-presentable objects over X.

Let {lg: Lg - X}3 be a A-small M-cocone of (£, M, \)-presentable objects over X. By
6.1.2 (2), there is an ag such that {lg}z lifts to a cocone {lj; : Lg — Ko, }g. Since ky, : Koy > X
is an M-map on an (€, M, \)-presentable object K,,, the category Presf\,t’)\(%) Im X s
Mfiltered.

Now let {lg: Lg > X}5 be the canonical M-cocone for X relative to Presf\,u\(%). Let
[+ colim, K, - X and g : colimg Ls - X be the maps defined by the cocones {k,}, and
{i3}s, respectively. Since {k,}o is a subcocone of {lz}s, there is a map h : colim, K, —
colimg Lg such that goh = f. By 6.1.12 (1), g € £. We also know by 6.1.12 (1) that each
map in the colimiting cocone {Lg — colimg Lg}g is an M-map. Since the colimiting cocone
{Ls — colimg Lg}z is an €& n M¥-tight (M, X)-cocone, we know by 6.1.12 (3) that ¢ is a

monomorphism. So {lg: Lz - X}z is an & n MI-tight cocone. O

Proposition 6.1.17. If € is an (£, M, \)-quasiaccessible category and k is a reqular cardinal

such that A< k, then € is (£, M, Kk)-quasiaccessible.

Proof. Since every r-filtered diagram is in particular M-filtered, we only need to prove con-

dition (4) of 6.1.4. Let X be an object in €. Let Tx be the set of all objects in € with an

163



M-map to X that are & n M¥-quotients of colimits of k-small (M, \)-cocones of (€, M, \)-
presentable objects over X. In other words, an object T is in Tx if the following conditions

hold.
e There is a map ¢ : T — X which is in M.

e There is a k-small, & n M¥-tight, (M, \)-cocone 6 : D ——T of (£, M, \)-presentable

objects.
e The cocone tof: D—> X is an M-cocone.

By 6.1.12 (4), every k-small (M, X)-cocone of (£, M, \)-presentable objects over X factors
through an object in Tx. The set Ty is small and every object in Tx is (£, M, k)-presentable
by 6.1.3 (5).

Let {kq : Ko & X }aea be an € n M¥-tight A-directed M-cocone of (€, M, X)-presentable
objects. Let Dy(A) be the poset of A-directed subsets of A, ordered by inclusion, and let A
be the subposet of D)(.A) on the A-directed subsets of A that are k-small. A k-small union U
of elements of A is a r-small subset of A. Since A< Kk, U is contained in a k-small A-directed
subset V of A. So V is an element of 4 and thus A is s-directed. Let F : A — € be the
diagram that sends each A-filtered poset X in A to the object colim,cy K, and sends an
inclusion X ¢ Y of posets in A to the induced map of colimits colim,ex K, = colimyey K.
There are of course also compatible maps px : colim,cy K, - X that define a r-filtered
cocone ¢ : F'—= X . By the proof of 6.1.12 (4), this cocone factors as a natural transformation
p: F - F'" of £€n M¥-maps followed by an M-cocone ¢’ : F'—— X and the objects of F' are
in Tx.

Since colimits commute, colim, K, 2 colim F. So ¢ : F— X is & n M¥-tight and the
map f :colim F' - X defined by ¢ factors through the map f’:colim F' — X defined by ¢'.
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Therefore by 6.1.12 (1), f’ is in €. The colimiting cocone F’—— colim F’ is an M-cocone
by 6.1.12 (1). So 6.1.12 (3) tells us that, f’: colim F' - X is in M¥. So ¢': F'—> X is an

& n M¥-tight (M, k)-cocone of objects in Tx. O

Corollary 6.1.18. Let € be an (£, M, \)-quasiaccessible category. Let k be a regular car-
dinal with A< k. Fvery (€, M, k)-presentable object K in € is a retract of an object T with

a k-small € n M¥-tight (M, \)-cocone { K, - T} of (€, M, \)-presentable objects.

Proof. The proof of proposition 6.1.17 shows that there is an & n M¥-tight (M, k)-cocone
{ts : Ts - K}z of objects T in Tx. By 6.1.2, there is a § such that the identity map

id : K — K factors through tg: 75 - K. O

6.2 Quasiaccessible Functors

6.2.1 Quasiaccessible and Weakly Quasiaccessible Functors

Definition 6.2.1. Let & and £ be (&1, M1, \)-quasiaccessible and (&, Ms, \)-quasiaccessible
categories, respectively. A functor F : o/ — A is (&1, E; My, Ma; N)-quasiaccessible if it

sends & n M¥-tight (M, A)-cocones to Er-tight (My, A)-cocones.

Usually, once we specify that o7 is (€1, M1, \)-quasiaccessible and that 2 is (E2, Mg, \)-
quasiaccessible, then we can refer to an (&1, &2; My, Ma; M)-quasiaccessible functor F': &/ —
A as a just a A-quasiaccessible functor without confusion. We will say F' is quasiaccessible
if it is A-quasiaccessible for some regular cardinal \.

By 6.1.12 (5), the functor F': &/ - 2 in the definition is A-quasiaccessible if and only if

it sends & n M¥-tight (M, \)-cocones to E; N M¥-tight (Ma, A)-cocones.

Remark 6.2.2. Let o/ and % be (&1, M1, A)-quasiaccessible and (&, M, \)-quasiaccessible

categories, respectively. A A-quasiaccessible functor F': .o/ — 28 in particular sends maps in

165



M to maps in Msy. Indeed, if f: X — Y is an M;-map, then the cocone
X \f\
|5y
M

over Y is a colimiting (M, \)-cocone. So F'f € Ms.

Remark 6.2.3. If F': of - % is a A\-quasiaccessible functor between quasiaccessible categories,

and A < k, then, by 6.1.17, F' is k-quasiaccessible.

Theorem 6.2.4. Let o be an (&, M1)-quasiaccessible category and let B be an (Ey, Ms)-
quasiaccessible category. For every quasiaccessible functor F : of — 9B, there is a reqular
cardinal A such that for every regular cardinal k with A< k, F is k-quasiaccessible and sends

(&1, M1, k)-presentable objects to (Ea, My, k)-presentable objects.

Proof. Let \; be a regular cardinal such that F' is \j-quasiaccessible. By 6.1.13, 6.1.3 (1),
and 6.1.14, there is a regular cardinal Ay such that FK is (&, Ma, Ag)-presentable for every
(&1, My, \1)-presentable object K in /. We can further arrange for A; < Ao. Let k be
a regular cardinal with A\ < x and let K be an (&, M1, k)-presentable object in «/. By
6.1.18, K is a retract of an object T', which has an & n M¥-tight k-small (M, \;)-cocone
{K, = T}, of (&, M1, \)-presentable objects. Then {FK, — FT}, is a & n M¥-tight
r-small (My, A1)-cocone of (€, M, \y)-presentable objects. So in particular, by 6.1.3 (5),
FT is a k-presentable object. Since F'K is a retract of F'T, FK is k-presentable by 6.1.3

(3). 0

Proposition 6.2.5. Let € be a (€, M, \)-quasiaccessible category and let f: X =Y be a
map in €. If the map of sets f. : €(K,X) - €(K,Y) is a bijection for every (€, M, \)-

presentable object K, then f is an €N MY-map.
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Proof. By 6.1.12 (2), a map in % is a monomorphism if and only if it is a monomorphism
relative to each (£, M, \)-presentable object K. So f is a monomorphism.

Let {ko: Ko = Y}, be an € n M¥-tight (M, A)-cocone of (£, M, \)-presentable objects.
Every map k, : K, - Y has a unique lift [, : K, - X. If kg : K, - K3 is a connecting map
of the {k, }o-cocone, then the uniqueness of the lifts /, means that [0 kS =1,. The maps I,
therefore define a cocone {l,, : K, - X}, which lifts the cocone {k,}. Soif h: colim, K, =Y
is the map defined by the cocone {k,}, and if g : colim, K, — X is the map defined by the

cocone {ly}a, then fog="h. Since he&, fe& by 6.1.12 (1). ]

Proposition 6.2.6. Let &7 be an (&1, M1)-quasiaccessible category and let B be an (Es, My)-
quasiaccessible category. Let F : of — A be a quasiaccessible functor with a right adjoint

G:HB—->d. If F(&)<C& orif G(Msy) S My, then G is quasiaccessible.

Remark 6.2.7. The conditions F(&;) € & and G(Ms) € M, are equivalent by 4.1.2. If &
and &, are both the collection of epimorphisms or if they are both the collection of strong

epimorphisms in their respective categories, then the conditions hold by 4.1.4.

Proof. By 6.2.4, there is a regular cardinal A such that F' is A-quasiaccessible and sends
(&1, My, M)-presentable objects to (&, Ma, A)-presentable objects. Let {z, : X, - X}, be
an & N M¥-tight (Ma, A)-cocone in ZA. Then the colimiting cocone {GX, — colim, GX, },
is an & N M¥-tight (M, X)-cocone by 6.1.12 (1). So, for each (&1, My, A)-presentable object

K in &7,

o (K, colimGX,)

112

colim o/ (K,GX,)

112

colim#(FK, X,)

112

B(FK,X)

112

o (K,GX)
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By 6.2.5, the map colim, GX, — X defined by the cocone {Gz,}, is in & N M¥. So the

cocone {Gy}q is an £ N M¥-tight (M, \)-cocone. O

Definition 6.2.8. A functor A: .o/ - € is weakly (€, M, \)-quasiaccessible relative to a set

S of objects in & if the following conditions are satisfied.
1. € is an (£, M, \)-quasiaccessible category.
2. A sends objects in S to (€, M, \)-presentable objects in €.

3. For every object X in 7, the canonical A~'(M)-cocone {s, :S, > X}, of X relative

to S is sent by A to an & n M¥-tight (M, \)-cocone {As, : AS, > AX}, in €.

We will say that A: .o/ - € is weakly (€, M, \)-quasiaccessible when a set S of objects in

o exists such that A is weakly (£, M, \)-quasiaccessible relative to S.

Proposition 6.2.9. Let A: &/ - € be a weakly (€, M, \)-quasiaccessible functor relative to
a set 8. If B is a full subcategory of </ that is closed under A=*(M)-subobjects, then the
restriction functor Alg : B — € is weakly (£, M, \)-quasiaccessible relative to the subset of

S on the objects in A.

Proof. Let S be a set of objects in 7 such that A is weakly (€, M, \)-quasiaccessible relative
to S, let X be an object in %, and let {s, : S, = X}, be the canonical A~1(M)-cocone of
X with respect to §. By definition, {As, : AS, - AX}, is an & n M¥-tight (M, \)-cocone
in €. Since the maps s, are all in A=1(M), every S, is an object in Z. So the subset Sy

of § on the objects in A satisfies conditions (2) and (3) of 6.2.8 with respect to A|. O

Proposition 6.2.10. Let A : &/ — € be a weakly (£, M, \)-quasiaccessible functor with
respect to a set S of objects in o/ and let f : X - Y be a map in <. If the map of sets
fo: (K, X)—> A (K,Y) is a surjection for each K €S, then Af is an E-map.
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Proof. Let {z, : K, - X}, be the canonical A~!(M)-cocone for X with respect to S
and let {ys : Lg - Y}z be the canonical A~1(M)-cocone for Y with respect to S. Let
x:colim, AK, - AX and y: colimg ALz - AY be the maps defined by the cocones {Az, },
and {Aygs} g, respectively. Then z and y are EnM¥-maps. Every map Afo Az, : AK, - AY
factors through some Ayg : ALz - AY. So it factors through y : colimg ALg - AY in
particular. Because y is a monomorphism, we get a cocone {AK, — colimg ALg}s that lifts
the cocone {Af o Az, },. Therefore, there is a map d : colim, AK, — colimz ALg such that
yod=Afoux.

We will show d is an E-map. Let g be an M-map and let (u,v):d — g be a map in €2
Because ¢ is a monomorphism, to get a lift of the cocone {vo Ayg: ALg - cod g}, along g, it
is sufficient to lift each map v o Ayg individually. These individual lifts are defined by using
the fact that f, : &/(K,X) - &/ (K,Y) is a surjection on K € S. Indeed, there is a map
mg : Lg — X such that fomg=yg. So there is an ag and an mj : ALg - AK,, such that
Af o Axg, o m’ﬂ = AfoAmg = Ays. If ks, : AK,, — colim, AK, and lg : ALg — colimg ALg
are the maps in the colimiting cocone, then

yodokaﬁom’ﬂ:AfoAIaﬁomlﬁszB:yolg.

Aa:ag

ko
AK,, —5 colim, AK,, —%—3 AX

my
£ ld lAf

AL/B ‘s > COlimg ALB L) AY

Ayg
Since y is a monomorphism, do k,, o m’ﬁ =lg. Therefore uok,, o m’ﬁ is a map ALz - domg
such that gowo ke, omj =wvols So the cocone {vo Ays}s lifts along g. Therefore, there
is a map s : colimg ALz - dom g such that gos=wv. Since gosod=vod=gowu and g is a
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monomorphism, s is a solution to the lifting problem (u,v) :d - g. So d is in °M = £. Since

defand ye&, Af €€ by 6.1.12 (1). ]

Corollary 6.2.11. If f: X - Y is a map in an (€, M, \)-quasiaccessible category € such
that the map of sets f, : € (K,X) > € (K,Y) is a surjection for each (€, M, \)-presentable
object K, then f is an £-map.

Proof. Since Id : € — € is weakly (€, M, \)-quasiaccessible relative to Pres, (%), this is an

immediate consequence of 6.2.10. O

Proposition 6.2.12. Let € be an (€, M, \)-quasiaccessible category. Let & be a small \-
filtered category, let & be a \-small category, and let F': 9 x & - € be a diagram in €
such that lim, F'(d,e) and lim, colim, F'(d,e) exist. If the colimiting cocone {fa.: F(d,e) -

colimy F'(d',€)}q is an M-cocone for each object e, then the canonical map
collim lim F'(d,e) — lim co}lim F(d,e)
s an E-map.

Proof. The &-limit of the maps f;. : F(d,e) — colimy F(d',e) is a map hg = lim, fg, :

lim, F'(d,e) - lim, colimy F'(d',e). The maps {hy}q define the canonical map h : colimgylim, F'(d, e) —

lim, colimy F'(d, e). By taking the &-limit first, we also get maps g, : lim, F'(d, e) - colimy lim, F'(d’, e).

For each (£, M, \)-presentable object K in €, the maps hy, : € (K, lim, F(d,e)) - € (K, lim, colimy F(d', e

define an isomorphism

112

cobim‘ﬁ([(, lim F'(d,e)) cogmlim%(K,F(d,e))

IR

lim Collim C(K,F(d,e))

112

lim ¢ (K, co}iim F(d,e))

112

% (K,lim cobim F(d,e)).
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Since the following diagram commutes, h, is a surjection.

colimg g4,

colimy € (K, lim, F'(d,e)) € (K, colimy lim, F(d',e))

colimg hg, \L ¥

¢ (K, lim, colimg F'(d',€))
By 6.2.11, h is an &-map. O

6.2.2 Comma Categories

Let F: o/ - € and G : B — € be functors. Recall, we use the notation (A, f, B) for an
object and (u,v) : (A, f, B) - (A’, g, B") for a morphism in the comma category F' | G, where
f:FA->GBandg: FA' > GB are mapsin 4 andu: A — A’"isamapin &/ andv: B - B’
is a map in #. We often refer to f: FA - GB itself as an object in F' | G. We will use the
notation P, : F' | G — &/ for the projection of the comma category onto 7. In other words,
Pi(A, f,B) = A and P;(u,v) = u. Similarly, P, : F' | G - % will denote the projection onto
A. The projection functors P, and P, define a functor Pi,o : F' | G - o/ x % which sends
object (A, f, B) to (A, B) and sends morphisms (u,v) : (A, f, B) = (A’, g, B") to morphisms
(u,v) : (A,B) - (A’,B"). We will use the notation Pg2 : F' | G - €2 for the forgetful
functor that sends objects (A, f, B) to f and sends morphisms (u,v) : (A, f, B) - (A’,g,B’)
to (u,v): f—>g.

Let o/, A, and € be (&1, M;)-quasiaccessible, (&, Ms)-quasiaccessible, and (&3, M3)-
quasiaccessible categories, respectively. Let F': &/ - € and G : @ — € be functors. The
following collection of objects in F' | G

{f CFK > GL ‘ K is (€1, M1, \)-presentable in &7 and }

L is (&, My, \)-presentable in %
has only a set of isomorphism classes in F' | G by 6.1.14. We will use the notation Sf Y for a
set of representatives for the isomorphism classes of the objects in the above collection. We

note that the pair (& x £, M1 x My) is a proper orthogonal factorization system on ./ x 4.
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Theorem 6.2.13. If F: &/ - € and G : BB — € are quasiaccessible functors, then there is
a reqular cardinal \g such that for every reqular cardinal A with \o<l A, the functor Pi.s: F']
G — o xR is weakly (E1xEy, M1x Ma, N)-quasiaccessible with respect to SfiG. Furthermore,

the functor Pgz: F | G — €2 satisfies conditions (2) and (3) of 6.2.8 with respect to SF*¢.

Proof. By 6.1.17 and 6.2.4, there is a regular cardinal A\ such that for every regular cardinal

A with A\g < A, the following conditions hold.

o o/ A, and € are, respectively, (1, M1, \)-quasiaccessible, (€2, My, A)-quasiaccessible,

and (&3, M3, \)-quasiaccessible categories.

e F'isa A-quasiaccessible functor that sends (&1, My, A)-presentable objects to (&3, M3, \)-

presentable objects.

e (G is a A-quasiaccessible functor that sends (&, My, A)-presentable objects to (£3, M3, A)-

presentable objects.

(I) Clearly, the (&1 x &, My x Mg, \)-presentable objects in &7 x 8 are exactly the pairs
(A, B) such that A is (&, M1, \)-presentable and B is (&3, M, \)-presentable. So Pj.s sends
every object in «S/‘\{T ¥ is to a A-presentable object in o7 x A.

Let f: FX - GY be any object in F' | G. Let {(u,,vy) : fy = f},ea be the canonical
P;L((My x My)?)-cocone of f relative to Full(Sy*“) in the category F | G. So (u.,v,) :
fy = f is a map in the cocone if f, € SflG, u, € My, and v, € My. We will start by showing
that {(w,,vy)}yea is Ailtered. To show that {Pyxo(uy,v,)} is an & x & n MI-tight cocone
in o x A, it suffices to show that {P;(u,,vy)} e is an & n MI-tight cocone in o7 and that
{Py(ty,vy) }rea is an E N MP-tight cocone in HA. For each v, let K, and L., be objects in </

and 4, respectively, such that f, is a map 'K, - GL,.
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Let {z,: X4 = X}, be the canonical M;-cocone of X relative to Presiﬁll,)\(d) and let
{ys : Y3 - Y} be the canonical Msy-cocone of Y relative to Presiﬁb’)\(%’). We will use these
cocones in our proof. We will also make use of the observation that { F'z, : FX, - FX}, and
{Gys : GY3 - GY }5 are & n M¥-tight (M3, A)-cocones on (&3, M3, )-presentable objects
in ¢.

(I a) A-Filtered. Let Ay be a A-small subset of A. By 6.1.2 (2), there is an a; such
that the cocone {u, : K, - X},c4, factors through the map z,, : X,, = X. So there is a
cocone {ul, : Ky = Xy, }rea, such that x4, oul, = u,. Similarly, the cocone {v,: L, = Y}, 4,
factors through ygs, : Y3, — Y for some ;. So there is a cocone {v : L, = Yp, J1eq, such
that yg, ov/ = v,. Since fo Fz,: FX, — GY is a map on an (&3, M3, A)-presentable object
FX,, it factors through Gyg, : GYp, - GY for some 3. Therefore, there is an index 5 such
that fo Fx,, : FX, — GY factors through Gyg, : GY3, - GY and yg, : Y, — Y factors
through yg, : Y3, - Y. So in particular, there is a map h: FX,, - GYj, in S;*“ such that
Gygy o h = f o Fz,, and there is a map ygi’ : Y, — Y3, which is a connecting map of the

cocone {yz}s. Note that for each v € Ay,

GyggoGygfOGU;OfW:GUWOfwszFuvszanlOFu’Wsz%OhOFu’W.

Fu~
m
FK, y FX,, — 5 FX

{
f’y h GY/B2 f
! GyBB \L Gy

Gv
GL, —— GYs —2— GYp, — = GY
Guy

Since Gyg, is in M, it is a monomorphism. So G(ygf ovl)o f,=ho Ful for each v € Ay.

Since h e SMY Fx,, € M3, and Gys, € Ms, the cocone {(u,v is A-filtered.
A 1 B3 v Uy ) Sy
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(Ib) (& x &) n MI-Tight. To show that {(u,,v,)}, is ((&1 x &) N MY)2-tight, it suffices
to show that the functor P, when restricted to {(u.,v,)},, defines a final functor from the
indexing category of {(u.,v,)}, to the indexing category of {z,}, and that the functor P,
restricted to {(uy,v,)}, defines a final functor from the indexing category of {(u,,v,)}, to
the indexing category of {ys}z. We will use proposition A.2.4 for this purpose.

We will first prove the result for the functor P;. Note that since {z, : X, = X}, is
an Mj-cocone, it is a cocone of monomorphisms. Fix an index « and consider the map
ZTo: Xq > X. Since fo Fz,: FX, > GY is a map on an (&3, M3, \)-presentable object, it
factors through Gys : GY3 - GY for some 3. So there is a an object h € SfiG and a map
(Tasyp) * h — fin F' | G such that P(z,,y3) = o : Xo » X. Finality now follows from
A.2.4. So {Pi(uy,vy)}, is an & n M¥-tight (M, A)-cocone in &7

It remains to prove the result for /. Fix indices 3, and 7. Since v, : L, = Y is equal to
Ys, : Y, = Y for some [y, there is an index B3 such that yg, : Y3, =Y and yg, =v,, : L,, = Y
both factor through yg, : Yg, - Y. Let yg° : Y5, - Y, be a connecting map of the cocone
{ys}s. Then Gyy’ o f,, : FK, — GYj, is an object in SH¢ and (u.,,ys,) Gyg;‘ of,, = fis

amap in F' | G.

Fu,,
L’Yl = Y/J’Q w‘ FK'YI — FX
fﬂi

Yy, —2— Y GL., /
Gusy
/_/ Gygsi \u
Y3, Yp, GYBB L GY

So we've shown that yg, : Y3, — Y factors through the map Ps(u.,,ys,), where (u,,yg,) is
a map in the cocone {(u,,v,)},. Finality now follows from A.2.4. So {Ps(u,,v,)}, is an

& n Mi-tight (M, N)-cocone in 7.
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(ITa) Let {(a,,b:) : hy = f}; be the canonical P_3(M3)-cocone of f relative to Full(S]*)
in the category F' | G. So (a,,b;) : h, - f is amap in the cocone if h, € SflG, Fa, e M3, and
Gb., € M3. An identical proof to the one in part (I a) shows that this sequence is A-filtered.
An identical proof to the one in part (I b) shows that { P (a,,b;)}- is an & N MI-tight cocone
in & and that {Ps(a,,b,)}, is an & n M¥-tight cocone in Z. So {Fa.}, and {Gb,}, are

&3 N M -tight cocones in €. Thus

{Ps2(ar,b) = (Far,Gb,) hy — f}

is (&3 N MY)2-tight cocone in €2.

(IT b) We will conclude by showing that every f: FK — GL in S;*“ is an (€2, M2, \)-
presentable object in €2. Let {(ua,Va) : ga = g}a be an (€3 N M?¥)2-tight (M2, \)-cocone
and let (s,t): f - g be a map. Since FK and GL are (&, M3, \)-presentable, there are lifts
s’ FK - domg,, and t' : GL — cod g,, such that s = u,, os" and ¢t = v,, ot’. There is an
az such that (g, Va,) : ga; = 9 and (Uay,Va,) : ga, = g factor through (tas, Vas) © Gas = g-
So there are maps s” : FFK - domg,, and t” : GL - cod g,, such that s = u,, o s” and

t = V4, ot”. Since v,, is a monomorphism and
vasoga3os":goua303”:gosztof:Ua30t"of’
(s",t") : f = gas is a map in 2. It follows that f is (62, M2, \)-presentable. O

Corollary 6.2.14. If € is an (€, M, \)-quasiaccessible category, then €2 is an (E%, M2, \)-

quastaccessible category.

Proof. Since € has A-filtered colimits, the category ¢2? will also have \-filtered colimits. The
category €2 will also inherit well-copoweredness from %’. The proper orthogonal factorization
system (£, M) defines a proper orthogonal factorization system (£2, M2) on ¢2. So the
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only thing left to verify is condition (4) of definition 6.1.4. Let F and G in theorem 6.2.13
both be the identity functor on 4. Then SflG is just a set of maps f : K - L between
(€, M, \)-presentable objects in 4. We know from the theorem that the objects of SflG
are (E%, M2 \)-presentable objects in 2 and that for every object g in €2 there is an

E N M¥)-tight (M, \)-cocone of objects in SIVE over ¢. O
( g j \ g

Corollary 6.2.15. If F: o - € and G : B — € are quasiaccessible functors, then there is
a reqular cardinal Ao such that for every reqular cardinal X with \g<A A\, Pg2: F | G - €2 is

weakly (€2, M2, \)-quasiaccessible relative to Sy *°.
6.2.3 Inserter Categories

Given functors F': & - % and G : & - B, the inserter category for F' and G, Ins(F, G),
is the subcategory of the comma category F' | G whose objects are the objects are triples
(A, f, A) and whose morphisms are the maps (u,u): (A, f,A) = (A’, g, A").

FA s A

bl

GA -9 GA
We will use the notation P, : Ins(F,G) — < for the projection functor to .o/ that sends
objects (A, f, A) to A and sends morphisms (u,v) : (A, f,A) - (A’,g,A") tou: A— A’. Let

S he the subset of STV on the objects in Ins(F, G).

Theorem 6.2.16. Let o7 be an (&, M1)-quasiaccessible category and let B be an (Ey, Ms)-
quasiaccessible category. If F,G : of — P are quasiaccessible functors, then there is a reqular
cardinal X such that the functor P, : Ins(F,G) — & is weakly (&1, M1, \)-quasiaccessible

relative to SinS(F’G) )

Proof. By 6.2.4 and 6.2.15, there are a regular cardinals Ao and A with Ag < A such that the

following hold.
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1. o is (€1, My, \g)-quasiaccessible and (&1, M1, A)-quasiaccessible.

2. A is (&, Ma, \g)-quasiaccessible and (&, Ma, \)-quasiaccessible.

3. F and G are both A\g-quasiaccessible and A-quasiaccessible functors that send (€1, M1, \o)-

presentable objects to (&, Ma, Ag)-presentable objects and that send (€1, My, A)-presentable

objects to (&, Ma, \)-presentable objects.
4. Pio: F L G- o x o is weakly (&1 x &1, M1 x M1, A)-quasiaccessible relative to SfiG.

Let f: FX - GX be an object in Ins(F,G).

(I) Let g : FA — GB be an object in Sf\wG, and let (u,v) : g — f be amap in F | G.
We will show that, in the category F' | G, (u,v) factors through a map (¢,q) : h - f
on an object h € SinS(F’G). We do this by first selecting an & n M-tight A-directed M-
cocone {kz : Kg - X}g of (&, My, \)-presentable objects in ./ and then constructing a
A-small Ao-filtered cocone {(kgs,,kg,,,) : h, = f}, in F' | G such that {kg,}, is a subcocone
of {ks}s. The desired object h will then be a particular £2-quotient of the colimit of the
cocone {(Fkg,,Gkg,,,) : h, > f}, in A2

(I a) Initial Step. There is a fy such that u: A - X factors through kg, : Kz, - X. Let
uw' : A — Kpg, be the lift of u. Since {Gksz: GKz - GX}5 is an & n MI-tight (Ms, X)-cocone,
there is a f; such that fo Fkg, : FKp, —» GX factors through Gkg, : GKp, » GX in Z. It
follows that there is an 31, By < 81, B} < 1 such that B - X factors through kg, : K, — X.
So there is amap hy : F'Kg, - GKp, in 8 and v’ : B - Kp, in &/ such that foFkg, = Gkg, ohg

and kg, ov’ =v. Thus
Gkp, oGv og=Gvog=foFu= foFkg oFu =Gkg ohyoFu'

Since Gkpg, is in My, it is a monomorphism. So (u/,v"): g - hg is a map in F' | G.
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(I b) Successor Step. Suppose the following hold for an ordinal «.

e There is a map h,: FKg, - GKg,,, in A.

o (kg ,kp,,):h, — fisamapin F|G.

e There is a connecting map k:gz” : Kg, > Kjp,,, in the cocone {kg}z.

There is a 3,42 such that fo Fkg,  : FKg, — GX factors through Gkg, , : GKg,,, > GX
via a map h, : FKg,, > GKg , in %. In other words, (ks,,,,ks,.,) : he1 =~ f is a map in
F | G. Without loss of generality, we can assume f,,2 > B,11. So there is a connecting map

k:g:f : Kg,,, > Kg,,, in the cocone {kg}g. Since
GkﬁL+2 o hl,+]. o szg/;*'l = f © FkBL = Gk/BL+1 ° h'L = GkﬂL+2 °© Gngif ° hL

and since Gkg,,, : GK3,,, > GX is a monomorphism, the following diagram commutes.

Fkg,

kﬁwl Fk
FKs —2— FKs, —% FX

i L 8 \Lh/ﬁl \Lf
GEovr2 G

B+l BL+2

Gy, — GKj., — 2 GX

Gkﬂwrl

So UCE:H’ kg:f) :h, > h,1isamapin F'| G.
(I ¢) Limit Step. Suppose k is a limit ordinal with |x| < A and the following hold for every

ordinal ¢ < K.
o h,: Kz - GKg,, is a map in X.
o (kg kp,,):h, — fisamapin F|G.

) kgfﬂ : K, > Kp,,, is a connecting map in the cocone {kg}s.
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¢ (k’gj_l, k?gfl) :h,y > h,isamapin F'| G.

Since {(kg,,kp,,,) : hu = f}.<x is & A-small subcocone of the A-filtered cocone {kg}g, there is
an index [, with g, > 3, for every ¢ < k. There is then an index B,.,1, Brs1 = Ok, and a map
he: FKg — GKg,,, in % such that f o Fkg = Gkg, , ohs. So (ks ks..,): he = fis a map
in F' | G and there is a connecting map kg:“ : K3, — Kg,, in the cocone {ks}s. For each
L< K,

G,y 0 hw o FRG' = f o Fy, = Ghg,,, o h, = Gk, 0 Gkg o hy,

Since Gkg,,, : GKg,,, > GX is a monomorphism, (k‘gf, kzgl“:) :h, > h, is amap in F' | G for
each ¢ < k.

(I d) Final Step. Let k be the initial ordinal for the cardinal A. Since A is a regular
cardinal, x is a regular ordinal. So k is, in particular, a limit ordinal. Since |k| = A, the
cocone {(kg,,ks,,,) : b, > f}.<x is defined. The fact that X is a regular cardinal means that
no A\g-small subposet of k is final. So, viewed as a totally ordered set, x is A\p-filtered. Thus
{(ks,, kp,,,) : hy > f}i<x is @ A-small Ap-filtered cocone.

Because the cocone {kg, },<x is a subcocone of {ks}s, ks, : Kg, - X is an M;-map for
each ¢. By 6.1.12 (4), there is an object T" with an M;j-map ¢: 7T - X and an & n M3-tight
(M, Ng)-cocone {t, : Kz — T}, such that got, = kg, for each ¢ < k. By 6.1.3 (5), T is an
(&1, M1, \)-presentable object.

By our assumptions on F' and G, the cocones {Fks : FKz — FT},., and {Gkg, :
GKjp, - GT'} <\ are E5n M-tight cocones in #. Furthermore, by 6.2.2, Fg: FT - FX and

Gq:GT - GX are My-maps. So we have the following commutative diagram, where r and
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s are the maps defined by the cocones {Ft,},.. and {Gt,}, .., respectively.

colim,, FKj, —— FT —2s FX

I
I
\Lcolim h, 1h lf
3

colim,, GK5,,, —— GT “, ax

Since 1 € & and Gq € My, there is a unique map h : FT - GT making the above diagram
commute.

(IT) Let {(%a, %) : fa = f}aca be the canonical Prl,(M; x M;)-cocone of f with respect
to S}\HS(F’G) in Ins(F,G). We will denote the objects P, f, in & by X,. So f, is a map
fo : FX4 - GX,. Showing that the cocone {Pixo(Ta,Ta)}aca is an (€1 x &) N M¥-tight
AMfiltered cocone in &7 x o/ is equivalent to showing that {z, : X, - X}aeq is an & -tight
Mfiltered cocone.

(IT a) A\-Filtered. Let {4 }aca, be a A-small subcocone of {x, }aea. We know that there is
an & N M¥-tight (My, \)-cocone {ksz: Kz - X} of (€1, My, \)-presentable objects over X.
Therefore, by 6.1.2 (2), the cocone {z, : Xo = X }aca, lifts to a cocone {y, : Xo = Kp }aea,
for some . Since {Gksz : GKg - GX}z is an & n Mi-tight (My, A)-cocone, the map
foFkg: FKg — GX factors through a map Gkgr: GKgr — GX. We can choose 3" > ' so
that there is a map k:g,” 0 Yy : Xo = Kpr with z,, = k:g,” oy, for each o € 4y. So there is a map

g:FKg - FKgrin % and a map (kg ,kgr):g— fin F'| G and
GkﬁnogoFya =folFx,=Gx,o0 f, :Gkﬁ"oG(kglﬂoya)ofa~

Since Gkgr is a monomorphism the following diagram commutes for every a € Ay.

Fxq

Fya Fkﬂ/
FX,y 2 pr, L px

fozl ” i.‘] lf
G(ky, oya) Ghgn

GX, —5 GKp —=— GX

Gzo
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But by our work in (I), we know that, in F' | G, the map (kg k) : g = f factors through a
map (q,q) : h > f, where h ¢ S/I\HS(F’G) and g € M;. Let (a,b) : g = h be the map such that
(¢,q) o (a,b) = (kg, kgr). We now know that the following diagram in ./ commutes for each
a€A.

"

Yo kB' Yo
KBI ( Xa ) Kﬁ/l
\an
goa=kgr qob=kgir
X

Since ¢ is a monomorphism, aoy, =bo kg," 0 Yy S0 (@oyy,bo k:g:/ ©Yy) : fo = his a map in

Ins(F,G). Since h € Sins(F’G), (¢,q) : h— fis equal to (zo/,Tor) : far = f for some o’. Thus
{(%a, o) }aca 18 Miltered.

(IT b) & n M¥-Tight. In the category F' | G, let {(u,,v,) : g, = f}, be the canonical
P;L((My x My)2)-cocone of f relative to maps g, : FA, - GB, in S;*“. By (4), {u,},
and {v,}, are & n M¥-tight (M, A)-cocones in «/. We will apply A.2.4 to show that
{(za,za) * fo = f}a is a final subcocone of {(u,,v,) : g, = f}, in A2 By (I), each
map (u.,v,) : g4 > f factors through some (z,,2,) : fo = f in F' | G. Since the maps
(ty,vy) : g4 = f are all monomorphisms in F' | G, A.2.4 applies. Thus {z,: X, - X}, is an

& n M¥-tight (M1, A)-cocone in 7.

6.2.4 Categories of Coalgebras

Let ¢ : F' - G and ¢ : F - G be natural transformations between functors F, G : & - A.
The equifier category, Eq(p,1), of ¢ and v is the full subcategory of .7 on the objects A

such that oy =Y, : FA - GA.

Proposition 6.2.17. Let F': of - A be a weakly (€, M, \)-quasiaccessible functor relative
to a set Sy of objects in of . Let G : o/ - A be a functor such that F~* (M) c G-Y(M). If p:
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F — G and: F - G are natural transformations, then the functor Flgqsv) : Eq(p,v) - %
we get by restricting F to Eq(p,v) is a weakly (€, M, \)-quasiaccessible functor relative to

the subset qu(%d}) of Sx on the objects in Eq(p, ).

Proof. By 6.2.9, it is sufficient to show that Eq(p,%) is closed under F~'(M)-subobjects.
Let X be an object in Eq(p,%) and let f: K - X be a map & such that F'f € M. Then,
since F-1(M) c GH(M), Gf e M. Because Gf oy =pxoFf=1xoFf=Gfoyr and

G f is a monomorphism, px = k. O

Theorem 6.2.18. Let o be a (€, M)-quasiaccessible category. If (L,€) is a quasiaccessible
pointed endofunctor on < , then the forgetful functor Uy, : Coalg; — & is weakly (€, M, \)-

quasiaccessible for some reqular cardinal \.

Proof. By 6.2.16, there is a regular cardinal A such that the functor P, : Ins(Id,L) —
o is (€, M, \)-quasiaccessible relative to Sins(ld’L) and the functor L : & - & is A-
quasiaccessible. There is a natural transformation ¢ : P,y - LP, with ((x s x)=f: X - LX
on each object (X, f,X) in Ins(/ld,L). Let v» =eP,o0(: Py - P, and let id : Py — Py
be the identity natural transformation. Then Coalg; is the category Eq(id, ). Since L
is A-quasiaccessible, L(M) ¢ M. So P }(M) ¢ P}(L*(M)). Thus, by 6.2.17, the for-
getful functor Uy, : Coalg; — & is weakly (£, M, \)-quasiaccessible relative to a set of
representatives for the isomorphism classes of (£, M, \)-presentable objects in <7 that are

L-coalgebras. O
The following result uses definition A.3.5.

Corollary 6.2.19. If o/ is a quasiaccessible category and (L, ) is a quasiaccessible pointed

endofunctor on <, then the category Coalg; has a U;'(E)-strong family of generators.

182



Proof. By 6.2.18, there is a set S of objects in Coalg; such that for every object (X, k)
in Coalg;, there is a cocone {s, : (Sa,la) = (X, k)}o of objects (Sa,ls) € S such that

{Sa:Sa > X}q is an € n M¥-tight (M, \)-cocone. Let

s [ J(Sa:la) = (X, k)

be the map defined by the maps s, : (Sa,la) = (X, k). We need to show s is in U;(&). By
proposition 6.2.11, to show s : [[, S, — X is an E-map, it suffices to show s, : €(K, 1, Sa) -
% (K, X) is an epimorphism for each (€, M, \)-presentable object K.

Let k: K - X be a map on a (€, M, \)-presentable object K. Then there is an o’ such
that % factors through s./. Let ing: — [1, S, be the inclusion of S,/ into the o’ copy of the
coproduct. Then soing = s.. So k factors through s. Thus s, : € (K, 1, Sa) = € (K, X)

is an epimorphism. O

Proposition 6.2.20. If o/ is a cocomplete (€, M)-quasiaccessible category and (L,e) is an
(€, M)-quasiaccessible pointed endofunctor on <f , then the forgetful functor Uy : Coalg; —

A has a right adjoint.

Proof. We will verify that Uy, : Coalg; — & satisfies the conditions of the generalized
special adjoint functor theorem in appendix A.3. Since ./ is cocomplete, the category
Coalg; is cocomplete and the forgetful functor Uy, : Coalg; — o7 preserves colimits. Since
o is (€, M)-quasiaccessible, it is £-well-copowered. There can only be a set of lifts (X, k) in
Coalg;, for each object X in &7, so Coalg, is U (E)-well-copowered. By 6.2.19, Coalg;, has
a Upt(€)-strong family of generators. Because £ is stable under pushouts and Uy, preserves
colimits, the collection U;'(€) is stable under pushouts. The existence of the right adjoint

now follows from A.3.6. O
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Theorem 6.2.21. Let &7 be a cocomplete (€, M)-quasiaccessible category and let (L, ) be
an (€, M)-quasiaccessible pointed endofunctor on <. There is a comonad (1/,e,8) on <

such that |Coalgy,| = |Coalg | and L' : & - o/ preserves E-tightness of (M, X)-cocones.

Proof. Let G : o/ - Coalg; be the right adjoint to the forgetful functor Uy, : Coalg; - <.
Let v: I - GUyp and & : UG — I be the unit and counit maps for the adjunction, respectively.
Let L’ : & - & be the endofunctor L’ = U,G. Then L’ is a comonad with counit map
e =¢:ULG — I and comultiplication map § = ULvG : UG - U,GULG. Since I'X € |Coalg; |
for every object X in 7, |Coalg;,| ¢ |Coalg;|. Now let X be an object in |Coalg|. So
X has a lift (X, k) in Coalg;. The commutativity of the following diagram shows that
X € |Coalgy,|.
id

SUp (X k

ULGUL(X, k) —2 5 UL(X k)

ULv(x k)

UL(X, k)

By 6.2.18, there is a regular cardinal A and a set Sy of objects in Coalg; such that Uy, :
Coalg; — o7 is an (€, M, \)-quasiaccessible category relative to Sx. Specifically, by 6.2.16
and 6.2.17, S, is the collection of objects in Coalg; that forget to (£, M, \)-presentable
objects in «7. Let X be an object in &7 and let {z, : X, - X}, be an E-tight (M, \)-cocone.
By 6.1.12 (5), {zqa }a is EnMI-tight. The cocone {Gx, }, defines amap g : colim, GX, - GX.
Let {c, : GX, — colim, GX,}, be the colimiting cocone. Then the following diagram

commutes for each (K, k) in Coalg; .

colim ¢y 4

colim, Coalgy, ((K, k), GX,) Coalgy ((K, k), colim, GX,,)

g*

Coalgy ((K, k), GX)
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For each (K, k) in S,

colim Coalg; ((K,k),GX,) = colime/(UL(K, k), X,)

112

A (UL(K, k), X)

112

CoalgL(<K7 k)? GX),

and this bijection is the map colim, Gz, defined by the cocone {Gz,, }o. So, in particular,
the map g. is a surjection on the objects (K, k) in Sy. By 6.2.10, the map Upg is in €. Since
Ur, commutes with colimits, Uy,g is the map colim, U,GX, - U,GX defined by the cocone

{ULG?L’a : ULGXa g ULGX}Q. O

Proposition 6.2.22. If o : L > C is a map of (€, M, \)-quasiaccessible copointed endo-
functors, then there is a map o' : L' — C’ of comonads, where L' and C' are the comonads

constructed in theorem 6.2.21.

Proof. There is a functor a, : Coalg; — Coalg such that Uca, = Uy, where Uy, : Coalg;, —
¢ and Ug : Coalg. — ¢ are the forgetful functors. By 6.2.20, the forgetful functors Uy, and
Uc both have right adjoints. Therefore, by the dual of 2.1.34, Uy, and Ug are comonadic

functors. The result now follows from A.3.2. ]

6.3 Quasiaccessible Model Categories

6.3.1 Quasiaccessible Model Categories are Algebraic Model Cat-
egories

Definition 6.3.1. Let & be an (&£, M, \)-quasiaccessible category.
e A functorial factorization (L, R) on € is (€, M, A)-quasiaccessible if L : €% - €2 is an

(£2, M2, \)-quasiaccessible functor.
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e A weak factorization system (L,R) is (€, M, \)-quasiaccessible if it has an associated

functorial factorization that is (£, M, \)-quasiaccessible.

e A model category on € is (£, M, \)-quasiaccessible if both of its weak factorization

systems are (£, M, \)-quasiaccessible.

e An algebraic model category ¢ : (Cy, F) - (C,F;) on € with weak equivalences W
is (&, M, \)-quasiaccessible if (C,F) and (C,F;) are both (£, M, \)-quasiaccessible

functorial factorizations.

A functorial factorization, weak factorization system, model category, or algebraic model

category is (£, M)-quasiaccessible if it is (£, M, X)-quasiaccessible for some regular cardinal

A.

Remark 6.3.2. A functorial factorization (L,R) is (£, M, \)-quasiaccessible if and only if

R: %2 - €2 is (€2, M2, )\)-quasiaccessible.

Theorem 6.3.3. Every (£, M)-quasiaccessible weak factorization system on an (€, M)-

quasiaccessible category € has an associated AWFS.

Proof. Let (L,R) be an (£, M)-quasiaccessible weak factorization system on ¢. There is
a A regular cardinal such that € and (£,R) are (£, M, \)-quasiaccessible. Let (Lq,R;)
be an (£, M)-quasiaccessible functorial factorization associated to (£,R). By our remarks
following proposition 3.1.2 in section 3.1.1, |Coalgy, | = £. By 6.2.21, there is a comonad
L} : €% - €2 such that [Coalgy,| = £ and L] preserves &2-tightness of (M2, A)-cocones.
By 3.1.13 and 3.1.16, £ = |Coalgy,| = [?Algg, | = °|Algg,|. Thus |Algg| ¢ (°|Algg[)” =
Lo =TR. By 3.1.4, [Algg| = R. So, by 3.2.19, (L',R’) := F1((L{,R})) is an AWFS such
that |Coalg;,| = £ and |Algg/| = R. Of course the monad structure on R’ and the comonad
structure on L tell us that for each object f in €2, L'f € L and R'f € R. m
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Theorem 6.3.4. Every (£, M, \)-quasiaccessible model category is the underlying model

category of an algebraic model category.

Proof. Let € be a bicomplete (£, M, \)-quasiaccessible category. Let W, C, and F be the
collections of weak equivalences, cofibrations, and fibrations, respectively, for an (€, M, \)-
quasiaccessible model category on €. There are (£, M, \)-quasiaccessible functorial factor-
izations (Cy, F) and (C,F;) for the weak factorization systems (C n W, F) and (C,F nW),
respectively.

Let (L, R) be the factorization (C,F;) ® (Ci,F). Explicitly, L;f = CC.f and Rf =
FfoF,Cif. So (L, R) is an associated factorization for (C n W, F). Since the composition
of (€, M, \)-quasiaccessible functors is (£, M, \)-quasiaccessible, the functorial factorization
(L¢, R) is (€, M, ))-quasiaccessible. The counit map ¢ : C; — Id defines a map of copointed
endofunctors Ce : L, = CC; — C.

By the remarks following proposition 3.1.2, |Coalgy,| = Cn W and |Coalgc| = C. So by
6.2.21, there are comonads L] and C’ that preserve £2-tightness of (M?2, X)-cocones such that
|Coalgy, | =CnWV, |Coalg|=C. By 6.2.22, there is a map of these comonads a : L -~ C". By
3.2.22, Fya : FyL) — FoC’ is a map of (€, M)-compact LAWFSs. By 3.2.16, FiFya : F1FoL) —
F,FyC’ is a map of AWFSs. Let (L}, R”) = F1F,;L; and let (L”,R}) = F1F,C’. Using the
remarks following proposition 3.1.2 and the facts that CnW =BF and C = °(F n W), we
can show that Fy(L;) and Fy(C’) are functorial factorizations associated to (C n W) and
(C,F n W), respectively. Then, by 3.2.19 and 3.1.4, |Coalgs| = C n W, [Coalg.| = C,
|Algg,| = F, and |Alggs| = FnW. So FiFsa : (L, R”) - (L”,RY) is the desired algebraic

model category. O]
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6.3.2 The Bousfield-Friedlander Theorem

To get an algebraic model category after applying the Bousfield-Friedlander theorem to
an (&, M)-quasiaccessible model category we will need to place the following restriction on

the collection &.
If fe& and g,he&n M, then the limit of any diagram f - h < ¢gin €2isin £.  (6.1)

Let & be a bicomplete (€, M, \)-quasiaccessible category such that & satisfies condition
(6.1). Suppose there is an (£, M, \)-quasiaccessible model structure on ¢ with cofibrations C,
fibrations F, and weak equivalences W. Let (C;, F) and (C,F;) be (£, M, \)-quasiaccessible
functorial factorizations associated to the weak factorization systems (CnW,F) and (C,Fn

W), respectively. Let (Q,a) be a pointed endofunctor on €.

Definition 6.3.5. An object f in €2 is a Q-equivalence if Q(f) is a weak equivalence. An
object f in €2 is a Q-fibration if it has the right lifting property with respect to cofibrations
which are (Q-equivalences. An object X in € is Q-fibrant if the map X — % to the terminal

object is a Q)-fibration.

We will use the notation Wy = {f | Q(f) € W} for the Q-equivalences and Fg = (CnWg)°
for the Q-fibrations.

The endofunctor Q on ¢ defines an endofunctor Q2 : €2 — % which sends objects

f:A-> BtoQf : QA - @B and morphisms (u,v) : f — g to (Qu,Qv) : Qf - Qg. The

functor is pointed by @ = (o, ) : Id - Q2.

Theorem 6.3.6. If the following conditions on Q% are satisfied, then there is an (€, M, \)-
quasiaccessible model category on € with weak equivalences Wq and fibrations Fq.

1. Q%:6% > €2 is an (€%, M2, \)-quasiaccessible endofunctor.
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2. QQ? preserves weak equivalence objects.
3. The maps gz : Q% - Q2Q? and Q% : Q% — Q2Q? are natural W2-maps.

4. The collection Wq is stable under pullbacks along the fibrations f : X — Y between

fibrant objects for which ay: f — Q2f is a W2-map.

Proposition 6.3.7 ([Sta08]). Assuming conditions (2) - (4) of theorem 6.5.6, the following

hold.
1. A map in € is an FoW-map if and only if it is an Fgo nWe-map.
2. Amap f: X - *is an Fg-map if &y : f > Q>f is a W2-map.
3. A map between Q-fibrant objects is an Fo-map if and only if it is an F-map.

Proof of Theorem 6.3.6. We will construct an (£, M, \)-quasiaccessible functorial factoriza-
tion (LY, R9) such that L2 f e CnWg and RYf € Fg for each map f in €. Let E; be the
middomain functor of (C;,F). Let f: X - Y be a map in ¢ and let 2’ : QX — % and
Yy : QY — % be maps to the terminal object. Consider the following diagram.

X ax QX Ctﬂf/ Etx, CtEth EtEth

lf l@f lEt Qf lFEt Qf
C !

y — 5y —4¥ Eywy' S N Eywy'
Let Ry f : B4 f = Y be the pullback of FE;Qf along C;y’ cay. Let Lif : X - Eif be the
map into the pullback defined by the maps f: X - Y and C,F,Q foCix'oax : X - F,E,Qf.
Let (L2, RQ) = (C,F,) ® (L1, R;). So Rf = R, f oF,L, f and Lef = CL, .
By 6.3.6 (3), dgs is a W2-map. So agx and agy are in W2. Since Cy’ is in W,
Q(Cy') : QQY - QEw' is in W. Thus ag,, : By’ — QFEy' is in W. Similarly, since
CEQf o Coa’ is in W, Q(C EQf o Cya’) is in W and thus ap,p,qr is in W. Therefore,
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by 6.3.7 (2), EtE,Qf and Eyy’ are Q-fibrant objects. So by 6.3.7 (3), FE,Qf is an Fg-
map. Therefore R, f is an Fg-map. By 6.3.7 (1), ROf € Fy. Since the maps Ciy’ o oy and
CiEQf o Ca’ o acy are Q-weak equivalences, the 2-out-of-3 property of Wy and 6.3.6 (4)
imply that L; f is an C n Wg-map. So CL;f e CnWjy.

Let {(ta,va) : fa = [}a be an E2-tight (M2, X)-cocone in 2. By 6.3.6 (1), {(Qua, Qu,) :
Qfo = Qf}s is an E2-tight (M2 N)-cocone. Let X, = domf, and Y, = cod f,. So
{(Quq,id,) : 2" 0 Quy — '} and {(Quy, idy) 1 Y’ 0 Quy = Y }o are E2-tight (M2, X)-cocones.
Since {C(Quq, idy) : Ci(z' 0 Quy) — Cyx'}y is an E2-tight (M2, \)-cocone, it follows that
{Ei(Qua, Quy) : ByQfy - EQf} o is an E2-tight (M2, X)-cocone. Thus {FFE;(Que, Qu,) :
FE.Qf, > FEQf}, is an £2-tight (M2, \)-cocone. Because M is stable under pullbacks,
{R1(Ua,Va) : Rifo = Rif}a is an (M2, X)-cocone. By 6.1.12 (5), the cocones {(uq, Vo) }a
and {FE,Q(uqy,va)}a are (€N MV)2-tight. It follows from condition (6.1) and proposition
6.2.12 that the cocone {L;(ua,va)}a is E2-tight. Therefore {CL;(ua,vs) : CLy fo &> CL1 f}a
is an £2-tight (M2, \)-cocone. So (L9, R?) is an (£, M, \)-quasiaccessible functorial fac-

torization. O

Corollary 6.3.8. If the conditions of 6.53.6 are satisfied, then there is an algebraic model

category on € with weak equivalences Wq and fibrations F.

Proof. This is just an application of theorem 6.3.4 to theorem 6.3.6. [
6.3.3 A Quasiaccessible h-Model Structure

Let W, C, and F be the collections of homotopy equivalences, closed h-cofibrations, and
h-fibrations in Top, respectively. By [Str72], Top is a model category with weak equivalences

W, cofibrations C, and fibrations F. In fact, the only results we need from [Str72] are that
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(CAW)E=F CnW=08F, C%=FnW, and C =°(FnW). We will use different factorizations
than those used by Strgm.

Following [BR13], we will use the Moore path space factorization (L, R) to factor a map
f:X - Y into a map L;f € Cn W followed by a map in Rf € F. The space I1Y of Moore
paths on Y is given by the pullback square, where R,y = [0, 00) and shift : YR=0 x R,y — Y R0

is the map that sends (p,t) to the path z — p(z +1).

Y —— YR0 xRy,

_
€Vend lshift

Y const YR20
On the point-set level, TTY is the set of triples (p,t,y) € Y®0 x Ryo x Y such that p(z) =y

for all = >¢. This set can be identified with triples (p,t¢,y) of paths p: [0,¢] = Y such that
p(t) =y. The map eveyq sends a triple (p,t,y) to the point p(t) = y.

The factorization f+— RfoL.f is given by the following pullback diagram. The space I' f
consists of the triples (p,t,z) such that p is a path p:[0,¢] = Y and p(0) = f(x). The map
L;f sends a point z to the point (p,t,x) consisting of the constant path p: [0,t] - Y valued

at f(x) and Rf sends a triple (p,t,z) to the point p(t) in Y.

Rf
x My /Ih y
\ _
l \LEVO
id
!

X ——Y
It is shown in [BR13] that L;f e CnW and that Rf € F. Although [BR13] worked in a

convenient category of spaces, the proof transfers seamlessly to Top. The proof that Rf is
an h-fibration relies on the fact that composition of paths in the Moore path space is strictly
associative. This fact makes it possible to put a monad structure on R : Top? - Top?,
which implies that Rf € F. Beyond establishing that (L;,R) is a factorization associated to
(CnW,F), we will not use the monad structure on R.
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We will now describe our factorization of a map f : X — Y into a map in C followed
by a map in F nW. We will start with the functorial factorization (m,m,,) defined by the
following diagram. The maps iy and i; send z to (z,0) and (x,1), respectively, s(f) and
t(f) are the colimiting cocone maps, and m(f) = s(f)oi;. The collapse map col : X x I - X
is just the projection onto X. The map m,,(f) is the map out of the colimit defined by the

cocone maps id:Y - Y and focol: X x[ - Y.

X

l“ m(f)
X —% s xx]-|]— 4 X
\Lf S(f)l lf
y Mf Soomeld) Ly

id
Since ig is in Cn W, t(f) € CnW. Therefore m,(f) € W. Standard arguments show that
m(f) is a closed h-cofibration. Now, the functorial factorization (L, R;) := (L, R) ® (m, m,,)
given by f — (Rm,(f),Limy(f) e m(f)) factors f into a map in C followed by a map in

FnW.

The remainder of this section is devoted to the proof of the following result.

Theorem 6.3.9. The functorial factorizations (L, R) and (L, R;) are (€%, MY, \)-quasiaccessible

for every reqular cardinal A\ > 2%0.

For spaces A and X, let X4 be the set Top(A, X) equipped with the compact-open

topology. For a compact subset K of A and an open subset U of X, we will use the notation
Vx(K,U)={f:A->X|f(K)cU}.

The collection of all such Vx (K, U) is a subbase for the compact-open topology on Top(A, X).

Even though Top is not cartesian closed, we can still prove the following result.
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Lemma 6.3.10. If f : X - Y is an M%-map, then for every A, f4: X4 - Y4 is an

Mt -map.

Proof. Since f is a monomorphism, f4: X4 - Y4 is a monomorphism. Let K be a compact
subset of A and let U be an open subset of X. Let U’ be an open subset of Y such that

U'nX =U. Then Vy (K, U")n XA = Vx(K,U). It follows that f4 is a subspace inclusion. [J

Lemma 6.3.11. If (u,v) : f — g is an (M*)2-map in Top?, then I'(u,v) : Tf - T'g is an

M -map.

Proof. By 6.3.10, the map v®=0 : (cod f)®0 — (codg)®= is a subspace inclusion. Since
(E%, M) is a orthogonal factorization system, the limit of a diagram in Top? of objects in

M5t is an object in M**. So the map
00 x Ry ¢ (cod f)*0 x Ry = (cod g)™0 x Ry

is a subspace inclusion and the map Ilv : II(cod f) — II(codg) is a subspace inclusion.

Therefore I'(u,v) : I'f - I'g is a subspace inclusion. O

Proposition 6.3.12. The functorial factorization (L, R) is (€%, M*¥, \)-quasiaccessible for

every reqular cardinal A > 2%0.

Proof. We know from 6.3.11 that L; sends (M5V)2-cocones to (M3V)2-cocones. Let A\ be
a regular cardinal with A > [Ryo| = 2% and let {(uq,va) : fa = f}a be an (E¥)2-tight
((M59)2, \)-cocone in Top?. By 6.1.6, Ry is an (¥, M*¥, X)-presentable object in Top.
So by 6.3.10, {va=° : (cod f,)B0 — (cod f)E=0}, is an E¥-tight (M=%, X)-cocone. By 6.1.12
(5), {va=*}q is in particular M¥-tight. From proposition 6.2.12 and the fact that £ satisfies

condition (6.1), we can conclude in order that each of the following cocones are E¥-tight.

{tB20 x Ryg : (cod fo)F0 x Rsg — (cod £)F20 x Ry}
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{TTv, : TI(cod f,) = TI(cod f)}a

{F(uavva) Ife — Ff}a

Therefore L; preserves (£¥)2-tightness of ((M#%)2, \)-cocones. O

Lemma 6.3.13. Consider the following pushout square and cocone in Top.

A—9% s (©

el

B —— BIlI,C

If f, g, h, and k are subspace inclusions, then [ is a subspace inclusion.

Proof. The set B4 C' is just the union BuC in D. So [ is an injection. Let L be a closed
set in B[4 C. Then LnB is a closed set in B and LnC'is a closed set in C. But that means

(LYnB=LnBand (L)nC=LnC. Sol(L)n(BL,C)=(I(L)nB)u(I(L)nC)=L. O

Lemma 6.3.14. Consider the following map of pushout squares in Top.

91
Ay > C

/
Q
%)
///
~

fi A2 02
lf{
g1
B > By 114, Cy 7
X f2 X
Bs = > By 114, Co

Suppose g1 and gy are subspace inclusions such that ¢(Cy ~ g1(A1)) € Co N ga(As).
1. If a, b, and c are injections, then d is an injection.

2. If a, b, and c are subspace inclusions, then d is a subspace inclusion.
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Proof. (1) It is easy to check that ¢} is an injection and that the restriction of f} to Cao\ga2(As)
is an injection. Every point in By [14, C; either lifts to a point in Cy \ g1(A;) or to a point
in B;. Let x and y be distinct points in B; [[4, Ci. If both z and y have lifts in B;, then
the injectivity of b and g4 imply that d(x) # d(y). If both x and y have lifts in Cy \ g1(A1),
then the fact that ¢(Cy N g1(A1)) € Ca N g2(Asz), the injectivity of ¢, and the injectivity of the
restriction of f) to Cy \ g2(Ag) imply that d(x) # d(y). Suppose x has a lift 7 € Cy \ g1(A;)
and y has a lift § € By. Since ¢(%) € Cay \ g2(Asz), f2(c(Z)) # g5(b(7)). So d is an injection.
(2) Recall that By ][4, Cs has the final topology. So a subset V' is open if and only if
V 0 By and f37'(V) are open. Let U be an open set in By [14, C1. Then Un By, fi=(U),
and f71(U n By) are open. There is an open set Vg in By such that Vg n By = U n By. Let
Va = f;'(Vg). Then Vyn Ay = {75 (U n By). Since /7 (U)n Ay = ff{(Un By) = Van A,
the set Vp := 1’_1(U) UVy in Ay 14, C) is open. By 6.3.13, there is an open set Vi in Cs
such that Vo n (Az 4, C1) = Vp. So in particular, Vo n Cy = 1’_1(U) and Vo n Ay = Vy.
By (1), Vg ly, Ve is a subset of By[14,Co. Let V = VpIly, V. Since V n B, = Vi and
2’_1(V) = Ve, Vis an open subset of By [1 4, Cs. Since VgnB; =UnBy, VanA; = f~Y(UnBy),

and Vo n Cy = fI71(U), we must have that d-1(V) = U. O

Proposition 6.3.15. The functorial factorization (m,my) is (€%, M, \)-quasiaccessible

for every reqular cardinal .

Proof. Let A be a regular cardinal. Let {(tq,va) : fo = f}a be an (E¥)2-tight ((M=¥)2 ))-
cocone in Top?, where f and the f, are maps f: X - Y and f, : X, - Y. It suffices to
show the cocone {M (uq,vs) : M fo = M f}, in Top is an E¥-tight M*¥-cocone. The cocone
{M (ta,Va) o is EF-tight because colimits commute and the colimit of any diagram in Top?

whose objects are in £¥ is in &Y.
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Of course, the functor (-) x I : Top - Top preserves subspace inclusions. So the vertical

arrows in the following diagram are all subspace inclusions.

Y, < X, - X, x1

l’ua U lua x1

vl x Py xxr

Both of the maps 79 : X, - X, x I and 75 : X - X x [ are subspace inclusions, and
Xox(0,1] € X x (0,1]. Thus, by 6.3.14, M (us,vs) : M fo = M f is a subspace inclusion. So

M (Uq, Vo) is an (M*)2-map for each a. O
We can now prove the following restatement of theorem 6.3.9.
Theorem 6.3.16. The h-model structure on Top is (¥, M*%)-quasiaccessible.

Proof. Let X\ be a regular cardinal larger than 2%. The functorial factorization (L, R)
is an (&, M*¥ \)-quasiaccessible functorial factorization for the weak factorization system
(CnW,F). By 6.3.15 and 6.3.2, m,, : Top? » Top? is an ((£)2, (M*%)2, \)-quasiaccessible
functor. Since the composition of functors preserves ((€¥)2, (M=)2 \)-quasiaccessibility,
R; = Rm,, : Top? - Top? is ((¥)2, (M*)2, \)-quasiaccessible. So (L,R;) is an (£¥, M5, \)-

quasiaccessible functorial factorization for the weak factorization system (C,F nW). O
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Chapter 7: A Characterization of Accessible Model Categories

with Accessible Weak Equivalences

A model structure on a category % is combinatorial if it is cofibrantly generated and
if € is a locally presentable category. Smith’s theorem for combinatorial model categories
provides a complete characterization of combinatorial model categories. It in particular
produces an (acyclic cofibration, fibration) factorization for the model category when only
given the data of the (cofibration, acyclic fibration) WFS. There are many references for
this material. Beke’s paper [Bek00] is the earliest source that contains many of the relevant
ideas. Summaries can also be found in [Ros09] and [Lur09, §A.2.6].

We attempt to prove a version of Smith’s theorem for accessible model categories. Unfor-
tunately, it does not seem to be the case that the weak equivalences in an accessible model
category have to be accessible and accessibly embedded. Without this assumption, any
characterization of accessible model categories seems hopeless. We instead only attempt to
classify the accessible model categories whose weak equivalences are accessible and accessibly
embedded. The classification we get is much harder to work with than Smith’s theorem and
likely of limited utility.

The papers [BG19] and [Bou20] outline alternative incomplete, but potentially pro-
ductive, approaches towards Bousfield localizations, which could provide an alternative to

Smith’s theorem for accessible categories.
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7.1 Accessible Model Categories

7.1.1 Properties of Accessible Categories

We will assume the reader is familiar with the definitions of accessible categories and
accessible functors. A good summary can be found in [AR94]. If € is a A-accessible category
for a regular cardinal A, then the A-presentable objects in ¢ only have a set of isomorphism
classes. We will use the notation Pres)(%) the full subcategory of € on such a set of
representatives.

We will state a few of the important results and definitions in [AR94].
Proposition 7.1.1. Let A and k be reqular cardinals with A\ < k.

1. [ARY/, 2.11] Every X-accessible category is k-accessible.

2. [AR94, 2.18] Every \-accessible functor is k-accessible.

3. [ARY4, 2.20] If a functor preserves A-presentable objects, then it preserves k-presentable

objects.

Definition 7.1.2. A subcategory Z of an accessible category € is accessibly embedded in
¢ if A is a full subcategory of € and there is a regular cardinal A such that £ is closed

under M-filtered colimits in % .

Definition 7.1.3. Let A be a regular cardinal. A map f: X — Y in a category & is A-pure
if for every map a : A; — A; between A\-presentable objects and every commutative square

of the following form
A ——— X

al lf
Ay ——Y,

there is a map s: Ay - X such that soa =u.
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Proposition 7.1.4. Let A\ and k be a reqular cardinals with k> \.
1. If f: X->Y and g:Y — Z are \-pure then go f is A-pure.
2. If go f is A-pure, then f is A-pure.
3. If f is k-pure, then f is A-pure.

4. If D: 9 - a7? is a k-filtered diagram whose objects are \-pure morphisms in <, then

colim D is a \-pure morphism in < .

Proof. (1) and (2) are immediate. Since r-filtered diagrams are A-filtered, every A-presentable
object is k-presentable. So (3) holds. (4) Every map a: A; - Ay between A-presentable ob-
jects in &7 is A-presentable. Every map a — colim D from a A-presentable object a in .72

factors through Dd for some d. Since Dd is a Ad-pure map in 7, the result holds. n

Proposition 7.1.5. [AR94, 2.31] Let A be a reqular cardinal and let o/ be a cocomplete

A-accessible category. If f is a A-pure map in <7, then it is a reqular monomorphism.

Definition 7.1.6. Let <7 be a category and let A be a regular cardinal. We define Pure, (%)
to be the subcategory &/ whose objects are the objects of .« and whose morphisms are the

A-pure morphisms in 7.

Remark 7.1.7. To check that a subcategory % of a k-accessible category &7 is k-accessible,

it is sufficient to show the following.
1. A is closed under k-filtered colimits.
2. The inclusion £ — o preserves k-filtered colimits.

3. There is a set By of k-presentable objects in o7 that are also objects in & such that
every object in A is a k-filtered colimit in A of the objects in By.
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In this case, the k-presentable objects of Z are the k-presentable objects of &7 that are in

B.

Proposition 7.1.8. Let \ be a reqular cardinal and let o/ be a \-accessible category. The
category Purey () is accessible and the subcategory inclusion functor Purey(«/) — o is

accessible.

Proof. By [AR94, 2.34], there is a regular cardinal k, A < &, such that Purey(</) is k-
accessible. Since \ is strictly less than x, &7 is also k-accessible. Let D : ¥ — Pure, (<) be
a k-filtered diagram. Let C' be the colimit of D in & and let a: D — C be the colimiting
cocone. For each object d and each map f:d - d' in &, the map Df : Dd - Dd’ in </ is
A-pure. Furthermore, for a fixed object d, the colimit of the k-filtered diagram {Dd — Dd'} 4
indexed by d | Z is the map a4 : Dd — C. So by proposition 7.1.4 (4), g is A-pure. So the
cocone « is a cocone in Purey(«7). Suppose [ : D — C’ is another cocone in Pure, (7).
Let k£ : C' - C' be the map in &7 out of the colimit defined by this cocone. Then k is the
colimit in 72 of the s-filtered diagram {S;}4. So another application of proposition 7.1.4

(4) tells us that k is A\-pure. O

Proposition 7.1.9. Let A be a reqular cardinal. Let F : o7 — 9 be a A-accessible functor that
preserves \-presentable objects. Then F' restricts to an accessible functor Fy : Purey(</) —

Pure)(%).

Proof. By proposition 7.1.8 and uniformization, there is a regular cardinal x, A<l , such that
o, B, Pure,(), and Pure, (%) are k-accessible categories, F' is a k-accessible functor,
and the subcategory inclusion functors Purey (%) - & and Pure) (%) - % are k-accessible

functors. By theorem [AR94, 2.38], F' preserves A-pure morphisms. A r-filtered colimit in
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Pure, (&) is a r-filtered colimits in 7. So F' preserves this colimit, the colimiting cocone

is a cocone in Pure) (%), and this cocone must be a colimiting cocone in Purey(%#). O

7.1.2 Accessible Model Categories

Definition 7.1.10. Let A\ be a regular cardinal.

1. A functorial factorization (L,R) on € is A-accessible if L : €2 - €2 is a A-accessible

functor.

2. A weak factorization system (L£,R) is A-accessible if it has an associated functorial

factorization (L, R) that is A-accessible.

3. A model category is A-accessible if both of its weak factorization systems are A-

accessible.

4. An algebraic model category is A-accessible if both of its AWFSs are \-accessible

functorial factorizations.

Note that for a functorial factorization (L,R), L is A-accessible if and only if R is A-
accessible.

A functorial factorization, weak factorization system, model category, or algebraic model
category is accessible if it is A-accessible for some regular cardinal A.

Accessible comonads, LAWFSs, and AWFSs are in particular £-compact comonads,
LAWFSs, and AWFSs, where (£, M) is the (isomorphism, any map) left proper orthog-

onal factorization system. So the results of section 3.3 apply to accessible objects.
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In particular, when % is a cocomplete A-accessible category for some regular cardinal A,

then there are adjunctions

Fq o Fs3

AWFS)\(%) 1 LAWFS)\(%) 1 CmdA(Cﬁz) 1 CAT/LKX%2,

G1 2 3
where AWFS, (%), LAWFS, (%), and Cmd,(%?) are the categories of A-accessible AWFSs,
A-accessible LAWF'Ss, and A-accessible comonads, respectively, and where CAT [k, €2 is the
metacategory of functors A : &7 — €2 for which the left Kan extension of A along itself exists
and is a A-accessible functor on €2. Every cocomplete A-accessible category € permits the

algebraic small object argument, so every small category over €2 is an object in CAT [k, 2.

In other words, we have the following specializations of 3.3.3, 3.2.22 and 3.2.27.
Proposition 7.1.11.

e A free AWFS on an accessible LAWFS is accessible.

e Fvery cofibrantly generated AWFES on an accessible category is accessible.

Proposition 7.1.12 ([Rosl7]). A weak factorization system is accessible if and only if it

has an associated functorial factorization which is a cofibrantly generated AWFS.

Although a cofibrantly generated AWFS is accessible, an accessible functorial factoriza-
tion associated to a weak factorization system is not guaranteed to be a cofibrantly generated
AWFS by the proposition. We may have to make a different choice of associated functorial

factorization.

Remark 7.1.13. As the above proposition makes clear, for every accessible AWFS (L, R),

there is a cofibrantly generated AWFS (L, R!) such that |Coalg; ;| = |Coalg; | and |Algg:| =
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|Algg|. However, the AWFS (L,R) does not have to be cofibrantly generated. So the term

“accessible AWFS” is more general than “cofibrantly generated AWFS”.

The definition of an accessible model category differs from the definition of an algebraic
model category in two ways. First of all, passing to an algebraic model category requires
making a choice of AWFS associated to each accessible weak factorization system. As we
just discussed, an arbitrary choice of associated functorial factorization will not do. We have
to choose one that is both accessible and algebraic. Secondly, an algebraic model category
comes with the structure of a map of AWFSs. While it is not clear a priori that the AWFSs
associated to the accessible weak factorization systems can be chosen in such a way that there

is a map of AWFSs between them, proposition 3.3.4 tells us that this is indeed possible.

Proposition 7.1.14. Every accessible model category is the underlying model category of a

cofibrantly generated algebraic model category.

The following technical result can be proven for more general cofibrantly generated
LAWFSs, but the hypotheses rarely holds for nonaccessible categories. It will be useful

in our characterization of accessible model categories with accessible weak equivalences.

Proposition 7.1.15. Let € be an accessible cocomplete category. Let Ly be a collection of
objects in €% and let L be the retract closure of Ly. Suppose I : I — €2 is a small category

over €? satisfying the following conditions.
1. Ewvery object in Ly is the colimit of a diagram that factors through I
2. For every object f in €2, the colimit of the diagram (I | f) — €2 is an object in L

Then |Coalgy| = L, where LI =TF3(1). If in addition £ =°(L"), then |Coalg:| = L, where
(LI, RI) = FlFQFd(I)

203



Proof. Since L : € - € is the left Kan extension of I along I, there is a natural transfor-
mation «: [ - LEI. By definition, & : L] — id is the unique map such that £;oa =id: I - I.
Therefore, there is a map of categories N : . — CoalgLé over €. So, if Uy : CoalgL{J - € is
the forgetful functor, then Uy N = I.

Let f be an object in £. Then f is a retract of a g € L5. By (1), there is a diagram
D : 9 — 7 such that g = colim I D. Since colim I D = colim Uy N D = U;(colim N D), g is in the
image of U;. Since [Coalgy | is closed under retracts, f must be in the collection |Coalgy|.
Now, let f be an object in |CoalgLé|. Since L! f is defined as the colimit of the diagram
I'lf—>%€2% by (2),LifeL. But fisaretract of L) f. So f e L. Thus |CoalgLé| =L.

Now suppose in addition to (1) and (2), we also know £ = ®(L7). Then L is closed
under cobase change. So Lif € £ for each f in 42. So [Coalg| ¢ L. Since there is
a map of comonads L} — LI there is a functor CoalgL(I) — Coalg;; over %¢? and thus
L = |Coalg| < [Coalgy:| < L. So |Coalgy:| = L. Now, by propositions 3.1.13 and 3.1.16,
LP = |Coalgy,|” = |Coalgf{| = |Algg;|. But, by the construction of Fi((L{,R{)) = (L', R'),

|Algg:| = [Alggi|. So £ =5|Algg| = "|Alggi| = [P Alggy| = [Coalg |- O

Remark 7.1.16. An easy modification of the above proof shows that when £y in the above

EM

proposition is retract closed, so that £ = L, then |C0algL(1) = |C0a1gLé| = L. Tt can then

EM| _ EM| _

easily be shown that |CoalgL{ |Coalg ;| too. However, it does not follow that |Coalg;y

|Coalg; |

7.2 Characterizing Accessible Model Categories

7.2.1 Constructing Accessible Weak Factorization Systems

We will need the following nonstandard definition.
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Definition 7.2.1. Let X\ be a regular cardinal. A collection of objects X in a A-accessible
category % is A-preaccessible if for every regular cardinal k with Kk = X or kK > \, every object

in X is a k-filtered colimit of k-presentable objects in X.

A collection of objects X in an accessible category is preaccessible if it is A-preaccessible

for some regular cardinal A\. The following result is immediate.

Proposition 7.2.2. The collection of objects in the image of an accessible functor F': of —

A is a preaccessible collection in AB.

Let & be a bicomplete accessible category. Suppose W, C, and F are collections of maps

in € that satisfy the following conditions.
1. Full(W) is accessible and accessibly embedded in 62
2. CnW=8F and F = (CnW)"
3. F is preaccessible

We will describe for arbitrarily large regular cardinals A the construction of an accessible
algebraic weak factorization system (L7, R/*) on % such that Coalg; s, € CnW. If we
were able to prove the equality Coalg;s, = C n W, then we would have that (C n W, F)
is an accessible weak factorization system. However, with the above assumptions, it does
not seem possible to prove equality. Although not useful as a condition for constructing
accessible weak factorization systems, we do get Coalg;s, = C n W for arbitrarily large
regular cardinals A when we know that (CnW, F) is an accessible weak factorization system.
Since our construction of L/» did not rely on this assumption, this fact at least serves as
a reassurance that our construction is correct. We only need to find an additional, useful
condition to add to those above that will guarantee that Coalg; s, =CnW. We will describe
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such a condition in the following section and we will prove in section 7.2.3 that our conditions
fully characterize the (CnW, F) weak factorization system of an accessible model categories
with accessible weak equivalences.

Let A be a regular cardinal. Let F* be the collection of objects that are in Presy(%)
and in F. Let K : Disc(F*) = %2 be the inclusion of the discrete subcategory of 2 on the
objects of FA. Let V : BK )\ - €2 be the forgetful functor. Let _#, be the full subcategory of
“ K, on the objects in V-1(Pres)(¢?)) and let N: _#, < BK), be the subcategory inclusion

functor. Then Z, is a small category. Let Jy: ¢\ - €2 be the restriction of V to _#,.

I N 2K,
\ l\/
I
@2
Lemma 7.2.3. The functor V is surjective on objects in Cn'W.

Proof. Indeed, if f is an object in C n W, then a solution exists to every lifting problem
(u,v): f - p when p e FA. By choosing a single solution to each such problem, we get a lift
(f,p) of fin BK,. We are able to make these choices independently because the discrete

category Disc(F*) does not impose any coherence conditions on the lifts. O

To prove more about _#,, we will need to be more specific about the cardinal A. Specif-

ically, let A\ be a regular cardinal that satisfies the following conditions.
e The collection F is A-preaccessible.
e The subcategory inclusion functor Full(WW) < %2 is a A-accessible functor.
Note that whenever k is a regular cardinal with x > A, the above conditions hold for x.

Lemma 7.2.4. Every object in _Z\ forgets to an object in CnWV.

206



Proof. Let (f,) be an object in _#\. Let p € F and let (u,v): f - p be a map in ¢2. By
(3), p is the colimit of a A-filtered cocone {(sa,ts) : po = p} of Objects p,, in F*. Since f is -
presentable, there is an index o and a map (x,y) : f = p, such that (u,v) = (Sa,ta) © (z,9).
So the map ¢(x,y,ps) : cod f — domp, is a solution to the lifting problem (z,y). So
Sa0p(Z,y,pa) : cod f — domp is a solution to the lifting problem (u,v). Thus f has the left

lifting property with respect to every object in F. O]
We will show condition (2) of proposition 7.1.15 holds with respect to the collection CnW.
Lemma 7.2.5. The category _Zx has A\-small colimits.

Proof. Let D : 9 — _#\ be a A-small diagram. Since PK, is cocomplete, colim N D exists.
Since V' preserves colimits, V(coim ND) = coimVND = colim J,D. Because J,D is a
A-small diagram of A-presentable objects in €2, colim JyD is a A-presentable object. So
colim ND is an object in _#Z,. Since _#, is a full subcategory of YK, colim D exists in _#Z,

and N (colim D) = colim ND. O

Lemma 7.2.6. For every object f in €2, the colimit of the canonical cocone of f with respect

to Jy is in CnW.

Proof. Let {(ua,va) @ Jx(fas@a) = [}a be the canonical cocone of f with respect to Jy. By
7.2.5, every A-small subdiagram factors through a (u.,v,). So the cocone {(uq,vs)}a is
Mfiltered. By condition (1) and the fact that colim,, f, is the colimit of a A-filtered diagram

of objects in C n W, colim,, f, must be in W. O
Lemma 7.2.7. The collection |Coalg; s,| is a subset of CnW.

Proof. By 7.2.6, Lg*f e CnW for every object f in €2. Since C n W is stable under

pushouts, Lf*f eCnW. So |C0algLJA| c CnW. By propositions 3.1.13 and 3.1.16, (C n
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W)P ¢ |Coalg, s, |7 = |Coalg?h| = [Algs,|. By the freeness of Fy (L, R)) = (LA, R,
1 1 1

|Alg, 1| = |Algyy, |- So [Coalg; s, | =[P Algyy, | = 7|Algyy, | = P|Alg. .| CnW. O

Since L/ is a comonad, L/x f € CnW for every object f in 2. Also, we know the AWFS

(L, RIN) =T FyF3(Jy) is accessible by 7.1.11.

Lemma 7.2.8. If (CnW,F) is an accessible weak factorization system, then there is a
reqular cardinal k such that every object f € CnW is the colimit of a diagram that factors

through J,.

Proof. By 7.1.11, there is an accessible algebraic weak factorization system (C;, F') such that
|Coalg,| = Cn W and |Algp| = F. Let s be a regular cardinal such that the forgetful
functor Ug, : Coalgy, - €2 is k-accessible and preserves r-presentable objects. We will
choose Pres, (Coalg, ) and Pres,(%¢?) so that Ug, restricts to a functor Pres,(Coalg,) —
Pres,(€?). Since every object in F* is in the image of Up : Algy — ¢2% and there are no
nonidentity morphisms in Disc(F*), the subcategory inclusion functor K, : Disc(F*) < €2
has a lift K, : Disc(F~) - Algp such that UpK, = K,. By 3.1.13, there is a functor

F: Coalgg, - ?Algy over €. Let G be the following composite functor over €2

G

— i

Coalg,, —— PAlgr —— YK,.

Then VG = Ug,, where V : UK, - €2 is the forgetful functor.

Let f be an object in C n W and let (f,k) be a lift in Coalg,. Since Coalg, is
k-accessible, there is a colimiting r-filtered cocone {(ua,va) @ (fa,ka) = (f,k)}a of k-
presentable objects ( fa,l;;a) in Coalgg,. Since Ugc, preserves colimits and V' reflects col-
imits, {G(tq,Va) : G{fa, ko) = G(f,k)}o is a colimiting cocone in 2K,. Since Uc preserves
r-presentable objects, {G(uq,v4)}a 18 a k-filtered cocone of objects G(fa,/::a) in ¢, Of
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course VG(f, k) = Ug,(f,k) = f. Along with the facts that V preserves colimits and ¢, is
a full subcategory of DK, this means f is the colimit of a diagram that factors through

S ]

If (CnW,F) is an accessible weak factorization system, then whenever « is a regular

cardinal that satisfies all of the following conditions, results 7.2.3 through 7.2.8 hold.
e The collection F is k-preaccessible.
e The subcategory inclusion functor Full(W) < %2 is a k-accessible functor.

e The forgetful functor Ug, : Coalg, — €2 is k-accessible and preserves k-presentable

objects.

From 7.1.15, it then follows that (L, R’~) is a k-accessible algebraic weak factorization

system such that |Coalg; .| =CnW and |Algg..| = F.
7.2.2 Dense Pairs

The codensity monad on K : Disc(F*) & €? provides an alternative description of the
category P K. Unfortunately, unlike density comonads, a codensity monad on an accessible
category does not have to be accessible.

Let € be a complete category. Let K : J# — %2 be a small category. We define an
endofunctor KR : €% — %2 as the right Kan extension of K along itself. So on an object f
in 2,

KRof = fli% Jfa
where the limit is indexed by the comma category f | K. By definition, there is a natural
transformation @ : KRgK — K such that for any functor S : €2 -— %¢2 and any natural
transformation 3 : SK — K, there is a unique natural transformation v+ S = R such that
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OgVK = Bx. The universal property defines a unit map 7j : Id - ¥Ry and a multiplication
map i : KRoFRg - KR that make XRy a monad.
Let 77 = (n°,n') be the components of the unit map. We define a functorial factorization

(“Ly1, ®R1) objectwise by taking the pullback of “Rof against nj.

Ny
AT N i
_
Jf lKRUC lKRof
id ’ nk ’

KL, f is the map into the limit defined by the cocone maps 77? and f. Dualizing the our

discussion of the reflection G in section 3.2.5, we get that (KL;,5R;) is a RAWFS.
Proposition 7.2.9. Let K : % — €2 be a small category over €2. Then PK = Coalgxy,, .

Proof. This is dual to 3.2.26. [

If K is a set of objects, then we will use the notation XL for KT, when K : Disc(K) — €2

is the subcategory inclusion functor.

Definition 7.2.10. Let £ be a collection of morphisms in a category . We will say a pair
(J,K) of subsets J ¢ L and K € LP is a dense pair if every object f in L is the colimit of a

diagram of objects in J that factors through the forgetful functor Uxy, : Coalgky, — €2.
7.2.3 Smith’s Theorem for a Class of Accessible Model Categories

The following theorem is our attempt at a version of Smith’s theorem for accessible
model categories with accessible and accessibly embedded weak equivalences. While the
weak equivalences in combinatorial model categories are always accessible and accessibly
embedded, this is not the case for accessible model categories. We only attempt to charac-
terize the accessible model categories whose weak equivalences are accessible and accessibly
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embedded. The author does not know whether this is an assumption that holds in all rea-
sonable, well-behaved accessible model categories, or if it is a very restrictive assumption

that doesn’t often apply beyond combinatorial model categories.

Theorem 7.2.11. Let € be a A-accessible bicomplete category and let W and C be collections

of morphisms in €2 that satisfy the following conditions.
e W has the 2-out-of-3 property.
e Full(W) is accessible and accessibly embedded in €2.
e (C,CP) is an accessible weak factorization system on € .
o COCW.

Then there is an accessible model category on € with weak equivalences W and cofibrations

C if and only if the following conditions are satisfied.
1. CaW=9((CnW)")
2. (CnW)P is preaccessible

3. There is a regqular cardinal Ny such that for every regular cardinal X > X\, the sets
C} = |Pres)(€2)|nCnW and F» = |Presy(€2)|n(CnW)B form a dense pair (C}, F)

for (CnW,(CnW)P)

Proof. Suppose % is an accessible model category with weak equivalences VW and cofibrations
C. Then (CnW,(CnW)P) is an accessible weak factorization system. So condition (1)
holds. By 7.1.12, there is an accessible algebraic weak factorization system (C;, F') such that

|Coalgc,| = CnW and |Algg| = (CnW)P. The category Algy and the forgetful functor
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Alg, — %2 are accessible [AR94, 2.76]. Since the full image of an accessible functor is
preaccessible 7.2.2; condition (2) holds. Condition 3 holds by 7.2.8
Conversely, suppose conditions (1) - (3) hold. Let A be a regular cardinal that satisfies

the following conditions.
e The collection (C nW)P is A-preaccessible.
e The subcategory inclusion functor Full(W) - €2 is A-accessible.
e )\ D )\ for some regular cardinal Ay that satisfies (3).

Using the construction of section 7.2.1, we know from 7.2.6 that Jy : #\, — €2 satisfies
condition (2) of 7.1.15 for the collection C n W. Condition 3 is the equivalent to every
f eCnW being a colimit of a diagram that factors through Jy. So condition (1) of 7.1.15
for the collection C N W is satisfied. Thus (L/*,R/) is an accessible AWFS such that
|Coalg; s,| = C n W and, necessarily, |Alggs,| = (CnW)P. So (CnW,(CnW)P) is an
accessible weak factorization system. Since (C,C") is an accessible weak factorization system
by assumption, it remains to show that C® = (CnW)PnW. Let f € (CnWW)PnWV and let (C, F;)
be a functorial factorization associated to (C,C7). Since W has the 2-out-of-3 property and
F.feCPcW, CfeCnWW. So a solution exists to the lifting problem (id,F;f): Cf — f and

feCP. Thus (CnW)?nW cCP. The reverse inclusion is immediate. O

We conclude with some facts we do know about the weak equivalences in an accessible

model category.

Proposition 7.2.12. Suppose € is an accessible model category with weak equivalences W,

cofibrations C, and fibrations F. The following are equivalent.

1. The category Full(F n W) is accessible and accessibly embedded in €2.
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2. The category Full(F n W) is a small injectivity class in €2.

3. The weak factorization system (C,F nW) is cofibrantly generated by a set.
Proof. (1) < (2) is [AR94, 4.8]. (2) < (3) is easy. See the proof of [Ros09, 3.3]. O

Proposition 7.2.13. Suppose € is an accessible model category with weak equivalences W,

cofibrations C, and fibrations F. The following are equivalent.

1. The category Full(W) is accessible and accessibly embedded in €2.

2. There is an accessible copointed endofunctor C with |Coalg| = C such that the category

Coalg,, = Full(Ug'(W)) is accessible and accessibly embedded in Coalg.

3. There is an accessible pointed endofunctor F with |Algg| = F such that the category

Algyp,, = Full(U;'(W)) is accessible and accessibly embedded in Algy,.
Proof. These all follow from [AR94, 2.50]. O

Lemma 7.2.14. If a map of monads («,id) : R = R/ is an epimorphism on objects in the
image of Vi : Algg) — A%, then the functor o* : Algg' — AlggR" is the inclusion of a full

subcategory.

-,

Proof. Suppose (f,k) and (f,1) are objects in AlgE! such that o*(f, k) = a*(f,1). Then
ko (ay,id) =10 (ay,id). Since f = U(f, k), (ay,id) is an epimorphism. So k = I. Thus a* is
injective on objects.
We already know a* is a faithful functor, so it remains to show that it is full. Let (f, l;;)
EM

and (g,7m) be objects in AlgEY and let @ : a*(f,k) — a*(g,7) be a map in Algl. This

means the outer rectangle in the following diagram must commute.

ar,id z
Rf (af )> R N f
lRﬁ l e lﬁ
(g, id) / mo
Rf > R'g > g
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Since f is in the image of U, («ay,id) is an epimorphism. Thus the right square in the above

—

diagram commutes. So @ is a map (f, k) - (g,m) in Algg,. O

Proposition 7.2.15. Let ¢ : (Ci,F) = (C,F;) be an accessible algebraic model category on
an accessible bicomplete category M with weak equivalences W. There is an AWES (C',F})
on M and a map of AWFSs (' : (C,,F) - (C',F}) such that ¢'* : Alg%lzI - Algy" is an

accessible embedding of an accessible category.

Proof. Let C = |Coalgy| and let F = |Algp|. Let X be the AWFS (C,F;). Let X; be
the AWFS (C;,F). We define a new functorial factorization X; ® X on .# by sending an
object f in .#? to the object (C,Cf,F;f o FCf) in .#3. We will also use the notation
(Lf,Rf) = (C,Cf,FifoFCf) = X;© X f. The operation (X;, X) — X; ® X preserves monad
structure. So X; ® X is a RAWFS. The functorial factorization L defined by Lf = (f,id) is
a unit for the operation ®. There is a counit map X; - L defined by the horizontal arrows
in the following commutative diagram.
il F_>lf

F fl i \Lid

—
The counit map is a map of AWFSs. We therefore get that X; © X - L © X ¥ X is a map
of RAWFSs.

Let f € Fn)W be given. Then Cf e CnW. So the map &cs = (id,FCf) : C,Cf - Cf
is an epimorphism. But FCf is the counit map X; @ X - 1L © X 2 X. In other words,
the map of monads (FCf,id) : Rf - F,f is an epimorphism. Since this holds for every

feFnW=|Algg,|, the functor

(FC/)": Alg ~ Alg}
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is the inclusion of a full subcategory. Since (FCf)* is an accessible functor and Algg, is an

accessible category, Algp" is accessibly embedded in Algy". O

Proposition 7.2.16. Let .# be an accessible model category with weak equivalences W,
cofibrations C, and fibrations F. There is an algebraic model category ¢ : (Cy,F) —» (C,Fy)
on M whose underlying model category has weak equivalences W and cofibrations C such

that ¢, : Coalgg, — Coalgey is an accessible embedding of an accessible category.
Proof. This is dual to 7.2.15. m

An attempt at a version of Smith’s theorem was made in [Rosl7, 5.3]. The claim in that
paper that the weak equivalences are accessible and accessibly embedded is a major error,
which was recently corrected in [Ros20]. Some other issues with [Ros17, 5.3] are that it is not
a complete characterizations and that condition (5) is likely almost never true. In [Ros20] it
is shown that the weak equivalences in an accessible model category are preaccessible. The
author is not sure if the definition of preaccessible collections there agrees with the one in

this paper.
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Appendix A: Appendix 1

A.1 Well-Pointed Endofunctor Construction

Let G : € - % be a functor with a left adjoint F' : & - € and let £ : FG - Id
and v : Id - GF be the counit and unit maps of the adjunction. Let (R, p) be a pointed
endofunctor on % and suppose € is cocomplete. Then End (%) is cocomplete and we can
define an endofunctor S: 4 — € by the following pushout diagram in End(%).

FpG

FG —— FRG

ok

Id ———S
Proposition A.1.1 ([Kel80, 9.2]). If (R,p) is a well-pointed endofunctor, then (S,o) is

well-pointed.

Proof. We know So oo = 0S o0, so it suffices to show Soo( =0So(. Let p = G{(ovRG :
RG — GS. The commutativity of the left diagram below shows that the equality Go = o pG

holds. Therefore the right diagram commutes.

G —" L RG RG —Y , RRG <« R@
vG vRG lﬂo Re l@
~N ~N ~N RGo
|l are %5 GFRG e GS —%° 4 RGS GS
Ge Ge GoS S GSo
G —S% 4GS GSS
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Since (R, p) is well-pointed, pRG = RpG. Thus GoSo ¢ = GSo o ¢. Applying F to this

equality and composing with £SS: FFGSS — SS gives the desired equality.

Soo(=Sc0&SoFp=ESSo FGSoo Fo=£6SSo FGoSo Fo

=0S0&SoFp=0So(.
O

Proposition A.1.2 ([Kel80, 9.2]). An object X in € is an S-algebra if and only if GX is

an R-algebra.

Proof. We have bijective correspondences between the following classes.
e Maps m:SX — X such that mo7x =idy.
e Maps n: FRGX — X such that no Fpgx =€x.

e Maps p: RGX — GX such that po pgx = idgx.

A.2 Final Functors

Definition A.2.1. A functor F': & - Z is final if for every object d in &, d | F' is nonempty

and connected.

IfE:8— 2 and D: 2 — € are diagrams, then any cocone « : D - A% determines
a cocone oF : DE - AZE = A%. So we get a map colimDE — X. In particular, when
a: D —— colim D is the colimiting cocone of D, then we get a cocone aF : DE —— colim D

and a map colim DFE — colim D. The following result is well-known.
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Proposition A.2.2 ([Mac71,IX.83)). If E: & - P and D : 9 - € are diagrams and E is a

final functor, then the cocone DE —— colim D defines an isomorphism colim DE = colim D.

It will be useful to have a couple of shortcuts for checking that a functor is final. In

certain situations we only need to check the nonemptiness condition to guarantee finality.

Proposition A.2.3. Let & be a finitely filtered category and let F': & — & be the inclusion

of a full subcategory. If d | F is nonempty for each object d in &, then F is a final functor.

Proof. Let d be an object in . We only need to show d | F'is connected. Let u; : d — e;
and us : d - ey be two maps in Z to objects e; and ey in &. Since Z is finitely-filtered,
there are maps v; : e; > dy and vy : €5 > d; in & such that vy ouy = vy o uy. Since dy | D
is nonempty, there is a map us : d; — e3. Because & is a full subcategory of &, the maps

uz o vy and ugz o vy are maps in &. O

Proposition A.2.4. Let D : 9 — € be a diagram in €, let M be some collection of
monomorphisms in €, and let X be an object in €. A finitely filtered diagram E : & —

D |y X s final if for every object (d, f) in D |y X, the category (d, f) | E is nonempty.

Proof. Let f: Dd - X be an object in D |y X. It suffices to check that (d,f) | F is
connected. Suppose uy : (d, f) = Ee; and us : (d, f) = Fey are maps in D |5 X. Since & is
finitely filtered, there are maps x1 :e; - ez and x5 : ey — €3 in &. So Exq : EFe; —» Ees and

FExy: Fey - Feg are maps in D |, X. Thus, as maps in &,

Fezo Exiouy=FEejouy = f=FEeyouy =Fezo Fxgous.

But Fes is a monomorphism in %. So Exiouy = Exy o us. ]
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A.3 Adjunctions

Given an adjunction
G

7 1 D¢
~_ "

F

with unit v : I - GF and counit £ : FG — I, there is a comparison functor Hpg : &/ —

EM

Coalgj; defined by sending an object A to the object (F'A, Fr4) and sending amap f: A —»
B tothe map F'f: (FA,Fva) > (FB,Fvg). Then UpgHrg = F, where Urg : Coalgp > €

is the forgetful functor.

Definition A.3.1. An adjunction

is comonadic if the comparison functor Hpg : &/ - Coalgjy, is an equivalence of categories.

A functor F: &/ — € is comonadic if it is the left adjoint in a comonadic adjunction.

Proposition A.3.2. Let

Gl GQ
)/_\
1T 0% ad B5 1 %
\F/( \F/(
1 2

be comonadic adjunctions. FEvery map of comonads o : F1Gy - FyGo defines a functor
K : of - P with a natural isomorphism Fo K — Fy. Conversely, every functor K : &/ — A

with a natural isomorphism Fo K — Fy defines a map of comonads o : F1G1 - FyGs.

Proof. Suppose a: F1Gy - >G5 is a map of comonads. There is a functor «, : Coalgy s, —

Coalg},;, defined by sending an object (X, k) in Coalgp's, to the object (X, ax o k) in
Coalgy,;, and sending amap f: (X, k) - (Y,1) to the map f: (X, axok) - (Y, ayol). Soin

particular, Up,,0. = Up,, where Up,q, : Coalgp', = € and Up,q, : Coalgp,, — € are
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the forgetful functors. Let Hp,g, : Coalgh,, - % be an up-to-natural-isomorphism inverse

for the comparison functor Hp,q, : & - Coalgyp,,. We define K to be the composition of
the functors in the top row of the following diagram.

Hp 4 Hryay

o/ ———— Coalgh,, ——— Coalgh,, ———— &
¢ - > € > €

Then

FQK = F2EF2G2a*HF1G1 = UFQGQHFQGQEFQGQQ*HFlGl
; UFQGQOé*HFlGl = UFlGlHFlGl = Fl
Conversely, suppose K : .o/ - A is a functor with a natural isomorphism g : Fr K — F}.
We will use v for both of the adjunction unit maps v : Id - G1F} and v : Id - GoF, and &

for both of the counit maps & : F1G; — Id and £ : FoGy - Id. Which unit and counit maps

we are using should be clear from context. Let o be the composite natural transformation
e G284 G
G 22 BEG BEY peyRKG 22 BGLRG 225 BG,.

It is easy to check that £ o = € : F1Gy - Id. A diagram chase shows that the following

diagram commutes.

-1
RG22 BEG 2% RGLRKG 22 BGLR G
lFluGl
aF1G1

G F Gy

We can also show that

BEG, 259 b a.RKka, 22 pa, e, —2925 Ba,
FovKGy \LFQVGQ
G REG, 295 pa,RG, FaGaa s GGy

commutes. Therefore ForGyo a = Fo(Gaa o aF Gy o FivGy. So « is a map of comonads. [
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Definition A.3.3 (Cosolution Set Condition). A functor F': &/ - % between locally small
categories satisfies the cosolution set condition relative to an object B in £ if there is a set
Sp of objects in &7 such that for every object A in &/ and every map f: FA - B in 4,

there is an object A’ in Sg and maps a: A - A" and f': FA’ - B such that f'o Fa= f.

A FA— B
“ F“l /
Al FA

Proposition A.3.4. If o/ is cocomplete, then a colimit-preserving functor F : of — A
between locally small categories has a right adjoint if and only if it satisfies the cosolution

set condition with respect to each object B in AB.
Proof. This is dual to [Bor94b, 3.3.3]. O

Definition A.3.5. Let £ be some collection of epimorphisms in a category 7. An &-strong
family of generators for <7 is a set of objects {G;}z such that for each object X, the map

ez Uy, x) Gi > X 1s an E-map.

Proposition A.3.6. Let &/ be a category and let £ be some collection of epimorphisms in
o/ that is stable under pushouts. A functor F : o/ — 9B between locally small categories has

a right adjoint if the following conditions are satisfied.
1. o is cocomplete
2. F preserves colimits
3. o is E-well-copowered

4. & has an E-strong family of generators
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Proof. We will closely follow the proof of [Bor94b, 3.3.4]. Let B be an object in 4. It suffices
to show that F satisfies the cosolution set condition with respect to B. Let {G;}ic; be an &-
strong family of generators for 7. Since &7 is £-well-copowered, the collection of £-quotients
of the object [;e; z(re,,p)Gi in & has only a set of isomorphism classes. Recall from
definition 2.4.8 that two &-quotients p : [;e; Hgre,,5) Gi > X and ¢ : e Uzra, 5 Gi >
X are in the same isomorphism class if there is an isomorphism ¢ : X — Y such that
gop=gq. Let SE° be a set of representatives for the isomorphism classes of £-quotients of
Wier Uzra, 5y Gi- Let Sp={X | X =codp, pe SE}.

Let A be an object in &/ and let f : FA - B be a map in 4. We will refer to the
below diagrams. Let in, be the inclusion map into the term of the coproduct indexed by g.
The map 7 is determined by the inclusion maps. Let g be the map defined by the canonical
cocone {G; - A}z of A with respect to Disc({G;}iz). The maps p and a are the cocone

maps of the pushout square. Since £ is closed under pushouts, p € £. Thus A’ € Sp.

P
Wies Uoy(o,n) FG: —> FA

Fr JF“
~ [_

Wier Ui n) Gi — A Wier Uz(ra,.5) FGi b FA

o a ing
-

Wier Uzra, 5y Gi 5> A FG,;

infopg

7

Because F' preserves colimits, the top rectangle of the diagram on the right is cocartesian.
The map u is defined by the discrete canonical cocone {F'G; - B}iz. So there is a map

f': FA" > B making the right diagram commute. O
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A.4 Density Comonad

The density comonad is obtained from a left Kan extension. Let K : ¢ — % and

L: .7 - € be functors between locally small categories.

Definition A.4.1. The left Kan extension of L along K is a functor Lang (L) : € - € with
a natural transformation a : L - Lang(L)K such that for any other functor F' : ¢ — ¢
with a natural transformation § : L - F'K, there is a unique natural transformation = :

Lang (L) - F such that yx o = S.

I @L> € L —% Lang(L)K  Lang(L)
1 |

Kl //LanK( L) X« ivK al\i:/

€ FK F

When it exists, the left Kan extension of L along K is unique up to unique natural

isomorphism.

Proposition A.4.2 ([Bor94b, 3.7.2]). When € is a locally small cocomplete category and

S is a small category, the left Kan extension of L along K exists.

Suppose € is a cocomplete locally small category and .# is a small category. Recall
that € is the locally small category whose objects are functors from .# to 4 and whose
morphisms are natural transformations. Fix a functor K : .4 — ¥. There is a functor
evi(-):End(%) - €7 that sends an endofunctor F': ¢ — € to the functor FK : .4 - €.
If v : J - I is a natural transformation of functors in €, then the universal property
of the left Kan extension of J along K implies the existence of a natural transformation

Lang (J) - Lang (1) of endofunctors on %

J o > Lang (J)K  Lang(J)

|
\ \LWK ElNl
e

I -2 Lang(I)K  Lang(I)
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So Lang (=) : €7 - End(%) is a functor. Furthermore, the universal property of Lang (.J)

implies that there is a bijection
End(%¢)(Lang (J), F) 267 (J,evi(F)) (A1)

which is natural over F' in End(%’) and J in €. So Lang(-) is a left adjoint to evg, which

proves the following result.
Proposition A.4.3. The endofunctor Lang(K) : € — € is a comonad on € .
We call Lang (K) the density comonad on K.

Lemma A.4.4. Let a: K — Lang (K)K be the universal natural transformation of the left

Kan extension.

e If (L,e) is a copointed endofunctor on €, then for every natural transformation (3 :
K — LK such that eK o 3 = id, there is a unique map of copointed endofunctors

v : Lang (K) — L such that yK oo = f3.

e If (I,e,0) is a comonad on €, then for every natural transformation 5 : K - LK such
that e Ko = id and 6 Ko = L3of3, there is a unique map of comonads v : Lang (K) - L

such that vK o = 3.

Proof. We will prove the second result. By the universal property of the left Kan extension,
there is a unique natural transformation v : Lang (K) — L such that vK o« = 5. We only
need to show that « is a map of comonads. Let €0 : Lang(K) — Id and 0° : Lang (K) —
Lang (K )Lang (K) be the counit and comultiplication maps of the comonad Lang (/). Then

K oa=1id and 0K o v = Lang (K )a o a.
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By definition, €0 : Lang (K) — Id is the unique natural transformation such that e Koo =
id. But eoy: Lang (K') — Id is a natural transformation such that e KoyKoa =e'Koa = id.
So eoy=¢Y% So v is a map of copointed endofunctors.

By the universal property of the left Kan extension, there is a unique map 6 : Lany (K) —
LL such that LB o f=60K oa. Since 6 o7 : Lang(K) — LL is a natural transformation such
that 0K oyKoa=0Kof=LBof, doy=0. Since yLoLang(K)yod": Lang(K) - LL is a

natural transformation that makes the following diagram commute, yL o Lan (K )7y o d° = 6.

Lang (K)K < -
\L&UK
LanK(K)a
Lang (K)Lang (K)K ——— LanK(K)K LK

Lanm LanK(K)B

Lang (K)LK — 2% LLK

Therefore v : Lang (K) — L is a map of comonads. O

A.5 Maps of AWFSs are AWFSs

We prove the folklore result that there is a bijective correspondence between maps of
AWFSs on € and maps of AWFSs on 2. In fact, we can show that this correspondence is

functorial. We do not use this result anywhere else in this thesis.
Proposition A.5.1. There is an isomorphism of categories ® : AWFS(%')2 -~ AWFS(%2).

Proof. We will begin with an object o« in AWFS(%)2. This is a map of algebraic weak
factorization systems « : (CL,F!') - (C",F") on ¢. Let E : €2 - % be the middomain
functor of (C!,F!) and let E’: €2 - % be the middomain functor of (C",Fr). We will define
an algebraic weak factorization system ®(«) = (L,, Ro) on 2. Let (Lo, Rao) : (€72)2 - (62)3
be the functorial factorization given by

(u,v) (Clu,C"v)

Lu,Fro
Py s p o B(fg)
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on the objects of (¢2)2 and by

(Clu,C™v) (Flu,Frv)
(u) LT 0 B(f,g) —2 4
f ' g f |(f )
(a,b)l l@,d) — (a,b)l (E(a,0),E' (b)) J(ad)
(s,t) lgCr J/ lg pr
h —) k h (C ,C t) O{t o E(h,k) (F 7F t) ]{;

on morphisms of (¢2)2. Let EX: (¢?)? - €2 be the middomain functor of (L., Re).

We can define a counit map 5(1;"“7}) and a comultiplication map S(E“v) for the endofunctor
La by
(Clu,C™v) (Clu,CTv)
f—)CIKUOE(f,g) f >C¥UOE(f79)
I |
(id,id) e and  (id,id) lé(ﬁfjv)
L | I

(ClClu,C’“CTU)
—_— Qcry © E(f7 OéUOE(f,g))

respectively, where e(Lu"v) = (¢9',e") = (Flu, Frv) and where 5%51)) = (0¢',6C"). Tt is easy to
check that Lyl o le = id = &lal,, 0 6l and dLeL, o0dle = L0l ole, since these coherence

conditions hold for C! and C". Thus L, is a comonad. Similarly, the endofunctor R, is a

monad with unit map ﬁ(lzjg ) and multiplication map ﬂ(lzav) given by

(u,v) (F'Flu,FTFro
f——yg apry 0 E(awoE(f,9),9) 4; g
| |
”fiffv)l (z‘djd) and Heow) (idid)
(Flu,F"v (Flu,Fmv) \L
a, 0 E(f.9) 9 ay o E(f,9) r g

Fl

u

respectively, where nﬁzv) =(n K

,n¥") = (Clu,Crv) and where iy = (uE', 4E"). The map
(6%e, puRe) @ LoRa = RaL, satisfies the distributivity axioms, since the component maps
(6C", uF') : CF! - FICL and (6€", uF") : C"Fr - FrCr do. Therefore (Lq,R,) is an algebraic

weak factorization system on %2.

Consider the following morphism in AWFS(%)? from « to 5.
(CLFY) —— (C",F")

ls l

(XL YY) —2 (X, YT
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Let E” and E" be the functors €% — € associated to the factorizations (X!, Y!) and (X", Y"),
respectively. Define ®((¢,0)) as the natural transformation E; — Ej given by (Cu,6y) :
a,oE(f,g) = Byo E"(f,g) on the objects (u,v): f — g of (¢2)2. Since (id,() : C' - X! and
(id,8) : Cm - X" are maps of comonads, the map L, — Lg given by (id¢, (¢4, 6y)) : Lo(u,v) -
Ls(u,v) on (u,v) : f - g is a map of comonads. Similarly, the natural transformation
R. = Rg given by (u,v) = ((Cu,6y), id,) is a map of monads on €2. Since  commutes with
composition of morphisms and ® of the identity morphism in AWFS(%)? is the identity
morphism in AWFS(%?), ® is a functor AWFS(%)? -~ AWFS(%?).

Now suppose (L,R) is an object in AWFS(%?2). We will produce a map of algebraic
weak factorization systems W((L,R)) on €. Let E*: (4?%)2 - €2 be the middomain functor
of (L,R). Consider the objects (u,u) : id4 — idp, (v,v) : ide — idp and the morphism
((f,f),(g,g)) : (u,u) - (v,v) in (€?)2. We will define two endofunctors on €2, L! and
L". Since L(u,u) is an object in (¢2)2, we define (L'u,L"u) := L(u,u) on the objects u of
%?. Since L((f,f), (g,g)) = ((f,f),E*((f,f),(g,g))) is a morphism in (%2)2, there are
functors €2 — €, E' and E, such that E*((f, f),(g.9)) = (E*(f.9), E"(f,9)). So we define
Li(f.g) := (f,E'(f,9)) and L"(f,g) := (f,E"(f,g)) on the morphisms of 2. Similarly,
we define endofunctors R! and R™ on 2. On objects v in 2, (Rlu,R™u) := R(u,u). On
morphisms, R!(f,g) := (El(f, 9),9) and R"(f, g) = (ET(f, 9),9). This gives us two functorial
factorizations (L', R!) and (L7, R") on ¢ with associated functors E! and ET, respectively.

We get counit and comultiplication maps for L! and L from the counit and comultiplica-
L

tion maps of L. Namely, (e} ,e") == ek, and (3%',05) = oF, .

u-u

=L _(; L
where ) = (zdidA, 6(%”))
and S&U) = (ididA,(S%%u)). Similarly, (n®,nR") := My 20 (uB Ry = H(ouy Where

ﬁa o = (77& ) édidB) and ﬁl(z W = (M& ) z'didB). With these maps, L! and L™ are comonads,
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while R! and R" are monads. Because (0%, uf) : LR - RL satisfies the distributivity ax-
ioms, the component maps (0%, yR') : LIR! - R!L! and (6%, uR") : L'R" - R'L" each satisfy
distributivity of the comonad over the monad.

Define §}L’R) as E*(f,f) on each object f in €2. Let (u,v) be a map f — g in €2
Consider the following map from (u,v) to (v,v) in (€?2)2.

(u,)
f——y

(fs 'LdB)l \L(Q idp)

ZdB —) ZdD

Applying E* to this map gives us the map E*((f, idg), (g, idD)) = (El(f,g), Er(idg, idD)) :
E*(u,v) - E*(v,v) in ¢2. Since E"(idp,idp) = idgr,, this map expresses the relation

E*(u,v) = E*(v,v) 0 E'(f,g) = & o E'(f, ). Now the existence of 6 ., tells us that the

()

following square commutes.

st
Elf f , ElLlf
E*(f, f)i lE*(LlfJff)
ETf —> ETL"f

But this means that o}’ f(L B - SS:fR) o EZ(ZdA,fj(cL’R)) ° 5]fl- Thus (id, ™M) : L! - L
is a map of comonads. Similarly, the existence of ﬁl(?}’ n tells us that u fT o E*(R"f,RLf) =
E*(f,f) o i So i o &l o B(el™ i) = €M oyl and thus (id, ¢M) : RE > R" is
a map of monads. So {(R) defines a map (L', R!) - (L", R") of algebraic weak factorization
systems on 4. We therefore take W((L,R)) to be R,

Let p: (L,R) - (S, T) be a map of algebraic weak factorization systems on (¢?2)2. Let
F~* be the middomain functor of (S, T). Since E* and F* are functors (42)? - €2, they
can be decomposed as pairs of functors €2 - %. So E* = (E', E") and F* = (F',F"). The

natural transformation p : E* — F* also decomposes as a pair of natural transformations
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p=(p', p"), where p! is a natural transformation E' - F' and p" is a natural transformation
Em — F7. Since (id,p) : L - S is a map of comonads, (id,p') : L' - S! and (id,p") : L™ - S"
are both maps of comonads. Similarly, (p',id) : Rt - T! and (p",id) : L" - T" are maps of
monads. Thus p': (L, R") - (S!, T!) and p": (L",R") — (S", T") are maps of algebraic weak

factorization systems on €. Define W(p) to be the morphism

l l é(L’R) T r

b, b

¢(8.T)
(S, TH —— (57, T7)
in AWFS(%)? from (MR to £5T) We then have U(po o) = ¥(p) o ¥(o) and ¥(id) = id.
So U is a functor AWFS(%2) -~ AWFS(%)2. It is easy to see that ¥ is an inverse functor

for ®. O
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