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PREFACE

The variational bicomplex is a double complex of differential forms defined on
the infinite jet bundle of any fibered manifold 7: £ — M. This double complex
of forms is called the variational bicomplex because one of its differentials (or,
more precisely, one of the induced differentials in the first term of the first spec-
tral sequence) coincides with the classical Euler-Lagrange operator, or variational
derivative, for arbitrary order, multiple integral problems in the calculus of varia-
tions. Thus, the most immediate application of the variational bicomplex is that of
providing a simple, natural, and yet general, differential geometric development of
the variational calculus. Indeed, the subject originated within the last fifteen years
in the independent efforts of W. M. Tulczyjew and A. M. Vinogradov to resolve the
Euler-Lagrange operator and thereby characterize the kernel and the image of the
the variational derivative. But the utility of this bicomplex extents well beyond the
domain of the calculus of variations. Indeed, it may well be that the more important
aspects of our subject are those aspects which pertain either to the general theory
of conservation laws for differential equations, as introduced by Vinogradov, or to
the theory of characteristic (and secondary characteristic) classes and Gelfand-Fuks
cohomology, as suggested by T. Tsujishita. All of these topics are part of what I.
M. Gelfand, in his 1970 address to the International Congress in Nice, called formal
differential geometry. The variational bicomplex plays the same ubiquitous role in
formal differential geometry, that is, in the geometry of the infinite jet bundle for
the triple (E, M, ) that the de Rham complex plays in the geometry of a single
manifold M.

The purpose of this book is to develop the basic general theory of the variational
bicomplex and to present a variety of applications of this theory in the areas of dif-
ferential geometry and topology, differential equations, and mathematical physics.

This book is divided, although not explicitly, into four parts. In part one, which
consists of Chapters One, Two, and Three, the differential calculus of the varia-
tional bicomplex is presented. Besides the usual operations involving vector fields
and forms on manifolds, there are two additional operations upon which much of
the general theory rests. The first of these is the operation of prolongation which
lifts generalized vector fields on the total space E to vector fields on the infinite
jet bundle J*°(F). The second operation is essentially an invariant “integration
by parts” operation which formalizes and extends the familiar process of forming
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Preface

the formal adjoint of a linear differential operator. Chapters Four and Five form
the second part of the book. Here, the local and global cohomological properties
of the variational bicomplex are studied in some detail. While the issues, methods
and applications found in these two chapters differ considerable from one another,
they both pertain to what may best be called the theory of the “free” variational
bicomplex — no restrictions are imposed on the domain of definition of the dif-
ferential forms in the variational bicomplex nor do we restrict our attention to
sub-bicomplexes of invariant forms. In short, part two of this book does for the
variational bicomplex what, by analogy, the Poincaré Lemma does for the de Rham
complex. In Chapter Six, the third part of the book, we let G be a group of fiber
preserving transformations on E. The action of G on FE lifts to a group action
G on J*(F). Because G respects the structure of the variational bicomplex, we
can address the problem of computing its G equivariant cohomology. The Gelfand-
Fuks cohomology of formal vector fields is computed anew from this viewpoint. We
also show how characteristic and secondary characteristic classes arise as equivari-
ant cohomology classes on the variational bicomplex for the bundle of Riemannian
structures. In the final part, Chapter Seven, we look at systems of differential equa-
tions R on E as subbundles R*> of J°°(E) and investigate the cohomology of the
variational bicomplex restricted to R*>°. Cohomology classes now represent vari-
ous deformation invariants of the given system of equations — first integrals and
conservation laws, integral invariants, and variational principles. Vinogradov’s Two
Line Theorem is extended to give a sharp lower bound for the dimension of the first
nonzero cohomology groups in the variational bicomplex for R. A new perspective
is given to J. Douglas’ solution to the inverse problem to the calculus of variations
for ordinary differential equations.

A major emphasis throughout the entire book is placed on specific examples,
problems and applications. These are test cases against which the usefulness of this
machinery can, at least for now, be judged. Through different choices of the bundle
E, the group G and the differential relations R, these examples also illustrate how
the variational bicomplex can be adapted to model diverse phenomena in differential
geometry and topology, differential equations, and mathematical physics. They
suggest possible avenues for future research.

The general prequisites for this book include the usual topics from the calculus
on manifolds and a modest familiarity with the classical variational calculus and
its role in mechanics, classical field theory, and differential geometry. In the early
chapters, some acquaintance with symmetry group methods in differential equations
would surely be helpful. Indeed, we shall find ourselves referring often to Applica-
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The Variational Bicomplex

tions of Lie Groups to Differential Equations, P. Olver’s fine text on this subject.
In Chapter Five, the global properties of the variational bicomplex are developed
using the generalized Mayer-Vietoris argument, as explained in the wonderful book,
Differential Forms in Algebraic Topology, by R. Bott and L. Tu. The classical in-
variant theory of the general linear and orthogonal groups play a central role in our
calculations of equivariant cohomology in Chapter Six.

Some of the material presented here represents new, previously unpublished re-
search by the author. This includes the results in §3B on cochain maps between
bicomplexes, the entire theory of minimal weight forms developed in §4B, the analy-
sis of locally variational operators in §4C, the existence of global homotopy operators
in §5D, and the calculation of the equivariant cohomology of the variational bicom-
plex on Riemannian structures in Chapter Six. New proofs of some of the basic
properties of the variational bicomplex are given in §4A, §5A, and §5B and §7B.
Also, many of the specific examples and applications of the variational bicomplex
are presented here for the first time.
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INTRODUCTION

Although the formal introduction of our subject can be attributed to to the work
of Tulczyjew [70], Vinogradov [74], [75], and Tsujishita [68], it may nevertheless be
argued that the origins of the variational bicomplex are to be found in an article,
written just over a hundred years ago, by the mathematical physicist H. Helm-
holtz [32]. Helmholtz sought new applications of the powerful Hamiltonian-Jacobi
method for the integration of the equations of mechanics and so, to this end, he for-
mulated the problem of characterizing those systems of differential equations which
are derivable from a variational principle. This is the inverse problem to the calcu-
lus of variations. While Helmholtz restricted his attention to the inverse problem
for second order ordinary differential equations, others soon thereafter ([33], [11],
[40]) treated the inverse problem for higher order systems of partial differential
equations. By the turn of the century the following facts were known.

(i) The Lagrangian L for the given system of equations is not unique. In fact,
since the Euler-Lagrange operator E annihilates divergences of vector fields
(e.g., total time derivatives in the case of mechanics) another Lagrangian, with
identical Euler-Lagrange expressions, can be obtained by adding a divergence
to the original Lagrangian L.

(ii) There are certain necessary local integrability conditions, henceforth called the
Helmholtz conditions H, which a system of equations must satisfy in order to
be derivable from a variational principle. For example, in the case of linear
differential equations, the Helmholtz conditions coincide with those conditions
for formal self-adjointness. For special classes of equations, it was shown that
the Helmholtz conditions are sufficient for the local existence of a Lagrangian.

These two facts can be summarized symbolically by the following naive sequence of
spaces and maps:

Div Euler
{Vector Fields} —— {Lagrangians} —— (0.1)
Lagrange
Helm-
{Diff. Equations} ——— {Diff. Operators}.
holtz

In the parlance of homological algebra, this sequence is a cochain complex in that
the composition of successive maps yields zero, i.e.,

EDivX)=0 and H(E(L))=0.
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The Variational Bicomplex

The variational bicomplex is the full extension and proper differential geometric
realization of the complex (0.1).

The first step towards a complete definition of the variational bicomplex is a
description of the mathematical data from which it is constructed. This data varies
in accordance with the specific application at hand; however, for most situations
the following is prescribed:

(i) a fibered manifold w: E' — M;
(ii) a transformation group G on E; and
(iii) A set R of differential relations on the local sections of E.

The purpose of this introductory survey is to illustrate how this data arises in some
familiar contexts and to present some specific examples of cohomology classes in the
variational bicomplex. But, in order to do justice to these examples, it is necessary
to be to briefly introduce some notation and definitions and to be more precise
with regards to the sequence (0.1). A detailed description of our basic notation and
definitions is given in Chapter One.

Given the fibered manifold 7: ¥ — M, we construct the infinite jet bundle

oy JO(E) — M

of jets of local sections of M. If z € M, then the fiber (75%) () in J*°(E) consists
of equivalence classes, denoted by j*(s)(x), of local sections s on E. If V5 and V5
are two neighborhoods of x in M and if

s1: Vi — F and s9: Vo — F

are local sections, then s; and s9 are equivalent local sections if their partial deriva-
tives to all orders agree at x. If the dimension of M is n and that of E is m + n,
then on E we can use local coordinates

7 (2t u®) — (2%,
wherei=1,2,...,nand @ =1, 2, ..., m. The induced coordinates on J*°(F) are

(:L‘i,ua,u?,u%, c),

where

W (@) = 2 @), (s)@) = o (a),
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Introduction

and so on.

The variational bicomplex is a double complex of differential forms on J*°(E)
and while it is not difficult to define (see Chapter 1) it suffices for the purposes of
this introduction to focus on that edge of the variational bicomplex consisting of
horizontal forms. A horizontal p form w is a differential p form on J*°(FE) which,
in any system of local coordinates, is of the form

w=Aj j,.j, dx? Ndx?* A .. da?r,
where the coeflicients
_ 7 « « «
A=A (2w, ug, )

are smooth functions on J°°(U). In particular, a horizontal n form

o 7 « « «
A= L(x' u,u,ugy, ... ) v,

where v = dz! Adx? - -- Adz™, is a Lagrangian for a variational problem on E. The
associated fundamental integral is defined on all sections s: M — E (assuming for
the moment that such sections exist and, in addition, that M is compact) by

1 = | GZs)@)°A

We denote the space of all horizontal p forms on J*°(E) by EP(J*°(FE)). For p < n,
there is a differential

dy : EP(J(E)) — M1 (T(E))

called the horizontal exterior derivative or total exterior derivative. On functions
d; coincides with the familiar process of total differentiation; if

f= f(xi,ua,u?,u?j, o)
then
of of o  Of

oxd  Ou“ uj oud! Y

duf = %—i—---]d:cj.

We also introduce the space E"T1(J*(E)) of source forms on J*®(E). A source
form A is an n+ 1 form on J°°(FE) which, in any local system of coordinates, is of
the form

A :Pg(xi,ua,u?,u%,...)duﬁ/\V. (0.2)

X



The Variational Bicomplex
The Euler-Lagrange operator F¥ can now be defined as an R linear map
B: £"(J*(E)) — £ (J=(E)).
If A= L(z%u®, u®,...)vis a Lagrangian on J*°(FE), then
E(\) = Eg(L) du® A v,
where

oL oL d ,0L d? oL
Eo(l)= 2t 90 4 _ _
s(L) Sufb  ouf  dxt (3u2ﬁ) + dzidxi (aug)

The spaces EP(J(E)), for p < n+ 1, and the maps d; and F form a cochain
complex

0— &0 A gl Lt gn—1 A en P entt
That E o dy = 0 is simply a restatement of the aforementioned fact the the

Euler-Lagrange operator annihilates divergences. This complex is called the Fuler-
Lagrange complex £*(J*°(E)) on the infinite jet bundle of the fibered manifold
m: E — M. The Euler-Lagrange complex continues indefinitely. The next dif-
ferential in the Euler-Lagrange complex,

H: E"TY(J®(E)) — E"F2(J®(E)),

is the Helmholtz operator from the inverse problem to the calculus of variations.
Thus the Euler-Lagrange complex £*(J°°(E)) is the sought after formalization of
the informal sequence (0.1). The space E"T2(J*°(FE)) is a subspace of the space of
all n + 2 forms on J°°(E) but it is not, as one might anticipate in analogy with
(0.2), the subspace of forms of the type

n = Pygdu® A du® Av.

To properly define E"TP(J>°(FE)), for p > 2, and to define the map H and the sub-
sequent differentials in the Euler-Lagrange complex, we first need the full definition
of the variational bicomplex. These definitions are given in Chapters One and Two.

Lagrangians A € £"(J*°(F)) which lie in the kernel of the Euler-Lagrange oper-
ator, that is, which have identically vanishing Euler-Lagrange form

E(\) =0

xi



Introduction

are called null or variationally trivial Lagrangians. Every total divergence or d
exact Lagrangian

A=dgn
is variationally trivial but the converse is not always true. The n'* cohomology
group

er{F: " — gt

_ {variationally trivial Lagrangians A }
N { exact Lagrangians A\ = dyn}

of the Euler-Lagrange complex will, in general, be non-zero.

We call source forms A € €71 which satisfy the Helmholtz conditions H(A) = 0
locally variational source forms. All Euler-Lagrange forms are locally variational
but again the cohomology group

ker {H: Entl — gn+2y
n+1 * o0 o
H"(E7(J=(B))) = im{E: &n — Entl}

_ {locally variational source forms}

{Euler-Lagrange forms}

will in general be non-trivial. In Chapter Five, we shall prove that the cohomology
of the Euler-Lagrange complex £* is isomorphic to the de Rham cohomology of E.
In particular, a locally variational source form A is always the Euler-Lagrange form
of a Lagrangian A, A = E(\), whenever H"*1(E) = 0.

In summary, from the first item on the above list of data, namely the fibered
manifold 7: F — M, we can construct in a canonical fashion the infinite jet bun-
dle J*°(E), the variational bicomplex of differential forms on J>°(E) and its edge
complex, the Euler-Lagrange complex £*(J°°(E)). At this point, the cohomology
groups of the variational bicomplex and the Euler-Lagrange complex are well un-
derstood. The remaining data, namely the group GG and the differential relations R
are used to modify this basic step-up.

The role of the group G is easily described. It is a symmetry group for the problem
at hand. Let G be the prolongation of G to J*(E). If we denote by EL(J(E))
the G invariant (or more precisely G invariant) horizontal p forms on J*°(E) and
by E4T1(J®(E)) the G invariant source forms, then we can form the G invariant
Euler-Lagrange complex

d d FE
H H _ H
0— &Y —5 gh - L gnt £n Extl ..

xii



The Variational Bicomplex

For example, if A is a source form which is invariant under the group G and if A
is the Euler-Lagrange form for some Lagrangian A, that is, if A = E()), then it
natural to ask whether A is the Euler-Lagrange form of a G invariant Lagrangian.
The answer to this question is tantamount to the calculation of the G equivariant
cohomology of the Euler-Lagrange complex:

H () = {locally variational, G invariant source forms}

{source forms of G invariant Lagrangians}

Although the equivariant cohomology of the variational bicomplex has been com-
puted in some special cases, it is fair to say that there are few, if any, general results.
This can be a difficult problem.

The differential relations R may represent open conditions on the jets of local sec-
tions of F or they may represent systems of differential equations. These equations
may be classical deterministic (well-posed) systems or they may be the kind of un-
derdetermined or overdetermined systems that are often encountered in differential
geometry. We prolong R to a set of differential equations R> on J°°(FE) and then
restrict (or pullback) the variational bicomplex on J*°(E) to R*. The cohomology
group H"1(E*(R)) can now be identified with the vector space of conservation
laws for R ( first integrals when R is a system of ordinary differential equations)
while elements of H"(£*(R)) characterize the possible variational principles for R.
In Chapter Seven we obtain a lower bound on the dimension p of the non-zero co-
homology groups HP(E*(R)) (for classical, well-posed problems Vinogradov showed
that this bound is p = n — 1) and present some explicit general techniques for the
calculation of HP(£*(R)). But here too, as anyone who has studied Jesse Douglas’
paper on variational problems for ordinary differential equations will attest, the
general problem of computing the cohomology of the entire bicomplex for a given
system of equations R can be a difficult one.

Because of the ability to make these modifications to the free variational bicom-
plex on J*°(FE), a surprising diversity of phenomena from geometry and topology,
differential equations, and mathematical physics, including many topics not directly
related to the calculus of variations, can be studied in terms of the cohomological
properties of the variational bicomplex. Our goal is to develop the machinery of
the variational bicomplex to the point that this cohomological viewpoint becomes
a useful one.

Some specific examples of cohomology classes in the variational bicomplex can
now be presented.
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ExAMPLE 1. For our first example, we consider a system of autonomous, second
order ordinary differential equations defined by the functions

P, =4%— Faﬁ(UV)uﬁ — Vo (u?),
for a =1, 2, ..., m. The differential equations
P,=0 (0.3)

are (affine) linear in the first derivatives of the dependent variables v”. The coeffi-
cient functions F,, g and V,, are smooth functions of the dependent variable and are
defined on some open domain F' C R™.

The variational bicomplex which we use to study these equations is defined over
the trivial bundle E given by

m: Rx F — R, (0.4)

with coordinates (z,u®) — x. Thus, for ordinary differential equations the con-
figuration space is, from our viewpoint, the fiber space F' and the dynamics are
prescribed by the source form

A =P, du Ndx (0.5)

on the infinite jet bundle of E. This is notably different from the more standard
geometric treatment of second order ordinary differential equations wherein the
configuration space is viewed as the base manifold and the dynamics are specified
by a vector field on the tangent space of the configuration space. For the problems
we wish to treat in this example, our formulation is the better one — it extends in
a natural and obvious way to non-autonomous systems, to higher order equations
and to partial differential equations. For ordinary differential equations which are
periodic in the independent variable z, we can replace the base space R in (0.4) by
the circle S*.

For the source form (0.5), the Helmholtz equations H(A) = 0 are equivalent to
the algebraic condition

Fop = —Fga,

and the differential conditions

OF.; 0Fs OF.,
ouY + ou® + ouP

=0,

and

xiv



The Variational Bicomplex

o OVs _
ouf  oue

(See §3A) In short, the 2 form

1
F = 2 Fop du® A du”
and the 1 form
V =V, du®

must be closed forms on E. If F' and V are closed, then the local exactness of
the Euler-Lagrange complex (see Chapter Four) implies that there is a coordinate
neighborhood U of each point in F and a first order Lagrangian A defined on the
jet space over U such that

There may be obstructions to the existence of a global Lagrangian — because the

base space is one dimensional, these obstructions will lie in H?(FE) which, in this
example, is isomorphic to H?(F).

Case 1. For simplicity, suppose that V., = 0 so that the system of source equations
(0.3) becomes
i = FoguP. (0.6)

If Fis a closed 2 form, then A is a locally variational source form. As a represen-
tative of a cohomology class in H2(E*(J*°(FE))), A is mapped by the isomorphism
between H?(£*(J*°(E))) and H?(E) to the class represented by the two form F.
Thus A admits a global Lagrangian if and only if F' is exact.

For example, with F' = R3 — {0}, the equations (in vector notation)

fi=———uxu (0.7)

are locally variational but not globally variational because the associated 2 form
ub du® A du® — u? dut A dud + w3 dut A du?
[(uh)? + (u2)? + (u?)?]2

is not exact on E.

Despite the fact that there may be no global Lagrangian for the locally variational
source form A, it may still be possible, via an appropriate formulation of Noether’s
theorem, to obtain global conservation laws for A from global symmetries. This is
because the obstructions for the existence of global conservation laws lie in a dif-
ferent cohomology group, namely H"(FE), where n = dim M. For instance, because
the equations (0.7) are
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(i) locally variational,

(ii) invariant with respect to rotations about the u? axis, and because
(i) H'(E) = H'(R® — {0}) =0,

the global version of Noether’s Theorem enables us to construct the first integral
3
I=—u'id? +u?id + —
[|ull
which is defined on all of J*(F).

Case 2. Let us now suppose that F' = 0 and that the 1 form V is closed. The de
Rham cohomology class on F now determined by A is represented by the 2 form
V A dz. This form is always exact whether or not V itself is exact. For example,
with m = 2 and F = R? — {0} the equations

v U

must admit a a global variational principle even though the 1 form
_ vdu—udu
R

is not exact on FE. Indeed, one readily checks that

VU — UV

A= [—%(z‘ﬁ + 9?) +r3 | dx (0.9)

+ 02
is a Lagrangian for the system (0.8). But, because H'(E) = R, there is now a
potential obstruction to the construction of global conservation laws via Noether’s
Theorem and, in fact, the rotational symmetry of (0.8) does not lead to a global
first integral.

Observe that while (0.8) is translational invariant in x, the Lagrangian (0.9)
contains an explicit x dependence and is therefore not translational invariant. If we
let G be the group of translations in x, then any source A defining an autonomous
system of equations belongs to £2(J*°(FE)). The problem of determining if a locally
variational, G invariant source form admits a global GG invariant Lagrangian is,
by definition, the same as that of calculating the equivariant cohomology group
H2(EL(J>(E))). A theorem of Tulczyjew [71] states that

H*(£4(J>(E))) = H'(E) ® H*(E).
In particular, we shall see that the source form (0.5) admits a global, translational
invariant Lagrangian if and only if both forms F' and V are exact. Thus the system
(0.8) does not admit a translational invariant Lagrangian. This is perhaps the
simplest illustration of how the introduction of a symmetry group G can change the
cohomology of the Euler-Lagrange complex.
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The Variational Bicomplex

EXAMPLE 2. Let m: E — M be a fibered manifold over a n dimensional base
manifold M. As we have already mentioned, there is an isomorphism between
H*(E) and H*(E*(J°(F))). In particular, to every representative w € Q"(FE) of
a cohomology class in H"(FE), we can associate a Lagrangian on J°°(E) which is
variationally trivial but which is not globally d,; exact.

Suppose that M and F' are compact oriented n manifolds and that

h = hap du® @ du”
is a Riemannian metric on F'. Let F : M x ' — M. Then the volume form

v=+deth du' ANdu®--- N du"

on F' pulls back to a closed form on E which represents a nontrivial cohomology
class in H"(E). The associated Lagrangian A on J°°(E) is found to be

A= Vdeth det[%} dz* Adx® - A da™. (0.10)
x

It is an amusing exercise to verify directly that for any metric h, F(\) = 0. The La-
grangian A is not a global divergence and represents a non-trivial cohomology class
in the Euler-Lagrange complex. The corresponding fundamental integral, defined
on sections of F, or equivalently on maps s: M — F, is

1= [ (@erm= [ 5o,

and coincides, apart from a numerical factor, with the topological degree of the map
s. This example illustrates how cohomology classes in the variational bicomplex on
J*°(E) may lead to topological invariants for the sections s of E.

Consider now the special case where M is the two sphere S? and F is the two
torus St x S1. Let a = du and 3 = dv, where (u,v) are the standard angular
coordinates on F' and let v = a A 5. The Lagrangian (0.10) becomes

A = (uzvy — uyvy) de A dy (0.11)
and, on sections s on F,

(7(8))*(A) = s" (A B) = s™(a) A s™(0).
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But s*() is a closed one form on S? and is hence exact on f. If we write
s (a) =d f, (0.12)
where f is a smooth real-valued function on S2, then

(G%(8))*(N) = d (fs7(9))- (0.13)

This proves that A is exact on all sections s of E.

This example underscores an important point — that the cohomology of the vari-
ational bicomplex is “local” cohomology. The Lagrangian (0.11) defines a nontrivial
cohomology class in the Euler-Lagrange complex because it cannot be expressed as
the derivative of a one form whose values on sections s can be computed pointwise
from the jets of s. Indeed, because the function f in (0.13) is the solution to the
partial differential equation (0.12) on the two sphere S2, the value of f at any point
p € S? cannot be computed from the knowledge of j°°(s) at the point p alone.

ExAMPLE 3. In this example we consider the variational bicomplex for regular
plane curves. Let
v:[0,1] — R?

be a smooth, closed curve parametrized by

We say that ~ is regularly parametrized or, equivalently, that v is an immersed
plane curve, if the velocity vector

V(@) = (a(x), o(z)) # 0

for all x. The rotation index of v is defined by the functional

1 1 ese s
R /Mdm
0

L A

The rotation index is integer valued. It is also an isotopy invariant of the curve ~.

That is, if 4: [0,1] — R? is another smooth, regularly parametrized closed curve
and if

H:[0,1] x [0,1] — R?
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is a smooth homotopy of v to 4 through regular curves, then

R[y]= R[]

This latter fact is easily proved directly. Let

Ve(x) = H(z,€) = (ue(2), ve())

and let 5 5
;) OUe y OU¢
u = 9 and v = 9 "
We then deduce, by direct calculation, that
d 1 [td b — i
L Ry = — [ Ll T ULy,
de e 27 Jo de[ U2 + 2 J ds

1 (0.14)
1 d i — o,
el R e )
27 Jo dxt a2+ 02
and therefore R [yo] = R [y1], as required.
The calculation in (0.14) can be interpreted from the viewpoint of the calculus
of variations. Let

A= L(z,u,v,u,0,1,0)dr (0.15)

be a second order Lagrange function for a variational problem for plane curves and
let ve(z) = (ue(x),ve(z)) be a 1 parameter family of such plane curves. Then the
first variational formula for the Lagrangian (0.15) is the identity

d df

EL(Q:’ Uy U, Uy Ve, Uhe, Ve) = uL By (L) + yLEy (L) + ™ (0.16)

where (with u! = u and u? = v)

OL d ,0L d*> 0L
Ball) = 5w ~ 4o (gae) * a2 (g0

are the components of the Euler-Lagrange expressions of L and f is the function

_OL d 0L\, , oL, ., oL d ,0L.,, oL, .,
r=lgs — @) + (Gp)v + lgp — & (@)l + (G)"
To apply this formula to the rotation index, we consider the specific Lagrangian
uv — U
bn =G

xix



Introduction
so that the corresponding fundamental integral is the rotation index

1
o7

1
R[] / Ly (z,u,v,u,0,1,0) dr.
0

The calculation (0.14) is now, in essence, the calculation of the first variation of
R [v]. Indeed, one can readily verify that

Eu(Ly) =0 and Ey(Ly) = 0.
The general first variational formula (0.16) now reduces to

. df
_LR($7U7U7u677}67u67Ue) = 5

de dx
where
U0l — UL,
I="ere
Upon integration with respect to x, this becomes (0.14). Thus, from the viewpoint
of the variational calculus, one proves that the rotation index is an isotopy invariant
by (i) showing that the Lagrangian Ay defining the rotation index is variationally
trivial, and then (ii) applying the first variational formula.
Because F(Ar) = 0, it can be expressed as the total derivatives

Ar = dy [arctan(g_)} = —dpy [arctan(g)}. (0.17)
) v
But, because the domain of Ay is the open set
U={(z,u,,v,a,o,i,0) | u*+0*>#0}

and because neither one of the arctan functions in (0.17) is defined on all of U,
equation (0.17) is only a local formula. In fact, Az cannot be the horizontal exterior
derivative of any function on all of U/ since this would imply that the rotation
index vanishes for all closed curves. Hence the Lagrangian Ay defines a nontrivial
cohomology class in the Euler-Lagrange complex for regular plane curves.

To make this last statement more precise, we take for the fibered manifold F the
trivial bundle R x R? — R with coordinates (z,u,v) — x. (We could also take
the base space to be the circle S' — then all sections of E would automatically
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correspond to closed curves in the plane.) The jet bundle J*°(FE) is the bundle of
infinite jets of all plane curves v and has coordinates

joo(’}/)(x> = (x7u7 v? T:L7/l.)7u7/i}7 A ')‘

Because we are interested in regularly parametrized closed curves we restrict the
variational bicomplex to the open submanifold defined by

R={j*M(@)]@*+*#0}.

Now R has the same homotopy type as the circle S! which has 1 dimensional de
Rham cohomology in dimension p = 1. Our general theory implies that HP(£*(R))
is therefore zero for p # 1 while H'(£*(R)) is the one dimensional vector space
generated by Ly. This means that if

A= L(z,u,v,0,0,1,9,...)dx

is any variational trivial Lagrangian defined on R, then there is a constant a and a
function

f=flx,u,v,0,0,u,0,...)
such that
A=Ag +dyf.

Apart from the multiplicative factor a, the fundamental integral

Il = / LG®(7) () d.

which we know a priori to be an isotopy invariant of ~, must coincide with the
rotation index of ~.

In our discussion thus far, we have not considered possible group actions on the
bundle E : R x R? — R.. The group G that naturally arises in geometric problems
for regular plane curves consists of

(i) the group of Euclidean motions in the fiber R?; and

(ii) the group of local, orientation preserving, diffeomorphism z = f(x) of the
base space R.
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Since the Lagrangian Ay can be expressed as
Ar = K ds,

where k is the curvature function and ds is the arclength differential, it follows that
Ar is G invariant, i.e.,

A € EG(R).

Moreover, Ay is patently a cohomology class in H*(E4(R)) since it is not the total
derivative of any function on R, let alone a G invariant one. As we shall see, a
theorem of Cheung [17] asserts that Ao generates the only class in H!(E}(R)). We
shall also see that the GG invariant source form

A = (—0du+udv)dz,
which is the Euler-Lagrange form for the Lagrangian
L . .
A= §(uv — vt) dx

is not the Euler-Lagrange form of any GG invariant Lagrangian and, in fact, gen-
erates H2(E*(R)). We hasten to remark that while the calculation of HP(£*(R))
is a simple consequence of the general theory, the calculation of H!(E}(R)) and
H?(EX(R)) is based upon more ad hoc arguments.

EXAMPLE 4. In this example we examine the Gauss-Bonnet theorem from the
viewpoint of the variational bicomplex. This theorem states that if S is a compact
oriented surface with Gaussian curvature K and Euler characteristic x(5), then

1

We use the Gauss-Bonnet theorem to illustrate many of the issues with which we
shall be concerned. Specifically, we use the Gauss-Bonnet theorem to show

(i) how the data {F,G, R} can fitted together, sometimes in quite different
ways, to define a variational bicomplex to model a given situation;

(ii) that there is a rich local theory of the variational bicomplex which impinges
upon recent developments in the theory of determinantal ideals;

(iii) the need for a global first variational formula;
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(iv) the role of the first variational formula in Chern’s proof of the generalized
Gauss-Bonnet theorem;

(v) how characteristic and secondary characteristic classes arise as cohomology
classes in the variational bicomplex; and

(vi) that there is a novel connection between the cohomology of the variational
bicomplex for surfaces and the Gelfand-Fuks cohomology of formal vector
fields.

We begin with the local theory of surfaces and so, to this end, we let E be the
trivial bundle E: R? x R?> — R? with coordinates

(z,y,R) — (z,y),

where R is the position vector R = (u,v,w) in R3. A section of E defined by a map
¢: R?* — R? determines a local, regularly parametrized surface if ¢, x ¢, # 0 and,
accordingly we restrict our considerations to the open set R of J*°(FE) defined by

R = {(2,y, R, Ry, Ry, Ruwr, Ry, Ryyy ... ) | Ry x Ry #0}.

The unit normal vector IV, the first and second fundamental forms and the Gaussian
curvature are defined by

R, xR, [ ]
|Rz X Ryl|’
K

L o] [ o],

{ R., R:) (Ru, Ry)
(Ry, Rz) (Ry, Ry)
m2

In —

EG — F?%

We emphasize that these expressions are all to be thought of as functions on R —
it is on jets of sections of F that these equations take on their usual meanings from
the local theory of surfaces.

The integrand in the Gauss-Bonnet formula defines a second order Lagrangian
on R, namely

Aee = Les(z,y, R, Ry, Ry, Ryy, Ray, Ryy) dz N\ dy
where

Loy = KNVEG — F2.
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One can show that A\gp is variational trivial, i.e.,
E(\¢s) = 0.

Now the Euler-Lagrange form of any second order Lagrangian A is generally a fourth
order source form which is linear in the derivatives of order 4 and quadratic in the
derivatives of order 3. If A is variational trivial, then the vanishing of these higher
derivative terms in E(\) severely restrict the functional dependencies of A on its
second order derivatives. These dependencies can be completely characterized —
the highest derivative dependencies of a variationally trivial Lagrangian, of any
order, must occur via Jacobian-like determinants. In the case of the Gauss-Bonnet
Lagrangian Aqz = KdA, these dependencies manifest themselves in the following
formula ( Struik [64] p.112):

1
LGB — ﬁ
(Rq, Ryy) E F (Ray, Ry) E F }
(Ry, Ryy) F G (Ray, Ry) F G

By expanding these two determinants, one finds that Aqp belongs to the deter-
minantal ideal generated ( over the ring of functions on the first order jet bundle
JY(E)) by the nine 2 x 2 Jacobians

B 8(“%7“11) 8(“%7%) a(umwy) ]
A(z,y) A(z,y) d(z,y)
G(RmRy): O(va,uy)  O(va,vy)  O(vg, wy)
d(z,y) I(z,y) I(z,y) d(z,y)
Owa, uy)  O(ws,vy)  O(wa, wy)
L O(z,y) A(z,y) d(z,y) -

This observation applies to characteristic forms in general; because these forms are
closed forms in the appropriate Euler-Lagrange complex, their highest derivative
dependencies can always be expressed in terms of Jacobian determinants.

Source forms which are locally variational must likewise exhibit similar functional
dependencies in their highest order derivatives. The Monge-Ampere equation with
source form

A = (UggUyy — uiy) du N\ dx A dy.

typifies these dependencies.
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Because the Gauss-Bonnet Lagrangian is variational trivial, it is possible to ex-
press Aqp, at least locally, as the total exterior derivative of a horizontal 1 form
1. The general techniques provided by our local theory (see §4B and §4C) can be
applied, in a straightforward and elementary fashion, to find that

Ags = dgn

where
_ F(R,,dyR,) — E(R,,dyR,)
= EVEG — F? '

This coincides with another formula found in Struik for the Gaussian curvature and

(0.18)

attributed to Liouville. We now observe that the 1 form 7 is actually defined on all
of R and so the Gauss-Bonnet Lagrangian A.g is a trivial cohomology class in the
Euler-Lagrange complex £*(R). In fact, because R has the same homotopy type as
SO(3), H*(£*(R)) = 0 and hence all variational trivial Lagrangians on R are dj
exact.

This does not contradict the Gauss-Bonnet theorem because the data given to this
point, namely the bundle £: R?2xR? — R and the regularity condition defining the
open domain R C J°°(F) only models the local theory of surfaces. To capture the
global aspects of the Gauss-Bonnet theorem, we now observe that the Lagrangian
Aggp 18 invariant under the group G consisting of

(i) the Euclidean group of motions in the fiber R?; and

(ii) the group (or properly speaking, pseudo-group) of local orientation pre-
serving diffeomorphism of the base space R?, that is, Agp is invariant under
coordinate transformations of the surface.

We call £5(J>°(F)) the G equivariant Euler-Lagrange complex for surfaces in R?.

Let S be any compact, oriented surface in R3. By restricting the Euler-Lagrange
complex on R to forms which are G invariant we effectively restrict our consid-
erations to forms on £* which, when pulled back by coordinate charts to .S, will
automatically patch on overlapping coordinate charts to define global forms. The
Lagrangian A¢s € £%(R) but the form 7, as defined by (0.18), does not trans-
form invariantly under change of coordinates and hence n ¢ EL(R). Indeed, A

now represents a nontrivial cohomology class in H?(£%(R)) and in fact generates
H2(E5(R)).

There are three other ways in which a variational bicomplex can be constructed
so as to study some property of the Gaussian curvature. To describe the first of
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these alternative ways, we fix an abstract 2 dimensional manifold M, construct
the bundle F1: M x R®> — M and consider the open set R C J*°(FE;) of jets of
immersions from M to R?. For sections ¢ of E; with j°(¢) € R, we can define the

functional )

— 5 OO *
Tl = 5= [ G
The Gauss-Bonnet theorem implies that I [¢] is independent of ¢ and depends only
on the choice of the base manifold M. To prove this result directly, that is, to prove
that I[¢] is a deformation invariant of the immersion ¢, we turn, just as in the
previous example, to the first variational formula. Let

A= L(z', u®,u, ul) do A dy

1) Vg
be any second order Lagrangian on J°(Ej). The independent variables (z%) = (z,y)
are now local coordinates on M. If
pe: M —R?

is a smooth 1 parameter family of immersions, then the classical first variation
formula states that

CLG60) = S Ea(D)G(60) + [S1G(60), (019

oL 0 oL - du® OL -duf
[ a j ( a )} + [ a } '
Ou Oz "Oug;’ de Oug;” de
Since Agp has vanishing Euler-Lagrange form, this implies that
2 l07(@)) Aan] = (57(¢))" (dpm) = d[(57(¢)) 1],

n=V'dy—V?*da.

where

V=

where

Before we can integrate this equation over all of M and thereby conclude that
I[p1] = I[¢p2] we must check that the local first variational formula (0.19) holds
globally. In other words, it is necessary to verify that the 1 form 7 transforms prop-
erly under coordinate transforms on R to insure that (j°°(¢¢))*n patches together
to define a 1 form on all of S. For second order Lagrangians, this is indeed the case
and thus I [¢] is deformation invariant of the immersion ¢. However, for higher or-
der variational problems, the standard extension of (0.19) does not provide us with
a global first variational formula. This problem has been identified and resolved
by a number of authors — for us the existence of a global first variational formula
is an easy consequence of the general global theory of the variational bicomplex
developed in Chapter Five.
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Gauss’ Theorema Egregium states that the Gaussian curvature is an intrinsic
quantity, computable pointwise from the two jets of the first fundamental form g;;
by the formula

1
K )R1212,

det (gij
where R;7}) is the curvature tensor of gij- This theorem motivates the second
alternative to our original bicomplex. This time we let ) be the manifold of positive
definite quadratic forms on R? and let Ey: R? x Q — R2. A section g of Ey can be
identified with a metric g(z,y) = (¢:j(z,y)) on R? Lagrangians on J*(FEs) take
the form

A= L($h7 Gij» Gij,hs Gij,hks - - - ) dx A dy.

Let M be any compact oriented Riemannian 2 manifold with metric g. Then, on

any coordinate chart (U, (z,y)) of M, we can use g to pull A back to a two form A
on U:

A= (1%(9)" A

A condition sufficient to insure that the X will patch together to define a 2 form on
all of M is that A be GG invariant, where G is now just the group of local orientation
preserving diffeomorphisms of R2. The Gauss-Bonnet Lagrangian

Aae = /gRi212dx N dy

belongs to £4(J>°(E)) and, once again, generates all the 2 dimensional cohomology
of the Euler-Lagrange complex.

This approach immediately generalizes to higher dimensions by letting F5 : R™ x
@ — R™. The bundle FEs is called the bundle of Riemannian structures on R™. The
forms on J°°(FE3) which are invariant under the group of orientation-preserving
local diffeomorphisms on R™ are called natural differential forms on the bundle
of Riemannian structures. A well-known theorem of Gilkey [28] asserts that the
cohomology of the Euler-Lagrange complex H?(£.(J*°(Es))) is generated, for p < n
by the Pontryagin forms and the Euler form. It is in this context that characteristic
forms first appear in general as cohomology classes in the variational bicomplex.

Secondary characteristic classes can be identified with the next cohomology group
H"TH(EL(J(E))). At this time, this is best illustrated by an example. Let n = 3.

0
Then, with respect to the coordinate frame { ﬁ}’ the first Chern-Simons form is
T

1 . . . )
A= (5% tea H DI ) da™ A da® A dat.
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Here I’gh are the components of the Christoffel symbols for the metric g. This 3 form
is a second order Lagrangian on E but it is not a G invariant one. Nevertheless, its
Euler-Lagrange form

A = (VR}) dgi; dz' A dz" A daF,

where V. denotes partial covariant differentiation and Rﬁl is the Ricci tensor, is
manifestly G invariant, i.e., A € E4(J®(E)). Because A is the Euler-Lagrange
form for some Lagrangian, it satisfies the Helmholtz conditions and therfore A
defines a cohomology class in H*(EX(J>(E))). The form A actually determines a
nontrivial class ( meaning that it is not the Euler- Lagrange form of any natural
Lagrangian) and in fact generates H*(£%(J°°(E))). We shall rederive and generalize
all these results in Chapter Six by computing the G equivariant cohomology of the
entire variational bicomplex on Riemannian structures.

Because the curvature tensor is defined solely in terms of the connection coeffi-
cients and their first derivatives, we can also think of the Lagrangian Aqz = K dA
as a first order Lagrangian on yet another bundle; the bundle E5 of metrics g and
affine connections I' on R?, i.e.,

)\GB = LGB(gij7 ;’}U F;‘h,k) dx N\ dy
From this viewpoint A\gp is no longer variationally trivial with respect to the inde-

pendent variations of the metric and connection. Nevertheless, we shall see (Chapter
Four, Example 4.14) that

E(Aas)(3™(g),i™()) =0
whenever I' is a Riemannian connection for g. Consequently, if (¢g1,1"1) and (go, o)

are two pairs of metrics and Riemannian connections, the first variational formula
can still be used to deduce that

)\GB((joo(gl)ajoo(Fl)) - )‘GB((joo(gO)ajoo(FO)) =dgyn, (020)

where 7 is a manifestly invariant form depending smoothly on the one jets of
9o, 91,10, '1. Again this proves that the integral

I]g,T] = /M Aan (5(g), 5 (T))
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is independent of the choice of metric g and Riemannian connection I' on the two
dimensional manifold M. This result is not restricted to two dimensional manifolds
but applies equally well to the Euler form

A= gK, dz' A\ dz?--- A dz",

where K, is the total curvature function of a metric g on an n dimensional manifold
M. Moreover, given a vector field X on M, one can define a connection I'y away from
the zeros of X in such a way that A\(j*°(g),7°°(T'g)) = 0. Thus, with go = g1 = ¢
and I'; the Christoffel symbols of g, (0.20) reduces to

VIK, dzt A dx? - A da™ = dgn.

This first variational formula reproduces exactly the formula needed by Chern in
his celebrated proof of the generalized Gauss-Bonnet theorem.

Finally, we briefly mention the connection with Gelfand-Fuks cohomology. Let
E be the trivial bundle E: R™ x R™ — R™, let R C J*°(FE) be the set of jets
of immersions (i.e., maps whose Jacobian is of maximal rank) and let G' be the
pseudo-group of orientation preserving local diffeomorphism of the base space R".
When n = 1 and m = 2, we saw that the rotation index arises as a cohomology class
in £*(R). When n = 2 and m = 3, the cohomology of the Euler-Lagrange complex
detects the Gaussian curvature. When n = m, i.e., when R is the set of jets of local
diffeomorphisms of R™ to R™, we shall find (Chapter Six) that the Euler-Lagrange
complex computes the Gelfand-Fuks cohomology of formal vector fields on R™.

EXAMPLE 5. Qutline, to be completed after writing Chapter Seven.
We now turn to some examples of cohomology classes for variational bicomplexes
for differential equations.

e Cauchy’s Integral Theorem as a conservation law for the Cauchy-Riemman equa-
tions.

e The Godbillon-Vey form as a conservation law for the Frobenius equations

dwANw=0.

e Variational principles as the E5 in the spectral sequence for the variational bi-
complex and Douglas’ solution to the inverse problem for second order ODE.

This completes our introductory survey of the variational bicomplex. Additional
introductory remarks, of a more specific nature, can be found at the beginning of
each chapter.
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CHAPTER ONE

VECTOR FIELDS AND FORMS ON
INFINITE JET BUNDLES

In this chapter we introduce the variational bicomplex for a fibered manifold
and we develop the requisite calculus of vector fields and differential forms on the
infinite jet bundle of such spaces. Our objectives in this regard are simply to gather
together those definitions, basic results and formulas which will be used throughout
this book and to fix our notational conventions. We pay particular attention to the
notion of generalized vector fields and the interplay between the prolongations of
these fields and the contact ideal on the infinite jet bundle.

Detailed accounts of the geometry of finite jet bundles have been provided by
numerous authors including, for example, Goldschmidt [29], Pommaret [59] and
Saunders [62], and accordingly we do not dwell on this subject here. However,
since infinite jet bundles are, strictly speaking, not manifolds some care is given
to the development of the calculus of vector fields and forms on these spaces. We
follow, with some modifications, the presentations of Saunders [62] and Takens [65].
The material on generalized vector fields has been adopted from the recent text by
Olver [55].

A. Infinite Jet Bundles. Let 7: E — M be a smooth fibered manifold with total
space E of dimension n+m and base space M of dimension n. The projection map
7 is a smooth surjective submersion. The fiber 77 !(z) over a point € M may
change topologically as x varies over M; for example, let E be R? —{(1,0)} and let
7 be the projection onto the x axis. In many situations E will actually be a fiber
bundle over M but this additional structure is not needed to define the variational
bicomplex. We assume that M is connected.

We refer to the fibered manifold F locally by coordinate charts (¢, U) where, for
peUCE,

and
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These coordinates are always taken to be adapted to the fibration 7 in the sense
that (o, Up), where g = p o and Uy = 7(U), is a chart on the base manifold M
and that the diagram

U — . R"xR™

Wl lpmj

¥Yo n
UO R ’

where proj((x,u)) = (x), commutes. Throughout this book latin indices range from
1 to n and greek indices from 1 to m unless otherwise indicated. The summation
convention, by which repeated indices are assumed to be summed, is in effect. If
(1, V) is an overlapping coordinate system and 1 (p) = (y(p),v(p)), then on the
overlap U NV we have the change of coordinates formula

y) =yl (z") and 7 = 0P (2t u®). (1.1)

If p: F — N is another fibered manifold, then a map ¢: EF — F is said to be
fiber-preserving if it is covers a map ¢g: M — N, i.e., the diagram

¢
E —— F

b
%o
M- N

commutes. Thus, the fiber over x € M in E is mapped by ¢ into the fiber over
y = ¢o(x) € N in F. We shall, on occasion, consider arbitrary maps between fibered
bundles although the general theory of the variational bicomplex is to be developed
within the category of fibered manifolds and fiber-preserving maps.

Denote by 7*: J¥(E) — M the fiber bundle of k-jets of local sections of E.
The fiber (7%)~1(x) of x € M in J¥(E) consists of equivalence classes, denoted
by j*(s)(x), of local sections s of E at x; two local sections s; and so about
are equivalent if with respect to some adapted coordinate chart (and hence any

adapted chart) all the partial derivatives of s; and ss agree up to order k at x.
Each projection 7t : JY(E) — J¥(E), defined for [ > k by

mili'(s)(@)] = 3" (5)(2),
is a smooth surjection and, in fact, for [ = k + 1 defines J!(E) as an affine bundle
over J*(E). This implies that for all | > k, J!(E) is smoothly contractible to J*(E).
We shall often write, simply for the sake of notational clarity,

mh =nf and 7k ="
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for the projections from J*(E) to E and M.

An adapted coordinate chart (¢,U) on E lifts to a coordinate chart (¢,U) on
JH(E). Here U = (7%)~1(U) and, if s: Uy — U is the section s(x) = (z¢, s%(x)),
then the coordinates of the the point j¥(s)(z) are

1 () (@)] = (2", u ud u U ), (1.2)
where, for [ = 0,1, ..., k,
o ols>
ivig-ip Oxri1dgi2 ... Hri (m)’

u

and where 1 < 73 < 49 < .. < 4; < n. This notation becomes cumbersome
when discussing specific examples for which the dimension of F is small. For these
situations we reserve the symbols x,y, z for base coordinates and u, v, w for fiber
coordinates. We shall write ug, wy, Ugy, Uzy, Uyy - - - for the jet coordinates.

The inverse sequence of topological spaces {J*(E), nl} determine an inverse limit
space J*°(FE) together with projection maps

70 JO(E) — JME) and 7%:J¥(E)— E,
and

s JO(E) — M.

The topological space J*°(FE) is called the infinite jet bundle of the fibered manifold
E. A point in J*°(E) can be identified with an equivalence class of local sections
around a point x € M — local sections s around z define the same point 7°°(s)(z)
in J°(F) if they have the same Taylor coefficients to all orders at x. A basis for
the inverse limit topology on J°°(E) consists of all sets W = (m52) 1 (W) , where
W is any open set in J¥(F) and k =0,1,2,....

If o is a point in J*°(F), it will be convenient to write

ot =77°(0)
for its projection into J*(E).

The notion of a smooth function on the infinite jet bundle must be defined. Let
P be any manifold and let C*°(J*(E), P) be the set of smooth maps from J*(E)
to P. For [ > k, there are the obvious connecting maps

7t C=(J*(E), P) — C>*(J'(E), P)
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which define the direct sequence {C>°(J*(E), P), 7L }. The set of smooth functions
from J*°(E) to P is then defined to be the direct limit of this sequence and is
denoted by C°(J*>°(E), P). If f € C*(J*°(FE), P) then, by definition of the direct
limit, f must factor through a smooth map f from J*(E) to P for some k, i.e.,

f=fom. (1.3)

We call k the order of f. If f is of order k, then it also of any order greater than k.
In particular, the projection maps 7;° are themselves smooth functions of order k.
If U is a coordinate chart on E and the restriction of f to J°°(U) factors through
JU(U) then we say that f has order [ on U. We remark that if W is an open set
in P, then f~'(W) = (7°)~1(f~1(W)) is an open set in J*(E). Therefore all
smooth functions on J°°(F) are continuous. This conclusion would be false had we
enlarged the class of smooth functions to include those of locally finite order.

We let C°(J*°(E)) denote the set of smooth, real-valued functions on J*(E).
If f is a smooth, real-valued function on J°°(E) which is represented by a smooth
function f on J*(E), then on each coordinate neighborhood (7%)~'(U) and for
each point o = j*°(s)(z) € (7)1 (U) with k-jet coordinates given by (1.2),

flo) = f(x’,uo‘,uf‘l,uf‘liQ,...,uializ,,,ik). (1.4)
As a matter of notational convenience, we shall often use square brackets, for ex-
ample, f = f[z,u], to indicate that the function f is a function on the infinite
jet bundle over U. Here the order of f is finite but unspecified. To indicate that
a function f is a function of order k, i.e., a function on J*(U), we shall write
f= f[x7u(k)]

Unless it is necessary to do so, we shall not distinguish between a function on
J°°(F) and its representatives on finite dimensional jet bundles.

A map f: P — J°°(F) is said to be smooth if for any manifold @) and any smooth
map g: J(F) — @, the composition go f from P to @ is a smooth map. Likewise,
if p: F' — N is another fibered manifold we declare that a map ®: J>°(F) — J>*(F)
is smooth if for every smooth map g: J°°(F') — @ the composition go® from J>*(E)
to @ is smooth. The following proposition furnishes us with representations of these
maps by smooth maps on finite jet bundles.

ProrosiTioN 1.1. (i) If f: P — J°(FE) is a smooth map, then for each k =
0,1,2,... maps f: P — J*(E) defined by

Jk=mg of (1.5)
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are smooth. Conversely, given a sequence of smooth maps fp: P — J*(E) such
that fr = 7T]l€ o f; for all | > k, there exists a unique smooth map f from P to
J>(E) satistying (1.5).

(ii) If &: J>°(E) — J*>°(F) is a smooth map, then for each k = 0,1,2,... there
exists an integer my, with m; > my whenever [ > k and smooth maps

O J(E) — JE(F) (1.6)
satisfying
pro® =" o Ty (1.7)

Conversely, given a sequence of smooth maps (1.6) such that
pho B = a0 mp (1.8

for all | > k, there exists a unique smooth map ® from J*>°(E) to J*°(F) satisfying
(1.7).

PROOF: These statements are direct consequences of the definitions. To prove (ii),
observe that for each k = 0,1,2,... the map p° o ® from J®(E) to J*(F) is
required to be smooth and therefore must factor through J™*(E) for some my.
With no loss in generality it can be assumed that the order my of pi° o @ is an
increasing function of k. ]

A smooth map ® from J*°(FE) to J>°(F) described by a sequence of maps (1.6)
is said to be of type (mg, mi, ma,...). We emphasize that a smooth map ® from
J*®(E) to J°°(F) need not factor through J*(E) for any k. Indeed, such a restriction
would preclude the identity map on J°°(FE) from being smooth.

A map ® : J®(E) — J®(F) called projectable if it is covers maps from J*(E)
to J*(F) for each k, i.e.,

JE(E) —— Jk(F).
Such a map is of type (0,1,2,...).

Although the fibered manifold 7: £ — M may not admit any global sections,
the bundle 7%: J>*°(E) — E always admits global sections. These can be readily
constructed using partitions of unity.

An important class of smooth maps from J>(FE) to J°°(F') are those which arise
as the prolongation of maps from E to F'.
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DEFINITION 1.2. Let ¢ be a map from E to F' which covers a local diffeomorphism
¢o. Then the infinite prolongation of ¢ is the map

pro: J(E) — J>(F)
defined by
pro(i>(s)(z)) = [[* (¢ o505 ") (¢o(x)), (1.9)

where s is a local section of E defined on a neighborhood of x on which ¢¢ is a
diffeomorphism.

The prolongation of ¢ is a smooth, projectable map. Moreover, if ¢ is a diffeo-
morphism, then so is pr ¢.

B. Vector Fields and Generalized Vector Fields. The tangent bundle to the
infinite jet bundle J*°(FE) can be defined in various (equivalent) ways. One pos-
sibility is to consider the inverse system of tangent bundles T'(J*(E)) with the
projections (7). from T(JY(E)) to T(J*(E)) for all I > k as connecting maps and
to designate T'(J°°(E)) as the inverse limit of these vector bundles. In this way
T(J*°(E)) inherits the structure of a topological vector bundle over J>(F). Al-
ternatively, the tangent space T, (J°°(FE)) at a point o € J*°(E) may be defined
directly as the vector space of real-valued R linear derivations on J*°(FE). The
tangent bundle T'(J°°(E)) can then be constructed from the union of all individual
tangent spaces T, (J°°(E)) in the usual fashion. These two approaches are equiv-
alent. Indeed, a derivation X, on J°°(FE) at the point ¢ determines a sequence
of derivations Xy ,» to T(J*(E)) at 0% = 73°(c) — if f is a smooth function on
J*(E), then

Xpor (f) = Xo(f o 7i2). (1.10)

These derivations satisfy
(T1) X101 = X o (1.11)

for all [ > k and therefore define a tangent vector in the inverse limit space
T(J*(E)) at 0. Conversely, every sequence of vectors Xy, & € T,x(J*(F)) satis-
fying (1.11) defines a derivation X, on J>*(FE) at 0 — if f is a function on J*°(E)
which is represented by a function f on J*(E), then

A~

Xo(f) = Xy,or (f)-

The projection property (1.11) ensures that this is a well-defined derivation, inde-
pendent of the choice of representative f of f.
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If &: J®(FE) — J*°(F) is a smooth map, then the Jacobian
®.: T(J*(E)) = T(J>=(F))

is defined in the customary manner, viz., if X, is a tangent vector to J*°(E) at the
point o, then for any smooth function f on J°°(F")

((I)*XU)(f) = Xa(f o Q))

If X, is represented by the sequence of vectors X at o* for k =0,1,2,... and ®
is represented, in accordance with Proposition 1.1, by functions ®;"* then ®,(X,)
is represented by the sequence of vectors (®]"*). (X, ).

A vector field X on J*°(FE) is defined to be a C*°(J*°(E)) valued, R-linear deriva-
tion on C*°(J*°(E)). Thus, for any real-valued function f on J*(E), X(f) is a
smooth function on J*°(F) and must therefore be of some finite order. Although the
order of the function X (f) may exceed that of f, the order of X(f) is nevertheless
bounded for all functions f of a given order.

PROPOSITION 1.3. Let X be a vector field on J*°(FE). Then for eachk =0,1,2,...,
there exists an integer my, such that for all functions f of order k, the order of X (f)
does not exceed my,.

PrOOF: The case £ = 0 and E compact is easily treated. For £k = 0 and F non-
compact or for £ > 0, we argue by contradiction. First, pick a sequence of points
pi, i =1,2,3,... in J¥(F) with no accumulation points. Let U; be a collection of
disjoint open sets in J*(E) containing p;. Let ¢; be smooth functions on J*(E)
which are 1 on a neighborhood of p; and have support inside of U;.

Now suppose, contrary to the conclusion of the proposition, that there are func-
tions f; on J¥(E) for i = 1,2,3,... such that the order of X (f;) exceeds i. We can
assume that the order of X(f;) exceeds i in a neighborhood of a point p;, where
pi € (m2°)~1(pi). If this is not the case, if the maximum order of X (f;) is realized
about a point g; ¢ (75°)~*(pi), then we can simply redefine f; to be the composition
of f; with any diffeomorphism of J*(E) which carries p; to the point ¢; = m°(g:)-

Define f = >, ¢;fi. Then f is a smooth function on J*(E) but X (f) is not a
smooth function on J*°(FE) since it is not of global finite order. This contradiction
proves the lemma. ]

We say that a vector field X on J*°(F) is of type (mg, mi,ma,...) if for all
functions f of order k the order of X (f) is my. With no loss in generality, we shall
suppose the sequence my, increases with k. A vector field on J°°(E) is projectable
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if it projects under 7° to a vector field on J*(E) for each k. Projectable vector
fields are of type (0,1,2,...).
With respect to our induced local coordinates on J>°(U), a vector field X takes
the form
X =da

0 ) > .0
o T o+ > > v (1.12)

p=1 1<i1<ip<---<ip<n i1d-ip

The components a’, b* and bf‘liQ,,,iP are all smooth functions on J>°(U). If f is
a smooth function on J*°(U), then f is of finite order and so X (f) involves only
finitely many terms from (1.12). The vector field X is projectable if the a’ and
b® are smooth functions on U and the b?”-Q,,
E=1,2,....

The sets of sections of T(J*(E)) for k = 0,1,2,... do not constitute an inverse
system (since it is not possible to project an arbitrary vector field on J!(E) to one
on JF(E) for k < 1) and, for this reason, it is not possible to represent a given vector
field on the infinite jet bundle by a sequence of vector fields on finite dimensional
jet bundles. To circumvent this problem we introduce the notion of generalized

., are smooth functions on JE(U),

vector fields. Generalized vector fields first appeared as generalized or higher order
symmetries of the KdV equation. They play a central role in both the theory and
applications of the variational bicomplex. First recall that if P and () are finite
dimensional manifolds and ¢: P — @ is a smooth map, then a vector field along ¢
is a smooth map Z: P — T(Q) such that for all p € P, Z(p) is a tangent vector to
Q at the point ¢(p).

DEFINITION 1.4. A generalized vector field Z on J*(E) is a vector field along the
projection w°, i.e., Z is a smooth map

Z: J®(E) — T(J*(E))

such that for all o € J*®(E), Z(c) € T (J*(E)).
Similarly, a generalized vector field Z on M is a vector field along the projection
Ty b-e., Z is a smooth map

Z: J®(E)—T(M)

such that for all o = j*°(s)(x), Z(o) € T,(M).

Since a generalized vector field Z on J*(E) is a smooth map from the infinite
jet bundle to a finite dimensional manifold, it must factor through J™(E) for some
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m > k. Thus there is a vector field Z along 7", i.e., a map

Z: J™(E) - T(J*E))
such that .
Z=Zom,.
We call m the order of the generalized vector field Z. If f is a function on J*(E),
then Z(f) is the smooth function on J*°(E) defined by

A

Z(f)(o) = Z(a™)(f)-
The order of the function Z(f) is m. Note that a generalized vector field on J*(E)
of order k is simply a vector field on J*(E).
Generalized vector fields are projectable. If Z is a generalized vector field on
JY(E), then for k <[ the map Z: J*(E) — T(J*(E)) defined by

Z(0) = (mi)«(0")[Z(0)
is a generalized vector field on J*(E). We write (}).(2) for Z.
PROPOSITION 1.5. Let X be a vector field on J*(E) of type (mg, m1, ma,...).
Then there exist generalized vector fields Xy, on J*(E) of order my, such that
(mh)«(X1) = X (1.13)
and, for all functions f of order k,

X(f)(o) = Xi(o)(f)- (1.14)
Conversely, given a sequence of generalized vector fields X on J*(E) satisfying
(1.13), there exists a unique vector field X on J*°(F) satisfying (1.14).

PROOF: Given X, simply define the generalized vector fields X, by Xy(o) =
(m27)+ () (Xo ). i

We remark that if the vector field X on J*°(F) is given locally by (1.12), then
the associated generalized vector fields X on J*(E) are given by truncating the
infinite sum on p in (1.12) at p = k.

The Lie bracket of two vector fields X and Y on J*°(F) is the vector field [X, Y]
given by

(X, Y(f) = X (Y(f) =Y (X(f))-

If X is of type (mg, m1,ma,...) and Y is of type (ng,ni,nsg,...), then [X,Y] is of
type (to,t1,to,...), where t;, = max{m,, ,nm, }. In fact, the projection of [X,Y] to
J¥(E) is the generalized vector field [X, Y], on J*(E) given by

(X, Y1k(0)(f) = X, () (Yi(f)) = Yon, () (X (),
where f is any function on J*(E). If X and Y are projectable, then [X,Y] is
projectable and [X, Y], = [ Xk, Y]
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This is a convenient point at which to fix our multi-index notation. For arbi-
trary, unordered values of the k-tuple I = idyig-- ik, let {ijis-- i} denote the
rearrangement of these indices in non-decreasing order. Set

Uy = u?llé“‘ik = u({lhiz“‘k}'
With this convention u§ is symmetric in the individual indices 7142 - - - 7, which make
up the multi-index I. The length k of the multi-index I is denoted by |I|. Next, let

l; be the number of occurrences of the integer j amongst the i1is - - - 75, and define
the symmetric partial derivative operator 97, by

MYl o
- k! ou?

{i142-+ix}

oL = giriai (1.15)

For J = j1j2- - - ji it is easily seen that

0 (uly) = 630,
where
5 = 6t gz i)

Ji17j2 TJk

and (414 . ..1x) denotes symmetrization on the enclosed indices, e.g.,

i Lo i
656, = 516501 + 561,

Thus we have that

OUgy OUgy

=1 and =1
8”333: ! auﬂiy
whereas
1
0y Ugy =1 and 03 Uy = 3

As an illustration of this notation, suppose that f is a smooth function on J*°(U)
which is homogeneous in the fiber variables of degree p, i.e., for all A > 0

Fh u® Ml s, .. ) = NP fz, ).

K
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Then Euler’s equation for homogenous functions can be expressed in terms of these
symmetrized partial derivatives as

oo

> O8N ut = pflx,ul,

|1]=0

where, as usual, the summation convention applies to each individual index #1725 . . . 1%
in the repeated multi-index /. The numerical factors introduced in (1.15) compen-
sate precisely for all the repeated terms that occur in these sums.

This multi-index notation differs from that which is commonly encountered in
the literature but it is well suited to our purposes. It ensures that the operator 9}
is completely symmetric in its upper indices 145 - - - i and this, in turn, simplifies
many of the formulas in our variational calculus. It eliminates the need to order
the sums which occur in formulas such as (1.12). Indeed, we can now rewrite this
equation as

28 - aql
X=a @‘i—lllz_ob[aa,

where the coefficients b} are taken to be symmetric in the indices of I. Finally, this
notation eliminates the presence of many unwieldy multi-nomial coefficients which
would otherwise explicitly occur. Note that, with these conventions in effect,

X () =15,

In general, our multi-index notation is restricted to quantities which are totally
symmetric in the individual indices represented by the multi-indices. For example,

if I = rst and J = hk, then

aIJ _ arst hk

may be assumed to be symmetric in the indices rst and hk. The one exception to
this rule arises when we write

dz Adz? Ao A dat = dat.
In this case the multi-index [ is skew-symmetric in the indices i1 . . . 7.

C. Differential Forms and the Variational Bicomplex. The pt" exterior prod-
uct bundles AP(J*(E)) together with the pullback maps

(mk) " AP(JH(E)) — AP((J'(E)),
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defined for all [ > k > 0, form a direct system of vector bundles whose direct
limit is designated as the p'" exterior product bundle AP(J*(E)) of J*(E). Let
o € J®(E). Then each w € AL(J>°(E)) admits a representative & € A?, (J*(E)) for
some k=0,1,2,... and w = (7°)*@. We call k the order of w. If X! X2 ... XP?
are tangent vectors to J°°(F) at o then, by definition,

w X X2 XP) = 0((rR) X () X3, (m0) . XP).

Observe that this is well-defined, that is independent of the choice of representative
& of w. Evidently, if w is of order k and one of the vector fields X1, X2,..., X? is
7° vertical, then w(X*!, X2 ..., X?) =0.

A section of AP(J*(E)) is a differential p-form on J¥(E). We denote the vector
space of all differential forms on J*(E) by QP(J*(E)). These spaces of differential
p forms also constitute a direct limit system whose direct limit is the vector space
of all differential p forms on J*°(FE) and is denoted by QP(J°°(E)). Again, every
smooth differential p form w on J*°(E) is represented by a p form & on J*(E) for
some k. In local coordinates (x,u, U) a p-form w on J*°(U) is therefore a finite sum
of terms of the type

Alz, u] duf AduG? A+ Adufe Adz™ Adz' A A da™, (1.16)

where a 4+ b = p and where the coefficient A is a smooth function on J*°(U). The
order of the term (1.16) is the maximum of the orders of the coefficient function
Alz,u] the differentials duf . For example, the form uy,du, A dz is of order 2 and
UpdUypr A dx is of order 3.

If & is a p-form on J¥(E) and X', X2,..., XP are generalized vector fields on
J*(E) of type mi,ma,...,m, respectively, then the function &(X?!, X2 ... XP)
is a smooth function on J°°(F) the order of which is equal to the maximum of
mi,ma,...,my. If wis a differential form on J°°(F) which is represented by a
form @ on J*(E) and X! X2 ..., XP are vector fields on J*°(FE) represented by
sequences of generalized vector fields {X}'}, {X?},... ,{XP} for 1 =0, 1, 2, ...,
then

w( X X2 LX) = o(XE, X, XD,

With these definitions in hand, much of the standard calculus of differential forms
on finite dimensional manifolds readily extends to the infinite jet bundle. Let w be a
differential p form on J°(E) which is represented by the form & on J*(E). If X is a
vector field of type (mg, my, ma,...) on J°°(FE) which is represented by the sequence
of generalized vector fields X, on J¥(E), then X — w is the p — 1 form on J>(FE)
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represented by the form X — (7."*)*(w) on J™*(E). Hence, X — w is a differential
form of order my. If ®: J®°(E) — J°°(F) is a smooth map represented by the
sequence of maps ®}"*: J™*(E) — J*(F) and w is a form on J*(F) represented
by a form @ on J*(F), then the pullback form ®*(w) is represented by the form
("% )*(w) of order my, Exterior differentiation

d: QP(J>®(E)) — QPHH(J>(E))

is similarly defined via representatives — if w is a p form on J*(FE) represented
by @ on J*(E), then dw is the p + 1 form on J°(E) represented by d@. In local
coordinates, the differential df of a function of order k is given by

df = O guiy (Daf)du® + (OLf) duf + -+ + (04" f) duf!

61’1 21%2...7%

81 k
_ % I a
=55 dz' + |I§| 0(6af)du1.

(1.17)

When the order of f is unspecified, we simply extend the summation in (1.17) from
|I| =k to |I| = oo and bear in mind that sum is indeed a finite one.

Let X and Y be vector fields on J*°(F) and suppose that w is a one form.
It follows from the above definitions and the invariant definition of the exterior
derivative d on finite dimensional manifolds, that

(df)(X)=X(f),
(dw)(X,Y) = X(w(Y)) — Y(w(X)) —w([X, Y]),

and so on.

Lie differentiation of differential forms on the infinite jet bundle is exceptional in
this regard. This is due to the fact that for an arbitrary vector field X on J*°(FE),
there is no general existence theorem for the integral curves of X and hence even
the short-time flow of X may not be defined. However, when X is a projectable
vector field on J*°(E), then the flow of each projection Xy is a well-defined local
diffeomorphism ¢y (t) on J¥(E) for each k. If w is represented by the form & on
J*(E), define

[Lx(W)](0) = [Lx,&](c") = [%[(%(t))*(@)](d) ezo -
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From this definition, it can be proved that for vector fields X, Xo, ..., X,

,CX(,«)(Xl,XQ,...,Xp) (118)
P
= X (W(X1,Xa, ..., X)) + D> (1) w(X, Xi], X1, .., Xiy o, Xp).
i=1
For a non-projectable vector field X the right-hand side of this equation is still
a well-defined derivation on QP (J*°(FE)) and so, for such vector fields, we simply
adopt (1.18) as the definition of Lie differentiation.
From (1.18) and the previous formula for the exterior derivative d, it follows in
the customary manner that

Lxw=d(X-w)+X—-dw. (1.19)

Henceforth we shall not, as a general rule, distinguish between a differential form
on J°°(FE) and its representatives on finite dimensional jet bundles.

Now let Q*(J*°(E)) be the full exterior algebra of differential forms on J*(E).
The contact ideal C(J*°(E)) is the ideal in Q*(J>°(E)) of forms w such that for all
o € J°°(E) and local sections s of E around ¢° = 7% (o),

1% (s)]" (x)w(o) = 0.

If we C, then dw € C so that C is actually a differential ideal.
A local basis for C is provided by the contact one forms

a a a j
9[ - duI — qu dCU],

where |I| =0, 1, 2, ... . We call |I| the order of the contact form ¢ even though
this form is defined on the (|| + 1)-st jet bundle over U. For example, with respect
to the coordinates (x,y,u) on R® — R? the contact one forms of order zero and
one are = du — udx — uydy and

0, = duy — Upzdr — ugydy and 0y = duy — ugydr — uy,dy.

If 7: U — Up is a local coordinate neighborhood for F and =: Uy — J*°(U)
satisfies
E*(w) =0

for all w € C, then there exists a local section s : Uy — U such that

for all x € Uj.
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ProposiTioN 1.6. Let m: E — M and p: FF — N be two fibered manifolds and

let : E — F be a smooth map which covers a local diffeomorphism ¢g: M — N.

(i) The prolongation of ¢, pr¢: J*°(E) — J*°(F) preserves the ideal of contact
forms, i.e.,

[pr o] "C(J>(F)) C C(J=(E)).

(ii) Let ®: J>®(E) — J*°(F) be a smooth map which covers ¢. If & preserves the
contact ideal, then ® = pr ¢.

ProoOF: To prove (i), let w € C(J*°(F)) and let n = [pr¢|*(w). We show that
n € C(J®(F)). Let 0 = j7°°(s)(x) be a point in J*(FE), where s is a local section
of I¥ around z and let § = ¢oso ¢y ! e the induced local section of F' around the
point y = ¢o(z). Let & = j°°(5)(y). The definition (1.9) of pr ¢ implies that

pro o jo(s) = j*(5) o go.

The chain rule now gives

This last expression vanishes since w lies in the contact ideal of J°°(F"). Therefore
n belongs to the contact ideal of J*°(E).

To prove (ii), let 7: U — Uy and p: V — V, be coordinate neighborhoods on F
and F' such that ¢g: Uy — Vj is a diffeomorphism. Let s : Uy — U be any local
section and let =: Vy — J*°(V) be defined by

E(y) = (®oj>¥(s) o gy ") (y).

Because ® is assumed to preserve the contact ideal, Z*(w) = 0 for any w €
C(J°(F')). This implies that there is a section §: Vy — V such that Z(y) = j*°(5)(y)
for all y € Vp, i.e.,

P o j®(s)o gyt =j™(s).

Since ® covers ¢, it follows immediately that 5 = ¢ o s 0 ¢y ! and hence ® = pr ¢,
as required. ]
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One forms in C are said to be vertical one forms on J*°(E). More generally, let
C*® be the s wedge product of C in Q*, i.e., w € C* if and only if it is a sum of
terms of the form

ayr Nag A~ Nag A n,

where each oy, a9, ...,as € C and n € Q*. Set, for s =0,1,...,p+ 1,
QP =C° N QP

Then every form in Q7 consists of terms containing at least s contact one forms.
There are clearly inclusions

QP =QUF SOy DD ORP D QPP =0
and, because C is a differential ideal,
AP c QP (1.20)

Let w be a p form on J*°(E). Then w is said to be horizontal if at each point o €
J>°(E) and for each 77 vertical tangent vector Y € T, (J*(E)), i.e., (753)(Y) =0,

Y- w(o)=0.

More generally, fix 0 < r < p+ 1 and let let s = p — r. Define Q3" to be the
subspace of {2 of forms w such that for all points o € J*°(E)

w(Xl,XQ, e ,Xp) = 0,

whenever at least s 4+ 1 of the tangent vectors to J>(E) at o are 75} vertical. A
local section of 2} is a sum of terms of the form (1.16) provided b > r — i.e., there
are at least r horizontal differentials dz in each term of w. There are the obvious
inclusions

=P 50 5 DO D QY =0
and

dQpP c Qpptt (1.21)

DEFINITION 1.7. The space Q™*(J*°(E)) of type (r, s) differential forms on J*°(E)
is defined to be the intersection

Q" (J(E)) = Q (J7(E)) N QyP (= (E)),
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where r +s = p. The horizontal degree of a form in ™% is r and the vertical degree
is s.

A p form belongs to 2™*(J>°(E)) if and only if it is locally a sum of terms of the
form
Alz,u] 031 NOT2 A - AOT Adz™ Adz™ A A datr

For example, if a, § and 7 are forms of order k and type (r,0), (r,1) and (r,2)
respectively then with respect to our local coordinates on J*(U),

o= Aj i, uP] da?t AdP2 - A dad,

k
ﬁ - Z Aéhjzmjr [l‘, u(k)] 9? VAN dCUjl AN ngjQ oA dl‘j’",
|1]=0
7= Z Aé&éjl]é---jr ['777 u(k)] 9? A eg Adrdt Ndx?2 - NdI.

In particular, a form \ € Q™%(J>°(U)) assumes the form
A= Llz,u]v,

where v = dxz! A dx® A ---d2z". Hence each element of Q™°(J®(FE)) defines a
Lagrangian for a variational problem on E. The fundamental integral or action
for this variational problem is the functional I[s|, defined on compactly supported
sections s of E by

I]s) = /M[ms)J*(A).

Observe that
Q"% =0 if r>n.

Let 7, denote the space of r forms on M. The projection n%3: J®(E) — M
induces inclusions
(m5g)": QY — o,

It follows easily from the definitions that

D (I¥(E) = P Q" (I=(E)).

r+s=p
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We denote the projection map to each summand by
7% QP (J°(E)) — Q73 (J*(E)). (1.22)

If w € QP is given by a sum of terms of the form (1.16), then the projection 7"*(w)
can be computed by first substituting

duf =07 + u?jd:vj (1.23)

and then collecting together those terms of horizontal degree r and vertical degree
S.

Owing to (1.20) and (1.21), it follows that the exterior derivative d on J*°(E),
when restricted to Q™*, maps into Q"% @ Q™51 Thus d splits into horizontal
and vertical components

d=dy+dy,
where
dy: Q7 (T (E)) — Q7(T2(B))
and

dV: Q"5 (J(E)) — Q"5 (J®(E)).

Specifically, for functions f on J°°(U) of order k, the substitution of (1.23) into
(1.17) leads to

df= gil dcci—l—(aaf)dua—i—(8gf)dui0‘_|_...
= [gii + (Oaf)uf + (O fug; + -] dx’ +

+[(Daf) 0% (DLf) 07 + (DY ) 05+ -]

The terms in brackets are of type (1,0) and (0, 1) respectively and therefore define
dyfand dy, f, i.e.,

0 . .
dif = (0 + @ pus + @11y + ) da

and
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dy f = (0af) 0+ (90F) 07 + (DL f) 05 + -

= > _(0Lh) 07

|1]=0

The dz? component of the horizontal one form d f is the total derivative of f
with respect to 27 and is denoted by D; f:
af

Djf = 55 +(0af)uf + OF frug; + (OFF frup,; + -+

of b .
= 9.0 > (0L fug;.

|1]=0

(1.24)

For example, on R® — R? with coordinates (z,y, u)
D,u® = 2uu, and Dmyu2 = 2UgUy + 2Ulgy.

Note that total differentiation agrees with ordinary partial differentiation on the
jets of local sections s of F, i.e.,

(DANG=(5) = T G

Note also that if f is a function of order k, then D; f is of order k + 1.
Since d (dz') = 0, we have that

dg(dz’y =0 and  dy(dz’) =0.

Likewise, because
dOf = —dug; Ndx? = —07; N da?,

we can conclude that

dy0f = =07, Ada/  and  dy0f =0.
Of course, d? = 0 implies that

dy =d3 =0 and  dydy = —dydy.

These formulas, together with the formula for d; f show that if w is of order k, then
the order of dw in general increases to order k + 1.



20 The Variational Bicomplex

DEFINITION 1.8. The variational bicomplex for the fibered manifold m : E — M
is the double complex (¥**(J*°(FE)), dy, dy,) of differential forms on the infinite jet
bundle J*(E) of E:

dy, dy

0 —— QU3 Q3

dy, dy

0 — 02 . L2 n 022 I Qn—1.2 d_H> Qn-2

dy dy dy dy dy

0 — Q0.1 d_H) 0Ll dar 021 dur Qn—11 d_H> Qnil

dy, dy, dys dys dy,

0 R 00,0 d_H> OL0 du 020 du On—10 " On0

(1.25)

To (1.25) we append the de Rham complex of M, viz.,

d dy dy

H dH
0 R Q0,0 Ql,O QQ,O A anl,O Qn,O
Tm‘;)* Tm‘;)* (739)" T(wm Tm‘;)*
0 d 1 d 2 d n—1 d n

However, in general, this will not be done explicitly.
We record the following elementary fact.

PROPOSITION  1.9. Let w € Q™Y (J>°(FE)). Then dyw = 0 if and only if w is the
pullback, by 7%y, of an r form on M.

Proor: It suffices to prove this proposition locally since the global result then
follows by an elementary partition of unity argument. Let U be a coordinate chart
on F and let

w= Aylz,u®]dz’
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on J*(U). Then k
dyw =Y (0LA;)0F A da’
|1]=0

and this vanishes if and only if all the coefficients A; of w are functions of the base
variables z° alone |

All forms in 2™° are obviously dj; closed but they are not, in general, d;; exact
(even locally). One can then introduce the cohomology vector spaces

B (J®(E)) = QU (J%(E))/ dg{Q" 1 (J*(E))}.
These spaces are part of the so-called F; term of the spectral sequence for the
variational bicomplex (1.25) and they play a central role in development of the

subject. A slightly different approach will be adopted here. In the next chapter we
shall introduce the interior Fuler operator

I: Qs (J®(E)) — QU (J®(E))  for s> 1

which is defined in local coordinates by

I(w) = é 0o NS (=D) [0 — ],
|T|=0

This operator satisfies / o d;; = 0 and is a projection operator in the sense that
I? = 1. We set

FHIZ(E) = L Q" (J=(E))) = {we Q" | [(w) = w}.

For instance, it is not difficult to see that F(J°(E)) consists of those type (n, 1)
which are locally of the form

w= P,lx,u] 0% Av.

For reasons to presented in Chapter 3, we call F*(J*°(FE)) the space of type s
functional forms on J*°(FE). The induced vertical differential

dv: F(J(E)) — FHH(I>(E))
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is defined by dy = I o dy, Thus, with the interior Euler operator I in hand, we can
construct the augmented variational bicomplex for the fibered manifold F:

dV dV 6V
I
0 — QO3 Qw3 —— F3 —— 0
dV dv 6V
0,2 du 1,2 du 1,2 H 2 2
0 — Q% — QY —— Qr=be —— QM —— F° —— 0
dy dy dy dy Sy
d d I
H H H
0 QO,I Ql,l Qn—l,l Qn,l fl 0
dV dV dV dV
0,0 du 1,0 du 1,0 H 0
0 —R — QY — QY —— Qr=Hv — O™

(1.26)
It turns out (see Chapter 5) that

FI=(E)) = By (J>(E))

so that this distinction is really just one of terminology. Nevertheless, the sub-
spaces F° C 2™ and the projection operators I are very useful in both theoretical
and practical considerations. It is the utility of these operators which we wish to
emphasize.

As we shall see in the next chapter, the map F = I ody : Q™% — F! is precisely
the Euler-Lagrange operator from the calculus of variations.

DEFINITION 1.10. The Euler-Lagrange complex E(J*°(E)) associated to a fibered
manifold m: E — M is the the edge complex of the augmented variational bicomplex
on J®(E):

d
Qo (1.27)

du Qn,o B fl ov

dy

0 R 0o

H Qr—1.0

For many problems, the Fuler-Lagrange complex is the object of ultimate inter-
est — the variational bicomplex provides us with the means by which the Euler-
Lagrange complex can be studied.
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D. Prolongations of Generalized Vector Fields. To each generalized vector
field X on F there is an associated vector field on J*°(FE) called the prolongation
of X and denoted by pr X. To motivate this general construction, consider first the
classical case of a projectable vector field X on E with projection X = 7, X on M.
Then the flow X, of X on E covers the flow X; of X on M and so, by prolongation
to J°°(F) we obtain a local, one parameter group of transformations F; on J*°(FE),
1.€.,
Fy = pr X;.

The prolongation of the vector field X is the vector field on J*°(F) associated to
this flow,i.e.,

X =SR],
The salient property of pr X is that it preserves the contact ideal C.
LEMMA 1.11. Let X be a projectable vector field on E and let pr X be its prolon-
gation to J*°(FE). Then
(i) pr X projects to X ,i.e., (7% )«(prX) = X, and
(ii) LprxC CC.

PROOF: Property (i) is obvious — in fact pr X is a projectable vector field whose
projection to J*(E) is the flow of the prolongation of X; to J*(E), i.e.,

FF(i*(s)(@)) = 3" (Xe o s 0 X o) (y).
By virtue of 1.6, the flow F}; preserves the contact ideal and this suffices to prove
(ii). |
ProprosITION 1.12. Let X be a generalized vector field on E. Then there exists
a unique vector field Z on J*>°(E) such that
(i) Z projects to X, i.e., (1%).(Z) = X, and
(ii) Z preserves the contact ideal, i.e., Lz C C C.

The vector field Z is called the prolongation of X to J°°(FE) and is denoted by pr X .
Conversely, if Z is any vector field on J°°(FE) which satisfies (ii), then Z is the
prolongation of its projection onto E, i.e., Z = pr Zy where Zy = (7% )(Z).

Proor: It suffices to prove local uniqueness and existence. Let X and Z be given
locally by

I I

and
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Z =27

0 = anl
o=+ g_:ozlaa, (1.29)

where the coefficients a’, b, Z* and Z% are all smooth functions on J>°(U). Prop-
erty (i) requires that
Z'=a' and Z%=b".
Since Lz is a derivation, property (ii) holds for all contact forms on J*°(U) if
and only if it holds for the local basis of contact forms 0%, i.e.,

L7607 €C. (1.30)
Direct calculation yields
L0 =dZ7 — Z7; de? — uf;d Z
=dyZi +dy 27 — Z7;dv? —uf;dgZ? —ufdy 27

The second and last terms in this last equation are in C. The remaining terms are
all horizontal and must therefore vanish. Consequently (1.30) holds if and only if

73 = D; Z3 —u$,D; Z". (1.31)

This equation furnishes us with a recursive formula for the coefficients of Z. It
is clear that this formula uniquely determines the coefficients Zf in terms of the
coefficients a* and b®. i

In fact, (1.31) is easily solved to give rise to the explicit prolongation formula
Z% = Dr(b* — u?‘aj) + ujo-‘laj, (1.32)
where D; indicates repeated total differentiation,

D;=D; D, D

ik
for I = i1i2 .. Zk
We remark that if X is of order m, then Z is of type (m,m+1,m +2,...). For
example, if X is of order 0, the first prolongation coefficient is given by
Z{ = Dib® — u$ Dya?
ob*  o0b” da’  0d’
_ B e TP
-~ Oat + gus i [Gxi + Guﬁu’]'
For projectable vector fields on E, Lemma 1.11 and Proposition 1.12 yield a proof
different than that presented in Olver [55] of the prolongation formula (1.32).
We now show that every tangent vector to J°°(F) can be realized pointwise as

the prolongation of a vector field on E.
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PROPOSITION 1.13. Let ¢ be a point in J°°(E) and let Z, be a tangent vector to
J>(E) at 0. Then there exists a vector field X on E such that

(prX)(o) = Xo.

Proor: It suffices to construct X locally on a coordinate neighborhood U of E.
Let

0 ©
Za: Ui aa]
“ i +kZZOCI @

and

0 0
X=a"— +b¥——.
@ ox* + ou®

Take a® to be the constants ¢! and take b% to be functions of the base coordinates

z* alone and such that
be §
ﬁ(%) =Cr,

where zo = 737(c). Such functions b exist by virtue of a theorem of Borel (see
Kahn [38], pp 31-33 ). The prolongation formula (1.32) shows that the coefficient
X§ of Ol in pr X at o equals cf, as required. ]

COROLLARY 1.14. Ifw € QP(J*°(F)) and
prX—-w=0

for all vector fields X on E, then w = 0.

DEFINITION 1.15. A generalized vector field on w : E — M which is w vertical is
called an evolutionary vector field.

In local coordinates an evolutionary vector field Y takes the form

0

Y=Y—
ou®’

where the coefficients are functions on J*°(U). This terminology reflects the fact
that, at least within a fixed coordinate chart, the components Y define the system
of evolution equations

0
e

0s® 0s®

axil,...,axilxiZ ...xik

)
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for a one parameter family s*(x,€) of local sections of E. For evolutionary vector
fields the prolongation formula (1.32) simplifies to

prY = > [D;Y]al. (1.33)
|1]=0

PROPOSITION  1.16. Suppose that Y is an evolutionary vector field on J*°(E)
and w € Q"*(J>(E)). Then Ly w € Q%

Loy w=dy(prY —-w)+prY - (dyw) (1.34)
and

prY — (dyw) = —dy(prY = w). (1.35)

PRrROOF: The statement that £,,yw € 2™ is a local one which can be verified on
generators. First, by Proposition 1.12, the Lie derivative with respect to prY of
the contact one form 6% is again a contact one form. Second, since Y is 7 vertical,
the Lie derivative ,CprydCUi = 0. These two observations show that L,y preserves
horizontal and vertical type.

To prove (1.34) and (1.35), we simply expand the Lie derivative formula (1.19)
in terms of d; and dy, to arrive at

Loryw = {dy(prY = w) + prY = (dyw)} + {du(prY = w) + pr¥ = (dgw)}.

Because Y is vertical, prY — w is of degree (r,s — 1). The first group of terms is
therefore of degree (r, s) while the second group is of degree (r + 1, s — 1). Conse-

quently the second group must vanish. This proves (1.35) which, in turns, proves
(1.34). I

Owing to (1.34), it is easily verified that £,y commutes with d,, and hence with
dy.

COROLLARY 1.17. IfY is an evolutionary vector field and w € Q"*(J*°(E)), then

Loy (dpw) = dg(Lpryw)

and
Ly (dyw) = dy (Lpryw).

Generalized vector fields on M can also be lifted to vector fields on J*°(E).
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ProposiTiION  1.18. Let X be a generalized vector field on M. There exists a
unique vector field Z on J*°(E) such that

(i) Z projects to X, i.e., (757)«(Z) = X, and
(ii) Z annihilates all contact one forms, i.e., if w € Q% then Z = w = 0.

The vector field Z is called the total vector field for X and is denoted by Z = tot X.
Conversely, if Z is any vector field on J*°(FE) satisfying (ii), then it is the total
vector field for its projection onto M

PRrROOF: As in the proof of Proposition 1.12, it suffices to work locally. Let

X = ai[x,u]%

and 5 . o
_ i anl
Z=7'-—+ %:Ozfaa.

Then (i) implies that Z* = a’. Property (ii) holds if and only if

Z-67=0
and this implies that Z7* = u?‘jaj . Thus Z is uniquely given in terms of X by

Z =a'D;, (1.36)
where D; is total differentiation with respect to x°. ]

We remark that if X is of order m, then tot X is of type (mg, m1, ma,...), where
m; = m for i < m and m; =i for « > m. Note also that tot X is the prolongation
of its projection onto E, i.e., with Xg = (7% ).(tot X), we have

tot X = pr Xp. (1.37)

This result is immediate from our local coordinate formula (1.32) This implies that
tot X preserves the contact ideal, i.e.,

Lioi x C CC.

We also remark that the total differentiation operator D; is the total vector field

for partial differentiation —, d.e.,

dxi

0

6 o0
=o—+ > uf;0f.

oxJ
|1]=0

(1.38)
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By Proposition 1.18, D; annihilates all contact one forms:
D;— 07 =0. (1.39)

DEFINITION 1.19. Let X be a generalized vector field on E. The associated total
vector field is the total vector field for the projection of X onto M:

tot X = tot[(m).X].

The associated evolutionary vector field is the vertical, generalized vector field

Xev = X — (75)« (tot X). (1.40)
If, in local coordinates,
0 0
X =4 ped
“ or’ + ou®
then
.0

We shall use the next proposition repeatedly in subsequent chapters.

ProrosiTiION  1.20. Let X be a generalized vector field on EE. Then the prolon-
gation of X splits into the sum

pr X = pr Xe, + tot X. (1.41)

PRrOOF: Take the prolongation of (1.40) and apply (1.37). |

We conclude this chapter with formulas for the Lie brackets of prolonged vector
fields and total vector fields.

ProprosiTION 1.21. (i) Let X and Y be generalized vector fields on E. Then
[pr X,prY] = prZ, (1.42a)
where 77 is the generalized vector field on E defined, for any function f on E by
Zi(f) =pr X(Y(f)) = prY (X(f)). (1.42b)
(ii) Let X and Y be generalized vector fields on M. Then

[tot X, tot Y] = tot Zs, (1.43a)
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where Z5 is the generalized vector field on M defined, for all functions f on M by
Zs(f) =tot X (Y (f)) — tot Y (X (f)). (1.43b)

(iii) Let X be a generalized vector field on M and let Y be an evolutionary vector
field on E. Then
[tot X, prY] = tot Zs, (1.44a)

where Z3 is the generalized vector field on M defined, for all functions f on M, by
Zs(f) = prY (X(f)). (1L.44b)

In particular, if X is a vector field on M, then
[tot X, prY] =0. (1.45)

ProOF: To prove (i) it suffices to observe that since pr X and prY preserve the
contact ideal, [pr X, prY] must preserve the contact ideal and so, in accordance
with Proposition 1.12, this Lie bracket is the prolongation of its projection onto FE.
To prove (ii) it suffices to check, by virtue of Proposition 1.18, that [tot X, tot Y]
annihilates all the contact forms 0¢. This follows from the identity

(d07)(tot X, totY) =
(tot X) ((tot Y) = 6%) — (tot Y) ((tot X) — 6F) — [tot X, tot Y] — 67

A similar argument proves (iii). Note that Z3 is indeed a well-defined generalized
vector field on M because, for all functions f on M, prY (f) = 0. ]



CHAPTER TwO

EULER OPERATORS

In the variational calculus, various local differential operators, similar in construc-
tion to the Euler-Lagrange operator, occur repeatedly and play a distinguished role.
These so-called higher Euler operators first arose in the classification of the conser-
vation laws for the KdV equation [45] and the BBM equation [51] and they occur
naturally in the solution to the inverse problem to the calculus of variations. The
general properties of these operators have been well documented by various authors
including Aldersley [1], Wantanabe [79] and Tu [69]. In this chapter a general
framework is introduced in which the higher Euler operators naturally emerge as
a special case. Many properties of the higher Euler operators can be effortlessly
derived from this viewpoint. These properties will be used in the next chapter to
prove the local exactness of the rows of the variational bicomplex.

This general framework also leads immediately to the construction of the projec-
tion operators

I:Q5(J®(E)) — Q" (J>(E)),

introduced in §2C, and used to construct the augmented variational bicomplex.
The map I first appeared explicitly in the papers of Kuperschmidt [46], Decker and
Tulczyjew [21], and Bauderon [8] (but denoted by 77, 7, and D* respectively). It
plays a central role in both the theoretical developments and practical applications
of the variational bicomplex. Salient properties of the operator I are established. In
particular, we show that the Euler-Lagrange operator F factors as the composition
of the operator I and the vertical differential dy,, i.e., if A\ € Q™0(J®(E)) is a
Lagrangian for a variational problem on E, then

E(\) = I(dy\).

We illustrate the utility of this invariant decomposition of the Euler-Lagrange
operator by calculating the Euler-Lagrange equations for some of the interesting
geometrical variational problems as described in Griffiths [31]. These calculations
also highlight the role of moving frames in applications of the variational bicomplex.

30
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A. Total Differential Operators. We begin with a general construction. Let
Ev(J°(FE)) be the vector space of evolutionary vector fields on J°°(E). Consider a
differential operator

P: &u(J>®(E)) — Q" (J*(E))

which is locally of the form

k
P(Y)= > (DiY*)PL[z,ul, (2.1)
|1|=0

where Y is an evolutionary vector field given locally by

o 0
Y =Y%x,u L
Each coefficient P! is a smooth form of type (r,s). We call such an operator a
total differential operator since it involves only total derivatives of the evolutionary
vector field Y. To define this class of operators intrinsically, let Ty — J*°(E) be
the bundle of 737 vertical vectors on J>°(FE). Let A™* — J*°(E) be the bundle of
type (r,s) forms on J°°(F). Let L be a linear bundle map from the bundle Ty to
the bundle A™* which covers the identity map on J*°(FE), i.e.,

L
TV EE— A"S
id

J®(E) —— J=(E).

Then a differential operator P on Ev(J>°(E)) is a total differential operator if there
exists a linear map L such that

P(Y)=L(prY).
Two examples of such operators which we shall study in detail are
P,(Y)=prY—uw,
where w is a fixed, type (r, s + 1) form on J*°(FE), and

PU(Y) = ﬁerTI =prY - dvn,
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where 7 is a fixed form of type (r,0). If 5 is of type (r,s) for s > 1, then P, is not
a total differential operator.

If, at a point o € J>°(E), one of the type (r, s) forms Pl(c) is nonzero for |I| = k,
then the operator P is said to be of order k at o. The collection of forms PL, |I| = k,
determine the symbol of P at 0. The order of the operators P, and P, coincide
with the orders of w and n as differential forms on J*°(E). The symbol of P, is

(Pn)é = 8£4 (1)

The standard approach the linear differential operators on finite dimensional man-
ifolds (see, e.g., Kahn [38], Chapter 6) can be adopted without change to give
invariant definitions to the order and symbol of our total differential operators.
In particular, a zeroth order total differential operator is one which is linear over
smooth functions on J*°(F) and is therefore given locally by

P(Y) = Y*Qa.

PrOPOSITION  2.1. Let P: Ev(J®(E)) — Q7°(J°(F)) be a total differential
operator which is given locally by (2.1). Then P can be rewritten locally as

P(Y)=YQq+D;(Y*Q,) + Di(Y*QY) + - -

= > Di(Y*QL).

|1]=0

(2.2)

The coefficients QY are smooth, type (r,s) forms on J°(U). They are uniquely
defined in terms of the original coefficients PL of P by

k=1

Q! = Z (III|J;||J|)(_D)inJ. (2.3)

|J|=0

Proor: This proposition is a simple exercise in repeated “integration by parts”.
To establish this proposition, we expand the right-hand side of (2.2) by the product
rule to find that

Ea

l

k
> Dn (Vi) =>_> () (DrY")DyQu
=0 =0 r=0

k k

=S (@YY (D, QF].
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Here the subscripts on the multi-indices denote their length, e.g., |I;| = [. Conse-
quently, (2.2) holds if and only if

k—|1]

PL= S (T DG, (2.4)
|J]=0

for all |[I| =0,1,2,...,k. For example, with k& = 2, this set of equations is

PY =

= Q" +2D;Q%, and
P, = Qa+ D;Q. + D;; QY.

The uniqueness of this representation is apparent from (2.4) — if all the Pf
vanish, then by examining these equations in the order |I| = k, |I| = k — 1,
|I] = 0, it follows immediately that all the QZ = 0. Consequently, to verify (2.3), it
suffices to check that the QL given by (2.3) satisfy (2.4). Substitution of (2.3) into
the right-hand side of (2.4) with |I| = r leads to

N

k— —r—

(7"+l D QI rJy _Z 7"+l DJl Z Tj_l:[rs ) SPITJl_SKS]

<

I
=

S ()1 Dy Pl
=0 s=0

To simplify this last expression, we replace the summation on s by one on s’ =1+ s
and interchange the order of summations. This leads to the expression

]f ’
S ) () D P

Since the summation in square brackets vanishes if s’ = 0 and equals 1 if s’ = 0,
this expression reduces to Pl as required. ]

Proposition 2.1 implies that if Qf and @é are two collections of forms of type
(r,s) and

k k
> Di(YeQh) = > Di(veQl)

|7]=0 |7]=0
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for all evolutionary vector fields Y, then Q% = @é We shall use this simple fact
repeatedly in what follows.

Our next task is to examine the transformation properties of the coefficients QZ.
First note that for |I| =k,

Qo =Py
and that these forms determine the symbol of P. The lower order coefficients
LIl < k do not, in general have an intrinsic meaning, i.e., their vanishing in

one coordinate system does not imply their vanishing in an overlapping one. For

example, let
w=A;dz’

be a type (1,0) form on J*(E) and consider the differential operator

0A; 0A; )
PY)=L, =[y*—" 4+ D ye——. ¢
(¥) = Lpryw =[50 +D; au?]dx
0A; ,
=Y*Q, + D;|ly*— ‘
Q + J[ GU?] diL'
where
04; 04; :
o = — dz*.

one has that ,
_ 02!
vj = By us;

and
h

. Ay .
Ah(ijva’”?)axi = Ai(z?,u”, uf),
where A, are the components of w in the (y,v) coordinate system. A simple calcu-
lation then shows that

o = [(%a k@vg‘} dy

04, 0%xF oyt Oyt B oyt oyh
ov§ Oyidy' *oxk 9xt  Ox* Ozt

A, = 04
0 Da

= Q.+ | dz’.
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Therefore the zeroth order total differential operator () defined locally by

Q(Y) =YQq

is not invariantly defined. Notice however, that the second term in the above
equation vanishes if dim M = 1, i.e., if P(Y) is a top dimensional form. In this
instance one can explicitly verify that ) is a invariantly defined operator in the
sense that under arbitrary changes of coordinates y = y(z) and v® = vP(x,u®) the

(), transform as

— ou®
Qﬁ = WQO‘

The next proposition shows this to be true in general.

PROPOSITION  2.2. Let P: Eu(J®(E)) — Q™*(J*(E)), where dim M = n, be
a total differential operator. Then there exists a unique, globally defined, zeroth
order operator

Q: Eo(JZ(E)) — Q™ (J=(E))

with the following property. On each coordinate chart J*°(U) there is a locally
defined total differential operator R: Ev(J>®(U)) — Q"= 15(J°(U)) such that

P(Y) = Q(Y) + dyR(Y). (2.5)

PROOF: We first prove the uniqueness of Q(Y'). Suppose then, that in addition to
the decomposition (2.5), we have that

P(Y) = Q(Y) +dyR(Y)

and consequently

QYY) = Q(Y) = dy[R(Y) - R(Y)]. (2.6)

Since Q and Q are both zeroth order operators, there are type (n,s) forms X, on
J>°(U) such that

QYY) - Q(Y) =Y%,.

We prove that ¥, = 0 thereby establishing the uniqueness of the operator Q(Y).

Let Y1, Ya, ..., Y, be evolutionary vector fields on J°°(U). Inner evaluation of
(2.6) with pr Yy, prYa, ..., prY; and repeated application of Proposition 1.16 leads
to

Y = (—1)°dy{prYi = prYa— ---prY, = [R(Y) — R(Y)]}, (2.7)
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where the 7, are the type (n,0) forms given by
Mo =pr¥Yi—pr¥Ys—---pr¥s— 3,.

From (2.7) it is a simple matter to repeat standard, elementary arguments from
the calculus of variations to conclude that ¥, = 0. Indeed, pick an open set
W C w(U) with W compact, pick Y* = Y(2!) with support V C W, evaluate
(2.7) on a local section s: m(U) — U and integrate the resulting n form on m(U)
over W. Since the right-hand side of (2.7) is linear in Y, it vanishes outside of the
support of Y. It then follows from Stokes Theorem that

|y} ~o.
w

Since the functions Y* and the local section s are arbitrary, 7, must vanish at each
point at each point in J°°(U). Since the evolutionary vector fields Y7, Ys, ..., Y; are
arbitrary, 3, must vanish. Alternatively, one can argue formally by recalling that
the Euler-Lagrange operator annihilates Lagrangians which are locally d;; exact,
i.e., which are local divergences. Therefore the application to (2.7) of the Euler-
Lagrange operator with respect to the variables Y leads directly to ¥, = 0. This
proves the uniqueness of the operator Q(Y).

Next we establish the local existence of the operator Q(Y). Write P(Y) in the
form (2.2). Since the coefficients Q! are of top horizontal degree it is a simple
exercise to check that

Q4 = dal' ARL),
where I = iI’ and

R" =D, — QI
(Recall that D; = tot % is the total vector field defined by (1.38).) Accordingly,
(2.2) becomes

k—1
P(Y)=Y"Qq+Di[ Y Dp(dz' N\Y*RL)]
|I7|=0
and consequently (2.5) holds with i
QY)=Y"Qs,  where Qo= Y (~D);P! (2.8)
and k—1 |7]=0
R(Y)= > D;(Y*Rl). (2.9)

|1]=0

The local uniqueness and existence of Q(Y') suffice to imply that this operator is
globally well-defined. ]
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DEFINITION  2.3. Let P: Ev(J*®(E)) — Q™°(J*°(FE)) be a total differential oper-

ator described locally by
k

P(Y)= Y (D;Y*)PL
|1|=0
Then the associated zeroth order operator E(P) defined by
k
E(P)(Y)=Y®E.(P),  where E,(P)= > (-D);P] (2.10)
|1]1=0
is called the Euler operator associated to P.

Before turning to the applications of Propositions 2.1 and 2.2, several remarks
are in order. First, we note that the decomposition (2.5) is not valid (even locally)
for operators P: &v — Q™% for r < n. For example, on E : R> x R = R? with
coordinates (x,y,u) — (x,y), the operator

P(Y) =Y (uy dy — uy dz) — (DyY )udx + (DY )udy

mapping &v to 210 does not admit such a decomposition. Together with a previous
example, this suggests that for » < n it is not possible to canonically construct, by
some universal formula linear in the coefficients of P, a globally well-defined zeroth
order linear operator Q: v — Q" while, for » = n, the only such operator is given
by (2.10).

Secondly, although we have established that E(P) is a globally well-defined op-
erator, we can assert presently only that the decomposition

P(Y) = E(P)(Y) +dyR(Y) (2.11)

holds locally. The global existence of the operator R has not yet been established.
It is obvious that the operator R is not uniquely determined by this decomposition
(unless n = 1). Hence, without additional restrictions on R, the elementary unique-
ness and local existence arguments of Proposition 2.2 will not prove the global
existence of the operator R. To this end, let
!
R(Y)= > (D/Y")R], (2.12)
[1]=0
be a total differential operator from &v to 2™°. Let p be a point in J*°(E) and
suppose that the order of R is [ at p. We say that R is trace-free at p is either [ =0
orforl>1
D;— R (p)=0, |I'|=1-1. (2.13)

This is an invariantly defined condition on the symbol of R.
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ProPOSITION 2.4. Forr < mn, let R: E&v — Q™° be a trace-free total differential

operator. If
dg[R(Y)] =0

for all evolutionary vector fields Y, then R = 0.

PROOF: Suppose, in order to derive a contradiction, that there is some coordinate
neighborhood J°°(U) on which R is non-zero and that the order of R equals [ > 0
on this neighborhood. Thus, with R is given by (2.12) on J*°(U), (2.13) holds if
[ >1and RL # 0 for |[I| = 1. An simple calculation shows that

k
dy[RY) =Y*AdyRe+ > (D;Y®)[da’ A RE +dy R
|I|=1

4+ (DiyigeiysY ) da’ A R0
Because of the hypothesis, this vanishes for all Y* and hence it follows that
dz'* A Riizi) =,
Written out in full this equation becomes
dz’ ARG 4 da™ ARYRTU 4 dx' AR 4+ =0,

On account of the fact that Rl is trace-free, interior evaluation of this equation
with D; gives rise to
(n+1—r)R}"="" =0.

Since r < n this contradicts the assumption that the order of R is l on J*°(U) and
proves that R must vanish identically. ]

If P: v — Q™% is a second order total differential operator, then R: v —
Qb8 as given by (2.9), is a first order, trace-free operator. Since the difference
of two first order, trace-free operators is again trace-free, Proposition 2.4 can be
used to prove that P decomposes uniquely into the form (2.11), where R is first
order and trace-free. Thus this decomposition holds globally and both operators
E(P) and R are constructed canonically from P. If P is of order 3 or higher, then
R is of order at least 2 and trace-free. However, the difference of two second order
trace-free operators is no longer necessarily trace-free (if the symbols of the two
operators coincide then the difference is a first order operator which need not be
trace-free) and Proposition 2.4 cannot be used to prove the uniqueness of R. Tt is
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possible to prove that for operators P of order 3 or higher that there does not exist a
canonical, universal decomposition of the type (2.11). Nevertheless, we shall prove
in Chapter 5 (by a partition of unity argument) that the decomposition (2.11) does
indeed hold globally. Thus the operator R always exists globally — it just cannot
in general be canonically fashioned from the coefficients of P.

If we allow ourselves to interpret (2.11) as a geometric version of the integration by
parts formula, then we can summarize this state of affairs by saying that there exists
a global integration by parts formula for total differential operators P: Ev — Q7°
only for r = n which is canonical only for operators P of order two.

B. Euler Operators. For our first application of Propositions 2.1 and 2.2, let
A = Lv beatype (n,0) form on J*(E), i.e., a Lagrangian for a variational problem
on E. We consider the operator P: Ev(J>®(E)) — Q"°(J>®(FE)) given by

k
PA(Y) = Loy A= > _ (DY) (9LL)v.
|1|=0

In this instance we shall denote the coefficients @, introduced in Proposition 2.1
by EL(L) so that

Loy A= [Y*EL(L) + Di(Y*E!(L)) + Dy (YOEJ (L)) + -] v

=[>_ Di(Y*EL(L))]v, (2.14)

|I|=0
where
k—|1|
Eo(L)= ) (|I||§||J|)(—D)J(5£JL)- (2.15)
|J|=0
When |I| =0
Eo(L) = 0oL — D;(0LL) + D (97 L) — -
k
= > (=D)(9:L) (2.16)
|I|=0

is the classical Euler-Lagrange operator for higher order, multiple integral problems
in the calculus of variations. Aldersley [1] refers to the operators EL (L), |I| > 0, as
higher Euler operators — we shall refer to them as Lie-Euler operators in order to
emphasize that they arise naturally as the coefficients of the Lie derivative operator
P\(Y) = Ly A in the representation (2.14) and to distinguish them from another
set of similar operators to be introduced later.
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DEFINITION 2.5. The Euler-Lagrange operator
E: Q"0(J*(E)) — Q1 (J=(E))
is the linear differential operator
E(\) =EL(L)0“ Av.

The type (n,1) form E()) is called the Euler-Lagrange form for the Lagrangian \.

Equation (2.5) can be rewritten in terms of the Euler-Lagrange form as
LovyA=(prY)—= E\)+dg[(prY)— o, (2.17a)

where o is the type (n — 1, 1) form given locally by

k—1
o= Y D[E (L) Avy], (2.17b)

where 17]=0

. — P
v; = D; V.

Thus, in the context of the present example, Proposition 2.1 leads to the formula for
the first variation in the calculus of variations while Proposition 2.2 asserts that the
Euler-Lagrange operator is globally well-defined. Our earlier remarks concerning
the global validity of (2.5) now imply that there is a global first variational formula
(again, see Chapter 5 for details) in the sense that there exists a type (n — 1,1)
form (3, defined on all of J>°(FE), such that

LoryA = (prY) = EQ\) + dyl(prY) = ]

However, the form 3 need not, in general, agree with o on any given coordinate
chart.
From (2.4), we find that

[&.9]

9 = ||Z ("5 (D) EL (2.18a)
J|=0

and therefore any computation involving the partial differentiation operators 9%
can also be carried out using the Lie-Euler operators. In fact, calculations in the
variational calculus are often simplified by the use of these latter operators.
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We now use Propositions 2.1 and 2.2 to give elementary proofs of two impor-
tant properties of the Lie-Euler operators. Recall that round parenthesis indicate
symmetrization on the enclosed indices so that, for example,

(ihk_lihk h ik k rhi
5 EMR) = S (O B" + G B + 0 EyY).

PROPOSITION 2.6. Let f be an function on J*(U). The Lie-Euler operators E
and the total differentiation operators D; satisfy the commutation relations

ELD; f)=0%ED(f),  I=il (2.19a)
for |I| > 0 and
E.(D;f) =0. (2.19b)

PROOF: On account of the fact that £,y commutes with dj; (see Corollary 1.17)
we can conclude that

Eer(Djf) = Dj(ﬁerf)-

Due to (2.14) we can rewrite this equation in the form (assuming that f is of order
k)

k+1 k
N DiYEL(D,; )] = DA Y DilY EL()]}
|7]=0 [I]=0
k+1 ‘
= > Dily*sGED ().
|I|=1

By virtue of Proposition 2.1, we can match the coefficients in this equation and
thereby arrive at (2.19). [

COROLLARY 2.7. Suppose f is a local I'" order divergence in the sense that there
are functions A”,|J| =1 on J®(U) for which f = D;A’. Then EL(f) = 0 for all
Il <1-1.

PRroOOF: This follows immediately from the repeated application of (2.19). Inciden-
tally, this result first appeared in [45]. ]
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PROPOSITION  2.8. Let f and g be two functions on J*(U). Then the Euler-
Lagrange operator satisfies the local product rule
k

Eo(fg) = ) [(=D)1f1E:(9) ZEI D)1(g)]. (2.20)

|1]=0 |1]=0

PrROOF: From the product rule for the Lie derivative

'Cer(fg) = ('Cerf)g + f(’cerg)
and (2.14), we deduce that

k
S DiYEL(fg)]

|1]=0

= > DiY*EL(Ng+ [ ) DilY*EL(9))- (2.21)

|7]=0 11]=0
Moreover, Proposition 2.1 can be used to infer that

Di[Y*EL (g =Y EL())(=D)1g] + Di[R1 (Y)]
and

fDIIY*Eq(9)] = Y[(=D)1 f]E:(9) + Di[Ry(Y)].

for some choice of linear total differential operators R and R%. These two equations
are substituted into (2.21). Comparison of the coefficients of Y yields (2.20). 1

Had we explicitly exhibited the operators R} and R}, then we could have com-
pared the coefficients of the higher order derivatives of Y in (2.21) to recover
Aldersley’s product rule for the Lie-Euler operators EL, |I] > 0.

COROLLARY 2.9. If f is a function on J*°(U) and

Eo(fg) =0 (2.22)
for all functions g = g(z*) on w(U), then f = f(z*). If (2.22) holds for all functions
gon U, then f = 0.

PROOF: First take g = g(x"). Then the product rule (2.20) reduces to
k

Eo(f9)= Y [(=D)r(9)]EL(f) =0

|7]=0

Since g is arbitrary, this implies that EL(f) = 0 for all |I|. In view of (2.18), this
shows that f is a function of the base variables z* alone. The second statement now
follows by letting g = u® for some S. ]
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For our next application of Propositions 2.1 and 2.2, let w be a type (r, s) form
on J*(F) and let

k
P,(Y)=prY—w= > (DY) (9}~ w).
|T|=0

By Proposition 2.1, we can rewrite this operator in the form

k

pry—w= Y D/[Y*Fl(w)] (2.23)
|1]=0
where the operators F! are defined by
k—|I|
Fy(w) = |Z|: (15 (=D).1 (82 = w). (2.24)
J|=0

We call these operators interior Fuler operators since they arise from the represen-
tation (2.23) of the interior product operator. Note that FI(w) is a form of type
(r,s —1). These operators were defined, at least recursively, by Tulczyjew [70]. We
shall see in Chapter 4 that they play a key role in the proof of the local exactness
of the interior rows of the variational bicomplex.

PROPOSITION 2.10. Letw be a type (r, s) form on J*°(U). Then the interior Euler
operators F1 and the horizontal differential d, satisfy the commutation relations

Fldyw) = F{ (dz?) A w) (2.25a)
for |[I| >0 and I = I'i, and
Fo(dyw) = 0. (2.25b)

Moreover, if Y is any evolutionary vector field, then
prY — Fi(w) = —Fl(pry — w). (2.26)
PRrOOF: To prove (2.25) we use the commutation relation
prY = (dyw) = —dg(prY = w)

and repeat the calculations used in the proof of Proposition 2.6.
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To prove (2.26), let Z be another evolutionary vector field. Since interior evalua-
tion by prY commutes with D;, it follows immediately from the defining relations
(2.23) for the interior Euler operators that

k
prYy— (prZ—w)=prYy -~ Z Di[Z°FI(w)]

11]=0
k
=Y Di[Z%(prY = Fl(w))] (2.27)
|I|=0
and
—prZ— (prYy—w)=— Z[ZaFi(er4w)]. (2.28)
|7]=0

The left-hand sides of (2.27) and (2.28) are equal and therefore the coefficients on
the right-hand sides must coincide. ]

With r = n, Proposition 2.2 can be applied to the operator P, (Y") to deduce that
prY o w= B(R)(Y) + dylR(Y)) (2.29)

where E(P,)(Y) = Y*F,(w) is an invariantly defined operator and R(Y") is the
locally defined, total differential operator

k—1
R(Y)= > Di[Y*(D;—= Fl(w))]. (2.30)
|1|=0

DEFINITION 2.11. For s > 1, the linear differential operator
1 Qe (J7(E)) — Q2 (J=(E))

defined by
1 1 =
I(w) = = 6% — > — I .
(W) =~ 0% A Fa(w) = - 0% A [ (=D)1(9— w)] (2.31)
|1]=0
is called the interior Euler operator on Q™*(J*°(E)).
Since we have defined I in local coordinates, we need to verify that it is actually
globally well-defined. This can be done in one of two ways. The first way is obtain
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the change of variables formula for the operator F,,(w). Let (z,u,U) and (y,v,V)
be two overlapping coordinate charts on E. Let w;;y and wyy be the restrictions of
a type (n, s) form w on J*(E) to J*(U) and J*° (V). Let

k
Folww) = Y (=D)1(0L = w)
|1]=0
and
FQ(WH/) = Z (_D>I(aa - w|V)7
|1]=0

— . —7

where D; denotes total differentiation with respect to y* and 9, is the symmetrized
partial differentiation with respect to v¢. Then, because E(P,) is an invariant
differential operator, we have, on U NV,

_/8_ -
Y Fp(wy) =YFo(wu)

and hence 5
_ u®
Falwv) = 55

It is now evident that the form 0 A F,,(w) is a globally well-defined, type (n,s)
form on J*(E).

The other way to verify that the differential form I(w) is well-defined globally is
to give a coordinate-free expression for its value on the prolongations of evolutionary
vector fields. For instance, when s = 2, we find, on account of (2.26) and (2.31),
that

Fo(wiu)- (2.32)

1
I(@)(prY,prYs) = 5 pr¥a = pr¥i = (0% A Fo(w)]

1
=35 prYs— [Y*F,(w)+ 0%F,(prY; — w)]

1
= S [FYP Fa(prYe = w) + Y5 Fa(prYi = w)]

_ %[—E(Pa)(lﬁ) + E(P3)(Ya)],

where a = prYs; — w and = prY; = w. In general, if w is of type (r,s), if Y7, Y3,
..., Yy are evolutionary vector fields, and if we set

Wi :erSJ ...ervi_lJ er’i—i—l"'4 erlgw,
then
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S

1

I(w)(prYy,prYs,...,prY,) = p > (~1)"FE(R,,)(Y). (2.33)
i=1
Alternatively, we have that
prY = I(w)=EP,)(Y)+ I(prY — w) (2.34)

which furnishes us with an inductive definition of I by vertical degree.

THEOREM  2.12. The interior Euler operator I: Q™*(J>®(E)) — Q™*(J>®(E))
enjoys the following properties.

(i) The kernel of I contains all locally d; exact forms in Q™*(J>(E)), i.e.,
Tody=0.
(ii) The interior Euler operator I is a projection operator, i.e.,
I*=1.

(iii) The difference I(w) — w is locally dy; exact. Thus, on each coordinate chart
J>(U), there is a type (n — 1, s) form n such that

w=I(w)+dg(n). (2.35)
This decomposition is unique in the sense that if

and @ is in the image of I, then ® = [ (w).

(iv) The interior Euler operator is a natural differential operator. If ¢: E — E
is a fiber-preserving map which prolongs to pr¢: J*°(E) — J°°(FE), then

I(pr¢)*(w)] = (pr¢)*[I(w)].
(v) If X is a projectable vector field on E, then

I[Loe xw] = Lo x [I(w))]. (2.36)
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Vi e 1induced diflerential 0 : — efined by o = 1o satisfies 0 = 0.
i) The induced diff ial §: F* — F*T1 defined by § Tod, isfies 5>

PRrROOF: Property (i) follows immediately from (2.25b). To prove (ii), first observe
that if w is of vertical degree s, then by virtue of (2.23),

w= [ B A @ W) =1 3 Dife" A FLw)]

[I|=0 |1]=0

Because w is of top horizontal degree, this equation can be rewritten as (2.35), with

n= i D;[0™ A FLI(D; — w)]. (2.37)
|7|=0

To (2.35), apply the interior Euler operator I and invoke property (i) to conclude
that I(w) = I*(w). This proves (ii) and then (iii) follows immediately.

Property (iv) follows from the naturality of the operator E(P,). Property (v) is
simply the infinitesimal version of (iv). We can also give a direct proof of (v) which,
in addition, serves as a good illustration of the variational calculus which we have
developed thus far.

To begin, let the vector field X on E be given locally by

0 0
X=a . * —.
a'(x) Br% + b%(x, u) e
Since e
o a_ Y B
Lo x 0% = dy b = 5P 6”,
it is a straightforward matter to check that (2.36) is equivalent to the commutation
rule
obP
Fa(ﬁer w) = ,Cer (Fa(w)) + 8?Flg(u}). (2.38)

To derive (2.38), let Y be an evolutionary vector field with local components

Y :Ya[x,u]g—.
ua

Then, on the one hand, since d; commutes with £, x, the application of £, x to
(2.29) gives rise to

Lorx(prY = w) = [pr X(Y)][Fa(w) + Y [Lpr x Fo(w)] + dym-
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On the other hand, the product rule implies that
Lovx(prY = w)=[Lopnx(prY)|—= w+prY = [Ly x w]. (2.39)
By virtue of Proposition 1.20,
Ly x(prY) = [pr X, prY] = pr Z,

where
ob* ;0
ouh g
Note that the generalized vector field Z on F is w vertical but that this would not
have been true had X not been projectable.
To each term on the right-hand side of (2.39) we apply (2.23) to conclude that

Z=[prX(Y*) -Y"

[Lorx(prY)] = w=ZFo(w) + dymne (2.40)
and
prY = Lo xw=YF,(Lpr xw)+dyns. (2.41)
The combination of (2.39)—(2.41) leads immediately to (2.38), as required.

Finally, to prove (vi), let w € F*(J°(E)). Then dy,w € Q™" and therefore, at
least locally,

for some form 7 of type (n — 1, s+ 1). The application of d, to this equation leads
to

dy oI ody(w) = dydy(w)

from which it now follows that
6t =ITodyolody, =0.

COROLLARY 2.13. The Euler-Lagrange operator E: Q"9 (J>®(E)) — FY(J*(E))
enjoys the following properties.
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(i) For any Lagrangian A € Q™%(J>(E)),
E(\) =Tody(N). (2.42)
(ii) For any type (n —1,0) form n,
E(dyn) = 0. (2.43)

(iii) If ¢: E — E is a fiber-preserving map which prolongs to pr¢: J*°(E) —
J°(E), then

E((pr¢)"A) = (pro) E(A).

(iv) If X is a projectable vector field on E, then
E(LprxA) = Lo xE(N). (2.44)

PROOF: Properties (ii)—(iv) follow directly from (i) and the corresponding proper-
ties of the interior Euler operator I. To prove (i), let Y be an arbitrary evolutionary
vector field on J*°(F). Then (2.24) implies that

LoryA=DprY — dy\.

The representation (2.14) of the Lie derivative operator shows that the left-hand
side of this equation equals prY — E()) 4+ dym while the representation (2.23) of
the interior product operator shows that the right-hand side equals prY — I(dy, \) +
dgne. Equation (2.42) now follows from Proposition 2.2. Alternatively, we find in
local coordinates that

k
To(dyX) =1I[> (0LL)6F Av]
|T|=0
k

=0“N [ (=D)1(0L)L] Av

|7]=0
= E(N),

as required. |
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C. Some Geometric Variational Problems. In this section we use the varia-
tional bicomplex to compute the Euler-Lagrange forms for some geometric varia-
tional problems for curves and surfaces. The idea is a simple one. In each instance
we use a moving frame adopted to the problem to construct an invariant basis for
the contact ideal and then we compute the components of the Euler-Lagrange form
with respect to this basis. The problems considered here are taken from Griffiths’
book [31] on exterior differential systems and the calculus of variations.

EXAMPLE 2.14. Space curves in R3.

Let E be the trivial bundle £ : R x R®* — R with Cartesian coordinates (z, R) —

x, where R = (u', u? u3) is the position vector in R3. The two inequalities

|R'| #£0 and |R' x R"|#0.

define a open subset R C J°°(E). A section ~y of E is a space curve in R3. The space
curve 7 is called regular if j°°(v)(z) € R for all z. We restrict our considerations
to the variational bicomplex over R.

A Lagrangian for a variational problem on R is a type (1,0) form

A=L(z,R,R,R",... , R¥) dx.

For geometric variational problems, we consider only Lagrangians A which are natu-
ral in the sense that they are invariant under the pseudo-group of local, orientation-
preserving diffeomorphisms of the base R (i.e., under arbitrary reparameterizations
of the curve) and invariant under the group of Euclidean motions of the fiber R3.
Call the group of all such transformations G.

DEFINITION  2.15. The variational bicomplex {Qg"(R),dy,dy} of G invariant
forms on R is called the natural variational bicomplex for regular space curves.

We shall describe the forms in Q2°(R) explicitly. Let {T, N, B} be the Frenet
frame for a regular space curve. From the jet bundle viewpoint, we treat the frame
{T, N, B} as a smooth map from the infinite jet space R to SO(3). The function T
factors through the first jet bundle while both N and B factor through the second
jet bundle. The curvature x and torsion 7 are GG invariant functions on R defined
by the Frenet formula

—|N|=|-x 0 7| |N]|. (2.45)
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Now define contact one forms ©!, ©2, and ©3 by
0=0'T+06*’N +6e°B, (2.46)

where § = dR — R'dx are the usual, vector-valued contact one forms on R. The
forms O, together with all of their derivatives ©F, O, ... with respect to arclength
s form a (G invariant basis for the contact ideal — if ¢: F — E belongs to G and
pr¢: R — R is the prolongation of ¢, then

(pro)*©"=0" and (pro)* o' =6’
and so on. We also define the G invariant horizontal form

o =|R'|dx, where |R'|=+/(R' R,

and (-,-) is the usual inner product on R?. Consequently, every form in Q5" (R)
can be expressed as wedge products of o, the forms ©! and their derivatives, with
coefficients which are smooth G invariant functions on R. Such coefficients are
necessarily functions of k, 7 and their derivatives. In particular, a Lagrangian
A€ Q};’O(R) assumes the form

A= L(k,7 k70 7y 6P 7P g, (2.47)

The next step in our analysis of the natural variational bicomplex for space curves
is to compute the vertical differentials of o, ©!, ©2, ©3, k and 7. To begin, we
totally differentiate (2.46) with respect to s (where d/ds = |R’|d/dt) and apply the
Frenet formula to arrive at

0=aT+3N+~B, (2.48)
where

a=0! - k02 (2.49a)

B=kO' +0%—-703 and (2.49b)

v =710%+ 63 (2.49c)

ds
Next we compute the vertical differential of %:

ds 1
dV(%) = dV|RI| = ‘R/‘ <0/7R/>

=(,T) = o (2.50)
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This formula leads to
dyo=aNo (2.51)

and the commutation rule

d _
Vids —

d

—dy,. 2.52
dSV (5)

A
ds

We shall make repeated use of this result.
Indeed, this commutation rule, together with (2.48), immediately yields

dR .
dyT=dy,— =—-aT +0
v Vs al +
= BN +B. (2.53)
Next we apply d,, to the first Frenet formula to obtain

dr

To evaluate the left-hand side of this equation, we use the commutation rule (2.52),
(2.53), and the Frenet formula to find that

dT ar d
- _a—— + 2 (d., T
dy ds “ ds * ds (dyT)
= —kfT + (ke + B — 7y)N + (18 + ) B. (2.55)

A comparison of (2.54) and (2.55) implies that
dyk = —ko+ 3 — 77 (2.56)

and )
dVN = —ﬁT—‘r E(Tﬂ‘f"Y)B

Next, the vertical differential dy,B can be computed by differentiating the or-
thonormality relations (T, B) = (N, B) = 0 and (B, B) = 1. We conclude that the
vertical differential of the Frenet frame is

T 0 B v T

dy |N|=|-0 0 L(rB+4)| | N|. (2.57)
Bl |-y -iB+4) 0 B
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The formula for dy,7 can now be derived by differentiating the last Frenet formula
B = —7N. This gives

d
dyT=—Ta+ky+ g[%(Tﬁ +9)]. (2.58)

Finally, by applying d,, to (2.48) and by substituting from (2.57), we conclude that

o! 0 I6; ol e!
dy |02 = | -8 0 LrB+4) | A |02 ]. (2.59)
©° —y =B +4) 0 ©°

Equations (2.51), (2.52), (2.56), (2.58) and (2.59) constitute the basic computa-
tional formulas for the variational bicomplex Q5" (R). For the natural variational
bicomplex for regular plane curves, formulas (2.51) and (2.52) remain valid while
the others simplify to

dyk = —ka + 3 (2.60)
and
CR 0 g ol
W [3]-1° 2)4[8]. 2
We are now ready to compute the Euler-Lagrange form for the natural Lagrangian
A= L(k, 7, ke, 7, &, 7y 6P 7)) 6
First, let
p _ 9L w _ 9L
k Ok’ T or(P)
and define recursively, for j =p—1,...,1,0,
5y OL d : : oL d ,
pPU) — __ 2 (pU+D prU) — _ _ 2 (pU+D),
" Okl9) ds( <) T or0) ds( )

Define the Euler-Lagrange operators F, (L) and E,(L) and the Hamiltonian oper-
ator H(L) by

OL _d 9Ly & oLy
Ok ds 0Ok ds? Ok ’
oL d ,0L d*> 0L

o @) T (EE)

E.(L) =P =

E.(L) =P =

and
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H(L) = _L+pé1),'€+p’£2),g+..._|_p’£p),£(p)
+PW+ 4+ P@r ... 4 pPIrP),

Bear in mind that E,(L) and E,(L) are the Euler-Lagrange expression obtained
from L thorough the variation of k and 7 thought of as new dependent variables
whereas our objective is to compute the Euler-Lagrange expression for L derived
from the variation of the underlying curves on R3. A direct calculation leads to

dH
— = —kE, —TE;. 2.62
g5 = BT (2.62)
This identity may also be derived from Noether’s theorem (see Theorem 3.24) for
autonomous Lagrangians.
We now compute dy, A:

oL oL OL
_rgx el SRR (p)
dv)\ —[aﬁdvﬁ‘f’ aﬁdvﬁ‘f’ + 8/{(1)) dvli ] Ao
oL OL oL
- T dor 4. (p)
+[6T dy T+ 97 dy T+ + ) dyt?P| Ao
+LaAo. (2.63)

We use the commutation rule (2.52) to “integrate by parts”, that is, to cast off
expressions which are total derivatives and which therefore lie in the kernel of I.
For example,

oL d
- dy kP Ao = P§p>dv(£m<p*1>) Ao

d
= pP) [_,i(p)a + d—(dvﬁ(p_l))} Ao
S

= [-PPxP]ane [(%Pﬁ)dvm@”} No+dy-].

The first term on the right-hand side of this last equation can be combined with
the last term La A o in (2.63) to give two of the terms in the formula for H(L);

(=1 in

the next term is this equation can be combined with the term F—1) v H
(=

(2.63) to become prY dyx®~1 . By continuing in this fashion we deduce that

dyA = [E.(L)dyk + E;(L)dyT — H(L)a] Ao +dg[-].
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Already, this formula insures that the Euler-Lagrange form F()\) will be expressed
in terms of the Euler-Lagrange expressions E, (L) and F.(L) and the Hamiltonian
H(L). To complete the calculation of E()\), we use (2.53) and (2.48) to evaluate
E.dyk No:

E.dyk Ao = Ey|—ka+ -1y Ao = —[kE.a+ B8+ TEAN] Ao + dy[E.f]

= [-kE,.0' —kE.OY Ao+ [(k* = T?)E, — E.0%| Ao
+ [1E.0° —1E. Q% Ao +dy| -]
= [(kEJO'No + (K2 — T2)E, + E.)O% Ao + [27E, + TE.]O3 Ao
+ dH[' . ]
A similar but slightly longer calculation is required to evaluate E.dy7 A ¢ and

thereby complete the proof of the following proposition.

PROPOSITION 2.16. Let A € Q};’O(R),
A= L(k, T k7, k7, ..., kP, 7)) g,
be a natural Lagrangian on the variational bicomplex for regular space curves. Let

E., E; and H be the FEuler-Lagrange expressions and Hamiltonian function for L
viewed as a function of k, 7 and their derivatives. Then

E(\) = [E,0' + F,0% + E30° Ao

where
E, = H + kE, + 7E;, (2.64a)
Ey = kH + (k* =) E,, + E,. 4+ 2k7TE; (2.64D)
T b 2
and

[72/£2 — k* —2k2% + ki

By = 7B, +27E, — kB, + |E,

K3

i 1.
+25E — (2.64c)
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On account of (2.62), the tangential component E; vanishes identically.

A couple of special cases are noteworthy. First if A is independent the torsion 7
and its derivatives, then these formula for the Euler-Lagrange form simplify to

By =rkH + (k* = 1) E, + E,,

and
Es =7E, + 27E.,..
Since p
E. E; = £(7E2)

the Euler-Lagrange equations Fy = E3 = 0 always admit the first integral

2 _
TE. = ¢y,

2

where c; is a constant. In particular, for the Lagrangian \ = %/{ o, we have that

1
E2:R+§/€3—72/€,

and
E3 =7k + 27K.
First integrals for this system are

1
K2+ 12K% + 1/{4 = ¢y and TKZ = cy.

For variational problems in the plane, there is no binormal component ( i.e., ©3)
for the Euler-Lagrange form and we find that

E(\) = [kH + K*E, + E,]©% A 0. (2.65)

For example, the Euler-Lagrange equation for the Lagrangian \ = %/'{20 is

1
K+ k%E— —ki% =0,
2
The Euler-Lagrange form for the Lagrangian A = ko vanishes identically as, of

course, it must — the integral of A\ around any closed curve is the rotation number
of that curve and this is a deformation invariant of ~.
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EXAMPLE 2.17. Surfaces in R3.

This example follows the same general lines as the previous one. We now take
as our bundle E: R? x R3 — R? with Cartesian coordinates (z*, R) — (x'), where
i = 1,2 and R = (u',u? u3) is again the position vector in R3. We restrict our
considerations to the open set R C J°°(E) where the one-jets R; satisfy

’Rl X R2’ 7§ 0.

A section ¥: R? — R3 whose infinite jet lies in R defines a regularly parametrized
surface in R3. Furthermore, we shall consider only those forms on R which are
invariant under (i) all local oriented diffeomorphisms of the base R?, and (ii) under
the action of the Euclidean group on the fiber R3.

* %k

DEFINTION 2.18. The bicomplex (5" (R), dy, dy,) is called the natural variational
bicomplex for regular surfaces in R3.

Observe that if A € Q%°(R), then the integral

1= 2
M

is well defined for any compact surface M in R3® — the diffeomorphism invari-
ance of X insures that A pulls back via the coordinate charts of M in a consistent,
unambiguous fashion.

We now view the local differential geometry of surfaces as being defined over R.
Indeed, the normal vector IV, the first and second fundamental forms g;; and h;;

and the Christoffel symbols F;l, as defined by

N = R1 X Rg/‘Rl X RQ‘, (2.66&)
gij = (Ri, R;), and (2.66b)
Rij =T};R; + hi;N. (2.66¢)

are all functions on the second jet bundle of F. Let
hy =g"hj and  hY = g"g"hy,

where g% are the components of the inverse of the metric g;;. Let V; denote
covariant differentiation with respect to the Christoffel symbols in the direction D;.
Equation (2.66¢) can be rewritten as

V,R; = hy;N.
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The Weingarten equations and the Codazzi equations

D;N = —h’R; (2.67)
and
Vihij = Vjh (2.68)
are identities on R. Finally, let
Hy=1itrh= %hf,

and

Hy = trh* =2H? - K,

where K = det(h;;). Both H and K are G invariant functions on the second jet
bundle of E. On sections X of ¥ they are, of course, the mean and Gauss curvatures
of the surface X..

We shall compute the Euler-Lagrange form for G invariant Lagrangians A €
Qé’o(R). The invariance of A under the Euclidean transformations of the fiber R3

implies that A can be expressed in the form
X = L(5%(gij, hi)) v = L(9ijs hijs 9ija, hijps - ) v (2.69)

for some smooth real-valued function L defined on the k-jet bundle of maps from
R? to Sym? (T*(R?)) x Sym?(T*(R?)). To insure that X is invariant with respect
to all local diffeomorphism of the base R?, we shall suppose that L is a natural®
Lagrangian in the metric g;; and in the symmetric (0, 2) tensor field h;;. Examples
of GG invariant Lagrangians include the Gauss-Bonnet integrand

A=gKv,
the Willmore Lagrangian
1
A= 5\/g(H2 - K)v

as well as higher order Lagrangians such as

1
A= 5\/§(AH)2V7

INatural variational principles are discussed in greater detail in Chapter 3C and Chapter 6
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where A is the Laplacian computed with respect to the metric g. As a cautionary
note we observe that, because of the Gauss-Codazzi equations, different functions
L can define the same G invariant Lagrangian A. For example, we can define the
Gauss-Bonnet integrand by either a function on the 2-jets of the metric alone, viz.,

1
VK = %312127

where R;jny is the curvature tensor of g;;, or alternatively, by a zeroth order La-
grangian in g and h, viz.,

VIK = JG(2H? — Hy).

Of course, as functions on the jets of the position vector R both formulas coincide.
We introduce contact one forms ©¢ and = by

6 =O'R; + EN, (2.70)

where § = dR — R;dx*. The form = is G invariant whereas ©' is invariant under the
group of Euclidean transformations in the fiber but transforms as a vector-valued
form under local diffeomorphisms of the base R?. Differentiation of (2.70) with
respect to D; leads, by virtue of (2.66b) and (2.67), to

0; = a‘R; + (3;N, (2.71)
where
af =V,;0' —h'E,
and
B; = h;j©" + D,E.
Here the covariant derivative of © is the type (1,1) tensor-valued form defined by
V,;0' = D;0' + 1,0

Next, we compute dy,gi;, dy, N and dy h’. From (2.67) and (2.71), it immediately
follows that

dy gij = (i, Rj) + (05, R:)
= gi oaé- + g1 al. (2.72)
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From the orthonormality relations (N, N) =1 and (N, R;) = 0, we deduce that
dyN = —g" BiR;. (2.73)
To compute dvhé, we apply d, to the Weingarten equation (2.67) to obtain
Dj(dyN) = —(dyh})R; — I 0.
We substitute into this equation from (2.71) and (2.73) to conclude, after some
calculation, that
dvh;" = gil(Vjﬁl) — hé- .
This, in turn, gives rise to
dyhij = hij a; + V6. (2.74)
We are now ready to compute the Euler-Lagrange form for the Lagrangian .
Define

g . OL oL
AV =FY = — — 2.75
q ©) ™ g, L 3gij’l) + (2.75a)
an
. . oL OL
BY=FEJ =——-D 2.75b
= an ~ Plgn )t (2.75b)
and set

Al = gy A7 and B] = hy B
Because L is a natural, diffeomorphism invariant Lagrangian Noether’s theorem
implies that the two Euler-Lagrange expressions A” and B% are related by the
identity
2V; Al +2V;B] — (V;hj,)B?* = 0. (2.76)

We shall give a direct proof of this result in the next chapter.

The same “integration by parts ”
is repeated here to yield

dy A = [AYdy gi; + BYdyhij) Av+dyl-]

argument that we used in the previous example

= [24la} + Blal + BV, 3] Av+dyl--]
= —[2V;A] + V;B] + hy;(V;B7)]©" Av
+ [VijBY — Blhi —2AIR|EAv+dyl-- .
But, by virtue of the Codazzi equations (2.68),
[hi(V; B0 Av = [V;(B]) — (Vilij)BY)©" Av+dy -]

and hence, on account of the (2.76), the components of © in the foregoing expression
for dy, A vanishes identically.
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ProposiTION 2.19. The Euler-Lagrange form for the G-invariant Lagrangian A\ €
Q%°(R) given by (2.69) is

E(\) = [VyBY — BIhi — 240 E v

where A" and BY are the Euler-Lagrange expressions (2.75)

For example, with L = ,/gf(Hy, Hz) we have that

BY = /g3 /197 + f2h"]
and

Al = g[6] — S huh] — Bk,

where f; and f5 are the partial derivatives of f with respect to H; and Hs respec-
tively. The Euler-Lagrange form for the Lagrangian

A= gf(Hy, Ho)v
is therefore
E(\) = g[$Af + Vig(h' o) — 2H1 f + Hafy + 2Hy(3Hy — 2HY) fo] E A v.
With f = 1(Hs — H}), this gives
E(\) =\g[iAH - KH*+ H*|EAv

as the Euler-Lagrange form for the Willmore Lagrangian. For the Gauss-Bonnet
integrand f = 2H? — Ho, this gives E()\) = 0.
ExamMpLE 2.20. Curves on Surfaces.

Let M be a two dimensional Riemannian manifold with metric ¢ and constant
scalar curvature R. In this final example, we wish to compute the Euler-Lagrange
equations for the natural variational problems for curves on such surfaces. The
Lagrangians for such variational problems take the form

A= L(kg, fig, Figy - . ) 0, (2.77)

where k, is the geodesic curvature of the curve, computed with respect to the metric

g, and
du® du?
= /d h ! = i .
o=|u|dz, where |u| ngd:z; o
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To facilitate the calculations for this example, it is very helpful to introduce
covariant horizontal and vertical differential Dy and Dy, . If D denotes the usual
covariant differential defined on tensor-valued forms on J°°(FE), then

D:DH—‘[-D\/.

For example, if A is a type (1, 1) tensor-valued type (r, s) form on J*°(FE), then DA
is the type (1,1) tensor-valued (r 4+ s+ 1) form with components

DA} = dA} 4 du® A (AS Ty, — AjTS,).

Here I’éj are the components of the Christoffel symbols for the metric g;;. Since
d = dg + dy, and du® = 0% + u¥dz, this equation decomposes by type to give

Dp Al = dy Al + dx A (AT, — AJTS,)
and

Of course, on scalar valued forms d;; and Dp, and d;, and Dy, coincide.
The curvature two form Q; decomposes according to

QO = =3 Ry nedu” A du®

= [-R;"netl*0" Ada] + [ 3R; 0" A 0F]

1,1 (0,2).

Consequently, the Ricci identity
240 _ Oy l l i
decomposes by type to yield
D3 A% =0, (2.78a)

| RS wn,
DyDyA+ DDy Al = Q (ANAL— QLEAA] (2.78b)

and
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2 A4 (0’2)i l (0’2)1 i

With this formalism in hand, the calculation of the Euler-Lagrange equation for
(2.77) proceeds along the same lines as that of our first example. Let {7, N} be the
Frenet frame and define contact one forms ©! and ©2 by

0 =0T+ 62N.

The Frenet formula DT
E = K/gN (2'79)

leads to Do
— =aT + BN,
ds

where

a=06"-— 11992 and (= Iig@1 + 62

These equations imply that
dylu'|=a and dyo=aAc (2.80)

and

oe ] =15 o) (V]

To compute dy k4, we apply Dy to the Frenet formula (2.79) to obtain

DT

DV(E) = (dy k)N — kfT.

To evaluate the left-hand side of this equation, we use (2.78b) and (2.80) to deduce
that

DT" DT 1

Dy (545 = Pv )
DT D PGP
= —a— +$(DVT)—|— QT (2.81)

On a two-dimensional manifold the curvature tensor satisfies

Ri'ni = R(gind — gix6},)-
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and so the curvature term in equation (2.81) simplifies to

(L1). .
QiT' = RN'©%

From the normal component of (2.81), we therefore find that
dyky = —ka + 3+ RO%

For the Lagrangian (2.77) we define the Euler-Lagrange operator E, (L) and
the Hamiltonian H (L) as in our first example. The calculations there can now be
repeated without modification.

PROPOSITION  2.21. The Euler-Lagrange form for the natural Lagrangian (2.77)
for curves on a surface of constant curvature R is

E(\) = [Ew, (L) + E,,(L)(k2 + R) + k,H(L)|©* A 0.



CHAPTER THREE

FUNCTIONAL FORMS AND COCHAIN MAPS

We begin this chapter by studying the subspaces of functional forms F*(J*>°(F)) €
Q™s(J*(E)). These spaces were briefly introduced in Chapter One as the image
of Q™*(J°°(F)) under the interior Euler operator I:

FH(J2(E)) = L(Q*(J>(E))) = {w e Q" (J*(E)) | [(w) =w }.

We give local normal forms for functional forms of degree 1 and 2; for s > 2,
the determination of local normal forms seems to be a difficult problem. As an
elementary application of the theory of functional forms, we show that for

A = P,[x,ul0* Av € FLHI®(E))

the equation dy (A) = I(d,,A) = 0 coincides with the classical Helmholtz conditions
for the inverse problem to the calculus of variations. A simplification of these
conditions is presented in the case of one dependent variable. The problem of
classifying Hamiltonian operators for scalar evolution equations is formulated in
terms of functional 3 forms. Our discussion indicates that the complexity of this
problem is due, in part, to the problem of finding normal forms for functional 3
forms.

In section B, we classify explicitly those maps on the infinite jet bundle J*°(E)
which induce cochain maps for either the vertical or the horizontal subcomplexes in
the variational bicomplex. Attention is also paid to maps which commute with the
interior Euler operator I although only partial results are obtained. We are able,
however, to completely solve the infinitesimal version of these problems, that is,
the characterization of those vector fields on J°°(E) whose Lie derivatives commute
with either dy, dy,, or I. As an immediate application of these considerations a
general change of variable formula for the Euler-Lagrange operator is derived.

In section C, we derive a Cartan-like formula for the Lie derivative of functional
forms with respect to a generalized vector field in terms of interior products and
the induced vertical differential dy,. Suitably interpreted, this formula yields one
version of Noether’s theorem. To illustrate these results, the problem of finding
conservation laws for the geodesic equation is studied. We also show how Noether’s
second theorem can be derived, at least in the special case of natural variational
principles on Riemannian structures, from the same Lie derivative formula.

65
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A. Functional Forms. Our first task in this section is to explain our nomencla-
ture, that is, to explain why we call type (n,s) forms in F*(J°°(F)) functional
forms. Let w be a p-form on J*°(FE), where p > n. Then, given a coordinate neigh-
borhood 7 : Uy — U of E, a compact set V C Uy and generalized vector fields

X1,Xo,...,X, on U, where ¢ = p — n, we can define a functional on local sections
s: Uy — U by
W(X1, Xo, ..., Xy)[s] = / [7%°(s)]"w(pr X1, pr Xo, ..., prX,), (3.1)
1%
where

wpr Xy, prXs,...,prX,) =prX,—...prXo—~prX;~w

Observe that W is R linear and alternating but that it is is not linear over functions
on J®(E). We call g the degree of the functional W.

In considering functionals of the type (3.1) there are two simplifications that can
be made. First, decompose w by horizontal and vertical degrees to obtain

w = w(n7q) + w(n_17q+1) + “ .. + w(07n+q),

where each form w(™*%) is of type (r,s). Because contact forms are annihilated by
the pullback of the map j°(s), only the first term w™ % will survive in (3.1) i.e.,

[7°°(s)]*w(pr X1, pr Xa, ..., pr X,) = [1%°(s)]*w™ P (pr X1, pr Xa, ..., pr X,).

Second, decompose the prolongation of each generalized vector field X; into its
evolutionary and total components (see Proposition 1.20) so that

prX; = w™? = pr(X;)ey = 0™ 4 tot X; — w9,

By Proposition 1.18, the second term on the right-hand side of this equation is of
type (n—1, q) and therefore it too will not contribute to the integrand in (3.1). We
therefore conclude that the functional ¢ form (3.1) is completely determined by the
type (n, q) form w(™9) and by its values on arbitrary g-tuples of evolutionary vector
fields.

Thus, with no loss in generality, we can view functionals of the type (3.1) as
multi-linear, alternating maps from the space of evolutionary vector fields on F
to the space of functionals on E. If w € Q™9(J°°(F)), then the corresponding
functional W is given by

W(Yl,YQ,...,Yq)[s]:/V[joo(s)]*w(erl,erg,...,erq). (3.2)
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where Y7, Ys, ... Y, are evolutionary vector fields on E.

Now, just as in the calculus of variations where the fundamental integral does not
uniquely determine the Lagrangian, so it is with functional ¢g-forms. Indeed, because
dg and prY; anti-commute, both w and w + dgn, where n € Q"= 14, determine the
same functional W. The next proposition shows that this non-uniqueness can be
eliminated if we restrict our attention to type (n,q) differential forms in F9.

PROPOSITION 3.1. Let w and & be two type (n, q) forms in F1(J°°(E)). Then the
corresponding functionals VW and W are equal if and only w = @.
It is because of the one-to-one correspondence between functionals WV of the type

(3.1) and forms w in F*(J*°(E)) that we call the latter functional forms.
The proof of Proposition 3.1 rests on the following lemma.

LEMMA  3.2. Let w be a type (n,q) form on J>*(E). Then I(w) = 0 if and only
if for all evolutionary vector fields Y1,Ys, ..., Y, the type (n,0) form

A= w(Yl,Yg, . .,Yq)
is variational trivial, i.e., E(\) = 0.
PROOF: It suffices to work locally. Recall that for w € Q™4(J>(U)),
1

I(w) = . 0% N\ Fy(w),

0
where F, (w) is defined by (2.23). Also recall that if Y, = Y‘f‘a— is any evolution-
ua

ary vector field, then
prYi—w=Y"F,(w)+dgn,

where 7 is a form of type (n — 1, ¢). Consequently, we find that
A=Y + dgi,

where
q = [Fo(w)](prYa,prYs,...,prYy),

and where 7] is the form of type (n —1,0) obtained from 7 by interior evaluation by
prYs, ..., prY,. This implies that

E(\) = E(Y?0y).

If E(X\) =0 for all Y3, then we can invoke Corollary 2.9 to conclude that o, = 0
and hence that I(w) = 0.

Conversely, if I(w) = 0 then w = dyn for some type (n — 1,q) form 7. This
implies that A is also locally d;; exact and so E(\) = 0. |
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PROOF OF PROPOSITION 3.2: By linearity, it suffices to prove that if w € F9 and
if the corresponding functional VV vanishes identically, then w = 0. If W = 0, then
standard arguments from the calculus of variations imply that the type (n,0) form

A=w(prYy,prYs,...,prYy)

is variationally trivial for all evolutionary vector fields Y7, Ys,...,Y,. From the
foregoing lemma we can infer that I(w) = 0. But, by hypothesis, w is in the image
of the projection operator I and so w = 0. ]

We remark that Takens [65] introduced an equivalence relation ~ on 2™9(J*(E))
whereby wy ~ wy if for all evolutionary vector fields Yi, Ys, ...,Y, the two La-
grangians

AL = wl(prylver27 s 7erq)
and

A2 = wa(prYy,prYs,...,pryy)
have identical Euler-Lagrange expressions. On account of Lemma 3.2 we have that
the quotient spaces Q2™?/ ~ are isomorphic, via the map [w] — I(w), to the sub-
spaces F4.

A differential § can be defined for functionals W of the type (3.2). First, let V
be a functional on degree zero given by

where )\ is a type (n,0) form. If Y is an evolutionary vector field, then we define
the functional Y (V) by

YOI = [ 5 (). (33)
If W is a functional of degree 1, we define the functional d)V of degree 2 by
(W) (Y1, Y2) = Yi(W(Y2)) — Ya(W(Y1)) — W([Y1, Ya). (3.4)

The differential of functionals of degree greater than 1 is similarly defined.
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PROPOSITION 3.3. Let w be a type (n,q) form in F4(J°°(E)) and let W be the
associated functional q form. The 6V is the functional ¢+ 1 form associated to the
type (n,q+ 1) form dyw in FITLH(J>(E)).

PROOF: The proof is based upon the decomposition
dyw = I(dyw) +dygn = dyw + dgn, (3.5)

which we have already established in Theorem 2.12. For simplicity, we consider
only the case ¢ = 1. In view of the definitions (3.1) and (3.4), we find that

(6W) (Y1,Y2)[s] = /V[joo(s)]*{ﬁprn (W(Y2)) = Lpry, (w(V1)) —w (Y1, Y2]) }. (3.6)

Since, by Propositions 1.16 and 1.21,

Lory, (w(Yg)) = (Epryl (erg)) —w + prYs— (Eprylw)
= (pr [Yl,Yg]) w4+ prYo—prY; ~ dyw
+ prYs— dv(er14 w)
and

Lory, (w(Yl)) =prYs—dy (pr Y; w)

equation (3.6) simplifies to

(W) 0¥l = [ () (i, o).

Finally, by virtue of (3.5), we can replace the form d,,w in this integral by the form
5Vw . |

We now turn to the problem of explicitly describing local basis for the spaces F?.
The case s = 1 is somewhat special.

PROPOSITION  3.4. Let w be a type (n,1) form in F'(J*°(E)). Then, on any
coordinate chart J°°(U), there exist unique functions P, [z, u] such that

w= P,lx,u] 0% Av. (3.7)

Conversely, every type (n,1) form which is locally of form (3.7) belongs to F!.
PROOF: If w € FY(J*®(F)) then w = I(0) for some form o € Q™1 (J>(F)). If, on

J>(U) k
o= Z BLo¢ A,
17]=0
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then by direct calculation w is given by (3.7), where

k

P, = Z (_D>1B<‘;‘

|1]=0

Conversely, if in any coordinate chart w assumes the form (3.7), then [(w) = w and
hence w € FYHJ®(E)). [

This characterization of F!(J*°(F)) shows that this space is a module over C*
functions on J>°(E). As is easily checked by example, this is not true for the spaces
F5(J*(E)) when s > 1. Every form w € F!(J*°(E)) defines a system of m partial
differential equations on the space of sections on E — if w is given locally by (3.7)
and is of order k, then in these coordinates the equations are

Pa(jk(s)) = 0.
To distinguish systems of equations which arise in this manner we follow Takens
[65] to make the following definition.

DEFINITION 3.5. Formsw in F! are called source forms on J*(F) and the partial
differential equations on E defined by w are called source equations.

In particular, for a Lagrangian A = Lv € Q™9(J*°(E)), the Euler-Lagrange form
E(\) =1(dy\) = E4(L)0* ANv

is always a source form.
Forms in F2 admit the following local characterization.

PROPOSITION 3.6. Fix |I| =1 and let Aaé be a collection of smooth functions on
J>°(U) which satisty
A b= (AL

Then the type (n,2) form w® defined by
w =0 N [A 407 + Dr(Agl 0% Av (3.8)

belongs to F?(J>°(U)). Furthermore, every form w € F2(J*°(U)) can be written
uniquely as a sum of such forms, i.e.,
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Proor: We show that I(w®) = w®. Write
w =+,

where

¢ =0"AN[AL07] Av and wzeo‘/\[DI(Agigﬁ)]/\V-

Direct calculation using the coordinate definition of I leads to

1

I(9) = 50% NALS 0] = (~1)'Di (A 07)] Av
1 1
= §¢+ §¢

The easiest way to evaluate (1)) is to first “integrate by parts” and rewrite ¢ in
the form

= (=107 NO°Af +dyn=¢+dyn.
Then the dyn term does not contribute to I(¢) and so
(W) =21(g) =,
as required.
It remains to verify (3.9). Any type (n,2) form w in F? locally assumes the form
!
w=0%AN [Z Paégﬂ A L.
11]=0
From the coefficient of 6 A 9? , |Z| =1, in the identity I(w) = w we conclude that
Poj=(-1)""'P, 1.

Hence, with Paﬁl = 54,4 and w® defined by (3.8) we can write

1
2
w=+wd,

where @ is of order I — 1 in the contact forms. Since both w and w® belong to F?,
the same is true of . The validity of (3.9) can now be established by induction on
the order /. |
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For s > 2, little general progress has been made towards the explicit local char-
acterization of the spaces F°. We can, however, offer the following alternative
description of these spaces. First, it is evident from the definition of I that every
form w € F*(J°°(F)) must locally assume the form

w=0%NP,,

where each P, is a form of type (n,s — 1). For s > 1 these forms are not arbitrary
and additional conditions must be imposed upon the P, to insure that the w belong
to F°.
Let P be a C*°(J°°(E)) linear map (or equivalently, a zeroth order total differ-
ential operator)
P: &u(J>(E)) - Qv HJ®(E))

on the space of evolutionary vector fields Ev(J*°(FE)). We say that P is formally
skew-adjoint if for every pair of evolutionary vector fields Y and Z and every coor-
dinate chart U on E there is a type (n,s — 2) form p on J*°(U) such that

prZ— P(Y)+prY = P(Z) =dyp. (3.10)

ProPOSITION 3.7. A type (n,s) form w on J>°(FE) belongs to F*(J*°(E)) if and
only if there exists a formally skew-adjoint operator P(Y) = Y *P, such that in any
coordinate system

w=0%AP,. (3.11)

This representation of w is unique; if P is another linear, formally skew-adjoint
operator and w = 0“ A\ P,, then P = P.

PROOF: Suppose that w € F*. Then I(w) = w and so
w=0%NP,,
1 . .
where P, = —F,(w). Equation (2.29) can therefore be rewritten as
s
prY —w=sP(Y)+dyn. (3.12)
Interior evaluate this equation with pr Z. Since the left-hand side of the resulting

equation changes sign under the interchange of Y and Z it follows immediately that
P is formally skew-adjoint.
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Conversely, suppose that (3.11) holds where P is formally skew-adjoint. We show
1

that P, = —F,(w) which proves that w € F* and that the representation (3.11) is
s

unique. Let Z1, Zs, ..., Zs_1 be evolutionary vector fields on J*°(FE). Because P
is skew-adjoint, we find that

P(Y)(prZi,prZa,...,pr Zs_1)+ P(Z1)(prY,prZs,...,pr Zs_1) = dyn.
Substitution from (3.11) and the repeated use of this equation yields

(prZy—prZy— - —prZs 1) [er4 w}
= P(Y)(pr Z1,pr Za,...,pr Zs_1) — P(Z1)(prY,pr Za,...,pr Zs_1)
_'“_P(Zs—1>(prZ17pr227"'7er)

= sP(Y)(pr Z1,pr Zo, ..., pr Zs_1) + dymne
= (prZy—prZy—---=prZ )= [sP(Y)] +dgn.
By virtue of Lemma 3.2 (with A = prY = w — sP(Y) ) this implies that
prY —w=sP(Y)+dgns. (3.13)
But according to Proposition 2.2 and equation (2.29), the Euler operator
E(P,)(Y) = Y Fa(w)

is uniquely defined by this very condition and so sP, = F,,, as required. ]

COROLLARY 3.8. The type (n,s) form w = 0% A P, belongs to F* if and only if
the coefficients of P,(Z) = pr Z = P,, viz.,

k
P21 = Y P D12
|T|=0
satisfy the the differential conditions
k—|I|
I+1p I I|+|J 1J
(e, =" (M) (=), Pl (3.14)

|J|=0
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for all |I| =0,1,...,k.
PRrROOF: Proposition 2.1 implies that

k
[YPo(Z) + Z*Po(Y)] = Y [Pa(Z) + > (=D)1(Z°Ps)) + dpp.
|T|=0

Proposition 2.2 then implies that (3.10) holds if and only if the expression in brackets
on the right-hand side of this last equation vanishes for all Z. We set the coefficient
of D;Z* in the resulting equation to zero to arrive at (3.14). [

ExaMPLE 3.9. We offer the following cautionary example. Let
w=Alx,u]O N0y A0y Adex.

Then, a direct calculation yields

1
I(w) = §9A [AOy N Opy + Dy (AONOyy) + Dy (AO N0, Nd

so that this type (3,1) form belongs to F2. According to Proposition 3.7, we can
express this form uniquely in the form

w=060AP

where P satisfies (3.10). The apparent choice for P, namely P = A0, A0, Ndz, is
not formally skew-adjoint and is therefore incorrect. Indeed, P(Z) is a second order
operator in Z therefore cannot satisfy (3.14) with |I| = 2. The correct choice for P
is

1 1
P = gF(M) = §[2A0/\9mx +3A0, NOypy +3A, 0N 0Oy + Arr0 N6,
i

This is an appropriate point at which to make a few, relatively elementary remarks
concerning the inverse problem to the calculus of variations. In its simplest form,
the inverse problem is to determine when a given source form A € FY(J*°(E)) is
the Euler-Lagrange form for some Lagrangian A € Q™"%(J*°(E)). We have already
observed that a necessary condition for A = E(A) is given by dyA = 0. In the
chapters that follow we shall establish the local sufficiency of this condition and
identify the topological obstructions to the construction of global Lagrangians. For
now, we direct our attention to the nature of these necessary conditions themselves.
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DEFINITION 3.10. A source form A € F1(J>°(E)) is said to be locally variational
if
oy A = 0.
This definition reflects the fact, which we shall prove in Chapter Four, that if

dy A = 0 then, at least locally there is a Lagrangian A such that A = E()).
To examine the conditions dy A = 0 in coordinates, let A = P, [z, u] 8 Av. Then

k
dyA =" (95Pa) 0] NO* N
|J|=0

and hence, using the definition of I, we have that

k
Sy A= 507 A (3 D2~ (o]
k k
_ %m A= S @EP)0E + Y (~D) (9L P.6%)] . (3.15)

[7]=0 |7]=0

But, according to the defining property (2.14) of the Lie-Euler operators EL, we
can write

k k
> 04P, 0] = Y Di[E4(P,) 0"
|1]=0 |1]=0

and therefore (3.15) simplifies to

k
1
Sy A = 567 A [MZ:O Dr(Hj567)],

where

Hlg = —EL(Py) + (-0l Ps.

Thus the conditions dyy A = 0 are given explicitly by

(—1)"aL(Ps) = ES(Py), (3.16)
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for [I| =k, k—1, ..., 0. For example, when A is of order 2, this system of equations
becomes
0% Py = 03 P,, (3.17a)
—0. Pg = 0Py — 2D; (94 P,), (3.17b)
and
0yPs = 0P, — D; (04 Py) — Dy; (93 Py). (3.17¢)

Historically, the equations (3.17) were first derived in 1887 by Helmholtz for the
special case of one independent variable and soon thereafter generalized to (3.16)
by [40]. Since then, the equations (3.16) have been rederived by many authors. In
any event, we shall call the differential

bv: FHI®(E)) — F(J°(E))

the Helmholtz operator and refer to the full system of necessary conditions (3.16)
as the Helmholtz equations.

ExAMPLE 3.11. The Helmholtz conditions for scalar equations.

Because 0y A € F?, the components H § 3 of yy A are not independent but are re-
lated by the conditions (3.14). These conditions represent certain interdependencies
amongst the Helmholtz conditions themselves. These become particularly manifest
when the number of dependent variables is one. For example, if

A = P(z", u,ui,ui) 0 Av
is a second order source form, then (3.17a) is an identity, (3.17b) reduces to
0'P = D;(0" P) (3.18)

and (3.17c) becomes the divergence of (3.18). For higher order scalar equations a
similar reduction occurs but the explicit form of the reduced system does not seem
to have appeared in the literature. The coefficients of the reduced system are given
in terms of the coefficients of the Euler polynomial. The n-th Euler polynomial
E,(x) is a polynomial of degree n,

n

E,(x) = Z (Marz™",

k=0
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with generating function

26:1:15 0 tn

eyl

p=0
For k > 1, ar = 0 if k is even while
1 1 1 1 17
ag = a1 = —— A2 = — as = — ar = —
0 ) 1 27 3 47 5 27 7 87

The coefficients aj are the Taylor series coefficients of the function
2 >tk
= A — .
et + 1 ];) k!

ProrosiTiON 3.12. Let m: E — M be a fibered manifold with one dimensional
fiber and let

A = Plz,u®) o Av

be a source form of order 2k. Then the 2k + 1 Helmholtz conditions (3.16) are
equivalent to the k conditions

2k—i
orp + Z (|I||§IJ|)G|J|DJ(8IJP) —0 (3.19)
|J|=0

for [I|=2k—1,2k—3, ..., 1.
PrROOF: According to Corollary 3.8, the components
H' = —EI(P) + (—1)1lollIp

of the functional form dy A € F? are related by the identities (3.14), viz.,

2k—|I|
(—)MHE = N (VY (-D) HY (3.20)
|J|=0
for all |I| = 2k, 2k — 1, ..., 0. For the argument that follows, it is possible to

suppress our multi-index notation and simply write P for 8’ P, D; for Dy, and
HW for H', where |I| = I. In terms of this abbreviated notation, the system of
equations (3.20) can be expressed as

—H@k) = gk
H(2k—1) _ H(Qk:—l) . 2]{}D1H(2k),
_H(2k72) — H(2k‘72) . (2k o 1)D1H(2k71) + (22k)D2H(2k),
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and so on. These equations evidently imply that the Helmholtz condition H) =0
is a consequence of the conditions HZHY = o, HE+3) = ¢, ..., H@-1D = .

Hence A is locally variational if and only if
H®=Y =0 HE3 =9 ... HY =0 (3.21)

Written out in full, these equations become

2p(k=1) = (2M) D, p¥), (3.22a)
2P(2k73) _ (2k1—2) D1P(2k—2) _ (2k2—1)D2P(2k—1) + (23k> DgP(2k),
(3.22b)
2P(2k—5) — (Qk;4)D1P(2k_2) - (2k;3)D2P(2k—3) + (2k§2>D3P(2k_2)
+ (2]?4;1) D4P(2k—1) + (25k>D5P(2k), (322C)

and so on. We substitute (3.22a) into (3.22b) to eliminate the odd derivative term
PCF=1) from (3.22b). Then we substitute (3.22a) and (3.22b) into (3.22c) in order
to eliminate the odd derivative terms P(2¥=3) and P(2*=1)_ In short, it is clear that
the remaining Helmholtz conditions (3.21) are equivalent to a system of equations

of the form
2k—1

PO+ 3" ¢ D; P =, (3.23)
j=1
7 odd
where 7 is odd. In anticipation of the result which we wish to prove, let us write
the constants ¢;; in the form

cij = biy; 5 (7).

The index j is also odd and ranges from 1 to 2k —i. To prove (3.19), we must show
that
bi+j,j = aj. (324)

To this end, we use the identity
E,(x+1)+ E,(z) = 22"

to deduce that the constants a; satisfy

J
2a; + Z ({)aj,l =0.
=1
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This, in fact, provides us with a recursion formula for these constants; we define
ap =1, a; = 0 if j > 0 and even, and compute a; for j odd from the formula

7j—1
2a; +1+ Y (})aj_1=0. (3.25)
=2

[ even

We prove (3.24) by showing that the coefficients by ; also satisfy (3.25) for each
fixed k.
We substitute (3.23) back into the original Helmholtz condition

2k—m
2P 4 N () (D), P =,
=1

where m is odd, in order to eliminate all odd derivatives P(™), P(m+2) The
result is

2k—m 2k—m
2 Y by (") Dy P () Dy PO

j=1 =1
j odd [ odd

2k—m—1 2k—Il—m

+ > 1D b () () Dy POMHED] = 0,
=2

- j=1

l even jodd
We change the sum on [ in the second summation to one on j, we change the sum
on j in the fourth summation to one on 7' = j + [ and we interchange the order of
the double summation to find that

2k—m 2k—m

S (") 2bmsg 1+ D (Dbmgg] D P =0, (3.26)
Jj=1 =2

j odd leven

We now argue that, because this equation is an identity for all Euler-Lagrange
expressions P = E(L), the expressions in brackets in (3.26) must vanish for each m
odd, m=1,3,...,2k—1and each j =1, 3, ..., 2k — m. But this gives precisely
the same recursion formula as (3.25) for the coefficients a;, as required.

To complete the proof, consider the Lagrangian

1
L= if(x)u?q).
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The Euler-Lagrange expression for this Lagrangian is
E(L) = f(x)u(q) + { lower order terms }.

By successively modifying L we can eliminate all of the lower order, even order
terms to obtain a Lagrangian L whose Euler-Lagrange expression is of the form

E(L) = f(x)u(aq) + { odd order terms }.

With P = E(L), the only term that survives in (3.26) is that for which j = 2¢ —m.
i

This form of the Helmholtz conditions provides us with an explicit form for all
linear, locally variational source forms in one dependent variable. For p even, let
B, = (B“%%) be a collection of smooth functions on R™ and define a linear p-th
order source form Apg by

Ap, = [Bur = Y (5)a, (DsB  ur] o nv, (3.27)

where |K| =p—|J|.

COROLLARY  3.13. For p even, the linear source forms Ap  are all locally vari-
ational. Moreover, every linear, locally variational source form A of order 2k is a
unique sum of source forms of this type, i.e., there exist functions By, Bog_o, ...,
Bs, Bg such that

A =Ap, +Ap, ,+ -+ Ap, +Ap,.
In the special case n = 1, this corollary simplifies the formula due to Krall [43] for
the most general, linear, formally self-adjoint, scalar ordinary differential operator.
ExAMPLE 3.14. Hamiltonian operators for scalar evolution equations.

We close this section by briefly describing the role played by functional forms in
the theory of infinite dimensional Hamiltonian systems. For simplicity, we consider
only the case of scalar evolution equations in one spatial variable. Let £ : Rx R —
R with coordinates (z,u) — z. Then a Hamiltonian operator can be identified, at
least formally, with a linear differential operator

D: C*(J*(E)) — C*(J*(E))
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such that the bracket
{-,}: CF(J™(E)) x CF(JF(E)) — C=(JZ(E))

defined by
(P,Q} = / E(P)D(E(Q)) dr.

is a Poisson bracket. Here E(P) and E(Q) are the Euler-Lagrange expressions of
P and @). At this point, the integral in this definition need not be taken literally;
rather it simply serves to indicate that we are to calculate modulo exact 1 forms.
Thus D is Hamiltonian if for all functions P, ), and R

E(P)D(E(Q))+ E(Q)D(E(P)) =dyfi (3.28)
and
E(P)D (E(Q)D(E(R))) + E(Q)D (E(R)D (E(P)))

(3.29)
+E(R)D (E(P)D(E(Q))) = dy f

for some functions f; and fy on J*°(F). See Vinogradov [73], Kuperschmidt [46]
and Kosmann-Schwarzbach [42] for more rigorous and general definitions of the
concept of Hamiltonian operator.

For a given operator D, the skew-symmetry condition (3.28) is easily verified but
the Jacobi identity (3.29) can be quite difficult to check directly, even when the
operator D is a simple one. Olver [55] (pp. 424-436, in particular Theorem 7.8)
devised a rather simple test to check the Jacobi identity. To each operator D, he
explicitly constructs a certain functional 3 form wp € F2 and shows, in effect, that
D satisfies the Jacobi identity if and only if I(wp) = 0.

For example, for the KdV equation with the Hamiltonian operator

1

2
D:Dmxw > Da: 5 Uz
Tgute TR

the corresponding functional 3 form is
wp =0 N0, NOpya

which is easily seen to satisfy I(wp) = 0.

Conversely, in order to characterize all Hamiltonian operators and to classify their
normal forms — in other words, to obtain the analogue of the Darboux theorem,
one is confronted with the the analysis of the equation I(w) = 0 for type (1, 3) forms
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of a certain prescribed form. For a Hamiltonian operator on E of odd order [ it so
happens that the relevant (1,3) form to consider is

w=0N[A10, NOp_1 + A30p00 NOp_3 + AsOppawa NOp—s+ - 530
3.30
+ A0, AN O,_;] A dx + { lower order terms},

where the coeflicients A; are functions on J*°(FE) and p > [ + 1. The value of the
integer p is not specified a prior: but is to be determined as a consequence of the
equation I(w) = 0. I conjecture that p < 3l 4 1 and that this bound is sharp.

To appreciate the combinatorial complexity of this apparently innocuous problem,
consider the case [ = 5. We suppose, therefore, that A5 # 0 and we must prove that
this is possible only if p < 16. From the coefficients of 8 A 85, A 0,1, in the equation
I(w) =0, for k =1,2,...,6 we obtain the following system of linear homogeneous
equations for Ay, Az, and As:

(") =142 () +e(d) (7)) +e()

(3 =7 () +ed) () +e() y
(") = (73 (757) —1+2¢ (P57) +€(3) A; 0
() -0 OO =00) (D) Q) |
(") =) () -0 (737) —1+2e

(75 = (50 () = (57 (7)) — (1)

Here € = (—1)P™1. To complete this analysis, it therefore suffices to check that
the coefficient matrix of this system has maximum rank only when p > 16! For p
odd the determinant formed from columns 1, 2 and 4 has value

—sp(0 = 6)(p— 11)(p — 1)

which is non-zero for p > 16. For p even the determinant formed from columns 1,
3 and 5 has values

_%@ 3)(p—5)(p — 10)(p — 12)(p — 14)(p — 16)

which does again not vanish for p > 16.
The form

37 30
3600 Nas) = 130@) Nas) +06) AMan],

— oA
W 36
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where 6;) = D;0, is of the form (3.30) and so, at least when [ = 5, the conjectured
bound is sharp.

Once the total order p of w is determined, the remaining conditions that arise
from the equation I (wp) = 0 are complicated nonlinear differential conditions which
must solved in order to characterize that particular class of Hamiltonian operators.
Since our purpose here is merely to draw attention to the role that the variational
bicomplex can play in this problem and to highlight some of the complexities of the
action of the interior Euler operator I on functional three forms, it is inappropriate
for us to continue this analysis here. For a complete classification of Hamiltonian

operators of low order on low dimensional spaces see Astashov and Vinogradov [7],
Olver [56] and Cooke [19].

B. Cochain Maps on the Variational Bicomplex. In this section we classify
those maps between infinite jet bundles whose differentials commute with either d,
or dy or dy and thereby define cochain maps on either the vertical subcomplexes
or the horizontal subcomplexes of the variational bicomplex or on the complex of
functional forms.

Let m: E — M and p: F' — N be two fibered manifolds and let

O: JX(E) — J(F)

be a smooth map.

The map ® need not be the prolongation of a map from E to F' nor do we suppose
that ® covers a map from F to F' or from M to N. Recall that by Proposition 1.1,
there are, for each £k =0,1,2,... and some my > k, smooth maps

o J™(E) — JE(F)
such that
P o® =0 omy.

If we QP(J®(F)) is a differential p form on J°(F') which is represented by a
form of order k, then the pullback ®*(w) € QP(J°°(FE)) is represented by the form
(®"*)*(w) of order my,.

In general, the pullback map

O QP(J=(F)) — QP(J(E))
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will not preserve the horizontal and vertical bigrading of forms and therefore will not
induce a map from the variational bicomplex on J°°(F") to the variational bicomplex
on J°(E). To circumvent this obvious difficulty, let

B Q7 (J(F)) — Q4 (J(E))

be the map defined, for w € Q™*(J>°(F)), by

where 7% is the projection map from QP(J*°(E)) to Q™*(J>°(FE)). We shall give
necessary and sufficient conditions under which the projected pullback ®* commutes
with either dy, or d.

At first glance, the introduction of the maps ®f may seem somewhat artificial.
However, in the calculus of variations it is precisely the map ®*, and not ®*, which is
used to pullback Lagrangians. Indeed, suppose that dim M = dim N and that X is a
Lagrangian on J*°(F'). Then ®*()\) is an n form on J°°(E) but only the type (n,0)

component of ®(\) will contribute to the fundamental integral / [7°°(s)]" D" ().
M

Hence, the transformed Lagrangian is defined to be
OF(N) = 700 (A)].
Locally, if (y?,v*) are adapted coordinates on F' and

Oy, u] = (', ul, g, ul),
then (with n=2 for simplicity)

®*(Lly,v] dy" Ady?) = (Lo ®)[df' A df?]
=(Lo®)[dyf Ndyf>+ (dyf' Ny f2+dyfP Ndyf?)
+dy f1 Ady f?]
and thus
(L dy' A dy?) = (Lo ®)det(D; f') dz' A da®.

We emphasize that det(D; f*) is the Jacobian of the functions f*[z,u] with respect
to the total derivatives D).
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THEOREM 3.15. Let ® be a smooth map from J*(E) to J>(F).

(i) The projected pullback ®¥ commutes with d,, if and only if ® covers a smooth
map ¢g from M to N, i.e.,

J®(E) —— J%(F)

ﬂﬁl p?&’l
o
M — N.

(ii) The projected pullback ®* commutes with d; if and only if ®* is a contact
transformation, i.e., for every w € C(J*°(F))

" (W) € C(J®(E)).

(iii) The projected pullback ®* commutes with both dy, and dj if and only if it
coincides with the pullback ®*, i.e.,

o — d*,

PRrROOF: (i) First suppose that ® covers a map ¢ from M to N. Then the Jacobian
O, : T(J>®(E)) — T(J®(F)) satisfies

(PR )« 0 @ = (¢0)x © (37 )

Consequently, if Y is a 757 vertical vector at a point o € J*°(E), then ®,(Y) is a
px vertical vector at the point & = ®(o). Now consider a p form w € Q™5 (J*(F)).
Then w € QPP (J®(F)) (see §2C). Hence, if X1, Xo,..., X, are tangent vectors at
o, at least s + 1 of which are 73 vertical, we can conclude that

0% (w)(0)] (X1, Xa, . .. Xp) = w(3)(D2(X1), Bu(X2), ..., B4(X,)) = 0.
This shows that ®*(w) € Q7" (J*°(F)) and therefore

O Q" (J®(F)) (3.31)
C QW (JZ(E) e Ut I®(E) @ Q2 2(J®(E) @ -

From this inclusion we can easily deduce, for a type (r,s) form w on J*°(F), that

1" d @ (w)] = dy [@F(w)]

and
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7" d* (dpw)] = 0.
These two equations, together with the fact that ®* commutes with d, lead to
O dyw] = 7" D (dyw)]
= 7" [@* (dw — dyw)]
= 1" d (2% w)] = dy [0 ()],

as required.

Conversely, suppose that ®f commutes with dy . Let (y*,v*) be local adapted
coordinates on I’ and suppose that the map ¢g = p{yo® is given in these coordinates
by functions f* = y® o ¢g, i.e.,

(b()[x?u] = (fa[x7u])'

To complete the proof of (i), we must show that functions f® are independent of all
the fiber variables u¢, |I| > 0.
If g: J°°(F) — R is any smooth function then, by hypothesis,

©(dyg) = dy (g0 ®).
In particular, if go: N — R and g = go o p%7, then dy,g = 0 and therefore
dy[go 0 p§ © @] = 0.

By choosing gy to be a coordinate function y“, this equation becomes dy, f* = 0

which implies that f® = f?(z*). This completes the proof of (i).
The proof of (ii) is similar. If ®* preserves the contact ideal then, because
Q73 (J®(F)) C C5(J*°(F)), we have that

O Q" (J>(E)) C C3(J>(R))
and therefore
O Q" (J®(F)) (3.32)
C Q™ (J™(E) e QT (IN(E) e Q2P (J(E)® -
From this inclusion we can deduce, for w € Q™*(J>°(F')), that

T d % (w)] = dpg [0F(w)]

and
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7" ThE [0 (dyyw)] = 0.
It is now a simply matter to verify that
CIDﬁ(de) =dy (CIDﬁw).

Conversely, suppose that ®f commutes with dyg. Then for every real-valued
function g: J*°(F') — R we have

(70 0 @*)[dpg] = dyg 0 ).
From this equation it is easily seen that
(700 ®%)[dy g] =0

and hence
*[dyg] € Q1 (J>(E)) C ClT®(E)].

Since the contact ideal C(J°°(F)) is locally generated by the vertical differentials of
the coordinate functions, viz., d,v"; = 0%, this proves that

*C(J®(F)) C C(J®(E)).

Finally, the third statement in the proposition is a direct consequence of the two
inclusions (3.31) and (3.32). [

COROLLARY 3.16. Let E, F and G be fibered manifolds and suppose that
O: J*(E) — J>®(F) and U: J¥(F) — J*(G)

are smooth maps.

(i) If & and ¥ both cover maps between the base spaces, then
(o d)f = o o T,

(ii) If ® and ¥ are contact transformations, then
(o d) = o U,

PROOF: Suppose that & and ¥ cover maps between the base spaces. Let w be a
type (r, s) form on J°°(G). Then, on account of (3.31),

UV (w)=ap+a1 +as+...,
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where «; is a form on J*°(F) of type (r +i,s — ¢). For the same reason we obtain
O (o) = Bio + Bir + Biz + -+ -,
where (3;; is a form on J*°(FE) of type (r +i+ j,s —i— j). Thus, on the one hand,
it follows that
(‘I)ﬁ © ‘I’ﬁ)(w) = ‘I)ﬁ(ao) = Boo
while, on the other hand,
(Vo ®)(w) =7"%0(¥od)(w)

TS [q)* (\If*(W)>] =q"% [Z ﬁzy}

= Boo-
This proves (i). The proof of (ii) is similar. [

Proposition 3.15 has an infinitesimal analogue in terms of Lie derivatives. Let X
be an arbitrary vector field on J*°(F). In general, the Lie derivative Lx does not
preserve the bidegree of a form on J*°(FE) and so we introduce the projected Lie
derivative by defining, for w € Q™5(J*>°(E)),

Lh (w) = 7" [Lx (W)). (3.33)
PrOPOSITION  3.17. Let X be a vector field on J>*(E).

(i) The projected Lie derivative E?X commutes with dy, if and only if X is 7%}
related to a vector field Xy on M.

(ii) The projected Lie derivative E?X commutes with dy if and only if X is the
prolongation of a generalized vector field on E.

ProoF: We cannot appeal directly to the previous theorem since the vector field X
may not define a flow on J*°(F). Nevertheless, the proof is similar and so we shall
omit the details. Let us remark, however, that if (757).X = Xy and if w € Q™%,
then Lxw € Q%P. To prove this, we use (1.18) and note that if Y is a 75} vertical
vector field on J*°(F), then the Lie bracket [X,Y] is also w37 vertical. [

Let us now investigate under what conditions the maps ®* will induce a cochain
map on the complex of functional forms. Since functional forms are of top horizontal
degree, this problem becomes meaningful only when the dimensions of the base
spaces M and N coincide. This we shall assume for the remainder of this section.
It is obvious that if ®f commutes with both dy, and I, then ! will restrict to a
map from F*(J°(F)) to F*(J°°(F)) which will commute with the differential Jy .
But, as the next proposition shows, the requirement that ®* commute with both
dy, and I is very restrictive.
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PROPOSITION ~ 3.18. Let ®: J®(E) — J>®(F) be a smooth map for which ®*
commutes with both d,, and I and for which the map

df: FYUI®(F)) — FYJ®(E))

is injective. Then ® is the prolongation of a fiber-preserving local diffeomorphism
¢: E— F,ie., ®=pro.

PrOOF: We work locally. Let (z*,u) and (y?,v;) be local coordinates around a
point o € J°(FE) and around the point & = ®(o) € J*°(F'). By Theorem 3.15 the
map P covers a map ¢g: M — N and hence ® is described in these coordinates by
functions

v =yl (") and vl = vl (2", uf).
To prove the proposition it suffices to show, in view of Proposition 1.6,
(A) that v* = v#(2%,u®) so that ® covers a map ¢: E — F; and

(B) that @ is a contact transformation. To prove this it suffices to show, in view of
Theorem 3.15, (or more precisely the proof of Theorem 3.15) that ® commutes
with d; acting on functions, ¢.e.,

O (dyf) =dy(f o ®). (3.34)
To prove (A), let w = 0* A 7, where
§H:d1}“—v§‘dyj and 7=dy' Ndy®> A...dy".
Then I(w) = w and therefore, because I commutes with ®*, we must have

[(®¥(w)) = ®*(w) = & (dv* A D)
=J[ > (0hv") 6] Av). (3.35)

|1]=0

ol
where J = det(a—y.). Since the left-hand side of this equation belongs to F*, the
xl

coefficients of ¢ A v on the right-hand side must vanish for |I| > 1, i.e.,

S

=0, 3.36
o (3.36)
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in which case equation (3.35) reduces to

ovt
i _ o
1(®%(w)) = T5z 0" nv.

The assumption that ®¥ is injective on F' now establishes that the two Jacobians
Ot
J and det(

v

8—0‘) do not vanish. Consequently, equation (3.36) shows that the
u

functions v* are independent of the jet variables ¢ and (A) is proved.

To prove (B), we consider the form

w= fy")o" rD,

where 9_5 = dv} — v . dy* and the coefficient f is a function of the base coordinates
y* alone. In this case we find, on the one hand, that

I(w) = oy 0" N
and ﬁ of oo,
PF(I(w)) = —@[y(x)]JW 0° Av. (3.37)

On the other hand,

and consequently
I(®*(w)) = Y (=D)r[f(y(x))Jov!] 6% Av. (3.38)
|1|=0

Equate the right-hand sides of (3.37) and (3.38). Since the function f is arbitrary,
we can equate the coefficients of the various derivatives of f to obtain

Opvl = for |1] > 2, (3.39a)
ok gat gum v ot
L = DY _p.rgl
Let | |
ay] axl

C; = [cofactor of

8xi} - oyl
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It is easily seen that this matrix is divergence-free, i.e.,
oC; _
oxt
On combining this fact with (3.39a) and (3.39b), we arrive at
- 0
(04 A ) = [Clal 6°] A (3.40)

We shall use this result momentarily.
Finally, consider the form

w:dH[féﬂ/\uj]:%éﬂ/\yjtfé;‘/\u,

where f = f(y’,v%) is now an arbitrary function. By using (3.40), we calculate
that

() = [(;ly{ 0 ®) 0170 v+ (] o B)D;[Ch o 0 A
oy df d ; Ot
= [ga (G o®) — gu (e ®)Ciga 6" nv
+dy|(fo @)CZSL 0" Avi]. (3.41)

Since w is dj exact, I(w) = 0 and consequently I(®*(w)) = 0. In view of (3.41),
this implies that

d f
Because f is arbitrary, this proves that ® commutes with d; acting on functions.
The map ® must therefore be a contact transformation. This proves (B) and com-
pletes the proof of Proposition 3.18. ]

Because of the ubiquitous role that the operator I plays in the development of the
variational bicomplex, it is of some interest to characterize those maps ® for which
d commutes with I. This condition involves the pullback ®* acting on forms of
total degree n + 1 or higher and is therefore expressed by complicated non-linear
equations in the derivatives of ®. My attempts to analyze these equations have been
unsuccessful. However, the corresponding infinitesimal problem for the projected
Lie derivative EAﬁX, where X is a vector field on J*°(E), results in linear conditions on
X which are easily solved. It is surprising that the characterization of vector fields
X on the infinite jet bundle J*°(FE) for which Eg( ol =1o Eg( coincides precisely
with the characterization of vector fields on the finite dimensional jet bundle J*(E)
which preserve the contact ideal (see R. Anderson and N. Ibragimov [5], pp. 37-46
and, in particular, Theorem 10.1).
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PROPOSITION 3.19. Let X be an arbitrary vector field on J>*(E).

(i) If m > 1, (where m is the fiber dimension of E), then E?X commutes with I if
and only if X is the prolongation of a vector field on E.

(ii) If m = 1, then Eﬁ( commutes with I if and only if X is locally the prolongation
of a generalized vector field X on E of the form

> 0S5 0

% _ 95,0

D 95 +[S —u; aui] 5 (3.42)

where S = S(x%,u,u;) is an arbitrary function on J*(U).

PrOOF: We begin with the proof of sufficiency. This involves a slight generalization

of the calculations presented in the proof of Theorem 2.12, part (v). We assume

that the vector field X is the prolongation of
= 0

X =a"—
aax’

0

b ——.
+ ou®

In part (i) of the theorem the coefficients a’ and b* are functions of the coordinates

2" and u® only while, in part (i), a* = ~3 and b=8 — Ui~ Observe that
u. .

i Uj
7N Lx0%) = dyb* — uldya’
and that, in either case (i) or (ii), this simplifies to
0N (Lx0%) = Q567 (3.43)
where

Qa—@— a@ai
B oub i ouP’

From the definition 2.11 of I in terms of the interior product operator F,, we
therefore conclude that Eg( will commute with I in either case (i) or (ii) if, for all
type (n, s) forms w,

Fo(Lhw) = QFFg(w) + 7™ YL x (Fu(w))]. (3.44)
To derive this formula, recall that the defining property of Fi,(w) is the relation

prY—w=YF,(w)+dg(n).
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where Y is an arbitrary evolutionary vector field
0
Y =YYz, ul—.
[z, ul 55

To this last equation we apply E?X. Because X is the prolongation of a generalized
vector field on E, the projected Lie derivative commutes with d;. This gives rise
to

W”fsfl[[:X(er4 w)] = X(Ya)Fa(w) +Y“ [ﬂ'n’silﬁxFa(w)] +dgm. (345)

Expansion of the left-hand side of this equation by the product rule for Lie differ-
entiation yields

n T Lx (prY 2 w)] = am T Lx (prY) S w] FprY = (Lyw).  (3.46)

The next step is to analyze each term on the right-hand side on equation (3.46).
By virtue of the definition of F,,, the second term becomes

pry — (ﬁ&w) = (YQ)FQ(E&M) +dyna. (3.47)
To analyze the first term we use Propositions 1.20 and 1.21 to write

Lx(prY)=[prX,prY]=pr[X,Y]
= pr{[X,Y]e } + tot [X,Y].

Since w is of type (n, s), tot|X, Y]~ w is of type (n — 1, s) and therefore

™ Lx(prY = w)] = {pr (X, Y]} = w
= [X, Ve, Fa(w) + dgms (3.48)
= [X(Y*) = Q3YP| Fa(w) + dyns. (3.49)

In deriving (3.48) we have once again used the defining property of F,(w). In
deriving (3.49), we have used the definition (1.42) for the bracket of two generalized
vector fields and the special form of X, as postulated in cases (i) and (ii).

The combination of (3.45), (3.46), (3.47), and (3.49) leads to (3.44). This proves
sufficiency.

To prove that the vector fields described in cases (i) and (ii) are the only vector
fields on J°°(E) whose projected Lie derivatives commute with I, we need the
following result, valid for any m.
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LEMMA 3.20. Let Y be a n® vertical vector field on J*(FE). If ng commutes
with I, then Y = 0.

PROOF: Let

Y = i Y ¢z, u]o

|I]=1

and let w = f(x,u) 0% A v, where f is a function on U. We find that
LI W) = Ly [()M(D1f) 6% Av] = (=) Ly [Dr(f)] 0% A v,

while

Lyw= fldyY$)Av=Ff Z Y07 A,
|J]=0
and thus
(L3 () = Es(fY7)6° Av,

where Ej3 is the Euler-Lagrange operator. Hence the hypothesis that Lg, commutes
with I leads to the conclusion that

Eg(fYe) = (-1)ILy [Dr(f)]05. (3.50)

When f is a function of the base variables z° alone, the right-hand side of (3.50)
vanishes and so, by virtue of Corollary 2.9, Y¢ = Y2 (27). With f = u?, (3.50)
becomes

o3y = (-)lyy g

from which it readily follows, for m > 1, that Y/ = 0. When m = 1, the result
follows from (3.50) with f(z%, u) = g(z°)u. [

To complete the proof of Proposition 3.19, let X be an arbitrary vector field on

J°(F) and let
X = (7). X = d'[z, u]a— + b%[x, u]a
ox* du>’
The vector field X is a generalized vector field on J°(E) so that the coefficients a’
and b* are smooth functions on J°°(U). We shall prove that if E commutes with
I then, for m > 1, X is actually a vector field on E while, for m =1, X is given by

(3.42) for some choice of function S. In either case, Epr 5 commutes with I. The

vector field Y = X —pr X is therefore a mg vertical vector field whose Lie derivative
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commutes with I. The previous lemma implies that ¥ = 0 and so X = pr X , as
required.
Let w = 0% Av. Then I(w) = w so that the vector field X must satisfy
I(Lhw) = Lhw. (3.51)

Since
E&w =dyb* ANv — u?‘dvaj Av+ (Dja’)0* A,

it immediately follows that (3.51) holds if and only if
50" = uGha’ (3.52)

for all |[I| > 1. With |I| = 1, this equation is

ob™ da’
=us . 3.93
8u’f ! Gu? (3.53)
The analysis of this equation depends on the value of m.
If m > 1, we obtain from (3.53) the integrability condition
da” da’
0 —= = 05— 3.54
"our ~ ] (359
o da’ o * :
This implies that —3 = 0 in which case (3.53) reduces to —5 = 0. Equation
ouj ou;

(3.52) now forces both a® and b to be independent of the derivatives u$ for all
|I] > 1. This proves that X is a vector field on E.

For the case m = 1, we return to (3.52) which, with |I| > 1, implies that b —u;a’
is independent of the derivatives uy for all [I| > 1, i.e.,

b—uja’ = S(x' u,u;).

We differentiate this equation with respect to w; and substitute from (3.53) to

deduce that
oS

_8ui.

ai:

This proves (3.54) and completes the proof of Proposition 3.19. ]
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We began this section with the observation that, for an arbitrary map ® between
infinite jet bundles, the pullback map ®* does not preserve the bidegree of forms.
To circumvent this problem, we introduced the projected pullback maps ®f. A
similar problem has now risen in the case of functional forms since, in general, ®*
does not map F*(J*(F)) to F*(J*°(E)). Accordingly, let us now define

OF: QM (JZ(F)) — Q™ (J¥(E))
by
O (w) = 1[0 (w)] = (T o 7"™*)[@*(w)].
Evidently, ®7 restricts to a map
F: F(J®(F)) — F5(J(E)).
Likewise, if X is any vector field on J°°(FE), then we define, for w € Q™*(J*(E)),
Eg(w = ([ o™ [Lxw].
We now establish the following important result.

THEOREM 3.21. Let ®: J>®(FE) — J>®(F).
(i) If ® is a contact transformation, then ® commutes with both I and 8y .
(ii) Let X be a generalized vector field on E. Then Egr y commutes with both I
and (Sv.

PRrROOF: We shall prove (i). The proof of (ii) is similar and is therefore omitted. Let
w e Q(J®(F)). Since w = I(w) + dyn (at least locally) and since, by Theorem
3.15, ®f commutes with d s, we have that

PF(w) = ©H(I(w)) + dpg (®Fn).

To this equation we apply I to conclude, because I o &% = P, that ! commutes
with 1.

To prove that ® commutes with dy, let w € F*(J*(F)). Decompose ®*w by
type, i.e., let

Pw=a""+ol +%+ -,
where @' is a type (n—1, s +1) form on J*(E). Note that @ = ®w. The following
sequence of elementary equalities completes the proof:
D (Syw) = ¥ (dyw) = P (dw) = (I o 75+ (d(®*w))
={Tor™tH[d@ +o'+@°+...))

= I(dy@°) = I(dy (I0")) = 6y (Pw).
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COROLLARY 3.22. (i) If ®: J>®°(FE) — J*°(F) is a contact transformation, then
for any Lagrangian \ € Q™9(J>(F)),

E(D*X) = D E(N)). (3.55)
(ii) If X is a generalized vector field on E and A\ € Q™°(J*°(FE)), then
B(LE (N = L8 [E(V)]. (3.56)
(iii) If A € FY(J*®(F)) is a locally variational source form, then so is
A =3 (A) = (T or™H)(D*(A)). (3.57)
Part (i) of Corollary 3.22 coincides with the general change of variables formula

discovered by Olver and presented as Exercise 5.59 of [55]. To see this explicitly we
define, for functions f and g on J°°(U), the local differential operator

Dy: J®(U) — FH(J>(U))
k
Dy(g) = Fplgdy ) 0° = ) (~D)1lgd5(f)] 0.
|1]=0
Now, with n = 2 for simplicity, and ®[z,u] = (y*,v}) given locally by
y' = P'[z,u] and v = Qf [z, ul,

we deduce that

(01 A dy' A dy?) = 7™ dy Q" A dy Pt A dy P2
+dgQ* Ady PY Ady P? 4+ dgQF A dg P A dy, P2

+ { forms of lower horizontal degree }|

r dP'  dP! A
1 - =
dy P dzl dz?
dP? dP? 1 2
=det | g, p2 —_ Z__ | Adx Ndzx".
v drl  dx?
L dQr  dQH
| dy QY = oo

dxl  dz? -
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Consequently if A\ = L[y, v] 7 is a Lagrangian on J(V), then

A= ®*(\) = (Lo®)det(D;P") v
and E()\) = ®(E()\), where

r dPl  dP! A
1 - -
dy P dxl  dx?
o 2 2 |
O (Ea(L)0 A dy* A dy?) = I(det g p2 AP (E o) Adat A da:2)
v drl  dx?
A dQ~
d,Qr T e
L VQ drl dr2 -
r dPl  dP! A
Ppr dxl  dx?
dP? dP? | & ) 1 2
= |det | p I | (Eqo®) | Adx Adx®.
( P2 et da? ( )
A<  dQ*
Dpe ——8
L~@ dxl  dx? -

This shows that (3.55) coincides with Olver’s result.

ExAMPLE 3.23. Two specific examples illustrate some of the important features of
Corollary 3.22. First let n = m = 1 and consider the Lagrangian A = %bzdy and
the contact transformation ® given by

The transform of this Lagrangian is ®#()\) = %ifd:c while the Euler-Lagrange form
E(X\) = — 0 A dy transforms under ®% to

PF (EWN) =1(-% 0 A dx) = uVO A da.

This trivial example shows that the order of the source form E(\) will generally
increase when pulled back by the map ®%. It also highlights the importance of treat-
ing Euler-Lagrange equations as source forms — under the contact transformation
® the equation v = 0, which is described by a variational principle, is mapped to
the equation u = 0, which is not variational.

A more interesting illustration of Corollary 3.22 is provided by the contact trans-
formation @ discussed in Lychagin [47]. Here n = 2 and m = 1 and, to second
order, this transformation ® is given by

(fu ga v, Uz, vﬂa Vzz, Uﬂ?’ga Ug,g) = q)(.'lf, Y, U, Uy, uya Ugq, uwya uyy)a
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where
_ 1
T = Uy Vy = —T Vezx = —
ua:m
— _ _ ul‘y
y=Y Uy = Uy Vzy =
uma:
2

Uz,
V=U— TUy Vgg = Uyy — .

uiE.T

Since ®*0 = 0 and ®*(dZ) = 0, + uz.dw + uy,dy, it is easily checked that this
transformation pulls the source form representing Laplace’s equation, viz.,

back to the source form for an elliptic Monge-Ampere equation, viz.,
A = O'A = (Ugptiyy — uiy —1)0 Adz A dy.

The Lagrangian A = —1 (v2 + v%)df A dj for A is pulled back to the Lagrangian

_ 1
A= @ﬁ(}\) = 7'('2’0[5(.772 + Ui) dum VAN dy]

1
= _5(372 + ui)um dx N dy.

Obviously, this is not the usual Lagrangian for the Monge-Ampere equation but a
direct calculation confirms that E(\) = A, in accordance with Corollary 3.22. |

C. A Lie Derivative Formula for Functional Forms. We begin by computing
the Lie derivative of a functional form with respect to an evolutionary vector field.

LEMMA 3.24. Let w € F*(J*°(F)) be a functional form. IfY is an evolutionary
vector field on FE, then

L’E)FY w=0y(prY—w)+I(prY — dyw). (3.58)

PROOF: Since Y is an evolutionary vector field, £,y preserves the bigrading of
forms on J*°(E) (see Proposition 1.16) and hence

Eiryw =Lpyw=dy(prY - w)+prY — dyw. (3.59)
Because
prY —dyw=prY = (dyw+dyn)
=prY —dyw—dy(prY —n),
the application of the interior Euler operator I to (3.59) yields (3.58). [
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THEOREM 3.25. Let w € F*(J°(E)). If X is a generalized vector field on E, then
E?er w =0y (pr Xey ~ w) + I(pr Xev — dyw). (3.60)

ProoF: By virtue of the lemma, it suffices to show that

_ b
£Ih)er =L x, W
This follows immediately from the decomposition pr X = pr X, + tot X and the

following formula for Lie differentiation with respect to total vector fields

‘CgotX w=mn"%tot X = dw + d (tot X = w)]
=7m"*[tot X = dyw + dy(tot X — w) + dy, (tot X — w)]
=dy(tot X — w). (3.61)

Here we used the fact (see Proposition 1.18) that interior evaluation by tot X lowers
horizontal degree by 1. |

COROLLARY 3.26. Let w € F*(J°(FE)). If X is a projectable vector field on F,
then
Loy xw = 0y (pr Xey — w) + I(pr Xey — dyw). (3.62)

Proor: If X is a projectable vector field on F, then Ef)rxw = L, xw and, owning
to Theorem 2.12, I commutes with £, x. Together, these two facts imply that
£Ih)er = L, xw so that (3.62) is a consequence of (3.60). [

In order to interpret Theorem 3.25 as Noether’s theorem, we need several defini-
tions.

DEFINITION  3.27. Let A be a source form on J*°(FE). A generalized vector field
X on J*(F) is a distinguished, generalized symmetry of A if

L5 A =0. (3.63)

Distinguished generalized symmetries differ from ordinary generalized symmetries
for a source form A in that the Lie derivative of A with respect to the former must
vanish identically whereas the Lie derivative of A with respect to the latter need
only vanish on solutions of the source equations A = 0. The set of all distinguished,
generalized symmetries of a given source form define a subalgebra of the Lie algebra
of generalized symmetries for the corresponding source equation.
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Note that if X is an vector field on E, then it is a distinguished symmetry for A
if
I(LpxA) =0.

If X is a projectable vector field on E, then it is a distinguished symmetry of A if
Lo xA =0.

Also observe that, by virtue of (3.61), equation (3.63) is equivalent to the condition
Li v A=0,

which in turn is equivalent, at least locally, to the existence of a type (n—1, s) form
1 such that
L8 A =dyn. (3.64)

If the source form A is an Euler-Lagrange form, say A = E()\), then X is called
a generalized Bessel-Hagen symmetry or a divergence symmetry for A\ if

LE X =dyn. (3.65)

By virtue of Corollary 3.22 and the fact that E annihilates d;; exact forms this
implies

L5 A =E(LE (N =0.

Thus the algebra of generalized Bessel-Hagen symmetries for a given Lagrangian is
a subalgebra of the algebra of distinguished, generalized symmetries for the Euler-
Lagrange source form A = E()). In view of (3.64), we have equality of these two
algebras if we require only that (3.65) hold locally but not if we require (3.65) to
hold globally.

ExamMpPLE 3.28. Distinguished, first order generalized symmetries for geodesic
equations.

Distinguished, generalized symmetries for many equations have been computed
in the literature. It is not our intent to survey these results here or to discuss
any of the techniques available for computing these symmetries. Nevertheless we
will consider the problem of finding distinguished, generalized symmetries for the
geodesic equations for a Riemannian metric ds? = g;;du’®du’ on a manifold F'. This
example will, once again, demonstrate the use moving coframes in computing Euler-
Lagrange forms and will also serve as as important illustration of Noether’s theorem.
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The bundle for this example is R x F' — R with local coordinates (z,u’) — (z).

The Lagrangian form for these equations is?

1 .

and the Euler-Lagrange form is
E(\) = gi;A70° A d,

where ,
;Do i h.
AJ = ﬁ = UJ + Fikuhuk,
and I', are the Christoffel symbols for the metric g;;. We derive necessary and
sufficient conditions in order that the evolutionary vector field
'
N Ve O R AN

Y =Y/ (u', ") S0
be a distinguished symmetry. We have assumed, for the sake of simplicity, that Y
does not depend upon the independent variable x. In order to state the result, let

. oY,
Yi=gyY' and Y=o
and let
Y; .
ViV = o = T3V = Dy Vi,
Note that DY
Dajz =’ (V;Y;) + Y A7

ProprosITION 3.29. The evolutionary vector field Y is a distinguished symmetry
for the source form E(\) if and only if

Yij = Y, (3.66a)

V;Y; + V.Y; +4"V,Y;; =0, (3.66b)

and

lFor this Lagrangian to yield the geodesic equations,  must be identified with the arclength
parameter. A more accurate interpretation of this Lagrangian is that for a free particle on F' with

1 o
kinetic energy Egijulﬂj.
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WPV VY + YR 1) = 0. (3.66¢)

In particular, if Y is homogeneous in the derivative variables u’ of degree p, i.e.,
Yi = Aijijy...g, (W) W02 -,

then Y is a distinguished symmetry for the geodesic equation if and only if A is a
symmetric rank p + 1 Killing tensor, i.e., A is symmetric in all of its indices and

V(jl Aj2j3~-~jp+1) = 0.

ProoF: The second part of the proposition follows easily from the first part. Equa-
tion (3.66a) implies that A is symmetric, (3.66b) implies that A is a Killing tensor,
and (3.66¢) holds identically as a consequence of (3.66a) and (3.66D).

To establish the first part of the proposition, we must compute the Euler-Lagrange
form for the second order Lagrangian

Y~ E()\) =Y;Aldx (3.67)

The most efficient way to do this is to introduce a covariant basis for the contact
ideal. Let

O = 0" =dz' — ddx,

.. DO .. o
0' = P 0" + '’ 0
.. D2%p . ) .
K3 3 7 . 2 .
0= Dx2 0" + 21,07 0% + [}, A —ijfhlu !
+ Ty iha? + T4 T 0l i ]6",
and so on. Let m;, 7;, 7;... be the dual basis for the space of vertical vectors.
These vectors are all projectable and, to second order, are given by
.0
BT
) 0 0
m; = BI — 2Fk uj il L and
9 ko0 k k .

8

+ T} @l at — T a4 }%k.
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With respect to this basis, the vertical differential of a second order Lagrangian

A= L(u', 0, i) de
is given by

dy A = [m;(L) O + 7;(L) ©° + 7t;(L) 6] A da.
Therefore the components E; of the Euler-Lagrange form E(\) = E; O! A dx are

E; = mi(L) ~ % [7:(L)] + % [#(L)]. (3.68)

For the particular Lagrangian (3.67) we calculate that

m(A) =067, m(AT) =0,
and

Wi(Aj) = —FZkAk + thkiuhuka
and also that

mi(Y;) =0,  m(Yj) =Y,

and
oY,

mi(Y;) = out

hook
— L " Yin.

When these expressions are substituted into (3.68), it is found that

2

. . D . D
Ei(Y = ) = (V;Y) A + ViR il — 2 (Vi) + 5 (V)

D D—:IJQ(

D . .
[V = Vi) AT] + (V% 4 V3 +04V,%,) A7
+ (VthYz + Ythjki)dhﬂk.

and AJ must vanish. This

For this to vanish identically, the coefficients of

x
yields (3.66a) and (3.66b) respectively. The vanishing of the remaining terms gives
(3.66¢). 1
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DEFINITION  3.30. Let A = P,[z,u]0“ A v be a source form on J>®(FE). An
evolutionary vector field Y on J°°(F) is a generator of a local conservation law for
A if the type (n,0) form prY — A = (Y*P,) v has vanishing Euler-Lagrange form,
1.€.,

E(prY —A)=0. (3.69)

Local exactness of the variational bicomplex will show that if (3.69) holds then
there exists, at least locally, a type (n — 1,0) form p such that

dI_Ipzif4 A.

On solutions s: M — E of the source equation A = 0 the n — 1 form (jw(s))*p is
d closed and therefore p is a local conservation law for the source equation A. In
the special case n = 1, p is a function on J°°(F) which is constant on solutions of
A and the notion of a conservation law becomes synonymous with that of a first
integral.

The following result was established by Takens [65] for the case of vector fields
on .

ProprosITION 3.31. Let A be a source form on J°°(E). Then the vector space of
generalized vector fields X on J°°(FE) which are

(i) distinguished symmetries of A; and
(ii) for which the associated evolutionary vector field X, is a generator of a local
conservation law for A

forms a Lie algebra.

PrOOF: Suppose X and Y are distinguished symmetries of A and that X, and
Y., are generators of local conservation laws for A. We must prove that the same
is true of [X,Y].

To prove that [X, Y] is a distinguished symmetry, we need only show that

‘Cf)rY‘C}u)rXA = (I © 71—nﬂs)['Cer»CerA] (370)

in order to invoke the usual arguments for this kind of result. Equation (3.70) is an
easily consequence of the fact that Egry commutes with I (Theorem 3.21) and the
fact that

s [/;pr Y (Wn,sEerA)] =3 [ﬁpryﬁprx(A)] .

This equation can be verified using the argument presented in the proof of Corollary
3.16.
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To prove that [X, Y]y, is a generator for a local conservation law for A, it suffices
to assume only that X is a distinguished symmetry and that Y., is a generator
for a local conservation law. The assumption that X is a distinguished symmetry
implies that (3.63) holds. We now apply Egr x., to the identity F(prYe, = A) =0
to conclude that

E(LE, «. (prYe,— A)] =0. (3.71)

We use Proposition 1.21 and (3.63) to compute:

Elﬁ)r Xev (pr nv - A) = 7Tn70 [(‘Cpr Xev pr nv) - A + pr 1/:3‘/ - (‘Cpr Xev A)j|
= [Pr Xev, Pr Yoo | = A+ Yo, = (L ¢ A)]
= (pr[X,Y]ey) = A —dy(prYey — 7). (3.72)

Since

priX,Y]e “A=[X,Y]e, ~ A

the combination of (3.71) and (3.72) proves that [X,Y] is a generator for a local
conservation law for A. ]

With these definitions and results in hand we can state our first version of
Noether’s theorem as follows. We emphasize that in this version the conserva-
tion laws are derived from the symmetries of the source form. No reference is made
to the symmetries of the underlying Lagrangian.

THEOREM 3.32. Let A be a locally variational source form. Then a generalized
vector field X is a distinguished symmetry for A if and only if X, is a generator
for a local conservation law for A.

ProOOF: If oy A = 0, the Lie derivative formula (3.60) reduces to
L5 A =E(prXe,— A). (3.73)

Throughout this notes we shall give a number of examples of Noether’s theorem
which are intended to illustrate aspects of this theorem which are not adequately
discussed in the literature. Our first example is meant to debunk the usefulness of
Noether’s theorem as a technique for finding all the conservation laws for a given
system of differential equations by first finding all the generalized symmetries. The
point to be made here is that calculation of generalized symmetries is as difficult a
problem as that of directly determining the conservation laws — indeed, for locally
variational equations it is apparent from (3.73) that the two problems are identical.
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EXAMPLE 3.33. First integrals for Liouville metrics in R?

Consider, as a case in point, the problem of finding the generalized symmetries
and/or first integrals for the geodesic equations — specifically, let us consider the
geodesic equations for the Liouville metric on R3. The Lagrangian is

1
A= i[a(u) + b(v) + c(w)][0? + 0% + w?] dx
where a, b and ¢ are positive functions of a single variable. The Euler-Lagrange

form for \ is

E\) = (E 0" + E,0° + E,0) A dz,

where p .
.9 .9 .2
E,=- dx[(a+b+c) i) +§a'(u + 0% + %),
d .12 1 ) -2 £ 2
E,=——[(a+b+c)d]” + b/ (0* + o + v°),
dx 2
and

d 1
Ey=——[(a+b+c)i }2+§c’(u2+@2+w2).

dz
In addition to the Hamiltonian function, these source equations also admit the two
quadratic first integrals

1
I = 5[(a+ b+ c)u)?> — La
and 1
I, = 5[(a +b+c)0]* — Lb.
The generators of these two first integrals are the evolutionary vector fields
0 0 0
Y1 = (b—i—c)a——i—av%—f—awa—w
and 5 5 5
Yo =bu— — — +bw—
2 = bim v(a+c)av+ Crw
Let X be an arbitrary vector field on £ = R x R? — R, say

0 0 0 0

Since the corresponding evolutionary vector field is

0 0 0
Xow=(A—au)— + (B — —+(C —
( ) ou + a?) ov + aw)@w
it is apparent that neither Y; or Y5 is the evolutionary vector field derived from a

vector field on E. |
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In other words, in order to derive the first integrals I; and I from Noether’s
theorem it is necessary to compute the distinguished, generalized symmetries of the
source form E(X). We proved directly that the generalized vector field

Y =97 Ajyj..gy 7] 5
is a distinguished symmetry of the geodesic equation if and only if A; ;,. ;, are
the components of a symmetric Killing tensor for the given metric. But this is not
a very useful conclusion since it is already well-known, and easily verified, that a
homogenous function

I = Bj Wral2 oo dr

1j2~~jp

is a first integral for the geodesic equation if and only if Bj, ;, . ;, are the components
of a symmetric Killing tensor. Thus, either way, one is confronted with the same,
difficult problem of finding higher rank Killing tensors. ]

In the case of source equations for partial differential equations this situation
remains the same — for locally variational source forms the determining equations
for distinguished symmetries are same as those for generators of local conservation
laws. However it often happens, although not always, these determining equations
are much more tractable and can often be completely solved. In Chapter Seven we
shall compute all the conservation laws for several well-known equations.

In Noether’s original paper on variational problems with symmetries, two dis-
tinct cases were considered according to whether the Lie algebra of distinguished
symmetries for the given source form is finite dimensional or infinite dimensional
(in the sense that the generators of the Lie algebra depend upon arbitrary smooth
functions). In this latter case, Noether’s theorem states that the coefficients of the
source form are related by certain differential identities. These identities can be
easily derive from our basic Lie derivative formula (3.60). The following well-known
example illustrates this point.

ExAaMPLE 3.34. Noether’s Theorem for natural variational principles on Rieman-
nian structures

Let E = Sym? (T*M) be the bundle of symmetric, positive definite rank (0, 2)
tensors on a manifold M. A section of E is a choice of Riemannian metric on M.
Any local diffeomorphism ¢g of M lifts to a local diffeomorphism ¢ of E which in
turn lifts to a local diffeomorphism ® = pr¢ of J>°(E). A source form

Algl = P(2", gij, Gijn» Gijnk - -- ) dgij AV
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is called a natural Riemannian source form if for all local diffeomorphism ¢q,

Alg] = ®*(A[®(g)])-

Roughly speaking, a natural Riemannian source form is one whose components
P% are constructed from the metric tensor, the curvature tensor, and covariant
derivatives of the curvature tensor by contraction of indices. We shall treat the
subject of natural Riemannian tensors in greater detail in Chapter Six.

A natural Riemannian source form is said to be conformally invariant if for all

functions h on M,
Alg] = Ale"g).

PROPOSITION 3.35. If A[g] = P%[g]dgi; Av is a locally variational, natural source
form, then it is divergence-free, i.e.,

V,;PY =0, (3.74)

where V; denotes total covariant differentiation with respect to the symmetric met-
ric connection of g.
Moreover, if A is conformally invariant, then A is trace-free, i.e.,

gij P = 0. (3.75)

0
Proor: Let Xy = XZT be any vector field on M. Then Xy lifts to the vector
xl
field

0 0
X=X"~"—-2X", 91— 3.76
on E. The corresponding evolutionary vector field is
0 0
Xev:_ 2Xl,igl'+gil,'Xl = -2 ‘CX 9ij ) 73—
( J J )592'3' ( 0 J) agij
0
=-2(V,;X;) —,
( J )agij

where X; = gy X'

The naturality of A implies that £, xA = 0 for all vector fields X of the type
(3.76). The Lie derivative formula (3.62) therefore reduces to E(\) = 0, where
A=V; (XiPij ) v. Since the components P% are those of a tensor density, we can
rewrite this Lagrangian as

V;(X;P”) = D;(X;PY) — X;V,;P"
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in order to conclude that
E(X;(V;P7)) =0.

Because the vector field X is arbitrary, we can appeal to Corollary 2.9 to deduce
that the VjPij are constant. There are no non-zero, rank 1 constant natural tensors
and hence (3.74) holds.

The proof of (3.75) is similar since the condition of conformal invariance requires

0
that L,,vA =0, where Y = h(m)gija— and h is a arbitrary function on M. |
Gij

Proposition 3.35 is easily extended to include natural tensors which depend upon
more than just one tensor field. For example, if E = Sym? (T*M) x Sym?(T*M)
with local coordinates (z*, gi;,%1), |I| = p, then a natural source form A € F! is a
type (n,1) form of the type

A = [PY]g,¢]dgi; + B [g,¢] dpr] Av.

In particular, if A = L[g, ¢]v is a Lagrangian n form on J°°(F) and A = E(\), then
the P¥ and the B! are the components of the Euler-Lagrange expressions of L with
respect to the variations of g;; and 11 respectively. An arbitrary vector field X, on
M again lifts to a vector field X on E. The corresponding evolutionary vector field
is now given by

0
09gi;

- (X V1¢J +p¢zJ’va )a—%

The same arguments used in the proof of Proposition 3.35 now show that if A is a

Koy = —2 (valgil>

locally variational, natural source form, then
V;i(ginP™*) +pV (4 5iB”) = (Vih) B = 0. (3.77)

Two special cases of this identity are noteworthy. First, if p = 1, then ¢ = 1;dz’
is a one form and (3.77) can be re-expressed as

Vj (gikpjk> + FjiBj -+ inij = O,

where Fj; = 1; j—1;,; are the components of d 1. If p = 2, then (3.77) becomes the
identity (2.76) which was needed to simplify the Euler-Lagrange form for geometric
variational problems for surfaces in R3.



CHAPTER FOUR

LOCAL PROPERTIES OF THE VARIATIONAL BICOMPLEX

This chapter is devoted to a detailed analysis of the variational bicomplex for the
trivial bundle
E:R"xR™ — R".

In section A we construct homotopy operators for the augmented variational
bicomplex

0 — QO3 Qv —— F3 —— 0
dy, dy Sy
dH dH
0 — QO,2 _ " Ql,2 _ Qn—1,2 _ Qn,2 _ f2 — 0
dy, dy, dy, dy, Sy
01 _H# 11 4 11 4 1 1
0O — Q% — QY — Qr=—ht — QO —— FF —— 0
dV dV dV dV
0 — R —— Q0,0 . QI,O ... anl,O _ Qn,()
(m3g)” (m3g)” ()" (m3g)”
0 — R —s 0 2ot 4 gt Lo
4.1

This establishes the exactness of (4.1).

The homotopy operator hy constructed for the vertical complexes (Q"*,d,,) is
very similar to the usual homotopy operator used to prove the exactness of the de
Rham complex on R™. The homotopy operator hy used to prove the exactness
of the augmented horizontal complexes (2*°,d) is, for s > 1, a local differential

November 13, 1989
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operator. Thus, unlike hy, the operator hy can actually be defined on the space
of germs of forms in 2™°. The existence of a differential homotopy operator for the
interior horizontal rows of the variational bicomplex was first explicitly observed by
Tulczyjew [70]. Tulczyjew makes extensive use of the Frolicher-Nijenhuis theory of
derivations to define hy recursively. We use the theory of Euler operators developed
in Chapter Two to give explicit formulas for hy and to simplify the proof of the
homotopy property. Different proofs of the local exactness of the rows (Q%°, dy),
where s > 1, have been given by Takens [66], Tsujishita [68] and Vinogradov [75].
These authors use induction on the order of the form w € 2™ to infer local exactness
of these complexes from the exactness of either the Kozul complex or the Spencer
sequence. Actually, this inductive approach is already evident in Gilkey’s paper
[28] on the classification of the Pontryagin forms.

Homotopy operators are also constructed for the Euler-Lagrange complex £* on
J>®(E):

d
0—R— 0 Loto 1. (4.2)

dy dy
anl,O Qn,O fl

In particular, the homotopy operator
Hl: Fl N QTL,O

coincides with the Volterra-Vainberg ([76], [72]) formula for constructing a local
Lagrangian A for a variationally closed source form A = P, [z, u] 0% A v, viz.,

HY(A) = | /0 u® Ple, tu] dt] v (4.3)

As our first application of the local exactness of the variational bicomplex, we
shall reprove a theorem of Cheung [17] concerning variationally trivial natural La-
grangians for either plane or space curves. We also show how the horizontal homo-
topy operators can be used to reproduce Chern’s celebrated proof of the generalized
Gauss-Bonnet theorem.

The horizontal homotopy operators hy will be used extensively in subsequent
chapters. In this chapter we shall exploit the fact that they preserve functional
dependencies on parameters and that they respect the invariance of forms under
a certain class of affine transformations on E. In Chapter Five, we shall see that
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close relationship exists between these homotopy operators and the local theory of
Poincaré-Cartan forms. In special situations we can use these homotopy operators
to explicitly determine the cohomology classes on J°°(FE') which represent the ob-
structions to the global exactness of the variational bicomplex. In Chapter Five,
we also show how one can modify hy, given a symmetric connection on the base
manifold M, to arrive at invariantly defined, and therefore global, homotopy opera-
tors for the interior rows of the variational bicomplex. This construction, although
somewhat complicated, really synthesizes many different properties of the varia-
tional bicomplex. In Chapter Six, we again exploit important invariance properties
of these homotopy operators as a first step in the calculation of some equivariant
cohomology of the variational bicomplex. Finally, in Chapter Seven, we use other
elementary properties of these homotopy operators to give a proof of Vinogradov’s
Two Line Theorem.

Unfortunately, the horizontal homotopy operators hy suffer from one, very an-
noying, drawback. If, for instance, w € Q™ is a dj; closed form of order k, then we
have that w = dyn, where n = hzo(w). However, the order of n is in general much
higher than that of w and therefore 7 is not, in this sense, the simplest possible
form whose d; differential equals w. The same problem occurs with the homotopy
operators H* for the complex of functional forms. In particular, if A € F! is a
locally variational source form, then we can write A = FE()), where A = H!(A) is
given by (4.3). It is apparent that if A is of order k, then so is A\. For some source
forms, such as the one defining the Monge-Ampere equation

A= det(uij) A v,

(4.3) gives a Lagrangian of least possible order. For other source forms, a Lagrangian
of order as low as [k/2] may exist. In section B of this chapter, the problem of
finding minimal order forms is studied. In fact, by introducing a system of weights
for forms with some polynomial dependencies in the derivative variables, we are
able to obtain fairly detailed information concerning the structure of these minimal
order forms. This, in turn, leads to what is in essence a method of undetermined
coefficients for solving either the equation w = djn for n or for solving the equation
A = E()\) for A. This method is an effective and often superior alternative to
the direct application of the homotopy formulas. As another application of our
system of weights, we completely describe those source forms of order 2k which are
derivable from a Lagrangian of order k. In other words, we characterize the image
in F! of the space of k-th order Lagrangians under the Euler-Lagrange operator.
This solves a sharper version of the inverse problem to the calculus of variations.
The case k = 1 was treated, by different methods, in Anderson and Duchamp [4].
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We have already observed, on numerous occasions, that if w is a type (r, s) form
of order k, then djw is in general of form of order k + 1. This simple fact prevents
us from immediately restricting the variational bicomplex to forms defined on any
fixed, finite jet bundle. In section C we introduce subspaces

Tit O (J(E) N (T (B))
with the property that
de]:,s e j]:Jrl,s and dvj]:,s e \-7]:78+1-

Elements of J,"°(J*°(E)) are characterized by the property that their highest
derivative dependency occurs via Jacobian determinants and so, for this reason,
we call the bicomplex (J; " (J®(E)),dy,d ) the Jacobian sub-bicomplex of the
variational bicomplex on J°°(FE). By using techniques from classical invariant the-
ory and the minimal weight results of section B, we are able to establish the local
exactness of the Jacobian sub-bicomplex. As a corollary to the local exactness of
the Jacobian sub-bicomplex, we re-establish the structure theorem for variationally
trivial k" order Lagrangians (Anderson and Duchamp [4], Olver [53]) — such La-
grangians are necessarily polynomial in the derivatives of order k of degree < n and,
moreover, this polynomial dependence must occur via Jacobian determinants. The
problem of obtaining a similar structure theorem is for variationally closed source
forms is addressed and a few partial results are obtained. As an application of the
latter, we solve the equivariant inverse problem to the calculus of variations for
natural differential equations for plane curves.

A. Local Exactness and the Homotopy Operators for the Variational
Bicomplex. Let E be the trivial bundle £ : R" x R™ — R"™. Let Q™% =
Q75(J°(E)). In this section we shall proof the local exactness of the variational
bicomplex by establishing the following three propositions.

ProrosiTioN 4.1. Foreachr =0, 1, 2, ...,n, the vertical complex

(m31)"

d
0 — Qf, Qo Y

QAR (4.4)

is exact.

ProproSITION 4.2. For each s > 1, the augmented horizontal complex

d d d
00— Q0s _2,oqls 2, qn-ls T, qnis L FS—0 (4.5)
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is exact.

PROPOSITION 4.3. The Euler-Lagrange complex £*(J*(E))

d d
0— R — Q00 Loto 7 . (4.6)

dy E %

Qn,O fl

dy
Qn—l,O

is exact.

PROOF OF PROPOSITION 4.1: The exactness ( in fact, global exactness) of (4.4) at
s = 0 has already been established in Proposition 1.9.
For s > 1, the proof of exactness proceeds along the very same lines as the proof,

of the local exactness of the de Rham complex as found in, for example, Warner

[78] (pp. 155-157, §4.18). Let

0
=u*—— 4.
R=u e (4.7)

be the vertical radial vector field on E. Then the prolongation of R is the radial
vector field
pr R = u®0y + ulol, +ul0% + - -

1% e

on J*°(E) and the corresponding flow on J*°(FE) is the one parameter family of
diffeomorphism

[z, u] = [z, eu] = (2%, eu®, eu?, e‘u, ... ).

Let w be a type (7, s) form on J°°(F). Then the Lie derivative formula established
in Proposition 1.16 gives

d * *
& |:®6 u)] = ®6 |:£er,(.4):|

=dy [®:(pr R~ w)] + @} [pr R— dyw].

In this equation we replace € by logt and integrate the result from ¢t =0 tot =1
to arrive at
w = dy [A7° ()] + A3 T (dyw), (4.8)

where the vertical homotopy operator

hT,S QNS Qr,sfl
V .
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is defined by
1
8 1 *
hy” (w) :/0 ?I)logt(er4 w) dt. (4.9)

Note that the integrand is a actually smooth function at ¢t = 0. Indeed, let wz, tu]
denote the form obtained by evaluating the coefficients of w at the point [z, tu]. For
instance, if f is a real-valued function on J*>°(FE) and

w = flz,u]v,

where 7 is the wedge product of r of the horizontal forms dz? and s of the vertical
forms 6%, then
wla, tu] = flw, tu] ¥

even though the contact forms 6% contain an explicit u¢ dependence. With this
convention, the integrand in (4.9) becomes

1 _ s—
(g(pl*ogt(er4 w))[z,u] = "2 (pr R— w)[z, tu] = t* ' pr R wlz, tu].  (4.10)

Because s > 1, this is certainly a smooth function of t. ]

For future use we remark that because d;; commutes with ®} and anti-commutes
with pr R—, it anti-commutes with hy”, i.e.,

dh (W) = =i (dgw). (4.11)

To prove Proposition 4.2, we need the following identity. Recall that the inner
Euler operators F! were defined in Chapter Two by (2.24) and that D; is the total

vector field D; = tot % as defined by (1.38).
x

LEMMA 4.4. Let w € Q™° and set w; = D;j — w. Then
(I + 1)FI/(D; = dyw) + I|FIY (dz? Awj) = (n—r + |[I)FLw).  (4.12)
PRrOOF: From Proposition 2.10, with I replaced by Ij in (2.25a), we find that
(1| + 1) FY (dyw) = FL(dz? A w) + |T|FIT (dz?) A w).
Now inner evaluate this equation with D; and sum on j. By virtue of the formulas
D; = Fl(w) = -Fi(D; - w) and Dj—= (dz' Aw) = 0w — da’ A w;

the resulting equation reduces to (4.12), as required. ]
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PROOF OF PROPOSITION 4.2: For s > 1, the horizontal homotopy operator
hzs: Qs Qr—l,s
is defined by
k—1
1 Il+1 ,
W (w) ==Y ] + Dr[0% A FL7 (w))]. (4.13)

s|1|:0n—r—|—|f|—|—1

Let w be a k' order form of type (r,s). To verify that

Wy (dgw) + dg R ()] = w, (4.14)

for s > 1 and 1 < r < n, we multiple (4.12) by 0%, apply the differ-
s

(n—r + 1)
ential operator Dy and sum on |I|. On account of (2.23), we have that
k
Sw = Z Dy[6% A EX(w)]
|1|=0

so that the result of this calculation reduces to (4.14).

Equation (4.14) also holds for r = 0 (with the understanding that Q=1 = 0)
since Dj — w = 0 for any w € Q%% With r = n, h};*(w) coincides with the form n
in (2.35) as given by (2.37) and consequently we can rewrite (2.35) as

I(w) +dg[h’ (w)] = w. (4.15)
Together equations (4.14) and (4.15) prove the exactness of the horizontal aug-
mented horizontal complex (4.5). [

In the next lemma we use the Lie-Euler operators EX which were introduced in
Chapter 2B.

LEMMA  4.5. Let w € Q™% be a horizontal, type (r,0) form and let Y be an
evolutionary vector field on E. Then, for r < n,

Loy w= I{/H(dﬂw) + dH(I{/H(W))a (4.16)

where I3 : Q™9 — Q1.0 s defined by

k

Il +1 i
I = E Dr|\YYE 7 (w;)]. 4.17
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For r =n,
Loy w=prY —= E\)+dg[ly(w)]. (4.18)

PrOOF: From the defining properties of the Lie-Euler operators and the interior
Euler operators, it is easy verified that for a horizontal form w

Ej(w) = Fi(dyw)

and hence
Iy (w)=—pry—~ h(}l(w).

Equation (4.16) now follows directly from Proposition 2.8 and (4.14).
To derive (4.18), it suffices to observe that I3 (w) coincides with the form prY — o
in (2.17b) in which case (2.17a) becomes (4.18). [

Since Ij (w) is linear over R in both Y and w, since it drops the horizontal degree
by one, and since (4.16) is similar to the usual Cartan formula for Lie derivatives,
one can think of the I§, as a generalized, local inner product operator. We emphasize
that on forms of order k£ > 1 it is neither C*°(J°°(E)) linear and nor is it invariantly
defined. Still, we find (4.16) to be useful in a various situations.

PROOF OF PROPOSITION 4.3: It is possible to prove Proposition 4.3 from Propo-
sitions 4.1 and 4.2 using elementary spectral sequence arguments. However, we
shall often use the explicit formulas provided by the homotopy operators for the
Euler-Lagrange complex (4.6). To define these operators, it is necessary to break
the Euler-Lagrange complex into two pieces and to construct different homotopy
operators for each piece. The first piece

dy dy dy

d E
0— R — Q00 — !0 Q10 I gno i (4.19)

consists of the spaces of horizontal forms, except for the last term, and the second

piece
Qn,o E fl ov

ov

F3 e (4.20)

ov

fQ

consists the spaces of functional forms, except for the first term.

For w € Q™Y let wy = [j°°(s)]*(w) denote the pullback of w to Q" (M) by a section
s: M — E. Set w = w—ws, where, by a slight abuse of notation, we have identified
ws with its image in Q"° under (7$5)*. Notice that dzw = 0 implies that dpws = 0
and that dyw = 0. Therefore, if w is dy closed we can infer from the exactness of
the de Rham complex (Q3,,dys) for the base space M = R™ that wy is dj; exact
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and therefore, as a form back on J*°(F), d;; exact. Consequently in order to prove
the exactness of (4.19) it suffices to prove that the closed forms w € Q™9 are dy
exact, modulo the form wy.

For r =0, I¥(w) = 0 and hence, if f € Q%0 satisfies dy; f = 0, then

Loyf=prY—dy,f=0

for all vertical vector fields Y. It thus follows that d, f = 0 and so, by Proposition
4.1, f = f(z) is a function of the base variables alone. By our preliminary remarks,
f is a therefore a constant and the exactness of (4.19) at Q%0 is established.

To define the homotopy operators for the first piece of the Euler-Lagrange com-
plex, let J>®(E) x J>®(E) — M be the product of two copies of the infinite jet
bundle over E. Local coordinates on J®(E) x J>®(E) are [x,v,u] = (z*, 0%, u$).

Define a bundle map
pt: JZ(E) x J¥(E) — J®(F)
by
pelz,v,u] = [z, tu+ (1 —t)v].
When t = 0 or t = 1, p; is the projection onto the first or the second factor of

J®(E) x J®(E). Set Y = u® —v® and evaluate (4.16) and (4.18) at the point p;.
One readily checks that for all functions f on J*°(F)

(Di(f))[pe] = Di(fpe))

and that for all horizontal forms

d

dt w(pt] = (Lyw)|pe]-

Integration of equations (4.16) and (4.18) with respect to ¢ from 0 to 1 now yields

wlz,u] — wlz,v] = by (dgw) + dg [ (W) (4.21)
for w € Q™Y and

Az, u] = Az, v] = HHEN) + dgrhp (V), (4.22)
for A € ™% The homotopy operators

W QUO(J®(E)) — QT HO(J®(E) x J®(E))

and
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H: FYI®(E)) — QVY(J®(E) x J®(E))

are defined by

1 k
i () = /0 |I|Z=o n— ’rﬂ++|11| R [(u =) Eg (w;)[pi]] dt (4.23)
and X
HY(A) = [/0 (u® —v®) Py py] dt] v (4.24)

for A = P, 0% Av e FL. With v = j°°(s) for some section s: M — E, w(z,v] = wy
and local exactness now follows by virtue of our earlier remarks.

We now turn to the complex of functional forms (4.20). Let w be a type (n,s)
form in F*. The vertical homotopy formula gives

w = dy [h° (W)] + AT (dyw). (4.25)

The two dy differentials in this equation can be expressed in terms of dy, differentials
by

and

dy [y ()] = 0v [y (@)] + dyne.

Apply the interior Euler operator I to (4.25). Because dj; anti-commutes with h{?®
and because I ody =0 and I(w) = w, we conclude that

w = dyH (w) +HTHdyw) (4.26)
where H*: F* — F*~1 is defined by
H*(w) = (L o hy®)(w). (4.27)

This proves the exactness of the second piece of (4.6). [



Local Properties 121

Several remarks are in order. Firstly, notice that for a first order form w, (4.23)
reduces to

LS| 9
7,0 _ e e TN AW
hy (w) = /0 e (u® —wv >(6u;‘wj)[$’pt] dt. (4.28)

Secondly, we could have also arrived at (4.21) and (4.22) (in the special case v = 0)
starting from the homotopy operators used in the Propositions 4.1 and 4.2. If
w € Q™Y then dy,w € Q™! and the horizontal homotopy formula (4.14), as applied
to dy,w leads to

dyw = dy[hy (dyw)] + by (dgdyw).

To this equation, we now apply the vertical homotopy operator h(}l. Since h(}l
anti-commutes with d;, this gives rise to the homotopy formula

wlz,u] —wlz,0] = —dy [(h;_l’l o bl o dy)(w)] — (hi' o bt o dy ) (dpw). (4.29)
A direct calculation shows that
g ly—o = —hy' o Wy o dy

so that the two formulas (4.21) and (4.29) actually coincide.
Thirdly, in Proposition 3.7 we proved that every type (n,s) functional form w
can be written uniquely in the form

w=0%NP,,

where P, is formally skew-adjoint. We also showed (see (3.12)) that for any vertical

vector field Y = Yo‘a—
ou®

prY—w=sY*P, +dyn.
By substituting this equation into (4.10), we find that (4.27) becomes
1
Ho(w) = I( / st° 14 Py [z, tu] di). (4.30)
0
COROLLARY  4.6. Let w € Q™Y and suppose that dyw = 0 if r < n or that

E(w)=0ifr =n. Let s4: M — E, 0 <t <1, be a smooth one parameter family
of sections of E. Then

w(j*(s1)) —w(i™(s0)) = dn, (4.31a)
where
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= / I3, () (5 (1)) dt. (4.31b)

0
and where Y; is the vertical vector field Y; = uf‘a—
ua
PROOF: Since w is a horizontal form and j*°(s) covers the identity on the base
space R"™, we have written w(j>(s)) for the pullback (5°°(s))*w. This corollary

also follows from the Lie derivative formula (4.16):

1 1
qe e} e e d - OO * e e
W (50) =) = [ Gt = [ (L) (o) at
i
Let f[x,u] be a smooth function on J*°(F). We say that f is homogeneous of

@

g b€y

degree p if it is homogeneous of degree p in the fiber variables u®, u$, u
flz, tPu] = t* fx, u] for t > 0.

A type (r,s) form w is said to be homogeneous of degree p if each of its coefficient
functions is homogeneous of degree p, i.e.,

wlz, tu] = tPwlz, u.

The homotopy operators h;’lo and H® simplify when applied to homogenous forms.

COROLLARY 4.7. (i) Let w € Q™0 and suppose that w is homogeneous of degree
p#0. Ifdyw=0forl<r<n-—1orif E(w)=0 for r =n, then w = dyn, where

1 ™
n= 2—) In(w), (4.32)

where I, is the inner product operator (4.17) and where R is the radial vector field
(4.7).

(ii) Let w = 6 N P, € F*, where P(Y) = Y“P, is a formally skew adjoint
operator, and suppose that w is homogeneous of degree p # —s. If dyw = 0, then

w = dyn, where
s

p+s

n=1I( u“Py). (4.33)

Proor: If w € Q™* is homogeneous of degree p, then an elementary calculation
shows that
Lorrw = (p+ s)w.
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Part (i) now follows immediately from (4.16) with Y = R while part (ii) can be
established by repeating the derivation of (4.26) using with the formula

(p+ s)w=dy(prR— w)+prR—dyw

in place of (4.25)
Alternatively, one can use the homogeneity of w to explicitly evaluate the integrals
in the homotopy formulas (4.23) ( with v = 0) and (4.30). [

We note that Corollary 4.7 even applies with p < 0 — that is, to forms which
are singular at the point u = 0. More generally, consider a d;; closed horizontal r
form w which is not defined at u¢¥ = 0. Suppose, however, that for ¢ > 0

w[m,tu] = t_ewt[xuu]a

where w; is a smooth function of ¢. Then

B ()l tu] = i BB (1))

in which case the integrand in the homotopy formula (4.23) (with v = 0) may be
singular at ¢ = 0. If, however, we know that w; and its derivatives with respect to
all the variables u¢ are bounded as t — oo, then we can integrate (4.16), not from
0 to 1, but rather from 1 to oo to deduce that

R (dyw) + dg b’y (w) = wlz, u] — wz, v) (4.34)

where

k
RN b Il +1 o
hy (w) = /1 e |I§|_O YR 1D1 [u“EY ((wy);) [z, ug]] dt.  (4.35)

The point to emphasize here is that neither homotopy operator hg’,o nor B;}O is
applicable to forms which are homogeneous of degree zero. Consequently, when we
restrict the variational bicomplex on J*°(FE) to the open set

R = { [z, u] |u] are not all zero },

then the only type (r,0), homogeneous, dj closed forms which can represent non-
trivial cohomology classes in the Euler-Lagrange complex £*(R) are those which
are homogeneous of degree zero. Likewise, the only type (n,s), homogeneous,
dy closed functional forms which can represent nontrivial cohomology classes in
H"t3(E*(J>°(F))) are those which are homogeneous of degree —s.
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We now describe some invariance properties of our homotopy operators. While
the invariance group under consideration is admittedly small, it is nevertheless
large enough to play an important role in applications. We continue to work on the
trivial bundle £ : R™ x R™ — R". Let GG be the direct product of the group of
affine transformations of the base (with trivial fiber action) with the group of linear
transformations of the fiber (with trivial action on the base). Thus if ¢ € G, then

there are matrices A = (a}) and B = (b3) in GL(n) and GL(m) respectively and a

vector rg = (z§) in R™ such that
Y(x,u) = (y,v) = (Ax + ¢, Bu).
The prolonged action on J>°(E) is easily determined to be ¥[z, u] = [y, v], where
bﬁcjuj, (4.36)
where C' = (¢/) = A~! and where ¢} = ¢J*¢l? - cz’k“

11 2

PROPOSITION 4.8. Let ) € G and let V: J>®(FE) — J°°(FE) be the prolongation of
. The homotopy operators hy’, h;” and H*® all commute with the pullback map
P,

PROOF: It suffices to check that ¥* commutes with hy® and h%°, for s > 1, since
the remaining operators hg}o and H* are defined in terms of these and d;, and I
(which we already know commute with ¥*).

To prove that U* commutes with the vertical homotopy operator, first note that

00
1 commutes with the flow ¢, of the radial vector field R = u® Ty This implies
u®
that ¥ commutes with ®. = pr ¢,

Vod, =, 00, (4.37)
and consequently pr R is preserved by W, i.e.,
U, (prR) = prR. (4.38)
Let w € Q%. Since @}, ,(w(z,u]) = t°w[z, tu], we can also infer from (4.37) that
U (wlz, tv]) = (V" (w))[y, tu]. (4.39)
Equations (4.38) and (4.39) imply that

pr R— (V" (w))[y, tu] = pr R— ¥*(w)[z, tu] = ¥*(pr R~ w[z, tv]).
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This suffices to show that hy® commutes with U*.
We verify that ¥* commutes with A%}, s > 1 by calculating the change of variables
formula for the inner Euler operators under the transformation (4.36). Let

wly,v] = (‘Qil)*w[x,u].

—I . . . .
Let F', be the inner Euler operator in [y, v] coordinates, i.e.,

k—|T|
—I, — =l
Fo,@) =Y (D), (0, — @)),
|J]=0
— d =I . . . C .
where D; = T and 0, is the symmetrized partial derivative with respect to
yZ

v{. Because the matrices ag and b are constant it is a straightforward matter to
conclude that

9L =clpfol,  Di=diD;,  FL@) =i F](w)

and

JR— ey _I y _ o .

Dy[0* AF, ()] = Di[0% A F (w))].
Since h%;” is a weighted sum of these latter expressions, this proves that

hy (@) = Iy (W),
as required. |
Let W : J®(FE) — J°°(F) be a smooth map. We say that a type (r,s) form w is
a relative ¥ invariant with character x if
U*(w) = xw.

Let Q3°(J*°(E)) be the space of type (r, s) relative ¥ invariant forms with a fixed

character.

COROLLARY 4.9. Let ¢ € G and let U: J*(E) — J*°(FE) be the prolongation of
Y.

(i) Except for along the bottom edge (s = 0) the relative ¥ invariant, augmented
variational bicomplex (Qg",dy;, dy/) is exact.
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(ii) If w is a relative ¥ invariant, d,; closed, type (r,0) form, then there is relative
VU invariant type (r —1,0) form n and an degree r form wq on the base manifold M
such that
w=dgn+ wp.

The form wy may not be invariant under the action of 1 restricted to M.

ExaAMPLE 4.10. It is known that the evolutionary vector field

1 0
Y = TTT —ud) ——

is a distinguished symmetry (see Definition 3.27) for the sine-Gordon equation

(4.40)

A = (uys —sinu) du A dx A dt.
Since this source form is variational, the Lagrangian form
A=LdexNdt=Y— A

1
= (Ugze + =u>)(Ugs — sinu) dx A dt

2 X
is variationally trivial and determines the conservation law
Y — A - dHT/.

The coefficients of the one form
n=Pdt —Qdx,
as given by the homotopy operator h%’,o, are found to be

P / [ Do (uE** (L) [su]) + Dy (wE™ (L)[s1]) + uE*(L)[su]} ds
and 0

Q= /0 {D,E"*(L)[su] + uE"(L)[su]} ds.

From the definition (2.15) of the Euler operators and the definition of the sym-

1
metrized partial derivative operators (e.g., 9%t = 20 See (1.15)) we calculate
Uyt
that
E*%(L) = uy — sinu E*®(L) = —3D,(ugt — sinu),
3 5 ~ ~ 1 3
E*(L) = iux(uiﬂt —sinu) + 3Dy (ugt — sinu) — Dy(Ugpsr + Eum),
1 1, 1,

E*Y(L) = i(umm + =u) and FEY(L) = —Dg(uUgpe + =1u,).
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The formulas for the coefficients P and @ of n now yield

1 1 1,

n= [_iuazumxt + o Uzzlizt = Uza sinu + 5 Ua COS u) dt
1 1 1 3
- [_Zuumx:cx + 7 UaUTTT + 1—6ui — 1—6uuium] dzx.

Observe that this form is of order 4 even though the Lagrangian A is of order 3.
One easily checks that n differs from the usual expression for the conservation law
for the symmetry Y, viz.,

L4

1 1
N = [UgpUpt — Uy SIDU + §ui cosu] dt — [—auix + gum] dx
by an exact one form. The results of the next section will enable us to either
systematically pass from the form 7n to 7 or to obtain 7) directly via a method of

undetermined coefficients. |

EXAMPLE 4.11. The need for a practical alternative to the homotopy operators is
made even more apparent if one determines, via the Volterra-Vainberg formula, a
Lagrangian for the minimal surface equation. The corresponding source form is

(1+ ug)um — Uy Uy gy + (1 + U3 )y,

V@ +uf +up)?

A= du N\ dx A dy (4.41)

One computes A = HY(A) = Ldz A dy, where

! t
b= u[/o V(I +2(u2 + ul))3 ] (e + )

dt} (uium — 2Ug Uy Ugyy + uiuyy)

[ 1 t3

+U/

o 1+ +u2)’
(V1+uZ +ul)(14+V1+ul+ul)?

This is a far cry from the usual first order Lagrangian

Az—\/l—f—ui—l—uzdaz/\dy.
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ExamMPLE 4.12. Variationally trivial, natural Lagrangians for plane and space
curves.

The following proposition, due to Cheung [17], determines the one dimensional
cohomology H!'(£*) for the natural Euler-Lagrange complex for regular plane and
space curves (See §2C).

ProprosITION 4.13. (i) Let A = L(k, k, R, ... ) ds be a variationally trivial, natural
Lagrangian for plane curves with curvature k. Then

A=ards+dgf,

where a is a constant and f = f(k, k, K, ...) Is a natural function.
(ii) Let A\ = L(k,T,k,7,...)ds be a variationally trivial, natural Lagrangian for
space curves with curvature k and torsion 7. Then

)\ — dHf7
where f = f(k,T,k,T,...) is a natural function.

PrOOF: To prove (i), we observe from (2.65) that E(\) = 0 if and only if
E.+K*E, +xH = 0. (4.42)

Here E,; and H are respectively the Euler-Lagrange expression and the Hamiltonian
obtained through the variation of the curvature . It is easy to see that this equation
implies that

E,; = constant. (4.43)
Indeed, if E, is not a constant, then there is a largest integer [ > 0 for which
dE,;

dr®
[ —1ifl > 1 and order zero if [ = 1. Consequently, by differentiating (4.42) with

#£ 0. From the identity H = —#E,,, we can infer that H is of order at most

dE, . - .
respect to k(72) it follows that O 0. This contradiction establishes (4.43).
K

Denote the constant in (4.43) by a. Then the natural Lagrangian

L=L—ak

satisfies EH(INL) = (0. We now apply the horizontal homotopy operator h}j’,o to L to
construct a natural function f = f(k, , &, ...) such that

df
L= =
ark + a9

+0b,
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where b is a constant. Note that because L is independent of the base variable s,
then so is f = hy"(L). Although E,(b) = 0, we have

E(bds) = bk ©* A ds.

Since L is variationally trivial, this forces b = 0. Part(i) is established.

It is clear that there is no natural function g for which dyg = arx ds.

We emphasize that we could not have arrived at this result by directly applying
the the homotopy operator to \, viewed as a Lagrangian on J*(R? x R) in the
variables (t,z,y,2’,y’,...). In the first place, the singularities in the curvature s
at ' =3’ = 0 prevent us from applying the homotopy operator globally. Secondly,
even if A[z,y] is a natural Lagrangian, it may not be true that h}j’,o()\[a:,y]) is a
natural function.

In the case of natural Lagrangians for space curves, we use Proposition 2.16 and
a simple generalization of the argument we used in the planar case to conclude that
if A is variational trivial then both F, and F, are constant. The third component
Es5 of the Euler-Lagrange form E()) therefore reduces to

by =7E, —RE.;.

This vanishes if and only if F,, = E, = 0. Consequently there is a natural function
f and a constant ¢ such that

df
L=— .
ds+c

For the same reasons as before, ¢ = 0. |

Cheung also considers natural Lagrangians for curves on surfaces of constant
curvature. In view of Proposition 2.21, it is easily seen that if such a Lagrangian is
variationally trivial, then it is the horizontal differential of a natural function.

ExXAMPLE 4.14. The Gauss-Bonnet-Chern Theorem.

Let n = 2m be even and let gl(n) be the Lie algebra of GL(n). Define a symmetric
multi-linear map

P:lgl(n)]™ — R

1

— €i1j1i2j2“'imjm
n!

P(a,b,...,c) =

@iy gy Dingy *** Cipjn -
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The Pfaffian of a € gl(n) is defined to be

Ordinarily, the Pfaffian is defined only for skew-symmetric matrices but we shall
need this extension to all of gl(n). Note that only the skew-symmetric part of the
matrix a contributes to Pf(a); if b = 3 (a — a*) then Pf(a) = Pf(b).

Let M be a compact manifold and let 7 : E — M be the product bundle of the
bundle of metrics on M with the bundle of connections on M. Let g = g;; dz* ® dz’
be a metric on M and let wj = T, dz* be any set of connection one forms for the
tangent bundle T'M. Let

. . . 1.
Q;' = dw) — wj’-l Awj = —3 i h ™ A da®

be the curvature two-form and let Q;; = gilel. We define a Lagrangian \ €
Q0] (E)) by

1

Ag,w] = — Pf(y,).

Vg
This Lagrangian is first order in the derivatives of the connection and zeroth order
in the derivatives of the metric. Because we wish to compute the Euler-Lagrange
form for A by varying g and w independently, we have not restricted the domain of
A to metric connections. Thus the matrix €2;; may not be skew-symmetric. It is
for this reason that we extended the domain of the Pfaffian. If w is the Christoffel
connection w, for g, then a simple calculation shows that

1 N
A[g’wg] = —[—821]1“'2me_€h1k1---hmk)m

2mp| NG NG,

= VgK,dx' A Ada",

]Kiljl hik1

where K, is the total curvature of g. In other words, g, wy] is the integrand in
the Gauss-Bonnet-Chern formula.

If g1 and gg are two metrics on M and w; and wy are Riemannian connections
for g1 and go, then it is well known that A[g1,w1] — A[go,wo] is exact and hence
1} A 1s independent of the choice of metric g and Riemannian connection w. This
proves, albeit indirectly, that the Euler-Lagrange form E(\)[g,w| must vanish when
w is a Riemannian connection for g. In this example, we shall reverse the order
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of this argument. We explicitly commute F(\) and show that this source form
vanishes whenever w is a g compatible connection. Our homotopy formula (4.22)
then implies that

Alg1, w1l — Algo, wol = dp. (4.44)

Because A is a first order natural Lagrangian, it is easily seen that 7 is invariantly
defined and consequently (4.44) holds globally. Moreover, if X is vector field on M,
then away from the zero set of X one can construct a metric connection wg for which
Algo,wo] = 0. The explicit formula for 7, as provided by the homotopy operator

h?jo, coincides with that used by Chern in his original proof of the generalized
Gauss-Bonnet theorem.

Set
d y

PE(@)(8) = [L[Pi(a + )], = mP(b,a, ., a) = P(a)by,
and

11 d? ijhk

[PE"(@)](b,1) = [ PEa+ )], = P (a)bisbn.
Note that
PY(a) = —P’"(a)

and that

Pijhk(a) — —Pjihk(a) _ Phkij(CL).

In the next lemma D, g;;, is the covariant exterior derivative of g;;, with respect
to the connection w, viz..
De,gin = Vigin dz*.

LEMMA 4.15. The Euler-Lagrange form for \[g,w] is

E(N) = Eg(\) + Eu(M),
where

1 o
E,(\) = m g P (Q) N [Qij + Qi) Adygrs (4.45)

and

1 —_ o 1 ., .
E,(\) = 7 9riDugin A [PF(Q) A Q" + g"hPI%(Q) — 3 g P ()] A dvczzz. |
4.46
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Consequently, the Euler-Lagrange form FE[\)(g,w] vanishes whenever w is any Rie-
mannian connection for g.

PROOF: The Pfaffian is a relative GL(n) invariant in the sense that for any matrix
M = (m7) € GL(n),
Pf(M*aM) = det M Pf(a).

Differentiate this identity with respect to m, and put M = I to obtain the invariance
condition

P%I(a)a,; + P*(a)a;. = 65 Pf(a). (4.47)

Again we emphasize that this identity holds for all @ € gi(n). Differentiation of
(4.47) with respect to apy yields

P (a)a,; + PP (a)ai, + P**(a)s) + P"* ()} = 67 P"*(a). (4.48)

These identities will be used to simplify the formulas for the Euler-Lagrange forms.
Since A[g, w] is of order zero in the metric g, we find that

o\
- d TS
ag'r's vy

0 1 1 .. 00,
— —VPE(Q) + —=PYI AN —2) Adygrs
G () PO + 5P A gy I
1

1 .
= [—597 PEQ) + PY(Q) A Q) A dygrs. (4.49)

By using (4.47), it a simple matter to rewrite (4.49) as (4.45).
In a similar fashion, one finds by virtue of the formulas

Eg()‘)[g7 w]

00! 00!

— (55,0 _ st s t _ §s§! u t 4.
argt (6j W 57‘wj> dx and arztvu 5j 57“ dx" N dx*, ( 50)
that
1 9PE(Q 1 9Pf(Q) §
\/g st \/g st,u

1 . 1 iy 1 ,
= [~—=guP" Aw; + —=gir P A wj + A (—=gir P*)] N dy Ty,

V9 V9 V9 (4.51)
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To evaluate the last term in (4.51), we observe that

dH(%

1 1

l
= =579 "Dugnhk — 5w
) 2\/@ w 2\/§l

and

A (gir) = Dugir + guwh + girw}.-
Moreover, on account of the second Bianchi identity, we conclude

d P%(Q) = P (Q) A d Qs
= P [Dygr AW+ wh A Qup + Wb A Qul.

These last three equations are substituted into (4.51). The result is simplified using
the invariance identity (4.48) to arrive at (4.46). [

COROLLARY 4.16. If w; and wy are Riemannian connections for metrics g; and

go, then
/ )‘[917W1]:/ Algo, wo)- (4.52)
M M

PRrooF: Let wgy, be the Christoffel connection for g;, ¢ = 0,1. We show that

[ Aawal = [ Ao (4.53)

[ Aol = [ Mg (4.54)

and

for i = 0, 1. Together these three equalities prove (4.52).
Let (g¢,wt), 0 <t < 1, be any curve of metrics and connections. Corollary 4.6
implies that

Alg1,wi] — A[go,wo] = dn

RN g w oy g w
o [ aalm s as [ Bl " )

where, in accordance with (4.28), n is the (n — 1) form defined by

L. oL
h _
77:\/0 (Ft)ka (arilj’k)[gt,wt]dt
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Since (I’t)Z is the infinitesimal difference of connections, it is a tensor of type (1, 2).
Since A = L v is a of first order in the derivatives of I, the highest order derivative

o is a tensor density of type (3,1). Thus 7 is an invariantly defined form and

17,k
equation (4.55) holds globally.

To establish (4.53), let
g =tg1+ (1 —1t)g0

and let w; = wy, be the Christoffel connection of g;. To establish (4.54), let g: = g;
and let
wr = tw; + (1 — t)wy,.

According to Proposition 4.15, the Euler-Lagrange form E(\)[g:,w;] vanishes in
either case and so (4.53) and (4.54) follow from (4.55) and an application of Stokes
theorem. |

Now we turn to the proof of the generalized Gauss-Bonnet theorem. Fix a metric
g and a Riemannian connection w on M. Let V denote covariant differentiation

with respect to this connection. Let X = X i—z. be a unit vector defined on some

x
open set U of M. Introduce the type (1, 1) tensor-valued one form

El=X'D,X; — X;D,X"
= (X'V, X, — X;V, X") dz".

Because X is a unit vector field and because w is a Riemannian connection
X'Ei=-D,X' and  gaE] + gi;E}, =0.

These formulas are needed to check some of the statements in the next paragraph.
Define a curve of connection one forms w;, 0 <t <1 by

(wt)é» = w;- +(1- t)E;

It is easily verified that each w; is a Riemannian connection for the metric g and
that the associated curvature two-form is

();" = Q' + (1= t)D,E; + (1 - 1)°Ej, A E}

=+ (1 -)[X' X0 — X; X' + (1 —t)*)[D,X* A D, X;].
(4.56)
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Evidently the skew-symmetric matrix (£2g);; has X as a zero eigenvalue and so
Pf(2) = 0. With g; = g, the fundamental variational formula (4.55) reduces to

)‘[ng] - dn7
where
1
oL
n= —/ E{; Dy, = (72— ) g, wi] dt. (4.57)
0 8Fij,k

It is not difficult to explicitly evaluate the integral in (4.57).1 Indeed, on account
of (4.50), this formula for n simplifies to

om (!
n=——— P(a, Q) dt, 4.58
75 Jo (a, ) (4.58)

where « is the matrix (X;D,,X;). Now observe that if a = X AY and b= X A Z,
then Pf(a,b,...,c) = 0. Hence the coefficient of (1 — t) in the expression (4.56) for
; does not contribute to the integrand in (4.58) and thus

m—1
(0, Q) =Y (1= (" Q(X,Q), (4.59)
r=0

where

Q"(X,Q)=Pf(a,5,...08, Q,...,Q ),

r times m—r+1 times

and 8 = (D,X; A D,X;). By substituting (4.59) into (4.58) and evaluating the
resulting integral we arrive at Chern’s original formula for the generalized Gauss-
Bonnet integrand.

PrRoPOSITION 4.17. Let X be a unit vector field defined on an open set U C M.
Then , on U

)‘[ga w] = dT],

where

ISince we are ultimately interested in the form of n only when g is flat, this step is, strictly
speaking, unnecessary in our derivation of the generalized Gauss-Bonnet theorem.
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= 1 r 22r+1(r!)2 m—1
n= TZ:O ﬁch (X, Q) and Cr = _W( . (4.60)

The generalized Gauss-Bonnet theorem now follows from Hopf’s formula for the
Euler characteristic x(M) and the local integral formula for the index of a vector
field. Let X be a vector field on M with isolated zeros at points p1, po, ..., pr. Let
X = Xo/||Xol|| be the corresponding unit vector field. Then Hopf’s formula states

that
k

X(M) =) index X (p;),

1=0

where (see, e.g., Spivak [63](Vol. 1, pp. 373-375 and pp. 606-609))

- 1 o . :
(m ) 2_ / \/ggjth i X7dX12 ANdXI3 ... A dX]n,

index X(pz) = m
Se(pi)

and Sc(p;) is a (n — 1) dimensional sphere of sufficiently small radius € around the
point p;.

Since V9K, v is independent of g, we are free to pick a metric on M which

M
is flat around each zero p;. Let B.(p;) be the ball of radius € around p; and let
M, =M — Ule B(p;). Then by Stoke’s theorem

/ \/§Kny:lim/ VoK, v=—> lim / 7. (4.61)
M e—0 M. .

Se(pi)

Since the metric is flat around p;, only the term with » = m in (4.61) will contribute
to n and therefore

k
‘ 1 S . .
/ VIEnv = ~cp ) lim V5, g, XTAXT N AXT - pd X
M i=1 Sec(pi) '
k
2™ ) 2" ™ m
= —mcm 1:21 index X (p;) = TX(M>

This is the celebrated Gauss-Bonnet-Chern formula.
Our objective in establishing this result was simply to focus attention on the role
that the variational calculus can play in the study of characteristic forms. The first
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variational formula (4.22) can also be used to reproduce the calculations of Bott
[12] and Baum and Cheeger [9] required to compute the Pontryagin numbers of
a compact Riemannian manifold from the zeros of a Killing vector field as well as
the calculations of Chern [14] needed to compute the Chern numbers of a complex,
compact manifold from the residues of meromorphic vector fields.

B. Minimal Weight Forms. In this section we introduce a system of well-defined
(i.e., invariant under fiber preserving diffeomorphisms) weights for forms on J*°(FE)
which have a polynomial dependence in the fiber variables u¢ from some order on.
These weights describe the distribution of derivatives in these polynomial terms.
Given a dy closed form w € Q™* we construct a form 7 such that w = dyn and
such that the weights of 1 are as small as possible. Similar results are obtained for
the complex (F*,dy) of functional forms. In particular, the existence of minimal
weight Lagrangians for locally variational source forms is established.

It is convenient to focus on horizontal forms and the complex (4.5). Once the
results are established here the generalization to forms of type (r, s), s > 1, is easily
obtained. Again F is the trivial R™ bundle over R™.

Let C° = C*°(J*(E)) be the ring of smooth functions on J*(E). We let uy
denote all possible k" order derivatives of u®:

(e

Uk ™~ Uy oy, s
Let
o0
Pjk = Cj [uj+17 Ujt2y .- up]
be the polynomial ring in the variables w;i1,uj42, ..., ur with coefficients in C7°.

A function P € Pj, is therefore a smooth function on J*°(E) of order k which is a
sum of monomials

M = A (1) (u42) %2 - (ug) ™, (4.62)

where A € C3°, By convention P = Cp°.
DEFINITION 4.18. Let P, [t] be the polynomial ring in the single variable t with
coefficients in Pjj,. For eachp =73, j+1, ..., k —1, define
Wp: ij - ij[t]
by

[Wp(P)](t) = P(’U,j+1, Ujt2y .-y Up, tuerl, t2up+2, ey tkipuk).
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We call the degree of W, (P)[t] as a polynomial in t the p'" weight of P and denote
it by wy(P).
For p > k, we set W,(P)[t] = P and w,(P) = 0.

For example, if P = Uygqy + COS(Ug ) UyyUgzy, then P € Py 4 and

W1 (P)(t) = tPUszay + t° c08(Uz ) UyyUse,
Wa(P)(t) = t*Uggay + t COS(Ug)UyyUprr, and
Ws(P)(t) = tuggry + €OS(Ug ) Uyy Uz

The weight w,(P) counts the total number of derivatives in P in excess of p. For

example, the weights of the monomial M = u%muiyzuzzzz € Po,4 are

wy(M)=3+2=05, ws(M) =1, and
w4(M) =0.
The p'" weight of the monomial (4.62) is
wp(M) = apy1 + 210 + - + (k= p)ag.

The weight w,(P) of a polynomial P € P; is the largest p weight of its mono-
mials. If w,(P) = 0, then P is independent of all derivatives of order > p + 1 and
hence P € Pj .

We now prove some elementary properties of these weights. Evidently, W, is a
ring homomorphism and consequently, for P and @ in Pj j,

wy (P + Q) = max{ wy(P), w,(Q) } and wy(PQ) = wy(P) + wy(Q).

LEMMA 4.19. The space of functions P; ;(J°°(F)) is an invariantly defined sub-
space of C*°(J*°(E)) and the weights w;, wj11, ..., Wx—1 are numerical invariants.
Thus, if ¢: E — E is a fiber-preserving transformation y = y(x),v = v(x,u) whose
prolongation ®: J*°(E) — J*°(E) transforms Q[y,v] € P; into Plz,u] € J*(E),
then P € Pj and

wy(P) = wp(Q) for p=j,57+1,...,k—1.
PROOF: A simple induction shows that the prolongation ®: J>*(E) — J*°(FE) of ¢
mapping [z, u] to [y, v] takes the general form
813J 81}0‘ Jé;
=—— —u
Ayl dus 7 (4.63)

aKy Ko Kp, 71,72
+ ZAI’Yl Y2 M uKlqu uKﬂ

vt
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ozt Oz 972 Qade
where |I| = |J| = ¢, where —— = — — ... ——— where the coefficients A:’
dy y'r Jyr2 Oy's
are functions of the coordinates (x,u) on E alone, and where the summation ranges
over all multi-indices K1, K3, ..., K; such that

1< K| < [Ka| <o < K| < g—1
and

| K|+ |Ko| 4+ -+ | K| < ¢

Let P = @ o ®. Since the right-hand side of equation (4.63) is a polynomial
in the derivatives of w, it follows that if ) is a polynomial in the derivatives
Vj4+1,Vj42, - - -, Uk, then P is also a polynomial in the derivatives u;i1,u 12, ..., ug.
This proves that P;; is an invariantly defined subspace of C>(J*>(E)).

To prove that the weights of P and @ coincide, it suffices to show that the p'P
weight of v, |I| = g, treated as a polynomial in the derivatives of u, equals the
p™ weight of v§, treated as a polynomial in the derivatives of v, i.e., we must show
that
g—p if g>p
0 if q<np.

wy(of o) = {
Suppose ¢ > p. Denote one of the terms in the summation in (4.63) by
M = A(ur)* (u2)® -+~ (ug—1)"".
The bounds on the lengths of the indices K7, Ko, ..., K; imply that

a; >0 and a1 +2as+ -+ (¢—1)ag—1 <gq. (4.64)
From these inequalities one can prove, using the fact that the maximum of a linear
function defined on a convex, polygonal region is realized at a vertex, that

apt1+2app2+ -+ (@—p—1)ag—1 <qg—p.

This shows that the p'" weight of the monomial M is no more that ¢ — p. It
actually equals g — p since the p'™ weight of u¢, the leading monomial in (4.63), is
/ ov™
auﬁ)

The case g < p is similar. ]

Ol
g — p and the Jacobians (%) and ( are non-singular.
yZ
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LEMMA 4.20. Let P € Pjy. If wy,(P) # 0, then
w1 (P) < w,(P) — 1.

In particular, if the weights w;(P), wj+1(P), ..., wy—1(P) are non-zero, then they
are a strictly decreasing sequence of integers.

Proor: It suffices to check this lemma for monomials
M = (1) (wj2) 72 - (ug) ™
for which, by definition,

wp(P) = (k=plag+ (k=p—1ag—1+- +2api2 + api
and

w1 (P) = (k—p— Dag + (k= p—Dag_1 +-+ apez

The assumption that w,(P) # 0 requires that £ > p and that one of the exponents
a; > 1 for [ > p. Hence

wp(M) = w1 (M) = ax + ax—1 + - app1 2 1.

For each p > 0, we introduce local, non-invariant differential operators

o
(Djla)l = o' + Z u?i aé
|J]=0

and

(Dp)i= ) uf;0s.

|J|=p
The sum of these two operators is the total derivative operator

D; = (D,); + (Dp)i-

We shall suppress the indices in these equations and write D for D; and 9!”! for o7,
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LEMMA 4.21. Let P € Pj . Then DP € Pjk+1,
Wp(DP)(t) = Dy[Wp(P)(t)] + tDp[W,(P)(2)], (4.65)
and the weights of DP increase over those of P by one, i.e.,

wy(DP) = w,(P) +1 for p=j,7+1,..., k.

PRrROOF: From the chain rule we deduce immediately that

O W (P)0)] = Wy (1),
' W, (P)(t)] = W, (0" P)(t) for 1< p, and (4.68)
O'W,(P)(t)] = t"PW,(8'P)(t)  for 1>p+1. (4.69)

We substitute these formulas into the right-hand side of (4.65) to arrive at

Dy [Wy(P)(1)] + Dy [ Wy (P)(1)]

p

= W,( +tzuz+13 P)(1)]

=W, (D, P)(t +Ztl+1 Pup i Wy (8" P)(t)
I=p

Wy (D P)(t) + Wy (DpP)(t)

WP(DP)7

as required. ]

LEMMA 4.22. Let P € P; and let E(P) be the Euler-Lagrange function computed
from P. Then E(P) € P;,; for some | < 2k and the weights of E(P) are bounded
by those of P according to

wy,(E(P)) <wy,(P)+p  for p=3j,j+1,....,k—1. (4.71a)

and

wp(E(P)) <2k-—p for p=Fk, k+1,...,1—1. (4.71Db)
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PROOF: These inequalities follow from (4.65), (4.68) and (4.69) which, in the case
of the Euler-Lagrange operator, leads to

k
Wy (E)(t) =Y (=D, = tDp)i{0' W, (P)(2)]}
= (4.72)
+ Y =Dy — tDR) {0 W, (P) ()]}
1=p+1
For p=3j,j7+1,..., k—1, the degree of the i*" term in the first summation is

deg[(=Dy, — tD})i{0"Wp(P)()]}] < i+ wp(P) < wy(P) +p

p

while the degree of the i*" term in the second summation is
deg [P~ (=D — tD2) (O W (PYON}] < (p— i) + i +wy(P) = w,(P) + p.

This establishes (4.71a).

For p = k, the second summation in (4.72) is absent. Since W,(P) = P, the
degree of the "' term in the first summation is i < k. This proves (4.71b) for
p =k. For p > k, (4.71b) follows from Lemma 4.20. I

It is a straightforward matter to check that the bounds on the weights of DP and
E(P) given in Lemmas 4.21 and 4.22 are sharp.
Let Qf,;jok (J°(E)) be the space of horizontal r forms on J°°(E) with coefficients

in P; i (J*(E)). We extend the definition of W, from P; j, to pr?k by the action

of W, on the coefficients. If w € Q;;;)k, then the p*® weight w,(w) is the degree of
the polynomial W, (w)(t). The weight of w is the largest weight of its coefficients.
Lemma 4.21 asserts that dyw € Q;;?Hl and that

wy(dyw) < wp(w) +1 forp=j4,7+1, ..., k.

THEOREM 4.23. Forr=1,2,...,nand 0 < j <k, let w € Q;’?k and suppose
that dyw = 0 if r < n or that E(w) = 0 if r = n. Then there exists a form
n e QTP;}C’O with weights

wp(n) = wp(w) — 1 for p=j,j+1,...,k—1
such that
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w=dgn.

PROOF: Actually, we must prove slightly more, viz., if w depends polynomially ( or
smoothly) on additional parameters, then so does 1. We proceed by induction on r
so that there are two parts to the proof. First we assume that the theorem is true
for r — 1 forms, where 2 < r < n, and prove it true for r forms. Second, a simple
modification of the general argument shows that the theorem holds for one forms.
Let w be an closed r form on J*°(E) with coefficients in P; . These coefficients
may depend polynomially or smoothly on other parameters. Using the homotopy
operator of §4A we find that there is an horizontal » — 1 form 7 such that

w=dgn. (4.73)

It is clear from the homotopy formula that 7 is polynomial in derivatives of order > j
so that n € Q;,:}O for some [ > k —1. It is also clear that n will depend parameters
in the same fashion as w.

The induction hypothesis on r is used to establish the following lemma.

LEMMA 4.24. Fix p in the range j < p <[ — 1. Then there is an horizontal r — 1
form n* € Q;,;}O with weights

(1) = { wp(n) — 1, if wp(w)>1
= o, if wy(w) =0
and
we(n™) < wq(n) for g=p+1,...,1—1
and such that
w=dgn". (4.74)

In other words, for each fixed p, the form n in (4.73) can be replaced by a form
n* where the p'" weight wy(n*) can be minimized without increasing the weights

Wpt1(N*), wpr2(n*), ... over the initial values wp11(n), Wp42(N), ... .
The form n* will also depend polynomially (or smoothly) on parameters.

ProoF: The proof of this lemma is based upon arguments first presented in Olver
[54].

Let a = wy(w) and let b = wy(n). We can assume that b > a or that b > 1 if
a = 0 since, otherwise, there is nothing to prove — the lemma holds with n = n*.
To begin, we isolate the terms in 7 of maximum p'* weight by writing

n=a+p, (4.75)
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where W, (a)(t) = t?a and w,(8) < b. The form « can be explicitly computed from

the formula
1db
o= 2 T W) ()] (476)

This shows that, for each g =p, p+1, ..., —1,

and consequently

Now apply the weight map W, to (4.73) and invoke Lemma 4.21 to conclude that

Wp(w)(t) = Wy (dgn)(t)
= Dy[Wy (1) (t)] + tDR Wy (1) (1)]
= "' D2 + {terms of degree at most b in t}.

Since the left-hand side of this equation is a polynomial in ¢ of degree a < b, this
implies that

2

Dya=0. (4.77)

The key step in the proof is to use the induction hypothesis to analyze this equa-
tion. Pick a point (y,v,v1,...,vp—1) in JP~1(J*°(E)) and define a new horizontal
r—1 form v with coefficients in P, ; and depending on (y,v,v1,...,v,_1) as param-
eters by fixing the dependence of o on z, u, uq, ..., up—1 at x =y, u = v, u; = vy,

. Up_1 = Vp_1, L.€., set
V(T u,ur, UL YU, Upe1) = (Y, U, V1, U1, Uy Upgd -, W), (4.78)

Clearly ~ € Qrp;ll’o and

wq(7) = wq(a) (4.79)
forq =p, p+1, ..., 1 —1. Furthermore, v is a polynomial in the parameters
Vjt1, Uj42, - .., Up—1 and varies smoothly in the parameters y, v, v1, ..., v;.

Equation (4.77) implies that the r — 1 form + is closed:

dH’y - O.
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The induction hypothesis now applies to v. Consequently there is a horizontal r — 2
form o such that

v =dyo, (4.80)
where
0= O'(QI]',’LL,’LLl,. S UL Y, U, U, '7vp—1>
belongs to Qg?’o, is a polynomial in v;41, vj42, ..., vp—1 and varies smoothly in
Y, v, V1, ..., vj. The form o also has the appropriate dependency on any additional

parameters on which v may depend. Most importantly, the induction hypothesis
also insures that ¢ is a minimal weight form, i.e.,

we(o) = we(y) —1 (4.81)

forgq=p,p+1,...,1—1.
Put
(4.82)

7’(1}, U, Ugy -y ul) = U|(y::c, V=U, V1=UTL, oy Up—1=Up—_1)

Then, owing to (4.78) and (4.80), we obtain

a= ’y’(y:ﬂ?’ V=U, V1=UL, ... ) - [dHaH(y:m, v=u, v1=U1, ... )
—den[22 4 9% 4 97 4 97, 1|
n ox ou ! ou U1 6“[ i+l (y=z,v=u, vi=u1, ... )
—d 9
=dx A [%(Uhy:x V=U, V1=UL, ... ) + %(O—ky:m, v=u,v1=u1, ... )ul + - :|
—d:l:A[aU+8Ju L 90, e
ay ov 1 ovy (y==, v=u, vi=ui, ... )
1.€.,
a=dgT =, (4.83)
where
—d:I;A[@—F@u%— +6Lu+ H
H= 6y ov 1 81)p_1 p (y=z, v=u, vi=U1, ..., Vp—1=Up_1)
Note that

wq (1) < we(0)
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forq=p,p+1,...,1—1, and therefore, in view of (4.79)and (4.81),
o) < wy(a) — 1. (4.84)

On account of (4.75) and (4.83) we can now write

n=dgT+1,
where
nt=0-nu (4.85)
and hence, because of (4.73),
w=dyn".

The weights of n* are

wy(n*) < max{ wp(ﬂ)7wp(ﬂ) J=b-1

and, forg=p+1,p+2,...,1—1,

wq(n*) < max{ wy(B), we(p) } < we(n).

In summary, if w = dyn and wy,(n) is larger than the minimum possible p™
weight, then 7 is equivalent to a new form n* with strictly smaller p** weight and
no larger ¢** weights, g = p+1, p+2, ..., 1 — 1. This argument can be repeated
until a form n* with minimum p** weight is obtained. This proves the lemma. 1

The proof of Theorem 4.23 can now be completed by repeated use of the lemma,
first with p = [ — 1, then with p = [ — 2 and so on until p = j. At each step, we

have
w=dgn
with weights
wg(w) —1, or
w = 4.86
() { 0, if wy(w)=0 ( )
forq =p,p+1,..., 1 —1. Due to Lemma 4.21, these are the minimal weights

possible. With p = 7, this establishes the theorem for [ forms, [ > 2.
Finally, to check the case [ = 1, we observe that «, as define by (4.75), is now a
function and consequently (4.77) implies directly that

a=o(z,u,uy,. .., Up_1).

This immediately reduces the p*® weight of the function 7 in (4.75) without changing
the higher weights. The lemma therefore holds for one forms. The theorem, for
[ =1, again follows from the lemma as above. ]
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Let w be a dj; closed, horizontal one form. The function f for which w = dy f is
unique up to an additive constant and therefore a minimal weight function f can
be computed using the horizontal homotopy operator, f = h}}o(w).

EXAMPLE 4.25. A concrete example helps to clarify the proof of Theorem 4.23 and
to illustrate the constructive nature of the argument. Let F : R> x R — R? and
consider the variational trivial Lagrangian

A = 2Uyyy Upgze dT A dy. (4.87)
The coefficient of A belongs to Py 4 and the weights are
wo(A) =7, wi(A\) =5, we(A) =3, and ws(A)=1.
According to the theorem, it is possible to write
A=dgn,

where 1 € Q}P’gs and the weights of n are

To construct the form 7, we first use the horizontal homotopy operator (4.32) to
write A = 19, where

o = (_uumxwazyy + uyu:cwa:wy - uyyu:cwa:w) dx

+ (—Wlazayyy + UsUsayyy — UsaUoyyy T UsaaUyyy) dY-
The weights of 1y are far from minimal:
wO(n()) = 67 wq (770) = 57 w2(770) = 47 w3(770) = 37
wa(no) =2, ws(no) =1
To begin, we find a form 7y, equivalent to 79, but with ws(n;) = 0. Write

no = oo + Bo,

where

Qo = (_uumxwazyy) dz + (_uumxwyyy) dy
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consists of all those terms in 1 with ws = 1 and (3 consists of the remaining terms,

ﬁO = (uyuw:cwa:y - uyyu:cwa:w) dCU + (uwu:cwyyy - umxu:cyyy + uw:cwuyyy) dy

In accordance with (4.78), we let

Yo = (_vuw:cwa:yy) dx + (_Uu:cwa:yyy) dy

This form is dj closed (bear in mind that v is a independent parameter here and
so dyv = 0) and has weights w,(y0) =6 — ¢, ¢ =0,...,6. A minimal order form (
in this case function) ¢ for which d o0 = 7o is

00 = —VUggryy-

In accordance with (4.82), put

To = —Ulggryy-

Then
dpTo + (UgUgzayy) AT + (UyUgzayy) dy = ag

and so we can replace ng by

M = (UzUgzayy + UyUzzezsy — UyyUzzzs) AT

+ (uyumxmyy + Uz Ugzyyy — UzzUzzyyy + u:cmx“yyy) dy-

The weights of this form are

wy (1)
ws3(n1)

We repeat this process again, this time to reduce the weight w4 to zero. We write

6, wi(m)=2, wa(m)=
2, w4(771) = 1

m = oq + B,

where

a1 = (UpUgzayy + Uylzzazy) AT + (UyUzzzyy + UgUzzyyy) AY.

The form

Y1 = (Uwu:cma:yy + Uyum:cma:y) dx + (Uyu:cma:yy + U:cuw:cyyy) dy
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is dj; closed and a minimum order function for 7, is provided by
01 = UgplUgzyy + VylUzzay-
Since

a1 =d g (Uplgryy + UyUzzzy) — (UpaUzzyy + UgyUgzay) AT

- (ua:yu:cmyy + uyy“mxmy) dy

we can replace 7; by the form

T2 = (_umxu:cmyy - ua:yua:mxy - uyyu:cmxm) dx

+ (_ua:yu:cmyy - u:cmua:yyy - uyyu:cmxy + u:cmx”yyy) dy

The weights of this form are

wo(n2)

6, wl(nz) =4, w2(?72) =2,
w3(n2) =1

, wa(n2) =0.

Finally we reduce the weight w3 to zero. Put

N2 = ap + [,
where
Qg = (_u:cmu:cmyy - ua:yua:mxy - uyyu:cmxm) d.fE
+ (_u:cyu:cwyy - u:cwu:cyyy - uyyu:cwa:y) dy
Since

dH(_u:cmumyy - umyu:cmy - uyy”xmx)

+ (2UgpgUgyy + uiw) Az + (UpgzUyyy + 2UpgyUsyy) Ay = a2
the form 7y is equivalent to
M3 = (2UzzaUzyy + uimy) dz + (2UzayUzyy + 2Uszzztyyy) Y.

This is a minimal weight form. ]
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Let G be the group of affine-linear, fiber-preserving diffeomorphisms introduced
at the end of the previous section. A map ¢ € G if

v(x,u) = (y,v) = (Ax + ¢, Bu).

Let ¥ be the prolongation of ¢ to J®(FE). A form w € Q™ is said to a relative W
invariant with character y if ¥*w = yw.

LEMMA 4.26. The pullback U* of the prolongation of any v € G commutes with
the weight maps W,, i.e., if w € Q;;?k, then

Wy (T*(w)) (1) = T*(Wp(w)(t))  for p=j,j+1,...,k—1. (4.88)

PROOF: Since W, acts on forms by its action on coefficients, it suffices to check the
validity of (4.88) for functions. Let Py, v] € P; . With ¥ given by (4.36), we find
that

W (B(P))(t) = Wy (P (¥, u]))(t)
=W, (P(Ax + xg, Bu, BCuaq, ..., BCkuk))(t)
= P(Ax + xo, Bu, . .., BCPu,, BC?(tuyy1), . . ., BCF P (tF"Pay.))
(4.89)

while
U (W,(P)(t) = ¥* (P(y,v,v1, ..., Up, tUps1, - - -, tk*pvk))

= P(Ax + xg, Bu, ..., BCPu, t(BC?  uyy 1), . .., t*"P(BC*uy,)).
(4.90)

Since scalar multiplication of u, by ¢ commutes with matrix multiplication by B
and C = A™!, the arguments in (4.89) and (4.90) coincide. This proves (4.88) for
functions. i

A simple example shows that Lemma 4.26 does not hold for more general maps

. Let

1
y=x and v:§u2+x

Then the second prolongation of this map is

_ _ 2
vy =uuy +1 and vy, = ulg, + U
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so that

v (W1 (vyy)(t)) = U (tuyy) = t(uug, + u?)
while

Wi (T*(vyy)) = Wi (utlgy + u2) = tutly, + ul.

In fact, it is not too difficult to prove that if ¢: E — FE is a map for which ¥
commutes with W, for all p, then v is a affine linear transformation on both the
base and the fiber, i.e.,

Y(x,u) = (Ax + o, Bu + ug).

COROLLARY 4.27. Let ¥ € G and let ¥ be the prolongation of ¥ to J°(FE).
Suppose, in addition to the hypothesis of Theorem 4.23, that w is a relative ¥
invariant with character . Then there exists a minimal weight form n which is also
a relative ¥ invariant with character x and a form p on the base space M such that

w = dgn+ p.

Proor: It suffices to check that the various forms introduced in the proof of The-
orem 4.23 are ¥ invariant. By Corollary 4.9, there is a relative ¥ invariant form n
and a form p on M such that

w=dgn+p.

From Lemma 4.26 and (4.76), we can deduce that the form « in the decomposition
(4.75) is a relative ¥ invariant. Consequently, the form 3 in the decomposition
(4.75) is also a relative invariant.

We now extend the action of the group G to the space of parameters and let G
act on (y,v,v1,...,0p—1) in the obvious fashion, viz.,

U(y,v,v1,...,0p_1) = (Ay + z0, Bv, BCv,..., BC*"1v,_1).

With this definition of the group action, it is easily checked that the form ~, as
defined by (4.78), is a relative invariant. The induction hypothesis implies that
the form o is a relative invariant. We then check that 7, as defined by (4.82), is a
relative invariant in which case it follows immediately that n* is a relative invariant.

To check the validity of the corollary for one forms, we simply observe that
the minimal weight form 7 coincides with the form obtained from the horizontal
homotopy which, as we have already seen, is a relative ¥ invariant. ]



152 The Variational Bicomplex

ExaMPLE 4.28. Corollary 4.27 is particularly useful in the case of scaling transfor-
mations. Consider the variationally trivial Lagrangian

1
A= (Ugge + =) (Ugt — sinu) dz A dt

which arises from the distinguished, generalized symmetry (4.40) of the sine-Gordon
equation. In the previous section we used the horizontal homotopy operator to find
the conservation law 7 associated to this symmetry. Now we use Corollary 4.27.
The weights of the Lagrangian A are

wo(A) =5, wi(A) =3, wz()=1
and hence the weights of a minimal order form n = Pdt — Q) dx are
wo(n) =4, wi(n) =2, wa(n) =0.

From this weight information we can infer that the coefficients P and () are linear
combinations, with coefficients that are functions of (z, ¢, u), of the following terms

ugzms u?:t u%t UggUgt UgpgUtt UgtUtt
umxui u:cwumuy u:cwu% Ugr Ut Ugg Uy
UptU2Z  UgtlUglly  Uggly  Uggly Uil
Ut u% Utt Uz Uy Ut U% UttUt Utt Uy

ui uiut uiuf umui’ u?

ui Uz Ut uf Uy Ut 1.

Obviously, the application of the method of undetermined coefficients at this point
would be, at best, unwieldy.
To shorten the above list of terms, we observe that under the transformation

1
r— —x, and t— €t
€

the two form ) transforms as a relative invariant with character y = ¢3. We can
therefore assume that 7 is a relative invariant with the same character. This implies
that P is a relative invariant with character y = €2, and that that Q is a relative
invariant with character y = €*. The possibilities for these coefficients are therefore
narrowed to

2
P = P1UgzUgt + P2Uza Uz Ut + P3UL UL, + PalUzgy

+ psul + peus,
and
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Q = qul, + GoUasgUl + g3y

Furthermore, because A is translationally invariant in « and ¢ we assume that the
coefficients p; and ¢; are functions of u alone. It is now a relatively straightforward
matter to substitute into the equation d;n = A and determine that

1
P = ug,upp — sinu Uy, + 3 cosuui, and
1 1,
Q — _iuazm + 8ua:

This is the usual form of the conservation law for the Sine-Gordon equation associ-
ated to to generalized symmetry (4.40). |

We now turn to the counterpart of Theorem 4.23 for locally variational source
forms. Let A € F! be a source form with coefficients in P;x, 0 < j < k, and with
weight wy_1(A) > 0. Since the weights w;(A), wjt1(A), ..., wr—1(A), wp(A) =0
are, by Lemma 4.20, strictly decreasing there exists a first integer [ such that

wi(A) <1 (4.91)

k
It is not difficult to see, again by Lemma 4.20, that [ lies in the range [5] <Il<k.

For example, if the coefficient of A is ugu3 then [ = 2. If the coefficient of A is u3,
then [ = 3.

THEOREM 4.29. Let A be a locally variational source form with coefficients in Pjy,
and let | be defined by (4.91). Then there is a Lagrangian X\ for A with coefficient
in P;; and with weights

forp=j,7+1,...,1—1.

ProOOF: The argument is essentially a repetition of that used in Theorem 4.23.
The homotopy H' provides us with a Lagrangian \ € Q” 0 for A. Now fix D,
7 <p<k—1. We construct an equivalent Lagrangian \* such that

wy(A) —p if j<p<Ii-1,or
0 if [<p<k-1,
and

we(A*) < wg(N) forg=p+1,p+2,..., k—1.
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The theorem can then be proved by downward induction on p, starting with p = k—1
and ending with p = j.

Let wp(A) = a and wy(A) = b. If p is in the range j < p < [ — 1, we suppose
that b > a — p; if p is in the range | < p < k — 1, we suppose that b > 0. Because
wi(A) <, it follows that for p in this latter range,

p=1l>w(A) > w,(A)=a
Hence, regardless of the value of p, our suppositions lead to the inequality
b+p>a.

Decompose A into the sum
A=a+ 0, (4.92)

where W, () (t) = t?a and W(3)(t) is a polynomial in ¢ of degree < b. Now evaluate
W, (A)(t) using (4.72) to arrive at

Wo(D)(t) = W, (E(N))

|
.Mﬁ

s
Il
o

(=D = tDp) {0 [t"a + Wy (B)(1)]}

+ Y #7H(=D} — tD2)i{ 0t e + W, (B) (1))}

i=p+1
= P [(—D2), 4107 0+ (—D2)p 1207 20 + -+ (—D2)0 ]
+ { terms of degree < b+ p in t}.
Since W, (A)(t) is a polynomial in ¢ of degree a < b+ p, this implies that
(_Dz%)pﬂ(apﬂa) + (_D;)p+2(ap+2a) Tt (_Di)k(aka) =0.

Define the n form ~ as in the proof of Theorem 4.23 by fixing the dependency of
aon (x,u,uy,...,up—1) at (y,v,v1,...,vp_1). This last equation gives rise to

E(y)=0.

By Theorem 4.23, there is a minimal order form o such that v = dyo. We can
now continue with precisely the same arguments used in the proof of Theorem 4.23,
starting from (4.80), to complete the proof of Theorem 4.29 . ]
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A complete characterization of the image of the Euler-Lagrange operator on finite
order jet bundles is now possible. Let

QZ’O _ Qn,o N Qn(Jk(E))
and let
Fl = F QT (JYE)).
COROLLARY 4.30. Let &, be the image of QZ’O in Fy, under the Euler-Lagrange
operator,
Ex ={A € F5. | A = E(\) for some) € QZ’O b
let Vo be the space of variationally closed source forms in fglk,
Vor = {A Gfglk‘évAZO};
and let
Or ={A € ‘7:71%,% |wg(A) < k}.
Then
Er = Vo, N Q.

Proor: If A € &, then A is certainly variationally closed and, by Lemma 4.22,
wg(A) < k. Conversely, if A € Vo, N Q) then Theorem 4.29 may be invoked ( with
j =k, k replaced by 2k and [ = k) to conclude that A € &. ]

ExXAMPLE 4.31. It again seems appropriate to illustrate the algorithm described in
the proof of Theorem 4.29 for constructing minimal order Lagrangians. Consider
the source form on £ = R? x R — R? given by

A = (2UyyUpgry — Mgy Ugryy + 22Uz Ugyyy + Uszs Uyyy — Uzay Uzyy) OANdTAdy. (4.93)

It is not difficult to check that A satisfies the Helmholtz conditions. The coefficient
of A belongs to Py 4 and the weights are

wo(A) =6, wi(A)=4, wy(A)=2, and ws(A)=1.

In this example [ = 2 and, according to the theorem, there is a Lagrangian A\ with
coefficients in Py o and weights wo(\) = 6 and w;(A\) = 3.
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To find this minimal weight Lagrangian, we start with the Lagrangian furnished
by the homotopy H!,viz.,

1
Ao = §U(2uyyuma¢my — AUy Uy + 2UgpUsyyy + UzzpaUyyy — UgzyUzyy) AT A dy.

The weights of this Lagrangian are the same as those of A and therefore the first
step in our algorithm is to reduce ws to zero. In accordance with (4.92), we split A
into the sum

Ao = ap + Bo

where
1
@0 = §“<2uyyumxy — Ay Uaryy + 2Ugaliayyy) do A dy.
The form
Yo = §U(2vyyuwa¢wy — AUy Ugayy + 2VzpUayyy) dz A dy

is variationally trivial. The weights are wy(y9) =4 —¢ for ¢ =0,1,...4. A minimal
weight one form o for which dj o0 = 79 is

2
oo = g(vkumy — VU Ugy ) AT + g(vvmuyyy — VU Ugyy) dY-

Let 79 be the form obtained from oy by setting v = u,v; = Uy, Vpz = Uggy -« -
Then

dHTO_g(umu:cmuyyy F UgzaUyyy — UpUgpyUgyy — uumyuwyy) dx N\ dy

2
— = (U Uy Uy — Uy Uy F Uy Uy Ugzg + UlyyyUzas ) dT A dy = ag

3

and hence )\g is equivalent to the Lagrangian

2

A\ = [g(uyumyumy — Uy Uy Uggr — UgUpgUyyy + UgUgyUszyy)

— U(UpgzUyyy — UpayUzyy)] dz A dy.
The weights of this Lagrangian are

’U}()()\l) = 6, wl()\l) = 4, ’U)Q()\) = 2.
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We repeat this process to reduce wy. For the next step we find that

a1 = —U(UpgzUyyy — Uzgylazyy) dz A dy,
Y1 = —V(Uzzalyyy — UzzyUzyy) dT A dy, and
01 = —U(UgaUgyy) AT — V(UgpUyyy)dY,

which yields the equivalent Lagrangian

1
Ao = g(—?)uyumumyy + 22Uy gy Ugzy — 2UyUyyUgay

F UpUpg Uyyy + 2UgUgyUgyy ) dz A dy.

The weight w, has been reduce by 1 to 1. One more iteration will be needed to
reduce the weight wy to zero.
This time as = g,
1
Yo = g(—?wyumumyy + 20y Ugy Upzy — 20y UyyUgza
+ Vg UgpUyyy + 205Uy Usyy ) dz A dy,
1

09 = g(vyumumy — Vg UggUyy — §vxuiy) dx
1 2
+ g(—vaumuyy + 2 Vylay — Vg UgyUyy) dY
and the resulting minimal order Lagrangian is
A3 = Ugy (UggUyy — uiy) dzx A dy. (4.94)

COROLLARY 4.32. Let 1) € G and let ¥ be its prolongation to J>°(E). Suppose,
in addition to the hypotheses of Theorem 4.29, that A is a relative ¥ invariant with
character x. Then there is a minimal weight, relative W invariant Lagrangian \ for

A.

Proor: All the forms introduced in the proof of Theorem 4.29 are relative ¥ in-
variants. |

EXAMPLE 4.33. As an alternative to the algorithm described in the proof of The-

orem 4.29, we now use Corollary 4.32 to find a minimal weight Lagrangian for the

source form (4.93). This corollary asserts that there is a Lagrangian A € 9%32 with
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weights wg(A) = 6 and w1(A) = 3. Since A is homogenous in u of degree 3, we can
assume that X is also homogenous of degree 3. Therefore X is a sum of terms of the

type

a, b, c
utugug

where a > 0, b >0 and ¢ > 0 and
a+b+c=3, b+2c<6 and c<3.

Since A is translationally invariant in the z and y directions, the coefficients of
these terms are constants. Under the transformation z — ex and y — ey, A is a
relative invariant with character y = e~*. For the same to be true of \, we must
have

b+ 2c=6.

These equalities and inequalities force a = 0, b = 0 and ¢ = 3. The two form A is
therefore a constant linear combination of the terms

2 2 2

uCC.T : {mu;cmﬂ u;cy? uyy? uCC.T”CCy, u:cmuyya u:cyuyy }
2 2 2

Ugy - {umxa uxy, uyy> UprUgy, Urzlyy, UzyUyy }
2 2 2

Uyy - { U2, Uy  Uyys  Uselzy, Upglyy, UgylUyy }.

Finally we observe that A is a relative invariant under the transformation = —

2

eiz and y — ey with character x = €] %e, 2. This reduces the form of the trial

Lagrangian to
A = (QUzgUgyUyy + buiy) dx N dy.

From the equation E(\) = A, it follows that a = 1 and b = —1. This agrees with
the Lagrangian (4.94) obtained by our previous method. |

ExaAMPLE 4.34. The source form for the Monge-Ampere equation is
A = (UggUyy — uiy) dx A dy.

The weights of this form are wy = 4, w1 = 2 and we = 0. Arguments similar to
those of the previous example lead to the minimal weight Lagrangian

1
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ExAMPLE 4.35. We return to the minimal surface equation whose source form is
(4.41). Here the coefficient of A belongs to P; 2 and the first weight is w(A) = 1.
The corollary implies that there is a first order Lagrangian

A= L(z,y,u, uy, uy) de A dy

for A. Since A is translationally invariant in the x and y directions, we can assume
that L is independent of x and y. Since A is rotationally invariant in the z—y plane,
we can assume that

L = L(u,p), where p = u2 + ui (4.95)
The equation A = E(\) leads to a system of four equations involving

oL oL L oL
ou’ 9dp’ Oudp 9%

whose solution is

L L 1
a—:0 and g =

ou dp JI+p

The point to be made by this example is that our general theory insures, a priori,

that this overdetermined system is consistent and that a Lagrangian of the form
(4.95) can be found. Of course, these latter two equations integrate to give the
usual Lagrangian for the minimal surface equation. ]

EXAMPLE 4.36. In this example M = R3 and the fiber is the space of metrics
g = (gi;) on M. We consider the Cotton tensor

C= eihkglethl dgi; N dzt A dz? A da®,

where Ry; are the components of the Ricci tensor of g;; and V; denotes partial
covariant differentiation with respect to z*. The Cotton tensor vanishes if and
only if the metric g is conformally flat. (Recall that the Weyl tensor vanishes
identically when n = 3.) The Cotton tensor was first derived from a variational
principle by Chern and Simons [16] . At about the same time Horndeski [35],
apparently unaware of the Chern-Simons paper, explicitly verified that C' satisfied
the Helmholtz conditions but he was unable to explicitly find a Lagrangian for
C. The techniques afforded by Corollary 4.27 enable us to explicitly construct a
Lagrangian, in fact a special form of the Chern-Simons Lagrangian, without too

much difficulty.
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Since the curvature tensor is linear in the second derivatives of the metric and
quadratic in the first derivatives, the coefficients of the Cotton tensor belong to Py 3
The weights of C' are

In addition, C' is a natural Riemannian tensor and, as such, is invariant under the
change of variables

y" =ale' + b and g, = b%bégij,
where (a) € GL(3) and (b) = (a)~!. Observe that this is a subgroup H of G.
Our theory implies that there is an H invariant Lagrangian A € QE,)’;’(?Q with weights

wo(A\) =3 and wi(A\) =1

whose Euler-Lagrange form is C'. The most general Lagrangian with these weights
is

bed,ijh bed be,ijh,rst
A= [Aa e Gab,cdFij,h + AP Gab,cd + Bevetanrs Gab,cGij,hGrs,t

+ Bab07ijhgab,cgij,h + Bab’cgab,c + B} dml A dCU2 A d(,U?),

where the various coefficients A~ and B are functions of the metric alone. The
GL(3) invariance of C implies that these coefficients are natural Riemannian tensors
densities. Using Weyl’s classification theorem, we have that each one of these tensors
is a constant coefficient, linear combination of tensor densities formed from the

st and the inverse of the metric ¢"*. We immediately conclude

permutation symbol €

that the tensors with an even number of indices, wviz., A%0¢¢ Bciih and B, are

zero. Moreover, because B¢ must be a multiple of €%°¢, this term also vanishes.
At this point it becomes convenient to replace the first derivatives of the metric

by a combination of the Christoffel symbols, viz.,
9ijn = Gpi Ly, + gipr;;')h

and the second derivatives of the metric by a combination of derivatives of the
Christoffel symbols and terms quadratic in the Christoffel symbols. Accordingly,
we can rewrite A in the form

A=A e, T8+ BT TR | dat A da® A da. (4.96)

ab,c c h t ab™ 13- rs
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We can now proceed in one of two ways. It is possible to directly compute the
Euler-Lagrange form of A, where the coefficients A and B as taken to be unknown
functions of the metric g;;. By matching the coefficients of the various derivatives
of the connection in the equation C' = E()), one can determine the A and B. If
one adopts this approach, it is helpful to observe that Aaff’ihj can be taken to be
skew-symmetric under the interchange of the indices (a, b, d) with (i, j, h) since the
symmetric part can be recast as a divergence plus a term cubic in the connection.

Alternatively, we can use Weyl’s theorem to explicitly describe the the most
general form of the coefficients A and B in terms of arbitrary constants. We then
determine these constants from the equation C' = E()). However, of the many
possibilities for A the form of coefficient for the second derivatives of the connection
in C' suggests that we try an A which is a sum of tensors of the form

€ Yy Uy

where the upper indices x are chosen from the set { i, j, a, b, ¢ } and the lower indices
y are chosen from {d,h}. Because the Christoffel symbols which are contracted
against A’ are symmetric in the indices ab and ij, the only possibilities for the first
term of A\ of this form are

abc,ij nd h _ i $b ¢ i b ci1d h
A" Tg T = (1899 646), + a2 6767 Ty, T3

ab,c ab,c
_ aciTb J acimg h
= ae" Ty %5, + 07T, 175,

where a and b are constants. Since

0

b

Fab = oo (log \/§>

the coefficient of a vanishes. Likewise, we try a ng’zj "” which is a sum of terms of
the form

rxrxr Sr ST ST
£V 5T 67 6T,

A calculation of moderate length shows that the only possible nonzero second term
in (4.96) is

airJ TS Ta
CE FabFiij,

where c is a constant.
Thus, the final form of our trial Lagrangian is

A= [be“T?, T 4 ce® T, 1518 ] da' A da® A da.

1J TS
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By repeatedly using the formula
dvrfj = g" [V ;0 + V05 — V10,;],
where 6;; = d,g;; we can compute E()\) and conclude that E(\) = C for

1
b= - and c:l.
2 3

ExXAMPLE 4.37. Let M = R"™ and let E be the bundle of metrics over M. Consider
the Einstein tensor

1.
G = V/g(RY — Sg7) dgi; Av.

Since G is homogeneous of degree g — 1, the homotopy formula (4.33) leads to the

standard Lagrangian
)\() = —\/ER V.

On the one hand this is a natural Lagrangian — it is invariant under all orienta-
tion preserving diffeomorphisms of M. On the other hand, \g is a second order
Lagrangian and is therefore not a minimal weight Lagrangian. The minimal weight
Lagrangian is the first order Lagrangian

AL = @[gjhrﬁmrfj - gijrzthZk] v,

which, however, is not natural. Thus, a minimal order Lagrangian may not be a
Lagrangian with the largest possible symmetry group. Indeed, the remarks following
Lemma 4.26 suggest that Corollaries 4.27 and 4.32 are sharp in the sense that the
group G is the “largest” group for which one is assured the existence of invariant
minimal weight Lagrangians. ]

It is simple matter to extend these minimal weight results to forms in 2™*, where
s > 1. Given a type (r,s) form w, we interior evaluate with vertical vector fields

Y,=Y%—,i=1,2, ..., sin order to pull w down to the horizontal r form
b ou™

w=prYs—prY, 1~ ---pr¥Y;—-w

If r < nand wis dj closed, then @ is dj closed. If r = n and I(w) = 0, then by
Lemma 3.2 E(©) = 0. We treat @ not as a form on J°°(E) but rather as a form on
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J®(E x Ty (E)®) — in other words we treat the components Y% as new dependent
variables. The p'" weight of w is defined to be the p*"" weight of &, where we now
include in our derivative count the derivatives of the Y. For instance, the weights
of the type (2,1) form

W = UgUppy 0 N Opp N dx

wo(w) =6, wi(w)=3, ws(w)=1.

The existence of minimal weight forms now follows from our basic result, Theorem
4.23.

C. The Jacobian Subcomplex. Let £ 5 M be an arbitrary fibered manifold.
All of our considerations thus far have been based upon the variational bicomplex
(Q**(J*(E)),dy, dy ) over the infinite jet bundle of E. In this section we introduce
a subcomplex (7", dy, dy,) which is defined over the finite dimensional jet bundle
JFL(E) in the sense that

T QT (JTTH(E)). (4.97)
To begin, we define the subring of forms €,
O, C Q*(JHE)) C QF(J=(E)),

by
= {the dy, closure of Q*(J*(E))}.

This ring is generated by the functions f € C°°(J*(FE)), the horizontal differentials
dz®, and the contact forms 0% of order |I| < k. Let

QS = QP (J®(E)) N Q.

Evidently, the double complex (Q,") is dy, closed but it is not dj closed — for
f QY0 = C®(JHE)), dy f € CX(JHHL(E)) and dyy0F = —63, Adai, i.e.,

* % * %k
dpQy™ C Q.

Suppose, however, that we further restrict our attention to forms in Q;® for the

which the k™ order derivatives uf, and the k™ order contact forms 62 ;

S 2k

occur only through expressions of the form

J=dpu§ Adgu§? - ANdgug? AT Adg07 A0 (4.98)
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where |I;| = |J;| = k—1 and p+¢ < r. The sub-bicomplex consisting of these forms
is now both d;; and dy, closed. If we write the horizontal form J as
1 . . . . . .
J = il Jivig.ipjrjo..jg dx't Ndx™ - -dx'™ Nda?t Ndx?? - - - da?e
then the coefficient J... is the (p + ¢) dimensional total derivative Jacobian
B
 D(uflugz Ut 07 05007

Jiso s =
112.‘.7,1)_71_72‘.“](1 - - i - B B
D(zi, x> xte gt g2, .. 2da)

of the quantities uf’, ..., 0?2 with respect to the variables xt, ..., z/«. For this
reason, we call the subspace of all such type (r,s) forms the space of k*® order
Jacobian forms J,°.

Let E: R?® x R? — R? with coordinates (z,y, z,u,v) — (z,v,z). Examples of
Jacobian forms include

w1 =dyu= Uz dr+u,dy +u,dz € T,
Wo = dgVsy = Vpge AT + Vpgy AY + Vgpr dz € 331’0,
w3 = dyu, NdHu,

Ugy Ugy Ugy Ugy Ugy Ugy de A dz
- )

dx N\ dy + dy Ndz +

Uzy  Uyy Uyz  Uyz Uyz  Uyz

and
wy = dyuy Ndgvge Ndz +dgug N dgvy A v,

Ugy Ugy Ugz

Yo Uy |y Ugy Uyy Uyz }dx/\dy/\dz.

-

Vgr Uy
Vgz Vyz Vzz

Here w3 and w,4 belong to .722’0 and .723 0 respectively. We emphasize that the first
term in ws, viz.,

Yz Uy dz A dy

Uzy  Uyy
is not a Jacobian form on J*°(F) in its own right but it would be if the base space
were R?. The vertical derivative of any of these forms is also a Jacobian form. For
example,

ws = wy A dywa Adz
Vezy Vzxz

0y 0y

Ty TTZ

dr Ndy N\dz
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belongs to jg’l. We also remark that if w € J,° and f is a C* function on
JF=H(E), then fw e J.°°.

We can describe the Jacobian subcomplex (", dj, dy,) intrinsically as follows.
Recall that 7#"%: Q"5 (J®(E)) — Q™5(J>°(F)) is the projection map. Note that if
w € Q" (J*(E)), then 70(w) € Q7.

LEMMA 4.38. Let
Qz = { the dy, closure ofﬂ*’O[Q*(Jk_l(E))] }

as a C(J*=1(E)) module. Then the space of k" order, type (r,s) Jacobian forms
is

TS = Q™ N Q5. (4.99)

PROOF: Observe that Q*(J*~1(E)) is generated by functions f € C®(J*~1(E),
and by the forms dz’ and du$, |I| < k—1. Hence 7*°[Q*(J*~1(E))] is generated by
the functions f € C°°(J*'(E)) and by the forms dz’ and dyu$ = uf;dz’, where
|I| = k — 1. The dy, closure of 7*°[Q*(J*"1(E))] is generated by the functions
f € C®(Jk¥=1(E)), and by the forms dx’, 0% for |J| < k — 1, and dzu$ and d60¢
for |[I| = k — 1. This proves (4.99). [

Since 7Y o d = d; acting on horizontal forms, it follows that 7*°[Q*(J*~1(E))]
is dy closed and therefore Qf is both djy and dy, closed. Thus (7%, dy,dy,) is
indeed a sub-bicomplex of the variational bicomplex on J*(F).

The property of being d; closed provides another intrinsic characterization of
the space of Jacobian forms.

THEOREM 4.39. For r < n, J,*° consists of those froms whose order is not in-
creased by d, i.e.,

To®={we )’ |dyw e Q" 1

OUTLINE OF PROOF: We first establish the theorem for horizontal forms. Let
w=Aj[x, u(k)] dx’!

be a type (r,0) form of order k. If djyw = 0, then the dual tensor

1, .0

B= i [/ Af] =— (4.100)

Ox!

is a skew-symmetric rank p = n — r tensor which is divergence-free, i.e.,

D;BI7233-0p = (), (4.101)



166 The Variational Bicomplex

Note that (4.100) can be inverted to give

1

zzliﬁ[eL,BJ]dxl. (4.102)

Since B is of order k, we may equate the coefficients of the (k+1)5" order derivatives
in (4.101) to zero. This yields

a&’hizmik Bik+1)j2~~jp = 0. (4.103)

The theorem follows from a careful analysis of this symmetry condition. Specifi-
cally, we first prove that B is a polynomial of degree m < n — p = r. Accordingly,
we may write

JI Iz - a1, Qs ay
Z B a1 a2 alull u12 < 'uIl ) (4104)
|Ih| k

where the coefficients B’ are functions of order £ — 1. We then show, again on
account of (4.103), that there are (k — 1) order functions @ such that B’ can be
expressed in the form

L e dr I ..
Bgl,.,jpll IZ _ symh symIl 631MJleM“klmktle.,.kta11...Otll7 (4105)

where t = r — [ and I, = i,I;. When (4.104) and (4.105) are substituted into
(4.102), it is found that

Z Qlﬂ ktcn Oél dHu ARERNA dHual A dxkl - A dl‘kp

1412k

This proves that w € j,:’o.
To prove the theorem for type (r,s) forms, s > 1, let w € Q° and suppose
dyw = 0. Then for arbitrary vertical vector fields Y7, Y3, ...,Y;, the form

w=prY¥s—prYs, 1= ---—"pr¥Y; - w

is a dy; closed horizontal form which is of order £ in both the derivatives of ©® and
in the derivatives of the the components Y§* of Y;. By what we have just proved,
this k' order dependence must occur via the Jacobians

J=J A Jo,

where
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J1 =dgus! Ndgug? - A dHu?pp,
and
T = dy (Vi /) A g (V)2 A g (V)
q
and where the length of each multi-index |I;| = |J;| = k — 1. This shows that the
k*™h order derivatives u¢ and the k*™" order contact forms 6% present in w must occur
via the Jacobians (4.98) and proves the theorem for s > 1. Actually, to make this

last statement more precise, observe that w is alternating in the variables Y7, Yo,
..., Yg so that the Jacobian J; must occur in @ as a term in the alternating sum

T 1 2 Bq
Jo = Z dH(thr(l)>§1 A dH(Yha@))i A Ndg(Yh, )
0ES,

= £pr¥y, = pr¥u, = prYs, = {dg07 Ady07 A .dHeﬁg}.

To prove that (4.103) implies (4.104) and (4.105) some results from multi-linear
algebra are needed. Let V = R"™ and let S9(V) be the vector space of symmetric,
rank ¢ tensors on V. If X € V, we let X be the ¢-tuple X = (X, X,..., X). By
polarization, the values of a tensor 7' € S9(V') are uniquely determined by the values
of T(X) for all X € V. More generally, if

TeSYWV)=81(V)@S2(V)®- - & S (V)

and, for X7 in V, we let X7 be the g;-tuple X7 = (X7, X7 ... X7), then the values
of T are uniquely determined by the values of

T(XL X% am.

Here, and in the sequel, we use a semicolon to separate the arguments belonging to
the different factors of S@ (V).

DEFINITION 4.40. A tensor T € S9(V) is said to have symmetry property A if
TXL X% ., Xx™) =0 (4.106)

whenever the vectors X', X2, ... X™ are linearly dependent.

The next lemma will be used to prove that [-fold derivatives of B with respect to
the variables u¢, |I| = k have property A.
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LEMMA 4.41. Suppose that ¢ = 1 and that
T(Xhx2% ..., X™) =0 (4.107)
whenever X' = X* for eachi =2, 3, ..., m. Then T has property A.

PROOF: In order to establish (4.106), we consider two cases.

Case 1. X! is a linear combination of { X2, X3, ..., X™}.

Case 2. For some j > 2, X7 is a linear combination of

(X', ., x7-t xItt o X™Y,

Equation (4.106) follows immediately from (4.107) in Case 1. If X! = Z c; X7
j=2
then, owing to the linearity of T in its first argument,
l
T(Xh X% ™) =) ¢T(X;X%..X™) =0.
j=2
For Case 2, let us suppose, merely for the sake of notational simplicity, that j = 2.

Then, again using the multi-linearity of T', we find that
T(XH X% 5X™) =Y e, T(XL ;X% 5™,
y

where the ¢y, are constants and the sum ranges over all gz-tuples
Y=(Yh1Y?%...,Y®)  whereeach Y"e {X' X3 .. X"}
To complete the proof of the lemma we must prove that
T(XhHY; &% .. .,x2™) =0. (4.108)

Let V* be the go-tuple obtained from ) by replacing Y* by X!. The symmetry
condition (4.107) implies that

T(XLy,a% . xh+ iT(Y’“; yeAS LA™ =0. (4.109)
k=1
If Y = X!, then obviously
TY*; V5 X% . 2™ =T(X5Y; X%, 54™),
while if Y¥ = X% i =3, ..., m, then because of property A,
TR PP x% . 2™ =T(XHY% X% .. 5,48™) = 0.
In short, (4.109) reduces to a multiple of (4.108) and the lemma is established. [
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PROOF OF (4.104): Given the horizontal form w define a tensor

(@B esS'®---0S'esfe...5*
pc;;ies lc;,pies

the components of which are the [*' order derivatives of B with respect to uf,
|I| =k, at any point fixed in J*°(FE). For example, with | = 2,

(9®B) (X1 X2 ... XP, XP+L, xp+2)
= X;IXJZ2 .. .X?pXﬁ+1 .. .Xf:lX}zzirQ B .X£:2(631...ik621...hklejg...jp)‘
Let X', X2, ..., XPT' ¢ V and consider the value
b= (0'B) (X" X% XP Xt et

Because (9'B) is skew-symmetric in its first p arguments, b = 0 if X' = X, for
j =2, ..., p. Moreover, the symmetry condition (4.103) implies that b = 0 if
X'=XJ j=p+1,...,p+1 Thus 0'B satisfies the hypothesis of Lemma 4.41
and hence 0'B has property A. Since the vectors X!, X2, ..., XP*! are always
linearly dependent if p+1 = n —r +1 > n, this proves that 9'B vanishes identically
if [ > r. This establishes (4.104). [

To prove (4.105), we need the structure theorem for tensors with property .A.
To this end, it is convenient to temporarily adopt a slightly different viewpoint.
Let My, be the ring of real m x n matrices and let R[X] be the polynomial
ring in the m X n matrix of indeterminants X = (x;) Denote the rows of X
by X? = (x},2%,...,2%). Then for each tensor T' € S?(V), we can construct a
polynomial 7' € R[X] by setting

T(xh) =T(X' X% .. ;4™).
Note that 7" is homogenous in the variables X* of degree ¢;.

Now let I, be the ideal in R[X] generated by all the r x r minors of X and let

V.. be the variety in M, , which vanishes on I,., i.e.,

Vi={Ae M, ,|P(A)=0forall P eI}

THEOREM 4.42. If Q € R[X] and Q(A) =0 for all A € V,, then Q € I,.

De Concini, Eisenbud and Procesi [20] prove this theorem using the Straightening
Theorem for Young tableaus. Another proof, based the Cappelli identity from
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classical invariant theory, can be found in Anderson [3]. Actually we need a version
of this theorem which accounts for dependencies on parameters — if Q¢ € R[X]
depends smoothly on a parameter ¢t and Q¢(A) = 0 for all £ and all A € V,., then

Qi(X) =) M*(X)PH(X)
k

where each M* € I, and each P} € R[X] depends smoothly on ¢t. However, owing
to the constructive nature of the above proofs, this is immediate.

PROOF OF (4.105): It is now easy to complete the derivation of (4.105). If T € S9
has property A, then the polynomial

T(X)=T(X" X%, ., x™)

vanishes whenever rank(X) < m. Theorem 4.42 implies that 7' € I,,. Since the
m X m minors of X can be expressed in the form

Mkl.“k:t (X) — gklktjlij]ll .. .X;:Ln, (4.110)
this shows that T" can be expressed in the form
T(XL X% ™) = Mkl"'kt(Xl,Xz, s X Quy o (X X% X)L (4.110)

Here each Q. € S~ @ 21 @ §9m~1 With T = 9'B, (4.111) becomes (4.105),

as required. ]
COROLLARY 4.43. Let E 5 M be the trivial R™ bundle over R™. For each
k=1,2,..., the Jacobian bicomplex (7", dy,d\ ) is exact.

PROOF: Let w € J;’°. Then w is a polynomial in the u¢, 6%, where |I| = k, of
degree < r, i.e., the highest weights of w are wi_1(w) < r and wi(w) = 0. By
the minimal weight results of the previous section, there is form 7 € Q};fl’s such
that dyn = w. Since the order of 1 is the same as that of dyn, we can infer from
Theorem 4.39 that n € J,: ~Ls This proves the exactness of the rows.

Let w € J,°. Since pr R— G?jd;cj = u?jdxj, it is apparent that hy}*(w) € .7]:’871.
This observation suffices to prove the exactness of each column. Alternatively,
for r < n, it suffices to recall that d; anti-commutes with hy and to note that
ho: Q0 — Qp° ' so that

dghty®(w) = =38 (dgw) € Q1

Owing to Theorem 4.39, this shows that h{;*(w) € J° " 1
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COROLLARY 4.44. Let E 5 M be the trivial R™ bundle over R". Ifw € Q* and
Ew)=0ifs=0orI(w)=0ifs>1, thenw € J,"° and w = dyn forn € jl:fl,s'

PROOF: Since w is of order k, our minimal order results show that w = d 7, where
7 is also of order k. This implies that 7 € J'~ " and so w € J;"°. [

COROLLARY 4.45. Forr < n, let w € Q;"° and suppose that dyw € QZH’S, where
k <1. Then there are forms @ € J,"* and n € jfﬁl’s such that

w=w-+dgn. (4.112)

PROOF: Let p = dgw € QZH’S. Then p is closed in the appropriate sense, i.e.,
dgp=0ifr<n—2,orI(p)=0ifr=n—1lands>1,0or E(p)=0ifr=n—1
and s = 0. In any case, we can conclude that there is a form @ € J;* such that
dyw = p, or

dy(w—w)=0.

Since w — & € Q)°, there must be a form 1 € J; " such that (4.112) holds. [
ExamMpPLE 4.46. Local Exactness of the Gauss-Bonnet Lagrangian.

Let E be the trivial bundle R? x R3 — R? with coordinates (z,y, R) — (z,v),
where R = (u,v,w) is the position vector in R®. We restrict our attention to the
open set R C J*°(F) defined by

R={(r,y,R, Ry, Ry,...)| Ry x R, #0}.

Sections of E are the graphs of regular parametrized surfaces in R3. In this example
we do not restrict to the bicomplex on R of forms which are parameter invariant,
i.e., invariant under diffeomorphism of the base R?2.
Let
E =(R,,R;), F =(R;,R,), G = (R, Ry)

be the components of the first fundamental form. Let D = VEG — F? and let
K be the Gaussian curvature. The Gauss-Bonnet integrand is the second order
Lagrangian A € Q*9(R), where A = Ldx Ady and L = KD. Struik [64](p. 112)
gives the following explicit formula for L:

1
<Rxwa Ryy) <R33:c> Rx) <R33:c> Ry> <R:I:y7 Ra:y> <R33y7 Rw> <Rwya Ry>
(Ry, Ryy) E F — | (Ray, Ra) E F

(Ry, Ryy) F G (Ray, Ry) F G
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This enables us to rewrite \ in the form

1

=D

(dg Ry N dHRy)

1
+ﬁ [_E<Ry7 dHRw> A <Rya dHRy> + F<R337 dHRac> A <Ry> dHRy>
+ F(Ry,dyRy) N (Ry,dyRy) — G(Ry,dy Ry) A (ReydRy))

The Lagrangian \ is variational trivial. To find a one form € Q1:°(R) such that
A= dyp (4.113)

we first observe that A has the following properties:
(i) AeQp), and wi(A) = 2;
(ii) A e 7%
(iii) A is invariant under the group SO(3) acting on the fiber; and
(iv) A is invariant under the group of translations in the base.
By our minimal weight results of §4B, we can assume that n € Q%;?Q, that wy(n) = 1,
and that 7 is both SO(3) and translational invariant. By property (ii) and Theorem

4.39, we know that n € .721’0 and that the second derivative dependencies of 17 must
occur via the degree 1 Jacobians dy R, and dy R,. Thus 7 is of the form

n=a(Ry,dyRy;) +b(Ry,,dyRy) +e(N,dyR;)
c(Ry,dgRy) + d(Ry,dy Ry) + f(N,dyRy) + no,
where N is the unit normal vector, where the coefficients a,b,..., f are, a priori,

SO(3) invariant functions of R, R, and R, and where 7 is a first order one form.
From the form of )\, it seems reasonable to suppose that e = f = 0 and that

the coefficients a,...,d are independent of R. This implies that these coefficients
can now be considered to be functions of E, F', and G. With the R dependence
eliminated from a, ..., d, there is no way that the first order form 7y can contribute

to the solution of the equation (4.113) and therefore we assume that 7y = 0.
We now compute d ;7 and match coefficients in (4.113) to arrive at the following
system of equations:

o 1 g ,0d _F - ,0c _0d
cT'T D oG " “9E ~ D3’ oG~ OF’
oa Oc E ob Oc E ob oa
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This system has many solutions, one of which is

F 1
a ﬁ, b —5, C = O, d= 0
This gives
) BB (R dy o) — (R R Ry )
(Ry, Ry;)D ’
For this choice of n, Struik [64](p. 114) attributes the formula dyn = KD dx A dy
to Liouville. |

In analogy with Corollary 4.45, let us now consider Lagrangians A € an,o whose
Euler-Lagrange form A = F()\) € F}, where k < 2/. Since the Lagrangian A\ =

H(A) is of order k and E()\) = A, we can conclude that

A=A+dyn,
where n € Jln_l’o. The problem now becomes that of characterizing the functional
dependencies of Lagrangians of order £ whose Euler-Lagrange forms are also of order
k. In view of the Volterra-Vainberg homotopy operator H!, this is tantamount to
the problem of classifying the functional dependencies of source forms of order k
which satisfy the Helmholtz conditions. This is the problem to which we now turn.

Suppose that A € F} is a source form of order k& > 1 and that dyA = 0.
Since dyw € QZ’Q, the condition I(d,A) = 0 implies that d;, A € j:’2 and hence
A € j,f’l. Therefore, if A is a locally variational source form of order k, then it
must be a polynomial in the k'™ order derivatives of degree < n. This, however, is no
means a full characterization of the functional dependence of a locally variational
source form. Considerably more structure is imposed by the Helmholtz equations.

To begin to uncover this structure, let A = P, [z, u(k)] 0% A v be a locally varia-
tional source form of order k. By differentiating the Helmholtz equation

aé2j3-~-jkpa = (—1)* [a(afjs...jk Py — kpjagjzjs--dkpﬁ} (4.114)
with respect to u) we deduce that

Zlig...ik+1
a,(yi”é‘“ikagﬁl)jzj&ujkpa —0. (4.115)

Although this symmetry condition appears to be the same as (4.103), it is in fact
a much stronger condition because, in this instance, (4.115) is symmetric in the
indices joJ3 - - - Jk-
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DEFINITION 4.47. Let T € ST © S ... ® S9. The tensor 1" has symmetry
property B if for each q;-tuple Y = (Y1, Y2, ... ) Y%), i=1,2,...,m

T(X. XTH Y XX =0 ifsome YT =X, j#£i.

Equation (4.115) implies that 0™ P enjoys property . To analyze this symmetry
property, it is convenient to assume that the factors of the tensor product S¢ are
ordered according to length, i.e., g1 < g2 < -+ < @p-

LEMMA 4.48. If T € S9 has property B, then T vanishes whenever any gj +1 of
its first q1 + g2 - - - + q; arguments coincide.

PROOF: Suppose a vector X occurs g; + 1 times amongst the first ¢; + g2 --- + g;
arguments of 7', say

By repeated using the symmetry property B, t can be expressed as a sum of terms,
where all the X arguments have been gathered together into a single factor S,
[ < j with at least one additional X amongst the arguments of X, i.e.,

=Y T(.; X, XX, X;...).
Ith factor

By property B, this vanishes.
For example, if T € S? ® S* ® S%, then

TX,W; X, X,U,V; X, XY, Z)

1
=-3 [T(X, W, X, YUV X, X, X, Z)+T(X,W; X, Z,U,V; X, X, X, Y)]

1
= ST(XCWZY,U VX, X, X, X)=0. 1
Let A = (a*) € V. Define

(VL T)(XL X% ™) = ai% [T(xt X% ™)

(3

= qu(Xl;...;Xj_l;y; XL ™,

where Y = (X7, X7,..., X7 A).
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LEMMA 4.49. Suppose T € S? has property B. Fix p < ¢ — 1 and let A', A2,
, AP € V. Then

(V4 V3, Vi D)X X% 5 4m) =0, (4.116)

whenever { X1, X2 ..., X™} are linearly dependent.

PROOF: The left-hand side of (4.116) is a sum of terms of the form

T(XYL XY XA X% XX X X)), (4.117)
—_— Y —— ——
71 T2 T Tm

where each r; > 1. and > . r; =Y q; —

Now suppose that X' is a linear combination of the forms X', ..., X!=1 X1,
, X™. Then (4.117) becomes a sum of terms of the form

I*P factor
T(xXt, x5 x? X% s xtxt X% X2 JXMOX™ X X™ L),
——— N——— —— ~~ v ~ v
1 () s1 S92 Sm Tm
(4.118)
where s; = 0 and Z s; = 1. I claim that for some j # [,
Jj=1

Sj—|-7“j >Qj. (4119)

Suppose the contrary. Then for all j # [, s; + r; < g; and therefore

m
p= Z —CIl—Tl-FZ >QZ_TZ+ZSZ
71=1
J#l
=q—r+trn=q =q.
This contradicts the hypothesis that p < ¢; — 1 and proves (4.119). Lemma 4.48

now shows that the expression in (4.118) is zero. [

We revert once again to the algebraic viewpoint introduced earlier. Let I? be the
p'" power of the the ideal I, in R[X] — each polynomial P € I? is a finite sum

P=) M'Q",
k
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where each Q% € R[X] and each M* is a p-fold product of r x 7 minors. If P € R[X],
let Df denote the matrix of partial derivatives of P with respect to the variables
a/:g The p** symbolic power of I" is

IV ={PeR[X]||P,DP,..., D" 'Pecl,}.

THEOREM 4.50. If r = m, then the p'" power and the p** symbolic power of the
ideal I, coincide,
P =1,

The proof of this theorem can also be found in [20] or [3].
We use this theorem to complete the analysis of symmetry property B as follows.
Let T € S9 be a tensor with property B and let

T(al) =T(X &% ™).

Lemma 4.49 shows that T € I and thus, on account of Theorem 4.50, 7' € I%:.
This implies that

T(XL X% LX) =Y MO ME MR Qp e,k (XS XL A™),
(4.120)
where each M is an 7 x 7 minor of X, as defined by (4.110). Since

omPeSteSk...» sk (m factors)

has property B, 0™ P must be of the form (4.120) with ¢ = k. To convert this
result into a statement describing the functional dependences of A on its k" order
derivatives, it is helpful to introduce Olver’s [53] notion of hyperjacobians.

DEFINITION 4.51. A hyperjacobian Jy(u',u?, ..., uP) of degree p and order q is a
multi-linear, alternating sum of the ¢*" order derivatives of the p functions u', u?,
..., uP. Specifically, fix multi-indices K1, Ko, ..., K, of length |K;| =n — p. Then

the hyperjacobians of degree p and order q are

JquKQ“‘Kq(ul,ug, o uP) =

(4.121)

IK, JKy  _TK, 1 2 P
€ € € uiljl...tluigjg...tg uipjp‘.‘tp7
where I = i1ty ...9p, J = jijo...Jp, ..., T = tita...t, are a set of ¢ multi-indices

of length p.

For example, when ¢ = 1,

K1 2 P\ _ Kivig..ip, 1 2 p
JiU(ut . uP) =€ Pl U, U
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is just the ordinary Jacobian of u!, u?, ... uP with respect to the p variables

{2'|i¢ K}. For p=n =2,
Jl(”v”)
J2(u7

UgVy — Uy Vg,

<

) = UggVyy — 2UsyVay + Uyy Vs,
J3(U, V) = UzaaVyyy — BUzayVayy T BUayyVayy — UyyyVaza,
and so on. If p = n and u! = w? = -+ = wP = u, then J,(u,u,...,u) is the
generalized determinant of the rank ¢ symmetric form 0%u.
We combine (4.120) and (4.121) to arrive the following characterization of the
k' order derivative dependencies of a locally variational source form of order k.

PrROPOSITION 4.52. Let A be a locally variational source form of order k. Then
the components of A are linear combinations over C*°(J*~1(E)) of the k' order
hyperjacobians of the dependent variables u® of degree 0,1, ... n.

EXAMPLE 4.53. Let J,(ug,ug ..., ux) be the k', k even, order hyperjacobian of
degree n. For instance, with n = 2 and k = 4 we have

711 172 ~h1ha _k1k
Jo(ug, ug) = €272 MMy, ok Win gy ho ks

= 2(UpgzaUyyyy — MazryUzyyy + 3uimyy). (4.122)

Since D;§77233-Jk J,, = 0, it follows that the source form
A=J,0Av, (4.123)

which depends exclusively on k' order derivatives, satisfies the Helmholtz condi-
tions. Since A is homogenous of degree n, the Lagrangian A = H1(A) is given by
(4.33), viz

1

n+1

=

Uy (Uky Upgy « oy U) V

The equation E(A) = A is equivalent to

1
Dl(uaIJn>7 ’I’ =k

n

In =

which makes explicit the fact (Olver [52], [53]) that J,, is a k-fold divergence. |

Since the proof of Proposition 4.52 depends only on the highest derivative terms
of the single Helmholtz equation (4.114), it should not be too surprising to find
that this proposition fails in general to give a sharp description of the possible
functional dependencies of a locally variational source form. In this regard, we have
the following conjecture.
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CONJECTURE 4.54. Let A € F] be a locally variational source form of order

k=2l ifk iseven, or k =2l —1 if k is odd. Then A € ]—"P .e., A is a polynomial
in derivatives of order > I, and the weights of A are bounded by
wy(A) < (k—p)n forp=1,1+1,..., k—1. (4.124)

The source form (4.123) shows that the bounds (4.124) are sharp. It is undoubt-
edly true that terms in A of weight w, > k — p must occur via hyperjacobians of
some type but I have been unable to even formulate a good conjecture along these
lines.

Although many authors have, in recent years, rederived the Helmholtz equations
it is disappointing to find that none have attempted to uncover the general structure
of locally variational differential equations. Historically, this has not always been the
case. Before the introduction of the Volterra-Vainberg formula, the local sufficiency
of the Helmholtz conditions was established though a detailed analysis of these
equations. This approach is still a valuable one and should not be dismissed for
its inefficiencies. For example, in the case of second order ordinary differential
equations, the direct analysis of the Helmholz equations enables one to correctly
guess the possible global obstructions to the solution of the inverse problem. As the
final example of this chapter will show, the detailed structure of locally variational
source forms is needed to solve an equivariant version of the inverse problem where
the Volterra-Vainberg formula fails to furnish us with a Lagrangian with the sought
after symmetries.

The next three examples establish special cases of the above conjecture.

ExXaAMPLE 4.55. Structure of locally variational, ordinary differential equations.

In the case of ODE, that is, when E : R x R™ — R, the above conjecture
completely characterizes the functional dependencies of locally variational source
forms. Let

A = P,(z,u’,a”,. (k)a) 0° A dx

be a locally variational source form of order k. We know that there is a Lagrangian
A = Liz,u™] of order k for A. Since E,(L) = P, is only of order k, we must have

that
9L

EZY(Eo(L)) = ——— =0

B oBag)s
and so . .
L=A%"+1L,

where A, and L are of order k — 1. From the equation
27 2
L
B Ea =2 0 g

(h) (k) (h) (k)
ouedul  Oublou«
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where h = k — 1, we can deduce that

of

A =
o (n)
ou

for some function f of order k — 1. Since

a — of W+ { terms of order k — 1},
dzx 6(&)04

this shows that the original Lagrangian L is equivalent to a Lagrangian of order
kE—1.

We can repeat this argument to further reduce the order of the Lagrangian for
A. If k =2l or k = 2] — 1, this reduction stops when the order of the Lagrangian is
l; moreover, if k = 2] — 1, then the Lagrangian is linear in the derivatives of order [.
When taken in conjecture with Lemma 4.22, this proves the following proposition.

ProprosiTION 4.56. Let F : R x R™ — R and suppose that A is a source form
for a system of k™" order ordinary differential equations on E. Let k = 21, or 21 — 1
according to whether k is even or odd. Then A is a polynomial in derivatives of
order > [ with weights

wy(A) <k —p, j=L1+1,...,k—1.
In particular, A is linear in derivatives of order k, i.e.,
P, = Aalg(ﬁ)a + Pz, u(kfl)],

where the coefficients A,g are functions of order k — 1.
Now consider the case of scalar partial differential equations.
EXAMPLE 4.57. Structure of locally variational, second order scalar equations.

For second order scalar equations, Proposition 4.52 completely characterizes the
functional form of locally variational source forms. Indeed, if B(u,u;) is any smooth
function on J(E) and J,, = J,(ug, uz, ... uz) is the second order hyperjacobian of
degree n (in this case J,, is, apart from a numerical factor, the Hessian det u;;),
then it is not difficult to verify that

P(u,ui,uij) = [(n+ 1)B + (w;0'B)]Jn + (0uB)uju;0% J,

satisfies the Helmholtz equations

0"P = D,0"P.



180 The Variational Bicomplex

With B = fol t" A(u, tu;) dt, P becomes
P = AJ, + (0uB)usu;0% J,,.

This proves that the coefficient A = A(u,u;) of the highest weight term J; can be
arbitrarily specified. No further constraints on the possible functional dependencies
of the the coefficients of A are imposed by the Helmholtz conditions. ]

We know that there are no third order scalar equation solutions to the Helmholtz
equations so that following example describes the next simplest, non-trivial case to
consider.

EXAMPLE 4.58. Structure of locally variational, fourth order scalar equations in
two independent variables.

Let £:R? x R — R?. Let
A= P(xia W, Ui, WijUijh, Yijhk) O N dx A dy

be a locally variational source form. Our starting point is Proposition 4.52 which,
in this case, asserts that

P=AJ + Bijhkuijhk + C,

where J = %J4(U4, uy4) is the 4% order hyperjacobian of degree two given by (4.122)
and where A, B, and C are third order functions. The problem to be addressed
here is the extent to which the coefficient A of the highest weight term J is arbitrary.

The derivative of P with respect to uy, |I| = ¢ will be denoted by 0P € S4, for
example

(00'P)(X, X, X;Y,Y,V,Y) = X;, X;, X, Y;,Y;,Y;,Y;, 012" 9irdzisia p,
The tensor 0*0*P = 9*9*J € S* ® S* is given by
(0*0*P) = Adet*(X,Y). (4.125)

This tensor has symmetry property B. If R € S9, then its total divergence belongs
to S9! and shall be denoted by

R(X7 e '7X7 V) = XilXiQ .. .Xiq_l(DjRilh”'inlj)‘

With these notational conventions the first Helmholtz condition on A can be ex-

pressed as
(0*°P)(X, X, X)=2(0*P)(V, X, X, X). (4.126)
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We shall make use of the higher Euler operators
EYNZ,Z,...,2) = Z;, Z, - - - Z; B,
defined by (2.15) and the commutation rule (2.18), viz., if R € S¢, then
EP(Z,Z,..2)T(V,X,...,.X)=E""Y2,2,.. \T(Z,X,...X). (4.127)

We first show that A is of second order. We apply apply E4(Y,Y,Y,Y) to (4.126),
use the commutation rule (4.127) and the symmetry property B to deduce that

(DP0*P)(XXX;YYYY)

(4.128)
=2[(0**P)(YYY;YXXX)+ (0*0*P)(XXXV;YYYY)].

Here, and in what follows, it is convenient to suppress the commas that separate
the arguments within a single factor for a tensor 7' € S ® S%2 ® - - -. By replacing
one of the vectors X in (4.128) by the vector Y, we find that

(D3*P)(XXY;YYYY)=2(0%0"P)(YYY; YY X X).

This, in turn, leads to
(D30*P)(XYY;YYYY) = 0. (4.129)

Since

(DP0*0*PY XXX, YYYY; ZZZ7Z) = (0°A)(XXX)det (Y, Z)
we can conclude that
(D3O TN (XYY;YYYY;Z2Z227) = (03A)(XYY)det*(Y,Z) =0

which proves that
%A =0. (4.130)

Next we show that B is at most quadratic in the third order derivatives. By
virtue of Theorem 4.50, equation (4.129) implies that there exists a tensor E €
S1 ® S? for which

(PO*P)XXX;YYYY) = E(X;YY)det3(X,Y).

From the integrability condition

(030°0*P) (XXX, ZZZ,YYYY) = (0°0°0*P)(ZZZ; XX X;YYYY)
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we can prove that there is a symmetric tensor F' € S? for which
(3P0 PN XXX, ZZZ,)YYYY)=F(XZ)det?(X,Y)det*(Z,Y).  (4.131)
The application of E3(ZZZ) to (4.128) gives rise to
(D3PO*PNXXX;ZZZ;YYYY)
=2((0*P0'P)(YYY; ZZZ; XX XY ) + (0°0*0'P)(ZZ; ZXXX;YYYYY)]
Into this equation we substitute from (4.125) and (4.131) to conclude that
F=20%A. (4.132)
Since A is of second order, the same must be true of F' and hence
2303039 P = 0.

By applying the third Euler operator three times to (4.126), we can also prove that
C' is at most quartic in third order derivatives.

At this point we have verified the foregoing conjecture in the case of fourth order
scalar equations; A is polynomial in the third and fourth derivatives of u with
weights we < 4 and ws < 2.

PROPOSITION 4.59. Let A = Pz, u®]0 A dx A dy be a locally variational source
form in two independent and one dependent variables. Then

P = AJ + B9y, + C, (4.133)

where J = %J4(U4, uyg). The coefficient A is a function of order 2; the coefficients
B are polynomials of degree two in the third derivatives of u and C' is a polynomial
of degree at most four in the third derivatives of u.

To complete this example, we must exhibit a Lagrangian whose Euler-Lagrange
expression has AJ as its leading term. This would show that the coefficient A in
(4.133) is arbitrary and not subject to any further constraints. I have not been able
to find such a Lagrangian. However, if we suppose that A is a function of u,, alone,
then the Lagrangian

L = u[(UgzaaUyyyy — WazayUaeyyy + 3u92m:yy)A +
(uiyyuxwa:w - 4uxyyumxyuxwa:y + (2umyyua:wa: + 4ug2gxy)umxyy
— AgraUgayUzyyy + Uimuyyyy)A/
+ (ugzms:cuiyy - 2u$$$u$yyuazﬂxy + uimy)A//]'

does have the property that AJ is the leading term of E(L). This at least shows
that A need not be a polynomial in the second derivatives of u.
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EXAMPLE 4.60. The inverse problem to the calculus of variations for natural
differential equations in the plane.

Let
A= L(k,k,R,...)ds (4.134)

be a natural Lagrangian for curves in the (z,y) plane with curvature . In Section
2C, we computed the Euler-Lagrange form for A\ to be

E(\) = [BEy(L) + K*E(L) + kH(L)] ©% A ds, (4.135)
where the contact form ©?2 is defined by
0% = —0f" + ub". (4.136)

In this example, we solve the inverse problem for natural differential equations for
plane curves. Specifically, the problem now at hand is to determine when a natural
source form

A= P(k,f,...,cP)0% Nds (4.137)

is the Euler-Lagrange form obtained from a natural Lagrangian (4.134) through
the variation of the curve in the (x,y) plane with curvature x. The Helmholtz
conditions (3.16), as they now stand, are in expressed in terms of the original
variables (t,z,y,2’,y’,...) and accordingly are of little use. The first step in the
solution to this inverse problem is then to re-derive these conditions in terms of the
Lie-Euler operators ( or partial derivatives) with respect to the variables (k, &, . . .).
We shall then use our structure theorem for locally variational ODE to integrate the
Helmholtz equations and thereby determine the obstructions to the construction of
natural Lagrangians.

Since 0y (A) = I(dyA) the first step in the determination of the Helmholtz
conditions is the evaluation of dy,A. By repeating the calculations presented in
Section 2D, it is not difficult to show that

dyA = 0%\ [E.(PO?) + k’E.(PO% + H(PO?)] Ads +dyn.

Here E.(P ©?) and H(P ©?) are the Euler-Lagrange expression and Hamiltonian
for the contact form P ©? as formally defined in the usual fashion but with the
understanding that

0 oy OP
GH(P)( ) o 85(1’) '

For example, if P = k then

E.(k©*) =062 and H(k©?%) = k6?2
and
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(iv) . .
dyA =0*A\[02% +k?60% — ki O] A ds. (4.138)

The next step is to expand the operators E, (P ©2%) and H (P ©?) so as to express
dyA in the form

dy A = O*A[QPT D, 902+ QWP Dy 1107+ - +Q? B2 +Q' ©%] ds, (4.139)

where the coefficients Q = Q?(P) are various total differential combinations of the

Lie-Euler operators E,gj )(P). Explicit formulas for the Q*(P) can be obtained by
using the product rule (Proposition 2.8) for the Euler-Lagrange operator to expand
E..(P©?%) and by the using the identity

d
d—H(P 0?%) = —kE.(P©?*) — PO?

s
to determine the expansion of H(P ©2). Given the coefficients Q) (P), the Helm-

holtz conditions can be explicitly obtained by applying the interior Euler operator

a0
I= 2N [—(——
jg() s (682 )

to (4.139) and setting the result to zero. As in the derivation of (3.12), this leads
to the system of equations

p+2—Fk o & '
(CD"QW(P) = > (-1Y () 7RV (P

J=0

As we observed in Proposition 3.12, there is considerable redundancy in this system.
For example, if P = i, then (4.138) shows that

QW=1, QW=0, Q¥ =xk? and QW = —xki.

The first Helmholtz condition
Q(S) _ QQ(4)
holds, but the second one
. cee 4
oM =@ _ oW

does not and hence the source form
A =ik0%Ads

is not locally variational.
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PROPOSITION  4.61. Let A = P[k] ©% Ads be a natural, locally variational source
form for plane curves with curvature k. Let Ag = ©% A ds. Then there is a natural
Lagrangian A = L[k|ds and a constant a such that

A = E\) + al. (4.140)

The decomposition (4.140) is unique in that there is no natural Lagrangian whose
Euler-Lagrange form is Ag.

PROOF: Let us assume that A is of order p in the derivatives of k. Since

oP
(p+2) _
Q (P> - 8,%(1’)’

the first Helmholtz condition
(_1)pQ(p+2) = QP+2)

is an identity if p is even and implies that P is of order p — 1 if p is odd. Thus,
without loss of generality, we can assume that p = 2q is even.
Since A is locally variational, we know that there is a Lagrangian

Ao = Lo(z,u,v,u',v,...)ds,
defined at least locally in the neighborhood of each point [t, x, y|, for which
E(Xo) = [Eu0"+ E,0°] Nds = A
In view of (4.136), this implies that
E, = —oP and E,=uP. (4.141)

Now we use the structure theorem, Proposition 4.56, for locally variational ODE.
Since P is of order 2¢ in the derivatives of k, the components E, and FE, are of
order 2¢q + 2 in the derivatives of u and v. They are necessarily linear in these top
derivatives, 1i.e.,

E, = au®? 4 b9+ 1 [ower order terms }

4.142
E, = bu®1?) 4 (942 4 fower order terms } ( )

and, moreover, the coefficients a, b and ¢ are of order at most ¢ + 1. A comparison
of (4.141) with (4.142) shows that P must have the form

P = M« + {lower order terms }
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where, and this is the crucial point, M is of order at most ¢ — 1 in the derivatives
of k.
Now consider the Lagrangian

M = Li(k, i, . 687 ) ds,
where the Lagrange function L; is any solution to the equation

0°L B
ORI—DgRI—1) ~

Mk, K, ..., /f(lfl)).
From (4.135) it follows that

E(\) = [Mk©®9 + {lower order terms }] ©2 A ds

and therefore
A= E(\)+ A,

where A is of order no more that 2g — 1. In fact, because A is locally variational,
its order is no more that 2qg — 2.
An easy induction argument now proves that

A = E(\) + N(x) ©2 Ads, (4.143)

where A is a natural Lagrangian and N is of order zero. For the source form
A = N ©? A ds, one computes that

2

dyA =02 A [%(N’ 0%) + kN'©% + kN 0% Ads
S

so that Q) (N) = N’ and QUW(N) = QZ—N'. The Helmholtz equation QM) = Q)
s
implies that

d
—N' =0
ds
and therefore
N = bk + a,

where a and b are constants. Since the source form bx ©2 Ads is the Euler-Lagrange
form for the natural Lagrangian bds, (4.143) can be re-expressed as (4.140).

The same arguments used in the proof of Proposition 4.13 can be repeated here
to prove that Aq is not the Euler- Lagrange form of a natural Lagrangian. ]
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Consider the source form A whose source equation is the natural equation for
circles of a fixed radius, viz.,

A = (k—a)©% Ads.

This source form is locally variational and, in fact, is the Euler-Lagrange form for
the Lagrangian

A=[1— g(—xy' + y)] ds.

However, according to Proposition 4.61, A is not the Euler-Lagrange form of a
natural Lagrangian.



CHAPTER FI1VE
GLOBAL PROPERTIES OF THE VARIATIONAL BICOMPLEX

In this chapter we explore some of the global aspects of the variational bicomplex
on the infinite jet bundle J*°(FE) of the fibered manifold 7 : E — M. We begin in
section A by proving that the interior rows of the augmented variational bicomplex

d d d
0 — Q¥ (J¥(E)) —Q"*(J¥(E)) — Q**(J¥(E)) — -+ o)
d I '
— Q" (JF(E)) — F(J*(E)) — 0,
with s > 1, are globally exact. This is a fundamental property of the variational
bicomplex and is an essential part of our variational calculus. We use this result to
prove the global direct sum decomposition

O (J(B)) = B (J%(E)) & F*(J*(E)),

for s > 1, where B™*(J®(E)) = dg [Q"1*(J>®(E))] and F*(J*°(F)) is the sub-
space of type (n,s) functional forms. This decomposition leads immediately to the
global first variational formula — for any Lagrangian A € Q™0(J°°(E)), there is a
type (n — 1,1) form 7 such that

dy\ = E(\) +dyn.

The exactness of (5.1) also implies, by standard homological algebra arguments,
that the cohomology of the Euler-Lagrange complex £*(J*°(F)):

0 — R —000(7(5)) 5 QO(I%(B)) 5 @2 (B)) -

(5.2)
dy E Sy ov
— QM(J*(E)) — FH(J®(E)) — F(J*(E)) — -
is isomorphic to the de Rham cohomology of J*°(E), i.e.,
HY(E*(J>(E))) = H™(Q(J™(E))). (5.3)

November 13, 1989
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We actually show that the projection map
Ur QP (J(E)) — EP(J7(E))
defined by

PO (w), for p<n, and
UP(w) = { )

Ton™%(w), ifp=n+sands>1.

is a cochain map which induces this isomorphism. Numerous examples illustrate
this result. Let £ : R" x F' — R" and G be the group of translations on R". As an
application of the isomorphism (5.3), we compute the cohomology of the G invariant
Euler-Lagrange complex £5(J*°(E))). This generalizes the work of Tulczyjew [71].

In section B we analyze the vertical cohomology H;/"(Q**(J*(E)),d,,) of the
variational bicomplex. We first prove, as a consequence of the homotopy invariance
of the vertical cohomology, that

HIP (W (J®(E) =0  if s>m,

where dimE = m + n and dimM = n. To proceed further, we suppose that
m: E — M is a fiber bundle with m dimensional fiber F'. We also suppose that
there are p forms on E, for p =1, 2, ..., m, which form a basis for the p** de Rham
cohomology of each fiber of . Because these forms need not themselves be closed
on F, this assumption holds for a variety of bundles of practical interest. We prove
that

HyP(Q9*(J*(E))) 2 Q" (M) ® H(F).

Thus, under the above hypothesis, the vertical cohomology of the variational bi-
complex agrees with the E; term of the Serre spectral sequence for the bundle
E.

The material in section C is motivated, in part, by the observation that for first
order, single integral Lagrangians

A= Lz, u*,0%) dr

the well-known Poincaré-Cartan form

oL oL oL
) AN)=A+—0"=(L——)d — du®
po.(N) + D00 ( ua> T+ D00 U
induces an isomorphism H*(E*(J*®(E))) — H'(Q*(J*(F))). (In fact, ®p. is the
inverse to U1.) We try to generalize this property of the Poincaré-Cartan form to
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more general Lagrangians as well as to other terms in the Euler-Lagrange complex
by finding maps
QP EP(JX(E)) — QP (J™(E))

which will induce the isomorphism (5.3). We are specifically interested in maps ®?
which, like the Poincaré-Cartan map ®p ., are natural (or universal) differential
operators but we are forced to conclude, albeit tentatively, that such maps exist in
general only when the base space is 1 dimensional. Our basic variational calculus
on J*°(F) is enhanced by these maps when dim M = 1. This conclusion also un-
derscores, once again, the deep differences between the geometric analysis of single
and multiple integral variational problems and of ordinary and partial differential
equations.

Let V be a symmetric, linear connection on the base manifold M of the fibered
manifold 7: £ — M. In section D we use such a connection to construct another
set of homotopy operators h>* for the augmented horizontal complexes (5.1) for
s > 1. These operators are defined by local formulas on the adapted coordinate
charts of F¥ but in such a fashion that the invariance of these operators under
change of coordinates is manifest. Accordingly, these invariant homotopy operators
have a number of applications. First, since the base manifold M always admits a
symmetric, linear connection V, we can always construct these invariant homotopy
operators for any fibered manifold 7: £ — M. Their invariance under change of
coordinates insures that the h'® patch together to give global homotopy operators

hD®: QP (J®(E)) — Q1 (J®(E)). (5.4)

This immediately furnishes us with another, quite different, proof of the global
exactness of the horizontal complexes (5.1). These operators can also be used to
construct cochain maps
O : EX(JF(E)) — Q(J>(R))

from the Euler-Lagrange complex to the de Rham complex on J°°(E) which induce
the isomorphism (5.2). Finally, and perhaps most significantly, the local, invari-
ant character of the homotopy operators hl>* provide us with an effective means
of studying the equivariant cohomology of the variational bicomplex over certain
tensor bundles. As a simple application in this direction, we establish the exactness
(i.e., triviality) of the Taub conservation law in general relativity. Other essential
applications of these operators will be found in the Chapter Six.
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A special case of the invariant homotopy operators (5.4) can be found, at least
implicitly, in Gilkey’s paper [28] on smooth invariants of Riemannian metrics. In
the study of divergence-free, natural tensors, Anderson [2] explicitly constructed
similar invariant homotopy operators, although only for second order forms. Our
work here also generalizes the work of Ferraris [24] Kolar [41], and Masqué [49]
who use connections in a similar fashion to define global Lepage equivalents and
Poincaré-Cartan forms. Ideas from all these papers, as well as from §3.A, are
needed here to carry out our construction of the invariant homotopy operators hl>*.
Although this construction is rather complicated, the mere fact that these invariant
homotopy operators exist really embodies many of the salient global and equivariant
properties of the variational bicomplex.

A. The Horizontal Cohomology of the Variational Bicomplex. We begin
by proving that the interior horizontal rows of the augmented variational bicomplex
are exact.

THEOREM b5.1. Let m: E — M be a fibered manifold. Then, for each s > 1, the
augmented horizontal complex
0 — QU (J®(E)) — Q1 (J¥(E)) — Q**(J¥(E)) — -

) (5.5)

H I
— Q" (JX(E)) — F(JZ(E)) — 0
s exact.

PROOF: The exactness of (5.5) at Q75(J*°(FE)) is established by using a standard
partition of unity argument together with induction on r. For small values of r, say
r =1 or r = 2, the induction step is simple enough to present directly. This we shall
do. For larger values of r, the induction argument remains basically unchanged but
some additional machinery, as provided by the generalized Mayer-Vietoris sequence,
is needed to complete all the details.

Let U = { U, }aes be a countable open cover of E consisting of adapted coordi-
nate neighborhoods

U, ;R”me

1

~

Ul —— R™.
The index set J is assumed to be ordered. No other assumptions are made here
concerning the nature of the cover /. We do not require that this cover be finite
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nor is it necessary to suppose that i/ is a good cover in the sense that all non-empty
intersections diffeomorphic to R*™™ . By Proposition 4.2, we are assured that the
augmented horizontal complex (2*%(J>(U,), dy) is exact.

The global exactness of (5.5) at Q%¢ is a trivial consequence of the local exactness
at Q%%. Therefore, let us take w € Q1¥(J*°(E)) and suppose that that dgw = 0.
Each restriction of w, = Wi 7°°(U,) of w is dy; closed and hence, by local exactness,

there are forms 7, € Q%%(J>°(U,)) such that
Wo = dHnoz- (56)

On non-empty double intersections Ung = U, N Ug, wa = wg and therefore

dH(nﬁ - na) =0. (57)

The exactness of (5.5) on the infinite jet bundle J>°(U,g) at Q%*(J>°(U,s)) now
implies that 1, = ng. This proves that the forms 7, must be the restriction to
U, of a global form n € Q%*(J*°(F)). Equation (5.6) shows that w = dyn. This
establishes the exactness of (5.5) at Q15(J>°(E)).

To prove the exactness of (5.5) at Q2(J°°(F)), we now assume horizontal ex-
actness of the variational bicomplex at Q1¢(J*(E")), where 7’: E' — M’ is any
fibered manifold. Let w € Q%%(J>°(E)) be a dy; closed form. Then, as before,
equations (5.6) and (5.7) hold but now the forms 7, € Q%%(J*°(U,)). By assump-
tion, the variational bicomplex over the fibered manifold U,z is horizontally exact
at Q1¥(J>®(U,p)) and therefore (5.7) implies that there are type (0,s) forms o,p
on J*°(Uayg) such that

18 =N = dgrOap. (5-8)
We emphasize that local exactness cannot be used to justify (5.8) since the double
intersections U,g will not, in general, be adapted coordinated neighborhoods for
E. We are free to suppose that 0z, = —0,3. The next step is to use the forms
0ap to modify the 7, in such a way that (i) (5.6) remains valid, and (ii) that these
modified forms agree on double intersections and are therefore the restriction of a
global form.

On non-empty triple intersections Unpy = Uy N Ug N U, (5.8) gives rise to

dy(0py — Oay +0ap) =0 (5.9)
and hence, because the forms g, — 00y + 043 are of type (0, s),

0By — Oay + 0ap = 0. (5.10)
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Let { f, } be a partition of unity on E subordinate to the cover Y. Define new type
(1,s) forms 7, on J*>°(U,) by

Mo = dH [Zf’y U’ya] . (5.11)

yeJ

Then, on account of (5.10), we find that on any double intersection U, N Usg,

Na — Mg =dy [Z fy (070 = Uvﬁ}
~yeJ

= —dy > (£1)0as] = —dyoag

yeJ
=TNa — 13-

This proves that the type (1, s) forms 7, = 7, — 7o coincide on all double intersec-
tions, i.e., 7, = 73 on U,g, and are therefore the restriction of a global, type (1, s),
form 7. Since 7, is a dy exact form on J*°(U,),

dH(T| Ua) =dpyla = w| U,

and so w = dyT is exact.

To repeat this proof of exactness for (5.5) at Q7°(J>°(E)), r > 2, it is necessary
to formalize each of the above individual steps. To begin, denote the non-empty
(p + 1)-fold intersections of the cover U by

Uapar-ap = Uao MUqy N+ NU,,.
Let KP™* be the Cartesian product

Kp,’r,s — H QT’S(JOO(Uaoal-“Oép>)'

ap<ay<---<ap

An element w of KP™° is an ordered tuple of type (7, s) forms wq,a; ..., defined on
J*(Uagar---a,)- Let

r: QP (JX(E) — [ (I (Ua)) = KO
aed

be the restriction map
(r())a = 9| 7,
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and let

6: varﬂs H Kp+17r7s

be the difference map

p+1
(6w)a0a1"'ap+1 = Z(_l)zwagal--- a\l ceapg” (512)

i=0
Clearly, § or = 0 and a standard calculation shows that §2 = 0. The complex

7,8 o) r 07“36 17“3(s 27“3(s
0 — Q" (J®(E)) — KOs 5 glrs 5 g2rs 5,

is called the generalized Mayer-Vietoris sequence of type (r, s) forms on J*°(FE) with
respect to the cover U.

It is not difficult to prove that this sequence is exact. Indeed, if w € K%
satisfies dw = 0, then the components w,, € 27°(J>*(U,)) of w all agree on double
intersections U, N Ug and therefore the w, are the restrictions to U, of a global
type (r, s) form on J°°(F). Furthermore, the operator

’CZ Kp,r,s _)Kp—l,r,s
defined by

[K(w)]a()al"'apfl = Zf’YwWOéOOél"'Oépfl?

yeJ

where { f, } is the partition of unity subordinate to i, is a homotopy operator for
the Mayer-Vietoris sequence, i.e., for any w € KP"™5,

K(dw) + 6K (w) = w. (5.13)

In terms of the Mayer-Vietoris sequence, the forms n and o used in the foregoing
proof of exactness of (5.5) at Q%% belong to K% and K1.0¢. Equations (5.8),
(5.10), and (5.11) become én = dyo, do =0, and 7 = dy[K(0)].

Evidently, the horizontal differential d; maps K?"* to KP"*1:* and commutes
with both r and §. This gives us the double complex
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0 —s QS,S(JOO(E>) _ KO,S,S _

0 Q2’S(JOO(E)) K0,2,s K1,2,s

0 Ql,s(Joo(E>) KO,l,s Kl,l,s K2,1,s

We are now prepared to complete the proof of the theorem by induction on r. The
induction hypothesis asserts that the variational bicomplex for any fibered manifold
E' — M’ is horizontally exact at QP-*(J>°(E")) for all p < r, where r < n — 1 and
s > 1. This implies, in particular, that the interior rows of the variational bicomplex
on each (p + 1)-fold intersection Uggas...a, are exact up to and including the 7"
column. Let w € Q"1:(J>°(E)) and suppose that dyw = 0if r+1 < nor I(w) =0
if r +1 = n. We prove that w is d;; exact.

To begin, we use the local horizontal exactness of the variational bicomplex to
deduce that r(w) € KO™15 is d; exact, i.e.,

T‘(W) = dHn()?

where n° € K%™5. Since §d o7 = 0 and d commutes with § this, in turn, implies
that

dy (0n°) = 0. (5.14)

By the induction hypothesis, dj; closed forms in K™* are d;; exact and therefore

on° = dgn', (5.15)
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where n! € K1'"=1% This argument can be iterated to obtain a sequence of forms
nP e KPm=P* for p=1, 2,...,r — 1 which satisfy

onP = dynPtt for p=0,1,...,r—1, and

(5.16)
on" =0.
These equations can be represented schematically as
T
w — %
[
é
770 — %
[
N
o x
[
02
Now we use the partition of unity { f, } and the homotopy operator K to define
another sequence of forms 77 € KP" P forp=r,r—1,...,1,0 by
T T

T =n
and
Tp:’r]p—dH(]CTerl) for p=r—-1,r—2,...,0.

On account of (5.13) and (5.16), these forms satisfy
6P = onP — dy [§(KKTP )]
= dHUpH —dy [Tpﬂ - IC(fSTpH)]
= du K(67PF1).

Because 67" = 0, this shows that the forms 7P are all § closed. In particular, since
70 € K95 70 is the restriction of a global type (r — 1, s) form 7 on J*°(E). Since
r(dyT) = dg(r(r)) = dy(1°)
= dyn’ = r(w)
we must have that d ;7 = w on all of J°°(E). Therefore, w is exact. This proves that

the horizontal complex (5.5) is exact at Q7*(J°°(FE)) and completes the induction
proof. |
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In Chapter Two we introduced the spaces of functional forms F*(J*°(E)) as
subspaces of 2™*(J>°(F)) and proved the local direct sum decomposition

Qn,s — dHQn—l,s D fs.
Our first corollary to Theorem 5.1 asserts that this decomposition holds globally.

This is a fundamental result.

COROLLARY 5.2. Let B™*(J*(E)) = dy [Q"~1*(J°(E))] be the space of d
exact, type (n,s) forms. For each s > 1, the space of type (n,s) forms on J*°(E)
admits the global, direct sum decomposition

WA (JF(E)) = BV (J7(E)) ® F2(J*(E)).
Proor: If w € Q™*(J*°(FE)), then
w=1I(w)+ (1-1I)w).

By definition, we have I(w) € F*(J*°(F)) and, because I? = I, the type (n, s) form
B = (1 —I)(w) satisfies I(8) = 0. Theorem 5.1 implies that § = dy o for some
o€ Qn1s(J*(FE)) and hence

w=I(w)+dy(o).

That this is a direct sum decomposition follows from the fact that I is a projection
operator which satisfies I o d;; = 0. ]

In Chapter Two, we also derived the local, first variational formula for the calculus
of variations, viz. (2.17). We emphasized that this analysis is insufficient to establish
the global validity of this formula because, in general, the type (n — 1,1) form
o, defined by the local formula (2.17b), does not transform properly under fiber-
preserving change of variables. The global validity of the first variational formula
follows easily from Theorem 5.1, or more precisely, from Corollary 5.2.

COROLLARY 5.3. There exists a global first variational formula. Specifically, given
a Lagrangian \ on J*°(F), there is a type (n — 1,1) form o on J*°(F) such that

If dim M = 1, then for a given Lagrangian \, the type (0,1) form o is unique.
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If X is any generalized vector field on E and X., its associated evolutionary
vector field, then there is a type (n — 1,0) form n on J*°(F) such that

LE A= Xew = E(N) +dyn. (5.18)

PRrROOF: Since I(dy,A\) = E()), the application of the previous corollary to the type
(n,1) form dy A yields (5.17). If n = 1, o is of type (0, 1). If & also satisfies (5.17),
then dy (0 — ) = 0 and therefore o = 4.

To prove (5.18), we write, in accordance with Proposition 1.20,

pr X = pr X, + tot X (5.19)

and compute
‘Cf:)rX)\ = W”’O[L’pr Xev A+ Lot x A
Since X,y is an evolutionary vector field we find, using (5.17) and Proposition 1.16,
that
T [Lor xew Al = 70 [pr Xoy = dyy ]

= 7Y [pr Xoy = E()\) + pr Xey — dyy0]

= Xov = E(N) —dg[n" 0 (pr Xev — o).
Moreover, since interior evaluation by a total vector field lowers horizontal degree
by one,

70 Lot x A = 7 0[d(tot X —= ) + tot X — dy )]

Consequently (5.18) holds with
n=—71""1%[pr Xo, — o] +tot X = .

Equation (5.18) furnishes us with a global version of Noether’s Theorem. Note
that in this version the generalized vector field X is a symmetry of the Lagrangian
A whereas in Theorem 3.13, X is a symmetry of the source form A = E(\).
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COROLLARY 5.4. Let A be a Lagrangian on J°°(FE). Then every global, general-
ized symmetry X of \ generates a global conservation law for the Euler-Lagrange
equations E()\).

Proor: If Elﬁ)rX)\ =0, then (5.18) reduces to

so that 7 is the global conservation law with generator — X, . |

Let A be an n form on J*°(FE). The form A is called Lepagean if, for all 7%
vertical vector fields Y on J*°(E),

7Y — dA] = 0. (5.20)

Given a Lagrangian A € Q™%(J>°(E)), an n form A on J*(E) is called a Lepagean
equivalent if A is a Lepagean form and

70N =\ (5.21)

This latter condition implies that for any local section s: U — FE,

and therefore A and A\ determine the same fundamental integral. For example, if
dim M =1 and
A= L(z,u®, 0%)dz

is a first order Lagrangian, then the Poincaré-Cartan form

oL
A=)+ 9o 0
is easily seen to be a Lepagean equivalent to A\. Thus, the notion of Lepagean
equivalents furnishes us with one possible means by which the classical Poincaré-
Cartan form in mechanics can be generalized to arbitrary variational problems.
The theory of Lepage equivalents and their role in the calculus of variations have
been extensively. The review article by Krupka [44] describes this work. The
global existence of Lepage equivalents can be established by various means; see, for
example, [34], [41], [49], and [48].



200 The Variational Bicomplex

COROLLARY 5.5. Every Lagrangian \ admits a Lepagean equivalent A. If n =1,
A is unique.

PRrROOF: First observe that if Y is a 7% vertical vector field on J*°(F) and w is a
type (r,s) form on J*°(F), then Y — w is of type (r,s — 1). If w is of type (n,1)
and Y — w = 0 for all 7% vertical vector fields, then w € F!(J*®(E)).

Every n form A on J°°(E) can be written uniquely in the form

A=Ag+ A+ Ag+-,

where A; is of type (n — i,i). The condition (5.21) evidently requires that Ag = A
so that, by the first variational formula (5.17),

dA = (dy A+ dyAr) + (dy Ay +dyAg) + -
=(E\) +dglc+M))+&+E6+-, (5.22)

where &; is of type (n —i4,4). Hence, if Y is any 7% vertical vector field,
a0y = dA] =Y = dgy (A +0)
and thus, by virtue of our earlier remark, A is Lepagean if and only if
dy (A + o) € FHI>®(E)).
But by Corollary 5.2 this is possible if and only if
dy (A +0)=0. (5.23)

This proves that the n form
A=X—-0

is a Lepage equivalent for A. When n = 1, A + 0 is of type (0, 1) and (5.23) holds if
and only if A; = —o. The uniqueness of the Lepage equivalent A now follows from
that of o. |

Two further remarks concerning Lepagean equivalents are in order. First, if A
is any Lepage equivalent for A and if Y is any 77 vertical vector field, then (5.22)
and (5.23) show that

Yo dA=Y = EN)+ (Y= &)+ (V= &)+



Global Properties 201

Thus, a local section s: U — FE is a solution to the Euler-Lagrange equations for A
if and only if
=Y =dA) =0

for all w7 vector fields Y. Second, observe that we used the first variational formula
(5.17) to establish the existence of Lepage equivalents. This can easily turned
around — that is, given a Lepage equivalent, one immediately derives the first
variational formula. These two remarks illustrate an important point in Krupka'’s
work — that a general, differential geometric treatment of the calculus of variations
can be based entirely on the theory of Lepage equivalents.

Let 3 be a closed p form on a manifold M and let X be a vector field on M. Since
Lie differentiation commutes with d, Lx 3 is also closed. Moreover, by Cartan’s
formula,

Lxf=d(X~F)+X~d=dX~p)
it follows that Lx [ is exact. Furthermore, Lx( is naturally exact since the p — 1
form a« = X — [ is a natural form (or concomitant) constructed solely from X

and (. The next corollary describes analogous results for forms on the variational
bicomplex.

COROLLARY 5.6. Let w € Q"°(J*®(E)).

(1) Suppose w is dy, closed. Let X be a vector field on J>°(E) which is 75 related
to a vector field Xy on M. Then Eg( w is dy, closed but not, in general, d,, exact.
If, however, X is mq; vertical, then E&w is naturally exact:

L w=dy(X —w). (5.24)

(ii) Suppose w is dy closed. Let X be a generalized vector field on E. Then
Ef)er is dg exact but not naturally so.

Proor: (i) That £§(w is dy, closed is simply a restatement of Proposition 3.17. To
show that Eg( need not be dy, exact, consider £ : R x ST — R, let w be the type
(1,1) form
w=dx N0 =dxAdu, and let X:a:a—.
Ox
Then the form E?X w = w is dy, closed but not dy, exact.
To prove (5.24), we simple note that if X is 739 vertical, then X — w is of type

(r,s — 1) and hence
Lhw=n"dy(X = w) +dy(X = w)+ X = dyw]
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as required.

(ii) Again Proposition 3.17 shows that Eﬁ . xw is dy closed. In view of (5.19),
it suffices to evaluate Eﬁr Xo,w and Et ¢ xW separately Since tot X — w is of type
(r —1,s), the same Calculatlon as above gives

E‘%ot xw =m"dy(tot X = w) + dy, (tot X — w) + tot X = dyw]
= dI{(tOt)(4 W).

Now consider the evolutionary vector field ¥ = X.,. If s > 1, then by Theorem
5.1, w is dy exact, say w = dymn, and

‘Clﬁ)rYw dH(‘Cern)

If s =0, then dy,w is a dj; closed form of type (r,1) and so dy,w = dyn. We now
use Proposition 1.16 to conclude that

Ef)ryw =dy(prY - w)+prY—dyw
=prY —dyn=—dy(prY —mn).

This proves (ii). Observe that in this latter case Ef)r yw is not naturally exact since
prY — n is not a natural concomitant of X and w — the partition of unity used in
the proof of Theorem 5.1 is needed to construct the form 7 from w. ]

In Chapter Four, we introduced a system of invariantly defined weights for forms
in Qp° (J°(E)). Recall that these are forms in *(J>°(E)) whose coefficients are
polynomial in the derivatives of the independent variables of order j+1, j+2,..., k.
We proved in Theorem 4.23 that if w € Q3° . 18 dp closed then, locally, w = dyn
where 7 is a minimal weight form. We also introduced the Jacobian subcomplex
(T, k* * dy,dy) of the variational bicomplex. Corollary 4.43 asserts that the Jacobian
subcomplex is locally exact. Now if f is any function on F, then the weights of
w and fw are the same at points where f is non-zero; also if w € J,°(J*®(E)),
then fw € J,"°(J°°(E)). Consequently, the Mayer-Vietoris argument used to prove
Theorem 5.1 can be repeated, without change, to prove the existence of global
minimal weight forms and to prove the global exactness of the interior rows of the
Jacobian subcomplex.

COROLLARY 5.7. (i) For s > 1, let w € Q" (J>(E)) and suppose that dyw =0
ifr <norl(w)=0ifr=n. Then there is a form neQp b S (J(E)) with weights

wy(1n) = wy(w) =1
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forp=3j,j+1,...,k—1 such that w = dyn.
(ii) The horizontal Jacobian subcomplex

0 — J"(J*(B)) -, Te " (J2(E)) -+ -, T (I(E)) = FH (I (E))

is exact. In addition, if w € J."*(J*(E)) and I(w) = 0, then there is a form

n—1,s

n e J, such that w = dgn.

Theorem 5.1 also enables us to compute the cohomology of the Euler-Lagrange
complex £*(J*°(FE)). We shall need the following lemma.

LEMMA 5.8. Let vy be a d closed p form on J*®°(E). If p < n and 7P°(y) = 0 or if
p=n-+sand (I on™*)(y) =0, then vy is d exact.

ProOOF: For p < n, write
Y=ty =+ (1),
where ~; is of type (p —i,7). Since 7 is d closed, these forms satisfy
dgvi =0, dyvi=dgviy1 fori=1,2,...,p, and dy7y,=0.

On account of Theorem 5.1, these equations imply that there are type (p —7 —1,4)
forms p; on J*°(FE) such that

Y1 =dyp1, Yit1=—dypi +dgpit1 fori=1,2,...,p—2, and dypp—1 =0.

It now follows that

d(p1—p2+--+ (1P pp1) =1,

which proves that v is d exact.

For p = n+ s, the proof is similar except that now the condition (I on™*®)(v) =0
implies, by Theorem 5.1, that 7™°(~y), the type (n,s) component of v, is d;; exact.
|

THEOREM 5.9. The cohomology of the Euler-Lagrange complex £*(J*(E))

SN SN 0,0/ 700 iH_) 1,0/ yoo 21_) 2,0/ oo
0 — R —Q"(J™(E)) — Q7 (J7(E) — Q7(J7(E)) (5.25)

dy E Sy dv
— QUJ>®(E)) — F'(J®(E)) — F*(J™(E)) — - -~
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is isomorphic to the de Rham cohomology of the total space E, that is

HP(QY(J®(E)),dy) = HP(Q*(E), d), (5.26a)
for p < n, and
Hé(F*(J*®(E)),dy) = HP(Q*(E), d), (5.26b)

forp=n+ s and s > 1.

ProOF: In view of Theorem 5.1, this theorem is a standard, elementary result in
homological algebra which is established by diagram chasing. We present the details
of this chase because they are important in their own right as part of the variational
calculus.

We begin with the observation that the projection map 7% : J®(E) — E is a
homotopy equivalence ( see Lemma (5.25)) and therefore the de Rham cohomology
of J>°(E) is isomorphic to that of E. Consequently the theorem can be established
by constructing an isomorphism from H*(Q*(J*°(E)),d), the de Rham cohomology
of J>°(E), to the cohomology of the Euler-Lagrange complex H*(£*(J>(E))).

Since the projection map 7™%: Q"T5(J®(E)) — Q"5(J*°(FE)) satisfies

700 d =dy o™, forr <n -1
Tor™lod=FEon™P, and
Tor™ ™ od=26,0l0n™%, for s > 1

the map
U QF(J=(E)) — £ (J7(E))
defined, for w € QP(J*(E)), by
PO (w), for p<n and
b { ()

Tonm™*(w), ifp=n+sands>1.

is a cochain map from the de Rham complex on J°°(FE) to the Euler-Lagrange
complex on J*°(E). Note that if © is a p=n+ s form on E then w = (7%)*(®) is
a p form on J°°(E) whose projection 7™*(w) already lies in F*(J>°(E)), i.e.,

U(w) =7"%(w). (5.27)
The the induced map in cohomology will be denoted by

U HP (2 (J%(B))) — HP(€7(J()).
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We prove that ¥* is an isomorphism in cohomology by constructing the inverse
map

®: H? (E*(J®(E))) — HP (W (J®(E))). (5.28)

To define @, it is convenient to consider separately the two pieces of the complex
E*(J*(E)), the first piece being the horizontal edge

0,0 du 1,0 du du —-1,0 du o F 1
00— R—Q"W — Q"7 — ... — Q" — Q" — F°.

Let [w] € HP(E*(J>®(E))) for p < n. Put wy = w € QPO(J>°(E)). Then the type
(p, 1) form oy = dy,w satisfies dy;(00) = —dy,dywo =0if p <nand I(0g) = E(w) =
0 if p = n. By Theorem 5.1, the form oy is d;; exact. Let dw; = 0.
Now repeat this process to obtain a sequence of forms w; € QP~%*(J*°(E)) and
o; € QPTHITL(J°(E)) satisfying
dyw; = 01 and o; = dyw; fori=1,2,...,p, (5.29)

that is,

Since o, is a type (0,p + 1) form, the equation d 0, = 0 implies that o, = 0,
i.e., dyw, = 0. We define the form g € QP(J*°(E)) by

B=wy—wi+ws—- -+ (1) w,. (5.30)

A simple calculation, based upon (5.29), shows that d3 = 0. Moreover, it is not
difficult to check that the cohomology class [3] € HP(J*°(E))) is independent of
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the choice of the representative wq for the class [w] and independent of the choices
taken for the w; in (5.29). The map @ is defined by

b([w]) = [4]-

Note that while U is defined on forms, @ is only well-defined in cohomology. In §5C
and §5D, we shall consider circumstances under which there are maps defined on

forms which induce the map @ in cohomology.
Evidently, for [w] € H?(Q2*°(J*°(E))), we have

U o &([w]) = ¥*([6]) = [w].
Accordingly, it remains to show that @oW¥* is the identity map on HP (Q*(JOO (E)))
To this end, let o € QP(J*°(FE)) be a d closed form. Decompose a by type into the
sum
a=ay—a;+ar— -+ (—1)Pay,
where «; is of type (p — i,4). Since da = 0, these forms satisfy
dgog =0, dya;=dyaiq fori=0,1,...,p—1, and dya,=0.

Let w be the d; closed, type (p,0) form «p and define the p form 3 by (5.30). Then
P o U ([a]) = &([w]) = [B]

and hence, to complete the proof of the theorem, we must show that o and 3 define
the same cohomology class on J°°(FE). But, since the type (p,0) components of «
and [ coincide, the difference v = 3 — « satisfies the hypothesis of Lemma 5.8 and
is therefore d exact. This proves that [3] = [a], as required.

The proof of (5.26) for the case p = n + s is similar — the inverse map @ can be
defined exactly as above since, for w € F*(J*°(F)), the condition dyw = 0 implies
that dy,w = dyw; for some type (n — 1,5+ 1) form w;. ]

The explicit nature of the isomorphism from H*(Q*(E)) to H*(E*(J>®(E)))
should be emphasized — if w € QP(FE) represents a nontrivial cohomology class
on E and if we identify w with its pullback to J*°(E) via 7%, then the projection

0w), ifp<n
% (w), ifp=n+s,s>1

U(w) =

is a nontrivial cohomology class in the Euler-Lagrange complex. This observation
enables us to readily construct examples of variationally trivial Lagrangians which
are not globally exact and examples of locally variational source forms which are
not the Euler-Lagrange forms of global Lagrangians.
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ExXAMPLE 5.10. Let E be the product bundle
E:S8*x 8t x St — 52

Now H?(E) is the two dimensional vector space generated by v, the volume form
on S?, and by u = du A dv, where du and dv are the standard angular one forms on
the fiber S! x S2. Thus H?(£*) is generated by the two Lagrangians
A =71200) = v
and
Ao = m29(du A dv)
= 120(0" + up dx + uy dy) A (0 + ve dz + v, dy))
= (ugpy — Uyvy) dz A dy.
Here (z,y) are arbitrary coordinates on the base manifold S2. Theorem 5.9 states
that every variationally trivial Lagrangian A\ on J°(FE) can be expressed uniquely

in the form
A= dH?? + Cl)\l + Cg)\g,

where n € QM9 (J%°(E)) and ¢; and ¢y are constants.
The Lagrangian Ao has a particularly interesting property. Let

s:8% - E
be a section of E. Then the pullback of Ay by s to S? is
J(s)" A2 = s*(du AN dv) = a A S, (5.31)

where o = s*(du) and 3 = s*(dv). Since H'(S?) = 0, and « is closed on S? it
follows that « is exact; say o = df, where f is a real-valued function on S2. Since
(3 is closed on S?, we can rewrite (5.31) as

7 (s)"(A2) = d(f ). (5.32)

Thus, on every section of F, the Lagrangian A, pulls back to an exact form on the
base manifold every though Ao itself, as a Lagrangian in the variational bicomplex
is not exact. The point here is that the one form f3 in (5.32) and in particular the
function f, can not be computed at any given point from the knowledge of the jet
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of s at that point. In general then, the condition that w € Q"°(J>°(E)) be exact
on all sections of E is a necessary condition for w to be dy exact but it is not a
sufficient condition.

Since H?(F) is spanned by the two 3 forms du A v and dv A v, the source forms

Y dunv)=0"Av and a*'(dvAv)=60"Av

are locally variational ( local Lagrangians are —u v and —v v, respectively) but not
globally variational. Admittedly, these source forms don’t determine very reason-
able source equations but bear in mind that these forms are simply representatives
of the cohomology of the Euler-Lagrange complex at F!(J°(E)). For example, let
g be a Riemannian metric on S? and let A, be the real-valued Laplacian on S2.
Then the source form

A= (Agu+a)d"ANv+ (Ayju+0)0° Av,

where a and b are constants, is always locally variational. The source form A is
globally variational if and only if the constants a and b vanish; a global Lagrangian
being

1 .. -
A= 5(9”%’%’ + g%vivi)/gdzt A dx®.

ExaAMPLE 5.11. Now consider the bundle
E:MxS8'xSt— M,

where M = R? — {0}. The total space E is homotopic to that of the previous
example; the de Rham cohomology ring is generated by the angular one forms du
and dv and the two form

zdx Ndy —ydx Ndz+ xdy N dz 1

° (22 +y? + 22)3/2 = sho
. . 0 0 0
where v = dx A dy A dz, R is the radial vector field R = x— + y— + z2— and
ox oy 0z

r2 = R - R. However, because we have changed the dimension of the base manifold
from 2 to 3, the interpretations of these cohomology classes on E as cohomology
classes in the variational bicomplex has changed. The obstructions to writing a
variationally trivial Lagrangian as a dj exact form have now shifted to H?(F)
and, likewise, the obstructions to finding global Lagrangians for locally variational
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source forms have shifted to H*(E). The generators of the cohomology of the Euler-
Lagrange complex at Q3°(J*°(FE)) are therefore

A = 700du A o) = (ugp dz + uy dy +u, dz) Ao
1
= 7“_3(R -Vu)v (5.33a)
and
Ao =70dv A o) = (vpdr+v,dy +v,d2) Ao

= %(R -Vo) v, (5.33b)

r

while the single generator of the cohomology at F! is

A =713 (du A dv A o)
1 u v
= r_3[(R -Vu)0* — (R-Vv)0°| A v. (5.34)
This source form merits further discussion. The source equations defined by A
are

TUy +yuy +2u, =0 and  xv; +yvy + zv, = 0. (5.35)
These equations are now defined on all of R3; however, by dropping the factor of

—, these equations are no longer the components of a locally variational source
r

form. It is natural to ask if (5.35) is equivalent to some system of locally variational
equations defined on all of R3. Let

A:A10“/\V+A20”/\1/,

where
Ay = A(R-Vu)+ B(R-Vv),
(5.36)
Ay =C(R-Vu)+ D(R-Vv),

and A, B, C, and D are functions on R? x S! x S! with AD — BC # 0. This latter

condition insures that the system of equations A; = 0 and Ay = 0 is equivalent to
(5.35). We now substitute (5.36) into the Helmholtz conditions (see (3.16))

OAL _ 9D 9y 0A;
Gui - (%Z- N 8ui’ (%Z- -

and
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0A1 04y B '(6A2)
ov  Ou Oy,

to deduce that A =D =0, B=—C, and

. OB
= +3B=0. 5.37
oot (5.37)

The source form (5.36) simplifies to
A = B[(R-Vv) 0" — (R-Vu)8°] Av.

Since the only smooth solution to (5.37), defined on all of R® x S! x S, is B = 0,
we conclude that the system (5.35) is not globally equivalent to a system of locally

variational equations. Of course, B = — is the solution to (5.37) on E from which
r
we recover the the original source form (5.34).
We now examine the possibility of using Noether’s theorem, in the form of The-

orem 3.32, to find global conservation laws for A. Let

0 0
X = —y% +x 8_y
Then it is easily verified that £, x A = 0 and therefore X is a distinguished sym-
metry for A. By Theorem 3.32, the Lagrangian A = X, — A is variationally trivial
and so, at least locally, we obtain a conservation law A = dyn. However, in this
instance, the cohomology class of \, viz. [\] € H3(E*), vanishes and consequently
the symmetry X gives rise to a global conservation law. Indeed, a straightforward
calculation shows that

Xev = —(X - VU)% — (X Vv)%
and that
A= Tig[(R V) (X - Vo) — (R- Vu)(X - Vo) v
= %73)() - [Vu x Vo]v

1
= —[—zzdr —yzdy + (2 + y°) dz] Adgu A dgo
T
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Thus the conservation law for A generated by the rotational symmetry X is
z
n=—dgudgv.
r

The form 7 is defined on all on J*(E).
Consider next the vector field

0
Y =—.
ou
This vector field is also a distinguished symmetry of A and therefore the Lagrangian
A =Y., — A is variationally trivial. But in this case

1
Y;VAA:T—S(R~Vu)V:)\1,

where \; is defined by (5.33a). Since [\;] € H3(E*) is not zero, the global, dis-
tinguished symmetry Y generates a local conservation law for A but not a global
one. This example highlights an important aspect of Noether’s Theorem as we have
formulated it. Given a locally variational source form, a global conservation law
can sometimes be constructed from a distinguished symmetry even in the absence of
a global variational principle. The obstructions to constructing global conservation
laws and global Lagrangians lie in different cohomology groups, viz., H"(E) and
H"Y(E) respectively. |

EXAMPLE 5.12. Now take M = (R® —{0}) x R and let
E:MxS'xS"— M.

Again F is homotopic to the total spaces in the previous two examples but now,
because dim M = 4 and H?(E) = 0, there are no obstructions to the construction
of global variational principles. |

EXAMPLE 5.13. Let £ : R? x F — R?, where
F={(Ry,Ry)|Ri,Ry € R® and Ry # Ry }.
A section s of I/ of the special form
s(x,y) = (z,y, Ri(z), Ra(y)) (5.38)

defines a pair of smooth, non-intersecting space curves. By using coordinates

S=Ry—R; and T = Ry + Ry,
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on the fiber F'; we see immediately that the 8 dimensional manifold F is homotopy
equivalent to R® — {0}. Thus the de Rham cohomology of E is generated by the
single two form

1 —s3dst Ads? + s2ds! Ads® — st ds? A ds?
A [(s1)2 + (s2)2 + (33)2]3/2 )

o =
where (s!,s?, s3) are the components of S. The projection A = 72%(a) is a first
order, variationally trivial Lagrangian on E. If ; and =5 are smooth, regular non-
intersecting closed curves parametrized by maps Ri, Ra: I — R? and if s is the
section (5.38) then

L) = [[GHs) ) = 1 // ST gy

IxI

is the linking number of the two space curves v; and s (see, for example, Dubrovin,
Fomenko, and Novikov [22]). The fact that L(v1,72) is a deformation invariant of
the pair of curves 77 and 7, (through smooth, non-intersecting deformations) is a
consequence of the first variational formula established in Corollary 4.6. ]

EXAMPLE 5.14. Let M =R, F =R? — {0}, and let £ : M x F — M. It is easy
to check that the source form

A = [i — a(u,v)] duAdz + [0 — b(u,v)] dv A dz (5.39)

is locally variational if and only if

da  db
ov  Ou’
Since H?(E) = 0, all locally variational source forms are globally variational and
indeed, a global Lagrangian A for A is given by
.o 1., . i
A= [—§u — v + z(at + bo)] dz.
Note that although A is autonomous (considering the base coordinate = to be
time), the Lagrangian A explicitly contains the independent variable x. As our next

theorem will show, A admits an autonomous Lagrangian if and only if the one form
p=adu+bdv

is exact on R? — {0 }. [
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ExAMPLE 5.15. Translational invariant variational principles for translational in-
variant differential equations.

Let F be any M dimensional manifold and let E: R® x F' — R". Let = = (z*)
denote Cartesian coordinates on R™. For the purposes of this example, we restrict
the admissible class of transformations on E to those induced by maps on the fiber,
that is, a map ¢: E — F is a admissible if ¢(z,u) = (z, f(u)), where f: FF — F.
Let G denote the group of all translations on the base space R™ and let

QL (J®(E)) ={we Q"(J*(F))|w is G invariant}.

A type (r,s) form w is G-invariant if and only if its coefficients do not depend
explicitly on the independent variables #°. The edge complex

dy

dy
0 — R —Q" (J*(E) — Q5" (J¥(B)) — -

du 1,0 du 0 Eo ov
— Qg T (JT(E) — Qg (J7(E)) — Fo(J=(E) —,

is called the translational invariant Euler-Lagrange complex and is denoted by
EG(T>(E)).
The following theorem generalizes the work of Tulczyjew [71].

THEOREM 5.16. The cohomology of the translational invariant Euler-Lagrange
complex on E: R" x FF — R" is

H* (EE(JOO(E))) = H*(T" x F,d),
where T™ = S* x S x --- x S! is the n-torus. In particular, if n = 1, then
HP(EL(J®(E))) = HP™Y(F) @ HP(F).

ProoOF: Our proof is based upon Theorem 5.9. We begin with two observations.
Firstly, let E/: T" x FF — T™ and let ¢: E — E’ be the bundle map induced from
the standard covering map from R™ — T™. The group G also acts on E’. By
Theorem 3.15 and Proposition 3.18, the prolongation of ¢,

pro: J¥(E) — J*(E),
induces a cochain map

(prop)*: EX(J™(E")) — E7(J>(E)).
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Not all forms in £*(J*°(E’)) pullback by (pr¢)* to G invariant forms on J*°(E).
However, elementary covering space arguments show that for each w € E5(J>(F)),
there is a unique form w’ € £*(J*°(E’)) such that

w = (pr )" ().

Secondly we know, by virtue of the Kunneth formula, that the de Rham co-
homology of E/ = T™ x F' has representatives obtained by wedging the standard
angular forms dz’ on T™ with forms representing the cohomology classes of F. Let
{ai, a5, ..., a5} be a collection of p forms of this type which represent a basis for
HP(T™ x F). We identify the forms o) with their pullbacks to J*°(E’) via 7% .
Then, by Theorem 5.9, the forms

P 9(al) ifp<n
o

TP () ifp>n+1

on J>°(E') represent a basis for H? (£*(J>°(E')). Because each of the forms o is
G invariant, the forms

Bi = (pr o)™ (5;)

are G invariant and therefore 3; € EL(J*®(E)).

We complete the proof of the theorem by proving that the forms 3; represent a
basis for H? (££(J°°(E))). Since the forms o are d closed on T™ x F, the forms £;
are closed in £ (J°°(E)). The forms (; represent independent cohomology classes
in £5(J°(F)) — if a constant linear combination ) a;f; is exact on E5(J(F)),
then ) a;0, is exact on £*(J*°(E’)) and therefore the constants a; vanish.

It remains to prove that the representatives 3; span H? (£5(J*°(E))). Let w
be any closed form in E5(J°(E)). Then the form w’ € EP(J°°(E’)), defined by
w = (pro¢)*(w'), is closed (pr ¢ is a local diffeomorphism) and hence

W =dyn + Zazﬂ;. (5.40)

(Here we are assuming that p < n. If p > n + 1, then the differential d, in this
equation is replaced by dy.) The form ' € EP71(J°(E’)) may not be G invariant
and consequently 7" may not lift to a G invariant form on J°°(FE). However, if we
average (5.40) over T" by integrating, then we can replace the form 7’ in (5.40) by
a G invariant form 7. Let 7 = (pr¢)*(r') € E4 ' (J®(E)). Then the pullback of
(5.40) to J>*(E) gives

w=dyT+ Z a; ;.
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This proves that the 8; span H? (E54(J(E))).
In integrating (5.40), we used the fact that because w’ and ] are G invariant,

/ (pr Ly)*w, =’ and / (pr Ly)*ﬁ; = ﬁ;»

yeTn yeTn

where L, : E' — E'is the prolongation of left multiplication (translation) by y € 7™
to J>®(E'), i.e.,
Ly([em, u]) = [€m+y7 u]

We also used the fact that because the differentials d;; and éy of the Euler-Lagrange
complex commute with (pr L,)*, they commute with integration over 7.
Another proof for the special case dim M = 1 will be given in the next section. i

EXAMPLE 5.17. For locally variational, autonomous ordinary differential equations
(n = 1), the obstructions to finding autonomous Lagrangians lie in H*(F)@® H?(F).
For example, consider the locally variational source form on £: R x F' — R, where
F = R? — {0}, as given by (5.39). Since
dy A = (6% — %9”)0“/\d:p+(é”— %9“)9%@:
= d (0" NG +6° A6V,

the form
B=A—(0"NO"+6°AGY)
1 1
= d(—udu + 5112 dx —0dv + 51;2 dz) — (adu+ bdv) A dzx
is a d closed, G invariant two form on J*°(F). In accordance with the proof of

Theorem 5.16, we pull 3 back to the form 3’ € Q?(J*°(E’)), where B’ = S! x F.
Since 3’ is cohomologous on J*°(E’) to the two form

v = —(adu+bdv) A dz,

we deduce that A admits a global, autonomous variational principle if and only if
~" is d exact on J*°(E’). But, as a form on E’, v/
form

is exact if and only if the one

p=—(adu -+ bdv)

on the fiber F' is exact. |
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We now consider some examples where the cohomology of the variational bicom-
plex arises, not from the topology of E, but rather from open restrictions on the
derivatives of local sections of E. Let J§ be any open submanifold of J*(E). For
example, to study regular plane curves we take F : R x R? — R and restrict the
one jets on E to the open set

Jy = {(z,u,v,0,0) |4*+ 0> #0}.

In this example the projection map 7%,: Ji — E is still surjective — in general we
need not impose this condition on the set J§. Given an open set J§ C J*(E), define

R = (m) " (J)- (5.41)

Theorems 5.1 and 5.9 immediately generalize to the variational bicomplex restricted
to the open set R C J*(E).

THEOREM 5.18. Let R be an open set in J*°(E) of the type (5.41).
(i) For s > 1, the augmented horizontal complex
0 — Q¥(R) — QV5(R) —Q*5(R) — - -~
; (5.42)
I
L QmH(R) — FH(R) — 0
is exact.
(ii) The cohomology of the Euler-Lagrange complex £*(R) is isomorphic to the
cohomology of the de Rham complex of J§.

PROOF: For every point ¢ € J¥, there is an open neighborhood Vq’“ of ¢ such that
the augmented horizontal complex on V>° = (m°) "1 (V,F) is exact. Let V = {V, }
be a cover of R by such neighborhoods and let { F,, } be a partition of unity on R
subordinate to this cover.

The proof of exactness of (5.42) now follows that of Theorem 5.1 with the cover
)Y on R used in place of the cover U on E.

The same homological algebra used to prove Theorem 5.9 proves (ii). [

ExXAMPLE 5.19. Let £ : R x R? — R and let
Jy = {(z,u,v,0,0)|4*+ 0> #0}.

Then the cohomology of the Euler-Lagrange complex on R = (7°)~1(J}) is iso-

morphic to the de Rham cohomology of J3. Since the latter is generated by

wdv — vdu
u? + 02

Y
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the former is generated by

Udyv —vdgu D — U

pry 1’0 — pry
w=m (Oz) u2+1}2 u2+1}2

dx.

The integral of this cohomology class around a closed curve 7 is the rotation index
of .

In this particular instance, w happens to be invariant under the group G of
isometries of the fiber R? and under arbitrary oriented diffeomorphisms of the base
R. Thus w also defines a cohomology class in £5(R). In fact, by Proposition 4.13,
we know that w generates the only cohomology class in H!(£%(R)) and therefore

H'(E*(R)) = H' (E4(R)).
It must, however, be emphasized that this equality is purely coincidental — by

Theorem 5.18

while by Proposition 4.61,
H?*(£4(R)) =R

is the one dimensional vector space generated by ©2 A ds. ]
EXAMPLE 5.20. Now let £ : R x R®> — R and let

Ji={(z,RR)|p*=(R,R) =t>+ 0> +u>#0}.
The single generator for the de Rham cohomology of Jj is the two form

1
2

a=—(UdoNdw—vdu A dw+wdia A do).

The projection of o to a form in the Euler-Lagrange complex gives rise to the source

form
A = I(zm"1a))
:I(%[(w@—@w)éu(uw—wu)éu(@u—uﬁ)éw]Adx)
a 1 .. o0, d 1 o o d 1o
:{@[E(vw—wv)]g +%[E(wu—uw)]9 +%[E(uv—vu)]9 } A da.



218 The Variational Bicomplex

Therefore the system of third order ordinary differential equations

d 1 . .
is locally, but not globally, variational.
Note that .
?R x R = kB, (5.44)

where & is the curvature and B the unit binormal. If the initial conditions at x = x
for the system of equations (5.43) are such that (R x R)(z¢) = 0, then the solutions
are straight lines. If (R x R)(z¢) # 0, then the solutions are circles.

Now replace the open set J} by

Jg ={(@RRR)|RxR+#0}.

The open set JZ C J?(F) has the same homotopy type as the Steifel manifold of 2
frames in R? which, in turn, is homotopy equivalent to the special orthogonal group
SO(3). Since H2(SO(3)) = 0, the locally variational source form (5.43) must now
admit a global Lagrangian.

A Lagrangian for (5.43) is easily found by using the moving frame formalism
developed in §2D. By virtue of (5.44), the Frenet formula (2.45) and (2.46), we can
re-write the source form A as

d

A= d—[ﬁB] OGN0 =[-KkTO* + EO%] Ao,
s

Assume that A admits a natural Lagrangian
A= L(k,T,k,T,...)0.

(We have not yet computed the 2 dimensional equivariant cohomology of the Euler-
Lagrange complex for space curves so there could be obstructions here and A might
not admit a natural Lagrangian.) Then by (2.64) we must have that

.. F— Tk . ..

—k7 = KH + (k% = 72 B + B + 207 E, + [ "B, + 22,
K K

and

[7%2 — k% — 252 + K |

—i=+FEq + 7B, — kE, + B, + 22 By — — .
K K

13
By inspection we see that a Lagrangian \ which satisfies these equations is
R-(RxR), .
Az oo TLEXR) e
|12 % R|
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EXAMPLE 5.21. Let U be an open domain in R?, let £ : U x R? — U and let

u u
J(%:{(m7y7u7v7u$7uy7vxavy)|det|: r y:| >O}.
Up Uy

Sections of E whose one jets lie in J} are orientation preserving local diffeomor-
phisms from R? to R%. The open submanifold R = (7{°)~!(J3}) has the same
homotopy type as G17(2, R) which is homotopy equivalent to the circle ST. In fact,
if we set

Uy =T+ S Uy =P —(q
Vpy =P+4q Vy =T—3S8
then
Uy Uy | _ 2 2 .2 .2
det|:1)m ’Uy:|_r +q S P,

and consequently we can conclude that a generator for the de Rham cohomology of
R is given by

_ rdqg—qdr

- T’Q +q2

_ (ugy + Uy) d(vgy — uy) — (Ve — uy) d(ug + Uy)
(ug + Uy)2 + (vz — uy)2

Therefore, for p > 1, HP(£*(R)) = 0 while for p = 1 the cohomology is represented
by the one form

(uz +vy) dg(ve — uy) = (v — uy) dy(uz +vy)

(ug + Uy)g + (vz — uy)2

This form has the following geometric interpretation.

PROPOSITION 5.22. Let ¢: U — R? be a local diffeomorphism and Iet pr ¢ be the
prolongation of ¢ to R. Let v be any smooth closed curve in U and let ¥ = ¢ o~y
be the image curve under ¢. Then

1
o /(pr ¢)*(w) = [rotation index of 4| — [ rotation index of y].
7r
gl
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PROOF: Let v(t) = (x(t),y(t)), let (t) = ((u(t),v(t)) where u(t) = u(z(t), y(t))
and v(t) = v(x(t), y(t)), and let

o= (pro)*(w) — (H) dt + (M) dt.

We prove the proposition by showing that ¢ is a d exact one form. We know that
on its domain of definition, the function

ft) = (arctan(%)) (x(t),y(t)) — a,rctan(%) (t) + arctan(%) (t)

satisfies

df =o.
That f can be defined globally follows from the identity

(Vg — Uy ) (Ul + 0Y) — (ug + vy ) (VT — i)
(Ve — uy) (0 — Yi) + (uz + vy) (Wd + 0Y)

tan f =

and the fact that the denominator () of this rational function is the positive definite
quadratic form

2 2 .
uy + uy + (UgVy — Vpy) UgUy — UglUy i
2 2 . .
Uy Uy — Ugly vy + vy + (ugvy —veuy) | | Y

a-1i i

Observe that when ¢: R? — {0} — R? is complex analytic,

1 N T A
3 | oy = 5 [ T

Consequently, if v surrounds the origin and m, and m; denote the multiplicities of
the zeros and poles of ¢’ at 0, then by the argument principle (see, e.g., Conway
[18])

7 | (1)) = me —m,

For example, under the maps z — e, z — 2" or z — 2z~ " the rotation index of the
curve v is left unchanged, is increased by n, or is decreased by n respectively. ]
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EXAMPLE 5.23. Let E: R? x R3 — R? and let
Jo ={ (2,5, R, Ro, Ry) | Ro x Ry #0}.

A section of E whose one jet lies in J} defines a regularly parametrized surface in
R?3. The Gauss-Bonnet integrand

A=KdA

is a closed, type (0,2) form on R but in view of the Liouville formula derived in
Example 4.46, X\ is dj; exact and so does not determine a non-trivial cohomology
class in £*(J§). Indeed, since Jj is homotopy equivalent to the rotation group
SO(3), we deduce that

0, ifp>0andp+#3, and

HHER) = { R, ifp=3

If { By, F3, B3} is an orthonormal frame on R? with

R, x Ry

By = v
[|1Re < Ryl

and F; and E5 depending smoothly on the jets of R, and if
Oéij = <EZ,dEJ>

denote the Mauer-Cartan forms on SO(3), then a representative of this class is the
source form
A=1To 72’1(0412 N a1z N\ 0623).

I have been unable to attach any special geometric significance to the partial dif-
ferential equations defined by this source form.

If G is the group of isometries of the fiber R® and orientation preserving dif-
feomorphism of the base R?, then one can prove that the Gauss-Bonnet integrand
represents the sole equivariant cohomology class in H?(E4(R)). |

EXAMPLE 5.24. There are differential-topological invariants which do not seem to
arise as cohomology classes in an appropriate Euler-Lagrange complex. Perhaps the
most famous of these is the Hopf invariant for smooth maps ¢: 8% — S2. If v is
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the volume form on S?, then ¢*(v) is an closed two form on S and therefore there
is a one form a on S? such that da = ¢*(w). The Hopf invariant is

H((b):/SBOz/\da.

One cannot expect the integrand A = a A da to arise as a cohomology class in the
Euler-Lagrange complex on E : §3 x 52 — S3 since A cannot be computed pointwise
from the jets of ¢.

Another invariant to be mentioned in this regard is the self-linking number of
a smooth, regular curve v imbedded in R3 (Pohl, [58]). One ought not to expect
this invariant to arise as a cohomology class in the variational bicomplex since
the condition that 4 be non-self intersecting is a global condition which cannot be
expressed as an open restriction on the jets of ~. ]

B. The Vertical Cohomology of the Variational Bicomplex. In this section
we compute the cohomology of the vertical complexes (Q7*(J*(E)), d,,).

Let a be a p form on the base manifold M. We shall identify o with its pullback
by 737 to J°(E). Then d,a = 0 and hence, if w represents a cohomology class
in H{®* (Q%*(J°°(E))), then o A w represents a class in Hy 7%, In particular, the
vertical cohomology spaces Hy* (0% (J>°(E))) are modules over the ring C°(M)
of smooth functions on M.

Now consider two fibered manifolds

7 FE—M and n':E — M
and maps

®,U: J®(E) — J®(E).

We suppose that ® and ¥ cover maps ¢¢ and ¢y from M to M’. According the
Theorem 3.15, this condition is both necessary and sufficient for the projected pull-
back maps ® and ¥ to define cochain maps

F W (7 (TX(E)),dy) — (7 (J®(E)), dy),

for r =0, 1, 2, ...,n. We begin this section by showing that if ® and ¥ cover the
same map, i.€e., if ¢g = 1)y, and are homotopic in the sense below, then the cochain
maps ®f and U# induce the same map in vertical cohomology.
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DEFINITION 5.25. Two maps ® and ¥ from J*°(FE) to J>°(E’) which cover the
same map h: M — M’, that is

o, v
J*(E) —— J>(E)

o et
h
M — M,

are homotopic if there is an open interval I D [0, 1] and a smooth map H such that

H
J®(E)x I —— J®(E')
| |-
M L) M,

and

H(q,0) = ®(q) and H(q,1)=¥Y(q)

for all ¢ € J>*(E).
As in Proposition 1.1, the map H is smooth if and only if for each k =0, 1, 2, ...,
there exists an integer mj; and a smooth map

HM™: J™(B) x I — J*(E)

such that m> o H = H,™ omy% .

PROPOSITION 5.26. The projection map n%: J>°(E) — E is a homotopy equiva-
lence over the identity on M.

ProoF: It suffices to show that if o: E — J°°(FE) is any fixed section, then the
map
b=cony: JPE)— JOE)

is smoothly homotopic to the identity on J*°(E). Let U = { U, } be a cover of E
by adopted coordinate neighborhoods and let { f, } be a partition of unity on £
subordinate to ¢. With

7| Uv(a:i,ua) = (2", u®, 0% (x,u)),

define, for t € I,
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H}: J>*(Uy) — J*(Uy)
by

H [ou] = (2, u®, 10 (2, ) + (1 — £)ug).

The maps H, are projectable and hence smooth. When ¢ = 0, H,' is the identity
on J°(U) and when t = 1, H; is the restriction of ® to J*>°(U). The required
homotopy

Hy: J*(E) — J>®(F)
can then be defined by

Hy =) f,H]. (5.45)
Y

THEOREM 5.27. Let m: E — M and 7': E/ — M’ be two fibered manifolds and
let ® and ¥ be two smooth maps,

O, 0: J®(E) — J*(E),
which cover the same map from M to M'. If ® and ¥ are homotopic, then the

projected pullback maps ®f and W¥ define the same map in vertical cohomology.
In fact, there are homotopy operators

M QO (I(E) — QT (E)),
depending on ® and ¥, and such that for any w' € Q" (J*(E"))
(W)~ (W) = M () + dy H (). (5.46)
Proor: Given the homotopy H from ® to ¥, there is a standard homotopy operator
K5 (T (E)) — Q7 (J=(E))
for the de Rham complex on J°(E), i.e., for v’ € QP(J°(E")),

U* (W) — 0% (') = dKP(W)) + KPH (dw'). (5.47)
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In particular, we have that
7rr+1’5(lC(w’)) =0.

Then, given w’ € Q"°(J*°(E")), where r + s = p, we show that
KP(W)eQrstgQtls—2g... . (5.48)
By applying the projection map 7"™* to (5.47), we immediately arrive at (5.46), with
MO = poto O,
The definition of KP and proof of (5.47) are identical to that given for differential
forms on finite dimensional manifolds by Spivak [63](Vol. 1, pp. 304-306). We need

the formula for K7 in order to verify (5.48). To this end, we first define the inclusion
map

by

forallt € I. If w € QP(J>°(FE)xI), then there are unique forms w; € QP(J*°(E)x1I)
and wy € QP~1(J*°(E) x I) such that

w=wi+dt Nws

and
o)
5% w1 =0 and 5% wo = 0.
With
TP QP (J®(E) x I) — QP~1(J>(E))
defined by

7w - [ it di

it is not difficult to show that

it (w) —if(w) = dIP(w) + TP (dw).
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Consequently, for w’ € Q™5 (J>*(E")),
U (W) — @ (W) = (H oi1)" (') — (H 0ip)"(w')
(i1)" (H" (")) = (i0)" (H" (w"))
d[(ZP o H*)(w')] + (ZP! o H*)(dW').

This establishes the homotopy formula (5.47), where

KP(w'") =727 o H* (') :/o i:[%4H*(w')]dt.

In order to prove (5.48), we must show that

Kp(w/)(Xl,Xg,...,prl) =0 (549)
whenever any s of the tangent vectors X, Xo,..., X,_1 to J>(E) are 75} vertical.
Since

! 0
’Cp(w,>(X17"'7Xp—1) = H*(w,>(a7 (%)*Xl? ’ (%)*Xp—l)dt
0
! 0
— / w'(H*(a),Zl,ZQ, ooy Zpo1) dt, (5.50)
0

where Z; = (H o1i;).X;, equation (5.49) follows from the following observations.
First, let f: M’ — R be any smooth function. Then, because h does not depend
upon the homotopy parameter t,

0 0

[(755)+ (H.5))(f) = - (f o homiy) =0. (5.51)

0
This shows that H*(ﬁ) is a w3y, vertical vector on J*°(E'). Thus, because v’ is

of type (r, s), the integrand in (5.50) will vanish whenever any s of the vector fields
Z1, Za, ..., Zp_1 vanish. But, because H covers the map h: M — M/,

(m37)(Z5) = (737)« (H 0¢). X)) = ha ((757): X;)

and therefore Z; is w33, vertical whenever X; is w§; vertical. |
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A simple example shows that the hypothesis

P = o,
used in proving (5.51), is essential to the validity of Theorem 5.27. Let E be the
product R! x S — R!, let ¢: E — E be the identity map and let ¢»: E — E be
the map ¢ (z,u) = (x + 3,u). Let ® = pr¢ and ¥ = pre be the prolongations of
these maps to J°°(E). Evidently ¢) and ¢ are homotopic and therefore ® and W
are homotopic although not in the sense of Definition 5.25. The maps ®¥ and W#
are not the same in cohomology. Indeed, let f: R — R be a smooth function with
supp f C (—1,1) and with f(0) = 1. The form w = f(z)df, where 0 is the zeroth
order contact one form on FE, defines a non-trivial cohomology class in Hg’l. The
difference
0= H(w) - B (w) = [f(z+3) — F()]0

is not dy, exact (at x =0, n = —0 = —du) and so the maps ®* and U* are not the
same in cohomology.

COROLLARY 5.28. Let m: E — M be a fibered manifold of dimension m + n,
where n = dim M. Then, for all s > m,
Hy? (Q**(JOO(E))) =0.
PrROOF: Observe that if « is any p form on E, then
T [(rg ) ()] =0
whenever s > m and r + s = p. Indeed, since « is locally a linear combination of
forms containing at most m wedge products of the fiber differentials du®,

(n5) (@) € P @ (I<(E))
r+s=p
is a linear combination of at most m wedge products of the contact forms 0% ( and
no higher order contact forms 6¢,|I| > 1). Alternatively, it is easily seen that

[(77-]?:70>*(O‘>](X17 X27 s 7X;D) = O‘((”?)*Xb (77']?:70>*X27 KR (W%O>*Xp)

vanishes, for dimensional reasons, whenever any s > m of the vectors X; on J*(E)
are y; vertical.

Now let 0: E — J*(E) be any section and define ®: J*(E) — J*(E) by
® = oon%. Then, with ¥ the identity on J*°(E) and H the homotopy (5.45), the
homotopy formula (5.46) becomes

w =" [(7 ) (0" (W))] = dy Hy () + Hp™ (dyw).

Since 0*(w) is a form on F this shows, in view of the above observation, that if w
is dy, closed and s > m, then w is dy, exact. ]
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Without imposing additional structure on the fibered manifold 7: £ — M, it
seems unlikely that much more can be said in general about the vertical cohomology
of the variational bicomplex on J*°(E). Accordingly, we now suppose that 7: £ —
M is a fiber bundle with m dimensional fiber F' and structure group G. In addition,
we shall assume that F' admits a finite cover V = { V,,} with the property that each
V,, as well as all non-empty intersections

VO’OO’l‘.‘O'p — Val m Vo'2 m e ﬂ VO’p

are diffeomorphic to R™. Such a cover is called a good cover. Good covers exist
whenever F'is compact. The existence of a finite good cover for the fiber F' insures
that the de Rham cohomology of F' is finite dimensional. (See Bott and Tu [13] p.
43).

DEFINITION 5.29. Let w: E — M be a fiber bundle with fiber F'. A collection of s
forms { 8%, 32,...,3%} on E are said to freely generate the s dimensional de Rham
cohomology of each fiber of FE if for every point x € M, the restriction of these
forms to the fiber F, = w~1(x) (i.e., the pullback of these forms by the inclusion
map i,: 7 (x) — E) are closed forms on F whose cohomology classes [i%(3")],
i=1,2, ...,d, form a basis for the vector space H*(F},).

Two aspects of this definition should be emphasized. First, the forms 3° need not
be closed on E — in other words, the forms 3* do not have to satisfy the hypothesis
of the well-known Leray-Hirsch theorem. Secondly, the cohomology classes [i*(5°)]
in H*(F,) must be independent at every point x € M. It is always possible to
construct forms on E which freely generate the cohomology of any single fiber but
such forms are of little use to us here.

Many fiber bundles admit forms which freely generate the cohomology of each
fiber.

ExAaMPLE 5.30. Let £ : M x F' — M and let p: E — F be the projection onto
the fiber F. If 41, 42 ... ? are closed s forms on F whose cohomology classes [']
form a basis for H*(F), then 8¢ = p*(v%) are forms on E which freely generate the
cohomology of each fiber. In this instance, the forms 3’ are closed on E. ]

EXAMPLE 5.31. Let w: E — M be an oriented sphere bundle with fiber F' = S™.
According to Bott and Tu [13] (pp. 116-122), it is always possible to construct an
m form B on E, called a global angular form, with the following properties

(i) B| £ 1s a non-zero multiple of the volume form on S™. Therefore ﬁ| F

generates the top dimensional cohomology of the fiber.
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(ii) There is an m form y on the base space M such that
dpg = —m*x.

The form Y is closed on M and the cohomology class [x] € H™ (M) is called the
Euler class of the sphere bundle E. The bundle F admits a closed angular form if
and only if the Euler class of F vanishes. ]

ExaMPLE 5.32. Let G be a connected Lie group, let H be a closed subgroup of
G and let M be the homogeneous space G/H. Then w: G — M is a fiber bundle
with fiber H. Suppose H is compact and semi-simple. Let ', 42, ...,~% be a basis
for the vector space of harmonic s forms on H. These forms are closed and left
invariant and generate the s dimensional cohomology of H. Define left invariant
forms 3' on G by

BH(g) = (Ly-1(v'(e))(9),

where L,: G — G is left multiplication by g € G and e is the identity of H. Let
h € H and let gh € G denote a point in the fiber over [g] € M. Since

B pm11g (1) = B'(9h) = (Lya) (G (),

it follows that the forms 3¢ freely generate the cohomology of each fiber. ]

ExXAMPLE 5.33. Let m: P — M be a principal fiber bundle with fiber G. We assume
that G is a compact, connected Lie group. Let v be a connection one form on P and
let €2 be the associated curvature two form. Let I be an ad G invariant polynomial
on the Lie algebra g of GG, homogenous of degree [. Then, as is well-known (see,
e.g., Chern [15]) the characteristic form

E=1(Q,9,...,9)
is exact on P. Indeed, with

1
Q =12+ 5 (t = %), 7]

and
1
ﬁ:l/ I[’}/,Qt,...,Qt]dt,
0
it follows from the Bianchi identity for €2 and the invariance identity for I that

df = =.



230 The Variational Bicomplex

Since the curvature forms 2 are horizontal, their restriction to each fiber vanishes
and therefore ﬁ’ ) is a closed, 21 — 1 form on each fiber G, = 7~ !(z) of P.

Let X,,a=1,2,...,m be a basis for g. Then we can write

m
_ a
’Y|G:c - ZlXaw )
a=

where the one forms w® are the Maurer-Cartan forms on (G, associated to the left-
invariant vector fields X, = (Ly)«(X,) on G. This proves that

B\Gm =l (w, [w,w],...,[w,w])

where
1
cl:l/ (t—t>)\"tdt £0.
0

Finally, as the polynomial I ranges over a a generating set for the ring of ad G
invariant polynomials on g, the forms ﬁ| ;.. Will generate a basis for the cohomology
x

ring H*(Q*(G,)). |

ExamMpPLE 5.34. If m: E — M is a fiber bundle over a simply connected base
manifold M then, by a monodromy argument, there are forms on E which will
freely generate the cohomology of each fiber. Let U = {U,, }necs be a good cover
of M. Let U, and Ug belong to Y. Because U,, Ug and U, N Up are contractible,
the bundles 7= 1(U,), 7~ 1(Us) and 7~ !(U, N Up) are all trivial bundles and the

restriction maps pf, 5 and pgﬁ from 771 (U,) to 771 (U, NUg) and from 7 *(Up) to
7~ YU, NUg) induce isomorphisms

(pag) s HP(m7 1 (Us)) — HP(n~1(Ua N Up))
and

(pag)": HY(n™ ! (Up)) — HP (v~ (Ua N Up)).
We now define an isomorphism

¢%: HP (17" (Uy)) — H? (m~ 1 (Us))

¢ = ((pl5)") " o (p2p)"
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The map ¢ is only defined in cohomology — it is not induced from a map from

71 (Up) to m=1(U,).
Now pick a fixed open set Uy in U and define, for each o € J, an isomorphism

Yo: H(m7 1 (Up)) — HP(m 1 (U,))

0
To =gk o -0y, 0dg,,

where UgUy,Uq, - - - Un, Uy is a “chain” from Uy to U, (more precisely, Oaag - - - apar
is an edge path in N (i), the nerve of the cover U/). Under the hypothesis that M is
simply connected, one can prove that T, is well-defined, that is, independent of the

choices Uy, ,Uqy, - ., Uq,. This, for us, is the essence of the monodromy theorem
presented in Bott and Tu [13](pp. 141-152).
Finally, let 3°, i = 1,, 2, ..., d be a set of closed s forms on F' which determine

a basis for H*(F). We pull these forms back to 71 (Up) using a local trivialization
of E on Uy to obtain a basis 3} for H*(7~1(Uy)). For each a € J, pick forms 3, on
77 1(U,) such that

8] = TalA)-

Because T, = ¢%, o T, it follows that if z € U, N U, then
[(BL) | rl= [(BL) | £l

Thus, if f, is a partition of unity on M subordinate to the cover { U, }, then
g = Z 1+,
v

are globally defined s forms on E which freely generate the cohomology of each
fiber. |

EXAMPLE 5.35. The Klein bottle 7: K — S! is perhaps the simplest example of a
fiber bundle for which the cohomology of the fibers cannot be freely generated by
forms on the total space. To show this, we represent the Klein bottle as the unit
square with the sides appropriately identified and we let K = UUV be the standard
trivialization of K, where U = (0,1) x S' — Uy = (0, 1) has coordinates (z,u) — x
and where V = (0,1) x St — V = (0,1) has coordinates (y,v) — y:
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3 —_— e

] i i l I i |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
' : | T
0 1 s 10 1 0 1
U Vv Wy Wy

The intersection U NV of these two coordinate charts consists of two disjoint open
sets W71 and Ws5. On W7, the two sets of coordinates are related by

y:x—k% for0<:1:<% and v=u
while, on W5, the change of coordinates is

for%<ac<1 and v=1-—u.

—r—1
Y= —3

Now let o be any one form on K. We prove that there is a point ¢ € V such
that a |7~ (q) is exact thereby showing that cohomology of the fibers of K cannot

be freely generated by a form on K.
Without a loss in generality, we can suppose that at one point p on the base
space S1, say p € Uy with x(p) = %, « |7 (p) is the standard generator of the fiber

cohomology, i.e., - = du. Write
mology, i.e a‘w (p) u. Wri

ay = a(z,u)dz+ b(z,u) du
and

ajy = c(x,u) dy + d(y,v) dv.
Then, in view of the above change of variables formula, the functions b and d are
related by

b(z,u) =d(z+ 3, u) for 0<z<32
and
—b(x,u) =d(z —

2. 1—u) for 3 <z<l.



Global Properties 233

We have assumed that b(%, u) = 1 and therefore, for all sufficiently small e > 0,
d(1 —e€,u) >0 and d(e,u) < 0.

This implies that

1 1
/ d(l1 —e,u)du>0 and / d(e,u) < 0.
0 0

and consequently, for some ¢ € (e,1 —¢€) C Vj

1
/ d(q,u)du = 0.
0

This condition is both necessary and sufficient for the one form « to be exact on
the fiber 7 1(q). 1

Our next theorem shows that if there are forms on E which freely generate the
fiber cohomology, then the vertical cohomology of the variational bicomplex agrees
with the F; term of the Serre spectral sequence for the bundle E.

THEOREM 5.36. Let m: EE — M be a fiber bundle with fiber F'. If there are forms
on E which freely generate the cohomology of each fiber, then

HS (4 (J<(B))) = Q" (M) @ H*(Q(F)). (5.52)

Specifically, let 3%, 52, ...,3% be degree s forms on E which freely generate the
s dimensional cohomology of each fiber. Then the forms

o' =" (rg)" (8] (5.53)

are type (0,s), dy closed forms on J>®(E). If w € Q"°(J*®(FE)) is any dy closed
form, then there are forms &; € Q"(M),i=1, 2, ..., d and a type (r,s — 1) form n
on J*°(FE) such that

d
w= Z & Na +dyn. (5.54)
i=1
The forms &; are unique in that the form w is dy, exact if and only if the forms §;
all vanish.

PRroOF: The proof of this theorem consists of two steps. First, we use a generalized
Mayer-Vietoris sequence to prove the theorem for product bundles £: M x F' — M,
where the base space M is diffeomorphic to R™. We then use a partition of unity
argument to prove the theorem for bundles with arbitrary base manifolds. Since
the second step is the easier of the two, we dispose of it first.
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STEP 2. Suppose that the theorem is true for all bundles of the form R"” x F' — R".
Let m: E — M be any fiber bundle and let Y = {U, } be a cover of M by local
trivializations, i.e., each U, is diffeomorphic to R™ and 7= !(U,) = U, x F. Since
the restrictions 5, = " U, of the forms (3 freely generate the cohomology of each

fiber in 77 1(U,), the theorem applies, by assumption, to each fiber bundle 7=*(U,)
over U,

Let w € Q"%(J*(E)) be a d, closed form. Then the restriction w, of w to
J®(r71(U,)) can be expressed in the form

d
woe =Y _&ioal +dyns, (5.55)
=1

where &; , are r forms on U, and 7, is a type (r,s — 1) form on J*®(r~1(U,)).
Consequently, if { f, } is a partition of unity on M subordinate to the cover U, then

w= Z fows = & Aa +dy, (5.56)

where & = Y folis and n =) _ fsn,. (Multiplication by the functions f, com-
mutes with d,, because the f, are functions on M). As we shall see, (5.55) always
holds for some choice of forms a’ on J*°(7~1(U,)) but this partition of unity ar-
gument fails unless the forms o’ are known to be the restrictions of global forms.
The uniqueness of the forms &; , implies, on overlapping trivializations U, and
U, that
Sio =&ir on U,NU.-.

Hence the forms &; , are already the restrictions of global forms & on M. This
proves the uniqueness of the forms &; in (5.54).

STEP 1. Now let E: M x F' — M, where M = R"™ and let V = {V,} be a good

cover for F. Let { f,} now denote a partition of unity on F' subordinate to the cover

V. To prove the theorem for the bundle F, we show that the same combinatorics

of the cover V which determines H*(Q*(F')) also determines Hy," (Q**(J>*(E)).
Since V is a good cover, each element V,, and each non-empty intersection

Vooor-op = Voo M Ve - N V5,
is diffeomorphic to R". Consider the bundles

Eoooi-iop i M X Voio,.g, — M.



Global Properties 235

Each FEsy0,...5, 1s a trivial bundle over M = R™ with fiber /' = R and consequently
we can introduce the variational bicomplex Q**(J*(Esy0,...5,)). Set

KPS — H Qr?s(Joo(Eooalwap))'

00<01<0:-<0p

An element of K?™° is a p cochain w on the cover V whose “components” wsq,...0,
are type (r,s) forms on J*(Ey0,..0,) Let

r: QU (J®(E)) — KO®
be the restriction map and let
8- KPS Kp—l—l,r,s

be the difference map as defined by (5.12). The vertical differential dy, and the
difference map 6 commute. The kernel of the differential

dy KpPmO _, Pl

is, by Proposition 1.9, a p cochain on V with values in Q" (M), that is, an element
of
CP =CP(V,Q"(M)).

In summary, given the good cover V of the fiber F', we can construct the following
double complex:

0 — QT,B(JOO(E)) _ KO,T,S _
0 QT,Q(JOO (E)) KO,T,2 Kl,r,2
(5.57)

0 — Qr,l(Joo(E)) N KO,T,l . Kl,r,l . K2,r,1 SN

0 —s QT,O(JOO(E)) _ KO,T,O . Kl,r,() . K2,r,0 _

(m30)” (m31)" (m31)" ()"

oO— QW — ¢ — ot — 0 —.



236 The Variational Bicomplex

By Proposition 4.1, the interior columns of this double complex are exact. The
operator
’C: varys — Kp_]-vrvs

defined by
[K(w]aoal”’O’p—l = Zfo’ w0'0'00'1---0'p_1

is a homotopy operator for the interior rows of (5.57). Consequently, the cohomology
of each edge complex of (5.57) is isomorphic to the cohomology of the total complex
with differential § 4 d& where, for w € KP"°, di(w) = (—1)Pdy,w. This implies
that the edge complexes are isomorphic to each other, i.e.,

Hy? (0 (J®(E))) & H*(C*(V, Q" (M))). (5.58)

In fact, it follows from the general collocation formula (Bott and Tu [13](pp. 102—
105) that the isomorphism (5.58) is induced by the map

Voo (my: C°(V, Q" (M)) — Q"(J>(E))
defined by
U oo (m)(7) = (—1)*(di; 0 K)*(7),

where 7 is an s cochain on V with values in Q" (M). ( The subscript J*°(E) attached
to ¥ distinguishes it from another similar map to be introduced momentarily.) Note
that if the components of  are the r forms v,5,...0, 00 M, then ¥ joo(g)() is the
global form on J*°(F) whose restriction to J>*(E,,) is

(W gee () ()] = Z dy fo, Ndy fo, N+ Ndy fo, Nogor o, - (5.59)

01,02,...,0s

In Bott and Tu [13](pp. 89-104), this Mayer-Vietoris argument is applied in
the same way to show that for any manifold F' with good cover V, the de Rham
cohomology of F' can be computed from the combinatorics of the cover by the
isomorphism

H*(Q(F)) = H*(C*(V,R)). (5.60)

Since the cover V is finite, H*(C*(V,R)) is a finite dimensional real vector space
and accordingly we can endow it with the structure of a free, finite dimensional
C° (M) module. Since Q" (M) is also a free, finite dimensional C'*°(M) module, we
have that

H*(C*(V,Q"(M))) = H*(C*(V,R)) ® Q" (M).
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This isomorphism, together with (5.58) and (5.60), proves (5.52).
It remains to verify (5.54). We first observe that if we identify a s — 1 form 1 on
F' with its pullback to £ = M x F', then

(7% o ()" 1(dpn) = dy [(x*7F o (7)), (5.61)

Secondly, the isomorphism (5.60) is induced by the map

Up: C*(V,R) — Q(F)

defined by
Vi (y) = (=1)*(dr 0 K)*()
= S defo, Adefoy Ao Ndrfo, AMogrrea,. 002)
Extend Wp by linearity to a C°°(M) module map
Up: C*(V,Q"(M)) — Q°(F) @ Q"(M).
A comparison of (5.59) and (5.62) shows that
77 0 (1) 0 U = W yoe (). (5.63)
Pick s forms 3%, 32,...,3% on F which generate the s dimensional cohomology
H#(F). Let 4* be corresponding s dimensional cochains in C*(V,R), i.e.,
Vp(y') =B +dpt’, (5.64)

where each 7% is a s — 1 form on F. The cochains ¢ form a basis for H*(C*(V,R))
as a real vector space. They also form a basis for H*(C*(V,Q"(M))) as a Q" (M)
module. In view of (5.53) and (5.63), (5.64) implies that for any r form & on M,

U jee () (7€) = o A&+ dy (nf AE), (5.65)

where i = 70571((7%)*(7%)). Finally, let w be any type (r, s), dy, closed form on
J°°(E). The isomorphism (5.58) proves that there are r forms & on M such that

d
w= Z[\IIJOO(E)(&'Yi)] + dy 2.

=1

On account of (5.65), this yields (5.54) with

d
n=m+ Y i A&,
=1

as required ]
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In Chapter Four we introduced an invariant system of weights for forms on J*°(E)
with polynomial dependencies in the derivative variables. We proved that if w is
either dy, or dj closed then there exist, at least locally, a minimal weight form n
such that dy,n = w or dyn = w. In the previous section we showed that there are no
obstructions to the global construction of minimal weight forms for the interior rows
of the variational bicomplex. Now we prove that there are no further obstructions,
other than those identified in Theorem 5.36, to the construction of minimal weight
forms on the vertical complexes of the variational bicomplex. With this result in
hand it will be a simple matter to obtain global minimal weight results for the
Euler-Lagrange complex.

PROPOSITION 5.37. Let w € Q;,jk(JOO(E)), s > 1, and suppose that w is dy,

exact. Then there is a form n € Q;,’j;l(Joo (E)) such that n has the same weights
as w and
w = dyn.

Proor: We first remark that because the weights w,, satisfy

wP (77> 2 wp(dvn) )

a form 7 with the same weights as w and satisfying dy,n = w is necessarily a minimal
weight form for w. Secondly, if f is any function on M then the weights of fn are no
more than those of n ( at points where f is nonzero, the weights coincide). Hence,
just as in the proof of Theorem 5.36, it suffices to prove this proposition for product
bundles E = M x F — M, where M = R™.

Let V be a good cover of F' and let { KP"* §,d,, } be the double complex (5.57).
Define a sequence of forms w®, w!,...,w* and n°, nt,... n*71, where v’ € K®"s~?
and n* € K»"*~~1 by r(w) = P,

dyn' = W and ont = w'tt s=0,1,2,...,5s— 1.

By virtue of the local existence of minimal weight forms, we can assume that that
each ' is a minimal weight form for w®. This implies that the weights of each 7’
coincide with that of w. Since dy,w® = 0, the components of w*® are the pullbacks
of forms on M, i.e., w € C*(V,Q"(M)). Because w is d, exact, w® must be J exact
and hence there is a cochain v*~1 € C*~1(V,Q"(M)) such that §v*~! = w*. Define
another sequence of forms 7°~1, 7572, ... 79 where 7 € K*™*~% by

T =0T~y and  Ti=n'—d,Krt. i=s5-25-3,...,0.
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Here K is the homotopy operator for the generalized Mayer-Vietoris sequence. Since
7571 is § exact, it follows that each 7¢ is § exact. In particular, 7° is the restriction
of a global form 7 satisfying d,,7 = w. Finally, since weights are not increased by
either the homotopy operator K or by dy, the weights of 7% are those of w’ and

therefore 7 is a minimal weight form for w. ]

The next theorem completes our analysis of minimal weight forms in the varia-
tional bicomplex.

THEOREM 5.38.

(i) Let w € Qrp?k(JOO(E)) If w is exact, then w = dym, where n is a minimal
weight form.

(ii) Let A be a source form in .7-"71;j (J®(E)). If A is the Euler-Lagrange form for

some Lagrangian on J*°(E), then A = E(\), where X is a minimal order Lagrangian.

PROOF: The proof of this theorem involves a simple modification of the proof of
Theorem 5.9. To prove (i), we first invoke Corollary 5.7 and Proposition 5.37 to pick
minimal order forms w; in (5.29). Secondly, the form [ defined by (5.30) is d exact
because w is d; exact. By appealing once again to Corollary 5.7 and Proposition
5.37, a minimal order form « on J*°(FE) can be constructed such that da = 3. The
proof of (ii) is similar. |
COROLLARY 5.39. Let A € F1(J*°(E)) be a source form of order 2k. Then A is
the Euler-Lagrange form of a Lagrangian of order k if and only if

(i) 0y A =0, i.e., A is locally variational;

(i) A€ Fp, , (J>(E)) and wi(A) < k; and

(iii) the cohomology class [A] € H"1(J*°(FE)) vanishes.

Our next goal is to compute the cohomology of the complex

{Hy® (" (J*(E))), dy }-

This is the so-called Es term of the (second) spectral sequence for the variational
bicomplex, defined by

_ ker{dy: Hy*(Q*(J>(E))) — Hy" " (Q*(J>(E)))}

E;S JZ(E . r,s—1 T,8 :
D im {dy: Hy™ (@5 (J>(E))) — Hy" (@ (J>(E)))}

If we let

Zy°(J2(E)) = {w e Q" (J™(E)) |dyw = 0, dgw = dy 3 }

and
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By*(J*(E)) ={w e Q" (J*(E))|w=dyB —dyy, dy3=0}.
then it is easy to see that

Zre(J>(E))

Ey*(J>(E)) B (J=(E))

I

(5.66)

LEMMA 5.40. Let s > 1 and suppose that (3 is an s form on w: E — M with the
property that

dp = *y (5.67)
for some (s + 1) form x on M. Then the pullback of 8 to Q%*(J*®(E)), viz.,
o =" ((nF)"(8))
is a dy, closed form which belongs to Z9*(J>®(E)).
PROOF: Apply (7%)* to (5.67) to arrive at
d[(mg)"(B)] = (757)" (X)- (5.68)

Since (7%)*(0) is an s form on J*°(E), it can be decomposed into the sum

() (B)=a+ 1+ P2+ + B,

where f3; is a form on J*°(F) of type (i,s —i). Equation (5.68) becomes

dya+ (dga+dypr) + (dg P+ dyB2) +--- = (m37) " (X)-

Because (737)*(x) is of type (s + 1,0), the (0,s+ 1) and (1, s) components of this
equation are dy,a = 0 and dya+dy, 81 = 0. This proves that a € ZS’S, as required.

THEOREM 5.41. Let w: E — M be a fiber bundle with fiber F. Suppose, for
s > 1, that there are d type (0,s) forms {a!,a?, ..., a%} on J*®(E) which

(i) freely generate the vertical cohomology Hy® on J°°(E); and

(ii) belong to Z3°(J>®(E)).
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Then
Ey*(J®(E)) 2 H' (M) ® H*(F). (5.69)

Proor: This is strictly an exercise in homological algebra based upon Theorem
5.36 and (5.66). Let w € Z5°(J°°(E)). Since w is dy, closed, there are d degree r
forms &; on M and a type (r,s — 1) form n on J*°(FE) such that

d
w= Z & Na +dyn. (5.70)
i=1
There is also a type (r +1,s — 1) form 7, for which
de - dV,)/]_. (5.71)
Since the generators a’ belong to Zg **there are type (1,s — 1) forms 734 such that
da’ = dyvs. (5.72)

Now apply the horizontal differential d,; to (5.70) and substitute from (5.71) and
(5.72) to arrive at

d
D dy&i Aol = dys.
i=1
This implies, by the uniqueness statement in Theorem 5.36, that d;&; = 0. Thus,

the forms &; are closed on M.
It is an easy exercise to verify that map

Ui By*(J°(E)) — H'(M) © H*(F)

defined by
d
V() =) E]®a]
i=1
is both well-defined and an isomorphism. ]

Our earlier remarks show that Theorem 5.41 applies if 7: £ — M is either an
oriented sphere bundle or a principal fiber bundle with compact fiber G. Theorem
5.41 also applies whenever the base manifold M is simply connected.
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PROPOSITION 5.42. Let s > 1 and suppose {a!,a?,...,a%} are d,, closed, type
(0, s) forms on J°°(FE) which freely generate the s dimensional vertical cohomology
on J®(E). If M is simply-connected, then there are forms {a',a2,...,a%} in
Z°(J>°(E)) which also freely generate the s dimensional vertical cohomology on
J>®(E).

PROOF: Since the forms o' are dy, closed, the type (1,s) forms dya’ are also dy,
closed. Because the forms o’ freely generate the vertical cohomology of J°(E),
there are one forms 5;» on M and (1,s — 1) forms 7’ such that

d
dya' = Zf; Aod 4 dynt

j=1
To this equation we apply d;; to conclude that
d

d
(de = &GN nad =dyo' (5.73)
i k=1

1 =

In this equation we have identified d¢} with d;£%. On account of Theorem 5.36,
equation (5.73) implies that

d
g => & neb. (5.74)
k=1

To prove the proposition, it suffices to construct functions f; on M, for i,j =1,
2, ..., d, such that det(f;) # 0 and such that the forms

d
~i Zj
a = g fia
=1

belong to 2373. Since the f; are functions on M, d,& = 0. Since
. d . d . . d .
dyd' =Y (dfi+) fi&) Aol +dy (Y fin")
j=1 k=1 k=1
the forms &' belong to Z5° if and only if

d
dfi+> figh=o. (5.75)

k=1
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It is a simple matter to check that the integrability conditions for (5.75) are
(5.74). Fix a point g € M. Then there is a unique solution f; to (5.75), defined
on all of M with fi(xq) = 5. Moreover, det(f}) # 0 on all of M.

This is easily proved from first principles. Let ~v: [0,1] — M be a smooth curve
with 4(0) = 2o and v(1) = 2. Let y = (y2): [0,1] — R® be the unique solution to
the system of ordinary differential equations

d
Ui+ ) n(€) =0 yi(0) =4l
k=1

Because this is a linear system of equations the solution exists over the entire interval
[0,1]. The integrability conditions (5.74) and the fact that M is simply connected
enable one to prove that y;(l) is independent of the path 7. See T. Y. Thomas
[67]. The solution to (5.75) is then f}(z) = y:(1). Finally, along ~, det(y}) satisfies
a differential equation which insures that this determinant does not vanish. ]

In many instances, knowledge of this F5 term of the variational bicomplex is
sufficient to compute, by spectral sequence methods, the de Rham cohomology

H(© (J%(E)), d) = H*(U(E), d).
For examples, see McCleary [50].

C. Generalized Poincaré-Cartan Forms and Natural Differential Opera-
tors on the Variational Bicomplex. In Theorem 5.9, we established the exis-
tence of a vector space isomorphism

$: H*(£*(J®(E))) — H* (2 (J=(E))). (5.76)

Despite the importance of this result, its direct applications are somewhat limited
because the map &, as things now stand, is rather difficult to evaluate. First,
as we pointed out in the proof of Theorem 5.9, the map @ is only well-defined in
cohomology; it is not defined as the induced map of a cochain map on the underlying
complexes of forms. Second, to compute

P([wo]) = wo — w1 +wa — -+ (5.77a)
it is necessary to solve successively the equations

g; = dei and dei+1 =0y (577b)
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for i+ = 0,1,2,..., a task which generally is not easily accomplished. (Indeed,
throughout all the examples in §5A we assiduously avoided using the map & in
favor of its inverse ¥, the projection map from Q* to £*.) This raises the problem
of whether or not there is in fact a cochain map

®: 5 (J®(E)) — QO (J®(E)) (5.78)

which will induce the isomorphism @ in cohomology.

This problem is motivated by two different considerations. First, given such a
map P, one can use it to immediately translate questions concerning the Euler-
Lagrange complex to questions on the de Rham complex of J*°(E). Such a map,
in effect, completely geometrizing the formal aspects of the calculus of variations.
Consider, as an illustration, the autonomous inverse problem to the calculus of
variations which we solved in Example 5.15. Here, for reasons which will become
apparent later, we restrict our attention to the autonomous inverse problem for
ordinary differential equations. Let E: R x F' — R and let A be an autonomous,
locally variational source form on J*°(E). Then, with the map (5.78) in hand, we
have that ®(A) is a two form on J°°(FE) and, as such, can be decomposed uniquely

into the form
D(A) = P2(A) + 21 (A) Ada,

d
where ®3(A) is a two form satisfying i ®5(A) = 0 and P1(A) is a one form.
x

Because A is locally variational and because @ is a cochain map, ®(A) is a d closed
form on J°°(E). This, in turn, implies that

d®3(A)=0 and dP1(A)=0.

Thus every autonomous, locally variational source form A determines a pair of
cohomology classes

([@1(A)], [@2(A)]) € HI(J*(E)) & H*(J*(E)).
Now suppose that there is an autonomous Lagrangian A for A. Then
D(A) = P1(N) + Po(N) Adzx
and, because d(®(\)) = ®(E()N)), we must have that

Do(A) = d(@1() and B1(A) = d (Bo(N).
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Therefore, if A admits an autonomous Lagrangian, the forms ®5(A) and ®4(A)
must be exact. This proves, consistent with the results of Theorem 5.16, that the
obstructions to the solution to the autonomous inverse problem to the calculus of
variations lie in H'(J*°(E))® H?(J*°(E)). Note that we have tacitly assumed that
the forms ®;(A) and ®3(A) are themselves autonomous differential forms. We shall
address this assumption momentarily.

The second, and I think more compelling, reason for seeking cochain maps (5.78)
comes from the observation that the Poincaré-Cartan form in mechanics determines
just such a map. For the first order Lagrangian

A= L(x,u*,u%)dz

the associated Poincaré-Cartan form is

Do (N) =X+ % 0. (5.79)
A simple calculation shows that ®p o () is d closed if and only if F(\) = 0 and,
moreover, that A is a global total derivative if and only if ® .. is exact. For example,
on R x S! — R, the Lagrangian A\ = wdx is not exact because the the one form
Py (N) = du is not exact on R x S!. The Poincaré-Cartan form @, (\) has two
other properties which contribute to its importance. It is computable locally from
A in that ®p o (A)(5°°(s)) is depends smoothly on only the jets of the Lagrangian
L at j*°(s). Furthermore, the Poincaré-Cartan form is invariant under all local,
fiber-preserving diffeomorphisms of E.

Because of the ubiquitous role that the Poincaré-Cartan form plays in mechanics,
it is important to seek appropriate generalization of this form for general variational
principles. One approach to this problem is via the theory of Lepagean equiva-
lents which we briefly touched upon in §A of this chapter. The Poincaré-Cartan
form in mechanics also emerges immediately from the application of the Cartan
method of equivalence (Gardner [26]) and this provides a second means by which
generalizations of (5.79) can be obtained. Here we propose to generalize (5.79) by
characterizing cochain maps (5.78). This approach insures that the our generalized
Poincaré-Cartan form ®(\) will change by an exact form whenever the Lagrangian
is modified by a divergence.

Accordingly, in an attempt to emulate all of the above properties of the Poincaré-
Cartan form, we look for maps

®7 : EP(J®(E)) — QP (J™(E)) (5.80)
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which are natural differential operators in the sense that

(P1) for any w € &P, PP(w)(j°°(s)) is a smooth function of the coefficients of w
and their derivatives to some finite order evaluated at j°°(s); and

(P2) for all local diffeomorphisms ¢: E — E with prolongation pr¢: J*(E) —
J>(E)
7 ((prg) w) = (pro)"(¢(w)). (5.81)

Properties P1 and P2 insure that ®”(w) is given by some local formula in the
coefficients of w which patches together under change of coordinates on E to define
a global form on J*°(FE). Equation (5.81) also implies that ®(w) inherits the sym-
metries of w. For example, in our foregoing discussion of the autonomous source
form A, we are assured that the coefficients of the forms ®;(A) and ®2(A) contain
no explicit z dependence. The infinitesimal version of (5.80) is the Lie derivative
commutation formula

(I)p(ﬁerW> = Eerq)p(W>v

where X is any projectable vector field on E. This naturality property is not in
general enjoyed by the Lepagean forms constructed in §5A. The maps ®P are also
required to satisfy

(P3) o ®P = identity on EP(J>(E)); and
(P4) d (®P(w)) =0 whenever w is closed in £*(J>®(E)).

The condition P4 is weaker than the cochain condition
d®? (w) = OPT(sw) (5.82)

but, because of property P3 and the fact that ¥ induces an isomorphism in cohomol-
ogy, P4 is still sufficient to insure that ®? induces a well-defined map in cohomology.
Indeed, since ¥ (PP (w)) = w, it follows that ®P(w) must be exact whenever w is ex-
act. Condition P4 has the advantage that it decouples the problem of constructing
the maps @7 for different values of p whereas (5.82) represents an equation for &P+,
given that ®P has already been found. Actually, with regards to the specific goal of
finding maps on forms which will induce the isomorphism (5.76), it suffices to find
maps P whose domain need not be all of EP(J*°(E)) but rather any subspace of
EP(J*°(E)) which contains all the closed forms.

We are able to construct maps satisfying P1-P4 when the dimension of the base
manifold M is n = 1 and we conjecture that such maps do not exist when n > 2.
For n > 2, partial results are possible if we restrict the domain of the maps ®? to
first order forms.
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Our construction of maps ®P satisfying properties P1-P4 depends upon the fol-
lowing observation. The horizontal homotopy operators k" introduced in Chapter
4A are local differential operators for s > 1. Suppose that these operators are nat-
ural differential operators. We could then define maps ®P with all the prescribed
properties by using equations (5.77), where the homotopy operators are used to
solve the second of (5.77b) for the forms w;;1 in terms of o;, i.e., given wy we
inductively define the forms w; 1 by

Wit1 = h;}s (dei) (583&)
and compute

PP(w) =wp —w1 +wg — - . (5.83b)

Accordingly, we are lead to the problem of finding conditions under which the
horizontal homotopy operators satisfy

hi" o (pro)” = (pro)” o hy
for all local diffeomorphisms ¢ of E. Again, this naturality condition implies that
h;}s o ﬁer = ﬁer o) h;}s (584)

for all projectable vector fields X on F.
To describe circumstances where (5.84) holds, we define subspaces

W (J=(E)) € Q7*(J=(E))

as follows. A form w € Q™%(J*°(F)) belongs to W™*(J>®(E)) if for any vector field
X on J*°(FE) such that (75°).(X) =0,

(W1) X—-w=0, and (W2) X—-dyw=0.
In local coordinates these two conditions become

ol mw=0  for |I|>3, (5.85)
and

(n—r+2)0" —w4de" NOF — w; +daF AT = w; =0, (5.86)
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where w; = D;,—w. This latter equation follows easily from W1 and Proposition 2.10
with I = ¢hk. Condition W1 simply states that w belongs to the ideal generated
by the forms dx?, 6%, ¢ and 07;. No contact forms of order 3 or higher can occur
although the coefficients of w may depend upon higher order derivatives. Note that
condition W2 holds automatically when w lies in the ideal generated by the forms
dz®, 0 and 6% and also when dw = 0.

Conditions W1 and W2 are “generically” necessary conditions for h}” to act
naturally. To see this, consider first the type (2,1) form

W="0pzzdx Ndy = dg(—0, N dy), (5.87)

which does not satisfy W1, and the vector field

0
X =22—.
& ox

Then a series of elementary calculations show that

Wt (W) = —020 A dy
and

Loex (M5 (w)) — b (Lpr xw) = 0, Adx + 0, A dy.

This shows that with n = 2, h%’rl does not in general act naturally — even on the
subspace of d; closed forms. Next, let X be an vector field on a fixed chart (z,u, U)

of F which is of the form 5

ozt
Suppose w € Q™*(J*(U)) satisfies W1. Then a lengthy calculation shows that

X =d'(x)

1

Lo (4506 7 (G 8) = o B

o (5.88)

where

o = (DppaP) 8% A{D,—= [(n— 7+ 2)0" = w + 2dz" AP = ]}

Consequently, if h%)° is to act naturally, o must vanish. For s = 1 this implies W2.
The next proposition (part(ii)) establishes the sufficiency of the conditions W1
and W2.
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PROPOSITION 5.43.
(i) Let Z;;°(J>(U)) € Q"5(J>°(U)) be the subspace of dy; closed forms. Then,
for s > 1,
' 24 (I (U) = Q0 (J>(U))

is a natural differential operator.
(ii) For s > 1, the maps

" W (I (U)) — Q7 1(7(U)

are natural differential operators.

PRrROOF: (i) Recall that if 71 and 72 are two type (0,s) forms on J*°(U), where
s > 1, then dym = dyne implies that 71 = n3. Let f: U — V be a local (fiber-
preserving) diffeomorphism between two coordinate charts U and V' of E and let
F =pr f. Since

dy (F*hy'(w)) = F* (dghy’ (@) = F*(0) = dy (b (F*(w))

we conclude that
F* (b (@) = b (F* ()
for all w € Z1%(J>°(U)), as required.
(ii) Given w € W™*(J>°(U)), define a second order total differential operator
P: &u(J®(E)) — Q1 J>®(E))
on the space of evolutionary vector fields by

PY)=prY - w.

Because of conditions W1 and W2, it is a simple matter, using (2.23), to write this
operator in the form

PY) =Q(Y) +du[R(Y)], (5.89)

where ) and R are the first order operators defined by

QYY) =Y*F,(w) + D;[Y*(F.(w) — dz’ A Fl(w;))],

n—r+1

and
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1 . 2 y
RY)= —=YFl(wj) + ————=D;[Y*FY (w,)]. 5.90
(V) = —— =V Fi(w;) + ———DilY*Fi ()] (5.90)
Note that both @ and R are trace-free (see Proposition 2.4).
The decomposition (5.89) of P into the sum of two first order trace-free operators

is unique. Indeed, suppose that Q and R are two first order, trace-free operators,

1.€.,
QYY) =Y“A, + D;i(Y*BY), D;— B, =0
and
R(Y)=Y“Cq+ D;(Y®D.), D;—= D! =0
and that

QYY)+ dyR(Y)=0 (5.91)

for all evolutionary vector fields Y. By setting the coefficient of Y, in (5.91) to
zero, it is found that
dz' A D? + dx? A D!, = 0.

Because the coefficients D?, is trace-free, the inner evaluation of the equation with
the total vector field D; yields D, = 0. The coefficient of Y'® in (5.91) now reduces
to

B! +dz" ANCy =0,

from which it follows, again by inner evaluation with D;, that C, = 0. This proves
that R = 0 and therefore Q = 0. This suffices to prove the uniqueness of the
decomposition (5.89).

This also suffices to prove that for w € W™*(J*°(E)) the operators Q(Y") and
R(Y) are invariantly defined, e.g., F*[R(F.(Y))] = R(Y). Finally, with Y replaced
by 5

Y =0"® T’
we find, on comparing (4.13) with (5.90), that

hp (W) = R(Y)

and the invariance, or naturality, of the horizontal homotopy operators is estab-
lished.
Of course, one could also prove (ii) by a direct change of variables calculation. I
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We now use Proposition 5.43 to establish the naturality of the map (5.83) in two
special cases.

EXAMPLE 5.44. Here we take dim M = 1. In this case the augmented variational
bicomplex collapses to the three column double complex

dyg I
0 —— Q%2 —— Q12 F? 0
dy dy, Sy
dy I
0 — Q% —— ob! F! 0
dV dV

d
R . Q00 7 . Lo

By Proposition 5.43(i), the homotopy operators
By QYT (B)) — QY (J%(E))
are all natural differential operators and hence the maps
P QLP(J(E)) — QP (J>(E))

defined by

P (w) = w — W (dyw)

are natural. In this case the maps ®P also determine a cochain map ® from the
Euler-Lagrange complex to the de Rham complex.

PROPOSITION 5.45. For any A € QY9(J%°(E)) and any w € FP(J*°(E)), ® satisfies
d(®(\) =@(E(N\) and d(P(w)) = @(dy(w)). (5.92)
PRrOOF: We first note that the two type (0, p + 2) forms

dyhi?  (dyw) and  hpP TP (dy Idyw)
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have the same horizontal exterior derivative and are therefore equal. To prove this
we use the identity (4.15), i.e.,

0= 1(n) +dghg" (),
first with 7 = dy,w and then with n = dy,Idy,w to find that
devh}ipH(de) = —dyldyw — I(dyw)] = dyldyw,
and (recall that 6y = I od,,)
dghyP P (dy Idyw) = dy Idyw — 6% (w) = dy Tdyw.
Consequently, we deduce that

d[®(w)] = dyw — dHh}ipH(de) — dyh P (dyw)
= dyw — (dyw — Idyw) — hg? T (dy Idyw)
= 5\/&) — h}ip+2(dv5vw)

= <I>p+1(5vw),
as required. The proof of the first equation in (5.92) is the same. ]
COROLLARY 5.46. Let F: R x F — R and let G’ be the group of translations on
the base space R. Then
H*(E5(J>(R)) = H(F) @ H*(F).
ProoF: The proof of this result was outlined in our introductory remarks at the

beginning of this section. ]

For a k™ order single integral Lagrangian A = L[z, u®]dz in QY0(J®(E)) it
readily follows from the formula (4.13) for h};" that

k
PN =A+> PPoS,
7=0

where

—J !
d 8L
p(J — l .
go dxl ou? SR
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This is the standard Poincaré-Cartan form for higher order, single integral problems
in the calculus of variations. See, e.g., Krupka [44] or Hsu [37].
For a source form A € QL1(J*°(FE)) described locally by

A = A,lz, u] du® A de,

we obtain what one might call the Poincaré-Cartan two form ®(A) for ordinary
differential equations. For a third source form, ®(A) is explicitly given by
1.0A d 0A d*> 9A
A=A+ -[2—- ——= 2
(B =2+3150 “mow T arour
0A, O0Ag d ,0A, 0Ap

16°n6°

- _ « 8
+51(555 + ga) ~ @ Gar T 2ama)) 0710
1 0Aa  0Ag 0 sy 1 0Aa a0

t5logm ~ gaal 0700~ 5l5El0T Al

We emphasize that this is an invariant defined two form for any third order source
form A which is d closed if and only if A is locally variational. ]

EXAMPLE 5.47. Let F' be any open domain in R™ and let £: R x F' — R. Let
Nap = diag[£1,£1,...,£1] and let

Pa = naﬁﬂﬁ - Aaﬁﬂﬁ - Ba,

where the coefficients A,3 = —Ap, and B, are smooth functions on F'. For instance,
when m = 4, when 7,5 = diag[1,1, 1, —1], and when B, = 0, the source equations
P, = 0 become the Lorentz source equations in electrodynamics. The Poincaré-

Cartan two form for the second order source form A = P, 0% A dx is

1.0P. d 0P,
— [t 7 o B
P(A)=A+ [(,Mﬁ d:cauﬁ}e A6
+1[6P L 9P
oul  ou~

=a+ B ANdx+ dv,

162 A 6°

where

1
o= —§Aag du® A duP, 6 = —B, du®,

and 1 = 741 du®. Thus, in the notation introduced at the beginning of this
section, ®1(A) = # and ®o(A) = a+dvy. Therefore, A admits a global, autonomous
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Lagrangian if and only if @ and (3 are exact on F'. In fact, if « = d f and 3 = dn,
then
O(A)=d(fdr+n+7)

and an autonomous Lagrangian for A is given by
A=7mb0(fdx+n+7).
|

EXAMPLE 5.48. Let Q7°(J°°(FE)) denote the space of type (r,s) forms which lie
in the ideal generated by dz*, 0%, and 0% with coefficients which depend only upon

the first order variables (2%, u®, u$). As we remarked in Chapter 4C, this is a well-
defined subspace of Q™*(J*°(FE)) and

dy: Q7 971‘,84*1.
Forms in 7'® all satisfy conditions W1 and W2 and therefore belong to the subspace
Wnrs(J*(E)). By Proposition 5.43 (ii)
Wyt QP — Qe
is a natural differential operator and so the map
@7: 01" — 0 (J(B)),
as defined by (5.83), is natural. If we bear in mind that, for w € Q]°, the partial

. . w . . . .
derivative —— transforms tensorial under coordinate transformations, then this

ous
naturality is manifest in the explicit formula

<I>(w) = Z Ck O N QX2 ..o N OYE 821822 cee 8261@ Wi ig.. i (593)
k=0

1
(k|>2 (nf]:+k)
For A € Q%(J*°(E)), the form ®"()\) coincides with the generalized Poincaré-
Cartan form introduced independently by Rund [61] and Betounes [10]. Betounes’
result, that E(\) = 0 if and only if d[®(w)] = 0 is clear from our general con-

where CL = and Wiqig.. i — Dzk — Dik71 e Di1 — w.

struction. Because of the naturality of this construction it is also immediate that
symmetries of A are also symmetries of ®"(\). We remark that the generalized
Poincaré-Cartan form ®"()\) is different from that introduced by Goldschmidt and
Sternburg [30] in their study of the Hamilton-Jacobi theory for first order multiple
integral problems. Their form retains only the terms in ®"(\) which are linear in
the contact forms. It is a Lepagean equivalent for A but it need not be closed when
A is variationally trivial. ]
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The two cases presented here may well be the only instances where mapping
®P satisfying properties (P1)—(P4) are possible. Specifically, we have the following
conjectures.

CONJECTURE 5.49. Let k > 2 and suppose

" L (J¥(E)) — @ (J¥(B))
is a natural differential cochain map defined on the entire Euler-Lagrange complex
E*(J*(E)). The n =1 and ®* is the cochain map described in Example 5.44.
CONJECTURE 5.50. Suppose that

o™ QY(J®(E)) — QT (J®(E))
satisfies properties P1-P4. Then either r = 0 and ®° is the identity map or else
k =1 and ®" is the map presented in Example 5.48.

ExAMPLE 5.51. Under additional hypothesis, it is possible to find isolated situa-
tions where maps satisfying properties (P1)—-(P4) exist. Again, these depend upon
showing that if dy,w; € W™t | then with w;y; defined by (5.83a), dyw;t1 €
Wr—1s+2 5o that by Proposition 5.43 the map (5.83) is natural. This is the case,
for example, on quasi-linear, second order variationally closed source forms

A = [AZuf; + Ba) 0 Av

where the coefficients Agﬁ and B, are first-order functions. Equation (5.83) be-

comes
P"H(A) = iAk
with -
A =
GO0 A0 D A0 A A A
_(kfi];)”f![agil@ii Dk DGO NI NG NO A v, iy

We stress that this form is not invariantly defined unless A is locally variational.
This map satisfies
& (E(N) = d " (M)

for A € Q7% and ®" defined by (5.93). ]
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Conjectures 5.49 and 5.50 have been verified for small, specific values of r and k.
Their proof in general may simply be more tedious than difficult. These conjectures
are part of the more general program of characterizing all natural, linear differen-
tial operators on the variational bicomplex. This project is more complicated that
the analogous problem solved by Palais [57] for the standard de Rham complex on
finite dimensional manifolds. There are two reasons for this. Firstly, in the present
context, naturality refers not to all local diffeomorphisms of the underlying space
J°°(E) but only to those local diffeomorphisms induced by maps on E. This pre-
cludes the use of the normal form arguments developed by Palais. Secondly, a really
satisfactory characterization of natural differential operators on the variational bi-
complex ought to describe for the various exceptional natural operators that arise
when the domain of definition is restricted to €,° for small values for k. But, at
this time, this seems to be akin to the opening of Pandora’s box.

One characterization of natural differential operators on the variational bicomplex
is given the following.

PROPOSITION 5.52. The only R linear, natural differential operator
®: QVO(J®(E)) — FYJ*(E))

is a constant multiple of the Euler-Lagrange operator.

SKETCH OF PROOF: The symbols of natural differential operators are natural
tensors. Natural tensors are readily classified by classical invariant theory and it
not difficult to show that the only natural tensor which can arise as the symbol of
a natural differential operator from Q2™° to F! is a multiple of the symbol of the
Euler-Lagrange operator. ]

Another problem along these lines is the characterization of natural Lepagean
equivalents.

PROPOSITION 5.53. Let
O: QO (JX(E)) — Q" (J>(E))

be a natural differential operator such that for any \ € QZ’O, ®()\) is a Lepagean
equivalent to A. Then k < 2 and

d(N\) = A — A (dyN)

oL oL oL (5.94)
—D; 0% A v, 0 ANv..
us Guf‘j] Vit [Gu%] i NV

=Lv+]
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In particular, there are no natural Lepagean equivalents for third order Lagrangians.

SKETCH OF PROOF: The naturality of (5.94) follows from Proposition 5.43 (ii) and
the fact that if X is any second order Lagrangian, then di, A € W™!,
Suppose that
©: Q" (J(E)) — Q" (J>(E))

is a natural Lepagean equivalent. Then
(7" 0 @): Q5O (%)) — Q"I (E))

is a natural differential operator. It is not hard to show that the only such operator
invariant under general affine linear changes of coordinates and compatible with the
Lepagean condition (5.20) and (5.21) is a constant multiple of

(r" 1o @) (N) = —hf 1 (dyA)

oL oL oL
= [F = Di(5=) + Dij(5==—)] 60°

[Gug (Gug‘k)+ J(Gu%kﬂg A Vi

OL OL OL

2 D)o A L 109 Ay
+[au;yk ](au%k)] 7 Vk+[8uzajk] 1) Vk

But in view of (5.88) this map is not invariant under all (fiber-preserving) changes
of variables and so no natural Lepagean form exists. ]

This work leaves open the even more general problem of finding non-linear natural
operators on, in particular, the space of k' order Lagrangians QZ’O(JOO(E)). One
such natural differential operator, defined for non-zero first order Lagrangians

A= L(z", u®,u®) v

is

1 n
@(A):Ln_lal/\a2/\~-~/\a,
where
, . 0L
"= Ldz' — — 0°.
o x dur

This form was first introduced by Rund [61] as the generalization of the Poincaré-
Cartan form appropriate for Carathéodory’s approach to the Hamilton-Jacobi the-
ory for first order multiple integral problems. While it is not closed on variationally
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trivial Lagrangians, it does have the important geometric property of being a decom-
posable n form. This form also arises directly though the application of the Cartan
equivalence algorithm, see Garnder [27]. In fact, Cartan’s method provides a sys-
tematic way for characterizing the invariants (under any prescribed transformation
group) of a given class (i.e., with order and number of dependent and independent
variables prescribed) of Lagrangians. For example, in solving the equivalence prob-
lem defined for second order Lagrangians in the plane, i.e., for Lagrangians of the
type
A= L(x,u,u,i)dz,

Kamran and Olver [39] discovered the new natural differential operator

oL OL 0L

D. Invariant Horizontal Homotopy Operators on Manifolds with Sym-
metric Connections. Let V be a symmetric, linear connection on the base man-
ifold M of the fibered manifold 7: E — M. We first show that the connection
V induces a process of covariant total differentiation of certain tensor-valued, type
(r,s) forms on J*°(E). This construction is, in itself, noteworthy since one might
have anticipated that additional geometric structures (such as connection on the
bundle of vertical vectors on E) would be required.

Let TP9(J>°(E)) be the bundle of type (p,q) tensors on J®(FE). Let 0 = j*(s)
be a point in J*°(F). We call a tensor T, € TP horizontal if

T(Oél,OéQ,...,Oép,Xl,XQ,...,Xq) =0

whenever either,
i) one of the covectors «;, 1 < i < p, belongs to the ideal C of contact forms at
g
o, or
(ii) one of the vectors X;, 1 < j < g, is a w37 vertical vector at o.

In local coordinates [z, u] = (z°,u®,ug,...) around o, T assumes the form
T, =T 7 Di, ® Dy, - @ D;, @ da? @ da? -+ @ da’e, (5.95)

where, as usual, D; denotes the total vector field

a + ua a_
ox? L Oue

0

b= 9 us
J
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Denote the bundle of horizontal type (p,q) tensors on J*°(E) by TH(J>®(E)).
Sections of this bundle are locally of the form (5.95), where the coefficients 7" are
smooth functions of the variables [z, u].

Let TP9(M) be the bundle of type (p,q) tensors on M. Then TH(J*(FE)) can
be identified with the induced bundle

TH(E) s Tra(a)
I |
M.

Jo(E)  ——

If T, is a type (p,q) horizontal tensor at o = j*°(s)(z), then 737(71,) is the type
(p, q) tensor on M at x defined by

ﬁ'ﬁ(Tg>(Oé1,042, . .,Oép,Xl,XQ, e ,Xq> = (Tg)(&l,&g, .. .,&p,jzl,j(:g, .. .,Xq)

for covectors a; and vectors X at & € M, where &; = (759)*(a) and X; = tot X;.
Let m: U — Uy be an adapted coordinate chart on E. If T" is a horizontal type (p, q)
tensor field on J>°(U) and s: Uy — U is a local section of E, then 753[T(7°°(s))] is
a type (p, q) tensor field on Uy.

Denote by S fI’O(J *°(E)) the bundle of horizontal, symmetric type (p,0) tensors
on J®(E).

The connection V on M induces a process of total covariant differentiation on
sections of TH?(J>°(E)). If X is a generalized vector field on M and T is a hori-
zontal, type (p,q) tensor field on J°(E) then at a point o = j°°(s), where s is a
local section on FE,

(Vior xT)(17(8)) = Vxo {77 [T (57 ()]}

0
where Xo(x) = X (5°°(s)(x)). In coordinates, if X = X"——- is a generalized vector

Oxh
field on M, then (see (1.38))
tot X = X" D,

is the associated total vector field on J*°(E). If T is, say, a type (1,1) horizontal
tensor field on J°°(F) with components

T =T D; ®da’,
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then the components of Vi xT are
Vit xT = X"[DyT) + T}, T} — T2, T/ D; ® da’.

A routine change of coordinates calculation, based on the fact that our coordinate
transformations
y =9/ (x") and 0° =Pzt u®)

are projectable and therefore satisfy

oy’ _ 0%y
Dh[axi] ~ Oxidxh

directly verifies the tensorial character of Vi xT'. Total covariant differentiation

0 .
with respect to the coordinate vector field 9h will be denoted by V. If T} are the
x

components of a type (1,1) horizontal tensor field, then VhT; are the components
of a type (1,2) horizontal tensor field on J>°(U).

Now consider a p form Z on J*°(E) which takes its values in TH?, i.e., Zis a
section of AP(J®(E)) @ TR (J>®(E)). If Z is a p form of type (r,s), then for all
evolutionary vector fields Y7, Ya, ..., Y5 on J®(E)

E= E(er17er27"'7ers>

is a type (p,q + r) horizontal tensor field on J*°(E). We define the total covariant
derivative of = to be the type (r, s) form with values in TH? as given by

(Viot x Z)(pr Yy, prYs,...,prYs) = Vi x[E]. (5.96)

For example, if = is a type (r, s) form with values in TI?O which is given locally by

—_
(=
—

T; ® D; @ da?,
where each component T; is a type (7, s) form, then

Vit x 2 = X"DpT} + T}, T; — T4, T — v, A(Dy = T})] ® D; @ da? .
Here 7! are the connection one forms

S
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This formula follows from the definition (5.96) and the fact (see Proposition 1.16)
that total differentiation commutes with inner evaluation by the prolongation of
arbitrary evolutionary vector fields, i.e.,

Dp(prY = Z) =prY — (D, ).

We write
VtotX == Xh[th;] (059 Dz & d.fl?j

and observe that V,T ; are the components of a type (r,s) form with values in
Ty (T (E)). |
We remark that if = = T"® D; is a vector-valued type (n, s) form (where dim M =
n), then
A (D= T =TT
and hence
VT = D, T". (5.97)

Because the connection V is assumed to be symmetric, it also follows that for
we Q3 (J>®(F)),

dyw = dz" A Dpw = daz" A Vyw = dfjw, (5.98)

that is, the covariant horizontal exterior derivative dy; on forms coincides with the
ordinary horizontal exterior derivative. Note too that

Vi (dz" Aw) = dz" A (Viw).

In this equation, dz’ A w is properly viewed as the components of a a vector-valued
type (r + 1, s) form.

Next we use the connection V to construct invariant counterparts of the Lie-Euler
operators EI and interior evaluation operators F introduced in Chapter Two. The
construction of these operators is based upon the systematic replacement of total
derivatives D}, by total covariant derivatives Vy,.

Let P be a total differential operator as defined in §2.A, i.e.,

P: Eu(J>®(E)) — Q" (J*(E))
where, for an evolutionary vector field ¥ = Yo‘a—,
uOé
k

P(Y)= )Y (D;Y*)PL
|T|=0
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According to Proposition 2.1, P(Y) may be rewritten in the form

k
P(Y)= > D/Q"(Y)), (5.99)
[1]=0
where
k—|I|
QYY) =vQL=Y" [HZ (15 (=D) P,
J|=0

Recall that the Q(Y') are assumed to be symmetric in the indices I. Because the
operator P is of order k, the Q%% % (Y') are the components of a type (r, s) form
with values in Tfl’o or, to be more specific, with values in SZ’O. This type (r, s)
form is the symbol of P. Because of the tensorial character of the symbol, we may
successively replace all the total derivatives in the expression D; ;, ;, Q"% by
total covariant derivatives and write

k—1
o o (k)
Di1i2~-~ik [Qllmmzk (Y)] = vi1i2~-~ik [Qllwm% (Y)] + Z DI[FI(Y>]7 (5100>
11]=0
(k) o
where each T'!, [I| =0, 1,2, ..., k— 1, is a sum of products of Q%% (Y with

the connection coefficients F;- . and their partial derivatives to order k — 1.
For example, with £ = 2, a straightforward calculation shows that

Dy [Q (V)] = Vi [QU (V)] + D[P (Y)] + T (v),

where

TU(Y) = ~TH,Q (V) +2T5,Q"(Y) + 29 A QY (V).

and

T(Y) =T, Q9 (V) = 7, AQU(Y) — T1,T%QM (V) — TV, T9,Q°(Y)
+2T Y AQU(Y) +TE P AQE(Y) =T AP AQI(Y)
— VL AYEA QU(Y).

Here, and the sequel, we write

QNY)=D,—= Q' (Y) and QL (Y)=D,— Qi (Y).
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When (5.100) is substituted into (5.99), it is found that

P(Y) = Viyipei [Q2 (V)] + P(Y),

where

" k—1 )

P(Y)= Y D/Q"(Y)+ T'(Y).

|1]=0

Since both P(Y') and V;,;,...;, [Q"% % (V)] are invariantly defined total differen-
tial operators, the same must be true of P(Y). Note that P is of order k — 1. We
now repeat this process of successively replacing the total derivatives of the symbol
by total covariant derivatives of the symbol plus a lower order operator until the
original operator P is expressed in the form

P(Y) = Vi[Q) (Y)]. (5.101)

|7]=0

Each coefficient Q1 (Y) = Y*Q_L represents the components of a type (r,s) form
QW(Y), I = |I|, with values in S%O(JOO(E)). We pause to formally record this
result.

PROPOSITION 5.54. Let V be a symmetric connection on M and let
P: &u(J>®(E)) — Q7 (J*(E))

be a k' order total differential operator. Then, for each | =0, 1, 2, ..., k, there
exists a unique, zeroth order map

Q.+ E(J*(E)) — Q7 (J%(E)) © S (J(E))

with components

(1) .. .
QV(Y) = YQQVEQMZZ Dil ® Di2 e ® Dil

such that P(Y) takes the form (5.101).

o
We call Q_ the [*" invariant symbol of P with respect to the connection V. For
a second order operator

P(Y) =Q(Y)+ D;[Q(Y)] + Dy [Q7 (Y)],
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one can show that
Q7 (Y) = QV(Y),
Q' (Y) = Q'(Y) ~T5,Q7(Y) —2T3,Q"(Y) + 2795 AQJ(Y), and
Q. (Y)=Q(Y) —TH,Q (V) + 7! AQL(Y) =T, ,Q¥(Y) (5.102)
+ 705 A QY (Y) + T3 T,Q (V) = 215,77 A Qi (Y)

+ 57 A QYY) + 77 A A Qg (Y).

0
Needless-to-say, these formulas for the invariant symbols @ of P become increas-
ing complex as the order of P increases. However, owing largely to (5.97), some
simplifications arise when r = n. Indeed, for »r = n and k = 3 we find that

Q) = QM (Y),
QI (¥) = QU(Y) — S (T4 QU (V) + T4, Q" (1)),
(5.103)

QS (V) = Q(Y) = To,Q(Y) + (T + Tp;T0n) QM (Y),  and
Qv (Y) = Q(Y>

This last formula is of particular interest. It shows that the zeroth order invariant
0)
symbol @ coincides with the Euler operator E(P)(Y) = Q(Y) of P ( see Definition

2.3) and is therefore independent of the connection V. This is true generally.

PROPOSITION  5.55. Let P: Ev(J*®(E)) — Q™*(J°(FE)) be a total differential
operator, where n = dim M. Then the Euler operator E(P) of P and the zeroth

©)
order invariant symbol Q_ of P with respect to any connection V coincide.
ProoOF: Equation (5.101) implies that

P(Y) = Q.(Y) + Vi[T'(Y)] (5.104)

where

Ti(Y) = 3 i@ (V).

|1]=0
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Since each component T%(Y) is a type (n, s) form, it follows that
THY) = da' A [Dj = TI(Y)] = da’ = T(Y),

where T(Y) is a type (n — 1, s) form. Owing to (5.98), (5.104) can be rewritten as

(0) ~

PY) = Qy(Y) +dy[T(Y)].

The proposition now follows from the uniqueness of this decomposition of P as
established in Proposition 2.2. ]

We continue, in the spirit of §2A, by applying Propositions 5.54 and 5.55 first to
the operator
P(Y) =Ly,

where A € Q"0(J*°(F)) is a Lagrangian on J*°(F), and then to the operator
PY)=prY—-w,
where w € Q™*(J*°(FE)). In the first instance, we deduce that
Loy A=Y = E(\) +dyn, (5.105)

where E()) is the Euler-Lagrange form of A and

k—1
n= > Vi[Y*E(D;— ). (5.106)
|T|=0
The tensors

(Eg)(N) = EJa2 1 ()) @ 0° ® D;y ® Dy @ - ® Dy,

Vo

are called the invariant Lie-Euler operators of A with respect to the connection
V. To third order, these operators are given by (5.103) with Q(Y) = Y*EL()),
where EL()\) are the ordinary Lie-Euler operators defined by (2.15). The form 7 is
manifestly invariantly defined. Thus, (5.105) immediately establishes the existence
of a global first variational formula for the calculus of variations (see also Corollary
5.3).

In the second instance, Proposition 5.54 leads to the decomposition

k

pry—w= Y V/I[VF(w)
[1]=0
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The tensors
)

Fv = sz;iz...z‘l (w> ®0%® 1)2,1 ® Di2 R ® Dil
are the invariant interior Euler operators of w with respect to the connection V.
Proposition 5.55 now implies that F_,(w) = F,(w) and hence the interior Euler
operator (2.14) coincides with
1

I(w) = . 0% N Fo(w).

Consequently, for w € Q™*(J*°(E)), it follows that

k k
1 o 1 a
w:; Z D6 /\FaI(W)]:; Z \YalZ /\va;(w)],
|11=0 |11=0
and therefore
w=I(w) +dy[h*(W)],

where

k—1
W) = S0 ViD= 0 AR ()]
11]=0

This is the sought after invariantly defined horizontal homotopy operator on
Qm*(J°(FE)). Note that this operator is obtained, at least formally, from its local
“non-invariant” counterpart h'%;” (see (4.13)) by replacing the interior product oper-
ators F17 by their invariant counterparts F_!7 and by replacing the total derivatives
Dy by total covariant derivatives Vy. This suggests that for r < n, h7>* might be
similarly defined. In fact, the formulas for h>* will contain the invariant analogue
of our previous homotopy operator h%’ although additional terms, involving the
curvature tensor of the connection V, must be introduced to compensate for the
fact that repeated covariant derivatives do not commute.

THEOREM 5.56. Let V be a symmetric connection on M. Let w: U — Uy be an
adapted coordinate neighborhood of EI. Then, for 1 <r <n and s > 1, there exists
invariantly defined operators

hg®: QP (J(U)) — Q1 (J=(U))
such that, for 1 <r <n—1andw € Q™*(J>*(U)),

w = dy[hy*(w)] + h@“’s(de)’ (5.107a)
while, for w € Q»*(J>*(U)),
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w=dg[hl*(w)] + I(w). (5.107b)

Before presenting the proof of Theorem 5.56, we give an alternative proof of
Proposition 4.1 wherein our original, non-invariant homotopy operators h%,> were
introduced. This alternative proof is inductive in nature and, although somewhat
more complicated than the one already given in §4A, it serves to motivate (and actu-
ally simplify) the approach required to construct the invariant homotopy operators
hl:*.

For s > 1, let D™*(J°°(FE)) be the vector space of all total differential operators
P: &u(J®(E)) — Q™5 H(J®(E)).
For P € D™%(J*°(F)), define DP € D"t1:5(J>°(E)) by the rule
(DP)(Y) = —dy[P(Y)]. (5.108)

If P is a total differential operator of order k, then D P is a total differential operator
of order no larger than k£ + 1.

Given a k™ order form w € Q"*(J°°(E)), we define the associated k" order
operator P, € D™*(J*°(E)) by

P,(Y)=prY—w.
The sign convention adopted in (5.108) is such that, in accordance with (1.35),
DP, =P; where 7 =dyw. (5.109)

Conversely, given an operator P € D"*(J*°(F)), we can define a form w, €
Qne(J>(E)) by

wP(erber27 s 7er9)

1 < . —

= - E (—1)”1P(Yi)(er1,er2,...,erZ,...,erS),

S
i=1

where Y7, Ys, ..., Y, are evolutionary vector fields. It is readily checked that

w=uw, where P =P, (5.111a)

and
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A where R = DP. (5.111b)

Because D(DP) = 0 the vector spaces D"*°(J°(F)), together with the maps
D : D™ (J>®(E)) — D"15(J>°(E)), form a differential complex. Let 7: U — Uy
be an adapted coordinate neighborhood of E. We prove this complex is locally
exact by constructing homotopy operators

JTS DS (JR(U)) — DL (IR (U)), (5.112a)
so that, for all P € D™*(J>(U)),
P =dy[J"5(P)] + J T 5(dy P). (5.112b)

With this result in hand, homotopy operators for the interior horizontal complexes
(Q*5(J>°(U)),dy) are easily obtained by setting, for w € Q™*(J>*(U)),

hy’(w) =w, where R=J"°(P,).
From equations (5.109) and (5.111), it is a simple matter to check that
w = dglhy (W) + " (dgw),

as required. While not for a priori reasons, it turns out that h%;° = h';°.

We define the maps J™* by induction on the order of the operators P. Let
D.°(J°(E)) be the subspace of D™*(J*°(FE)) consisting of all total differential
operators of order k. We construct maps

Jy*: DY (U) = Dy (U) (5.113)
such that, for & > 1 and all P, € D°(J>(U)),
Py = D[J*(Py)] + Jy 1 (DPy). (5.113b)
In addition, these maps have the property that for P, € D;>* and [ > k,

Jlr’s(Pk) = J,:’S(Pk).

Thus, (5.112) can be derived from (5.113) by taking inverse limits.
To begin the inductive process, let Py € Dy*(J>°(U)) be given by

Py(Y) = Q(Y) + Di[Q"(Y)] + Dy Q¥ (Y)].



Global Properties 269

We define
1 - 2

[T (P))(Y) = ——— 1 G -5 D Q7 (Y)], (5.114)

where QI(Y) = D; = Q'(Y). Implicit in this definition of Jy* is the definition of
J® —if Py € DY (J>*(U)) is given by

Pi(Y) = S(Y) + Di[S"(Y)],

then

P =~ SI(Y),

Now suppose that DP; = P,. Then
g 1. . . . .
QYY) = E[da:’ ANSHY)+dx? NS (Y)]
Q(Y)=—dr* AS(Y) and Q(Y) =0,

and a straightforward calculation, identical to that given in Lemma 4.5 and the
original proof of Proposition 4.2, leads to

Py = D[J]*(P)] + J5 *(DPy).

This proves (5.113) for k = 1.
Now decompose each P, € D,°(J*°(U)) into the sum

k
Pe(Y) =) DiQ' (V)] =0, (V) + pp, (Y),
where |17]=0
0, (V) = DiQI(Y)]  for |I| =k,
and b1
P (Y) =Y DilQ"(Y)].
|I|=0

Note that p, is an operator of order k — 1. We define J;° in terms of J;°;, for
k=2,3,..., by

k

.
m Dy [Qﬁ (Y1,

[T (PI(Y) = [JeZ (o DY) =
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where |I'| = k — 1. Fix k > 2. We assume that J;°, and J,’° satisfy (5.113b) with
k replaced by k — 1.

To prove that J,"* and J;77, satisfy (5.113b), decompose the two total differential
operators P, and Ry = DP;,, k' = k + 1 into the sums

PuY) = g, (V) + py, (V)

and

(DP)(Y) = g, (V) + p,, ()
where, just like %> O, is of the form

(Y) = D;[S'(Y)] = D;[Y®SL]  for |I|=k+1,

Ol-%k/

and where Pr,, of order k' — 1 = k. It is easily seen that
(Dpy)(Y) = p,, (V) and (Do, )(Y) = g (V). (5.115)
This latter equation implies that
SIY)=—-dzU AQ")(Y)  for |I|=k+1.
The induction hypothesis implies that

00, (Y) = DI~ (0, (V) + (7 (Dpy, ))(Y), (5.116)

while a calculation identical to that given in the proof of Proposition 4.2 shows that,
for I =k,

o, (Y) = DrlQ"(Y)]
k

k+1
—d, I —"
H{n—r—I—k

Dy [Q;I/ WM} —{ e

Dy [ijI(Y)}-
(5.117)

Now add (5.116) to (5.117). The left-hand side of this sum equals Pg(Y’). The
sum of the first terms on the right is (D[J;**(P:)])(Y) and the sum of the second

terms is [J,:i}’s(DPk)](Y). This proves (5.113).
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PROOF OF THEOREM 5.56: Since we have already established (5.107b), we re-
strict our considerations to the case 1 < r < n — 1. We proceed just as above by
constructing operators

JO8 DY (JX(U)) — D (I (1))

vk:

such that, for all P, € D;*(J>*(U)),

Py = DLISE(P)] + Jo 43 (DPy). (5.118)

v

Then, just as above, the required homotopy operator " is defined by
h. (W) = w,, where R = J7(P,).

The maps J_; are defined inductively. In fact, the complicated nature of these ho-
motopy operators really precludes the possibility of giving explicit general formula.
For k=2 and P, € Dy*°(J*°(U)) given by

Py(Y) = Q(Y) + Di[Q"(Y)] + Dy [Q7 (V)]
= Qv (Y) +V; [QVZ(Y)] + Vij [Qvij (Y)]a

we set

1 - 2 .
TSPY) = ————[D; = QI (V)] — —————V,[D; = QI (V).
IS EY) = (D= Q)] - 2T, D,= Q)
Clearly, J_%5 is invariantly defined. The invariant symbols Q,'(Y) and Q. (Y) of
Py are given explicitly in terms of the coefficients Q*(Y) and Q¥ (Y) by (5.102). By

virtue of these equations, a straightforward calculation shows that

[Jo5 (P)](Y) = [Jy* (P2)](Y) (5.119)
- n%r_}_l{réijj(Y) - ﬁ[ﬂi@?(y) + VLA QZ(Y)]},

where J;* is the non-invariant homotopy operator defined by (5.116). Consequently,
if P, € DY?(J°(U)) is a first order total differential operator, then

Jor (Py) = Jp(Py).
Moreover, if the second order operator P» is D closed then

dz" A QY (Y) +da? AQM(Y) +dxt AQM(Y) =0
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and therefore
(n—r+2)QY(Y) =da' AQM(Y) +da’ A QI (Y).

Interior evaluation of this equation by D; and multiplication of the result by I’éj
shows that the terms in braces in (5.119) vanish. This proves that if DP, = 0, then

J5 (Pr) = Jy° (Pa).

We remark that this result is consistent with the findings of the previous section
(see Proposition 5.43). In particular, for a first order operator P; we deduce that

JJ’;(DPl) = J;’S(DPl)
Owing to (5.113), we therefore conclude that
DLJgy (Pl + Jg'a (DPy) = DIJy* (Py)] + D[Jy " (DPy)]
=P.

This proves (5.118) for k = 1.
Before defining J_7, for k = 3, 4, ..., it is necessary to introduce certain auxiliary
operators. Let P, € D;°(J>°(U)) be given by

k
PY) = S VIR (V)
Define =

o, (Y) = Vi[g, (V)]
where k = |I| and q,kI(Y) =QJ(Y), and

k—1

e, () =D VI[QS (V)]

|1|=0

Clearly both T, and Pp, are invariantly defined total differential operators and
Pe(Y) =, (Y) + pp, (V).

Both of these operators depend on the connection V although, in view of (5.100),

g/ (V)=Q'(Y)  for [I|=k
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is independent of V. The operator Pp, 18 of order £ — 1. Next set

p (V) = V;Vi[da? Ao,/ (V) — dz Ao, (V)] for |I| =k (5.120)
and
7, (Y) = V; Vi [dx? A JPkIZ-/i(Y) — dzl A kali/)i(Y)], for |I'|=k—1.
(5.121)
The operators p, and 7, are also invariantly defined. Were it the case that the total
covariant derivatives with respect to V commuted, then p, and 7, would vanish
identically. Thus we can interpret the presence of these operators in our subsequent
formulas as the correction terms needed to compensate for the non-commutativity
of covariant derivatives.
By virtue of the Ricci identities, it is possible to prove that 7p, is of order k — 2.
Consider, for example, the case k = 3. If, for the sake of notational convenience we
write

TM(Y) = da? A g P(Y) = da? A QM

we find that
7, (V) = VyVu TR (V) = £ (TH(¥) 4 T () 4 TR ()

— vjvhvk[g (T7"%(Y) — T (Y)) + 1(T’”“J'(Y) — THMY))]

3 3 (5.122)

_ 2 jhk 1 hkj
= g[(Vth = Vi Vi) (VT (Y))] + gvj[(vhvk = Vi Vp)T" (Y)].
At this point it is apparent that Tp, 18 Indeed a first order operator. However, for a
subsequent calculation, we need to simplify this last equation. To this end, let us
temporarily assume that the connection V is the Riemannian connection for some
metric g on M. This allows us to utilize the maximum possible symmetries of the
curvature tensor. We denote the curvature tensor of the connection V by R;7,
where, for any vector field X! on M,

R X =V, ViX? — ViV X7,

. 1 .
The Ricci tensor is Ry, = Rplw and Q7 = =Ry, da® A dz® is the curvature 2

form. We now apply the Ricci identities to each of the two expressions in brackets
in (5.122). When the first set of terms is “integrated by parts”, we arrive at

. 1. ; 1 o
7 (V) = V;[Rpp dz" A QN (Y) + gRﬂhk dz A QF(Y) — Eth AQM(Y)]

_2 _1

2 (V3 Bng) dzh A QM (Y) 3(vj9hl) AQMUY). (5.123)
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Finally, in way of preparation, we compute Dr, :

(D7, 1(Y) = —dg[7, (V)]

Py

= —dy{dp [Vrlo] (V)] = V;Veda¥ A q " (V)

i
= V;Vilda? A da Ao )" (Y)]. (5.124)
For each k = 3, 4, ..., define J, as follows. Let P, € D;*(J*°(U)) and let

o, € D°(J*U)) and py, 7, € D7 (J*(U)) be the associated operators as
defined above. Set

[T R (Pe))(Y) (5.125)

[V O]+ (T4 (5)) (V) 4 I () (V).

where |I| = k. To prove (5.118), let P, € D.*(J*(U)). Decompose Py and
Ry = DP;, where k' = k + 1, into the sums

Pu(Y) = g, (V) + py, (Y)
and

Rp(Y) =0, (Y) + p,, (Y).

k
Since

(DP)(Y) = —dy [Pe(Y)] = (Dpy, )(Y) — Di{da? A Vrlg,! (YV)]}
= [(Dppk) - Mpk](Y) - Vj[[dl‘(j A %kl) (Y)]

it follows that

(V) = —da A g DY), for k=1, (5.126)

k/

[0

and
ka, = DpPk - :qu' (5127>
(Compare with (5.115).) From (5.126), it is found that

E+1
n—r+k W

(V)= -0, (Y) + _F aling DIy, (5.128)

n—r+k PieJ
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By virtue of (5.124), substitution of this formula into (5.121) leads to

kE+1 k

o m e ) = (V) + e (D7 J(Y). (5.129)

We now substitute these last three equations, (5.127), (5.128) and (5.129) into
the definition (5.125) of Jvrigif , as applied to the operator R’ = DP. The two terms
involving p, (Y) cancel to yield

LTV (DPO)IY) = Vilg, (V)] + [J0 5 (Dpe )I(Y) (5.130)
k

— e AR DI + Vilda A g (V)]).

Furthermore, from the definition of J_’; (Py), we find that

DU PY) =~ (V90 e A (V)] + DI (5, )](V))
DI (0, )10 (5.13)

Equations (5.130) and (5.131) are now added together. The terms in braces
vanish on account of the induction hypothesis, as applied to the operator T, - By
applying the induction hypothesis again, this time to the operator Pp, s We deduce
that

[ it (DPOIY) + DI (Po)](Y)
= Vil (V)] + [Jo 3 (Dpa)I(Y) + [DIZ_ (e I(Y)
= Vi, (V)] + s (Y) = Pi(Y).
This establishes the homotopy formula (5.118) and completes the proof of Theorem

5.96. i

EXAMPLE 5.57. If P3 € D3*(J°°(U)) is a third order operator, then it follows from
(5.123), and (5.125) that

[Jg5 (Ps))(Y)
3

- vl ’”ﬂ(yn—n%mvh[ (V)] = Q)

[RiukQo!™ (V) — (RpPrda') A Qe (Y)]}.

n—r—f—l
1 2
+n—r%—l{n—r—ki’)

(5.132)
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The first three terms in this formula are precisely the invariant analogs of the three
terms defining original homotopy J3*(P3). The last two terms are the correction
terms needed to compensate for the non-commutativity of the total covariant deriva-
tives. As we shall see, this rather complicated formula simplifies rather dramatically
when Ps is D closed. |

COROLLARY 5.58. The augmented interior rows of the variational bicomplex, viz.
dy dy dy
0 — Q¥ (J®(E)) —QH*(J®(E)) — Q**(J¥(E)) — -
dy I
— QM(JF(E)) — F(JZ(E) — 0
for s > 1, are exact.

PRrROOF: Because of their invariance under change of coordinates, the local invariant
homotopy operators

hy® s QP (J(U)) — Q=1 (J(U))
patch together to determine global homotopy operators
hD®: QP (J®(E)) — Q1 (J®(E)).

The invariant homotopy operators JJ** constructed in the the proof of Theorem
5.56 have an addition property which actually uniquely characterizes them. Let
P, € D;*(J*®(E)) be a k™ order total differential operator, say

K
PY)= > Vi[QS (V).

|1]=0

We say that P is trace-free with respect to the connection V if all of its invariant
symbols QVI are trace- free, i.e.,

D= QJi(Y)=0, for |I'|=0,1,....k—1.

Since J.5 (P2) is a trace-free operator ( whether or not P, itself is trace-free), it is
easily verified, by induction, that J_7; (P) is trace-free for any k. Consequently, the
arguments presented in Proposition 2.4 can now be extended to arbitrary order total
differential operators. Thus, if P, P € D™*(J*(E)) are two trace-free differential
operators, with » < n, and DP = Df’, then P = P.
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COROLLARY 5.59. Suppose that P € D,;°(J*°(FE)), where r < n, and that
DP = 0.

Then there is a unique operator R, € Dj_1*(J™(E)) which is trace-free with
respect to the connection V and such that

DR, =P.
PROOF: In fact, R must coincide with J2>*(P). |

ExAMPLE 5.60. Corollary 5.59 can now be used to construct directly local, invariant
solutions R to the equation DR = P and thereby circumvent the direct use of the
operators J>*. For example, suppose that

P3(Y) = Q(Y) + Di[Q"(Y)] + Dy [Q7 (Y)] + Dyjn[Q7" (Y)].
According to the corollary, we may take
Ry (Y> = Sv (Y) + vl[SvZ(Y” + vij [Svij]
= S(Y) + D;[SY(Y)] + Di;[SY (Y)].
The equation DRs = P3 implies that
—dz" A §¥) = Qil, —dz" A SY = QY (5.134a)
dz* NS = Q' and 0=0Q, (5.134b)

while the trace-free conditions on Ry imply, in view of the formulas (5.102) for the
invariant symbols of R, that

iy _ i D Qij _
S7 =0 and S; + 10,5, =0. (5.134c¢)

Equations (5.134) can now be solved uniquely for the coefficients S, S* and S¥ in
terms of the coefficients Q', the result being that
Ry = J5°(Q) + DQ, (5.135)

Q(Y) = ’

where

2. QUM vy).
m—r+2)(n—r+3) Y ph( )

Thus, for a third order D closed operator Pj, D@ is the single correction term
that must be added to J3**(P3) to obtain an invariantly defined operator. One can
check directly, by a rather tedious calculation, that the two formulas for R, viz.,
(5.132) and (5.135) coincide — not identically but rather by virtue of the condition
DP; = 0. |
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EXAMPLE 5.61. Similar trace-free conditions were introduced by Kolar [41] in
his construction of global Lepage equivalents. For example, if A € Q™9(J>(E))
is a third order Lagrangian, then it readily follows from (5.135) (with » = n and
P = P(dv)‘)) that

R (dy X) = 0% A EL(N) 4 D;[0% A EY (X)) + Djn[0% A EZ™(A)]

1 o ¥
+ 5 [T7; 0% A M (Mpn)].-
The global Lepage equivalent
O(A) = A+ A2 (dyA)

therefore coincides with that defined by Kolar [41], at least for third order La-
grangians. ]

COROLLARY 5.62. Let V be a connection on M. Then there exists a cochain map
Oy EX(JF(E)) — QO (J7(E))

from the Euler-Lagrange complex on J*°(FE) to the de Rham complex on J*(E)
which induces an isomorphism in cohomology.

If'V and V are two connections on M, then @, and 3 induce the same isomor-
phism.

PRroOOF: In accordance with the spectral sequence argument used in the proof of
Theorem 5.9, the required map is easily constructed from the iterates of the map
hg® o dy,. For instance, if r <n and w € E"(J®(E)) = Q"(J>*(E)), then

where wg =w and, for k=1,2, ..., r, wp = hQH_k’k(dek_l).

The inverse isomorphism ¥* from the de Rham cohomology on J*°(E) to the
cohomology of the Euler-Lagrange complex on J°°(F) is induced by the projection
maps U* = 770 and ¥* = [ o 7%, Since ¥* is the inverse to both @, and o=,

these maps must coincide in cohomology. ]



Global Properties 279

One final remark concerning our invariant-theoretical constructions is in order.
As we have seen, any total differential operator P € D™*(J*°(F)) may be described
in a variety of ways, viz.,

k

k k
P(Y)= Y (D/Y*)PL=> Di[Y*Ql= > Vi[Y*QJl). (5.136)

|1]=0 |1]=0 |1]=0

Each of these representations is unique in the sense that P = 0 if and only if the
coefficients PL, Q% and Q. in each representation vanish. Suppose now that, in
addition to the linear connection V on M we have a connection V' on the bundle
Ev — J°(FE) of evolutionary vector fields. Specifically, V' assigns to each total
vector field Z = tot X, where X is a generalized vector field on M, and to each
evolutionary vector field Y, an evolutionary vector field V,Y. By definition V,Y
is linear (over C'*° functions on J°°(E)) in the argument Z and a derivation in the
argument Y. In local coordinates [z, u] on J*(U), V' is given by
VyY = X'[D;Y* +T%,Y7) o_
’ ou®

The connection coefficients I'g;, defined by

) L0

Vo (Ggs) = Tigg

are the components of an evolutionary vector field and therefore, as such, are func-
tions on J*°(U). Under the change of coordinates v” = v®(z?,u®) and 3/ = y7(z%)
these connection coefficients transform according to

o OVY Ou® Oyl s o Oou®
U5 = 5.8 507 5511 T1Pil5 555
Let T‘(/p/’q/) (J°(FE)) — J°(F) denote the bundle of type (p’, ¢’) tensors associated
to the vector bundle Ev(J*°(FE)) — J°(FE) of evolutionary vector fields. The total
covariant derivative of “mixed tensor fields”, i.e., sections of ThH? ® T{}/’q/, can then
be constructed using both connections V and V’. For example, if T is a mixed
tensor of types (p,q) = (1,0) and (p',¢") = (0,1) then, in components,

o o a B l o
VITE = DT + 19,17 — T 17

We have allowed ourselves an abuse of notation here by writing V; to denote a
process of covariant differentiation which depends upon both connection V and V’;
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we retain the notation V; for covariant differentiation involving only the connection
V.

The total derivatives D;Y® in the first representation in (5.136) can now be
systematically replaced by total covariant derivatives V;Y®. This leads to another

expression for P of the form
k

P(Y) = Z (VI/Ya>Pv’é7
|7|=0

where the coefficients PVI, depend upon both connections V and V’. Upon repeated
integration by parts, this can be recast into the form

k
PY)= > V/[Y*Qull, (5.137a)
|T|=0

where, just as in the proof of Proposition (2.1),

k—|I|
QL = Z (IIIEIJI)(_1)|J|V3(pv,éJ). (5.137Db)
|7]1=0]

I
va

in the formulas for the P/ in terms of the original coefficients P! and then in the
calculation of the covariant derivatives V. However, a comparison of (5.137b) and

the last representation in (5.136) shows that

The connection coefficients ng enter into in the formula for twice — first

1 I

va T ¥Va

i.e., all the terms in the coefficient Q/, involving the connection coefficients ng
must vanish! A similar situation is described by Masqué [49] who used a pair of
connections to construct global Poincaré-Cartan forms but concluded that the forms
so constructed are actually independent of one of the connections.

In the special case where the total differential operator P € D™9(J>(E)) is de-
fined by Lie differentiation, i.e., P(Y) = L,,yw, we have that P! = 9! (w). The
operators P, (w) are the so-called tensorial partial derivatives of w with respect
to u¢ and the connections V and V’. The concept of tensorial partial differenti-
ation was first introduced by Rund[60] and subsequently developed by du Plessis
[23], Wainwright [77] and Horndeski [36]. We denote these tensorial derivatives by

V'! (w) — they are defined by )

Loyw= Y (VIY*)V'¢ ().

|7]=0
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For second order forms w we find, after some straightforward calculation, that

V';j (w)=0Yw
V! (w) =0 w— QI’gjﬁéj w+T%,00"w, and

V(W) =0aw—T005w+T0T0Yw—T0, .07 w.

The operators Q. = Q% become the tensorial Lie-Euler operators

k—|1]

Egh(w) =Y ("N () v ) )]
|J|=0

These first appeared, albeit in a somewhat specialized context, in Horndeski’s [35]
analysis of variational principles on Riemannian structures. Note that when r =
n and |I| = 0, we obtain the following manifestly invariant expression for the
components of the Euler-Lagrange form

k

Ea(\) = Y (~)IVIV L (V)

|1]=0

ExaMPLE 5.63. Exactness of the Taub conservation law in general relativity.

Let g = gi; dz' @dz be a metric ( of any signature) on an n dimensional manifold
M. Let R} be the curvature tensor of g, R;, = R;*n. the Ricci tensor and
R = ¢g“R;; the curvature scalar. We denote covariant differentiation defined in
terms of the Christoffel symbols of g by either V; or |j.

The Euler-Lagrange equations derived from the second order Lagrangian

Algl = Vg Rv

are the vacuum Einstein field equations

GY =0 where GY =RY — §g”R. (5.138)

Because of the general coordinate invariance of A\, Noether’s Theorem (see Example
3.34) implies that the Einstein tensor G¥ is divergence-free, i.e.,

V;G"Y = 0.
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Consequently, if X is any vector field on M, then the divergence of the vector

density
ij 0
S =[VgX;GY] Eye
L x
is given by
divS = D;S" = V,S" = /g (Vi X;)G" (5.139)

Therefore, if X is a Killing vector field of g, i.e.,
EX gij = Vin + Vin = O,

then S is divergence-free. This is a trivial conservation law in the sense that it holds

independent of the fields equations (5.138). 5
Now let y = y;; dz* ®dz’ be any symmetric, type (0, 2) tensor field, let Y = y;; —
and let i
T(Y)=LpyS. (5.140)

The Lie derivative of (5.139) with respect to prY gives
div [T(Y)] = (ViX;) Lory (V9 G7) + (Lory (ViX1)) /9 GY.
Thus T'(Y) is a divergence-free vector if
(i) g is a solution to the Einstein field equations, and

(ii) X is a Killing vector field for the metric g.

The conservation law T'(Y") is called the Taub conservation law for the Einstein field
equations.
To obtain an explicit expression for T'(Y'), we first compute

'CerRTtsu =Vy [ﬁerrf«s] - Vs [EerFf«u]

1 1
= §gtp[y7‘p|s + Ysplr — yrs|p]|u - §gtp[y7‘p|u + Yup|r — yru|p]|s

1
= §[y§|ru - yih«s - yrs|t|u + yru|t|s - yéquus - yqutqu8]~

Here 4/ = 9"“Yrsju- Let y = g"y;;. Then, because (5.139) implies that R;; = 0

and R = 0, it is not difficult to show, under the hypothesis that g is a solution to
the Einstein field equations, that

T’ = \/nggjt[EerGTS]

1 .
= Ex/ggﬂX&[gabysaHb - y|ts - gabyts|ab + gabyta|bs (5141)

- gtshab|ab + gtsgaby|ab - ngtbas]-
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The vector density 77(Y) is an example of a natural tensor — it is constructed
from the metric g;;, the curvature tensor Ri7 11, the tensor yi; and its covariant
derivatives and the vector field X* by the natural operations of forming tensor
products and taking contractions of indices. More formally, let

E=S8M)®S"*(M)eTM — M

be the direct sum of the bundle % of metrics, the bundle S%2 of symmetric type
(0,2) tensors, and the tangent bundle of M. Then T is a weight 1, horizontal type
(1,0) tensor on J°°(FE) which is invariant under the induced action of the group
of orientation preserving diffeomorphism of M. We apply our invariant homotopy
operator to prove that T is naturally exact. In the present context (of vector densi-
ties and divergences) this means that there is a natural type (2,0) skew-symmetric
tensor density

. 0 0
P=PrPY X -\ —
9,1, X] 55 A 5
on J*°(FE) such that
9
ivP =1[V,P" - = 142
div V; ]8331 (5.142)

To begin, we first recall the relationship between the divergence operator and the
exterior derivative. Let
0 0 0

Oxi A Oxt2 Ao A Oxtr

T— Ti1i2...ip
be a skew-symmetric, type (p,0) horizontal tensor density on J*°(F). Define, for
q=n—p, atype (¢,0) form T” by

T = plq! €iyipgrogg l P AT N L da?e

Conversely, given a type (g, 0) form
p=Aj . i, da?t A da?? A .. dade
we define a horizontal type (p,0) skew-symmetric tensor density p* by

o ) )
ph= e A e N A
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A standard calculation shows that (7°)% = T. In addition, if T is a vector density
and P is a horizontal, type (2,0) skew-symmetry tensor density, then divT = 0 if
and only if d;;7° = 0 and div P = T if and only if dy (P°) = T".

In light of (5.140), the Taub conservation law can be viewed as a vector density
valued total differential operator and so, in accordance with 5.54, we can write

T(Y) = [QI(Y) + QI (V)] + Vil (v)] L

where Q7 (Y) = y,,Q2%7. The components Q7 are symmetric in the indices I,
but need not have any further symmetries. From the explicit formula (5.141), it is
not difficult to deduce that

Qo7 (Y) = =2V, [Qy™ (V)] (5.143a)
and

1 . . . ,
Qe = Lo Xy + g Xy — g Xy — g7F Xy — 29" Xy (5.1430)
Xy 4 XhyR 9 XMk 2nghky]. '
Since T'(Y) is divergence-free, T°(Y) is a d; closed and therefore, by (5.112),

T(Y) = dylJgy " (T7)(Y)] (5.144)

v 2

where Jv”2_1’1 is given by (5.114). The key point to make here is that V be now
taken to be the metric connection of g. The coordinate invariance of J_'5 1.1 implies,
because T (Y') is natural form on J*°(E), that J5 " (T”)(Y) is also a natural form.
When (5.144) is rewritten back in terms of T' (by applying ), it is found that

T(Y) = div [P(Y)],
where the components of P are given by

PIF(Y) = JIQ2H(Y) ~ Q)] + S VR (Y) — QI (1))

Into this equation we substitute from (5.143) to arrive at, after some simplification,

. . . . (5.145)
+ (XYl — XIyM )+ (XTRR] — XTI REY).
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This agrees with the result presented in Arms and Anderson [6] where (5.142) was
verified using (5.145) by direct calculation.

The triviality of the Taub conservation law plays a crucial role in the analysis by
Fisher, Marsden and Moncreif [25] of the linearization stability of solutions to the
Einstein field equations.

With our invariant homotopy operators in hand, we immediately arrive at the fol-
lowing generalization of the above result. Let A = L[g] v be any natural Lagrangian
in the metric g, and let

g o
S=|X;EY(L —.
(X (L)lg]] 5
The generalized Taub conservation law
T=LyyS

is a natural tensor. If ¢ is any solution to the Euler-Lagrange equations
EY(L)[g] =0

and if X is a Killing vector field of g, then T is the divergence of a type (2,0)
skew-symmetric natural tensor.
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